

F O R T H
m

A CONVENIENT EXTRA STACK - VICTOR H. YNGVE
5

How does a stack work? Here is a way to define an extra, general-purpose stack - a textbook example that is also
a useful utility. With operators analogous to those for the parameter and return stacks, this extra stack is easy to use
instead of the return stack for temporary storage, for input that would otherwise complicate parameter-stack
operations, and for other purposes that we hope readers will share in upcoming issues.

m
A SHADOW STACK FOR DOUBLE NUMBERS - DARREL JOHANSEN

7

i Finally, a way to eliminate mixed-precision operators from Forth code. This "shadow stack" unobtrusively saves the
high 16 bits of your numeric entries, and silently sunenders them when 32-bit arguments are required. Think about
this: fewer operators, simpler stack operations, and an intriguing avenue to code compatibility between systems.

m
WZSC AND THE FORTH DILEMMA - GLEN B. HAYDON

12
How does a maker of Forth-based systems provide the full functionality of contemporary programming and operating
environments without compromising Forth's simplicity, elegance, and intimate relation to the hardware? This
apparent dilemma brings to light many of the important decisions -answered and unanswered - that face today's
developers.

m
USING A STRING STACK - RON BRAITHWAITE

15

t Traditional Forth techniques for working with strings are admittedly limited. This paper presents a nicely rounded
implementation based on string-manipulation principles found in the MUMPS computer language. It features a
dedicated stack and a complete vocabulary that includes pattern matching. Guess what else- it handily outperforms '' its progenitor. (Code continued in next issue.)

m
ABOUT F83'~ WORDS - TIMOTHY HUANG

26

i What happens when you execute WORDS? F83's vocabulary list buffets our biological buffers with more information
than called for by most occasions and most users. A different implementation of the WORDS mechanism allows the
original function, or an optional display of selected keywords.

rn
DESIGNING DATA STRUCTURES - MIKE ELOLA

31
Object-oriented programming and data abstraction make data structures easier to port. Forth applications use such
techniques, even if Forth itself remains essentially unchanged. Like factoring, object programming can be imple-
mented as a design philosophy rather than as an imposition of a foreign syntax.

Editorial
4

Best of GEnie
35

Advertisers Index
24

FIG Chapters
38

I

Volume X, Nwnber 3 3 Forth Dimensions

S tacks of stac h... Our pages usudly
tend more toward the eclectic than to the
thematically ordered, but this issue is an ex-
ception. The trio of stacks presented here
may inspire you to rethink two of Forth's
fundamental characteristics: explicit con-
trol of stack operations and the ability to
recompile Forth. These authors remind us
that special-purpose stacks can be created
as easily as other routines. Study these
ideas and exercise the code; add some
backspin of your own and, of course, let us
know what happens!

Our best wishes go to Ron Braithwaite
and his wife, Liz, on their recent marriage.
Ron is a long-time inhabitant of the Forth
community who found a challenge in
Forth's lack of uniform (or any) string
operators. His comprehensive solution
couples a string stack with operators based
on the noteworthy string features found in
W S . The code for this package is a bit
lengthy for our format, so about half is
presented here, with the rest following in
the next issue. Those of you who get on-line
with the Forth Interest Group's GEnie
RoundTable can download the code from
its software library.

I've been thinking of the Forth
programmer's relationship to hardware
and to the art of problem solving. He is
unrestrained from exploration and trial im-
plementation, in a system which accommo-
dates the oddest whims with minimal pen-
alty. Like the driver of a fine sports car, he
is aligned with the working hardware and
can wring out its best performance. Be-
cause the Forth virtual machine is so
closely attuned to the physical architecture,
the programmer can "feel the pavement,"

and judge the balance between finesse and
power. Which, as Mahlon Kelly points out
("Best of GEnie," this issue), makes Forth
the ideal adjunct to computer science
classes.

The short-term trend in microcom-
puting seems to favor power and control
over elegance and intimacy. Like the
much-maligned male of the eighties, we
must find the harmonious relationship of
these qualities. Increasingly complex oper-
ating systems and interfaces barricade
many systems with protocols and black
boxes, while even the big Apple presents
Unix "for the rest of us." We are drawn into
designs conceived by committee, imple-
mented in pieces too removed from both
the problem and the solution, and spot-
welded into place by other teams working
under management whose chief task is to
maintain organizational dynamics and to
fight entropy.

In the Forth world, there will always be
opportunities for a single person to make a
significant contribution. It is an arena for
the programmer who remembers that,
when microcomputers were developed, it
was about much more than squeezing a
mainframe into a smaller box - it was
about personal £reedom.

--Marlin Ouverson
Editor

Forth Dimensions
Published by the

Forth Interest Group
Volume X, Number 3

September/October 1988
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

Forth Dimensions welcomes editorial ma-
terial. letters to the editor, and comments from
its readers. No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth
Interest Group, P.O. Box 8231, San Jose,
California 95155. Administrative offices and
advertising sales: 408-277-0668.

Copyright O 1988 by ForthInterest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the indi-
vidual authors of the k c l e s and by Forth
Interest Group, Inc., respectively. Any repro-
duction or use of this periodical as it is com-
piled or the articles, except reproductions for
non-commercial purposes, without the written
permission of Forth Interest Group, Inc. is a
violation of the Copyright Laws. Any code
bearing a copyright notice, however, can be
used only with permission of the copyright
holder.
About the Forth Interest Group

The Forth Interest Group is the association
of programmers, managers, and engineers
who create practical, Forth-based solutions to
real-world needs. Many research hardware
and software designs that will advance the
general state of the art. FIG provides a climate
of intellectual exchange and benefits intended
to assist each of its members. Publications,
conferences, seminars. telecommunications.
and area chapter meetings are among its activi-
ties.

"Forth Dimenswns (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group, 1330 S. Bascom Ave.,
Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose, CA. POSTMASTER:
Send address changes to Forth Dimensions,
P.O. Box 8231, San Jose. CA 95155."

I

Forth Dimensions 4 Volume X. Number 3

CONVENIENT
EXTRA STACK

VICTOR H . YNGVE - CHICAGO, ILLINOIS

I H e r e is a litde confection. an extra I i I
I stack that adds features of convenience to a I I I I

textbook example, making it into a useful
programming utility.

Using this extra stack is simple. In anal-
ogy to the return-stack words >R, R>, and
R@, one writes >x, x>, and x@. Several
additional words are provided also.
XCLEAR clears the extra stack. This is
needed because, unlike the parameter stack
and the return stack, the extra stack is not
automatically cleared orreset after an error.
In analogy to the parameter-stack words
PICK a n d ~ E ~ ~ ~ , o n e c a n useX~1CKand
XDEPTH. Of course, 0 XPICK yields the
sameresultsas x@, and n xP ~C~copies the
nth item from the extra stack to the top of
the parameter stack. For added
convenience, . x is provided to dump the
contents of the extra stack.

There are many uses for an extra stack.
It can be used for temporary storage in
place of the return stack in cases where >R
and R> cannot be used because the return
stack would be left unbalanced, or because
there would be interference with loop limits
and indices, or with words that expect to
find a return on the return stack.

For complex definitions with several
input parameters, some can be moved to the
extra stack and retrieved as needed, thus
simplifying the definition by reducing the
number of items that have to be juggled on
the parameter stack.

Alternatively, some words can expect
to find their input parameters on the extra
stack, and could leave their results there,
thus reserving the parameter stack as an
internal calculation stack.

An extra stack has advantages over
variables for these purposes. It is reuseable
by several nested words without interfer-

S c r e e n # 6
0 (E x t r a s t a c k F o r t h - 8 3 2 / 8 / 8 7 v h y)
1 3 CONSTANT XSIZE (S p e c i f y n u m b e r o f ce l ls i n s t a c k)
2 CREATE XSTACK (D e f i n e s t a c k a r r a y)
3 HERE , XSIZE 2 * ALLOT
4 : XCLEAR (-- 1 (C l e a r XSTACK)
5 XSTACK DUP ! ;
6 : >X (va l --) (P u s h v a l o n t o XSTACK)
7 2 XSTACK t! XSTACK @ ! ;
8 : X > (-- v a l) (P o p v a l o f f o f XSTACK)
9 XSTACK @ @ - 2 XSTACK +! ;

1 0 : X @ (-- v a l) (F e t c h t o p v a l o f XSTACK)
1 1 XSTACK @ @ ;
1 2 : XPICK (n -- v a l) (F e t c h n - t h v a l o f XSTACK)
1 3 XSTACK @ SWAP 2 * - @ ;
1 4 : XDEPTH (-- n) (L e a v e d e p t h o f XSTACK o n s t a c k)
15 XSTACK @ XSTACK - 2 1 ;

S c r e e n # 7
0 (E x t r a s t a c k o p t i o n a l d e b u g g i n g a d d e n d u m F o r t h - 8 3 2 / 8 / 8 7 v h y)
1 : X? (l o w e r h i g h e r --) U c NOT ABORT" XSTACK l i m i t s " ;
2 : >X XSTACK @ XSTACK XSIZE 2 * + X? (C h e c k max a d d r)
3 2 XSTACK t! XSTACK @ ! ;
4 : X > XSTACK @ XSTACK OVER X? (C h e c k a g a i n s t m i n a d d r)
5 @ - 2 XSTACK +! ;
6 : X@ XSTACK @ XSTACK OVER X? (C h e c k a g a i n s t m i n a d d r)
7 @ ;
8 : XPICK XSTACK @ SWAP 2 * -
9 DUP XSTACK @ 2+ X? (C h e c k a g a i n s t s t a c k t o p)

1 0 XSTACK OVER X? @ ; (C h e c k a g a i n s t m i n a d d r)
1 1 : .X CR ." XSTACK: " (XSTACK d u m p)
1 2 XSTACK DUP @ =
1 3 I F . " E m p t y 1 '
1 4 ELSE XSTACK @ XSTACK DO I 2 + @ . 2 +LOOP
1 5 THEN CR ;

ence and it does not, like separate variables,
need separate names.

The size of the extra stack is determined
by the constant XS I ZE on screen six. This
is shown set to three as an aid in checking
out the stack words. After checkout, it
should be set to the size needed for the
application.

This stack works with a stack pointer
rather than with a stack address and offset.
The first cell in the stack array XSTACK
contains the stack pointer, which is the
address of the top item on the stack rather
than the first free cell, as is sometimes the
case with stack pointers. Thus, the code for
>x first increments the stack pointer by two

(Continued on page 10.)
I

Volume X. Number 3 Forth Dimenrions

YES, THERE IS A BETTER WAY
A FORTH THAT ACTUALLY

DELIVERS ON THE PROMISE

I POWER

HSlFORTH's compilation and execution speeds are
unsurpassed. Compiling at 20,000 lines per mlnute, ~t
compilesfaster than many systems Ilnk. For real jobs
execution speed 1s unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C compilers. Forth systems designed to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when thecolon nesting level ap-
proaches anything useful, and have much greater
memory overhead for each definition. Our optlmlzer
gives assembler language performance even for
deeply nested definitions containing complex data and
control structures.

HSIFORTH provides the best architecture, so good that
another major vendor "cloned" (rather poorly) many of
its features. Our Forth uses all available memory for
both programs and data with almost no execution time
penalty, and very little memory overhead. None at all for
programs smaller than 200kB. And you can resize seg-
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
native mode and expand into 16 Meg extended memory
or a gigabyte of virtual, and run almost as fast as in real
mode.

I Benefits beyond speed and program size include word
redefinition at any time and vocabulary structures that
can be changed at will, for instance from simple to
hashed, or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. This
includes automatic removal of a colon definition's local
variables.

Colon definitions can execute lns~de machine code
primitives, great for interrupt & exception handlers.
Multi-cfa words are easily implemented. And code
words become incredibly powerful, with mult~ple entry
points not requiring jumpsover word fragments. One of
many reasons our system IS mucn more compact than
~ t s Immense dlct~onary (1 600 words) would ~mply

I INCREDIBLE FLEXIBILITY

The Rosetta Stone Dynamic Linker opens the world of
utility libraries. Link to resident routines or link & remove
routines interactively. HSIFORTH preserves relocata-
bilityof loaded libraries. Link to BTRIEVE METAWIN-
DOWS HALO HOOPS ad infinitum. Our call and data
structure words provide easy linkage.

HSIFORTH runs both 79 Standard and Forth 83 pro-
grams, and has extensions covering vocabulary search
order and the complete Forth 83 test suite. It loads and
runs all FIG Libraries, the main difference being they
load and run faster, and you can develop larger appllca-
tions than with any other system. We like source code in
text files, but support both file and sector mapped Forth
block interfaces. Both line and block file loading can be
nested to any depth and includes automatic path
search.

Forth Dimensions

FUNCTIONALITY

More important than how fast a system executes, is
whether it can do the job at all. Can it work with your
computer. Can it work with your other tools. Can ~t trans-
form your data into answers. A language should be
complete on theflrst two, and minim~ze the unavoidable
effort required for the last.

HSIFORTH opens your computer like no other lan-
guage. You can execute function calls, DOS com-
mands, other programs interactively, from definitions.
or even from files belng loaded. DOS and BlOS function
calls are well documented HSIFORTH words, we don't
settle for giving you an INTCALL and saying "have at it".
We also include both fatal and informative DOS error
handlers, installed by executing FATAL or INFORM.

HSIFORTH supports character or blocked, sequent~al
or random 110. The character stream can be received
fromlsent to console, file, memory, printer or com port.
We include a communications plus upload and down-
load utility, and foregroundibackground music. Display
output through BlOS for cornpatibillty or memory
mapped for speed.

Our formatting and parsing words are without equal. In-
teger, double, quad, financial, scaled, time, date, float-
ing or exponential, all our output words have string
formatting counterparts for building records. We also
provide words to parse all data types with your cho~ce of
field definition. HSIFORTH parsesfiles from any lan-
guage. Other words treat files like memory, nn@H and
nn!H read or write fromlto a handle (file or devlce) as
fast as possible. For advanced file support, HSIFORTH
eas~ly links to BTRIEVE, etc.

HSIFORTH supports texffgraphic windows for MONO
thru VGA. Graph~c drawings (line rectangle ellipse) can
be absolute or scaled to current wlndow size and
clipped, and work with our penplot routines. While great
for plotting and line drawing, ~t doesn't approach the ca-
pabilities of Metawindows (tm Metagraphics). We use
our Rosetta Stone Dynamic Linker to interface to Meta-
windows. HSIFORTH with Metawindows makes an un.
beatable graphics system. Or Rosetta to your own
preferred graphics driver.

HSIFORTH provides hardwarelsoftware floating point,
including trig and transcendentals. Hardware fpcovers
full range trig, log, exponential functions plus complex
and hyperbolic counterparts, and all stack and compari-
son ops. HSIFORTH supports all 8087 data types and
works in RADIANS or DEGREES mode. No coproces-
sor? No problem. Operators (mostly fast machinecode)
and parseiformat words cover numbers through 18dig-
its. Softwarefp elim~natesconversion round off error
and minimizes conversion time.

Single element through 40 arrays for all data types in-
cluding complex use multiple cfa's to improve both per-
formance and compactness. Z = (X-Y) I (X + Y) would
be coded: X Y - X Y + 1 IS Z (16 bytes) instead of: X @
Y @ - X @ Y @ + I Z ! (26 bytes) Arrays can ignore 64k
boundaries. Words use SYNONYMsfor data type inde-
pendence. HSIFORTH can even prompt the user for
retry on erroneous numerlc Input.

The HSIFORTH machine coded string library with up to
3D arrays is without equal. Segment spanning dynamic
string support includes insert, delete, add, find, replace.
exchange, save and restore string storage.

Our minimal overhead round robin and tune slice multl-
taskers require a word that exits cleanly at the end of
subtask execution. The cooperative round robln multi-
tasker provides individual user stack segments as well
as user tables. Control passes to the next tasWuser
whenever deslred.

APPLICATION CREATION TECHNIQUES

HSIFORTH assembles to any segment to create stand
alone programs of any slze. The optimizer can use HSI
FORTH as a macro library, or complex macros can be
built as colon words. Full forward and reverse labeled
branches and calls complement structured flow control.
Complete syntax checking protects you. Assembler
programming has never been so easy.

The Metacompiler produces threaded systems from a
few hundred bytes, or Forth kernels from 2k bytes. With
~ t , you can create any threading scheme or segmenta-
tion architecture to run on disk or ROM.

You can turnkey or seal HSIFORTH for distribution, w~th
no royalties for turnkeyed systems. Or convert for ROM
In saved, sealed or turnkeyed form.

HSIFORTH Includes three edltors, or you can quickly
shell to your favorite program editor. The resident full
window editor lets you reuse former command llnes and
save to or restore from af~le. It is both an indispensable
development aid and agreat user interface. The macro
editor provides reuseablefunctions, cut, paste, file
merge and extract, session log, and RECOMPILE. Our
full screen Forth editor editsfile or sector mapped
blocks.

Debug tools Include memorylstack dump, memory
map, decompile, single step trace, and prompt optlons.
Trace scope can be limited by depth or address.

HSIFORTH lacks a "modular" compllatlon environ-
ment. One motivation toward modular compilation is
that, with conventional compilers, recompiling an entire
application to change one subroutine is unbearably
slow. HSIFORTH compiles at 20,000 lines per minute,
faster than many languages link- let alone compile!
The second motivation IS linking to other languages.
HSIFORTH links to foreign subroutinesdynamically.
HSiFORTH doesn't need the extra layer of files, or the
programs needed to manage them. With HSIFORTH
you have sourcecode and the executable file. Period.
"Development environments" are cute, and necessary
for unnecessarily complicated languages. Simplicity is
so much better.

