

F O R T H
D I M E N S I O N S

m
A FREE SPIRIT: WHERE TO FROM HERE? BY GLEN B. HAYDON

7
Each Forth user seems to have his own philosophy, religion, and brand of the language. Each certainly has his own ex-
pectations. This free spirit madeForth what it is and, at the same time, led to its lack of general acceptance. Programmers
using other languages have never experienced such a free environment.

m
MODULE MANAGEMENT BY ALAN T. FURMAN

9

1 This module management system is a way of giving a symbolic name to a group of screens that contain generally reusable
source code. That name is a Forth word that guarantees the presence in the dictionary of the code to be used by applica-
tions.

m
1987 FORTH NATIONAL CONVENTION REVIEWED BY JERRY SHIFRIN

14
The Forth Interest Group (FIG) held its ninth annual convention on November 13-14 in San Jose, California. The theme
was the "Evolution of Forth," eliciting much discussion about Forth's philosophical roots and its future.

m
ANS FORTH MEETING NOTES BY JERRY SHIFRIN

16
The second meeting of the ANS Forth Technical Committee found only slow progress, with few usage questionnaires
returned. However, areas of concensus and controversy were identified and matters of procedure were clarified. The stage
may now be set for the real, productive work of the team.

m
A 6502 ASSEMBLER BY CHESTER H. PAGE

19

M The only weakness I have encountered in Forth is the unavailability of primitive subroutines, called by JSR. This Forth
6502 assembler was designed not for long programs, but for assembling primitive words one by one. It requires only that
the computer is 6502 based.

m
VECTORED EXECUTION & AN F83 FULL-SCREEN EDITOR

BY RICHARD E. HASKELL & ANDREW MCKEWAN
24

Y Vectored execution is useful for directing flow of control. Different types of jump tables are often more convenient, and
execute faster,.than a corresponding CASE statement. One form of jump table will be illustrated by an F83 full-screen
editor. (F83 and fig-FORTH) -

PROFILES IN FORTH: JOHN D. HALL
31

Interviewer Mike Ham caught up with the Forth Interest Group director best known to most members as the official FIG
Chapters Coordinator. John shares his insider's view of FIG, Forth, and the future.

Editorial
4

Letters
5

Advertisers Index
35

Rumor Slack
37

FIG Chapters
38

Volume IX, Nwnber 5 3 Forth Dimemions

I 'd like to welcome the newly elected,
re-elected, and continuing members of the
Forth Interest Group's Board of Directors.
They all bring talent, energy, and experi-
ence to their positions, and are dedicated to
furthering the causes of the Forth commu-
nity. Your support and constructive input
will empower them in the job they are doing
for the rest of us.

There has been so much discussion re-
cently about Forth's future and the possible
directions FIG can take, that this issue em-
phasizes some of the issuesandviewpoints.
John Hall and Glen Haydon, in particular,
touch on important areas of concern.

About Forth's future, may I say that the
people who most fervently ask that ques-
tion seem to be in businesses where Forth's
relatively iconoclastic methods of accom-
plishing tough tasks. make management
edgy. But productive companies are qui-
etly using Forth every day to write impor-
tant, profitable code. They employ profes-
sional programmers and don't spend much
time promoting Forth or worrying about its
future. They are in business to get a job
done, and are using a language that - with
cultivation and experience - adapts en-
tirely to their specific needs and practices.

If you find an ANSI Forth document in
the future that doesn't include your prac-
tice, then maybe you were one of the 250
key people who didn't return a question-
naire to the Technical Committee, or
maybe you buy your Forth from one of
them ... Jerry Shifrin's concluding notes
about the last ANS Forth meeting are inter-
esting and important. As difficult as it is to
imagine a standards document that can
codify common practice, how close it gets
will depend on who gets involved.

Any proposal submitted to the'commit-

tee is open to public comment, and all such
comments must be addressed in committee
meeting. So there is opportunity for wide
participation, even without becoming an
official member of a committee.

Opportunities will abound Down Under
on May 19-20,1988, when the first Austra-
lian Forth Symposium will be held at the
NSW Institute of Technology. There will
be a keynote presentation by Charles
Moore (Forth's inventor), and the Novix
Forth microprocessor family will be fea-
tured. The first day will include papers and
demonstrations to show what can be done
in Forth, and how quickly working applica-
tions can be developed. The second day
will offer a choice of workshops, with in-
struction and hands-on experience. An
exhibit will be running both days. If you are
interested in a possible group travel rate
from the United States, call the Forth Inter-
est Group for information or see the ad in
this issue.

