

SILICON COMPOSERS
Introduces the

SC/FOX" Single Board Computer

(actual size)

SC/FOX (Forth Optimized expresstm) SBC:
8 and 10 MHz RTX 2000 options
32K to 512K bytes 0-wait state SRAM
64K bytes of shadow-EPROM space
Application boot loader in EPROM
F'Compil@ Forth software included
Code converter for EPROM programs
RS232 serial port with handshaking
Centronic parallel-printer port
Single +5 volt board operation
Two 50-pin application headers
Eurocard size: 100mm by 160mm
SC/FOX Coprocessor compatibility
Retail from $1,195 with software

Harris RTX 2000" Forth CPU Features:
1-cycle 16 x 16 = 32bit multiply
1-cycle 14prioritized interrupts
one non-maskable interrupt
two 2Sword stack memories
three 16-bit timer/counters
&channel 16-bit I/O bus
CMOS in 85-pin pin-grid array

Optional SC/FOX SBC Products:
 forth^ Language in EPROM
SC/moath moating Point Library
SC/SBC/PROTO" Prototype Board

Ideal for embedded real-time control, high-speed data acquisition and reduction, image or signal

~ processing, or computation intense applications. For additional information, please contact us at:

~ Silicon Composers, Inc, 210 California Ave., Suite K, Palo Alto, CA 94306 (415) 322-8763

I
1

Forth Dimemiom 2 Volume X, Number 5
I

F O R T H
m

SELF-CHECKING NUMBERS - MICHAEL HAM
9

When numbers are involved, typographical errors are always difficult to detect. Numbers are particularly prone to
emor when copied or entered. Because numeric information tends to be important (bank account numbers or amounts
of money, for instance), various schemes that allow for both error detection and error correction.

m
APPLE I1 $FORTH - CHESTER H. PAGE

14
The regressive step of using BASIC and assembly whenever he needed string manipulation injured this author's pride
so he designed aForth application to handle strings fluently. His $Forth stores text downward in high memory; strings
are loaded from the input stream normally; and a separate string stack contains the pointers.

rn
DESIGNING DATA STRUCTURES - MIKE ELOLA

I 19
This last article in the four-part series departs from discussion of portability and reuse of operations and how
object orientation and data abstraction can help address those concerns. By managing operations that apply to
particular types of user-defined objects, languages are deserving of the label "object oriented."

m
FORTH CONFERENCE: REAL-TIME PROGRAMMING

26
The Forth Interest Group held its annual convention in Anaheim, California last November. Its focus was on real
time programming, a purpose for which many people find Forth admirably suited. The outstanding program was
accompanied by a major prsentation from a Forth chip manufacturer and an innovative programming contest.

m
VOLUME NINE INDEX - MIKE ELQLA

29
A comprehensive guide to all issues of Forth Dimensions published during the Volume IX membership year, and to
related articles from previous volumes.

=
THE VALUE OF FIG CHAPTERS -JACK WOEHR

36
The Forth Interest Group's new Chapter Coordinator shares his concerns about fraternal association, Forth, and the
future. Get on-line with him to help boost Forth activity--and the Forth marketplace-in your area.

Editorial Ad Index
4 35

Letters
5

Best of GEnie
31

FIG Chapters
38

Volume X, Number 5 3 Forth Dimensions

T e ~ o r t h Interest ~ m u p recently
appointed a new coordinator for its inter-
national network of chapters. Jack Woehr,
who has already established a presence on
far-flung electronic networks, now makes
his first official contribution to Forth Di-
mensions. He clearly understands the
benefits of strong chapters, and we wel-
come him to these pages-please read and
respond. Let Jack know about your own
thoughts and experience. The straightest
path to a vital organization is direct com-
munication ...

One of the articles in this issue forced
me to remember an important fact. Previ-
ous-generation machines are still used for
important work around the world, wher-
ever results and functions are more impor-
tant than the currently preferred makes and
models of the commercial marketplace. In
a way, mastery of Forth makes it possible
for one to support his own orphaned com-
puting machines of any generation. It's
applied hackery at its best, like Luke Sky-
walker recycling smart parts and refining
the elegant light saber.

Forth strings for the Apple I1 is, admit-
tedly, rather specific for this magazine, but
we are reminded of all those laboratories
with old Apples still dutifully clicking
away after all these years. Maybe I was
influenced by my own mechanically
sound but task-starved hardware: TRS-80
Model 111 and Model 100, parallel Diablo,
a 12% Mac, and miscellaneous cables and
modems (sorry, the Apple I1 sold a few
years ago). Mostly, we present this string
stack as a complement to material from the
preceding issues; readers will find it useful
as a source of secondary illumination

Forth Dimensions
Published by the

Forth Interest Group
Volume X. Number 5
JanuaryFebruary 1989

Editor
Marlii Owerson

Advertising Manager
Kent Safford

Design and Production
Berglund Graphics

* * * Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest

about strings, stacks, and Forth. If it also
saves a
dental oblivion, so much the better.

The public-domain F83 implementa-
tion of Forth has an interesting quirk (or
feature). It enigmatically prints, "Therest is
silence." For some years, I had assumed
this to be a Zen-like iceberg in the living
room or just a favorite mantram. But while
reading The Hitchhiker's Guide to the Gal-
axy, I came upon the episode wherein two
deadly nuclear missiles, by virtue of having
been caught up in an Improbability Field
before detonating, are turned into abowl of
petunias and a sperm whale, respectively.
Snagged by the gravity field of an alien
planet, the whale has enough falling time
for an introspective monologue in which it
becomes aware of itself and its surround-
ings before the author informs us, "And the
rest, after a sudden wet thud, was silence."

I thought to ask Mike Peny if that was,
after all, the origin of F83's philosophy-in-
a-nutshell, a kind of general disclaimer
from No Visible Support Software. He
denied it, and I believe him. It's probably
just a variation on what another friend of
mine would call the sound of one statement

Forth Dimemions welcomes editorial ma- - to the editor, and fim
its readers. No responsibility is assumed for
accuracy of submissions.

looping.

--Marlin Ouverson
Editor

Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth
Interest Group. P.O. Box 8231, San Jose,
California 95155. Administrative offices and
advertising sales: 408-277-0668.

Copyright C? 1988 by ForthInterest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the indi-
vidual authors of the articles and by Forth
Interest Group. Inc.. respectively. Any repro-
duction or use of this periodical as it is com-
piled or the articles, except reproductions for
non-commercial purposes. without the written
permission of Forth Interest Group, Inc. is a
violation of the Copyright Laws. Any code
bearing a copyright notice, however, can be
used only with permission of the copyright
holder.
About the Forth Interest Group

The Forth Interest Group is the association
of programmers. managers. and engineers
who create practical, Forth-based solutions to
real-world needs. Many research hardware
and software &signs that will advance the
general state of the art. FIG provides a climate
of intellectual exchawe and benefits intended -
to assist each of its members. Publications,
conferences, seminars, tel-unications,
and area chapter meetings are among its activi-
ties.

"Forth Dimemions (ISSN 08844822) is
published bionthly for $24/36 per year by the
Forth Interest Group. 1330 S. Bas- Ave..
Suite D. San Jose. CA 95128. Second-class
postage paid at San Jose. CA. POSTMASTER:
Send address changes to Forth Dimemions,
P.O. Box 8231, San Jose, CA 95155."

Forth Dimensim 4 Volume X, Number 5

Local Variables Revisited
Dear Editor,

In a previous letter (FD IXJS), I sug-
gested a simple implementation of local
variables in high-level Forth. I also sug-
gested assembly coding for faster execu-
tion. I was happy to see the letter by Mi-
chael Barr (FD X/1) in which he presents
assembly code that works for quantities as
well as for variables.

I would like to point out that the speed
can be improved considerably, even with-
out assembly language. With the code I
provide with this letter (see Figure One),
the declaration and restoration of a local
variable executes in 0.71 ms. on mv PC/
Forth system, compared to 2.0 ms. fbr my
earlier code. Mr. Barr's assembly code
executes in0.29 ms. This has been tested by
adding an unused local variable to the defi-
nition of N ! . LOCAL must be used with
variables, but I have added LOCAL>> to
work with quantities as well, following
Michael Barr's approach.

Because words are compiled directly
into the body of LOCAL, one level of word
nesting is avoided. And as an extra bonus,
this makes access to the return stack sim-
pler, and a pair of >R and R> can be omit-
ted.

Forth can very easily be extended with
words like 2LOCAL, CLOCAL, FLOCAL,
etc. to provide local variables for other
simple Forth data types. The accompany-
ing code is for PCfForth; for PC/Forth+,
include ADDR>S &O where shown.

Sincerely,
1 Heming Hansen
I Technical University of Denmark

Building 1 16
2800 Lyngby, Denmark

: RESTORE R> R> ; I I
: LOCAZ, (addr --) \ local variable
COMPILE DUP COMPILE @ COMPILE SWAP
COMPILE >R COMPILE >R
['I RESTORE >BODY (ADDR>S&O) [COMPILE] LITERAL
COMPILE >R ; IMMEDIATE

: -> \ local quantity
' >BODY [CWILE] LITERAL
COMPILE DUP COMPILE @ COMPILE SWAP
COMPILE >R COMPILE >R
['1 RESTORE >BODY (ADDR>S&O) [COMPILE] LITERAL
COMPILE >R ; IMMEDIATE

I

Figure One.

Label Types for Faster Debugging
Dear Editor,

In Forth, a few hundred lines of source
code gives no problem in remembering that
a VARIABLE must be handled as a vari-
able, a CONSTANT as a constant, a LOCAL
as a local, a GLOBAL as a global, an
FVARIABLE as a floating-point variable,
an FCONSTANT as... etc.

With ten or twenty thousand lines of
source code, remembering whether
<name> is a constant, variable, array,
floating point, etc. is hard. It is worse with
the higher versions of Forth, which come
with structure, one- and two-dimensional
arrays, constants, variables, floating point,
locals, globals, deferred actions, tokens,
etc.

A few bytes in source code allows la-
belling the names by type. This is done a
little, now. By convention, +<name>
means something that adds, often an offset.
But it sometimes means adding a menu or
somet!!ing else! I'm reducing confusion by
using the conventions shown in Figure
Two.

Forms can be combined if it will in-
crease the information content. For
example, F -Al<name> is surely aone-di-
mensional array of floating-point numbers.
Of course, versions with small name fields
could use <name>E~C . since this is only
to improve readability.

Anything to improve readability of
source code should be looked at. This habit
has greatly reduced time spent digging out
the definition of various names in order to
decide how it should be handled!

Douglas Hvistendahl
P.O. Box 250
Ellendale, ND 58436

String Stack & F-PC
Dear Marlin:

I am just dropping a note to let people
know the current status of the string pack-
age described in "Using a String Stack"
(Forth Dimensions X/3 and X/4),

In the year since I gave that article to
you, the string package has greatly evolved.

(Continued on page 7.)

Volume X, Number 5 5 Forth Dhnsions

YES, THERE IS A BETTER WAY
A FORTH THAT ACTUALLY

DELIVERS ON THE PROMISE

I POWER

HSIFORTH's compilation and execution speeds are
unsurpassed. Compiling at 20,000 lines per mlnute. ~t
compllesfaster than many systems link. For real jobs
execution speed is unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C compilers. Forth systems des~gned to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when the colon nesting level ap-
proaches anything useful, and have much greater
memoryoverhead for each def~nition. Our opt~mizer
gives assembler language performance even for
deeply nested definitions containing complex data and
control structures.

HSIFORTH provides the best architecture, so good that
another major vendor "cloned" (rather poorly) many of
itsfeatures. Our Forth uses all available memory for
both programs and data with almost no execution time
penalty, and very llttle memory overhead. None at all for
programs smaller than 200kB. And you can resize seg-
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
natlve mode and expand into 16 Meg extended memory
or a gigabyte of virtual, and run almost as fast asin real
mode.

Benefits beyond speed and program size include word
redefinltlon at any tlme and vocabulary structures that
can be changed at will, for instance from simple to
hashed, or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. Thls
includes automatic removal of a colon definition's local
var~ables.

Colon definitions can execute inside mach~ne code
primitives, great for interrupt & exception handlers.
Multi-cfa words are easily implemented. And code
words become incredibly powerful, with multlple entry
points not requiring jumpsover word fragments. One of
many reasons our system is much more compact than
its immense dictionary (1 600 words) would imply.

1 INCREDIBLE FLEXIBILITY

The Rosetta Stone Dynamic Linker opens the world of
ut~lity libraries. Link to resident routines or link & remove
routines interactively. HSIFORTH preserves relocata-
bility of loaded libraries. Link to BTRIEVE METAWIN-
DOWS HALO HOOPS ad infinitum. Our call and data

' structure words provide easy linkage.

I HSIFORTH runs both 79 Standard and Forth 83 pro.

I grams, and has extensions coverlng vocabulary search
order and the complete Forth 83 test suite. It loads and
runs all FIG ~lbrar~es, the main difference be~ngthey
load and run faster, and you can develop larger applica-
tions than with any other system. We like source code in
text files, but support both file and sector mapped Forth
block interfaces. Both line and block file loading can be
nested to any depth and includes automatic path
search.

FUNCTIONALITY

More important than how fast a system executes. IS

whether ~t can do the job at all. Can ~t work with your
computer. Can ~t work with your other tools. Can it trans-
form your data Into answers. A language should be
complete on the f~rst two, and m~nim~ze the unavoidable
effort requlred for the last

HSIFORTH opens your computer l~ke no other lan-
guage. You can execute function calls, DOS com-
mands, other programs lnteractlvely, from defln~t~ons.
or even from flles be~ng loaded. DOS and BlOS functlon
calls are well documented HSIFORTH words, we don't
settie for glvlng you an INTCALL and saying "have at it".
We also include both fatal and ~nformatlve DOS error
handlers, Installed by executing FATALor INFORM.

HSIFORTH supports character or blocked, sequentla1
or random 110. The character stream can be received
fromlsent to console, flle, memory, printer or corn port.
We Include a commun~cations plus upload and down-
load utility, and foregroundlbackground music. Dlsplay
output through BlOSfor compatibil~ty or memory
mapped for speed.

Our formatting and parsing words are w~thout equal. In-
teger, double. quad, financ~al, scaled, tlme, date, float-
ing or exponential, all our output words have string
formatting counterparts for building records. We also
provide words to parse all data types w~th your choice of
held definition. HSIFORTH parses files from any lan-
guage. Other words treat files like memory, nn@H and
nn!H read or write fromlto a handle (file or device) as
fast as poss~ble. For advanced file support. HSIFORTH
easily links to BTRIEVE, etc.

HSIFORTH supports textlgraph~c windows for MONO
thru VGA. Graphic drawings (line rectangle ellipse) can
be absolute or scaled to current window size and
clipped, and work with our penplot routines. While great
for plotting and llne drawing, ~t doesn't approach the ca-
pabllities of Metawindows (tm Metagraphics). We use
our Rosetta Stone Dynamic Linker to Interface to Meta-
windows. HSIFORTH with MetaWindows makes an un-
beatable graphics system. Or Rosetta to your own
preferred graphlcs driver.

HSIFORTH provides hardwarelsoftware floating point,
including trig and transcendentals. Hardware fp covers
full range trig, log, exponentlal functions plus complex
and hyperbolic counterparts, and all stackand compari-
son ops. HSIFORTH supports all 8087 data types and
works in RADIANS or DEGREES mode. No coproces-
sor? No problem. Operators (mostly fast machlne code)
and parselformat words cover numbers through 18 dig-
its. Software fp eliminates conversion round off error
and minimizes conversion tlme.

Single element through 4D arrays for all data types in-
cluding complex use multiple cfa's to improve both per-
formance and compactness. Z = (X-Y) I (X + Y) would
be coded: X Y - X Y + I IS Z (1 6 bytes) instead of: X @
Y @ - X @ Y @ + I Z ! (26 bytes) Arrays can Ignore 64k
boundaries. Words use SYNONYMS for data type inde-
pendence. HSIFORTH can even prompt the user for
retry on erroneous numerlc input.

The HSIFORTH machine coded string library wlth up to
3 0 arrays IS w~thout equal. Segment spannlng dynamic
string support includes insert, delete, add, find, replace,

APPLICATION CREATION TECHNIQUES I
HSIFORTH assembles to any segment to create stand
alone programs of any slze The optlm~zer can use HSI
FORTH as a macro Ilbrary, or complex macros can be
built as colon words Full forward and reverse labeled
branches and calls complement structured flow control
Complete syntax checklng protects you Assembler
programming has never been so easy

The Metacompiler produces threaded systems from a
few hundred bytes, or Forth kernels from 2k bytes. W~th
~ t , you can create any threading scheme or segmenta-
tion architecture to run on disk or ROM.

You can turnkey or seal HSiFORTH for dlstr~bution, with
no royalt~esfor turnkeyed systems. Or convert for ROM
In saved. sealed or turnkeyed form.

HSIFORTH includes three editors, or you can quickly
shell to your favorite program editor. The resident full
window editor lets you reuse former command linesand
save to or restore from afile. It IS both an Indispensable
development ald and agreat user Interface. The macro
editor prov~des reuseable functions, cut, paste, file
merge and extract, session log, and RECOMPILE. Our
full screen Forth ed~tor edlts file or sector mapped
blocks.

Debug tools include memorylstack dump, memory
map, decomp~le, single step trace, and prompt options.
Trace scope can be limited by depth or address.

HSIFORTH lacks a "modular" compilat~on environ-
ment. One motivation toward modular comp~lation is
that, with conventional compliers, recompiling an entire
application to change one subroutine IS unbearably
slow. HSIFORTH compiles at 20,000 lines per minute,
faster than many languages link- let alone comp~le!
The second motivation IS link~ng to other languages.
HSIFORTH links to foreign subrout~nes dynamically.
HSIFORTH doesn't need the extra layer of flles, or the
programs needed to manage them With HSIFORTH
you have source code and the executable flle. Per~od.
"Developmentenv~ronments" are cute, and necessary
for unnecessarily compl~cated languages. Simplicity IS
so much better.

HSIFORTH Programming Systems
Lower levels Include all functions not named at a higher
level. Some functions available separately.

Documentation & Working Demo
(3 books, 1000 + pages. 6 Ibs) $ 95.

Student $145.
Personal optlmlzer, scaled & quad integer $245.
Profess1onal80x87. assembler. turnkey. $395.

dynam~cstrings, multitasker
RSDL linker.
physical screens

Production ROM, Metacomp~ler, Metaw~ndows
$495.

exchange, save and restore strlng storage.

Level upgrade, price difference plus $ 25.
OBJ modules $495.
Rosetta Stone Dynam~c L~nker $ 95.
Metaw~ndows by Metagraph~cs (includes RSDL)

$145.
Hardware Floating Polnt & Complex $ 95.
Quad integer, software floating point $ 45.
Time sl~ce and round robln mult~taskers $ 75.
GigaForth (802861386 Native mode extension) $295.

Our m~nlmal overhead round rob~n and tlme sllce multl-
taskers requlre a word that exits cleanly at the end of
subtask execution. The cooperative round robin multi-
tasker prov~des lndiv~dual user stack segments as well
as user tables. Control passes to the next taskluser
whenever des~red.

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

I I

Forth Dimensions 6 Volume X, Number 5

(Continuedfrom page 5.)

-<name> variable
\<name>constant
F-<name>
F' <name>
lA<name>
2A<name>
STR . <name>
$.<name>
DEF . <name>
TOK .<name>
G-<name>
G' <name>

floating-point variable
floating-point constant
one-dimensional array
two-dimensions array
structure, but..
... string address
deferred action
token
global variable
global constant

L-<name> local variable
L'<name> local constant

(Inside adefition, locals don't need these; but consistency is what makes
any convention work.)

"<name> Offset which is automatically added. (Usually an offset inside a structure,
but may be elsewhere.)

I Figure Two.

(an industry average for life with a com-
pany), any project more than two years
long will have several different program-
mers working on it. For maintainability to
exist, all code must be able to stand by
itself. That means, should the programmer
die, a new programmer should be able to
pick up where he left off. All comments and
documents should be available as the work
progresses.

Its most current incarnation is for F-PC by
Tom Zimmer, et al., and is largely in as-
sembler for speed.

I believe F-PC is the most significant
Forth ever released into the public domain
and that Tom, Bob Smith, Dr. Ting, and
everyone else involved in bringing it to
fruition deserves our deepest gratitude.