HSIFORTH Programming Systems
Lower levels Include all functions not named at a higher
level. Some functions available separately.

Documentation & Working Demo
(3 books, 1000 + pages, 6 Ibs) $ 95.

Student $145.
Personal optimizer, scaled & quad integer $245.
Professional 80x87, assembler. turnkey, $395.

dynam~c strlngs, multitasker
RSDL linker,
physical screens

Production ROM. Metacompiler, Metawindows
$495.

Level upgrade, price difference plus $ 25.
OBJ modules $495.
Rosetta Stone Dynamic Linker $ 95
Metawindows by Metagraphics (includes RSDL)

$1 45
Hardware Floating Point & Complex $ 95
Quad integer, software float~ng point $ 45
Time slice and round robin multitaskers $ 75
GigaForth (802861386 Native mode extension) $295

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

I

Volume X, Nwnber 3

SHADOW STACKS &
DOUBLE-PRECISION NUMBERS

DARR EL

W e n writing code for controllers.
there are times when I need to enter
mixed-precision parameters. Mixing
double- and single-precision numbers
gets messy, and if I forget to enter the
period on a double number, there won't be
enough elements on the stack and the
command will misbehave.

It would be nice to be able to enter
numbers without thinking too much about
periods and stack effects. If I enter a value
that is 16 bits or less without a period, my
code should be smart enough to put a zero
in the high word value of a double-preci-
sion number. For instance, if a controller
moves graphics from some large memory
space to one of three video "pages," I
would like tobe able to enter thecommand
as:

<addr> <page> SHOW-VID

The usual way to handle this is to
require <ad&> to be a double-precision
number:

l o o . 1 SHOW-VID
l A 7 B F 0 0 0 . 1 SHOW-VID

The more commands I have, the more
difficult it is to keep track of the parame-
ters which need periods. This process is
especially error-prone when I am entering
a value that can be represented by a single-
precision number for a parameter that can
handle double precision. It's not so hard to
remember to put the period after
1A7BF000, but when I enter 100, the pe-
riod is easy to forget.

The Forth-79-defined INTERPRET

JOHANSEN - REDWOOD CITY, CALJFORNIA
w

has a very easy soluuon. See hgure Une -
note the DROP before [COMPILE]
LITERAL. NUMBER always returns a
double-precision number, and DPL is
checked to see if aperiod was entered with
the number. If a period wasn't entered, the
high 16 bits of the double number are
dropped. If I enter 12345, then 2345 is left
on the stack and the 1 is dropped. If I enter
1234, then a 0 is dropped.

"Words that use 16-bit
values will see normal
stack effects."

But if that value could be saved and
retrieved easily, I could always use a 16- or
32-bit number for any parameter without
entering a period, and the Forth word that
uses it could get the high 16 bits only if it
needed them.

My solution is to construct a"shadow
stack" to save the high 16 bits of any num-
ber entered (converted from ASCII by
NUMBER, via INTERPRET). The shadow
stack pointer always tracks the main pa-
rameter-stack pointer, so the low 16 bits and
upper 16 bits of any number entered are
always at the same relative position on the
two stacks. The current value of the stack
pointer also determines the stack pointer
position for the shadow stack. As a conse-
quence, any Forth word which leaves a
number on the stack will also push the
shadow stack pointer down, but the high 16
bits on the shadow stack will never be used

: CUE-FRAME
1 7 7 5 F 0 0 0 3 SHOW V I D ; -

- . - -.

This is because the 1775F000 would
only becompiled asF000. The 1755 upper
word would be lost, and the @SHADOW in
SHOW - VID wouldn't get the correct
value.

This type of compilation is rare in my
application, but sometimes it is required.
So I extend the shadow stack when used in
compilation with a new type of "shadow
literal."

The definition above would have to be
compiled as:
: MY-WORD

[1 7 7 5 F 0 0 0 I S 3
SHOW - V I D ;

- only numbers entered from the key-
board will produce usable entries on the
shadow stack.

Now, any time a number is on the
stack, I can retrieve the high word
"shadow" by entering @SHADOW (as long
as it was gotten via INTERPRET). I can
also define some words to get the shadow
word of the second and third numbers on
the stack, called OVER - @SHADOW and
3PICK-@ SHADOW.

Now, SHOW-VID can use theparame-
ter stack and shadow stack - see Figure
Two.

The only problem with this technique
is that it only works while interpreting. I
can't simply compile a word like:

I admit that this is not as compact a:s
: MY WORD

1 7 ~ 5 ~ 0 0 0 . 3 SHOW-VID ;

Volume X, Nwnber 3 7 Forth Dimemions

But, since I am usually executing the word
from an interpretive mode, the tradeoff
makes sense.There are probably lots of
extensions to this technique. For instance,
a shadow stack could keep track of thepo-
sition of the decimal point in a list of
double-precision numbers.

This code could be used to make a
psuedo-32-bit Forth. Any words that need
to pass double-precision numbers can use
the shadow stack, thereby eliminating the
stack problems of mixed operators. The
operation of +, -, *, and / could be
redefined to deal with both the parameter
stack and the shadow stack. This type of
implementation would handle double-
precision arithmetic in a different way.
Words that only use the 16-bit values will
see the normal stack effects, and words
that need 32-bit results can get the high
word off the shadow stack.

(Screens begin on next page.)

Darrel Johansen is currently a program-
mer engineer at Orion Intruments.

: <INTERPRET>
BEGIN -FIND

I F STATE @ <
I F CFA ,
ELSE CFA EXECUTE
THEN

ELSE HERE NUMBER DPL @ 1+
I F [COMPILE] DLITERAL
ELSE DROP [COMPILE] LITERAL

\ High bits are dropped
THEN

\ if no "." is entered.
THEN

AGAIN ;

: INTERPRET <INTERPRET> ;
\Allows redefinition

I

Figure One. Forth-79's INTERPRET per All About Forth (Glen B. Haydon,
Mountain View Press).

WE'RE LOOKING
FOR A FEW GOOD

A S S O C I A T E S

Forth Recruiters
Under New Management

70 Elmwood Ave./ Rochester, NY 1461 1/(716) 235-0168

TINY188 is a low cost "PC somewhat com-
patible" engine for OEM controller applica-
tions. A selection of high level languages is
available in ROM.
DDS188An optional development board with
EPROM programmer, floppy disk controller
and added memory removes to lower target
system cost.
Prices start at $269 each/$99 at 1,000.

Vesta Technology, Inc.
(3031 422-8088

Forth Dimensions 8 Volume X. Number 3

: SHOW-vID (addr page -) \ Display <page> from c a d b
SET-PAGE \Use <page> to set the proper destination
@SHADOW SET-START-HIGH \Get high 16 bits of caddr,
SET-START-LOW \Use cacldn on parameter stack for lower

\ start-address
DISPLAY-PAGE ; \Move data and show the page

Figure Two. Example application of the "shadow stack."

0 \ Shadow stack for 32-bit number precision drj 08Aug88
1 FORTH DEFINITIONS HEX
2 CFEATE SHADOW-STACK 70 ALLOT \ Create a buffer area
3 \ for shadow stack.
4 SHADOW-STACK 6C + CONSTANT TOP-SHADOW \ Top of shadow stack.
5
6 : SHADOW-PTR TOP-SHADOW (- n) \ Compute shadow stack
pointer.
7 SO SP@ - - ; \ Leave addr on stack.
8 : ! SHADOW SHADOW_PTR ! ; (n -) \ Store into shadow stack.
9
A This screen creates a "shadow" stack that holds the upper
B 16 bi t s of a number when the number put on the stack i s not
C entered with a '." t o create a double number.
D This stack "tracks" the parameter stack with another pointer, so
E at any time, the high 16 bi t s of any number the user enters on
F the stack can be retrieved for any number on the stack.

0 \ replacement for <INTERPRET> drj 08Aug88
1 : <SHADOW-INTEPSRET>
2 BEGIN -FIND
3 IF STATE @ <
4 IF CFA ,
5 ELSE CFA EXECUTE
6 THEN
7 ELSE HERE NUMBER DPL @ 1+
8 IF [COMPILE] DLITERAL
9 ELSE !SHADOW [COMPILE] LITERAL \ The only change
A THEN
B THEN
C AGAIN ;
D
E ' <SHADOW-INTERPRET> CFA ' INTERPRET !
F

'NOW FOR IBM PC, XT, AT, P S ~ '
AND TRS-80 MODELS 1,3,4,4P

The Gifted
Computer

1 Buy MMSFORTH before year's end,
to let your computer work harder and
faster

2 Then MMS will reward 11 (and you)
wlth the MMSFORTH GAMES DISK,
a $39 95 value whlch we'll add on at
no additional chargel

MMSFORTH 1s the unusually smooth
and complete Forth system wlth the
great support Many programmers report
tour to ten times greater productivity
wlth thls outstanding system, and MMS
provldes advanced applications pro-
grams In Forth for use by beginners and
for custom mod~ f~ca t~ons Unllke many
Forths on the market, MMSFORTH gcves
you a rlch set of the Instruct~ons, edltlng
and debugging tools that professional
programmers want The I~censed user
gets continuing, free phone tips and a
MMSFORTH Newsletter IS available
The MMSFORTH GAMES DlSK Includes
arcade games (BREAKFORTH. CRASH-
FORTH and, for TRS-80, FREEWAY),
board games (OTHELLO and TIC-TAC-
FORTH), and a top-notch CRYPTO-
QUOTE HELPER w ~ t h a data flle of
coded messages and the ablllty to en-
code your own All of these come wlth
Forth source code, for a valuable and
enjoyable demonstration of Forth pro-
grammlng techniques
Hurry, and the GAMES DlSK will be our
free glft to you Our brochure IS free,
too, and our knowledgeable staff 1s
ready to answer your questtons Write.
Better yet, call 617/653-6136.

and a free gift!
GREAT FORTH:
MMSFORTH V2.4..$179.95'
The one you've read about in FORTH: A
TEXT Lk REFERENCE. Available for IBM
PC/XT/AT/PSP etc., and TRS-80 M.1.3
and 4
GREAT MMSFORTH OPTIONS:

. FORTHWRITE.. .$99.95'
FORTHCOM .. 49.95
DATAHANDLER . 59.95
DATAHANDLER-PLUS* 99.95
EXPERT-2 . 69.95

. UTILITIES 49.95
'Single-computer, single-user prlces; cor-
porate site licenses from $1,000 additional.
3'4" format, add $5/disk; Tandy 1000, add
$20. Add S/H, plus 5% tax on Mass. orders.
DH+ not avall for TRS-80s.
GREAT FORTH SUPPORT:
Free user tips, MMSFORTH Newsletter,
consulting on hardware selection, staff
training, and programming assignments
large or small.
GREAT FORTH BOOKS:
FORTH: A TEXT & REF$21.95*
THINKING FORTH 16.95
Many others in stock.

MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road, Natick, MA 01760

I (6171653-6136,9 am - 9 pm)

I

Volume X, Number 3 9
I

Forth Dimensions

dri 08Aua88 7
NGS FORTH

A F r n mm,
OFTIMIZED lWR THE IBM
PERSONAL COMHPTER AND
HS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

a79 ST-

.DIRECT 1/0 ACCESS

.FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

.ENVIRONMENT SAVE
& LOAD

.MULTI-SEGMENTED FOR
M G E APPLICATIONS

.EXTENDED ADDRESSING

.MEMORY A U C A T I O N
CONFIGURABIX ON-LINE

.AUTO m A D SCREEN BOOT

.LINE & SCREEN EDITORS

.DECOMPILER AND
DEBUGGING AIDS

98088 ASSEMBLER

.GRAPHICS & SOUND

mNGS ENHANCEMENTS

.DETAILED MANUAL

.INEXPENSIVE UPGRADES

aNGS USER NEWSxEKmR

A COMPLETE FOKTH
DEVELDPUENT SYSTEM.

PFUCEB BTART AT $70

1 : @SHADOW &-PTR 2- @ ; (-n) \ Get top number on-shadow I 1 1 2 \ stack. / i

NEW*gP-150 & -110
VERBIONS AVAILABLE

NEXT GENERATION BYSTEW
P.O.BOX 2987
BANTA CLARA, CA. 95055
(408) 241-5909

3 : OVER_@SHADOW S:IADOW_PTR @ ; \ Get second number on
4 (-n) \ shadow stack.
5 : 3PICK_@SHADOW SHADCW_PTR 2+ @ ; \ Get third number on
6 (*I \ shadow stack.
7 exit
8
9 The SHADOW-STACK is simply a buffer area that can exist anywhere
A in memory. Under n o m l situations, it is never more than about
B 24 bytes deep. I have allotted it with eight more bytes than my
C parameter stack to give it a buffer for overflow and underflow,
D but !SHADOW should be modified to check boundaries making
E it completely bulletproof. This version is written for

1 F readability, but it works for almost any situation.

0 \ shadow literals drj 08Aug88
1': <SLITEF?AD STATE @
2 IF CCMPILE LIT , COMPILE !SHADOW
3 THEN ; IMMEDIATE
4
5 : SLITERAL STATE @
6 IF @SHADOW SWAP [COMPILE] LITERAL [COMPILE] <SLITERAL>
7 THEN ; IMMEDIATE
8
9 : IS] [COMPILE] SLITERAL ; IMMEDIATE
A exit
B Shadow literals are used to double numbers for the
C words that expect shadow stack numbers. For instance, SHOW-VID
D could be compiled in a word like this:

I E : CUE - FRAME [4F143800 IS 3 SHOW-VID ;
F

(Continued from page 5.) I I
to point to the first unused cell, and then it
stores the number from the top of the pa-
rameter stack there. And the code for x>
first fetches the top item from the extra
stack to the parameter stack, and then dec-
rements the stack pointer by two so that it
points to the new top of the extra stack.

Several of the words here are simplified
by the choice of having the stack pointer
point to the top cell: XCLE AR simply stores
into this cell the cell's own address, so it
points to itself. Also, x@ does not have to
adjust the pointer, but simply executes
XSTACK @ @. XPICK and XDEPTH are
also made simpler by this choice.

Screen seven redefines some of the
stack words to include tests that all stack
operations take place within the proper
limits of the XSTACK array. These tests use
the word x?, which gives an error comment
if the top number on the parameter stack is
not larger than the one underneath.

This screen can be loaded on top of the
first one while debugging the program that
uses the extra stack. The compiler com-
ments during loading will remind the user
to comment out the LOAD instruction for
this screen on the load screen when the de-
bugging is finished.

I
Forth Dimensions 10 Volume X, Nwnber 3

the tenth annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 25-27,1988

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.

Theme: Forth and Artificial Intelligence -
Artificial intelligence applications are currently showing great promise when developers focus on easy-to-use
software that doesn't require specialized expensive computers. Forth's design allows programmers to modify
the Forth language to support the unique needs of artificial intelligence. Papers are invited that address
relevant issues such as:

Programming tools for A1
Multiusers and multitasking

Management of large memory spaces
Meeting customer needs with Forth A1 programs

Windowing, menu driven or command line systems
Captive Forth systems--operating under an OS

Interfacing with other languages
Transportability of A1 programs

Forth in hardware for A1
System security

Papers about other Forth topics are also welcome. Mail your abstract(s) of 100 words or less to FORML
Conference, Forth Interest Group, P.O. Box 8231, San Jose, CA 95155. Completed papers are due
November 1,1988.

Asilomar is a wonderful place for a conference. It combines comfortable meeting and living accommoda-
tions with secluded forests on a Pacific Ocean beach. Registration includes deluxe rooms, all meals, and
nightly wine and cheese parties.

RESERVATIONS FOR TENTH FORML CONFERENCE
Registration fee for conference attendees includes conference registration, coffee breaks, and notebook of
papers submitted, and for everyone rooms Friday and Saturday, all meals from lunch Friday through lunch
Sunday, wine and cheese parties Friday and Saturday nights, and use of Asilomar facilities.

Conference attendee in double room - $275 Non-conference guest in same room - $150 Children under 17
in same room - $100 Infants under 2 years old in same room - free Attendee in single room - $325

Register by calling the Forth Interest Group business office at (408) 277-0668 or writing to:
FORML Conference, Forth Interest Group, P.O. Box 8231, San Jose, CA 95155.

Volume X, Number 3 11 Forth Dimensions

WISC AND
THE FORTH DILEMMA

h r t h is based on the philosophy of

-- -

GLEN B. HAYDON - LA HONIIA, CALIFORNIA

1
Keep it Simple

As many of you know, the origins of
Forth were in running a real-time applica-
tion at the "rug factory." There, the prob-
lem was the overhead imposed by the exist-
ing operating system. What evolved was a
very simple, minimal program to avoid the
operating system. In general, the simpler
the program, the easier it is to maintain and
support. Often it can be said that if 64Kb of
program space is not enough, you probably
do not understand the problem. Certainly, it
is not efficient to allow programs to expand
to fill the available space.

keeping things simple. Remember that
something elegant can be simple. Simplic-
ity does not necessairly mean primitive.
But vendors feel obligated to provide all of
the utilities to which users have become ac-
customed. These are mutually exclusive
goals! It is a dilemma for the Forth commu-
nity to decide which goal it wishes to serve.
It has been a dilemma for WISC Technolo-
gies, Inc. to decide how best to support its
new computer architecture.

The Problem
The lack of acceptance of the Forth

language among other computer program-
mers is perhaps due to their perceived re-
quirement of having available all the tools
they have come to expect in other program-
ming languages. Though the WISC archi-
tecture was arrived at through an under-
standing of Forth, the writeable instruction
set makes it a powerful generic processor.
Reluctance to adopt it because of its asso-
ciation with Forth needs to be addressed,
and a development environment designed
to meet the expectations of programmers

will be a big help.
WISC's design of the hardware has

been strictly with the goal of keeping the
architecture as elegantly simple as pos-
sible. As much as possible, assembling of
hardware components with writeable in-
structions has been left to the programmer.
Thus, the concept of a soft-wired system is
used.