This symposium has been initiated by a
group of professionally based Forth users
(from both industrial and academic organi-
zations) who believe the language should
be more widely known and used by profes-
sionals. The focus will be on Forth as a
programming system for productivity, and
papers are still welcome. We've heard for
some time that Australia and New Zealand
have some pretty interesting Forth activity,
so this will be a great chance to learn how
business is progressing in that part of the
world and how their Forth professionals are
planning for the future. (And 1988 is
Australia's bi-centennial year, if you
needed just one more reason to go)

-Marlin Ouverson
Editor

Forth Dimensions
Published by the

Forth Interest Group
Volume M. Number 5
January/February 1988

Editor
Marlin Owerson

Advertising Manager
Kent Safford

Design and Production
Berglund Graphics
ISSN#0884-0822

Forth Dimensions welcomes editorial mate-
rial, letters to the editor, and corn-ments from its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth Inter-
est Group. P.O. Box 8231. San Jose. California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright @ 1987 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copy-righted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc.. respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-commer-
cial purposes. without the written permission of
Forth Interst Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however. can be used only with permis-
sion of the copyright holder.
About the Forth Interest Group

The Forth Interest Group is the association of
programmers, managers, and engineers who
create practical, Forth-based solutions to real-
world needs. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi-
nars, telecommunications, and area c h a m
meetings are among its activities.

"Forth Dimensions is published bi-monthly
for $24/36 per year by the Forth Interest Group,
1330 S. Bascom Ave.. Suite D, San Jose, CA
95128. Secondclass postage pending at San
Jose, CA 95 101. POSTMASTER: Send address
changes to the Forth Interest Group, P.O. Box
8231. San Jose. CA 95155."

Forth Dimensions 4 Volume lX, Number 5

Local Variables
Dear Editor,

Local variables have been the subject of
many earlier contributions, but I have not
seen the following, simple implementa-
tion.

My version of Forth local variables
makes use of ordinary Forth variables de-
clared, and probably used, outside the co-
lon definition. The only word to be used,
following the name of the variable, is LO-
CAL. This must be in the beginning of a
colon definition, and not inside control
structures or some other kind of return-
stack manipulation. The variable can then
be used freely inside the colon defmition,
and will be restored to its original value on
exit.

The code for LMI PC/FORTH+ is
shown in Figure One. (For PCIFORTH.
omit ADDR>S&O.)

Since the natural scope for a local vari-
able in Forth is a colon definition, local
variables can be managed on the retum
stack. LOCAL first saves the address and
the value of the variable on the return stack,
then arranges an exit through (LOCAL) by
placing the address of (LOCAL) on the
return stack. On exit from the colon defini-
tion, which was the local scope of the
variable, (LOCAL) will then restore the
old value of the variable from the return
stack. There can be more than one local
variable in a definition.

For a simple example, see Figure Two's
rather foolish implementation of the facto-
rial function N ! with recursion and a local
variable.

This is a simple and easy-to-use, high-
level implementation of local variables. An

assembler-coded version would probably
provide very fast local variables in Forth.

Yours.
Henning Hansen
1 16, Technical University of Denmark
2800 Lynby, Denmark

Don't Chip Off the Old Block
Dear Marlin.

I read, too, in Forth Dimensions (VIIf2).
Mr. Ramer W. Streed's letter about chang-
ing source editing. Well, I must say that

1 sometimes it's also difficult to me to get rid
of screen numbers, lines, and shadows.
(First I was using Super-Forth 64 on the
little Commodore; now I own an IBM com-

I patible, running a modified version of F83
- and I only got F83 two or three weeks
ago!) Anyway, I don't agree with Mr.
Streed completely ...

Surely it can be useful, being able to
read and compile a text, source file, espe-
cially if it is downloaded from a BBS, but I
think we must keep screens. I mean,
screens are part of Forth philosophy, of
thinking Forth! It is BLOCK, SCR, BLK,
BUFFER, LIST, and FLUSH that make
Forth different from other languages, and
therefore so fascinating!