In light of the impact that F-PC will
make on the Forth community over the
next few years, I am in the process of
converting all of my tools and utilities over
to it. I will be glad to share whatever is
currently ready (which should be substan-
tially more than the string package by the
time you read his) for $10 to cover my
costs. This code is in the public domain and
may be freely distributed.
Ron Braithwaite
Software Engineering
11501 N. Poema Place #I01
Chatsworth, California 9 13 1 1

Notes on Forth Style
Dear Editor,

Over the past few weeks, a number of
discussions have been held with our pro-
grammers concerning problems learning
the existing code. These discussions have
brought up a number of ideas, concepts,
and solutions. I will try to document some
of them, as well as point out some subjects
to consider.

The Code as it Exists Now ...
The code structure currently represents

the manner in which it was created. The
older way to describe this code was the

Maintenance and Forth
Forth has several features that, if imple-

mented, can provide for this type of docu-
mentation. By Forth's nature, any tool not
available can be created and most often is.
This in itself is a major problem: too many
tools. Some of those tools are indexes,

term "spaghetti code."Not apleasant name,
but correct in this case. How did it get this
way?

Most of the code was produced over a
long period of time by a number of different
programmers. Each programmer had a par-
ticular style, which was further modified
due to time constraints. Much of the coding
was done on site, with deadlines. The expe-
rience level of the programmers was also
very high, and these people assumed all
other programmers would be equally well
versed on coding principles.

In fact, the actual code produced worked
well but lacked srructure and comments.
The problem arising now is the maintaina-
bility of the code. The ability to maintain
code is what has given Forth a bad rap, and
is causing this organization a considerable
number of hours to bring new programmers
up to speed.

What is Maintainability?
The ability to maintain code is more than

having an experienced programmer able to
modify it. Most organizations' current feel-
ing is that, once the code structure is under-
stood, the programmer can then do the re-
quired programming. The operation, then,
is to provide some hand-holding with a new
programmer until they learn the system.
This assumes that the original programmer
is still around and available whenever a new
programmer needs him.

In reality, the old programmers are al-
ways working on something else, even if
they are still an employee. If most organiza-
tions only keep programmers for two years

comment screens, locate words, and code
comments.

The screen orientation of Forth enables
the program to be broken down into indi-
vidual sections. Each section can then
contain one operation. An example of this
is DISKING operations in polyFORTH.
By typing DISKING LOAD d l the func-
tions associated with disk operations are
loaded. This in itself is a good and quick
way to handle the selection of options.
After disking is loaded, a new help screen
appears and the programmer knows what
he can and cannot do.

This, however, assumes you know that
what you want to do in on the disking
screens. If you actually wanted to play with
a hard disk instead, there is no way to know
that you need to load PART IT ION. If you
look at the book about the subject, yes, you
will learn the right word; without the book,
your only hope is the comment screens.

For every screen of code, a screen of
comments has been set aside. Program-
mers, however, are in a hurry, already
know what they want to do, and usually
leave such screens blank. This means that,
without a book or comments, you must go
through all the screens to find out what
commands are necessary to perform the
operation you need. For this function,
Forth has the INDEX command. This lists
the first line of each screen. If the program-
mer put sufficient information on the fiirsi
line, indexing will give you some idea
where to start searching for the command
you need.

Many programmers in a hurry, how-
ever, quite often just put a simple word 01
two describing the whole screen. This can

I I

Volume X . Nwnber 5 7 Forth Dimensions

at times be more cryptic than the actual
code. Assuming the programmer had, in
fact, not used the comment line at all, in-
dexing would be useless.

Some Solutions
The first and foremost solution to solve

the problems is to fully use the resources
Forth does provide. The most important of
these is the comment screen. If a standard
were to be set, I personally would push for
no screen code until some basic statement
is put in the screen. This is ideally suited for
the beginning of a group of operations. In
Forth, it is typical to group operations and
to have the first screen load the other parts
needed by the particular task. The total of
all the screens loaded may not be in order,
but they are all noted and loaded from that
one screen. The comment screen for this
load screen should, without fail, describe
the actual desired results, input options, and
output conditions.

This does two things. First, it sets the
stage for what is being programmed. True,
many programmers will either have a clear
idea of what is going on in these screens or
will already have flowcharted the proce-
dure. In either case, what goes into the first
comment screen is the pre-planning ideas.
Majof changes to the code may occur, but
rarely to the overall design idea behind the
operation.

The index line on the code screen is
often not used. A well-done code screen
lists on the index line all the words defined
in that screen. Never is any actual code
listed on the index line. The INDEX option
prints this entire line; when done properly,
it thus provides an index listing of words
used in the system. Again, when the fmt
screen is set, it should only load other
screens; its index line would state what
functions are to be performed by the set of
screens it loads. Then the following in-
dexes would be of the words used for those
functions.

On using load screens, some changes
from the polyFORTH way might be con-
sidered. Cwrently, they have one load
screen located at nine that loads all other
groups of screens. It will provide a help
screen that explains what other load screens
are possible. What I might suggest is
changing this structure somewhat. If the
program is something like a tree structure,
the loaded screen can happen only after a
certain number of screens are loaded. Then
these can load other screens. Currently, the

Forth Dimensim

location of these screens can be anywhere
in the entire file structure. All that is main-
tained is a pointer to the fmt load screen.

A possibly cleaner method would be to
have all the load screens in one location.
That means nine becomes the top of the
tree. It would load pointers to 10, 11, 12,
and 13. Nine pointers can be anywhere,
100, 145, 160, or 260. The speed of the
machine makes it quite easy to move be-
tween these screens. What is not available,
however, is structure. By being able to look
at the first eight or 10 screens and see al l
possible options and load conditions, the
ease of maintenance has been improved
many times over.

Thinking in terms of comment screens,
this means the entire structure of the pro-
gram would be explained in the fmt eight
or 10 screens. When printed listings are
made (as they always are), the entire struc-
ture is displayed in the first few pages of the
listing. No longer does itbecomenecessaty
to flip through many pages in order to see
what function a load operation will invoke.

I have yet to findaprogrammer who can
drop a project and return several years later
(even six months) and pick up exactly
where he left off. All programmers are
usually too busy moving on to new topics;
returning to an old program takes some
mind refreshing. Structure and comments
are absolutely necessary for this.

Some Other Points
The ability to maintain code, therefore,

depends on how well the comment screens
have been maintained and how well other
documents have been retained. It is most
important that all worksheets and flow-
charts be kept in a separate file. Even if this
were done, it is seldom that a user could
understand it some time later. This means
that comments in the source code are still
the highest priority.

An area that needs more structure is the
code comments themselves. Many pro-
grammers who do use the comment screen
don't put anything in the actual code. Most
often, when code comments are made it is
simply in the form of stack comments. On
many applications, the stack comment is
most important. In assembly coding, how-
ever, the stack comment alone becomes
meaningless. Considerably more informa-
tion about the code is needed.

Assembly coding is the high-speed
operation and, as such, a number of short-
cuts and special uses may occur. We do not

want to say that these are not to be used;
instead, it is pointed out that the objective
is to make these special sections of code
maintainable. This can only be done by
having a very full comment screen (al-
most a flowchart), or by putting lots of
short comment statements in the actual
code. A case in point was setting a flag.
This operation was done by incrementing
a register. If a value had been pushed into
the register, it becomes very obvious what
that number is. When the numbers are
incremented to the next value, however, it
becomes very hard to see the operation.

The objective is to allow other pro-
grammers (and you, some years later) to
see what is happening. hogramming time
costs money. Commenting time costs
money. Maintenance time costs money.
Loss of an employee (even expansion)
forces you to bring someone else up to
speed. That speed, which is money being
spent, is controlled directly by how much
and how well the previous code has been
documented. The poorer the documenta-
tion and comments, the less likely a new
programmer is going to be able to come up
to speed on the program quickly. It may
even happen that an existing program
must be completely rewritten if no docu-
mentation exists on the program.

A Parting Shot
In the last few years, considerable

pressure has been placed on setting stan-
dards in the programming community.
Most of the pressure has been on the struc-
ture of Forth. My feeling is that too little,
if any, pressure is being put on establish-
ing style conventions. The style of Forth
programmers has caused many com-
plaints and loss of contracts. The solution
to the problem is not better or more-struc-
turedForth kernels, but better control over
documenting and commenting what has
happened. If Forth is to become more irn-
portant, it needs to have more structure in
the way people use it daily. This means
using all the tools that can provide that in-
formation. Structure. the code, but don't
forget to structure the comments as well.

Bill Kibler
Kibler Engineering
1850 McCourtney Road
Lincoln, California 95648

8 Volume X, Nwnber 5

SELF-CHECKING
NUMBERS

-- -- -

MICHAEL HAM - SANTA CRUZ, CALJFORNIA -

E p l e make mistakes when transcrib-
ing data. Typographical errors in words are
usually easy to see, since our written lan-
guage includes considerable redundancy.
"Febrary" is recognizable as a typographi-
cal error for ''February" because the re-
maining letters are enough to identify the
intended word. But when numbers are
involved, typographical errors are almost
always difficult to detect. Normally, you
cannot misspell a number: 3578 represents
a number as much as 35678 does-but not
the same number. Numerals, unlike written
words, have little redundancy, so errors are
not self-evident.

Worse, numbers are particularly prone
to error when copied or entered. The most
common errors in transcribing numbers are
singledigit substitution errors (36548 in-
stead of 36578), single transpositions
(exchanging adjacent digits: 35678 instead
of 36578), and double transposition errors
(exchanging digits across a column: 35687
instead of 38657).

Because numeric information tends to
be important (bank account numbers or
amounts of money, for instance), various
schemes are used to guard against errors.
The simplest tactic is to punctuate the
number so that it is broken into shorter,
more manageablechunks. Commonly used
punctuation includes the comma
(5,345,387) and the hyphen (telephone
numbers: 423-4175; Social Security num-
bers: 123-45-6789). Note that these punc-
tuation marks, unlike the period that acts as
a decimal point, carry no meaning so far as
the number is concerned: they are simply a

1 convenience to the user and a guard against
errors.

When numbers are represented digi-
tally, there are schemes that allow for both

The routines are ... / the units digit of the sum of the dig&: the
a a - check dinit for 12840 is then 5 (1+2+8+4+0

error detection and error correction. The
phrase "single-bit error correction, double-
bit error detection" refers to digital encod-
ing systems that do exactly what they say:
errors of a single bit are not only detected
but corrected; errors involving two bits can
at least be detected, though not corrected.

Most schemes that involve human han-
dling of numeric information are satisfied
with error detection and do not go so far as
error correction. These schemes rely on
redundancy; for example, from the redun-
dant information in the phrase, "Sunday,
August 10,1987" you can know that some-
thing is awry: the specified date is a Mon-

ber. If the computed check digit does not
match, there is definitely an error; if the
computed check digit does match, there
may or may not be an error, but probably
not. Because the added digit changes the
value of the number, this system is not
generally useful when the number repre-
sents amounts, but it works fine as part of
identification numbers, such as account
numbers, part numbers, student I.D. num-
bers, and the like.

I include Forth code to compute and
check the check digit, along with some
observations on special requirements im-
posed by the tools available in standard
Forth products.

As a weak examvle of a check digit, try

simple and the protec-
tion is significant.

I

Volume X, Nwnber 5 9 Forth Dimemions

= 15, wllh units digit 5). The number with
the check digit is then 128405. If the num-
ber is received as 138405, there is a mob-

day, not aSunday.Therecipient thus knows
that there is a problem and better informa-
tion is needed. When sending numeric in-
formation via Telex, one technique is to
spell the number as well as send it numeri-
cally: twenty-three (23) widgets. The same
approach is used in writing checks: the
amount of money is spelled out as well as
represented in numerals. The redundancy is
explicit.

This article describes another method
for detecting errors when the number is an
identification number rather than an
amount: the "check digit," a single digit
created from the number and then embed-
ded in the number, typically as the units
digit. The recipient can recompute the
checkdigit from theother digitsof thenum-

lem: the check digit computed frok the
received number is 6, but the received
check digit in the number is 5. This particu-
lar check digit method is hopelessly weak,
however. it does not catch transpositions,
the most common type of error: 12840
gives the samecheck digit with this method
as 21840.

A much more powerful check digit,
which is widely used, is the mod-1 1 check
digit. "Mod 1 1 " (or "modulus 1 1 ")refers to
the remainder after division by 11. In this
method, you multiply each digit of the
number by a weight, sum the products, and
find the remainder upon dividing that sum
by 11. If the remainder is zero (i.e., the sum
is evenly divisible by 11). then the check
digit is zero; otherwise, the check digit is
the difference between 11 and the remain-
der. The weights, sequentially assigned

from the right-most digit, are 2,3,4, ..., 9,
10, as shown below:

59634732

x 4 = 2 8
~5 = 2 0
x 6 = 18
x7 = 42
x 8 = 72
x 9 = 4 5

Total = 238

23811 1 = 21 with a remainder of 7 or,
equivalently, 238 mod 11 = 7. So the check
digit is 1 1-7 = 4.

The resulting number (with the check
digit appended) is 596347324, which
might also be punctuated in some way:
5963-473-24. The original eight-digit base
number has become a nine-digit number.
Very seldom does one start with a base
number of more than nine digits (for which
weights above 10 would be needed), but in
such cases one could start the weights again
at 2.

One question immediately arises: what
happens when the remainder is l? The
difference to be appended in that case is
1 0 - 4 ~ 0 digits instead of one. Usually,
numbers that give a check digit of 10 are
simply discarded, which means about 9%
of the numbers in the range are unavailable.
Sometimes these numbers are used with a
check digit of some special symbol; the
International Standard Book Number
(ISBN) code, for example, is a nine-digit
code with a mod-1 1 check digit, and it uses
the letter "X" as check digit when the check
digit value is 10. But most programs want
only numeric values in numeric fields and,
therefore, discard numbers that would have
a check digit of 10.

Another question: why bother subtract-
ing non-zeroremainders from 1 l? Why not
just use the remainder itself, discarding
numbers with remainder 10 instead of those
with remainder l?

The difference between the remainder
and 11 is exactly the amount that must be
added to the sum of the weighted digits to
get a multiple of 1 1. That is, the sum of the
weighted digits including the check digit
(defined as 11 minus the remainder and
multiplied by a weight of 1) will be exactly

Forth Dimensions

divisible by 11 if the number was correctly
received. This property simplifies the
checking of the check digit. In most sit.-
ations, the check digit is checked many
more times than it is assigned, so that one
wants to simplify the checking rather than
the assignment.

To check the number above, for in-
stance, you compute again, this time with
the weight 1 for the right-most digit, which
is now the check digit:

596347324

x 5 = 2 0
x 6 = 18
x 7 = 42
x 8 = 7 2
x 9 = 4 5

Total = 2 4 2

24Y11 = 22 remainder 0 or, equivalently,
242 mod 1 1 = 0; the check digit checks out
okay.

The mod- 1 1 check digit is used for the
ISBN code mentioned above, and is also
commonly used for bank account code
numbers. Whenever you design a system in
which people must enter identification
numbers-part numbers, student ID num-
bers, employee numbers, project num-
bers-it makes sense to use a check digit so
that entry errors can easily be detected,
ideally at the time of entry.

Since the mod- 1 1 check digit discards
only about 9% of the numbers from the
planned range, you might think that a ran-
dom error would result in a valid number
(even with the check digit) about 9 1 % of
the time. But note that the added check digit
makes the range of numbers an order of
magnitude greater.

For example, suppose that you are as-
signing part numbers. There are about
20,000 parts currently to be tracked, so a
five-digit number is ample. You decide to
start with 10000 as the first part number to
avoid leading zeroes (because not having
leading zeroes causes fewer errors). All
part numbers will then be five digits @fore
adding the check digit). The range 10000
through 99999 gives 90,000 numbers, and

10

even discarding 9% of them (when the
check digit is 10) leaves 9 1 % available, or
81,900.

That, however, is 91% of five-digit
numbers. With the check digit added, you
in fact have a six-digit number. The first
valid part number (with check digit and
punctuation) will be 100-005 and the last
999-997. Thus, the part numbers are
spread across an effective range of
100,005 through 999,997, and of the
899,993 numbers in this range, only
81,900 will be used, or about 9%. So a
random error will hit a valid number only
about 9% of the time.

The check digit offers more protection
than that, however, because the mistakes
people make are not random. The most
common error is a single-digit substitution
error; single transpositions and double
transpositions are the next most common.
Table One tells the story.

It is true that random errors (the
"other" errors in the table) will slip by 9%
of the time, but random errors comprise
only about 5% of all errors.

So much for background; now for ap-
plication. My preferred programming lan-
guage k Forth- and in implementing
words for the above scheme, we face
Forth's typical dearth of double-precision
Operators.

Double-precision numbers
rdoub1es'? are necessary in this a ~ ~ l i c a -
tion because single-precision numbers
have a -ge O through 659535-

enough even to check dig-
its On a four-digit base (which bxomes
five digits with the check digit ad&d, and
thus can range larger than 659535)-

Doubles go as high as 4,294,836,225,
sothey can readily be used with eight-digit
base numbers (which become nine digits
with the check digit). In practice* one ~ 1 -
dom ndscodenumberslongerthannine
digits (including the check digit): a nine-
digit code number produces around
82*000*000 valid code numbers. Marking
errors increase as numbers get longer, so
the designer generally wants to use as
sho*acode pssible. In ex-
perience, six-digit code numbers (about
g2*000 valid possibilities) are often
enough.

Given that doubles will be used, one
natufall~ wants operators that permit one
to chip off the digits one by one to compute
the check digit and stickit onto theend.
D/MOD and D* (accepting doubles for

Volume X , Number 5

CONCEPT 4
f o r t h W I N D O W S +

Text and Data Windows
O - O I 90 Windows1 per available memory I P V M 8 3 1

SDS FORTH for tile INTEL 8051
Cut your development t ime wi th your PC using SDS Forth based environment.

Programming Environment
0 Use your IBM PC compatible as terminal and disk server

Trace debugger
Full screen editor

Software Features
Supports Intel 805x, 80C51FA, N80C451, Siemens 80535, Dallas 5000

O Forth-83 standard compatibility
Built-in assembler
Generates headerless, self starting ROM-based applications
RAM-less target or separate data and program memory space

SDS Technical Support
100+ pages reference manual, hot line, 8051 board available now

Limited development system, including PC software and 8051 compiled software wi th manual, for $100.00.
(generates RO Mable applications on top o f the development system)

SDS I ~ c . , 2865 Kent Avenue #401. Montreal, QC, Canada H3S 1M8 (514) 461-2332

8086,8088 Native
Code generator.
The easy way to
optimize Laxen &
Perry F83, including
the hi-level flow
control words ... If ..
Then, Do .. Loop,

Volwne X, Nwnber 5 11 Forth Dimemiom

Begin..Again. All programs require DOS 2.0 or hlgher Prolog code
All programs include 5 114" dlsk and manual

$20.00 Send check or money order to : $69.95
CONCEPT 4, INC. PO BOX 20136 VOC AZ 86341

Popup Windows
Save and Restore windows from files

Mouse Support
Circular Event Que for Mouselkeyboard

DOS services/ directory
F83, HSFORTH, FPC supported

PLUS
$49.95

Prolog
Virtual

Machine

Add productivity,
flexibility, and auto-

mated reasoning
Fully interactive

between Forth and

both arguments and returning double re-
sults) would be very useful. Most Forths
lack such numbers. Standard Forth has
some few mixed operators that allow a
double and a single argument, but these
return single results.

One Forth that has provided a complete
solution to the need for higher-precision
operators is MMSFORTH (published by
Miller Microcomputer Services).
MMSFORTH includes an extension called
N-LEN#. This collection of operators par-
allels all the usual number and stack opera-
tors, and allows you to define the precision
(single, double, triple, quadruple, or what-
ever) with the word #PREC, which defines
the number of cells to be used in the arith-
metic operations. By setting #PREC to 2
and using # * and #/MOD, one can easily
write a set of check-digit words for double-
precision numbers.