With the development of our products,
the design has become less simple. For
example, as we have progressed from the
CPUl16 to the CPUl32 we have, of neces-
sity, increased the complexity of the de-
sign. It is much easier to route a single bus
than multiple buses, especially when each
bus is 32 bits wide. As we have progressed
to the engineering implementation in sili-
con, other capabilities have been added.
With each addition, the balance between
increased complexity and maintenance of
simplicity has been considered.

Teaching Something New
When it comes to making the system

available to others, demands are made for
something other than simplicity. Since mi-
crocode must be written using some sort of
development system, that system must
meet the demands of those who will use it.
As with the classical perspective of any
teaching program, one must always start
building on the knowledge and expecta-
tions the students already have.

In this case, the student is presumably a
programmer already familiar with a com-
puter system. He expects an operating sys-
tem. He expects an editor or word processor
of some sort. He expects a large library of
built-in functions. He expects an effective
debugger. After all, how could he write a
program which did not need debugging? As

illustrated by other papers at the Confer-
ence, some programmers know how to
type while others would rather chase icons
around the screen mith a mouse or perhaps
some combination of typing and a mouse.
Any development system meeting all the
above requirements may never meet the
philosophical goals of Forth.

Programmer Psychology
In many ways, the computer operating

system is a sort of language, along with the
programming language and the natural
language used by the programmer. Prob-
lems develop when the programmer is not
a master of his system. Clearly, a person
who is not a good touch typist will not be
able to make effective use of keyboard
commands. A person who does not have
good dexterity with a mouse will find it a
hindrance.

These limitations, in large part, depend
upon the unique way each individual's
nerves are connected, as well as his train-
ing. No two individuals are the same. I
expect that part of the prefereilce for a
keyboard or a mouse is firmly rooted in the
individual's capabilities and 3ast experi-
ence. It will never be possible to make all
individuals the same, but the psychologi-
cal mind set of our potential users must be
addressed.

Real World Requirements
In the real world, a development sys-

tem is required that will attract many pro-
spective users. It is certainly not necessary
to call such a development system Forth.

The fist requirement is that the devel-
opment system run on some existing hard-
ware with an already defined operating
system. WSC has started with a host

ll

Forth Dimemiom 12 Volume X, Nwnber 3

Volume X, Nwnber 3 13 Forth Dimensiom

based on the Intel processor, in the form of
an IBM PC, XT, or AT running under PC-
DOS. The original implementation of
Forth on these processors served as a basis.
With the PC-DOS operating system comes
a file structure for the storage devices,
which in its latest versions include directo-
ries and subdirectories. Superimposed
upon the initial Forth, then, is the require-
merit of an effective implementation of
access to that system of files.

System files under PC-DOS are of vari-
able length. Most programmers are already
familiar with some sort of editor, often
some variant of the well-known Wordstar.
But Forth, in its original form, had a rudi-
mentary line editor and no files. The exter-
nal storage device was directly accessed in
sequential, fixed-length blocks of 1K
bytes. No file structure was imposed. This
conflicts with current operating systems.
One answer is to access 1K blocks within
system files, although that introduces more
complexity. But using Forth blocks does
havesomeadvantages in thethinkingproc-
ess of the programmer. It tends to encour-
age factoring of problems.

However, this is more a consideration
of programming style than the need of 1K
blocks. Inopen, free-form text files, there is
no imposed discipline, i.e., no style is
imposed. What is needed is the develop-
ment of a free-form style of programming
in standard text files. With variable-length
text files, it is no longer necessary to sepa-
rate the source code from help screens or
shadow screens. In addition, a set of text
vectors couldbe added with each new func-
tion. All related material could be grouped
in the same place. Thus, simply by adopting
a style which includes all of the narrative
documentation, source code, and test vec-
tors as a unit, it will be more likely that the
programmer will see that the docurnenta-
tion is maintained. It is a simple matter to
compile the source code directly from such
files and skip the documentation data. This
approach is completely different from the
experience of many Forth programmers.
Other programmers are accustomed to a
style of programming for each language
they use. A special style should not come as
a shock to them.

Standard Libraries
Forth has no standard library of ex-

tended functions. In part, this is because
there has been no driving force as powerful

as AT&T of IBM to produce the necessary
libraries. But it must not be ignored that
other programmers have come to expect
these libraries.

An important consideration here is how
these libraries are used. With the ease and
speed of compilation in Forth, there is little
need to save object code. Source code in the
above-suggested style will provide all of
the necessary documentation and can sim-
ply be compiled as needed. This avoids the
necessity of a loader to make the object
code relocatable.

What tools?
Forth as a new language is intimidating

to many with previous programming expe-
rim=. The educational system in this coun-
try has already indoctrinated students with
BASIC, C, Pascal, FORTRAN, etc. in their
many formal courses. The educational sys-
tem does not offer students Forth as an
alternative language. But Forth is no more
complicated than BASIC or C as a pro-
gramming language. It is just different, and
people don't like to change.

For a marketable development system,
we must consider the potential user. If we
want to survive, we must cater to his per-
ceived needs. We may be confident he will
not use many of the tools we might provide
him after he learns to use the development
system. But to sell the product, we must
provide the perceived needs. For example,
after the user has worked with the develop-
ment system, he might learn that by utiliz-
ing the convenient factoring techniques of
Forth and a Set of appropriate test vectors,
he will have little if any need of a debugging
suite. But to start with, that possibility is
beyond any experienced programmer's
conception. The problem is, who is going to
take the time to write a program for sales
purposes which he is confident will never
be used?

Learning from Others
In spite of the opinions of many Forth

programmers to the effect that non-Forth
programmers have much to learn, it might
just be that some Forth Programmers could
learn from the experience of others. This
does not mean that a Forth programmer
should make his Forth look like one of the
other programming languages. The re-
quirements imposed by compilers for other
languages need not be imposed upon pro-
grams written in Forth.

Rather, the Forth programmer might
discover new concepts if he were to under-
stand why other languages are done the
way they are. Most high-level languages
were designed for specific applications
with specific hardware. Some of these
languages have migrated to other hardware
and used for other applications. The more
general the capabilities of a language
compiler, the more complicated it be-
comes. Forth has the capability of incre-
mentally adding new compiler instructions
to the compiler along with the program.
This is a new experience for many non-
Forth programmers.

Actually. the C kernel is nearly as small
as most Forth kernels. The C language
must make use of a large number of add-on
functions. In fact, the C kernel is so small
that it cannot stand alone. There must at
least be a set of standard I/O functions.
There are more similarities than might at
first be apparent.

Current WISC Development System
WISC is aggressively working on a

development system for use with our hard-
ware products. Many of these thoughts are
addressed in the pieces we have already in-
corporated. Especially for the CPU/32, we
must dispense with the 16-bit address
space. A full, 32-bit, linear address space
seems mandatory. Systems with only 16
bits of address space will soon be obsolete.
Let the implementation map the 32-bit
address space into the segment and offset
requirements of the Intel processors, if that
is what is being used.

Among the necessary libraries are a
complete set of extended math and float-
ing-point functions. Phil Koopman has
written such a math library and placed it in
the public domain. It includes efficient fac-
toring and appropriate polynomials for the
transcendental function. His library has
been tested for over five years in a variety
of applications, and appears to be essen-
tially free of bugs. The floating-point val-
ues are based on the IEEE short form,
already an accepted standard in computing
circles. Large parts of the package have
been published in Forth Dimensions.
Some vendors have adopted it, but others
are reinventing the wheel. In the interest of
furthering a well-tested, standard set of
extended math and floating-point func-
tions, WISC is making copies of the source
code on PC-DOS formatted disks available

at this Conference. We hope this will con-
tribute to the library of functions being de-
manded by those who might use Forth.

Another important set of functions
should include an editor integrated with
the compiler. Though it should be possible
to use any editor or word processor to
create the source files, having an integrated
editor within the development system has
many advantages. Such an editor could be
used to indicate the beginning of an incre-
mental compiling step, much like the use
of the old blocks. And when compilation
fails, the point of failure should be shown
from within the editor, much like the
WHERE function in older Forth implemen-
tations. As suggested above, an editor
based the common Wordstar function
might reduce the shock of having to learn
another editor. WISC has such an editor
operational, but it is not yet ready for
release.

Other libraries might include a familiar-
appearing debugger, a common set of
string-handling utilities, and more. The
structure of the development system should
allow easy expansion with other libraries as
they are identified, implemented, and well
tested.

Conclusions
Keeping things simple does not mean

that things are primitive. For the WISC
processors to be accepted in the market-
place, we must provide an acceptable de-
velopment system, even if that system
appears quite different from conventional
Forth. We should build on the experience
we have had with Forth. WISC is well along
in writing a development system along the
lines described in this paper. There is really
no dilemma. The system will be simply
elegant.

Glen B. Haydon is the president of
WISC Technologies, and the author of
All About Forth. This paper was origi-
nally presented at the 1988 Rochester
Forth Conference on programming
environments; reprinted by permis-
sion.

Our Forth Super.8 Development System GIVEna and Your IBM Compatible PC -

YOU CAN:
Really
Start
Something

LIST $295
Inner Access Corporation

&I 11554 Chess Dr., #D, Foster City, CA 94404 (415) 571-8295 Telex 494-3275 lMMCC

Forth Dimensions 14 Volume X, Nwnber 3

USING A
STRING STACK

- - -- - - -

RON BRAITHWAITE - LOS ANGELES, CALIFORNIA
m

N i l e working on a project involv-
ing very extensive string manipulation, I
realized that traditional Forth techniques
for working with strings are impractical
when anything more than nominal string
manipulation is required. This paper de-
scribes words for the manipulation of
strings using a string stack, including ex-
tensive pattern-matching support.

Over the last two years, I have worked
extensively with the MUMPS computer
language, for a good portion of that time
implementing a non-standard, standalone
MUMPS environment (interpreter/com-
pilerloperating system) running in a multi-
processor Data General MV20000 envi-
ronment; and writing systems tools in a
standard MUMPS environment in a clus-
tered DEC VAX environment.

Although MUMPS is a real dog in the
performance department, it has many very
useful features. The most striking charac-
teristic of MUMPS is that all data types are
treated as strings by the application pro-
grammer (although they are maintained as
separate data types internally).

The project where I needed a string
package was being done for Laboratory
Microsystems, Inc.'s W o r t h , PC/Forth

, 3.2, and PC/Forth+ 3.2. LMI's versions of
Forth have many excellent features, some
of which are string related. However, the
primary string-storage mechanism in the

' LMI products consisted of using a circular 1 string buffer f a temporary storage of
strings. The problem with the string buffer
approach is that the storage is very tempo-
rary. Since strings are stored in a circular
fashion and the string buffer is used by the
operating system interface, it is likely that
extensive useof the string buffer will cause

CR . (Loading STRING.4TH) CR

(STRING. 4TH r d b 10/24/87)

(Las t r ev i sed : rdb 11/30/87)
(This f i le c o n t a i n s v a r i o u s s t r i n g s t a c k o p e r a t o r s and assumes)

(t h e e x i s t e n c e o f s e v e r a l words n o t i n t h e Forth-83 Standard:)
(-ROT, NIP, TUCK, NUMBER?, ?DO, CASE, OF, ENDOF, ENDCASE, >PTR)
(ADDR>PTR, C@L, C! L, CMOVEL, and CMOVEL>.)

(-- a d d r
(Conta ins t h e maximum number o f s t r i n g s on t h e s t r i n g s t a c k .)

VARlABIE MAX$

($0 -- a d d r
(Conta ins a p o i n t e r t o t h e base o f t h e s t r i n g s t a c k .)

VARIABLE $0

($p -- a d d r)
(Conta ins a p o i n t e r t o t h e t o p of t h e s t r i n g s t a c k .

VARIABLE SP

(SP! addr -- 1
(S e t s t h e addres s o f t h e s t r i n g s t a c k p o i n t e r . 1

: $P! (addr --)

$P ! ;

(SINIT addr n -- addr '
(I n i t i a l i z e s t h e s t r i n g s t a c k f o r n s t r i n g s w i t h a d d r a s t h e)
(h i g h e s t addres s t o use , r e t u r n i n g t h e low a d d r e s s addr ' used.)

: SINIT (addr n -- addr ')

TUCK MAX$! DUP $0 ! DUP $P! (Stack b a s e)
SWAP 256 * - DUP MAX$ @ 256 * BLANK ; (C l e a r s t a c k)

Volume X, Number 3 Forth Dimensions

an overflow situation, overwriting one
string with another.

Let me make clear, however, that the
string buffer approach is a very good one
and is useful for most applications. In this
case, though, I needed more permanent
temporary storage. What jumped to mind
was a string stack.

This idea did not spring at me out of the
clear blue sky. There have been at least
thirteen papers on the subject, according to
A Bibliography of Forth References (Third
Edition, The Institute for Applied Forth
Research). There have been numerous ar-
ticles in Dr. Dobb's Journal and Computer
Language, as well.

Most influential in this case was some
unpublished work by John James, whose
code provided a starting point for this pack-
age. The Forth community is frequently
accused of being more interested in rewrit-
ing Forth than in actually doing applica-
tions. I didn't want to fall into the trap of
reinventing the wheel one more time, but
no example available to me covered pattern
matching beyond simple string compari-
sons. Therefore, I combined many of the
concepts I had encountered in MUMPS
into a Forth package that is much faster and
more compact than in a MUMPS environ-
ment.

What came out of all this was a series of
words which use a string stack and which
can be divided into the following groups:
memory words, stack words, manipulation
words, conversion and display words,
comparison words, defining words, and
miscellaneous words.

The only prerequisite for using these
words is to execute $ I N I T with the num-
ber of strings you want to allocate (I nor-
mally specify three) and the highest address
you wish to use - it will return the low
limit of the string stack area. I tend to
allocate work space starting !?om high
memory and work down, so this seemed
reasonable.

About the Source Code
The source code described in this docu-

ment assumes the existence of the follow-
ing words not in the Forth-83 Standard:
-ROT, N I P , TUCK, NUMBER?, ?DO,
CASE, OF, ENDOF, ENDCASE, @DATE,
ADDR>PTR, >PTR, C@L, C ! L, @L, ! L,
CMOVEL, and CMOVEL>. The definitions
of these words should be obvious and do
not need to be explained here, since they

($OK? . .$ -- ..$ I)

(Verif ies t h a t t he s t r i n g stack has not under/overflowed. If)

(an e r r o r condition ex i s t s , an e r r o r message i s displayed and)

(t he s t r i n g s tack i s rese t .)

: $OK? (..$ -- ..$ I)
$P @ $0 @ 2DUP U> -ROT (Undeflow?)

MAX$ @ 256 * -- U< OR (Overflow?)

I F $0 @ MAX$ @ TUCK 256 * - SWAP SINIT (Reini t)

CR ." Str ing stack under/overflow" ABORT (Error)

THEN ;

($P@ $ -- $ strA)
(Returns t h e address of t h e s t r i n g on t o p of t h e s t r i n g s tack.)

(1s 1 $ 0$ -- 1 $ 0$ strA)
(Returns t h e address of t h e s t r i n g second on t h e s t r i n g s tack.)

: 1$ (1 $ 0$ -- 1 $ O$ strA)
$P @ COUNT + ;

(2s 2$ 1 $ 0$ -- 2$ 1 $ 0$ strA)
(Returns t h e address of t h e s t r i n g t h i r d on t h e s t r i n g stack.)

: 2$ (2$ 1 $ 0$ -- 2$ 1 $ 0$ strA)
$P @ COUNT + COUNT + ;

(N$ $.. n -- $.. strA)
(Returns t h e address of t h e s t r i n g nth on t h e s t r i n g stack.)

: N$ ($.. n -- $.. strA)
$P @ SWAP 0 (S t a r t a t t o p)

?DO COUNT + (Get next strA)
LOOP ;

(ScNT $.. n -- $. . cnt)
(Returns t h e count cnt f o r s t r i n g n on t h e s t r i n g stack.)

: $CNT ($. . n -- $ c n t)
N$ C@ ;

($DEPTH $.. -- $. . n 1
(Returns t h e number n of s t r i ngs on t h e s t r i n g stack. 1

: $DEPTH ($. . -- $.. n)
$OK? 0

BEGIN DUP N$ $0 @ U<
WHILE 1+
REPEAT ;

(Over/under?)

(Another?)
(Inc cn t)
(n on stack)

Forth Dimemiom 16 Volume X, Number 3

have been discussed at length in the litera-
ture. In addition, words manipulating date
and time assume a specific format which is
also explained in the code. This code runs
on top of Laboratory Microsystems, Inc.
URForth, PC/Forth 3.2, and PCForth+
3.2.

The basis for many of these words
comes from John James' string package,
written many years ago. The algorithm for
$SOUNDEX came from Guy Kelly. The
whole idea of SOUNDEX dates back to the
1894 U.S. Census when they wanted to be
able to find names that sounded alike. Since
then it has been very widely used, but not
adequately described. Although I could
give the algorithm here. I think reading the
code will do a better job of explaining it (I
hope).

The source code for this package is in a
different format than what is usually found
in Forth Dimensions: it is in an ASCII file
format, rather than in screens. I use this
approach because of my philosophy about
programming. Instead of concentrating on
communicating with the machine, I try to
communicate with programmers. The
machine needs nothing more than a single
space between each token; people need
things like comments, indentation, phras-
ing, and so on.

In a standalone Forth environment,
blocks are appropriate, since the goal is
minimal overhead. In an environment us-
ing Forth running over an operating sys-
tem, the operating system provides many
services that we do not need to duplicate.

Most modem Forths have a word called
INCLUDE which loads the ASCII file
named in the input stream. Two other
words, SHELL" and -SHELL provide
hooks to the operating system, the first
passing a string terminated by " to the
command processor, while the second
takes a counted string.

If you reserve a portion of RAM as a
disk and copy a good editor to it on start up,
the speed of calling the editor and editing
short ASCII files is as fast in most cases as
using a block editor. The editor I use is
invoked with the word ED, which can be
defined as in Figure One. Although there
are some very nice block editors out there,
I am still faced with the fact that I work on
a variety ofprojects. Only having to use one
editor in several different environments
just makes my life easier.

Working with short ASCII files on a fast

(.$S 5.. -- $. . 1
(Non-destructively displays the contents of t h e s t r i n g stack.)

: .$S ($. . -- 5..)

$DEPTH 0 (Set up loop)

?DO CR I 2 .R ASCII : EMIT SPACE (CR, then I:)

I N$ COUNT TYPE (Pr in t s t r i ng)

LOOP CR ;

(.$ $ -- 1
(Displays and discards the top s t r i n g on the s t r i n g stack.)

: .$ ($ - - I
$P@ COUNT 2DUP + $P! TYPE $OK? ;

($CNT@ addr cnt -- $)

(Copies cnt characters of t he s t r i n g a t addr t o t h e s t r i n g)
(stack, converting it t o a counted s t r ing .)

()
($CNT@ i s equivalent t o t he LMI word STRPCK)

: $CNT@ (addr cnt -- $)

TUCK $P@ OVER - DUP 1- $P! SWAP CMOVE SP@ C! ;

($CNT! $ addr cnt -- 1
(Stores cnt characters of t he s t r i ng $ on top of t h e s t r i ng)

(stack a t t he address addr. I f cnt i s grea ter than the number)

(of characters i n $, t he excess character posi t ions a r e blank)
(f i l l e d . I f cnt is l e s s than t h e number of characters i n S,)

(the s t r i ng i s truncated t o cn t .)

: SCNT! ($ addr cnt --)

2DUP BLANK $P@ COUNT 2DUP + SP! (Clear & drop)

ROT M I N -ROT SWAP ROT CMOVE ; (Move s t r i n g)

($@ addr -- $)
(Fetches the s t r i ng $ pointed t o by the address t o t he top of)

(t he s t r i ng stack. 1

: $@ (addr -- S
DUP C@ 1+ $P@ OVER - DUP SP! SWAP CMOVE ;

($! $ addr --)

(Stores t he s t r i ng $ on top of t he s t r i n g stack a s a counted)
(s t r ing a t t he address addr.)

: $! ($ addr --)

$P@ DUP C@ 1+ ROT SWAP CMOVE $P@ COUNT + $P ! ;

(s Z @ addr -- $)

(Returns the s t r i ng $ on t h e s t r i n g stack of t h e ASCII2)
(s t r ing a t addr which is terminated by a nu l l . 1

Volwne X, Nwnber 3 17 Forth Dimensions

system is little different from using block
ranges in a traditional Forth environment
and allows the use of specialized tools
available under DOS, that I don't have the
time to recreate in Forth.

Another thing which may prove a little
disconcerting to many people in the Forth
community is what appear to be long defi-
nitions. Most of this comes from the fact
that ASCII files allow a word which might
be cramped on five or six lines to be spread
out for readability. One of the definitions,
$MATCH, really is quite long. In that case,
the word is made up of ?DO loops within
 CASE statement within a ?DO loop. I tried
coding it several different ways, but this
came out the cleanest. I hope the tradition-
alists will forgive me.

There is a rule of thumb used for de-
composition: Don't let a definition grow
longer than one screen. I have a slightly
different rule: Don't let a definition grow
longer than what you can easily hold in
your head. If you have to write down the
stack contents while you are coding or de-
bugging, the word is too long. This means
that some words which may be much less
than one screen need to be further decom-
posed, while other words which are longer
than one screen are just fine. The sole judge
of this is you -just remember that your
goal should be to communicate with an-
other programmer, not just the machine.

With that in mind, here is the source
code for this package. I hope it will prove
useful to some of you. I have interjected
somecomments in spots in order to expand
on the comments embedded in the code.

By the way, just because I have pre-
sented a very complete string stack word
set, only the words actually used find their
way into the final application. During de-
velopment, I load the whole thing. When
the application is complete, I comment out
the words not used.

I hope this package is of interest to you.
If you have suggestions or comments, I
would really like to hear them. I can rewrite
just about anybody's code to make it
tighter and faster. That goes for just about
anybody else with my code. Together, we
learn.

Glossary of String-Stack Commands
$! $ addr --
Stores the string on top of the string stack as a
counted string at ad&.

: $Z@ (addr -- ^ s t r)
0 HERE 1+ ROT (Move t o HERE)

BEGIN 2DUP C@ DUP CK> (Unti l n u l l)

WHILE SWAP C! ROT 1+ ROT 1+ ROT 1+ (Inc cn t&pt r)

REPEAT 4DROP HERE SWAP OVER C! $@ ; (Return $ 1

($Z! $ addr --)
(Store t h e s t r i n g $ on t h e s t r i n g s tack a s an ASCIIZ s t r i n g)

(a t addr, terminated by a nul l .)

: $Z! ($ addr --)

DUP $P@ COUNT 2DUP + $P! -ROT ($DROP)

SWAP 2 PICK CMOVE + 0 SWAP C! ; (COPY, $+o 1

(SINPUT -- $)
(Accepts a character s t r i n g of up t o 255 characters from t h e)
(keyboard, creat ing a counted s t r i n g $ on t h e s t r i n g stack.)

(Input is terminated when e i t h e r a Return character i s found)

(o r 255 characters have been input.)

: $INPUT (- - $)
HERE DUP 255 EXPECT SPAN @ $CNT@ ;

($VARIABLE -- -- addr)

(Allocates memory f o r s torage of a s t r i ng . Used i n t h e form:)

($VARIABLE <name> 1
(A t compile time, $VARIABLE adds <name> t o t h e dict ionary and)

(ALLOTS memory f o r s torage of a s t r i n g i n <name>'s parameter)
(f i e l d . When <name> i s executed, it leaves i t s parameter f i e l d)
(address on t h e stack. The s torage ALZXlTed by $VARIABLE i s not)
(i n i t i a l i zed .)

: $VARIABLE (--) (-- addr)

CREATE 256 ALLQT :

($CONSTANT strA -- -- $ 1
(Creates a s t r i n g constant. Typically used i n t h e form:)

(" <string>" $CONSTANT <name>)
(A t cornpilet time, $CONSTANT adds <name> t o t h e dict ionary and)
(compiles t h e counted s t r i n g <str ing> i n <name>'s parameter)

(f i e ld . When <name> i s executed, <str ing> i s l e f t on t h e)

(s t r i n g stack. 1

: $CONSTANT
CREATE (strA --)

DUP C@ 1+ TUCK HERE SWAP CMOVE ALLOT (Save, a l l o t)

(Get s t r i n g)

($NULL -- $)
(Returns t h e n u l l s t r i n g <a zero length s t r ing> on t h e s t r i n g)

(stack.)

1

Forth Dimensions 18 Volume X, Number 3

($NULL? $ -- $ f l ag)

(Returns TRUE i f the s t r ing on top of the s t r ing stack i s the)

(null str ing.

($DROP $ --)

(Discards the s t r ing on the top of the s t r ing stack. 1

: $DROP ($ - -)

$P@ COUNT + $P! ;

($2DROP $ $ --
(Dicards the top two str ings on the s t r ing stack.

: $2DROP ($ $ - - I
$P@ COUNT + COUNT + $P! ;

($Dm $ -- $$)
(Copies the s t r ing on top of the s t r ing stack t o the top.)

($2DUP 1 $ O$ -- 1 $ O$ 1 $ O$
(Copies the top two str ings on the s t r ing stack t o the top.)

: $2DW (1$ O$ -- 1$ 0$ 1 $ O$)

$P@ DUP C@ 1+ 2DUP + C@ 1+ + 2DUP - DUP $P! SWAP CMOVE ;

($OVER 1 $ O$ -- 1 $ O$ 1 $
(Copies the s t r ing second on the s t r ing stack t o the top.)

($SWAP 1 $ O$ -- O$ 1 $
(Exchange the top two str ings on the s t r ing stack.)

: $SWAP (1$ O$ -- 0$ 1$)

1 $ $@ $P@ 1$ 2DUP C@ SWAP C@ + 2+ CMOVE> $DROP ;

($PICK $.. n -- $.. $n
(Copies the nth s t r ing on the s t r ing stack t o the top.

$!L $ p t r --
Stores the string on top of the string stack as a
counted string at the long address ptr.

$0 -- addr
Returns the address of the variable which
contains a pointer to the base of the string
stack.

$2DROP $ $ --
Discards the top two strings on the string
stack.

1 $ O$ -- 1 $ O$ 1 $ O$
Copies the top two strings on the string stack.

$< 1 $ 0$ -- f
Returns True if the second string (I$) on the
string stack has a lower ASCII value than the
first.

$= 1 $ 0$ -- f
Returns True if the top two strings on the
string stack are equal.

$> 1 $ 0$ -- f
Returns True if the second string (I$) on the
string stack has a greater ASCII value than
the fist.

$>D $ - - d c
Converts the string on the string stack to the
double-precision integer d, using the current
radix and the conversion count c.

If all characters in the string are convert-
e 4 c is -1. If the string is partially converted,
c is the number of characters that converted.
If c is 0, the value of d is undefined. The
position of the decimal point is placed in the
variable DPL. If no decimal point was present,
DPL will contain the value -1. If either
hardware or software floating-point exten-
sions have been loaded, the action of $>D and
the value in DPL may vary from this descrip
tion.

$@ addr -- $
Fetches the counted string pointed to by
address addr, returning the string to top of the
string stack.

$@L p t r -- $
Fetches the counted string pointed to by the
long address (ptr), returning the string to top
of the string stack.

$APPEND 1 $ O$ -- 2$
Appends the second string on the string stack
(I$) to the string on the top of the string
stack.

$W 1 $ 0$ -- f
Compares the top two strings on the stack,
returning a flag. If the second string (I$) is
less than the first string, a -1 is returned. If the
second string is greater than the first string, a
1 is returned.

Volume X, Nwnber 3 19 Forth Dimensions

$CNT n -- cnt
Returns the count of the nth string on the
string stack.

SCNT! $ addr cnt --
Stores cnt characters of the string on top of
the string stack at address addr. If cnt is
greater than the number of characters in $, the
excess character positions are blank filled. If
cnt is less than the number of characters in $,
the string is truncated to cnt.

$CNT!L $ p t r cnt --
Stores cnt characters of the string on top of
the string stack at the long address @tr). If cnt
is greater than the number of characters in $,
the excess character positions are blank filled.
If cnt is less than the number of characters in
$, the string is truncated to cnt.

$CNT@ addr cnt -- $
Copies to the string stack cnt characters of the
string at address addr, converting it to a
counted string.

$CNT@L p t r cnt -- $
Copies cnt characters of the string at the long
address @tr) to the string stack, converting it
to a counted string.

$CONSTANT strA - $
Creates a string constant. Typically used in
the form:
" <string>" $CONSTANT <name>
At compile time, $CONSTANT adds <name> to
the dictionary and compiles the counted string
<string> in <narne>'s parameter field. When
<name> is executed, <string> is left on the
string stack.

Increments the lexicographical value of the
string on the string stack, returning l$. If O$ is
a null string, no action is taken.

$DEPTH -- n
Retums the number of strings on the string
stack.

$DROP $ --
Discards the string on the top of the string
stack.

SDUP $ - - $ $
Copies the string on top of the string stack.

$H:MMl2> $ -- hm sd
Converts the time string in the 12-hour format
h:mm a.m. or h:mm p.m. to the time integers
hm ds. The cis value is always 0.

$HH:MM:SS:DD> $ -- hm sd
Converts the standard time format integers hm
sd on the stack to a string on the string stack
with the format hh:mm:ss:dd.

($ROT 2$ 1$ O$ -- 1$ O$ 2$)
(Rotates t h e t h i r d s t r i n g on t h e s t r i n g s tack t o t h e top.)

: $ROT (2$ 1$ o$ -- 1$ o$ 2$)
2 $PICK $P@ 0 SCNT 1+ OVER + (s r c des t)
0 $CNT 1+ 1 $CNT 1+ + 2 SCNT 1t + CMOVE> (s l i d e 1
$DROP ;

(-$ROT 2$ 1$ O$ -- O$ 2$ 1$)
(Rotates t h e t o p s t r i n g on t h e s t r i n g s tack t o t h e t h i r d
(position.)

: -$ROT (2$ 1$ O$ -- 05 2$ 1$)

SDUP 1$ $P@ (s r c des t)

3 $CNT 1+ 2 $CNT 1+ + 1 SCNT 1+ + CMOVE (s l i d e)

$P@ 3 N$ OVER C@ 1+ CMOVE> $DROP ; (Copy/drop)

(SNIP 1$ O$ -- O$
(Discards t he s t r i n g second on the s t r i n g stack.

: SNIP (1$ o$ - o$)
1 $CNT 1+ $P@ 2DUP + 2 PICK CMOVE> $P@ + $P! ;

(STUCK 1$ O$ -- O$ 1$ O$)
(Copies t h e s t r i n g on t h e t op of t h e s t r i n g s tack t o t he t h i r d)
(position.

($a@ 1$ O$ -- -1 I 0 I 1
(Compares t he t o p two s t r i ngs on t h e stack, returning a f lag .)

(I f t h e second s t r i n g 1$ i s l e s s than t h e f i r s t s t r i ng , 0$, a)

(-1 i s returned. I f t h e second, s t r i ng , 1$ i s grea te r than the)
(f i r s t s t r ing , 0$, a 1 is returned. I f t h e two s t r i n g s a r e)
(equal, a 0 i s returned.)

()
($CMP i s equivalent t o t h e LMI word STRCMP)

: $a@ (S O $ - - - 1 I 0 1 1)
1$ COUNT $P@ COUNT ROT SWAP
2DUP >R >R MIN OVER + SWAP 0

?Do DROP DUP C@ I C@ <>
IF DUP C@ I C@ <
IF -1 LEAVE
ELSE 1 LEAVE
THEN

THEN 1+ 0
LOOP NIP ?DUP
IF R> R> 2DROP
ELSE R> R> 2DUP <>

IF <

(a2 a1 c2 c l
-ROT (a2 0 a l c a1

(Not equal?
(Less than?

($<
($>
(
(Inc p t r
(Not equal
(Drop cnts
(Not equal?
(Less then?

Forth Dimemions 20 Volume X, Number 3

ELSE 2DROP 0
THEN

THEN $2DROP ;

($= 1$ 0$ -- f l a g)
(Returns TRUE i f t h e t op two s t r i ngs on the s t r i n g stack
(a re equal. 1

: $= (1$ 0$ -- f l ag)

$CMP o= ;

(< 1 0$ -- f l a g)
(Returns TRUE i f t h e s t r i n g second on t h e s t r i ng stack has a)

(lower ASCII value than t h e f i r s t .

: $< (1$ 0$ -- f l a g)

$CMP -1 = ;

(> 1 0$ -- f l a g)
(Returns TRUE i f t h e s t r i ng second on t h e s t r i ng stack has a)

(grea ter ASCII value than t h e f i r s t .

: $> (1$ 0$ -- f l ag)
$CMP 1 = ;

($WITHIN 2$ 1$ 0$ -- f l a g)

(Returns TRUE i f t h e s t r i n g 2$ on t h e s t r i n g stack i s grea te r)
(o r equal t o s t r i n g 1$ and less o r equal t o s t r i n g O$.

: $WITHIN (2$ 1$ 0$ -- f l a g)
2 $PICK $< NOT $< NOT AND ;

(SUPPER $ -- $)

(Converts a s t r i n g indicated by addr cn t t o a l l upper case,)
(not a f fec t ing any other ASCII symbols.)

: SUPPER ($ - - $)

$P@ COUNT OVER + SWAP
?DO I C@ ASCII ' OVER <

OVER ASCII { < AND
IF DUP 3 2 - I C !
THEN DROP

LOOP ;

(l i m i t s t a r t)

(c h a r > = a)

(char <= z)

(Convert 1
(Drop char)

(SLOWER $ -- $
(Converts a s t r i n g indicated by addr cn t t o a l l lower case,)
(not a f fec t ing any other ASCII symbols.

$INDEX 1$ O$ -- o
Returns the offset into the second string (I$)
on the string stack of the f ist position
matching the pattern of the f ist string. If O$ is
not a subset of 1$, -1 is returned.

SINIT addr n -- addr'
Initializes the string stack for n strings with
addr as the highest address to use, returning
the lowest address used.

$INPUT -- $
Accepts a character string of up to 255
characters from the keyboard, creating a
counted string on the string stack. Input is ter-
minated when either a return character (ODh)
is found or 255 characters have been input.

$JULIAN> $ -- y md
Converts the Julian day of the string to the
standard date format integers y md. The
Julian day is the day offset from the start of
the current year. The Julian date is the
number of days since the last conjunction of
the 28-year solar cycle and the 19-year lunar
cycle, calculated to be January 1,4713 B.C.
On December 31, 1986, the Julian date was
2,446,796.

$LEADING+ O$ n chr -- 1$
Appends n leading characters (chr) to the
string on the string stack, returning the string
1$.