Working within the bounds of the

: DIGITSUM (d -- n)
<X WS X> (convert double t o ASCII s t r ing,)

(leaving address and count on stack: adr n --)
TUCK (same as SWAP OVER; stack is now: n adr n --)
1- + (the address of the right-most d i g i t i n the string:)

(stack i s now: n adr+n-1 --)
0 ROT (sum w i l l be accumulated on the stack;)

(the sum s t a r t s with 0; stack: adr+n-1 0 n --)
0 DO (the l i m i t s of the DO loop a re n and 0;)

(stack inside the loop s t a r t s as: a w n - 1 0 --)
OVER (copy address t o top of stack)
I - (mve one d ig i t leftward on each i tera t ion)
C@ (fetch the ASCII character)
ASCII 0 - (convert it t o i t s numeric value)
I 1+ (t h i s i s the weight: 1, 2, 3, e tc .)
* (m l t i p l y d ig i t by weight)

+ (add t o accumulating sum)
LOOP (loop back fo r next)
NIP ; (same as SWLP DROP; get r i d of the address)

Figure One-a. This word converts a double number to ASCII for singledigit
(character) manipulation.

32-bit data stack For IBM PC's with 128K, MS-DOS 2.0 or better
Tree structured scoping of dictionaries Professional Version: $250.00
Direct editing of dictionary structure Demo Disk: $10.00
Tight binding of source and code System Source Code Available for
Automatic compilation
On-line help facility: 68000 Versions, call for information
One key help from within editors
Context sensitive help on errors Knowledge Based Systems Inc.

Turnkey application generator 100 West Brookside
Complete debugging tools Bryan, TX 77801
Built-in heap memory management (409)-846-1524
Forth 83 to Fifth converter

This advertisement was prepared using a PostScript compatible Produces native code interpreter written in Fifih, controlling a high resolution Laser Engine.
8087 floating point processor support P O S I S C ~ b . rrd.trrrd T-arb &&I* syskms I=

MS-DOS b Tndrmsrlr a1 M- Cwp. Pointer validity checking during development mM I.. -d Tdnamrkot Imtmut loul BU.I, ,~ r.wacap

Forth Dimemims 12 Volwne X, Nwnber 5

Error type incidence with mod-11
check digit

Single-digit
substitution 86% 100%

Single transposition 8% 100%
Double transposition 1 % 100%
Other 5% 91%
Total all errors 100% 99.5%

: DIGITSUM (d -- n) (weighted sum of d i g i t s fo r mod-11 check)
<# #S #> TUCK 1- + (adr of rtmost d i g i t) 0 ROT 0
w OVER I - C@ ASCII o - I I+ * + LOOP NIP ;

Figure One-b. Less verbose version of DIGITSUM.

: MAKEDIGIT (d -- d' f)
(T i f okay, F i f no good)

D ~ O * 2DUP (two copies of 10 times the or ig ina l number)
DIGITSUM (one copy is consumed by DIGITSUM,)

(which leaves the weighted sum on the stack)
11 MOD (replace sum with the remainder on division by 11)

(two copies of t he remainder) DUP
1 - (see whether remainder is 1)
IF DROP (i f it is, drop it)
FALSE (and leave "false" f l ag)

ELSE DUP (otherwise, duplicate remainder t o be a f l ag)

IF
11 SWAP - (subtract non-zero remainders from 11)

THEN
US>D (convert t o double precision)

D+ (add t o 10 * or ig ina l number, s t i l l on stack)
TRUE (and put "true" f l a g on top)

THEN ;

Figure Two-a. This word leaves a flag and a double on the stack.

: MAKEDIGIT (d - d' f) (T i f okay, F i f no good)
D ~ O * ~ D U P DIGITSUM 11 MOD DUP
1 - IF DROP FALSE
ELSE DUP IF 11 SWAP - THEN
US>D ~t TRUE THEN ;

Figure Two-b. Less verbose version of MAKEDIGIT

I Typicai error Expected detection

1 Table One. Incidence of various types of errors. I

I need them, converting each back into its
numerical value. The word D IGITSUM
works as documented in Figure One-a.

The word ends with the sum of the
weighted digits on the stack as a single-
precision number. The definition is not so
verbose in my actual source-code file; it
looks like Figure One-b, with spacing indi-
cating the phrases.

The phrase ASCI I 0 - would deserve
a separate definition just for readability, if
its purpose were not so obvious. Some-
times, though, one wants to create a defini-
tion to improve readability. For instance, to
append the check digit to the base number,
we want to add the check digit (single
precision) to ten times the base number
(double precision). To use D+, both num-
bers must be double-precision, so we need
to convert the single-precision unsigned
number to a double. I can just put 0 on the
stack above the single-precision number,
but because the purpose of the 0 in the line
of source code might be unclear, I prefer to
define the operatorus >D as 0 CONSTANT
US>D.

Using a constant has another advan-
tage: I will Save room in the source code if
I use the definition several times. The real
motivation, however, is readability.

I need to multiply the (double-preci-
sion) base number by 10 to append the
check digit. It is easy to fake a 1 0 . D*
using addition:
: DlO* (d -- d')
2DUP 2DUP D+ 2DUP
D+ Dt 2DUP D+ ;

I prefmed D to the name so that it is clear
that the word operates on doubles. As you
can see, I simply duplicate and add in the
proper sequence to get 2 times the number,
4 times the number, 5 times the number
and, finally, 10 times the number.

It is easier to check the check digit than
create it, so let's first write the check word:

Forth-83 Standard, one must find other
ways to skin this particular cat. In the fol-
lowing, I'll develop the checkdigit words
step-by-step from standard Forth.

I first want a word to accept a double on
the stack and return the weighted sum of
the digits. I'll use this sum one way when I
am creating a new code number (append-
ing the check digit) and another way when
I am checking the check digit (for a code
number entered by some user). I will pre-

sume that the units digit of the number I am
working with is either the check digit or a
placeholder of 0 for the check digit, and this
in either case can be multiplied by 1 and
added to the sum. In keeping with Forth
practice, this word will consume its argu-
ment, replacing the double on the stack with
the weighted sum of its digits.

The method I employ is to convert the
double number to a string of ASCII digits
and then retrieve the digits one at a time as

: CHECKOK? (d -- f)
(T = okay, F = doesn't check)
DIGITSUM 11 MOD O= ;

The check digit checks out okay if the
weighted sum (including 1 times the check
digit) is divisible by 11--that is, the num-
ber mod 11 is zero. The O= at the end
converts the number to a true Boolean (0 or
-1) and also reverses the truth value: I
wanted "true" to mean that no error was
detected. You can substitute O o for 0= if
you want "true" to signify that an error was

(Continued on page 37.) 1
Volume X, Nwnber 5 13 Forth Dimensions

APPLE I1
pp -- --

CHESTER H. PAGE - SILVER SPRING, MARYLAND

M u c h as I love and admire Forth,
whenever I need a program that involves
string manipulation, I have been going
back to a combination of BASIC (Apple-
soft) and assembly code. This regressive
step injured my pride, so I designed a Forth
application that handles strings as fluently
as does BASIC.

$Forth is built on the following key
points:

The string text (undimensioned) is
stored downward in high memory. That is.
the first character of a string is stored at a
higher address than the last character.

A string variable has a two-address
value. The operation $A $ @ returns a pair
of addressesthe addresses of the first and
last c haracters of the string identified as $A.

Strings are loaded from the input stream
in the normal way of entering words, and
then is copied in reverse order to the highest
available memory space, just below any
previously stored strings. This reverse-
order storage of pure text allows simple,
elegant operations such as extracting por-
tions of strings and concatenating strings
(forexample,n RIGHTS, n LEFTS, nl
n2 M I D $, and $+). The string-extraction
operations involve only changing the
pointers in the string-variable values.

A separate string stack contains the
pairs of pointers. Thus, $A returns the nor-
mal single address of a variable (to the
parameter stack); $ @ goes to this address,
reads the two addresses stored there, and
puts this pair onto the string stack.

Garbage collection: as strings are rede-
fined by manipulation or text replacement,
their former versions still occupy memory.
When available memory is almost used up,
garbage collection is performed. This dis-
cards all obsolete text and moves the active

text upward so that memory is the same as
if the final versions of the strings had been
the original entries.

To simplify the mechanics of garbage
collection, string variables are linked in a
simple chain for fast inspection. This is
done by having all string variables-and
nothing else-in a separate vocabulary
named s TRINGS. Defining a string vari-
able (e.g., by entering $VARIABLE $A or
n $ARRAY $B) automatically puts the de-
fmedvariablein the STRINGS vocabulary.
Note that the length of a string is not speci-
fied in the definition, as it is in Pascal and

Strings are saved in
sequential text files.

some string versions of Forth. This results
in major memory savings when dealing
with an array of strings, of whichone or two
may be much longer than the others.

When writing a colon definition which
refers to string variables, it is necessary to
insert [STRINGS I in the definition, pref-
erably as the first component. This is be-
cause the colon sets the CONTEXT vocabu-
lary to be the CURRENT vocabulary,
normally FORTH, and the string variable
name would not be recognized. For ex-
ample:
: TEST

[STRINGS] 1 $ A $ @ $ B $ @
$+ $ C $! ;

The basic words in $Forth are given in
' Figure One. Keyboard saing input is

handled by an analog of the . (operator:

: $ ((-- ; -- A1 A2)

?EXEC 29 WORD COUNT
$WRITE ;

Thus, entering $ (ABC) will record
the text ABC (from FRETOP downward),
leave the address holding C on top of the
string stack, and the address holding A as
next on the string stack. Strings included
in a definition being compiled use the
immediate $ " ABC" analog to . " ABC".

The key command $WRITE copies n
characters starting at address A (which is
HERE 1 +)and records them in high mem-
ory from A1 down to A2.

$. prints the text from A1 down to A2,
inclusive.

$VARIABLE A$ defines A$ as a
string variable in the STRINGS vocabu-
lary.

n $ARRAY A$ defines A$ as an n-
component array string variable, 1 A$ to n
AS.

The difference between $DUP and
$COPY should be noted. SDUP simply
duplicates the pointers, whereas $COPY
duplicates the text, locating the text copy
at the next available text location.

$STACK provides a non-destructive
printout of all the addresses on the string
stack.

The remaining stack operations are
self-evident analogs of parameter stack
manipulations.

Disk Files
Strings are saved in sequential text

files, separated by a string-end marker.
This marker can be a printable character.
such as *; a period, to make each sentence
a string; a return, to make each paragraph
a string; or even anon-printable character,

Forth Dimensions I4 Volume X. Number 5

such as Ctrl-A, to serve as an invisible
delimiter. Note that strings can contain any
characters desired. The mark is entered by
$MARK which requestsentry of themark. If
this is done after a file is opened, the file can
be read one string at a time by INS. For
writing files, a string on the stack (pointed
to by the address on top of the string stack)
is moved to the massbuffer by OUT $ which
automatically adds the delimiter.

Files are opened (and created, if not
already present) by OPEN <name>. Using
OPEN as an immediate keyboard command
automatically calls $MARK to set the end-
of-line informauon for the open file. Files
can also be opened by a word, e.g.:
: TEST

OPEN <filename>
$MARK <char> ;

String-stack operators
$ ((-- , . -- A 1 A2)

$@ (A -- ; -- A 1 A2)
$! (A -- ; A 1 A 2 --)
$SWAP (A 1 A 2 A 3 A4 -- A 3 A4 A 1 A 2)

$DROP (-- , A 1 A 2 --)

$DUP (-- , . A 1 A 2 -- A 1 A2 A 1 A 2)
, A 1 A2 -- A 3 A4) $COPY (-- -
, A 1 . . . An -- A 1 . . . An) $STACK (--

$. (-- , . A 1 A2 --)

$WRITE (A n -- ; -- A 1 A 2)

String manipulators
$+ (A 1 A2 A 3 A4 -- A 5 A6) Con~ate~tion.
$LEN (-- n ; ~l ~2 -- A 1 A 2) Non-destructive operation to

put the length of a string onto
the parameter stack.

RIGHTS (n -- ; A 1 A 2 -- A 3 A4) Returnsthelastncharactersof
a string.

LEFT$ (n -- ; ~l A 2 -- ~3 A4) Returns the first n characters
of a string.

MID$ (n n l -- ; A 1 A 2 -- A 3 A 4) Returns nl characters begin-
ning with the nth character.

which can be defined in a screen or from the
keyboard.

IN$ will now read the first string in the
file; repetition will read the remaining
strings. For writing, WRITE must be en-
tered after a file is opened. After all desired
strings have been ''vrinted" with OUT $,

I
Figure One.

I I 1
enteringcLOs~ will flush the output buffer
and close the file. (When the string text fills
the massbuffer, it will automatically be
saved to disk. CLOSE is only needed for a
"mop-up.") To avoid errors arising from
forgetting to close a file after reading or

STRINGS SCR H 1
0 \ Genera l N o t e s 25JUL88CHP
1 \ I n s c r e e n #2, t h e 90FF v a l u e f o r FRETOPO c a n be changed t o
2 \ any c o n v e n l e n t h igh-memory l o c a t i o n . S t r i n g s a r c s t o r e d
3 \ f r o m t h i s l o c a t i o n downward.
4
5 \ B o o t FORTH

wri%ng, O P E N automatically closes-the
previously accessed file as its first step,
flushing only if there is an open file and if
WRITE has been entered after that file was
opened.

6
7 \ I f y o u r FORTH does n o t r e c o g n ~ z e t h e dummy w o r d NEXT, f i n d
8 \ t h e a d d r e s s , nnnn, t o w h i c h a l l p r i m i t i v e s jump a s a f r n a l
9 \ s t e p , a n d r e p l a c e GONEXT i n a l l s c r e e n s W I t h nnnn JMP,

10
11 \ D e f i n e : DUMMY ; t o be u s e d f o r l i n k i n g t o d i s c a r d t h e
1 2 \ ASSEMBLER voc abu 1 a r Y
13 \ E n t e r HEX 2000 ALLOT, l o a d ASSEMBLER, t h e n l o a d STRINGS
1 4
15 --> Realization for the 6502

The preceding section on reading and
writing disk files is, obviously, completely
installation dependent. The other parts of
$Forth, however, can be made available in
a crude form for testing. If you like the
features, they can be incorporated into a
complete Forth realization.

Providing non-Apple-specific code for
experimental use is a little awkward, be-
cause the key words for stack manipulation
are primitives; thus, specific addresses
must be supplied (unless a Forth assembler
is to be used). I am appending ordinary
assembly listings for the 6502 CPU, with
address equates which should be under-
stood as being illustrative, although two of
them are determined by the version of Forth
onto which the string routines are to be
grafted. These are the addresses of NEXT

STRINGS SCR # 2
0 \ S p e c i a l VARIABLES a n d CONSTANTS 25JUL88CHP
1 HEX
2 E6 CONSTANT N \ T h i s mus t be a ze ro -page 1 o c a t i on
3 \ I t 1s a t e m p o r a r y c o n s t a n t f o r t h e a s s e m b l e r
4 ' DUMMY 4 + DP !
5 \ From h e r e on, a d d a l l new w o r d s t o t h e FORTH d i c t i o n a r y
6 90FF CONSTANT FRETOPO UAR I ABLE FRETOP
7 : FRETOP! FRETOPO FRETOP ! ;
8 VARIABLE XSAVE VARIABLE TEMP VARIABLE TEMP1
9 VARIABLE STR1NG.X 80 CONSTANT SSO 5 CONSTANT SS1

10 VARIABLE S .STACK 8 0 ALLOT
11 VARIABLE GARB 100 ALLOT
1 2 : SSP! SSO STR1NG.X C! 0 0 ! ;
1 3 : SSP3 STR1NG.X C3 ;
14 -->
15

Volume X. Nwnber 5 15 Forth Dimensions

and a new variable FRETOP which is to be
created as the first step in adding the string
routines. The FRETOP address is found by
reading your dictionary pointer immedi-
ately after booting, or by entering
VARIABLE FRETOP and using FRETOP
to find its address. Incidentally, this is a
good example of the virtue of using an
assembler written inForth: FRETOP can be
defined as a variable and its address made
available for the assembly code simply by
using the word FRETOP.

XSAVE and STRING. x are any avail-
able cells; N requires a sequence of seven
zero-page cells, N-1 to N+5. (In fig-
FORTH, this was above the parameter
stack.) TEMP and TEMP 1 are tW0 pairs of
cells for temporary number and address
storage.

In my CORE. FORTH, I use $900 (in-
stead of $800) as the origin of the Forth
nucleus. This makes $ 8 8 6 4 3 ~ ~ available
for the string stack, and $ 8 W 7 F for a
floating-point stack. I have my input
massbuffer at $9100, so set $90FFas FRE-
TOPO, the initial value of FRETOP. In
CORE-FORTH, FRETOP is a system vari-
able and the added system constants are
SSO, SS1, FRETOPO, S . STACK,
STRING. X, and GARB. GARB is the ad-
dress of a one-page (256 bytes) buffer used
in fast garbage collection procedures. The
value of $9500 puts it just under the Pro-
DOS buffer.

Some words comprise a simple test,
followed by a primitive for the actual opera-
tion.'For example, $DROP requires testing
for an empty string stack first, hence:
: $DROP

?$EMPTY $DROP% ;

where $DROP % is the corresponding primi-
tive. This notation is convenient.

The assembled primitives--as given, or
with your own values for the address
equates-are to be written as screens by
your favorite method, using an assembler
written in Forth or copying the binary data
by hand as in the attached screens.

s . STACK was placed at $4000 in the
hope that this would not interfere with an
existing Forth and, hence, could be used ex-
perimentally; although it is a very poor
choice for actual implementation.