$LEADING- 0$ chr -- 1$
Discards chr leading characters from the
string on the string stack, returning the string
1$.

Extracts a string of length n from the string on
the string stack, starting with the first
character. The length of 1$ is the MIN of the
length n with the length of O$.

SLOWER O$ -- 1$
Converts the string on top of the string stack
to all lower case, not affecting any other
ASCII symbols. returning the modified string.

$MATCH 1$ 0$ -- f
Returns True if the string 1$ on the string
stack matches the pattern of O$. The pattern
of 0$ may consist of the pattern codes of C, G,
N, P, & I,, U, E. ', or -. If the pattern code is a
', the following character is taken as a literal
value and True is returned if that character is
present in the string l$. If the pattern code is
a -, the following character is taken as a
literal value and True is returned if that
character is not present in the string l$. The
pattern is the union of the pattern codes in O$.
The significance of the pattern codes are:

I

Volume X. Nwnber 3 21 Forth Dimensions

C 33 Control characters. including Del
G 128 Graphic characters above Del
N 10 Numeric characters
P 33 Punctuation characters, including

SP
A 52 Alphabetic characters
L 26 Lowercase alphabetic characters
U 26 Uppercase alphabetic characters
E Everything non-graphic
' The following character is present - The following character is not present

$MID O$ o 1 -- l$
Extracts a string of offset o and length 1 from
the string on the string stack. If the offset o is
greater than the length of string 0%. a null
string is returned as l$. The length of 1% is the
MIN of the length with the length of O$ minus
the offset.

$MM/DD/YY> $ -- y d
Converts the date string in the format mrn/dd/
yy to the standard date integers y md.

SNIP 1$ O$ -- O$
Discards the second string on the string stack.

$ N U -- $
Returns the null string (a zero-length string)
on the string stack.

$NULL? $ - - S f
Returns True if the string on the string stack is
null (a zero-length string).

$OK? --
Verifies that the string stack has not under/
overflowed. If an error condition exists, an
error message is displayed and the string stack
is reset.

$OVER 1$ O$ -- 1$ O$ 1$
Copies the second string on the string stack to
the top.

$P -- addr
Returns the address of a variable which
contains a pointer to the top of the string
stack.

$P! addr --
Sets the string stack pointer to address ad&.

$P@ -- addr
Returns the address of the current string stack
pointer.

SPARSE 1$ O$ -- 3$ 2$
Parses the string 1$ for the string 0$, returning
the parsed string 2$ without the string 0$, and
the remaining string 3$, also without the
string O$. If no instances of the string 0$ are
found, string 2$ is the null string and string 3$
is l$.

: $LOWER ($ - - I
$P@ COUNT OVER + SWAP

?Do I C@ ASCII @ OVER <
OVER ASCII [< AND

IF DUP 32 + I C!
THEN DROP
LOOP ;

(l imit s t a r t)

(char >= A)
(char <= Z)

(Convert)
(Drop char)

($APPEND 1$ O$ -- 2$)

(Concatenates the s t r ing second on the stack t o the s t r ing on)
(the top of the stack.)

(1
($APPEND is equivalent t o the LMI word STRCAT)

: $APPEND (1$ 0$ -- 2$)
0 SCNT 1 $CNT + (New cnt)

$P@ COUNT OVER 1+ SWlP CMOVE> (Slide s t r ing)
$P@ 1+ $P! $P@ C! ; (Adj pt r , cnt)

($LEFT O$ 1 -- 1$)
(Extracts a s t r ing 1$ of length 1 from the s t r ing O$ on the)
(s t r ing stack, start ing with the f i r s t character. The length)

(of 1$ i s the MIN of the length 1 with the length of O$.)

Subscribe to the Journal
of Forth Application and

Research like your

To order Volume 5
of the Journal of
Forth Application and
Research call the
Institute for Applied Forth
Research, Inc. at:

INDIVIDUAL: $50 CORPORATE: $1

I;
Forth Dimensions 22 Volume X, Nwnber 3

: $LEFT (O$ 1 -- 1$)
0 $CNT OVER - DUP O> (#Drop > O?)

IF $P@ 2DUP + 3 PICK 1 + C M O W (Sl ide 1 chrs)

$P@ + DUP $P! C! (Adj p t r , cnt)

ELSE 2DROP THEN ; (Do nothing)

($RIGHT 0$ 1 -- 1$)

(Extracts a s t r i n g 1 $ of length 1 from t h e s t r i n g O$ on t h e)
(s t r i ng stack, s t a r t i n g from t h e l a s t character. The length o f)
(1$ i s t h e MIN of t h e length 1 with t h e length of O$. 1

: $RIGHT (o$ 1 -- I$)

0 $CNT TUCK MIN TUCK - $P@ + $P! $P@ C! ;

($MID O$ o 1 -- l $ 1
(Extracts a s t r i n g 1$ of o f f s e t o and length 1 from s t r i n g O$)

(on t h e s t r i n g stack. If t he o f f se t o i s grea te r than t h e 1
(length of t he s t r i n g S1, t he n u l l s t r i n g i s returned a s l $.)

(The length of 1 $ i s t h e MIN of t h e length 1 with t h e length)

(of O$ minus t h e o f f se t o.)

()
($MID i s equivalent t o t h e LMI word STRXTR)

: $MID (O$ o 1 -- l$)

0 SCNT ROT - DUP O> (o > len?)

I F $RIGHT 0 $CNT MIN $LEFT (Extract str)

ELSE 2DROP $DROP $NULL THEN ; (Return nu l l)

($CNT@L p t r cn t -- $ 1
(Copies cnt characters of t he s t r i n g a t t he long address p t r)

(t o t h e s t r i n g stack, converting it t o a counted s t r i ng .)

: $CNT@L (p t r cn t -- $)

>R $P@ R@ - DUP 1- SP! (Adj s t k p t r)

ADDWPTR R@ CMOVEL R> $P@ C! ; (Move, !cnt)

(SCNT ! L $ p t r cn t --)

(Stores cn t characters of t h e s t r i n g $ on t o p of t h e s t r i n g)
(stack a t t he long address p t r . If cnt is grea te r than the)

(number of characters i n $, t h e excess character posi t ions a r e)
(blank f i l l e d . If cnt i s l e s s than the number of characters i n)
($, t h e s t r i n g i s truncated t o cnt . 1

: $CNT!L ($ p t r cn t --)

0 $CNT OVER - O> (Pad w/sp?)

I F DUP PAD C! PAD 1 + SWAP BLANK (Make s p str)

PAD $@ $SWAP $APPEND (Pad $)
THEN $P@ COUNT OVER + $P! (Drop $)

ADDWPTR 2SWAP 0 SCNT CMOVEL ; (Move s t r i n g)

($@L p t r -- $ 1
(Fetches t h e s t r i n g pointed t o by t h e long address p t r t o t h e)
(top of t h e s t r i n g stack.)

$PICK $.. n -- $.. n$
Copies the nth string on the string stack to the
top.

$RIGHT O$ n -- 1 $
Extracts a string of length n from the string on
the string stack, starting from the last char-
acter. The length of I$ is the MIN of the
length with the length of O$.

$ROT 2 $ 1 $ O$ -- 1 $ O$ 2$
Rotates the third string on the string stack to
the top.

$ SOUNDEX O$ -- 1 $
Returns the soundex code string of the string
on the string stack. The soundex code consists
of the fust character of the string, followed by
a threedigit code in the range 0000 2 1$2
2999.

$SWAP 1 $ O$ -- O$ 1 $
Exchange the top two strings on the string
stack.

$TRAILING+ O $ n c h r - - 1 $
Appends n trailing characters chr to the string
on the string stack, returning the string l$.

STRAILING- 0$ chr -- 1$
Discards trailing characters chr from the
string on the string stack, returning the string
1$.

STUCK 1$ O$ -- O$ 1 $ O$
Copies the string on the top of the string stack
to the third position on the string stack.

SUPPER $ -- $'
Converts the string on top of the string stack
to all upper case, not affecting any other
ASCII symbols, returning the modified string
$'.

$VARIABLE -- -- str"
Allocates memory for storage of a string.
Used in the form:
$VARIABLE <name>
and
$VARIABLE

At compile time, $VARIABLE adds <name>
to the dictionary and ALLOTS memoxy for
storage of a string in <name>'s parameta
field. When <name> is executed, it leaves its
parameter field address on the stack. The
storage ALLOTed by $VARIABLE is not
initialized.

$VERIFY 1 $ O$ -- o
Returns the offset into the second string (I$)
on the string stack of the fust character in the
first string (O$) which is not found in the
second (i.e., the length of the initial substring
of O$ which consists entirely of characters in
I$).

I J
Volume X. Number 3 23 Forth Dimensions

$YYYYMMDD> $ -- y md
Converts the date string in the format
yyyyrnmdd to the standard date format
integers y md.

$2 ! $ addr --
Stores the string on the top of the string stack
as an ASCIIZ string at addr, terminated by a
null.

$Z!L $ p t r --
Stores the string on the top of the string stack
as an ASCIIZ string at the long address ptr,
terminated by a null.

$Z@ addr - - $
Returns the string on the string stack of the
ASCIIZ string at the address addr which is
terminated by a null.

$Z@L p t r -- $
Returns the string on the string stack of the
ASCIIZ string at the long address ptr which is
terminated by a null.

-$ROT 2$ 1 $ O$ -- O$ 2$ 1 $
Rotates the top string on the string stack to the
third position.

- $ $ --
Displays the string on the top of the string
stack.

. $S $.. -- $. .
Nondestructively displays the contents of the
string stack.

1 $ I$ 0$ -- 1 $ O$ addr
Nondestructively returns the address of the
string second on the string stack.

Advertisers Index

Bryte - 37
Concept - 25
Dash-Find - 8
FIG Convention - 30
Forth Interest Group - 40
FORML - 11
Harvard Softworks - 6
Inner Access - 14
Inst. Forth Application and
Research - 22
Laboratory Microsystems - 33
Miller Microcomputer Services - 9
Next Generation Systems - 10
Silicon Composers - 2
Vesta Technology - 8

: $@L (p t r -- $)
ZDUP C@L 1 + $P@ OVER - DUP $P! ADDDPTR ROT CMOVEL ;

($!L $ p t r --)

(Stores t h e s t r i n g $ on t o p of t he s t r i n g s tack a s a counted)

(s t r i n g a t t h e long address p t r . 1

: $!L ($ p t r --)
$P@ DUP ADDR>PTR ROT C@ 1+ CMOVEL $P@ COUNT + $P! ;

(SZ@L p t r -- $ 1
(Returns t h e s t r i n g $ on t h e s t r i n g stack of t h e ASCIIZ 1
(s t r i n g a t the long address p t r which i s terminated by a nu l l .)

: $Z@L (p t r -- $)
0 HERE C! 256 1 (Set count)

DO 2DUP C@L DUP O= (Null?)

IF DROP LEAVE (Get out)

THEN HERE I + C! HERE C@ 1+ HERE C! 1 >PTR (Inc cnt , p t r)

Loop 2DROP HERE $@ ; (Drop p t r 1

($Z!L $ p t r --)

(Store t h e s t r i ng $ on t h e s t r i n g stack a s an ASCIIZ s t r i n g)

(a t t h e long address p t r , terminated by a n u l l .)

: $Z!L ($ p t r --
~ D U P (DUP p t r)

$P@ COUNT SWAP ADDDPTR ROT CMOVEL (Store s t r i n g)

0 $CNT 1+ >PTR 0 -ROT C!L ; (Append n u l l)

(SING O$ -- 1 $ 1
(Increments t h e lexicographical value of t he s t r i n g O$ on t h e)

(s t r i n g stack, returning l $.)

: $INC (0$ -- 1 $)
$P@ COUNT ?DUP (Check f o r nul)

IF 1 - + DUP C@ DUP 2 5 5 < (Less than max)
IF 1 + SWAP C! (Inc char va l)

ELSE 2DROP $P@ 1- 0 OVER C! (1 chr n u l l)
1- 1 OVER C! $P! $SWAP $APPEND (Append it)

THEN ()

ELSE 1- 1 OVER C! 1- 1 OVER C! $P! (1 char s t r i ng)

'I'HEN ;

(SDEC O$ -- 1 $)
(Increments t h e lexicographical value of t h e s t r i n g O$ on t h e)

(s t r i n g stack, returning l $. I f O$ i s t h e n u l l s t r i ng , no)

(act ion is taken.)

I]

Forth Dimensions 24 Volume X, Number 3

: SDEC (o$ -- 1$)

$P@ COUNT ?DUP (Check for nul)
IF 1- + DUP C@ DUP 0 > (> null? 1
IF 1- SWAP C! (Dec char val)

ELSE DROP 0 $CNT DUP 1 > (Count > l?)

IF 1- $LEFT 255 $P@ COUNT + 1- C! (Set to 255)

ELSE 2DROP $DROP $NULL THEN (Return null)

THEN ()
THEN ;

(Screens continued on page 37.)

I I Figure One.
\Editor Word rdb 1 1/29/85

\This word allows the use of an ASCII editor (or any other by
\simply changing the name) from within UR/FORTH.

>$YYYYMMDD ymd -- $
Converts the standard date format integers y
m d to the date string, with the format
yyyymrndd.

D>S d -- $
Converts the double-precision integer d to the
string on the string stack.

MAX$ -- addr
Returns the address o f variable which contains
the maximum number of strings on the string
stack.

N$ n -- addr
Returns the address o f the nth string on the
string stack.

2$ 1$ 0$ -- 2$ 1$ O$ addr
Nondestructively returns the address of the
string third on the string stack.

>H:MM12 hm sd -- $
Converts the standard time format integers hm
sd to a time string in the 12Thour format h:mm
a.m. or h:mm p.m.

>$HH:MM:SS:DD hm sd -- $
Converts the the standard time format integers
hrn sd to the string on the string stack with the
format hh:rnrn:ss:dd.

>$JULIAN y m d - - $
Converts the standard date format integers y
md to the Julian day of the string $. The Julian
day is the day offset from the start o f the
current year. The Julian date is the number o f
days since the last conjunction of the 28-year
solar cycle and the 19-year lunar cycle,
calculated to be January 1,4713 BC. On
December 31, 1986, the Julian date was
2,446.796.

>$MM/DD/W y md -- $
Converts the standard date format integers y
md to the date string. with the format rnm/dd/

YY .

I F83 USERS

PVM83 is a complete Prolog extension to Laxen and Perry F83.
It handles the primaly data structures of strings,numbers,logical constants,
logical variables, compound predicates, and lists. PVM83 is designed to add
productlvlty and flexlblllty. It is fully interactive between Prolog procedures,
and Forth code. PVM83 is a compiled Prolog featuring fast execution times.

PVM83 is fully extensible. "Standard definitions gives the
programmer flexibility to design just those procedures needed for his
application. PVM83 code can execute Forth words. F83 can call the PVM83
backtracking and problem solving capabilities.

PVM83 code is incrementally
complled in higher memory segments
than the F83 core, leaving room in

1 PVM 83
the F83 kernal for the "standard exten-
sions or other F83 code that the pro-
arammer needs.

only $69.95
"

PVM83 is designed to keep the includes manual
Forth philosophy of being both requires
compiled, and interactive. You can type DOS 2.0 or higher 256K RAM
in procedures from the keyboard and
test them. or suoolv source code from
~o r th block files: br'text files Concept 4
lntersegment memory management
source code included.

PO Box 20136
VOC Az 86341

Volume X, Nwnber 3 25 Forth Dimensions

SOME WORDS ABOUT
F83's WORDS

-

TIMOTHY HUANG - PORTLAND, OREGON

[Editor's note: This was originally
presented by its author at a FORML event
in Taiwan (ROC). In some respects it shows
the passage of time, but it does provide an
avenue for the intermediate Forth pro-
grammer who is looking for a way to whet
his skills on F83's kernel. Perhaps other
uses of the technique will suggest them-
selves ...]

This paper describes an alternate
method of implementing F83's WORDS
mechanism. The new implementation al-
lows the original function of WORDS -
which displays every word of a given vo-
cabulary - and a display that is limited to
important keywords.

Introduction
F83 is an excellent public-domain im-

plementation of Forth-83. I love it and
believe all who use it will agree with me. In
my personal opinion, it is one of the best
products available, for the following rea-
sons:

It is a very complete implementation of
a software development environment,
including many tools and utilities (e.g.,
metacompiler, multitasker) not provided
in the basic packages of some commer-
cial vendors.
It not only complies with the Forth-83
Standard, it provides a unified image
across several different microprocessors
andoperating systems. I.e.,6502 (Apple-
DOS), 8086188 (MS-DOS, CP/M-86).
8080185 and Z8O (CP/M-80), and 68000
(CP/M-68K).
It is widely available. You can download
it from a computer bulletin board, copy it
free from a friend, or pay $25 to No
Visible Support Software.

However, there is also room for im-
provement. For example:

Some utilities can be made more flexible
(e.g., see this article).
Several definitions should be rewritten in
low level to improve performance (e.g.,
all stack operators should be in low
level).
Several custom utilities should be added
for a given environment, to take advan-
tage of built-in system features (e.g., the
Escape sequence terminal control words
should be used to provide a more
friendly, screen-oriented editor - I hate
the intolerable hostility of the line edi-
tor).

"Our lives (and our
computers) are compli-
cated enough."

32-bit implementations are needed for
newer machines which incorporate the
desktop metaphor (e.g., Apple's Macin-
tosh, Atari's 520ST, Digital Research's
GEM, and Commodore's Amiga).