STRINGS SCR # 3
0 \ REV.MWE %% 23JUL88CHP
1 ASSEMBLE REV-MWE 6 # LDA, N 1- STA, 101 0 ,X LDA, N ,Y STA,
2 INX, INY, N 1- CPY, 101 W E , 0 # LDY, XSAVE STX, STR1NG.X LDX,
3 DEX, DEX, DEX, DEX, N 3 + LDA, S.STACK 3 + ,X STA, N 2+ LDA,
4 S.STACK2+ , X S T A , S T R I N G . X S T X , O # L D X , 1 0 2 N C P X ,
5 106 BEQ, 103 N 4 +)Y LDA, N 2+)Y STA, N 2+ DEC, N 2+ LDA,
6 FF # CMP, 104 W E , N 3 + DEC, 104 N 4 + INC, 1 0 5 W E ,
7 N 5 + INC, 105 INX, 1 0 2 BNE, 106 N l + DEC, 103 BPL,
8 S T R I N G . X L D X 9 N 2 + LDA. FRETOPSTA.CLC. 1 #ADC.S .STACK
9 ,X STA, N 3 + LDA, FRETOP i t STA, o n ADC, S.STACK 1 + ,X STA

10 X W E LDX, GONEXT END
11 ASSEMBLE Sir/: 4 # LDY, 101 0 X) LDA, PWI, 0 ,X INC, 1 0 2 BNE,
1 2 1 ,X INC, 102 DEY, 101 BNE, INX, INX, XSAVE S IX , STR1NG.X
1 3 LDX, 4 # LDY, 1 0 3 D E X , PLA, S.STACK , X S T A , DEY, 103 BNE,
1 4 STR1NG.X STX, XSAVE LDX, GONEXT END
15 -->

STRINGS SCR # 4
0 \ ?%EMPTY ?%FULL $3 % ! 23JUL88CHP
1 : ?%EMPTY SSO 3 - S S P ? U< ABORT" Empty s t r i n g s t a c k " ;
2
3 : ?%FULL SSP? SS l U< ABORT" Full s t r i n g s t a c k ' ;
4
5 ASSEMBLE % ! % XSAVE STX, STR1NG.X LDX, S.STACK 3 + ,X LDA,
6 FHA, S.STACK 2+ ,X LDA, FHA, S.STACK 1+ ,X LDA, FHA,
7 S.STACK ,X LDA, FHA, INX, INX, INX, INX, STR1NG.X STX,
8 XSAVE LDX, 4 # LDY, 101 PLA, O X) STA, 0 ,X INC, 102 BNE,
9 1 ,X INC, 1 0 2 DEY, 101 W E , INX, INX, GWEXT END

10
11 : %i) ?%FULL Sir/: ;
1 2 : % ! ?%EMPTY % ! % ;
1 3
1 4 -->
15

STRINGS SCR # 5
0 \ SDUP %DROP S.STACK->P.STACK 25JUL88CHP
1 ASSEMBLE %DUP% XSAVE STX, STR1NG.X LDX, S.STACK ,X LDA,
2 FHA, S.STACK I + ,X LDA, FHA, S.STACK 2+ ,X L W , P W ,
3 S.STACK 3 + ,X LDA, DEX, DEX, DEX, DEX, S.STFICK 3 +
4 ,X STA, PLA, S.STACK 2 t ,X STA, PLA, S-STACK 1+ ,X STA,
5 PLA, S.STACK ,X STA, STR1NG.X STX, X W E LDX, GONEXT END
6
7 : BDUP ?%EMPTY ?%FULL %DUP% ;
8
9 ASSEMBLE %DROP% STR1NG.X INC, STR1NG.X INC, STR1NG.X INC,

10 STRING.XINC,GONEXTEND
11 : %DROP ?%EMPTY %DROP% ;
1 2 ASSEMBLE S.STACK->P.STACK XSAVE STX, STRING-X LDX, 4 # LDY,
1 3 101 S.STACK ,X LDA, P W , INX, DEY, 101 W E , STR1NG.X STX,
14 X W E LDX, 4 # LDY, 1 0 2 DEX, PLA, 0 ,X STA, DEY, 1 0 2 BNE,
15 GONEXT END -- >

STRINGS SCR # 6
0 \ *SWAP %WRITE %(% " CHR% 23JUL88CHP
1 ASSEMBLE %SWAP% X W E STX, STRING .X LDX, 4 # LDY , 101
2 S .STACK ,X LDA, P W , INX, DEY, 101 W E , DEX, 4 # LDY,
3 1 0 2 S . S T A C K 4 + ,XLDA,S .STACK , X S T A , P L A , S . S T A C K 4 +
4 ,X STA, DEX, DEY, 102 BNE, XSAVE LDX, GONEXT END
5

%SWAP SSP? SSO 8 - > I F ." Fewer t h a n 2 s t r i n g s o n s t a c k "
SSP! QUIT THEN %SWAP% ;

%WRITE (a d d r n---) L 2 ALLOT 3 ?%FULL FRETOP '3 SWAP
REU.MWE ; \ Space l e f t f o r i n s e r t i n g ?%GARBAGE

%(?EXEC 2 9 WORD COUNT %WRITE ;
(% ") PHRASE %WRITE ;
6" 2 2 COMPILE (% ") WORD C'3 l+ ALLOT ; IMMEDIATE
CHR% < n---:---A A) HERE C! HERE 1 %WRITE ;

L
Forth Dimenrim 16 Volume X. Number 5

STRINGS SCR # 7
0 \ S. *COPY% 23JUL88CHP
1 : *. ?*EMPTY S.STACK->P.STACK 1- SWAP DO I C3 EMIT -1 +LOOP I
2
3 ASSEMBLE *COPY% XSAVE STX, STR1NO.X LDX, S.STACK 3 + ,X
4 LDA, PHA, S.STACK 2+ ,X LDA, PHA, S.STACK l + ,X LDA,
5 PHA, S.STACK ,X LDA, PHA, FRETOP LDA, S.STACK 2+ ,X STA,
6 FRETOP 1 + LDA, S.STACK 3 + ,X STA, XSAVE LDA, SEC, 6 # SBC,
7 T A X , X S A V E S T X , P L A , 4 , X S T A , P L A , 5 , X S T A , P L A ,
8 4 ,X SBC, 0 ,X STA, PLA, S ,X SBC, 1 ,X STA, SEC,
9 FRETOP LDA, 0 ,X SBC, 2 ,X STA, FRETOP 1+ LDA, 1 ,X SBC,

10 3 ,X STA, CLC, 0 ,X LDA, 1 # ADC, 0 ,X STA, 1 ,X LDA,
11 0 # ADC, 1 ,X STA, SEC, 2 ,X LDA, 1 # SBC, FRETOP STA,
1 2 3 ,X LDA, 0 # SBC, FRETOP 1+ STA, 2 ,X LDA, PHA,
1 3 3 ,X LDA, STR1NG.X LDX, S.STACK 1+ ,X STA, PLA,
1 4 S. STACK ,X STA, XSAVE LDX, G0NEXT END
15 - ->

STRINOS SCR n 8
0 \ *COPY SMRIABLE *ARRAY 25JUL88CHP
1 : *COPY -EMPTY *COPY% CMWE ;
2
3 VOCABULARY STRINGS
4
5 : % M R STRINGS DEFINITIONS CREATE 0 , 1 , 0 , 0 , DOES> 2+ ;
6
7 : SLJARIABLE *WR FORTH DEFINITIONS STRINGS ;
8
9 : (%ARRAY) STRINGS DEFINITIONS CREATE DUP 0 , , 2+ 0 DO

10 0 , LOOP DOES> SWAP 1- 4 * 2+ + ;
11
1 2 : %ARRAY (%ARRAY) FORTH DEFINITIONS STRINGS ;
1 3
1 4 -->
15

STRINGS SCR # 9
0 \ LEFT* RIGHTS 23JUL88CHP
1
2 ASSEMBLE LEFT* 0 ,X DEC, 0 ,X LDA, TEMP STA, FF # CMP,
3 101 W E , 1 ,X DEC, 101 1 ,X LDA, TEMPI STA, INX, INX,
4 XWE STX, STRING.^ LDX, SEC, S.STACK 2+ ,X LDA, TEMP SBC,
5 S.STACK ,X STA, S.STACK 3 + ,X LDA, S.STACK 1+ ,X STA, XSAVE
6 LDX, GONEXT END
7
8 ASSEMBLE RIGHTS 0 ,X DEC, 0 ,X LWI, TEMP STA, FF # CMP,
9 101 BNE, 1 ,X DEC, 101 1 ,X LDA, TEMPl STA, INX, INX,

10 XSAVE STX, STR1NG.X LDX, CLC, S.STACK ,X LDA, TEMP ADC,
11 S.STACK 2+ ,X STA, S.STACK 1+ ,X LDA, TEMPl ADC, S.STACK 3 +
1 2 ,X STA, X W E LDX, GONEXT END
1 3
14 - ->
15

STRINGS SCR # 10
O \ M I D % %LEN% 20APR88CHP
1 ASSEMBLE MID$ (n l n2---) 0 ,X DEC, 0 ,X LDA, TEMP STA,
2 FF # CMP, 101 W E , 1 ,X DEC, 101 1 ,X LDA, TEMP I + STA,
3 2 ,X DEC, 2 ,X LDA, TEMPl STA, FF # CMP, 1 0 2 BNE,
4 3 ,XDEC, 1 0 2 3 , X L D A , TEMP1 1+ STA, INX, INX, INX, INX,
5 XSAVE STX, STR1NG.X LDX, SEC, S.STACK 2+ ,X LDA,
6 TEMP1 SBC, S.STACK 2+ ,X STA, PHA, S.STACK 3 + ,X LDA,
7 TEMPl 1+ SBC, S.STACK 3 + ,X STA, PLA, TEMP SBC,
8 S.STACK ,X STA, S .STACK 3 + ,X LDA, TEMP I+ SBC,
9 S.STACK 1+ ,X STA, XSAVE LDX, GONEXT END

10
11 ASSEMBLE $LEN% XSAVE STX, STR1NG.X LDX, SEC, S.STACK 2+
1 2 ,X LDA, S.STACK ,X SBC, PHA, S.STACK 3 + ,X LDA,
1 3 S.STACK 1+ ,X SBC, TEMP STA, CLC, PLA, 1 # ADC, PHA,
14 TEMP LDA, 0 # ADC, XSWE LDX, DEX, DEX, 1 ,X STA, PLA,
15 0 ,X STA, X W E STX, GONEXT END -->

Volume X, Nwnber 5 17

NGS FORTH
A FAST MIRTH,
OPTIMIZED mR THE IBM
PERSONAL COMHTTER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

a79 STANDARD

@DIRECT I / O ACCESS

@FULL ACCESS TO MS-DOS
F I L E S AND F'UNCTIONS

@ENVIRONMENT SAVE
& LOAD

@MULTI-SEGMENTED FOR
LARGE APPLtICATIONS

@EXTENDED ADDRESSING

.MEMORY AIXDCATION
CONFIGURABLE ON-LINE

.AUTO m A D SCREEN BOOT

@LINE & SCREEN EDITORS

@DECOMPILER AND
DEBUGGING A I D S

a8088 ASSEMBLER

.GRAPHICS & SOUND

@NGs ENHANcxmN'rs

@DETAILED &¶ZU-lUAL

@INFXPENSIVE UPGRADES

aNGS USER NEWSLETTER

A COMPLETE FORTH
D E V E I D m SYSTEM.

PRICES START AT $70

NEW+-150 & -110
VERSIONS AVAILABLE

ril;
NEXT GENERATION SYSTEMS
Pooo~L(2987
M A CXARA, CAo 95055
(408) 241-5909

Forth Dimensions

.A

INTEL
8031

i.' f.'

.... ::: ..a'
:i ... -5'
f.' :.:

2. Z.'
2.*.

 OR^" . . .?.'
Z. ..i :i .:. . . .?.'
.5 :.' 2.' .:. . . , m i .:. .Y . . ,5' ..-.

...
MICRO-

.-.
I.
5:

coNTRoLLER/
.

STRINGS SCR # 11
0 \ %LEN %+ CL.GARB.BUF 23JUL88CHP
1 : %LEN ?%EMPTY %LEN% ;
2
3 ASSEMBLE %+% XSAVE STX, STR1NG.X LDX, S.STACK ,X LDA,

4 5 S.STACK ,X STA, 4 INX, + ,X INX, STA, INX , S.STACK INX , STRING 1+ ,X LDA, .X STX, S. STACK XSAVE 5 LDX, +
6 GONEXT END
7
8 : %+ %SWAP %COPY %SWAP %COPY %+% ;
9

10 ASSEMBLE CL.GARB.BUF XSAVE STX, 0 # LDX, TXA, 1 0 1 GARB
11 ,X STA, DEX, 1 0 1 BNE, F F # LDA, DEX, GARB , X S T A ,
1 2 DEX, GARB ,X STA, DEX, GARB ,X STA, DEX, GARB ,X STA,
1 3 XSAVE LDX, GONEXT END
1 4
1 5 - ->

STRINGS SCR # 1 2
0 \ % L I S T GARB. COLL 20APR88CHP
1 ASSEMBLE %L IST 3 ,X CDA, PHU, 2 , X LDA, PHA, 1 ,X LDA,
2 TEMP 1 + STA, 0 ,X LDA, TEMP STA, INX , INX, INX , INX ,
3 XSAVE STX, 0 # LDX, TEMP LDA, GARB 2+ ,X CMP, TEMP 1 + LDA,
4 G A R B 3 + , X S B C , 1 0 3 B C C , 101 I N X , INX , INX , INX ,
5 TEMP LDA, GARB 2+ ,X CMP, TEMP 1+ LDA, GARB 3 + ,X SBC,
6 101 BCS, DEX, DEX, DEX, DEX, TEMPl STX, 0 # LDX, 1 0 2 GARB 4 4

7 ,X LDA, GARB ,X STA, INX , TEMP1 CPX, 1 0 2 BCC, PLA, GARB ,X
8 STA, PLA, GARB l + ,X STA, TEMP LDA, GARB 2+ ,X STA, TEMP 1+
9 LDA, GARB 3 + ,X STA, XSAVE LDX, 1 0 3 GONEXT END

10
11 : GARB.COLL GARB FC + BEGIN 4 - DUP DUP GARB SWAP U <
1 2 SWAP 3 DUP O= O= ROT AND
1 3 WHILE DUP $3 %COPY s! REPEAT DROP DROP ;
1 4
1 5 - - >

STRINGS SCR # 1 3
0 \ %ACTIVE GARBAGE ?%GARBAGE 27JUL88CHP
1 : %ACTIVE CL.GARB.BUF STRINGS CONTEXT 3 BEGIN 3
2 DUP 3 A081 = 0=
3 WHILE W E > DUP 4 + DUP 2- SWAP 3 0 DO
4 4 + DUP DUP a DUP FRETOP a U<

-Access to 8031 features
-Supports FORTH and machine

code Interrupt handlers
-System timekeep~ng malntalns

tlme and date w~ th leap
year correction

-Suooorts ROM-based self-

. .
Z. P is ,:> -:. :.- .. ,.z .-.- 8
5. M FEATURES .-.*

-FORTH-79 Standard Sub-Set c.; T.

, ,
starting appl~cat~ons

5 I F % L I S T ELSE DROP DROP THEN
6 LOOP DROP > L I N K REPEAT DROP ;
7 : GARBAGE FRETOP! BEGIN %ACTIVE GARB FB + a WHILE
8 GARB.COLL REPEAT ;
9 : ?%GARBAGE FRETOP 3 HERE - 200 < IF GARBAGE THEN ;

COST
130 page manual -S 30.00
8K EPROM w~th manual-S100.W

Postage paid In North Arnerlca
lnqurre for llcense or quantlty prlclng

-.
,?.. :.:.

Bryte Computers, Inc.
P.O. Box 46, Augusta, ME 04330

r:.
?.'
f. ?.-

(207) 547-32 18
5:

10 -->
1 1 NOTE: N W E > c o n v e r t s name f i e l d address t o code f i e l d address
1 2 >L INK c o n v e r t s code f i e l d address t o l i n k f i e l d address
1 3
1 4 NOTE: %ACTIVE assumes t h a t t h e lowest word i n the STRINGS
1 5 vocabulary l i n k s back t o 8 1 A0 a s the dummy name i n FORTH

STRINGS SCR # 1 4
0 \ 3PTR %STACK ?%GARBAGE 25JUL88CHP
1
2 ASSEMBLE 3PTR XSAVE STX, TEMP LDX, S.STACK ,X LDA,
3 PHA, S. STACK 1+ ,X LDA, XSAVE LDX, DEX, DEX, 1 ,X STA,
4 PLA, 0 ,X STA, TEMP INC, TEMP INC, GONEXT END
5
6 : %STACK ?%EMPTY STR1NG.X C? [TEMP I L ITERAL C!
7 BEGIN SPTR U. C TEMP 3 L ITERAL C3 8 0 = U N T I L ;
8
9 ' ?%GARBAGE ' %WRITE >BODY !

1 0
11 SSP! FRETOP!
1 2
1 3 ' DUMMY >NAME ' FRETOPO > L I N K ! \ R e s t o r e 1 inkage
1 4
1 5 Q U I T

I

Forth Dimensions 18 Volume X, Nwnber 5

I Part Four 1
DESIGNING

DATA STRUCTURES

Several approaches to the design of
data structures have been introduced previ-
ously. This concluding article departs from
the concerns for portability and reuse of
operations. Previous installments have al-
ready shown how object orientation and
data abstraction can help address those
concerns. With amuch more personal treat-
ment this time, I'll reconsider object-ori-
ented programming (OOP) in a variety of
ways. One way is through an exploration of
my own efforts to create an object-oriented
Forth (OOF).

Although much of what is presented
here is based on concepts introduced be-
fore, it is enough of a digression that it
requires a new conceptual framework.

In the first installment, I said that any
new object defines a new data type (be-
cause it carries with it a certain set of
properties which another object could
duplicate). I'll introduce the term data
typing system to refer to the existence of a
system for managing operations associated
with data types. Likewise, I'll use the term
object typing system to refer to the manage-
ment of operations associated with objects.
Both are forms of operation management
systems. The term object typing system was
chosen because of its enforcement conno-
tations.

Data typing systems have become well
established as components of modem lan-
guages, such as C and Pascal. As far as I
know, no language before object-oriented
languages (OOLs) provided a management
function for user-defined objects and their
associated operations. Although this ad-
vancement is recognized less, it is of key
importance. By managing operations that
apply to particular types of user-defined

MIKE ELOLA - SAN .JOSE, CALJFORNIA
D

objects, languages are deserving of the
label "object oriented."

Forth altogether lacks any operation
management system. Therefore, there is an
opportunity to provide both an object and a
data typing system with the same set of
routines. This approach can be described
alternately as a Forth data typing system
and as an object-oriented Forth.

Even withouta system for managing the
matchups between objects and their associ-
ated operations, objects can be said to exist.
The Forth programmer is the "management
system" that ensures proper matchups be-
tween operations and objects. Without an
operation management system to get in the
way, inheritance is simple: the Forth pro-
grammer inserts the name of the desired

A major component ...
already exists in the
form of vocabularies.

operation, without any ensuing complaints
from the compiler.

Forth's vocabulary provisions can be-
come the basis for a Forth operation man-
agement system. For example, a reference
to a variable can automatically establish an
I N T (integer) vocabulary context, helping
select operators appropriate for integer
objects. This results in a natural classifica-
tion of objects according to their data types:
One I N T vocabulary is therepository forall
operations of type INT, and all the objects
that set I N T as the context vocabulary are
assumed to be integer objects. Integer ob-
jects might be constants, variables, or even

the elements of a more complex object.
Since a major component of such an

operation management system already ex-
ists in the form of vocabularies, the OOF
presented here is dramatically brief. Two
new words are needed. They are special
versions of CREATE and DOES> that can
be used to declare objects.

The use of vocabularies is a substantial
departure from the customary OOL model.
One difference is the lack of formal mes-
sages associated with objects. Upon men-
tion of an object, the Forth compiler is
affected because the search order changes.
It is difficult to say that this scheme uses
messages, since it merely involves a vo-
cabulary context switch that affects compi-
lation. If such context switches can be
thought of as messages, then perhaps this
can be thought of as a message-based sys-
tem.

Another important difference from
other OOLs is the lack of support for late
binding. Late binding seems to require a
prefix syntax, and I have been loathe to
accept prefix syntax for late binding while
postfix operators remain a Forth standard.
To provide this form of late binding, an
operator table is typically used for each
type of object. Each operation table is in-
dexed by a common set of prefix "mes-
sages" (see RAY87).

Criticism of OOP
My criticism of OOP centers around

two assertions: (1) the OOP model is too
limited without multiple inheritance, and
multiple inheritance requires great pa-
tience and care; and (2) the benefits
claimed by OOLs can often be obtained
without OOP.

Volume X, Nurnber 5 19 Forth Dimensions

1
Forth Dimensions 20 Volume X, Nwnber 5

By demanding that real-world phenom-
ena be represented with a single object
hierarchy, OOP imposes serious con-
straints. Which object should be subordi-
nate to another? Often, class hierarchies are
created solely to make it possible to inherit
certain operations. However, this is a re-
flection of the programmer's problem
space rather than the real-world phenom-
ena the object is helping to represent.
Multiple inheritance helps address this
problem, but at acost. It reduces the attrac-
tiveness of OOPas a programming philose
phy and undisciplines what is otherwise a
powerful organizational technique.

In the first installment of this series, I
uied to dispel misguided enthusiasm over
OOP by saying that the recent preoccupa-
tion with object-oriented programming
resulted from the ability to reuse operations
through inheritance-an ability many pro-
grammers lost with strongly typed lan-
guages. By skipping data type enforce-
ment, Forth never lost the capability and so
never needed to regain it.

The ability to reuse operations is not the
only advantage of OOP that can be
achieved through means other than OOP.

Among the benefits of OOP are the
creation of more portable code; the ability
to overload operator names to avoid a horde
of new operators such as We, LONG@, F P @ ,
etc.; and the elimination of operator-object
mismatches.

However, more portable code is best
solved through abstraction of the host
computer (as shown in the previous install-
ment). The code introduced in this article
will at least partially provide the third bene-
fit. Overloaded operator names can be
provided without OOP, as described in the
following section.

Syntactical Means of
Operator Symbol Reduction

Operator overloading is one of the de-
suable advantages of OOP. Let's examine
a table that shows the candidates for name
overloading:

l!S.khSfare.
Char C@ C!
Int @ !
Float F @ F!
Double D@ D !

When used this way, eight operators are
needed for two operations, and sixteen for
four, proceeding exponentially. However,
four data type identifiers and two operator

identifiers used in combination can permit
the same reduction in operator names that
messages provide for OOLs:

Egtcll k
CHAR GET CHAR PUT
I N T GET I N T PUT
FLOAT GET FLOAT PUT
DBL GET DBL PUT

Each new operator adds only one new
identifier,andeach new datatypeaddsonly
one new identifier, proceeding arithmeti-
cally. In this case, slightly more verbosity
imposes little compile-time and no run-
timeoverhead, since CHAR, INT, DBL, and
FLOAT can simply be vocabularies.

Obstacles to OOF
Before now, object-oriented Forths

(OOFs) have had two drawbacks to detract
from their appeal: The stretch required to
make Forth an OOL is often too great,
resulting in a language too unlike Forth;
and Forth's parameter stack cripples our
effort to create an OOF.

Object-oriented programming relies on
a typed language. By storing floating-point
numbers, truth flags, bit maps, addresses,
integers, and characters all on the parame-
ter stack, Forth seriously discourages any
data typing systems. Accordingly, object-
oriented Forths have to steer clear of "nor-
mal" Forth. Separate stacks for each data
type, or a data typing stack must be added.

The problem can be illustrated with a
fragment taken from the word LATEST:

CURRENT @ @

CURRENT should be part of a class of
objects exhibiting a pointer property. Call it
the "pointer class" to indicate that an ad-
dress is the only allowable interpretation
for the value stored in CURRENT. After the
value inside CURRENT is fetched by a
"pointer" fetch operator, the stack contains
an object exhibiting an "address" property.
After the final fetch by an "address" fetch
operator, the stack contains a value with a
"name-field-address" property.

I Object!
Operator overloading reduces the num-

ber of operators that have to be remem-
bered. When combined with an object typ
ing system, the correct operator can be
selected without any errors. This is good.
However, the approaches we often see are

often not completely faithful to this goal.
Suppose the average of two numbers

must be determined. Typically, OOFs use
the following prefix stack operations and
postfix arithmetic operations:

GET A
GET B
+
2 /
PUT c

Although OOFs may select the correct
fetch operation for A and B and the correct
store operation for C, they typically do not
help select the appropriate plus and divide
operators for the values on the stack. This
is not so good.

Unless Forth changes, postfix opera-
tions will remain. Unless a replacement
can be found for the prefix message syn-
tax, OOFs will remain prefix.

Furthermore, more comprehensive
operation management systems are re-
quired. By making all Forth operators pre-
fm, we'll create a consistent prefix syntax,
but we'll lose the advantages of postfix
syntax.

A Better Tradeoff
If some inconsistency must be toler-

ated, let it involve something other than
prefix syntax for some operators and
postfix for others. Occasionally, program-
mer intervention will be necessary when
using the operation management system I
am suggesting. Of the possible inconsis-
tencies, I found this much more accept-
able. Here is why:

Explicit references to the vocabularies
CHAR, INT, DBL, and FLOAT are mostly
unnecessary when objects are manipu-
lated without intervening stack opera-
tions. On the other hand, this inconsis-
tency can lead to a less strictly enforced
object typing system. Unlike most others,
this operation system lets us have our
object typing system and ovemde it too.
This way, the spirit of Forth, as exempli-
fied by complete programmer control over
the language, is preserved.

For example, a value can be fetched
from a CHAR variable and then stored as a
cell integer at the PAD'S location. using:
PAD INT !

No restrictive object or data typing system
gets in our way: We do not have to request
the use of a store operation from the set

belonging to the INT data type, nor do we
have to convert or declare PAD as an I N T
type of object for the moment. We do have
to help select the correct store operation by
stating the I N T vocabulary, however.

Most of the time, we retain the option of
automatic operation selection. Yet where it
is likely to be unreliable, manually selected
operations can be dictated. Assuming that
CURRENT sets the correct vocabulary to
compile the correct GET operator, we could
be assured that the object-oriented
CURRENT GET ADDRESS GET

acts the same as standard CURRENT @ @.
In this case, the programmer must beaware
that ADDRESS is the appropriate type
vocabulary for the value that resulted from
CURRENT GET.

By ensuring that GET and PUT (and by
extension +, /, -, *, etc.) do not have
definitions in the Forth vocabulary, we can
detect certain errors at compile time. For
example, if in the preceding example CUR-
RENT d0tX not set a Context vocabulary
that includes a GET operation, then "Not
found" or "Huh?" errors would be dis-
played.

Such an operation management system
can also support a form of inheritance,
through hierarchically structured search
paths (as opposed to hierarchical object
classes). For example,
NOT ONLY PTR
BUT ALSO ADDRESS

helps compile the GET and PUT operators
when both are located in either the PTR
(pointer) vocabulary, or in the ADDRESS
vocabulary. Although CURRENT could
establish PTR as the first vocabulary to be
searched, operations from the ADDFXSS
vocabulary would be available also.

To describe this action in OOP terms,
ADDRESS becomes a superclass, or base
class, for PTR. For an OOL, however, this
relationship would be a permanent condi-
tion, not just a temporary one. With the
approach I am suggesting, PTR can be the
superclass at one point, and ADDRESS the
superclass at another point (a form of tem-
poral, multiple inheritance).