A Better Way With WORDS
I like the name "WORLX." It demon-

strates good taste and good Forth disci-
pline. It is good English, easy to under-
stand, powerful, and more human than fig-
FORTH's V L I S T , which is not an English
word but computer gibberish. This is a
subtle but important human factor to con-
sider.

Next, because F83 is quite a complete

development system, it contains many,
many words in several vocabularies. Ac-
cording to my unofficial statistics, there
are more than 1000 words in the system.
This is an overwhelmingly large number.
In the FORTH vocabulary, there are more
than 500 words. Somehow, my mind en-
counters great difficulty in remembering
these names. Thus, a better mechanism
must be found.

Finally, an unscientific analysis re-
veals that many of those words were cre-
ated only for the ease and clarity they bring
to the definition of other, more powerful
and commonly used, words. In my situ-
ation, about 50% of the words could be
hidden, reducing to a manageable level the
number of words I need to be familiar
with.

Selection Criteria
Whether any given word is better off

hidden is up to personal taste, the require-
ments of a given task, and even the user's
emotional state. Nevertheless, I would
like to provide the following guidelines as
general selection criteria.

Consider hiding words that fit any of
the following categories:

Words enclosed with parentheses, usu-
ally run-time routines or lower-level
vectored words. These words won't be
executed directly. Including, but not
limited to, (WHERE) , (CONVEY) ,
(C O P Y) , (P A U S E) , (F O R G E T) ,
(? D O) , (D O) , (L O O P) , (+LOOP) ,
and (L I T) .
Words used only in very limited circum-
stances. Dr. C.H. Ting's paper about the
frequency of F83 word use (Forth Di-
mensions VIIl4) is a good reference.

Forth Dimensions 26 Volume X, Number 3

1 7
1 \ Loa l Scveen tdh28SepB5 \ Load Screen
1 \ I f y ~ u l ~ k e by WORDS, use t he f o l l o c ~ n g l i n e . fake your c h o ~ c e o f uh l ch ve rs i on o f t h e YOPDS 1mplementat:on
2 3 4 THRU you 11ke. Co~ment out t he o ther one. Defa,lt t q m i veV;.on.
3 5 LOAD
4
5 \ I f you don't l i k e r i WOFDS, use t he l a t e s t !rs; 3: ke Per ry .
6 \ 2 LOAD
7

6
9

19
: 1

2 B
I \ D isp lay the WCFlCS 1:: :l,t f o c t t r : " - - v Y ~ a S i a r y \ D i sp lay t he WORDS i n t h e Context Yo:aSu:a:,
1 : LAfGEST (S add: c --- addr f va!) OVER B SWAP ROT @ DO LARGEST !S addr n --- add:' v a l)
2 2023 @ g.; !f - ~ 3 - 2gP?fi C:? EYE? TEEN 24 LOOP ; Gives a addrcss and a numbe: o! words t c e>.zzirc, r e?u rc

3 t he address and the va lue o f t he l a r g e s t e c t r y 1s !he ar ray .
4 CREATE THEEAD' #:HRELE 2t A ' X T THREADS i s a sc ra t ch area for ua lks through tr,= t;,:!iusar).
5 : FELL% S a - - 1 THREADS #THREADS 2% CYCVE ; FOLLOW s e l e c t s a yoca tg l a r y
6 : ANOTHEF (S --- an!) THREACS 1THF:EADE L A S Z f T DL? ANOTHER f i n d s t he next uord.
7 !f ?UP ! RC' ! L>EA?E ELSE NIP THE': ;
8 DErEP EAfY (f a- f --- 1 EACt! i s t h r i:!ign t c It pe: f~ rme l 22 ea:h u;:l.
9 : EVERY (S avoc --- NEULINE FOLLOW EVERY p e r f o r r s t h e ac!ion on every uord i n ttle Give: v;ca?:!;r j.

18 BEEIN S;k?.:;S!OF ANOTHEE ?DL? UHiLE EACH REPEAT ; These uords are genera!!y usefu!, no t oa!y fo r YORDS.
11
12 : .NAtlE (S anf ---) EUP C@ 3! A 3 ?LINE . ID 2 SPACES ; .NAR p r i n t s t he next word w i t h i n t he margins.
13 : YOROS (S --- [' I . N A ~ E IS EACH CONTEXT e EVERY ; YORDS l i s t s t he words i n the contex t vocabulary. I t caa be
14 ROOT DET!H:?:Ot!S paused or i n t e r r u p t e d any t ime by press:cg i kt,.
15 : YORDS YO239 ; FORTH DEFIZITIGNS Add UORDS t o t h e ROOT vocabulary.

3 9
I \ Cisp!ay t h e YBSL'2 i n the t c n t e r t Vo:aSca:; - ! \ D i sp lay t he YORDs i n t h e Canfext Vo iabu la r j - :
! : Lb'SfE- !S a?dr n --- a d l r ' vz! 1 OVEP B SWAP ROT 8 DO LARGEST (S addr n --- addr f va l 1
2 ZCC' e 9! !r -RCT ZDRY ~ 8 % DVEF THEX Z+ LOOF DEO? ; Given a address and a n28be: o f uords t c t>ar:ne, r e t i r n
3 CREATE THREADS ITSEEABE 2: ALX? t he address and t he va lue o f t!ie l a r q e s t e n t r j i c t he ar:ay.
4 : FOLLGC (S a l f --- J THREA25 lTHREACS 21 ?ROVE ; THREADS i s a scra tch area for ua i ks th rough t he l i<t icc;*.y.
5 : AKCiHEB (S --- an! 1 TEEEA3S lTHREADS LAFEEST CUP FCLLCV se!e:ts a vocabulary
6 I F DUP e ROT L'EAYE ELSE NIP THE# ; ANCTHER f i n d s t he next word.
7 CEFER EACH (S a r f --- 1 EACH i s t h e a c t i o n t o be p e r f o r r e d on each ucrd.
8 : EVEEY (S avoc --- 1 NEWLINE TULLE# EVERY p t r f o r ~ s t h e a c t i o r on every uord in !ti 5:xcs vc:;S~:ary.
9 BEGIN STAEISTOP ANOTHEE ?DUP UH:LE ELL? REPEAT ; These uords are gene ra l l y usefu l , no t on l y fo r WIR35.

10 : .NAt!E (S an! --- ! D3F Ce 2: ASS ?LINE .!O 2 SPACES ; .NA!i p r i n t s t he next vord u i !h in !he ra:S:r.
11 \ Change and/or a f t the fc~l:cii:;s. t t t t t f t The fu l lou ing : a re e i t h e r n t u ones zr ~ c < i f : e l . t t : t t t t t
:2 : ?TAf !S acf --- a?! ?) DCP Cf 3: A!;; ; ?TAG (5 an! --- anf f 1 r t t u r n t r ~ c i f t ag b i ! i r a:..
1 : S O S a ! - - ! ?TAG I F DROP ELSE - .KALE T!IEFI ; .SOWE p r i n t s on!y un-tagged words. D5 nc! p r ; ~ t ta;;rl ui:ds.
14 : ALL (S ---) !'I .NA!!E IS EA!!! ; ALL v e c t o r t o s h o v a ~ l u ~ ~ d s i t ~ ! h c c o ~ ! t ~ t vc:t:"a:ty.
15 : SOYE (S --- 1 [' I .SCFE I S EACH ; 50% vector t o shou sore uords i n t h e co:!ent vi;at~!ar,.

Volume X, Number 3 27 Forth Dimensions

4
I \ D isp lay t h e WORDS i n t h e Context Vocab;aVy - 2
! : :AS (S --- 1 \ ?a? t h e lat i . ! d e f i n e d word
2 31 i t a ~ S:t) LAST e CSET ;
3
4 : UOEDS (S --- ! COFTEIT @ EVERY ;
5 ROC? DEF!N:TICkE : YCSCS YOX'S ; FOOD: DErIN:T!I#S
E,
7
e
9

19
a < A A

1 ? . -
13
! 4
. C - 4

5
'Z '. Ye:: '\a:;; t fo r the Ncu Y E R E

I;~;AE;-,;~ c~" ' ; ;Es CELL" . t I E O 2EF:N::IOIiS
l . $1; a..- ' -+ ' . -
A . ., ., ,,
3 .' S1:i--::~cg 1s a c:tj o! very s t i c k , r i v e r . ' ; T A E
4 : Pe:-::L ." ?e:-Ta, :s ubc:t t h e hct s;rifi; ;:ace. 2 TAf
c . ziF-:! -
w . . , a j

6 ." ,"::-!';ij i s afi c:6 haha: to%:. u i t L s i t e u:::vers:!y.' ;
7 -A:
8 : F a : - h ." r a : - C x ; ro l~ :es the : + s t ;:s;e-fruit , ' ; :A5
9:' -.,.... -;;:y . ' The o ! l mayj? i s ca:! Pi&-9EAD. ' ; TAG

. *
* L

! I . --:.*i -,-.,.. * .,.. .L.. ., i; Stan-Ch~ng i r Pel-To; :? Dac-Shsf :r ;
1: : >:can-ic3u:::j c r Ray-Do; c r Ta:r;aa_C;ij c r ;
1:

10
\ Disp!ay t h e YORDS i n t h e Context Vc :abdary - 2
TA6 marks t h e l a t e s t & f i n e d words as tagrje3, T; h e nse? as :

: caare) ; TAG

YOEX l i s t s t h e words I n t h e contex t vocabd:;ry. :! car bt

paused or i n t e r r i i i t e d any t i l e by p r e s s l n g a kt).
ftt %jj: ! ied ttf

Add WSPDS t o t n r RCC' vocabulary.

1:
! Test Eraffi;!e f o r t h e neu WERDS
Def;nei a ' ,-- ' s ~ ~ a t u ! a r y ;a i led COU!iT:ES and ad2 9:::~ ~ n ! t i t .
C I . r - F L . '
d*,.,, ,..q i s a t r g g e i uord .

P e i - T o i i~ a tagged uard.
Dan-Stay i s a t a p g e l uord.

? l a : - " - i s a t a ~ g c d uord.

Tai:ac-City i s a t a g i i l us:d.

T - : . . : ...c ' ,
ea.pt.- h J is :,?! a t i g i i t w ~ d .
ra;. .,.-, - - , , ...=. . ~ r ; t y i5 not r tag;ad urrc ' .

Personally, I think words that are used
fewer than 20 times in the system should
be hidden, but exceptionsexist. ?MISS -
ING was used 113 times by other F83
words, but during several years I have
never needed it. On the other hand, DUMP
isn't used by any other words, but my
programming life would be miserable
without it. Personal judgment should be
your guide.
Non-English words should be hidden.
Our lives (and our computers) are com-
plicated enough without unnecessary
burdens. Poor choices for word names
just exposes a lazy programmer and will
make your programs more difficult to
maintain. I cannot see anything good
about using non-English Forth word
names.

Syntax
Bearing these points in mind, we will

now derive a method to provide a discrimi-
natory word-listing mechanism. With this
new way of dealing with words in the sys-
tem, some words are tagged and some
remain unchanged.

The first thing thatrequires our attention
is the desired syntax. Because the main
interpreter interfaces with us, it should be as
close as possible to our human linguistic
habits for ease of use and understanding.
Awkward, unnatural, and nonEnglish
syntax will only degrade and prevent hu-
man progress. Thus, it is very important to
get this right. At this point, I do not even
care about all the other, nitty-gritty factors.
What I care about is the overall approach to
the whole thing.

I think the following two examples are
great. They are short, simple, and plain

English. Even we (Chinese) have no
sweat comprehending them:

ALL FORTH WORDS
SOME FORTH WORDS
<choice> <vocabulary><func-
t ion>

The first phrase is equivalent to the old
FORTH WORDS. It displays d l words in
the FORTH vocabulary, regardless of the
nature of the words. The whole phrase
only needs to be used once, to select the
vocabulary and the behavior of WORDS;
after that, just typing WORDS is enough.
Of course, the vocabulary name -
FORTH, in this example - can be that of
any vocabulary.

The second phrase is the selective
word listing. It only shows words that are
not tagged. Again, after the complete

I
Forth Dimensions 28 Volume X, Number 3

phrase has been typed once, WORDS will
conform to that behavior until changed.

Glossary
The following words will be needed to

implement this new mechanism:
A L L (- -)

Vectors the function of WORDS so that
all the words in a given vocabulary will be
displayed.

SOME (- -)
Vectors the function of WORDS so that

only the untagged words in a given vocabu-
lary will be displayed.

TAG(--)
Marks a given word so that it will be

hidden from the selective display.
Used in the form:

:<name><definition> ; TAG

SOME (- -)
Displays only untagged words in the

context vocabulary. Press any key to inter-
rupt the listing.

The (FIND) function (on screen 63 of
my KERNEL.86.SCR file) must be
modified as below:

: (FIND)

BEGIN ...
WHILE ...
0 [SI] AL MOVE
ES: 0 [DI] AL XOR
31 # AL AND
.+. ,

The phrase 3 1 # AL AND masksoffthe
three most significant bits - the delimiter.
precedence, and tag bits. The original
phrase 6 3 # AL AND only masks off two
bits.

If you don't want to metacompile a new
kernel with the above change, you can also
"hot patch" the definition of (FIND) to
accomplish the same thing (that is, change
the value in the kernel image and then save
a new binary command file). But be
warned, this is at your own risk and the
system will now differ from its source
code.

Source code for the modification of
related words is provided in the listing.
Incidentally, Mike Perry made some im-
provements to this particular subject in
April 1985. His listing is provided here in
screen two; if you prefer Mike's ideas,
replace screen five of UTILITY-SCR with
the contents of this new screen. If you
prefer my scheme, use screens three and
four presented here. Screen five is a test
case.

order
Context: COUNTIES COUNTIES FORTH ONLY
Current: FORTH

/ otherwise, returns false.

?TAG (nfa - - nfa flag)
Checks the count byte of the name field

to see if the tag bit is set. If it is, returns true;

Implementation Notes
In order to get the job done right, I think

the following must be carefully considered
during implementation:

The normal dictionary search by the
interpreter should not be affected by this
implementation. 1.e.. to the interpreter,
these two categories of words should
maintain the same weight. This means
that words like ' (tick), FIND, FOR-
GET, etc. should be able to find all words
in the dictionary, tagged and untagged
alike.

all counties words
TAINAN-COUNTY TAIPEI-COUNTY TAINAN-CITY MAR-DOU DAN-SHAY
PE I-TOU SHAN-CHUNG

For the tag bit, it can use the smudge bit
of the name field's count byte. If this bit
isset, then SOME <voc> WORDS should
not see it. If it is not set, then SOME
<voc> WORDS will see it. Regardless of
the condition of the tag bit, ALL <voc>
WORDS will display all the words in that
vocabulary.
Modification of the system should be
kept to a minimum, if possible. As it
turns out, except for the modifications in
screen 5 of the UTILITY .SCR file, there
is only one other place that must be
changed.

I I some counties words
TAINAN-COUNTY TAIPEI-COUNTY

words
TAINAN-COUNTY TAIPEI-COUNTY

Taipei-county
Shan-Chung is a city of very stinky river.
Pei-Tou is where the hot spring place.
Dan-Shay is an old harbor town with nice university.

Tainan-county
Mar-Dou produces the best grape-fruit.
The old mayor is called Big-Head.

Mar-Dou . 22459

Figure One. Use of the selective WORDS, based on the example in screen five. Bold
indicates keyboard entries.

I

Volume X, Number 3 29 Forth Dimensions

Real-Time Programming
Convention
November 18 - 19,1988

Grand Hotel, Anaheim, California

Call for Presentations

The 1988 Real-Time Programming Convention will be held at the Grand Hotel in Anaheim,
California, and is sponsored by the Forth Interest Group.

The theme of this year's convention is Real-time Programming Systems. The invited
speakers are Jef Raskin, head of the original Macintosh development team and inventor of
the Canon Cat, and Ray Duncan, well-known author and expert on IBM PC Operating
Systems. Both speakers have made extensive use of Forth, a language especially suited to
real-time applications.

There is a call for presentations on topics in the following areas:

Programming Environments Applications

Real-time Operating Systems
Language-oriented RISC machines
Parallel Processing
Languages for Data Acquisition and
Analysis
Robotics and Real-time Device Control

Intelligent Devices

Aerospace
Medical
Laboratory
Machine-vision
Digital Signal Processing
Robotics
Automation
Instrumentation

Intelligent Instrumentation
Working Neural Nets
Adaptive devices
Software Peripheral Controllers

Presentations may be either talks or demonstrations. Talks are limited to fifteen minutes.
Please submit an abstract of the talk and a request for any audio-visual assistance by October
15. Demonstrations may accompany the talk or appear separately throughout the
convention. Please send a description of the demonstration and its requirements by October
15.

Abstracts and descriptions should be sent to: Real-Time Programming Convention,
Forth Interest Group, PO Box 8231, San Jose, CA 95155.

Forth Dimemions 30 Volume X, Nwnber 3

Part Two I
DESIGNING

DATA STRUCTURES

The Search for Portable Data Objects
Various design techniques can make the

porting of data structures easier. Usually,
the use of such design techniques reflects a
general programming philosophy rather
than a concern for portability.

The primary focus of this discussion is
the portable coding of data objects. Be-
cause of their effect upon portability, cer-
tain programming techniques will become
the focus of the following discussion.
These techniques are: object-oriented pro-
gramming and data abstraction.

(Note that some techniques can be
closely wedded to a language. For example,
the idea of typed data in Pascal shapes the
syntax of that language.)

Beyond typed data, there are program-
ming techniques that cannot be made
mandatory through imposition of syntax. A
familiar example is factoring routines to
keep them simple and short. This is not
likely to become a part of the imposed
syntax of any language. We must use such
techniques voluntarily, which is likely to
happen only when we develop enough
appreciation for them.

Even when one language supports a
technique better than others do, the tech-
nique still offers benefits to programs writ-
ten in other languages. This is especially
true for Forth, because of its extensi-
bility.We can circulate the benefits pertain-
ing to certain languages throughout all of
our own programs. Forth programs can -
and should - make use of data typing,
object-orientation, and data abstraction,
even if Forth itself remains essentially un-
changed.

First, a brief examination of Forth con-
stants and variables is offered. These ob-
jects are universally available and should

MIKE ELOLA - SAN JOSE, CALIFORNIA
m

already be understood well.

Standard Forth Objects
In the last installment, we learned that an

object is a collection of properties. Among
those are the layout properties, such as the
order of its components. Other, more de-
rivative properties arise because of the
consistent interpretations we associate with
particular components of an object, such as
the sign bit.

While all Forth variables have a sign bit,
different host computers use a different bit
for the purpose. Likewise, the least-signifi-
cant eight bits of a 16-bit number may
occupy the low byte on some hosts, and the
high byte on others.

Note that the same source code should
compile and behave the same, whether or
not different hosts structure variables in the
same way. We have grown comfortable
with a certain lack of concern over the host
computer, sinceeach Forth implementation
treats the bits within a variable in the appro-
priate way for the given host. But when we
extend Forth with new data objects and as-
sociated operations, we must give these
host-specific concerns their due.

Now that 32-bit processors are becom-
ing commonplace, there is more sensitivity
to how variables and constants are imple-
mented. The porting effort for variables and
constants will be increasingly difficult.
However, much of thecodeintended for 16-
bit variables should work when 32-bit vari-
ables are used instead.

If the bit-width property of variables and
constants is important for our applications,
then we should not use the usual Forth
operators. Instead, we should use new
compiler directives like L@ that can com-
pile the correct operation (@ or D@) for a

given host. See Mitch Bradley's discus-
sion in Forth Dimensions (BRA87) for a
complete treatment of this subject.

New Objects
New Forth data objects are the primary

concern. How can they be designed for
ease of porting?

Along with their associated opera-
tions, new data objects depend on the host
architecture. This is one of the major
sources of all porting problems. Among
such host peculiarities are bit-processing
widths and word-alignment require-
ments.

Executable routines apart from data
structures are more portable, relatively
speaking. When kernel routines generate
and manipulate addresses, they do so cor-
rectly for the host computer. Higher-level
routines remain host independent when
they engage those kernel routines for their
address manipulation needs.

In this way, data objects with simple
layouts are often source-code compatible
across all hosts. This can happen because
these objects avoid address manipula-
tions not performed automatically by the
Forth kernel. Examples include variables
and constants. In contrast, arrays are a
porting problem because of their more
expansive layout and the need for a pro-
grammer-supplied, element-addressing
operation.

But can we really avoid manipulating
addresses in high-level code? If not, we
should at least try to minimize the adverse
effects of address manipulation on porta-
bility.

Object-Oriented Techniques
The broadening of our perception of

I I
Volume X, Number 3 31 Forth Dimensions

an object to include its associated opera-
tions is the key to object-orientedprogram-
ming. In the same way that local variables
are the private resources of their associated
routine, object-oriented operations are
subordinate to a given type of object. Ac-
cordingly, they are the methods belonging
to an object.

(Sharing of operations is possible,
however, unlike sharing of local variables.
This sharing is restricted to a hierarchical
data typing system. So operations are not
sharable by all objects, but only those
which are a subclass of the superclass for
which the methods have been defined. The
process of sharing methods down through
the ranks of object types is known as in-
heritance.)

Object-orientedlanguages treat objects
and their associated operations as if they
were one entity. Those operations exist
only within the context of the object.
Within the implementation of the object,
those operations are accessible. Within the
application, they are referenced via a
method-selecting operator or message. For
typical Forth purposes, this message
sender is an executable routine that leaves
a value (message) on the stack for the
object to process at run-time. To make a
reasonable response, the object must be
able to invoke a corresponding method for
each message received.

We can parallel these techniques in
Forth in many ways (see bibliographic ref-
erences). One way is to include all the
object-specific operations in the DOES>
portion of the declarator (HAM86). Each
operation can be a separate case in a CASE
statement. Such an object will expect a flag
(message) on the stack, and will use it to
select the correct operation to perform.

By including object-specific opera-
tions as part of the declarator, we isolate
the porting effort to the reformulation of
the object declarator. The message-gen-
eration operations will usually port easily,
since they can simply be constants.

But a change of syntax has to occur as
well. As expected, we lose direct control
over which operator is compiled. Instead
of specifying the object-specific opera-
tion, we now have to send to the object a
message indicating what kind of operation
is intended. The resulting syntax is prefix
(method-selector followed by the object)
rather than postfix.

While I consider the prefix syntax a
distinct disadvantage of an object-oriented

I

Forth Dimensions

language, there are significant advantages.
Eliminating object-operator mismatches
and reducing the need for a proliferdtion of
object-specific operators (LC, C@, w@ , etc.)
are two of these benefits.

Note that object-oriented techniques do
more than detect type mismatches - they
prevent them! (This is already true for
constants, where you never get the opportu-
nity to use C@ or D@ in place of the @ that is
compiled inside CONSTANT.)

One correctable problem with object
orientation is that it can encapsulate opera-
tors in an object so well that they are not
reusable by other objects. An inheritance
capability is usually offered to counteract
this restriction. But why deny reusability,
only to permit it again in a restricted form?
This strikes me as similar to the debate over
enforced data typing, something Forth
never seems to have acquired.

To aid our freedom of choice, I will be
offering a form of Forth data typing that can
be fine-tuned with respect to its restrictive-
ness. By choosing to overload operators
and use well-known vocabulary refine-
ments, it is possible to introduce an ap-
proximation of inheritance into this object-
oriented data typing scheme. It, too, is
adjustable in terms of its restrictiveness:
restrictions may be hierarchical (like OOP
languages), or there may be no restrictions,
or there may be restrictions that fall some-
where between these two extremes.

Revisiting Ham's Arrays
In my opinion, important experiments

with object-oriented techniques were
kicked off by Michael Ham, even though he
makes few claims to object orientation
(HAM86). Rather, he applied such tech-
niques in his array declarator. By creating
single-element arrays, you will see that
Ham already supports the creation and
processing of multiple data types, using a
single typelobjectlarray declarator. Degen-
erate cases of arrays can simply be used to
create instances of variables, doubles, and
anything else, as the following code illus-
trates (FOR is Ham's name for his array
declarator):

: VARIABLE
1 CELL FOR ;

VARIABLE COUNT

: DOUBLE
1 DOUBLE FOR ;

DOUBLE DOLLARS

: 20CSTRING
20 BYTES FOR ;

20CSTRING NAME

Another advantage is that instances of
objects so defined are forced to share cer-
tain characteristic properties. For ex-
ample, each instance of a variable defined
in this manner will contain an extra byte
value reflecting the array type (necessary
to properly index a mixture of array types
with one array declarator). With this extra
information, Ham can more easily estab-
lish a data typing scheme: his operators
expect objects like these to contain ele-
ment-identifying information at the same
relative address.

Ham uses overloaded method selec-
tors, such as GET and PUT, to reference
the correct fetch and store operation for a
given type of object in an array. While this
eliminates the need to remember object-
specific fetch and store operators, the
general loss of a postfix (object-operator)
syntax is a dear one. See Terry Rayburn's
FORML paper (RAY87) for an excellent
description of the problems that resulted
from his trial use of a prefix syntax.

Data Abstraction Techniques
Hiding implementation details behind

a simpler interface is not a strange Forth
technique: it is the Forth programming
model (factoring). In Forth, this technique
applies to executable routines as well as
data objects. For example, WORD has to
take into account the layout properties of
the text input buffer and the disk block
buffer (one may be null-terminated).
However, operations that reference WORD
need not be concerned with the layout of
the buffer. So WORD hides whether input
came from the command-line buffer, a
disk block buffer or, possibly, a text file.

The declarator that creates constants
(CONSTANT) also represents the advan-
tages of abstraction. With a CREATE
phrase to determine the layout of the con-
stant and a DOES> phrase to interpret that
layout, the declarator CONSTANT encap-
sulates all the object-specific processing
required for constants. In this way, most
details of an object's layout can remain
hidden to routines other than the declara-
tor.

Constants are not a good example of
data abstraction, however, since they not
only interpret the object, they act upon it
by moving a value onto the stack.

Volume X, Number 3

1 with LMI FORTHTM I

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth183 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-60, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

I~abora tory Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295

credit card orders to: (213) 3067412

Overseas Distributors.
Germany: Forth-Systeme Angelika Flesch. Titisee-Neustadt. 7651-1665 1

I UK: ~ v s t e m ~ c l e n c e ~ t d . . London. 01-248 0967 I , - - . , - - - - - - -
~ranck : Mlcro.Sigrna s.A.R.L., Paris, (1) 42.65.95.16
Japan: Southern Pacific Ltd., Yokohama. 045-314-9514
Australia: Wave-onlc Assoc~ates. Wilson, W.A., (09) 451-2946

I

Volume X, Nwnber 3 33

The real objective is to hide the implem-
entation (layout properties) of an object
behind a simpler interface. The application
of this technique also helps reduce the
porting effort, as will be shown.

Data abstraction differs from object
orientation, because methods need not be
considered subordinate to an object. The
major work required to abstract an object
takes place in the basic operations serving
the object. Those basic operations interpret
all the peculiarities of the data structure in
order to provide simplified access to them.
Other operations can use this simplified
interface to perform - in a less object-
specific manner - the remaining process-
ing of the object.

The operations (or methods) primarily
responsible for abstracting objects need to
be tightly coupled to the associatedobjects.
Methods that can be shared across objects
need to be more loosely coupled to the
associated objects.

Naturally, the initial operation is a good
place to do the abstraction work, locating it
in the DOES> phrase of the object declara-
tor.

Using this approach to create a counted-
string data type, we would be obliged to
include a COUNT-like operation in the
DOES> phrase of the definer, as follows:

: "COUNTED-STRING
CREATE PAD HERE OVER

C@ 1+ DUP
ALLOT CMOVE

DOES> DUP C@ SWAP 1t ;

Once defined correctly for a given host,
this definition produces string variables
that can be printed by TYPE without an
intervening (host-specific) COUNT opera-
tion.

Until we are able to perform all string
operations using theobject's external inter-
face, data abstraction is not completely re-
alized. A more wholehearted attempt at ab-
stracting strings would support more string
operations, including reliable string con-
catenation. To do so, the initial operation
should hide the object's layout better. For
example, a stping concatenation operation
should not have to change, even if the
maximum-count were to be alloted two
bytes rather than one.

Figure One is a more abstract implem-
entation of twice-counted strings. Twice-
counted strings include storage for two

Forth Dimensions

counts: the maximum count and the cur-
rent count. The variable MaxCount pro-
vides a simpler interface for accessing the
object's maximum count property. This
variable can be accessed easily, whereas
accessing the actual byte(s) in the data
structure would require a string-specific
operation. Also shown is Get2CSt ring
and Concat2CString. One allows the
input of a twice-counted string and the
other performs string concatenation be-
tween a character array and a twice-
counted string.

Note that existing counted-string o p
erations can be shared by twice-counted
strings. Such operations include TYPE
and -TRAILING.

Once you have verified that Twice -
CountedString works properly on a
new host, Get2CString is certain to
work as well.

However, new syntax dependencies
are introduced: Get 2CSt ring assumes
that the value of MaxCount has been set
properly prior to its execution. The way to
guarantee this is through a syntax rule: Use
Get 2CSt ring directly after a reference
to a twice-counted string. A similar syntax
rule should be applied to Con-
cat2CString.

The introduction of new syntax re-
quirements are part of the problems we
often encounter when applying data ab-
straction and object-oriented techniques.
For example, few message-passing, prefix
syntaxes allow a consistent version of the
following Forth code:

CURRENT @ @

those implementations. We need to deal
with those host peculiarities using abstrac-
tion techniques once more.

In general, two forms of abstraction are
important, data abstraction and host ab-
straction. To make operations reusable
across several objects (or several versions
of the same object), abstract objects. To
make all data objects work properly across
several host computers, abstract host com-
puters.

Since the abstraction of the host can be
handled separately, it can and should be
solved apart from the abstracting of objects.
We should be able to use this code within
our applications so they can be transported
easily to substantially different hosts.

Conclusions
Although we have forayed deeply into a

couple of timely design topics, the discus-
sion has identified the leading factors that
interfere with object portability:
1. Host pecularities, such as bit-processing
widths.
2. Object peculiarities that a variety of
operations depend on in order to work.

A way to overcome these defects has
also been suggested:
1. Hide object-implementation details with
data-abstracting techniques to minimize
the amount of code that needs to change.
2. Identify the implementation details re-
garding an object that are really host par-
ticularities, and hide those host particulari-
ties under another suite of host-abstracting
routines.

These two, cascaded layers of abstrac-
tion - objects and hosts - should bring
about nearly optimal efficiency andporta-
bility of data design.

In the next installment, alternative
ways of performing address arithmetic are
suggested, so that address arithmetic in
general is rendered portable. This will
help substantially with Forth's abstrac-
tion of the host computer.

We also have explored various ways to
implement some of the forms that object-
oriented extensions to Forth have taken.
Progress has been made using multiple
code fields (SHA79). placing all the op-
erations for an object within its declarator
(HAM79), and operator-lookup tables
(RAY79). I favor preserving postfix syn-
tax at any cost, which seems to be the
direction of Terry Rayburn as well.

References
BRA87: Bradley, Mitchell. "Forth to the
Future," ForthDimensions, Vol. IX, Issue
1.
HAM86: Ham, Michael. "StructuredPro-
gramming" column, Sofware Tools, July
1986.
RAY87: Rayburn, Terry. "Methods>
Object-Oriented Extensions Redux,"
1987 FORML Cogerence Proceedings.
SHA88: Shaw, George. "Forth Shifts
Gears," Computer Language, May 1988.
- -- - - - -

Mike Elola is a published Forth pro-
grammer and a full-time writer at Apple
Computer. Over the years, Mike feels,
Forth has tricked him into believing that
he is a computer scientist.

At least in most of the current Forth
implementations of object-oriented prefix
syntaxes (see bibliographic references),
GET GET CURRENT wiU not perform the
same function. What does work is:

GET CURRENT @

although it is an unpleasant mixture of
prefix, message-passing syntax and stan-
dard postfix syntax.

Other Valuable Abstractions
Although we have discussed data-ab-

straction techniques useful for hiding the
details of an object's implementation, of-
ten host peculiarities are also contained in

VARIABLE MaxCount
: TwiceCountedString (maxbytes --)

CREATE C, 0 C,
DOES> I adr count -- 1

DUP C@ MaxCount ! I+
DUP C@ swAe 1+ ;

: Get2CString (adr count --)
DROP (the old string length is ignored)
MaxCount @ MIN EXPECT ;

: Concat2CString (adr count dest-adr dest-count --)
2 PICK OVER + (totalcount --)
MaxCount @ MIN (validtotalcount --)
DUP 3 PICK C! (C! is object-specific, Oabstraction)
OVER - (adr count dest-adr dest-count movecount --)
>R + 1+ DROP R> (adr dest-adr+ movecount --)
CMOW (W V E is also object-specific, Oabstraction) ;

Figure One. 'Abstract' version of twice-counted strings.

I

Forth Dimensions 34 Volume X, Number 3

THE BEST OF
GENIE

L e t ' s talk. Let's really talk about
ideas and their presentation.-~hat is the
premise behind Real-Time Conferences,
or RTCs, on the GEnie Forth RoundTable.
If you are not participating in these confer-
ences, you are depriving yourself of a
unique experience.

The conferences can be broken into
three distinctly different categories. The
regular Thursday night Figgy Bar is a free
forum that resembles a food-fight of ideas.
I must confess, I usually am the sysop

GARY SMITH - LITTLE ROCK, ARKANSAS =

been Don Colburn ("The Sacred Cows of
Forth," October 1987), Gary Feierbach
("Forth and the Super8," April 1988), John
Hayes and Marty Fraeman of Johns-
Hopkins Applied Physics Lab ("FRISC3
32-bit Forth Computer," May 1988), and
Mahlon Kelly ("Forth as aTeaching Tool,"
July 1988). By the time this makes print, we
should have had a guest conference with
Mitch Bradley.

responsible for these exercises in chaos, I "Thursday night's though Dennis Ruffer has had his fair share - - -
of sitting in as meeting leader. The central I piggy Bar resembles a
theme of these Thursday night (9:30 p.m.
Eastern) meetings is anything goes, as long 1 food-fight of ideas."

tional 16-bit "controller" and newer
32-bit "workstation" environments.
The effort should be conducted by a
highly qualified, small team who are
compensated for their efforts by a
consortium of interested individuals,
groups, companies, and vendors. The
team should concentrate on develop-
ing a formal specification for the
minimum possible set of words. The
words should be specified independ-
ent of stack width or address space.
The goal of the team should be to
characterize current practice rather
than institutionalize new methods.

as the discussion involves Forth or items of
interest to the Forth community. Such
items have included image processing,
radar control, robotics, chapter activities,
standards,andcomp.lang.forth onusenet.

Sunday night (830 p.m. Eastern), Le-
onard Morgenstern conducts his Question-
and-Answer Figgy Bar for intermediate
and beginning Forth programmers. His
first full conference was on arrays, and I
cannot imagine anyone involved with
Forth not gaining insight from the presen-
tation. Leonard became a sysop because of
his unselfish desire to share his knowledge
of Forth, and it is a pleasure to observe him
in his natural element. Do not let the stated
target group of the Sunday night sessions
dissuade you from attending-I can abso-
lutely promise, these are for anyone inter-
ested in learning more about Forth.