One object hierarchy could be:
ADDRESS

PTR

~~~~R 

! CFA 

Within such an object hierarchy, D@ (or 
the equivalent) would be placed in the 
DBL-ADR vocabulary, C@ (or the equiva- 
lent) in the CHAR-ADR vocabulary, and so 
on. For ease of reuse, @ could be placed in 
the ADDRESS vocabulary, so that the 
classes PTR, CFA, and CELL-ADR could 
"inherit" it, rather than having it occur three 
times in these three different vocabularies. 

To implement overloaded operators, 
you could redefine D@ as @ in the DBL 
vocabulary; see Figure One. Note that DP 
must now execute during compilation to set 
the DBL vocabulary in order to help com- 
pile the correct version of @ for itself. 

Another possibility is to make a version 
of GET specifically for the~~~vocabulary. 
The new GET could reflect some unique 
properties about PTR objects, as in Figure 
Two. By switching to the next appropriate 
vocabulary, the PTR version of GET helps 
the operator management system keep 
track of the data type of the item left on top 
of the stack. This is comparable to Forth's 
compiler extensibility through the use of 
IMMEDIATE words. IMMEDIATE words 
permit compiler actions to be distributed 
throughout many different routines. Like- 
wise, by distributing portions of the object 
typing system throughout the operators 
themselves, operation management is im- 
plemented as an extensible collection of 
functions. 

In this way, the reach of the operator 
management system can be extended. For 
example, operator selection can be contin- 
ued for two operations beyond CURRENT, 
not just one. This permits CURRENT @ @ 
to be changed into the following object- 
oriented code: 
CURRENT GET GET 

The two GETS shown are really two 
different object-specific operations, se- 
lected as a result of the vocabulary that had 
been previously associated with CUR- 
RENT. 

The reach of the object-typing system 
can be extended as far as it is useful to do so, 
even to extremes. Suppose CURRENT sets 
the context vocabulary to INDIRECT- 
NFA-POINTER. Then Suppose that the 
version of GET compiled after CURRENT 
sets the context vocabulary to NFA- 
POINTER. The final GET would be the 
version that had been placed in the NFA- 
POINTER vocabulary. Suppose it fetches 
an NFA and sets the NFA vocabulary. Then 
CURRENT GET GET would finidly leave 

the NFA vocabulary Set, that associated 
operations such as I D . ,  >LFA, and >PFA 
couldbe enabled for compilation or execu- 
tion. 

Besides extending the reach of the ob- 
ject-typing system, this would also resolve 
collisions of operator names such as >PFA. 
Two separate versions of >PFA could be 
included, one in the CFA vocabulary and 
the other in the NFA vocabulary. 

Furthermore, such an object-typing 
system supports the postfix selection of all 
operators, including arithmetic operators. 
For example, the plus operator in the fol- 
lowing sequence is the one appropriate for 
object B, since there is no intervening 
vocabulary switch after B GET: 
A GET 
B GET 
+ 
2 / 
C PUT 

A prerequisite is the overloading of all 
arithmetic operators through type vocabu- 
laries, such as INT, DBL, and CHAR. Note 
also that no warning would be issued if A 
and B were DBL (double) variables while c 
was an I N T  variable, even though the 
double result would only be half-con- 
sumed. (Extensions for run-time type 
checking will be able to detect this type of 
error.) 

The same mixed operator should not 
appear in two vocabularies. It should only 
appear in the vocabulary corresponding to 
the data type that is expected to be on the 
top of the stack. There will be times when 
the INT vocabulary is not automatically 
set before the appearance of a mixed-op- 
emtor such as M* / . However, the "take- 
charge" solution is to simply precede M* / 
with I N T  . To suitably extend the operation 
management system (refer to the way s >D 
is modified in Figure Three), M* / should 
set the double vocabulary. 

We have already given considerable 
attention to an operator like M* /, namely 
GET. A wide variety of GET operations 
were suggested to help account for the type 
of the datum each leaves on the stack 

Large-Scale Development 
By making certain declared elements 

less available (private) and others more 
available (public), some modem languages 
assist with large-scale program develop- 
ment. One practice involves assigning to a 
programmer the "private" operations for 

I 

Volume X, Nwnber 5 21 Forth Dimemiom 





time: compile a reference to a component 
part of itself, and set the appropriate con- 
text vocabulary. These two actions may be 
bound to DP through two different code 
fields: 

I I DP I cf 1 l vaab I cf2 I <value> I 

The fust code field will be responsible for 
setting the vocabulary and compiling or 
executing the second code field, depending 
on the system state. The second code field 
will be responsible for the run-time action 
of a particular object (such as D@ for a 
double constant). 

Let's concentrate on the immediate or 
compile-time actions associated with the 
fnst code field. Since the fmt code field's 
actions must be shared by all (typed) ob- 
jects, it can be made general (see Figure 
Seven). To conform with our desired 
Syntax. GENERAL-DECLARATOR Can be 
abandoned in favor of OB J-CREATE. 
Like GENERAL-DECLARATOR, it Can 
also bind the object-general behavior to the 
resultant object. So, whereas CREATE 
builds 
I mame> I std cf I 

by using the code in Figure Eight as its 
definition, OBJ-CREATE can go ahead 
and build 
I <name> I object-general cf I vocab I 

For now, at least, we have the correct 
compile-time action. Now let's implement 
the object-specific behavior which occurs 
at run time. That's easy. In Figure Nine-a, 
for example, we make a declarator for 
double constants. 

Now we have the correct run-time ac- 
tion. However, the DOES> which follows 
OBJ-CREATE patches the one and only 
code field of DP, so that instance objects 
only execute D@. The object-general code 
within OBJ-CREATE is ignored. To fix 
this, OBJ-DOES> isused as areplacement 
for DOES>, and is defined as in Figure 
Nine-b (line numbers have been added for 
explanatory purposes). 

This special version of DOES> re- 
trieves the first code field value created by 
OBJ-CREATE to the stack (lines 1 and 2), 
then allows the fust code field to be over- 
written by DOES> (line 3). Then, line 4 of 
OBJ-DOES> retrieves the value for the 
second code field (now incorrectly stored 
as the first code field), and relocates it to the 
end of the current instance object (line 5). 

Finally, it restores the first code field, using 
the previously stacked value (line 6). When 
the dust settles, the instance object looks 
like that shown in Figure Ten. 

We have a different problem now. The 
second code field needs to appear before the 
four-byte allotment. One fix is to have 
OBJ-CREATE allocate space for the sec- 
ond code field. Add ADR/, ALLOT to 
OBJ-CREATE, directly pr&g DOES>. 
Since the initial instance object left by 
OBJ-CREATE has an invariant layout, 
OBJ-DOES> can anticipate that the second 
code field location is one cell past the fust 
code field (see Figure Eleven). 

Using the new object declaration pmvi- 
S~O~IS, the d e c h t o ~  DCONSTANT Can be 
created (Figure Twelve-a) that builds in- 
stance objects in the corrected format (Fig- 
ure Twelve-b). 

For a very broad discussion of dual code 
fields, see "Dual-CFA Definitions" 
(EL086). That article concentrated on ex- 
ecutable colon definitions rather than data 
definitions, so the illustrations differ sub- 
stantially. 

Final Remarks 
My original goal for this seriesof articles 

has been eclipsed by this installment's pre- 
occupation with OOF. Originally, the goal 
was to identify the data design strategies that 
would promote the portability and reusabil- 
ity of objects. I continue to believe that 
studies of data structures that focus on porta- 
bility and efficiency issues will prove fruit- 
ful, and this has not been an exception. I'll 
summarize the preferred design style and 
practices identified: 

1. Share layout properties among data 
ojects to enhance reuse of operations 
(Part One). 

2. Use data abstraction to hide "private" 
components of data objects from unnec 
essary, direct manipulation and to ease 
development (Parts Two and Four). 

3. Use host abstraction to enhance source 
portability (Part Three). 

4. Use clear declaration and consistent op 
eration syntaxes, even though they may 
be more verbose (Parts Three and 
Four). 

Notably lacking in this new OOF is 
support for late binding. Another desirable 
enhancement is an implementation of 
"structures" that supports object-typing at 
the structure level as well as the level of 

components within structures. 
Because it can already add features to 

Forth that are highly touted for other mod- 
em languages, this germinal OOF is sub- 
stantial. Rather than completely overhaul- 
ing Forth, I have suggested ways to use 
Forth's vocabulary provisions, and a 
couple of new data declarators, to realize 
the missing functionality. I am happy to 
report that these additions can preserve 
Forth's pr~mise of complete programmer 
control of the language. 

References 
EL086: Elola, Mike. "Dual CFA Defini- 

tions," Forth Dimensions 1x11. 
EL088: Elola, Mike. "Designing Data 

Structures, Part One", Forth Dimensions 
w2. 

RAY87: Rayburn, Terry. "Methods> Ob- 
ject-Oriented Extensions Redux," 1987 
FORML Proceedings. Forth Interest 
Group. 

L 

Mike Elola is a published Forth pro- 
grammer and a full-time writer at Apple 
Computer. Over the years, Mike feels, 
Forth has picked him into believing he is 
a computer scientist. 

Volume X,  Nwnber 5 23 Forth Dimemiom 



DBL DEFINITIONS / I : @  De ; 

FORTH DEFINITIONS 
DOUBLE DP 
: HERE DP @ ; 

Figure One. Redefinition of D@ and @. 

: GET ( adr -- ) ( for pointers ) 

@ 
[COMPILE] ADDRESS 

( set the address vocabulary) 
; IMMEDIATE 

Figure Two. A version of GET specifically for the PTR vo- 
cabulary. 

INT DEFINITIONS 
: S>D ( n -- d ) 

( compile-timeonly) 
COMPILE S>D 
[COMPILE] DBL ; IMMEDIATE 

FORTH DEFINITIONS 

Figure Three. Confine mixed operators to the appropriate 
vocabulary. 

DEFER >ORIGINAL-WIDTH 
: IF 

COMPILE >ORIGINAL-WIDTH 
... ; IMMEDIATE 

Figure Four. A deferred word permits use of late binding. 

32-BIT DEFINITIONS 
: CELLWIDTH 

>ORIGINAL-WIDTH IS 32>16 
( adjustcompiler words ) 

LITERAL IS CELL-LITERAL 
( adjust INTERPRET ) 

CELL IS 16-BIT 
( enable 16-bit cells ) 

BYTES/CELL IS 2 ; 
( adjust host-specific values ) 

Figure Five. Modifying kernel words to use a 32-bit-cell 
vocabulary 

r 

: DOUBLE 
[COMPILE] DBL 

( set context vocablary ) 
OBJ-CREATE ADR/, 2 * ALLOT 
OBJ-DOES> ; 

Figure Six. Example use of object-defining words. 

: GENERAL-DECLARATOR 
( template use only) 

CREATE 
CONTEXT @ , 

( compile class-specific code field ) 
DOES> 

( pointer-to-vocabulary -- ) 
DUP @ CONTEXT ! 
ADR/, + ( cfa2 -- ) 
STATE @ 
IF , ELSE EXECUTE THEN ; 

Figure Seven. Code for the generalized (shared) code field. 

: OBJ-CREATE ( -- 1 
CREATE 
IMMEDIATE 
CONTEXT @ , ( -- ) 
DOES> 

DUP @ CONTEXT ! 
ADR/, + (cfa2 -- ) 
STATE @ 

IF , ELSE EXECUTE THEN ; 

Figure Eight. OBJ-CREATE binds an object-general behav- 
ior to the objects it creates. 

: DCONSTANT 
OBJ-CREATE ADR/, 2 * ALLOT 
DOES> D@ ; 

Figure Nine-a Following OBJ-CREATE with DOES> 
causes the object-general code to be ignored. 

0) : OBJ-DOES> ( -- 1 
1) LATEST >CFA ( cfa -- ) 

2 DUP @ SWAP ( Ob jectGener- 
alCfaValue cfa -- ) 

3 [COMPILE] DOES> 
4 DUP @ 

( ObjectSpecificCfaValue -- ) 

5 I 

6 ! ( -- ) ; IMMEDIATE 
Figure Nine-b. Initial (problematic) definition of 
OBJ-DOES>. 

I I 

Forth Dimensions 24 Volume X, Number 5 



I I I cnamo I obj-general cfl I voc-ptr I 4-bytes I class-specific cf2 I I 
I I Figure Ten. Instance object structure that results from the problematic OBJ-DOES>. 

: OBJ-DOES> ( -- ) 

LATEST >CFA ( cfa -- ) 

DUP @ SWAP ( ObjectGeneralCfaValue cfa -- ) 
[COMPILE] DOES> 
DUP @ ( cfa ObjectSpecificCfaValue -- ) 
OVER ADR/, + ! 
! ( - ) ; IMMEDIATE 

I I Figure Eleven. Final definition of OBJ-DOES>. 

: DCONSTANT 
[COMPILE] DBL 
OBJ-CREATE ( <name>:<cfl>:<voc-ptr>:<tbs-cf2>:) 
D, 
OBJ-DOES> D@ ; 

Figure Twelve-a. Defining an object declarator. 

1 I l <name I obj-general cfl I voc I class-specific cf2 I 4-bytes I I 1 1 Figure Twelve-b. The correct format of resulting instance objects. I 

Volume X, Nwnber 5 25 

FIG-FORTH for the Compaq, 
IBM-PC, and compatibles. $35 
Requires DOS 2.0 or later, 
uses standard DOS files, hard 
disk or floppy. 

Full-screen editor uses 16by 
64 format, has HELP screen 
via single keystroke. Source 
included for editor and other 
utilities. 

SAVE allows storing Forth 
with all currently defined 
words onto disk as a COM 
file. 

Definitions are provided to 
allow beginners to use Starting 
Forth as an introductory text. 

Source code available as an 
option, add $20. 

Metacompiler for 630316803 
Runs on a host PC, produces 
a PROM for a target board. 
Includes source for 6303 FIG- 
FORTH with multi-tasker. 
Application code can be 
Metacornpiled with Forth to 
produce a target application 
PROM. $280 

Metacompiler for 68HCl l  
As above, except power fail 
handling is omitted $268 

ALL CMOS Processor Board 
Utilizes the 6303. Size: 3.93 
by 6.75 inches. Uses 11-25 
volts at 12ma plus current for 
options. $1 75-225 

Up to 24 kb memory: 8k RAM, 
8k PROM, additional 8k RAM 
or PROM as desired. Backup 
of RAM via off board battery. 

Serial port and up to 40 pins 
of parallel 110. Processor buss 
available at optional header to 
allow expanded capability via 
your interface board. 

Micro Computer 
Applications Ltd 

8 Newfield Lane 
Newtown, CT 06470 

203-426-61 64 

Foreign orders add 55 shipp~ng and handling 
Connecticut residents add sales tax. 

Forth Dimensions 



1988 Forth National Convention 1 
REAL-TIME 

PROGRAMMING 

A n a h e i m ,  California- The ~o r th  In- 
terest Group held its annual convention 
here in the Grand Hotel on November 
18-19, the first time the event has taken 
place outside Northern California. Chair- 
man Martin Tracy convened an outstand- 
ing program based on the theme, "Real- 
Time Programming." The caliber of the 
presentations made one wish the proceed- 
ings were to be published; however, all of 
the speakers are contributors to the Forth 
community, and many are published in the 
related literature. Limited space prevents 
our reporting thecontents of most speeches 
here; highlights follow, and we hope to 
present many of the speakers' ideas as 
future articles. 

Attendance at this year's convention 
exceeded that of preceding years, and the 
exhibit room was notably busy during all 
breaks in the conference room. Crowds 
were especially thick at the New Micros 
b t l ~ ,  which sold out of their hardware 
offering early; at the GEnie booth, which 
was promoting the on-line Forth 
RoundTable; and at the Forth Interest 
Group booth, which featured a selection of 
technical literaturenot seen before by many 
attendees. Other vendors of Forth hardware 
and software systems also enjoyed brisk 
activity throughout the event 

Ray Duncan, proprietor of Laboratory 
Microsystems, Inc., set a thoughtful and 
inspiring tone for the convention with his 
keynote speech. He pointed out that this 
year's venue proved that the Forth Interest 
Group recognizes Forth users outside the 
San Francisco Bay area, and that the theme 
shifted our focus back to Forth's true fad: 
real-time programming. 

Forth, Ray reminded us, was invented 

by a real-time programmer, not by an aca- 
demic, publish-or-perish writer. When it 
splintered into various dialects early on, it 
became difficult to teach, to write text- 
books about, and to use the public-domain 
code that was published in Dr. Dobb's 
Journal and other places. But there has 
been a recent shift in public attitudes about 
Forth: now that its proponents aren't claim- 
ing every popular programming concept as 
"perfect for Forth," developers are begin- 
ning to admit its genuine strengths. Ray 
believes that Forth and real-time applica- 
tions really are well suited to one another. 
Forth is a powerful probe for new and 
unstable or untested environments. For 
example, it gave him a 6-8 month lead time 
over other authors when he was writing his 
book about OS/2 for Microsoft Press. 

J.D. Hildebrand, editor of the new Em- 
bedded Systems Programming, delighted 
the audience with his "Ten Myths of Real- 
Time Programming": 
1. It's a small, specialized niche. 
2. "Real time" means as fast as possible. 
3. RISC is a panacea (think about inter- 

rupts). 
4. Software design is subordinate to hard- 

ware design. 
5. The system-development life cycle is: 

analysis, design, coding, debug, inte- 
gration, self-congratulation. (Existing 
tools facilitate this flow, not the real- 
world process.) 

6. A&. 
7. Real-time programmers use (only) as- 

sembly language. 
8. Programming is programming, there are 

no special issues (the Computer Science 
attitude). 

9. We have al l  the tools we need. 

10. Real-time programmers must be self- 
taught (reinventing circular queues 
and concurrency every month). 
Air Force Major Steven LeClaire was 

called the rennaissance man of expert sys- 
tems by Business Week. His presentation 
showed how current efforts in that field 
could lead to a kind of cognitive compan- 
ion for managers and researchers. Such a 
system would offer supplemental analy- 
ses and perspectives of a particular data 
set or environment. This will be particu- 
larly valuable in complex fields, like 
making esoteric medical diagnoses and in 
areas like manufacturing where scientific 
rules for decision making have not yet 
been formulated. His first system was 
based on Jack Park's Expert., a Forth 
product. 

The convention event which evoked 
the most spontaneous enthusiasm was the 
contest for "the world's fastest program- 
mer." The object of this contest was to be 
the first to program a "mystery gizmo" 
using the serial port of a host computer. 
Some representatives of languages other 
than Forth were to join the fray, but did 
not appear as planned. A smorgasbord of 
systems were used by the participants, 
some of which were: 
Commodore 64FORTH 
Zenith F83 
Macintosh I1 MacForth+ 
Sharp F83 
Compaq PCPorth 
Otrona 280 Forth 
Samsung polyFORTH 
Grid/New Micros MaxForth 
Arniga Forth 

Contest designer Martin Tracy un- 

I 
L 

Forth Dimensions 26 Volume X. Number 5 



veiled a working version of the gizmo in 
front of an enthusiastic crowd of spectators 
and fourteen programmers who vied for the 
$1000 prize. The device consisted of a row 
of LEDs attached to one end of a hacksaw 
blade. The blade was mounted vertically to 
a base unit. A solenoid at the base caused 
the blade to sweep back and forth in a 

continuous arc, while the LEDs at the top 
end (capitalizing on the retinal retention of 
the human eye) displayed a scrolling mes- 
sage in the air: 'The rain in Spain falls 
mainly on the plain." 

A gizmo was passed to each contestant. 
Martin called out, "Start your gizmos!" and 
the hacking began. A few contestants had 

frankly puzzled expressions, but most 
dived in with-apparently-some idea of 
where they thought they should begin. 
About half started working on the oscilla- 
tion (figuring that coming up with a few 
characters wouldn't be so tough). while the 
others started sketching character sets on 
paper (what could be so hard about driving 

1 CHARLES MOORE'S FIRESIDE CHAT 
REPORTED BY DENNIS RUFFER 

This report cannot be considered a 
transcript of Chuck's talk, since I am 
merely attempting to reconstruct it from 
notes I took during his talk. I do hope, 
however, that this conveys the intent of 
his words and that, by reading this report, 
the rest of you can get a feeling for the 
current state of our industry. 

It is not quite clear why this is called 
the fireside chat, since they have never 
had a fire. Chuck wore his Australian hat, 
since he did not want to look too much like 
Einstein as portrayed in the advertise- 
ments for this convention. He got it at last 
year's Australian Forth Symposium. In 
his travels, he finds it very interesting that 
there is a community of interest in Forth 
around the world. 

On November 19,1968 the first Forth 
computer said OK. It was an IBM 1130 
computer located in a warehouse in Am- 
sterdam, NY. It was intended to be a 
pattern designer for carpets, but since its 
black and white display was totally h a p  
propriate for the job, it was abandoned 
within a year. It is remarkable how similar 
that early Forth was to the Forth we have 
today. 

Chuck really enjoyed the "Real-Time 
Programmers Contest" we had this year. 
As he walked around the room, he noticed 
how everyone was using very interactive, 
modular designs. He wondered if the ones 
who used multiple windowedForth found 
that those tools got in the way, or if the 
ones who did not have those tools missed 
them. He suggests that scrolling the para- 
meters for this project would work very 
nicely with his three-key keyboard. He 
was asked if he would use the display 
techniques from the contest in his next 
computer but, laughing, he said, "No, it 
has a moving part and no color." Al- 
though he did not enter this year's contest, 

1 using the excuse that he had no computer 

to show off, he will try it next year. 
Although he designed the Novix with a 

16-bit "B" port intended to be a bus for 
interconnecting multiple CPUs, he has 
never seen the technique used. So far, he 
has not seen anything he could not do with 
just one Novix. It is not clear what comput- 
ers are, or what software is. All you need is 
a couple of latches and shift registers. 
Minimalist to the core. He is working on 
another chip, but he is having to learn how 
to use workstations to enter the design. 

FORTH, Inc. is a neat company, and the 
people are getting down to real programs. 
However, they keep reinventing the wheel. 
doing the same applications over again. 
CAD existed many years ago, but few 
remember how it was done. The 300-foot 
telescope that crumbled in Green Bay was 
written in Forth. 

Forth should be under 4K bytes, but he 
hasn't found a lower limit. You don't need 
a neural net or adaptive program to balance 
a broom. All you need is a clever program- 
mer, but they are in short supply. He urges 
the neural net people to show him some- 
thing significant they have accomplished. 
Just because you cannot see the inner work- 
ings of a system does not mean that it is 
chaotic, merely non-linear. 

The ANSI standard effort is using a 
ridiculous amount of energy. It behooves 
us all to see that it is a good standard. It is not 
easy to standardize the groundwork of 
Forth. He considers the "little users" the 
mainstay of Forth, and they are not well 
represented. Those who it affects (authors, 
etc.), must make sure they are not 
disappointed. "Get involved!" 

The future of Forth looks very promis- 
ing. He just got done with the science 
fiction book, The Regiment, about a war 
fought by mercenaries. They don't really 
care if they are killed, the goal is to fight 
well. We tend to get too serious. The reason 

Forth is spreading is that it is fun. He 
recently saw a book about Forth in Rus- 
si an.... Novix is still in business, but they 
are for sale and still have chips in stock. 

At this point, Chuck was done with his 
rambling notes and he opened the discus- 
sion to questions from the floor. Follow- 
ing are some of his thoughts that the 
questions brought out. 

The high costofRAMis only a tempo- 
rary problem, and soon they will again 
tend toward zero. However, people are 
not happy with the gigabyte operating 
systems, and they often forget the other 
extraneous cost of memory. Memory will 
always be the highest-cost item in a sys- 
tem. Chuck believes in distributed sys- 
tems, where each piece only takes one or 
two programmers. Every large project is 
conceived by management. His concept is 
to have all the programmers in the same 
room. You will lose some effort in social- 
izing, but you will also get the most work 
done. He believes the documentation 
should be written in parallel with the pro- 
gramming and use the same interactive 
techniques. 

What is Forth, a tool to use a machine, 
or to share algorithms? Chuck suggested 
to the ANS committee that the standard be 
a publication standard, which might give 
us a more effective way to share pro- 
grams, but people could not just type in 
the programs. He noted that all the con- 
testants were doing the same thing, each 
in his own way. He invented something 
that he could just hack at his computer. 
There is nothing that Forth cannot do, and 
it is superior in every application. 

It is impossible to define Forth, but it 
is that which we have in common. He no 
longer wants his computer to understand 
his voice, since he found that he has noth- 
ing he wants to say to it. 

I I 
Volume X, Nwnber 5 27 Forth Dimemiom 



Forth Dimensions 28 Volume X, Number 5 

a solenoid?). But the gizmo was not to be 
easily conquered, thanks to a couple of 
twists in the design; about an hour into the 
contest, everyone had puzzled expressions 
except the spectators, who were laughing 
and rushing from station to station looking 
for a leader. 

It turned out that the rate of oscillation 
had an important effect; it wasn't all that 
easy to determine, and the hacksaw blade 
tended to be spastic, uncooperative. As for 
the character set, well, you couldn't just 
pull it out of ROM; it seemed there should 
be just one more LED to work wi th... Fi- 
nally, one hour and 22 minutes after the 
contest began, the team of Phil Burk and 
Mike Haas got the oscillation going. The 
rapid tick-tick-tick of their device drew the 
spectators rapidly, who clustered around to 
chant out the words as they appeared, "The 
rain in Spain falls mainly on the plain." As 
they anarchically acknowledged the win- 
ner, Martin announced, "By Jove, I think 
they've got it!" The winners were from 
Delta Research in San Rafael, California, 
and used their company's JForth for the 
Arniga. They were presented with a check 
from the Forth Interest Group for $1000, 
made possible by contributions from sev- 
eral Forth vendors and convention spon- 
SOTS. 

Parallel sessions were held on Friday by 
Harris Semiconductor in the form of tutori- 
als featuring the Harris RTX 2000, billed as 
the Real-Time Express Microcontroller. 
More than 120 attended the morning semi- 
nar, while 35 more enjoyed the afternoon 
session. The presentations consisted of 
multi-segment slide shows, questions and 
answers, and technical and marketing lec- 
tures by nearly a dozen Harris staff mem- 
bers. 

Harris contrasts their RTX 2000- 
which builds on earlier Forth hardware- 
against microcontrollers, which don't meet 
the performance demands of some applica- 
tions; CISC and RISC machines, with 
which one loses integration; and semi-cus- 
tom controllers, which are usually expen- 
sive and complex. The RTX builds hard- 
ware solutions based on standard, off-the- 
shelf "cells." It executes Forth directly, al- 
though Prolog and C compilers are ex- 
pected in 1989. (Contact Harris Semicon- 
ductor for technical details, which looked 
impressive. A 32-bit version is due in 
"about a year.") 

The traditional concluding event at the 

annual ~or th  National Convention is a 
banquet on Saturday evening. Forth Inter- 
est Gmup President Robert Reiling (co- 
founder west coast Cmputer Faire, 
Homebrew Computer Club) was the Mas- 
ter of Ceremonies. He announced that his 
term as a FIG officer is drawing to a close, 
and noted that the organization's growth 
was most recently marked by reported ef- 
forts on the part of several Forth groups in 
Bulgaria to form a FIG Chapter. Then FIG 
Vice-President John D. Hall announced 
that this year's award for outstanding sew- 
ice to the community goes to Dennis 
Ruffer. Dennis is a first-term Board mem- 
ber and has spent long hours organizing the 
Forth RoundTable on the GEnie telecom- 
munications service. Fellow sysops on 
GEnie were later heard (on-line) to approve 
the choice, noting that the electronic venue 
for ~or th  has yet to be fully appreciated. 

The final agenda item of the evening 
was a memorable after-dinner talk by Jef 
Raskin, served up with a mild, chandelier- 
swaying earthquake. Jef was instrumental 
in creating the original Macintosh project at 
Apple Computer, and was a member of 
ANSI committee X3J2 to standardize 
BASIC. More recently, he invented the 
Canon Cat, a 68000-based machine that 
takes a big step toward seamless integration 
of common business functions and which 
will also execute Forth code. 

Jef said he first used Forth 17 years ago, 
and subsequently programmed several 
machines with it. He said that Forth in- 
spired some of the Macintosh's features, 
but especially the Cat. He also suggested 
that Forth's use of parentheses is exactly 
backwards: the programmer should write 
an essay that clearly describes a program's 
functions, putting the associated Forth 
code inside parentheses. 

Raskin related some of the taken-for- 
granted ironies of interface design in our 
(non-computerized) environments. His 
tale of what happened when his ondemand 
hot water heater met a flow-restricting 
shower head had the audience shouting 
with laughter. Most computer interfaces, 
he said, are designed by amateurs. That is 
why we have printers with on-line 
switches, diskettes that have to be format- 
ted by the user, and functions that can only 
be accessed via pull-down menus. And 
paperless communication has not yet ar- 
rived because telecommunication is too 
expensive and complex for most users. An 

upcoming book from about CD-ROM 
from Microsoft Press contains some of 
Jef s criticisms of Ted Nelson's hypertext 
concept. Jef suggested that anyone de- 
signing appliances for use b~ people 
should read The P V c b l o g ~  of Everyday 
Things and The P V c b l o g ~  of Hwnan- 
Computer Interaction. 

An editor's delight, Jef drove home 
the fact that word processing is a~al-time 
experience for the user, and that 
heattheke~boardhasadefmiteim~xt 
On the human user. (Listen up, develop- 
en!) In the next five years, he expects the 
sales figures of machines designed for use 
in the home office to exceed the sales of 
any Computer ever marketed. While this 
Can only be viewed as a tremendous op- 
portunity, it is partially offset by the fact 
that the technology required to manufac- 
ture many useful devices is simply not 
available in the United Stam. 



Volume Nine Index 
A comprehensive guide to all issues of Forth Dimensionr published 
during the Volume IX membership year. If a cogent letter to the editor 
referred to a previous article, the original article is cited with the letter 
even if it was published in an earlier volume. See the Forth Interest 
Group's order form (center insert) for complete sets of back issues. 
Special thanks to Mike Elola of San Jose, California for compiling this 
index. 

Algorithms 
Sorting 

Batcher 's Sort, Vol8, Issue 4, pg 39 
Letters, Vol9, Issue 2, pg 5 
Letter, Vol9, Issue 4, pg 7 

Graphic and Plots 
see Graphics 

Architectures 
Letter. Vol9. Issue 5. pg 6 
24-bit 

Letter. Vol9, Issue 1, pg 5 
32-bit 

see Memory - Extended Addressing 
Assemblers 

A 6502 Assembler, Vol9, Issue 5, pg 19 

Benchmarks. Performance 
Fibonacci 

Letter, Vol9, Issue 4, pg 5 

Compiled Code 
Decompilmg 

The Visible Forth. Vol9. Issue 3, pg 18 
Troubleshooting 

using Stack Checking 
Run-Time Stack Error Checking, Vol9, Issue 1, pg 32 

Verifying and Testing, 
using Conditional Print Statements 

Flexible Test Environment, Vol9, Issue 2, pg 9 
Compilation 

see also Compiler Directives 
Headless 

see Compilation - Metacompilation 
Metacompilation 

Headless Compiler. Vol9, Issue 1. pg 36 
Module-based 

Module Management, Vol9, Issue 5. pg 9 
Separating Heads 

Headless Compiler, Vol9. Issue 1. pg 36 
Target Compiling 

Variables for PROM-Based Programs, Vol9, Issue 4, pg 12 
Compiler Directives 

Control Flow 
Readable Forth, Vol9, Issue 4, pg 14 

Conferences and Symposiums 
Editorial, Vol9, Issue 2, pg 4 
1987 Rochester Conference [Review], Vol9, Issue 2, pg 26 

Conventions and Exhibitions 
1987 Forth Natimal Convention, Vol9, Issue 5, pg 14 

Data Declarators 
see also Data Types and Associated Operations 

In-Line Structures 
Local Variables. Vol9. Issue 4. pg 9 

Letter, Vol9, Issue 6, pg 5 
Data Sw~ctures - - 

Jump Tables 
Vectored Execution & Full-Screen Editor. Vol9, Issue 5. pg 24 

Sparse Arrays 
Lookup 

A Simple Translator: Timycase. Vol8. Issue 5. pg 23 
Letter. Vol9. Issue 1. pg 7 

Data Structures within the Forth Dictionary 
see also Data Declarators - In-Line Structures 
Acronyms for 

Letter, Vol9, Issue 6, pg 6 
Heads 

Forgettable Internal Names. Vol9. Issue 2, pg 12 
Headless Compiler, Vol9. Issue 1, pg 36 1 Data Types and Associated Operaions 

Dates 
Conversion Operations 

Perpetual Date Routine. Vol9. Issue I. pg 34 
Letter, Vol9, Issue 3, pg 6 

Integers, cell 
Comparison Operations 

The Ultimate CASE Statement. Vol8. Issue 5. pg 29 
Letter, Vol9, Issue 1, pg 6 

WITHIN 
Letter, Vol9, Issue 1, pg 5 

Trigonometric Functions 
Gridplot, Vol9. Issue 3. pg 30 

Integers, double 
Bitwise 

Bit-Based Truth Tables, Vol9, Issue 4, pg 23 
Integers, quad 

Division by double integers 
Unsigned Division Code Routines. Vol8, Issue 6. pg 18 

Letter. Vol9, Issue 2. pg 36 
Real Numbers 

Transcendental Functions 
Transcendental Functions, Vol9, Issue 4, pg 21 

Decomposition of Functions 
CREATE and FORGET 

Letter, Vol9, Issue 2, pg 5 
Disk OS Structures and Associated Operations 

Wordstar File Conversion 
Dumping Wordstar Files. Vol9, Issue 6. pg 13 

Drill-and-Practice Number Conversion, Vol9. Issue 3, pg 9 
Multiple Choice 

Matchpoint, Vol9. Issue 3, pg 12 

. - 

CASE 
The Ultimate CASE Statement, Vol8. Issue 5, pg 29 

Letter, Vol9. Issue 1. pg 6 
Computer-Aided Instruction 

Drii and Practice 

FIG 
[Directors] Candidates' Statements. Vol9. Issue 2, pg 40 

Fractals 
Fractal Landscapes, Vol9, Issue 1, pg 12 

Letter. Vol9. Issue 3, pg 5 

Education 
see also Computer-Aided Instruction 
Consumerized Forth, Vol9, Issue 2, pg 18 
Educating Forth Users. Vol9. Issue 6. pg 27 

I 
i Volume X. Nwnber 5 29 Forth Dimensions 





THE BEST OF 
GENIE 

1 have already devoted one column to 
efforts of the X31J14 Technical Commit- 
tee, their task of defining the future struc- 
ture of a ANS Standard Forth, and input to 
that effort on GEnie. The working draft of 
X31J14 is called BASISn, where n is the 
current level. I had commented briefly on 
some notable differences between 
BASIS4N and BASISSvery briefly. A 
week later, Bob Berkey literally dissected 
BASIS5 by verse and line. The following 
message from Bob Berkey, and Greg 
Bailey's rebuttal, serve to reflect the nature 
of both better than anything I might say to 
induce your participation in this endeavor. 
Please read this exchange, make notes as 
you agree or disagree, and put them on 
GEnie's Forth RoundTable in Category 10, 
for all to benefit. 

Category 10, Topic 2, Message 124 
Sun Oct 09,1988 R.BERKEY 

Notes, comments, reactions, and opin- 
ions-after 24 hours with BASIS5: 

p. 2 The Forth-77 and Forth-78 docu- 
ments are no longer "pertinent." 

p. 3 But parsing can be delimited by a 
string or a set of strings, and doesn't have to 
throw away leading delimiters. Suggest 
that the parsing concept here be called 
"word parsing." Parsing that only looks for 
a single trailing delimiter could be called 
"delimiter parsing." 

p. 4 "Address, compilation" has be- 
come "compilation token" and "execution 
token." I like the use of "compilation to- 
ken," because "compilation address" in 83 
was a misnomer. 

p. 5 Character. Character sets are now 
implementation defined, and not necessar- 
ily ASCII. Wow, this is a really biggie. It's 
not possible right now for a program to 

GARY SMlTH - LlTITLE ROCK, ARKANSAS 
m 

know what characters are in the character 
set Numbers can be detected with CON- 
VERT , but that's about it. It appears that 
output has new restrictions+anlt print 
addresses or bit masks. 

p. 42 Now that a char is implementation 
defined, ASC I I char is a misnomer. If I 
am on an EBCDIC system, will ASCII . 
give me the value of an EBCDIC "." (as 
BASIS5 now states)? From my viewpoint, 
either the implementation-defined charac- 
ter set needs to go, or ASCII and [AS- 
CII I should go. 

All Propose that whenever a phrase from 
the Definitions of Terms is used that it be 
italicized. This would help in recognizing 
the intent of the language. The typesetting 
looks great. One exception, I'd like to see 
the Forth words without justification. Also, 
I find that Forth words without a trailing 
space are hard to syntactically distinguish 
from following punctuation. In fact, it 
might be more correct and useful to have the 
"word name" definition specify that a word 
name includes a trailing space-I hope to 
develop a proposal or a paper on this. 

All The word "cell" is back! In Forth-79 
it meant a 16-bit word. It took a vacation 
during Forth-83, and is now back as 16 or 
more bits. But, has this word been dormant 
long enough for its former meaning not to 
cause confusion? I doubt it. 

p. 44 BLOCK is no longer in the required 
word set. Give me a 100 squared with a 
terminal and I will be able to have an ANS 
standard Forth! Since F ILE words are also 
not required, a Standard Program no longer 
has a mass storage capability. 

p. 16 Variables cannot be ticked (*). 
Don't know why. 

p. 19 PARSE does not appear in the 
glossary. 

p. 24 This is the page with stack pa- 
rameter abbreviations. Things are starting 
to get hany. The wrap-around number type 
(w) has been eliminated from the standard 
along with the arbitrary-bits number type 
(8b, 16b, 32b). A new number type, un- 
specified, has been added, but using the old 
label w. Oh no, don't reuse the old "w" 
with a new definition! Find another let- 
ter!!! What's wrong with "x"? 

The confusion of the Forth-83 "w" and 
the BASIS5 "w" is pointless and I trust the 
committee will change it, but the deeper 
change involved is technically a dynamite 
issue. Any of the words in Forth-83 that had 
wrap-around numbers have, from the 
programmer's viewpoint, been radically 
altered. 

Take + for example. In BASIS5 it has a 
stack of (nl n2 -- n3). n has a range of 
-32767 to 32767 or larger. In Forth-83, any 
input to + (w 1 w2 -- w3) produces a known 
output. The BASIS5 + allows the program 
to use fewer than half of these combina- 
tions--$7FE,002 compared to $1,000,000 
if you are counting. 

Oh no, I'm not believing this. LOOP is 
back to a sort of Forth-79 definition. This 
must be just a mistake. Musm't it? Maybe 
not, what with consideration for overflow 
on a one's complement machine. Yet, now 
that I look further at the semantics under 
DO, I see that w DUP DO . . . LOOP will 
execute at least 65,536 times. The two 
ideas seem contradictory, so no doubt more 
changes are coming here. 

Here's another implication with the lost 
"w": Forth can no longer detect acany. The 
idea is to use D+ instead of + to add two 
numbers, and if the top of the stack is non- 
zero, a carry has occurred. 

p. 24 Addr is now a data type rather than 

Volume X,  Nwnber 5 31 Forth Dimensions 



a number type. This has yet-to-be-discov- 
ered implications. Char, bit-mask, and r 
(real) are also new data types. Specification 
is needed to know what input, arithmetic, 
logical, and output operators, etc., can be 
used with what data types. 

p. 28 ' ("quote"). New word compiles a 
string. It leaves addr and count. Good. 
CONVERT (with a new name) should also 
have addr and count. One proposal is to use 
a new name: 
NUMBER? (adr Count -- flag) 

p.3 ( ... ),ABORTw ... ", . ( ... ),and 
. " ... ' will produce unexpected behavior. 
Only ' (quote) has survived the capacity to 
handle a null string. I think this is a bad 
change. ABORT " ... ' I use regularly, and 
the other three cases make Forth look 
flakey and/or unreliable. 

p. 56 FIND. This word still refers to 
compilation address, which phrase is no 
longer in the definition of terms. Should 
have been changed along with ', [ ' I ,  
EXECUTE, and >BODY to execution to- 
ken(?). 

p. 42 Code and data are separated in the 
1983 standard. , ("comma"), ALLOT, and 
HERE are properties of the program, that 
the system can borrow during compilation 
if desired. COMPILE can ignore HERE. 

D2 * and 2 * are an interesting pair: D2 * 
is a logical shift, and 2 * is an arithmetic 
shift. Does this mean something? And, if 
you said to yourself "d-2-times" and "d- 

times" as you read that last sentence, they 
are now "d-2-star" and "d-star." First they 
told me it's "star," then they said in Forth- 
79 that it's "times." So for eight years I've 
tried to use "times" and now I am supposed 
to go back to "star." I assume FORTH, Inc. 
is involved in this, because they let Brodie 
publish those cutesy and memorable pic- 
tures in his book with the non-standard 
names. Hrnmm, come to think of it, one of 
his more memorable pictures was "slash," 
and now I see that "divide" has not been 
changed, just "times." So this is yet a third 
name for * / and */MOD (?!?). 

As I think about how I pronounce these 
words, I find there is a dichotomy between 
"star-slash" and "times-divide." 

D2 * 
2 * 
UM* 
* 

always "d-Ztimes" 
always "2-times" 
always "u-m-times" 
sometimes "star," sometimes 
"times" 
more often "star-slash" 
than "times-divide" 
more often "star-slash-mod" 
than "times-divide-mod" 
usually "d-Zslash" 
usually "u-m-slash-mod" 

Is that a pattern? I guess I learned it one 
way early on and still don't have it switched 
over. It appears to me that there are two sets 
of pronunciations in general use. Person- 

ally, I'd rather not see the standard pronun- 
ciations changed. There is an alternative, 
however, which may seem radical, but 
also fits our world--two pronunciations in 
BASIS6, Brodie and 79-Standard. But a 
third and new pronunciation? I hope that 
doesn't last. 

And another naming decision from 
Forth-79 has been overturned. The pic- 
tured numeric words are no longer "sharp" 
but "number-sign." As in c# "less-num- 
ber-sign." 

p. 69 New word: UNDO 
p. 3 2 6 8  Nine new words in the con- 

trolled reference section. New words: <= 
<> >= o<= O<> 0>= u<= u>= u> 

p. 34 New words: 2 > ~  2R> The last 
two concern me because they are not the 
same as R> R> and >R >R. The above 
potential bug needs to be covered in the 
rationale. 

p. 62 NEGATE is the radix- 
complement. NOT is the radix-minus- 
one's complement. Some of us don't know 
what these mean, these concepts need tobe 
in the definition of terms. 

p. 66 SP@ deleted from the controlled 
word set What was wrong with leaving 
this word controlled? 

I sense that another organization, like 
the contributors to this board, could take 
up the cause of collecting commonly used 
names, to avoid needless duplication of 
names and the miscommunication that 

I 
Forth Dimensions 32 Volume X,  Nwnber 5 



results from one name coming to have two 
slightly different meanings. A good ex- 
ample of this is the long fetch with segment 
word used on the 80x86. Propose that SP @ 
be the first word in a new Topic here. 

I've been trying to figure out how to nin 
a Forth-83 program using a BASISS sys- 
tem. In a worst case, one could implement 
the arithmeticflogical functions using 16 
bytes to represent register bits. But proba- 
bly it could be done with byte slices. 

Implementation-requirement-removal 
proposals: 

1. Leave the function of BLK = 0 as 
implementation dependent. The older rule 
makes using block and buffer on a file 
system most inconvenient. 

2. Remove the implementation require- 
ment that : (colon) sets the compilation 
vocabulary. I believe this behavior is only 
for programmers with a line editor who 
would forget to manually switch out of the 
editor with its I word. 

One pattern is clear from BASISS, the 
committee is working to remove implem- 
entation requirements and specifications. 
While reducing the functional capacity of a 
Standard Program, the number of Forth 
imvlementations that could meet the stan- 

time. 
Issues of notation choice or implication 

that may have been overlooked could be 
simply pointed out, as you have already 
done, or specific solutions could be formu- 
lated (as you have also done). As a general 
comment, your posting is already very 
useful but if you have specific solutions that 
might be debatable, I would suggest formu- 
lating each as a proposal. 

In both of these areas, it might be useful 
for you or anyone else who wishes to take 
the trouble to think about the editorial as- 
pects of the document to coordinate with 
Ted Dickens who may be reached at 213- 
477-7287. He chairs the documentation 
committee and would likely be willing to 
compare notes on things his group may 
already be planning to propose. 

As a matter of perspective on BASISS: 
Extensive editorial changes were neces- 

sary to beat our working document into the 
shape required by ANSI style. Rather than 
wrangle out endless detailed proposals, the 
documentation committee offered to pro- 
duce a massively edited document that 

would presumably take less effort to com- 
plete than would the original. We accepted 
this offer, and BASIS4N--the immediate 
predecessor to BASISS-+esulted. It was 
adopted "warts and alln with the under- 
standing that it had problems. You have 
been noticing some of the warts. The riski- 
est part of Ted's work was that it wasn't 
supposed to have technical impact. How- 
ever, some of the changes undoubtedly had 
such impact. For example, I had proposed 
that we delete the requirement for null 
strings, but the support for this proposal did 
not represent a strong consensus, so the 
proposal has been committed. Thus, Ted's 
committee was not given authorization to 
delete this requirement and it should still be 
there. Likewise, the technical implications 
of the stack notation changes have not been 
subjected to deliberation by the committee 
as a whole except in a few cases when we 

I have been working on specific words. No 
doubt there are unintended effects. Since 
there are known or suspected warts, proof- 
reading for them is very useful. Please 
continue to do so. 

I'd like to chat about a couple of se- 

d&d has been increased. At the same time 
that running a Forth-83 Standard Program I I Statement of Ownershi , 
on a generic BASISS-~orth Standard SYS- Management and Circu P ation 
tem & become functionally impractical, 
the committee is allowing that Forth-83 
Standard Systems are maximally sup- 
ported. 

Category 10, Topic 2, Message 125 
Sun Oct 09,1988 G.B AILEYl 

Howdy, Bob! Let me be the first to 
thank you very much for your brief (har) 
remarks on your first reading of B ASISS. If 
your second is as fruitful, we need to get 
your input into usable form. The next 
meeting is too soon to get proposals in that 
would meet the two-week rule, but if you 
have some time between now and then I 
would request that you get the less argu- . - 

mentativ; of them on paper and into 
Martin's hands anyway. We have not been 
tweweeking things introduced at the 
meetings unless really called for. 

Proposals that clearly correct ambigui- 
ties or awkwardness of language without 
having any technical implications have 
been called "postn and are generally passed 
to the documentation committee without 
debate. Any such would be welcomeat any 

1) Title of Publication: Forth Dimensions 
Publication Number: USPS. 002191 

2) Date of Filing: 9/19/B8 
3) Frcquenq of Issue: Bi-Monthly 

No. of irmes published annually 6 
Annual subscription pria: $24136 

4) Location of known offia oi~ublication: 1330 S Basmm Ave.. Suite D. San Jose. Santa Clara County. California 951284502 
5 j  Location of the headquarlek or general business ottias of the publisher: Same as above 
6) Publisher: Forth lntercrt Gmup, P.O. Box 8p1, San Jose, California, 95155 

Editor: Marlin Owcrsun. Same as above 
Business Manager: Georgians F. Shepherd, Same as above 

7) h e r :  Forth lntemt Gmuo. Same as abovc 
8j Known bondholders, mort&geer, and other security holders owning or holding 

1% or more total amount of bonds, mortages and other securities: none 
9) Thepurposc,function and non-pmfit status ofthisorganization and the exempt status for FedenlInmmeTaxpurposes have 

not changed during the preceding 12 months. 
10) Extent and nature of circulation Average No. mpies/issue ActualNo.Copies 

during preceding 12 mos. of  single issue 
neamt to filing 
date 

A. Total no. copies printed: 3583 3200 
B. Paid/req&ested circulation: 

1. Sakr: 0 0 
2 Mail subscription: 2471 2132 

C. Total paid/rcquested &adation: 2471 2132 
D. F m  distribution by mail carrier 

or other means: samples, mmplimentay 
and other Im copier: 93 50 

E Total distribution: 2530 2182 
F. Copies not distributed: 

1. Off ia  use, left over, unaccounted, 
spoiled aner printing: 1053 1018 

2 Return form nears agents: 0 0 
G. TOTAL: 3583 3200 

11) I art@ that the slatements made by me above arc m r m  and mmplete 
Is/ Georgians F. Shepherd 

Volume X. Nwnber 5 33 Forth Dimensions 



t h e  A s s o c i a t i o n  f o r  C o m p u t i n g  M a c h i n e r y ' s  S p e c i a l  I n t e r e s t  G r o u p  o n  F o r t  