The third category is our guest confer-
ences. These represent a marvelous oppor-
tunity to rub elbows with the movers and
shakers of Forth while sitting comfortably
at our own keyboards. Guests to date have

The team should solicit the widest
possible range of inputs from the
Forth community. Submission of
materials, however, should only be
presented to the team in written form,
accompanied with compelling writ-
ten arguments in favor of the submis-
sion. The team should produce at
least one draft standard which is dis-
tributedby the consortium. Both draft
and final standard documents should
be copyrighted by the consortium,
and be distributed for a fee to defray
costs.

What wonderful experiences these
guest conferences have been. The rest of
this column is devoted to the opening
comments that started each of them.

Don Colburn
Creative Solutions, Inc.
October 1987

<[Don Colburn]> "I was wondering if
many people had a chance to read the file
that Ward uploaded here for me. It had
some of my thoughts on this topic. Perhaps
we could conduct a poll of what topics
would beof most interest. I'll number them:
1) lcbitness, 2) text files, and 3) system
interfaces. How about everyone simply
entering the number they would most like to
talk about right now."

Conclusion of the remarks Don is referring
to:

Any new standardization effort for
Forth must address itself to both tradi-

c m n Colburn]> "Let's talkabout 16-
bitness, and text files and then discuss
'other' categories.

"I think Chuck Moore presents a very
good case for 16-bitness, for controller
applications. A lot of people continue to be
confused over the applicability of 16-bit
systems on workstation computers. I note
that both Alan and Gerry have worked
with 32-bit systems. Is this still an issue?

"My only point is that I'd like to avoid

Volume X, Nwnber 3 35 Forth Dimensions

having to explain for the 100th-or-so time
at the next standards meeting why I find the
suggestion that I precede every @ with a L@
or some other silly suggestion[sic]. Glad to
see that this may be less of an issue than I've
been told it was."

Gary Feierbach
Inner Access
April 1988

<[GARY-F]> "Greetings. First I will
start with some implementation notes.

"The 8K nucleus contains the follow-
ing: all good Forth words, including multi-
tasker, double number set, things like
3DUP. 4DUP, BETWEEN, WITHIN, String
words, and at least a few words that are
quite obscure and useless outside the nu-
cleus. But, the 8K nucleus contains no
heads! The 8K development ROM has
those, along with a Forth-style structured
assembler with the entire Super 8 instruc-
tion set (a lot) and words that compile code
like BEGIN, UNTIL, WHILE, REPEAT,
IF, ELSE, THEN. The development ROM
also contains disk UO words for using the
PC as a file server (BLOCK, etc.) and some
other miscellaneous stuff.

"The Super 8 itself runs at 2OMhz, but
this is misleading to those not familiar with
the flim-flam of 1-chip micro makers: it is
immediately divided by 2 on board the
chip, and all timings in the manual are
related to this lOMhz clock.

"It is still quite fast, however, about 2.5
times faster than my PC that runs at
4.77Mhz; on the other hand, it isn't aNovix
chip so don't get too excited. This is a $7
item to go into automobile dashboards or
washing machines. It contains two counter
timers, a UART, five eight-bit parallel
ports (four are bit-programmable), a DMA
channel, vectored intermpts, 277 general-
purpose registers, and a partridge in a pear
tree.

"The implementation is as close to the
F83 public-domain implementation as
possible."

John Hayes and Marty Fraeman
Johns-Hopkins University
Applied Physics Lab.
May 1988

<[John&Marty]> "Over the past couple
of years, we have designed a number of 32-
bit Forth processor chips. We call our chips
FRISCs (Forth Reduced Instruction Set
Computers). Tonight we want to talk about

our latest effort, FRISC 3. To find out more
about FRISC 1 and 2, seethe 1986 FORML
Conference Proceedings or the 1987
Rochester proceedings.

"FRlSC 3 is a word-addressed machine
(i.e., no bytes). All internal elements of the
chip are fully 32 bits wide. The top portions
of the parameter and return stacks are
cached on chip, to improve performance
and retain a single path between memory
and the CPU.

"The FRISC 3 instruction set consists
of eight instructions in three categories:

control flow instructions
call
branch
conditional branch

loadlstore instructions
load
store
load address low
load address high

other
microcode

"All eight instructions take one clock
cycle to execute except for load and store,
which take two cycles. All FRISC 3 in-
structions are 32 bits wide. The three in-
struction formats are shown in Figure One.

"The three msbs of the instructions se-
lect one of the instruction types. In the
control flow instructions, the remaining 29
bits are an absolute destination address. In
load ar~d store instructions, the 16-bit offset
is added to R 1 to form an address. R2 is the
destination of load instructions and the
source for stores. The load address instruc-
tions make the same address calculation
just described, but load the address into R2.
In the microcode instruction, there is a 16-
bit ALU control field instead of the offset
field. The microcode implements most
Forth primitives (i.e., DUP, OVER, +, i,
etc.). Both the load/store and microcode
instructions have a return bit."

Mahlon Kelly
ceauthor, Forth: A Text and Reference
July 1988

<Flahlon]> "I would like to put for-
ward the idea that Forth is an excellent
language for teaching introductory courses
in computers. In fact, that it is by far the best
language available.

"Most languages were developed for
use on mainframes, and although the usual

stated reason for their development is to
make it easy for humans to use the ma-
chines, another is to protect the machines
from humans. Thus, those languages are
designed to prevent users from being
aware of the equipment itself. That stands
in the way of students really understanding
how computers work.

"Forth does the opposite. The more
you know about the machine, the better
you can use Forth. Thus, the student is en-
couraged to learn not only about the lan-
guage, but about computers. And since
Forth is interactive, Forth encourages the
best type of learning, that is, learning from
mistakes.

"Direct memory and register access are
both available, and perhaps more impor-
tant is the use of any desired number base.
It is very easy to teach about binary, octal,
decimal, and hex arithmetic. It is very easy
to teach about logical operators. And it is
even very easy to introduce assembly lan-
guage.

"Perhaps most importantly, it is easy to
teach about machine and assembly in-
structions, and to get across the differ-
ences among machine, assembler, and
higher-level languages. In the first lecture
of my course, I teach how to define
SQUARE DUP * ;

"Then I have them look at and
disassemble DUP and *. Now when they
program, they know what they aredoing to
the machine. They do this while sitting at
computers.

"I have been told by one M.S. student
in computer science that after my Forth
course (which he obviously took to learn
the language, not computers), he had the
equivalent level of understanding of com-
puters of a third-year student in comp. sci.
The course assumes no background.

"Questions: Are these ideas correct, or
should we continue to teach introductory
Pascal, BASIC, Fortran, etc.? How is
Forth best taught - is it best to teach first
how it works,or how to use it? How can we
convince computer science departments
of Forth's value, not only as a language but
as a teaching tool?"

Hope to see you at our next Real-Time
Conference where we can talk - really
talk - about Forth.

(Figure One on next page) I
I
Forth Dimensiwu 36 Volume X. Nwnber 3

Type:3 Address:29
Type:3 Return: 1 R1:4 R2:4 Stack4 Offset 16
Type:3 Return:l R1:4 R2:4 Stack4 ALU:16

Figure One. FRISC 3's three instruction formats.

(Screens continued from page 25.)
1

(STRAILING- 0$ chr -- 1$ 1
(Discards t r a i l i n g characters chr from t h e s t r i n g O$ on the)

) (s t r i n g stack, returning t h e s t r i n g l$.

: STRAILING- (0$ chr -- 1$)
$P@ 0 $CNT TUCK + OVER 0 (S t a r t a t end)

?DO DUP C@ 3 PICK <> (Not equal?)
IF LEAVE (Get out 1
THEN 1- SWAP 1- SWAP (Dec addr, cn t)

Loop DROP NIP $LEFT ; (Trunc)

($TRAILING+ O$ n chr -- 1$)

1 (Pads t he s t r i n g O$ on t h e s t r i n g stack with n t r a i l i n g
(characters chr, returning t h e s t r i n g l$. I f n is l e s s than)

) (t he length of 0$, O$ i s l e f t truncated t o n characters.

: $TRAILING+ (O$ n chr -- 1$)

0 $CNT ROT 2DUP > (cnt > n?)
IF -ROT 2DROP $LEFT (Truncate.)

ELSE SWAP - PAD 1+ OVER 3 ROLL FILL (ugh-)

PAD C! PAD $@ $SWAP $APPEND (Tack it on)
THEN ;

($LEADING- 0$ chr -- 1$)

(Discards leading characters chr f romthe s t r i n g O$ on the)
(s t r i ng stack, returning t h e s t r i n g l$. 1

: $LEADING- (0$ chr -- 1$)

$P@ COUNT 0 TUCK (addr 0 cnt 0)

?DO DROP DUP C@ 2 PICK <> (I f not chr)
IF I LEAVE (Leave o f f s e t)
THEN 1+ 0 (addr+l, f l a g)

LOOP -ROT 2DROP ?DUP (Something?)
IF 0 $CNT SWAP - $RIGHT (S t r i p chr)

THEN ; (No leading)

($LEADING+ O$ n chr -- 1$)

(Pads t he s t r i n g O$ on t h e s t r i n g stack with n leading 1
(characters chr, returning t h e s t r i n g l$. I f n i s less than)

(t he length of 0$, O$ i s l e f t truncated t o n characters.)

L : $LEADING+ (O$ n chr -- 1$)

0 $CNT ROT 2DUP > (cnt > n? 1
IF -ROT 2DROP $RIGHT (Truncate 1
ELSE SWAP - PAD 1+ OVER 3 ROLL FILL (ugh- 1

PAD C! PAD $@ $APPEND (Tack it on)
THEN ;

(Screens continued in next issue.)

Volwne X. Nwnber 3 37

~y.!:::::!:!::>:!:::!:::::::::!?>:.:.>>>::>;!>::>2::>;:R:!::::;:>>>;::!:::!:*.!z:
.:.: ...

[BRYTE :.:'

.:;
,5' r i

f. .:<
8 :a:' .5' :.: :.'

i FORTH[:.:'
5. .5' i.' . .:. . ..,. .-. .5'
.:. :i

..a

.?.' . . .:. t:.

.:, h& Z. I?.'

Z.
I..' .;. . .

Z. .:. j$ -.. . . :i;
8 . . a:.. :.:.
5. -.. . . z:.
f.

..i
2.
.f.

?:.

?.,
,?..

?..
5.

?.- ..:. ,-.-

$$ INTEL 8 ::: z.-
2.'

?:.
5.

$$?.a 7.-

$$ L..

5 ?:*
?.'

Ff
..i
.-i I-.'

8031 ,j ?..

?.'
:.a

,?.'
?.-

P.' :.: MICRO-
.:.

52 ?.a .. 2

#CONTROLLERla8-.- 2
I..' f. .:. .-.* 5.

.?.*

3 i
. .

.*.*
Z.

?..
. . .:.

3 . . .-.. ,$:.- 5.

?.*
?.* 5. .. :.::
a ..:. :.: .?.* ::: .5.

7;
,.:* k %' 6 2: .-.. .. ?.a ?..

f. f..
'. .-.. .-.. FEATURES ?.- .*.. .?..

?.* 7.' .?.* 8 -FORTH-79 Standard Sub-Set :.. ,A -Access to 8031 features ?..

,$
2 -s,pport, FORTH and machine 8

code interrupt handlers 7.'
.:.: ?.' ?.'

:A --System timekeeping maintalns 8
time and date with leap :.:,

?:.
.*.. :.. .?.'

?.+ year correction ...#?.' --Supports ROM-based self- .-.#
?I .-.'
?.a %a starting appllcatlons ..>
?I ..:.
2. .5'

3 :.:' .?.'

f. 2. :.' -5' f. ? i 3 $.-. COST pi
Z i

f i

130 page manual - S 30.00 $
8~ EPROM w ~ t h manual-$1 00.00 $ 2 Postage pa~d In North Arner~ca .:.:

?:. :.;
$ lnqu~re for ltcense or quantity prlclng :$

.. ..
f'

:-: .-. .:. f.

?:.
h. :.. :-:
?.' ?.# ::: .-.. .a. Z.

2.
?:. :>

Bryte Computers, Inc. .:.
P.O. Box 46, Augusta. ME 04330 :i 8

.ad :.* (207) 547-32 18 :-:
Z .-. . .
X . .

2.*.*...-...-.-...~ ;%--........ ,.... ;?

Forth Dimensions

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimensions. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

ALASKA
Kodiak Area Chapter
Horace Simmons
(907) 486-5049

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
AZ State University
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 956-7578

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat.. 2 p.m. &
4th Wed.. 7 p.m.
Jungkind Photo. 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th SaL, 10 a.m.
Hawthome Public Library
12700 S. Grevillea Ave.
N i p Wasson
(213) 649-1428

North Bay Chapter
2nd Sat.. 10 a.m. Forth, A1
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 pm.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Tom Ghormley
(916) 444-7775

Silicon Valley Chapter
4th Sat.. 10 a.m.
H-P Cupertino
Bob Barr (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon.. 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter

1 Charles Krajewski
I (203) 344-9996

1 FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson 1 (305) 8554790

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed.. 7:30 p.m.
Terry McNay (813) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues., 6:30 p.m.
Western Sizzlen, Doraville
Nick He~enfent
(404) 393-3010

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
I/P Univ. Campus, B71 Neff
Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues.. 7:30 p.m.
Iowa State Univ., 214 Comp.
Sci.
Rodrick Eldridge
(515) 294-5659

Fairfield FIG Chapter
4th Day. 8: 15 p.m.
Gurdy Leete (5 15) 472-7077

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord. Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitlAnn Arbor Area
4th Thurs.
Tom Chrapkiewicz
(313) 322-7862

MINNESOTA
MNFIG Chapter
Minneapolis
Even Month, 1st Mon., 7:30
p.m.
Odd Month, 1st Sat., 9:30 a.m.
Fred Olson (612) 588-9532
NC Forth BBS (612) 483-6711

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues.. 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville, MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi
(201) 338-9363

NEW MEXICO
Albuquerque Chapter

1 1st Thurs., 7:30 p.m.
I Physics 8 Astronomy Bldg.

Univ. of New Mexico
I Jon Bryan (505) 298-3292

Forth Dimensions 38 Volume X, Number 3

REPUBLIC OF CHINA
(R.O.C.)
Ching-Tang Tzeng
PO Box 28
Lung-Tan, Taiwan 325

SWEDEN
SweFIG
Per A h
46/8-92963 1

CANADA
BC FIG
1st Thus., 7:30 p.m.
BCIT. 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown (604) 596-
9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat.. 1 p.m.
N. Alta Inst of Tech.
Tony Van Muyden
(403) 962-2203

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 x3443

Toronto Chapter
John Clark Smith
PO Box 230, Station H
Toronto, ON M4C 512

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

HOLLAND
Holland Chapter
Vic Van de Zande
Finmark 7
3831 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolarno Forni 48
20161 Milano
021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo. Bunkyo 113
812-21 11 x7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-518-7784

NEW YORK
FIG, New York
2nd Wed., 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1 157

Rochester Chapter
Monroe Cornm. College
Bldg. 7, Rm. 102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues.. 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues.. 7 p.m.
Linn-Benton Comm. College
Pann McCuaig (503) 752-51 13

TENNESSEE
East Tennessee Chapter
Oak Ridge
2nd Tues., 7:30 p.m.
Sci. Appl. Int'l. Corp., 8th F1
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO BOX 180409
Austin, TX 78718

Houston Chapter
3rd Mon., 7:45 p.m.
Intro Class 6:30 p.m.
Univ. at St. Thomas
Russell Harris (713) 461 -1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 898-4099

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8152 Opfion
01 810 9289

Potomac FIG
Arlington
1st Tues.
Lee Recreation Center
Joel Shprentz
11918 Winterthur Ln., #lo7
Reston, VA 22091

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ . of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri.. 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

MAD Apple Chapter
Bill Horton
502 Atlas Ave.
Madison, WI 53714

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3 146
03/29-2600
BBS: 61 3 299 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd., Yowie Bay
2228
021524-7490

BELGIUM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
0711213858

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
(415) 960-1256

Volume X, Nwnber 3 39 Forth Dimensions

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 25-27,1988

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.

Forth and Artificial Intelligence
Artificial intelligence applications are currently showing great promise when developers focus on
easy-to-use software that doesn't require specialized expensive computers. Forth's design allows
programmers to modify the Forth language to support the unique needs of artificial intelligence.

Papers are invited that address relevant issues. Papers about other Forth topics are also welcome.

Mail your abstract(s) of 100 words or less to FORML Conference, Forth Interest Group, P.O.
Box 8231, San Jose, CA 95155.

Completed papers are due November 1, 1988.

Conference Registration
Registration fee for conference attendees includes conference registration, coffee breaks, and note-
book of papers submitted, and for everyone rooms Friday and Saturday, all meals from lunch Friday
through lunch Sunday, wine and cheese parties Friday and Saturday nights, and use of Asilomar
facilities.

Conference attendee in double room - $275 Non-conference guest in same room - $150 Children
under 17 in same room - $100 Infants under 2 years old in same room - free Conference attendee
in single room - $325

Register by calling the Forth Interest Group business office at (408) 277-0668 or writing to:
FORML Conference, Forth Interest Group, P.O. Box 8231, San Jose, CA 95155.

Forth Interest Group
P.O.Box 8231
San Jose, CA 95155

Second Class
Postage Paid at
San Jose, CA