Be Part of the Future of Forth... 
SIGForth is the ACM special interest group whose members are the 

programmers, managers, scientists, engineers, and educators that are 
interested in applying Forth to solve hypothetical and real-world problems. 

Become a SIGForth member. Get the SIGForth quarterly newsletter 
and receive a 25% discount on publications and conference registration 
with your membership. Stay up to date on the latest developments in Forth 
hardware and software. Your dues also help sponsor several projects 
including: promoting Forth education in our universities and colleges, an 
annual Forth industry survey, an ANS Forth X3J14 representative and 
"Forthics," the creation of Forth programming "ethics" and metrics to foster 
more successful Forth projects. You'll read about the results first only in the 
SIGForth newsletter. 

Join SlGForth Now! 
Send your name, mailing address and ACM number (if applicable) with 

payment by check (payable to ACM), money order or credit card to the 
address below. SIGForth membership fees are: Non-ACM members $42. 
ACM Student members $11. ACM members $20. Library subscriptions 
$33. Foreign air shipment add: $6 (partial), $8 (full). 

For additional information contact: 
ACM, 11 West 42nd St, New York, NY 10036 (212) 869-7440 

I 

Forth Dimensions 34 Volume X, Nwnber 5 



lected points you raised, just for fun. Wil 
Baden had proposed the words CHAR and 
[CHAR] which were amended to be AS- 

C I I  and [ASCII] (TP88-114) before 
adoption. He had been specifically inter- 
ested in pursuing the decoupling from the 
ASCII character set. The committee was 
not quite ready to fully support this decou- 
pling at that time. We have-through the 
definitions of address units and the words 
CELL+, CELLS, BYTE+, and BYTES- 
admitted to the possibility of storage allo- 
cation exceeding eight bits. However, 
"byte" as data is still defined as an assem- 
bly of eight bits, "character" is still "a 
single-byte value," and the definition of 
"character" still references 2.1 (Referenced 
Standards) which consists of ASCI I. I do 
not recall voting on the words "implemen- 
tation defined" there, and in fact this seems 
to have been an editorial (!) change. Sug- 
gest that you submit a proposal that forces 
this issue; we need one. 

I hope it isn't too soon to use the term 
"cell" again. For gosh sake, it's been more 
than half a decade and will be nearly a full 
one before this thing has apretty binding to 
wear. I'd like to be able to use the term 
again within my own lifetime ... 

Wrap aroundnumbers arean interesting 
concept on a one's complement computer. 
Put simply, they don't work that way. 
However, this doesn't mean that your code 
is broken. Your code has always had a 
dependency on two's-complement hard- 
ware ifyou use such numbers; hence, it has 
always been broken relative to running on 
a one's-complement machine. It will still 
run just fine on the type of hardware that the 
technique depends on. What is missing 
here is some good prose to express what we 
are trying to say. There is absolutely noth- 
ing wrong with writing code that inherently 
depends on a particular ALU type or even 
cell width (like O <  to test high bit of a 
Boolean mask). This merely means that the 
application uses techniques that are hard- 
ware dependent, and the last thing Forth 
should do is forbid people to exploit the 
hardware they have to work with. How- 
ever, as soon as one starts doing so, he is 
writing code that is hardware dependent 
and should happily admit it. All we are 
trying to do here is to clarify what you can 
do that is not hardware dependent and call 
a spade a spade. Since there are many such 
dependencies in conventional usage of the 
same set of operators for dealing with the 
various data types (pairs versus doubles; 

numbers versus flags versus Boolean 
masks), there is clearly much work left tobe 
done. 

The key thing about the "contractions" 
2 * and 2 / is that we inherited them from 
Forth-83 defmedas shifts, so they are not in 
fact contractions at all, at least at present. 
The definition of 2 * as an "arithmetic" left 
shift has always given me a chuckle, since 
if one is going to insist on two's-comple- 
ment hardware there is, of course, no need 
to make the distinction. On the other hand, 
one who uses this definition for 2 * on a 
one's-complement machine to manipulate 
bits will be surprised to fmd that the arith- 
metic left shift is and must be circular. 
Unless the committee is willing to change 
this, we will need to add controlled refer- 
ence words that guarantee specific bit-ori- 
ented shifting operations. 

How to pronounce our favorite words is 
almost as good as counting angels for con- 
suming debate time. I am hoping that the 
committee can avoid getting bogged down 
in this relatively irrelevant nonsense until 
the important part of the document makes 
sense. 

SP@ was deleted because its existence 
directly conflicts with existing Forth hard- 
ware, such as the Novix and Harris chips. 
To the extent that programmer portability is 
important, dependency on stack addressing 
techniques forms habits that simply don't 
work and cannot be reasonably imple- 
mented on such hardware. Even though a 
word is merely "controlled," it is quite often 
the case that implementors are effectively 
forced to support everything in the book. If 
it can be shown that a word cannot be rea- 
sonably implemented on hardware de- 
signed to run Forth, then that word is an 
excellent candidate for the silent treatment. 

Finally, in reference to your remark 
about trying to figure out how to run a 
Forth-83 program on a BASIS5 system: I 
don't know about you, but most of my 
systems are nearly BASIS5, so they would 
probably run reasonably well. If you have 
arithmetic that depends on a 16-bit ALU, 
you will have a problem. In my own expe- 
rience, conversion to a 32-bit or larger 
machine has not led to much of this. How- 
ever, I will admit that you may have some 
difficulty transporting some code that de- 
pends on 16-bit two's-complement byte 
addressing to many of the world's 
architectures however you do it. One way to 
deal with the problem is to assert that you 
don't plan on using such equipment-then 

you don't have a problem any more. If, 
instead, you plan on such broad portability, 
then you (like all the rest of us) will proba- 
bly need to clean up your act a little bit. We 
all play fast and loose with data types! 

Thanks againqreg B. 

Gary Smith and Johnnie, his wife of 
twenty-one years, reside in Little Rock, 
Arkansas, where Gary is employed as a 
Senior Customer Engineer for Data- 
Card Corporation. He began his in- 
volvement in Forth as owner of Hawg 
Wild Software, a vendor dedicatedpri- 
marily to providing Forth kernels for 
the Timex-Sinclair home computers. He 
is founder and continuing coordinator 
of the Central Arkansas chapter @FIG 
(CAFIG). A long-time proponent of 
telecommunications as a connecting 
link for users of Forth, Gary serves as 
co-Sysop on GEnie's Forth 
RoundTable and as fairwitness for the 
Forth Conference on Wetware Diver- 
sions, a Unix BBS. 

ACM - 34 
Bryte - 18 
Concept 4 - 11 
Forth Interest Group - 33.40 
Harvard Softworks - 6 
KBSI - 12 
Laboratory Microsystems - 37 
MCA - 25 
Miller Microcomputer Services 
Next Generation Systems - 17 
SDS Electronic - 11 
Silicon Composers - 2 

I 

Volwne X, Nwnber 5 35 Forth Dimemiom 



NEW CHAPTER COORDINATOR 1 
THE VALUE OF 

FIG CHAPTERS 
JACK WOEHR - 'JAX' ON GEnie 

3) That the tenous connection between 
the local chapter and the central organiza- 
tion can be vastly enhanced through a dili- 
gent and creative use of telecommunica- 
tions, through local chapter BBSes, 
through FIG'S international RoundTable 
on GEnie, and through other media such as 
USENET. 

With the latter goal in mind, I have 
been attempting to encourage local chap- 
ters to appoint a "designated telecommer" 
to remain in frequent email contact with 
the Chapter Coordinator. I hope that by the 
middle of 1989 every Forth Interest Group 
local chapter will have provided the Chap- 
ter Coordinator with a path of electronic 
communication that will allow me to pre- 
pare mass emailings that will reach every 
local chapter in the world within hours. 

Currently, I have received little re- 
sponse on GEnie from local chapters, but 
on USENET, the international network of 
computers mostly running the Unix oper- 
ating system, I have received answers 
from around the United States and from 
Western Ewpe. 

If you would like to represent your 
chapter electronically, please contact me 
at one of the following telecom venues: 
jax@ well.UUCP 
well! jax@lll-winken.arpa 
JAX on GEnie 
SYSOP of Realtime Control & Forth 

Board, 303-278-0364 

T e  Forth Interest Group is a fraternal 
organization of arare sort, the type wherein 
amateurs and dilletantes concourse freely 
with the very best in the field of their mutual 
interest. That this is so is in part due to the 
nature of our discipline; Forth from thestart 
was meant to be the medium of the talented 
individual bridling under the restrictions of 
more formal language specifications. It is 
further due to the fortuitous circumstances 
that have rewarded the hard labours of the 
pioneers of Forth with a body of dedicated 
students of the An of Keeping It Simple. 

It is my opinion that the continued asso- 
ciation of Forth programmers and devotees 
is essential to the continued economic via- 
bility of Forth and to the continued mar- 
ketability of the skills we have honed and 
the tools we have shaped together. 

I know from personal experience just 
how powerful that mutual association of 
like-minded individuals can be, having 
worked for two of the last three years in 
full-time ~or th  programming positions 
obtained by tapping the human resources of 
the Forth Interest Group, first meeting a 
future employer at a Silicon Valley FIG 
meeting, later answering an ad on the 
GEnie Forth Interest Group RoundTable 
and securing the position offered there. 

When I deal with clients who are con- 
sidering using Forth in embedded systems 
projects, or considering teaching them- 
selves to program in Forth for the benefit of 
their budget or of their peace of mind, the 
oft-expressed concern is "Will this be 
maintainable?" I assure them that whereas 
Acadaemia for the most part continues to 
ignore the existence of Forth except as a 
"study under glass," the Forth Interest 
Group is alive and well; and that on any 
given weekend, in any number of cities, 

I look forward to sharing your insights 
and suggestions on keeping Forth in the 
vanguard of computer science in the 
1990's, and for keeping the Forth Interest 
Group International abreast of the needs of 
our small but dynamic community. 

friendly local chapters are educating the 
next generation of Forth programmers who 
will maintain and enhance the work of 
today. 

Unfortunately, at times I suspect myself 
of prevarication; it is not difficult to be- 
come concerned over the vitality of the 
Forth Interest Group local chapter organi- 
zation, both from observation and from 
induction based on experience with non- 
profit organizations that have attempted to 
be all things to a diverse group of highly 
individualistic persons sharing an esoteric 
common interest. 

Three points occupy my attention as I 
accept the kind offer of the FIG Board to 
allow me to serve my professional organi- 
zation in the capacity of Chapter Coordina- 
tor: 

I enCOUrage chapters 
to appoint a 'desig- 
nated telecommer. ' 

1) That FIG is little more than the local 
chapters plus one thin bi-monthly maga- 
zine, and that if the local chapters should 
fade, and the Forth community cease to 
support and contribute articles to Forth 
Dimensions, there shall be no FIG; 

2) That the future of Forth is in carrying 
it to the youth of today, who are vastly more 
computer conscious than most profession- 
als suspect, who are as enthused with Digi- 
tal Conciousness as my generation was 
with Inner Conciousness, and who are 
hungry for the sort of one-on-one contact, 
instruction, and encouragement that FIG 
has traditionally provided the newcomer, 

Forth Dimensions 36 Volume X, Nwnber 5 



I (Continuedfrom page 13.) I 
found. In that case, you should rename the 
word to be consistent with che flag--for 
example, you could call it CHECKBAD?. 

The final requirement is a word that will 
accept a number and append a mod-11 
check digit to it. The program using the 
word will make sure that thenumber passed 
to it does not exceed eight digits, so the 
word includes no check for that. 

I decided to discard numbers that pro- 
duce a check digit of 10, but I wanted the 
stack result to be the same whether or not 
I got a good code number. The word 
MAKEDIGIT leaves a flag on top of the 
stack that tells whether or not the code 
number is usable, and a double beneath the 
flag. If the flag is "false" (code number no 
good), the double stillon thestack(l0 times 
the base number) is subsequently dis- 
carded. The verbose definition is shown in 
Figure Two-a; sans commentary. it looks 
like Figure Two-b. The words FALSE and 
TRUE are simple constants for 0 and -1, 
respectively. They are defined to increase 
the readability of the source code. 

From the keyboard, you can make a 
check-digited code number from 10000 in 
this way: 
10000. MAKEDIGIT 

The decimal point tells Forth that the 10000 
is double precision. An equivalent expres- 
sion is: 
10000 US>D MAKEDIGIT 

When executed, the phrase leaves on top of 
the stack a "truen flag and, under it, the 
double-precision number 100005. 

The phrase 100005 US>D 
CHECKOK? leaves a "true" flag on the 

' stack. In an actual program, you would, of 
1 course, keep a copy of the code number to 

use after it was checked: 
100005 DUP US>D CHECKOK? 

The routines are short and simple, and 
the protection is significant, so consider 
using a mod-1 1 check digit in any situation 
in which you have to assign code numbers. 

Michael Ham currently is Director of 
Systems and Programming at CTBI 
McGraw-Hill in Monterey, Caljfornia. 
Prior to that, he developed microcom- 
puter application software in Forth 
and wrote Forth-related articles. 

1 with LMI FORTHTM 1 

For Programming Professionals: 
an expanding family of 
compatible, high-performance, 
Forth183 Standard compilers 
for microcomputers 

For Development: 
Interactive Forth-83 InterpreterlCompilers 

16-bit and 32-bit implementations 
Full screen editor and assembler 
Uses standard operating system files 
400 page manual written in plain English 
Options include software floating point, arithmetic 
coprocessor support, symbolic debugger, native code 
compilers, and graphics support 

For Applications: Forth-83 Metacompiler 
unique table-driven multi-pass Forth compiler 
Compiles compact ROMable or disk-based applications 
Excellent error handling 
Produces headerless code, compiles from intermediate 
states, and performs conditional compilation 
Cross-compiles to 8080, 2-00, 8086, 68000, 6502, 8051, 
8096, 1802, and 6303 
No license fee or royalty for compiled applications 

For Speed: CForth Application Compiler 
Translates "high-level" Forth into in-line, optimized 
machine code 
Can generate ROMable code 

Support Services for registered users: 
Technical Assistance Hotline 
Periodic newsletters and low-cost updates 
Bulletin Board System 

Call or write for detailed product information 
and prices. Consulting and Educational Services 
available by special arrangement. 

m~aboratory Microsystems Incorporated 
Post Office Box 10430, Marina del Rey, CA 90295 

credit card orders to:  (213) 306-7412 

Overseas Distributors. 
Germany: Forth-Systeme Angellka Flesch, Titlsee-Neustadt, 7651-1665 
UK: System Science Ltd.. London, 01.248 0962 
France: Mlcro-Slgma S.A.R.L., Parls, (1) 42.65.95.16 
Japan: Southern Pacific Ltd.. Yokohama. 045.314-9514 
AustraCa: Wave-onlc Associates, Wilson, W.A., (09) 451.2946 

Volume X, Number 5 37 Forth Dimemiom 



FIG 
CHAPTERS 

The FIG Chapters listed below 
are currently registered as active 
with regular meetings. If your 
chapter listing is missing or incor- 
rect, please contact Kent Safford at 
the FIG office's Chapter Desk. 
This listing will be updated in each 
issue of Forth Dimensions. If you 
would like to begin a FIG Chapter 
in your area, write for a "Chapter 
Kit and Application." Forth Inter- 
est Group, P.O. Box 8231, San 
Jose, California 95155 

U.S.A. 
ALABAMA 
Huntsville Chapter 
Tom Konantz 
(205) 88 1 -6483 

ALASKA 
Kodiak Area Chapter 
Horace Simmons 
(907) 486-5049 

ARIZONA 
Phoenix Chapter 
4th Thurs.. 7:30 p.m. 
AZ State University 
Memorial Union, 2nd floor 
Dennis L. Wilson 
(602) 956-7578 

ARKANSAS 
Central Arkansas Chapter 
Little Rock 
2nd Sat.. 2 p.m. & 
4th Wed., 7 p.m. 
Jungkind Photo. 12th Kc Main 
Gary Smith (501) 227-7817 

CALIFORNIA 
Los Angeles Chapter 
4th Sat-. 10 a.m. 
Hawthorne Public Library 
12700 S. Grevillea Ave. 
Phillip Wasson 
(213) 649-1428 

North Bay Chapter 
2nd Sat.. 10 am. Forth, AI 
12 Noon Tutorial, 1 p.m. Forth 
South Berkeley Public Library 
George Shaw (415) 276-5953 

Orange County Chapter 
4th Wed., 7 p.m. 
Fullerton Savings 
Huntington Beach 
Noshir Jesung (7 14) 842-3032 

Sacramento Chapter 
4th Wed.. 7 p.m. 
170839th St.. Room A 
Tom Ghormley 
(916) 444-7775 

San Diego Chapter 
Thursdays, 12 Noon 
Guy Kelly (619) 454-1 307 

Silicon Valley Chapter 
4th Sat., 10 a.m. 
H-P Cupertino 
Bob Barr (408) 435-1616 

Stockton Chapter 
Doug Dillon (209) 93 1-2448 

COLORADO 
Denver Chapter 
1st Mon.. 7 p.m. 
Clifford King (303) 693-3413 

CONNECTICUT 
Central Connecticut Chapter 
Charles Krajewski 
(203) 344-9996 

FLORIDA 
Orlando Chapter 
Every other Wed.. 8 p.m. 
Herman B. Gibson 
(305) 8554790 

Southeast Florida Chapter 
Coconut Grove Area 
John Forsberg (305) 252-0108 

Tampa Bay Chapter 
1st Wed., 7:30 pm. 
Teny McNay (813) 725-1245 

GEORGIA 
Atlanta Chapter 
3rd Tues., 6:30 p.m. 
Western Sizzlen. Doraville 
Nick Hennenfent 
(404) 393-3010 

ILLINOIS 
Cache Forth Chapter 
Oak Park 
Clyde W. Phillips. Jr. 
(312) 386-3147 

Central Illinois Chapter 
C h a l w k n  
Robert Illyes (217) 359-6039 

INDIANA 
Fort Wayne Chapter 
2nd Tues., 7 p.m. 
I/P Univ. Campus. B71 Neff 
Hall 
Blair MacDermid 
(219) 749-2042 

IOWA 
Central Iowa FIG Chapter 
1st Tues.. 7:30 p.m. 
Iowa State Univ.. 214 Comp. 
Sci. 
Rodrick Eldridge 
(5 15) 294-5659 

Fairfield FIG Chapter 
4th Day, 8: 15 p.m. 
Gurdy Leete (5 15) 472-7077 

MARYLAND 
MDFIG 
Michael Nemeth 
(301) 262-8140 

MASSACHUSETTS 
Boston Chapter 
3rd Wed.. 7 p.m. 
Honeywell 
300 Concord. Billerica 
Gary Chanson (617) 527-7206 

MICHIGAN 
DetroitIAnn Arbor Area 
4th Thurs. 
Tom Chrapkiewicz 
(313) 322-7862 

MINNESOTA 
MNFIG Chapter 
Minneapolis 
Even Month, 1st Mon.. 7:30 
p.m. 
Odd Month. 1st Sat., 9:30 am 
Fred Olson (612) 588-9532 
NC Forth BBS (612) 483-671 

MISSOURI 
Kansas City Chapter 
4th Tues., 7 p.m. 
Midwest Research Institute 
MAG Conference Center 
Linus Orth (9 1 3) 236-9 1 89 

St. Louis Chapter 
1st Tues., 7 p.m. 
Thornhill Branch Library 
Robert Washarn 
91 Weis Drive 
Ellisville, MO 6301 1 

NEW JERSEY 
New Jersey Chapter 
Rutgers Univ., Piscataway 
Nicholas Lordi 
(201) 338-9363 

Forth Dimensions 38 Volume X, Nwnber 5 



NEW MEXICO 
Albuquerque Chapter 
1st Thurs.. 7:30 p.m. 
Physics & Astronomy Bldg. 
Univ. of New Mexico 
Jon Bryan (505) 298-3292 

NEW YORK 
FIG, New York 
2nd Wed.. 745 p.m. 
Manhattan 
Ron Martinez (212) 866-1 157 

Rochester Chapter 
Odd month. 4th Sat.. 1 p.m. 
Monroe Comm. College 
Bldg. 7. Rm.102 
Frank M a m e  
(716) 482-3398 

OHIO 
Cleveland Chapter 
4th Tues.. 7 p.m. 
Chagrin Falls Library 
Gary Bergstrom 
(216) 247-2492 

Dayton Chapter 
2nd Tues. & 4th Wed.. 6:30 
P-m. 
CFC. 11 W. Monument Ave. 
#612 
Gary Ganger (513) 849-1483 

OREGON 
Willamette Valley Chapter 
4th Tues.. 7 p.m. 
Linn-Benton Comm. College 
Pann McCuaig (503) 752-51 13 

PENNSYLVANIA 
Villanova Univ. FIG Chapter 
Bryan Stueben 
321-C Willowbrook Drive 
Jeffersonville. PA 19403 
(215) 265-3832 

TENNESSEE 
East Tennessee Chapter 
Oak Ridge 
2nd Tues., 730  p.m. 
Sci. Appl. Int'l. Corp.. 8th Fl 
800 Oak Ridge Turnpike 
Richard Secrist 
(615) 483-7242 

TEXAS 
Austin Chapter 
Matt Lawrence 
PO Box 180409 
Austin. TX 78718 

Dallas Chapter 
4th Thurs., 7:30 p.m. 
Texas Instruments 
13500 N. Ceneal Expwy. 
Semiconductor Cafeteria 
Conference Room A 
Clif Penn (214) 995-2361 

Houston Chapter 
3rd Mon., 7:45 p.m. 
Intro Class 6:30 p.m. 
Univ. at S t  Thomas 
Russell Harris (713) 461-1618 

VERMONT 
Vermont Chapter 
Vergermes 
3rd Mon.. 7:30 pm. 
Vergennes Union High School 
RM 210. Monkton R d  
Hal Clark (802) 453-4442 

VIRGINIA 
First Forth of Hampton 
Roads 
William Edmonds 
(804) 898-4099 

Potomac FIG 
D.C. & Northern Virginia 
1st Tues. 
Lee Recreation Center 
5722 Lee Hwy.. Arlington 
Joseph Brown 
(703) 47 14409 
E. Coast Forth Board 
(703) 442-8695 

Richmond Forth Group 
2nd Wed., 7 p.m. 
154 Business School 
Univ. of Richmond 
Donald A. Full 
(804) 739-3623 

WISCONSIN 
Lake Superior Chapter 
2nd Fri.. 230 p.m. 
1219 N. 21st St. Superior 
Allen Anway (715) 394-4061 

INTERNATIONAL 
AUSTRALIA 
Melbourne Chapter 
1st Fri.. 8 p.m. 
Lance Collins 
65 Martin Road 
Glen Iris. Victoria 3146 
03/29-2600 
BBS: 61 3 299 1787 

Sydney Chapter 
2nd Fri, 7 p.m. 
John Goodsell Bldg.. RM 
LG19 
Univ. of New South Wales 
Peter Tregeagle 
10 Binda Rd.. Yowie Bay 
2228 
02624-7490 

BELGIUM 
Belgium Chapter 
4th Wed., 8 p.m. 
Luk Van Loock 
Lariksdreff 20 
2120 Schoten 
031658-6343 

Southern Belgium Chapter 
Jean-Marc Bertinchamps 
Rue N. Mormom, 2 
B-6290 Nalinnes 
0711213858 

CANADA 
BC FIG 
1st Thurs.. 7 3 0  p.m. 
BCIT, 3700 Willingdon Ave. 
BBY. Rm. 1A-324 
Jack W. Brown (604) 596- 
9764 
BBS (604) 434-5886 

Northern Alberta Chapter 
4th Sat, loam.-noon 
N. Alta ht of Tech. 
Tony Van Muyden 
(403) 486-6666 (days) 
(403) 962-2203 (eves.) 

Southern Ontario Chapter 
Quarterly. 1st Sat.. Mar.. Jun.. 
Sep., Dec., 2 p.m. 
Genl. Sci. Bldg., RM 212 
McMaster University 
Dr. N. Solntseff 
(416) 525-9140 ~ 3 4 4 3  

Toronto Chapter 
John Clark Smith 
PO Box 230, Station H 
Toronto. ON M4C 5J2 

ENGLAND 
Forth Interest Group-UK 
London 
1st Thurs.. 7 p.m. 
Polytechnic of South Bank 
RM 408 
Borough Rd 
D.J. Neale 
58 Woodland Way 
Morden, Surry SM4 4DS 

FINLAND 
FinFIG 
Janne Kotiranta 
Arkkitehdiatu 38 c 39 
33720 Tampere 
+358-31-184246 

HOLLAND 
Holland Chapter 
Vic Van de Zande 
Finmark 7 
3831 JE L e d  

ITALY 
FIG Italla 
Marco Tausel 
Via Gerolamo Forni 48 
20161 Milano 
021435249 

JAPAN 
Japan Chapter 
Toshi Inoue 
Dept. of Mineral Dev. Eng. 
University of Tokyo 
7-3-1 Hongo. Bunkyo 113 
812-2111 ~ 7 0 7 3  

NORWAY 
Bergen Chapter 
Kjell Birger Faeraas. 
47-5 18-7784 

REPUBLIC OF CHINA 
R.O.C. Chapter 
Chin-Fu Liu 
5F, #lo, Alley 5, Lane 107 
Fu-Hsin S. Rd. Sec. 1 
Taipei. Taiwan 10639 

SWEDEN 
SweFIG 
Per Alm 
46/8-92963 I 

SWITZERLAND 
Swiss Chapter 
Max Hugelshofer 
Industrieberatung 
Ziberstrasse 6 
8 152 Opfkon 
01 810 9289 

SPECIAL GROUPS 
NC4000 Users Group 
John Carpenter 
1698 Villa S t  
Mountain View, CA 94041 
(415) 960-1256 (eves.) 

Forth Dimensions 



328 - 1988 ROCHESTER PROCEEDINGS 
Programming Environments 
The1988 Rochester Forth Conference,sponsored bythe InstituteforAp 
plied Forth Research, Inc. was held June 14-18,1988 at the University of 
Rochester in Rochester, New York. Proceedings include over 50 papers. , 

809 - MORE ON NC4000 
Volume 9 - November 1988 
This publication includes: Forthkit-3 non-optimizing compiler by Thor- 
Bjorn Bladh; Enhanced cmForth decompiler by David Doupe; NCAOOO 
LISP kernel by Ulrich Hoffmann; Instruction stack effects forNCQ016 by 
Paul Lambrix; A novel parallel computing structure using NC4000 by C. 
H. Ting and more. 

350 - F-PC USERS MANUAL 
351 - F-PC TECHNICAL REFERENCE MANUAL 
F-PC is a public domain Forth system optinized for IBM-PC/XT/AT type 
computers under MS-DOS. It was developed by Tom Zimmer with con- 
tributions from Wil Baden, Robert L. Smith, Charles Curley, Jerry 
Modrow and others. Disks are available on some Forth Bulletin Boards 
and from Offete Enterprises, Inc. 

L 

306 - ANS X3J14 BASIS DOCUMENT 
BASIS is the working document of X3J14, the committee chartered to 
write a draft proposed American National Standard (dpANS) for Forth. 
That document, dpANS, might become American National Standard 
Forth. BASIS is an early precursor of dpANS, a framework for S3J14. 
BASIS is very fluid. You are encouraged to submit proposals toward 
development. 

Forth Interest Group 
P.O.Box 823 1 
San Jose, CA 95 155 

Second Class 
Postage Paid at 
San Jose, CA 