I don't think screens are so awful. Espe-
cially with F83's shadows and glossary, it
is possible to supply all the documentation
needed, even for a large program to be
understood. Abandoning screens for AS-
CII would negate Forth philosophy and
make Forth similar to other, nondocu-
menting languages.

I agree with Mr. Streed when he says

that, when we have developed a low-level
word, we don't have to concern ourselves
with what it has to do when called from
within another one. But he means the op-
posite thing when he says that someone
must keep track of line numbers, screens,
and so on. Forth is beautiful, because
when you write a word, you can immedi-
ately test it on the keyboard - unlike
other, so-called structured languages that,
in reality, isolate the programmer from his
computer (see the hateful Pascal, for ex-
ample, which doesn't let you examine a
single part of your program without hav-
ing to compile it all...).

I mean, when I've developed a low-
level word and, having retested it, found it
works on a general job, I don't have to
concern myself further with where it is
(anyway, I can VIEW it). About moving
lines, I think it is better to avoid crowding
a screen with a lot of words from the
beginning, or the documentation will be
unuseable. I thank both Mr. Pasquale and
Mr. Wenrich for their work, but I encour-
age all Forth people to join ASCII if they
want, but don't leave screens and blocks!

Sincerely,
Pierluigi De Rosa
Via Nicola Parisio 4/C
87 100 Cosenza, Italy

Name That Architecture ...
Dear Editor,

Articles now appearing on Forth-re-
lated processors have many ways of nam-
ing these items. For example, I have seen
the terms RISC, Forth Engine, and Stack
Machine. While these are descriptive, a

Volwne IX. Nwnber 5 5 Forth Dimensions

11 FORTH SOURCF'

WlSC CWl16
The stack-oriented "Writeable Instruction Set
Computer" (WSC)is a new way of harmonizing the
hardware and the application program with the
opcode's semantic content. Vastly improved
throughput is the result.

Assembled and tested WlSC for
IBM PCIATIXT $1 500
W~rewrap Kit WlSC for IBM PClATlXT 5 900
WlSC CPUI16 manual S 50

MVP-FORTH
Stable - Transportable - Public Domain - Tools
You need two primary features in a software
development package.. . a stableoperating system
and the ability10 move programs easily and quickly
to a variety of computers. MVP-FORTH gives you
both these features and many extras.
MVP W s - A Series

W. 1. AN abmd FORlH. Glossary $25
q %I. 2, MVP-FORTH Swnu, Code. $20

W. 3, Floating Point and MaM $25
V o l . 4 . ~ S y s t e m $15
W. 5. File Managemen1 Sysrw $25

q Vol. 6, &mrt ktorial $15
q #I. 7, FORTH GUIDE $20

W. 8, MVP-FORTH PADS 550
Vol. 9, WklKalc Manual 530
MVP-FORTH Soltwam - A trans-
portable FORTH

MVP-FORTH Pmgnmmer's Kit including
disk. documentation. Volumes 1,2 L 7 of MVP
Series, FORTH Applications, and Starting
FORTH. IBM, Apple. Amiga, CPIM. MS-DOS,
PDP-11 and others. Specify. $195
MVP-FORTH Enhamemanl Package
for IBM Programmer's Kit. lncludesfullscreen
editor & MS-DOS file interface. $1 10

q MVP-FORTH Floating Point 8d M8th
IBM. Apple. or CP/M, 8'. $75

OMVP-LIBFORTH for IBM. Four disks of
enhancements. $25
MVP-FORTH Screen editor tor IBM. $15
MVP-FORTH Graphics Extension for

IBM or Apple $80
MVP-FORTH PADS (Ref-I
Appllcatka Dmbpmenl Spbm)
An integrated system for customizing your
FORTH programs and applications. PADS is a
true professional development system. Specify
Computer: IBM Apple $500
MVP-FORTH Floating Pdnt M8th $100
MVP-FORTH Gnphicr Extension $80
MVP-FORTH EXPERT-2 System
for learning and developing knowledge based
programs. Specily Apple, IBM, or

CP/M 8'. $100

Order Numbers:
800-321 -41 03

(In California) 415-961-4103

FREE
CATALOG

MOUNTAIN VIEW
PRESS

PO DRAWER X
Mountain View, CA 94040 I U

better naming approach will have a few
benefits. I propose that processors that run
a Forth kernel, whether hard-wired or by
programming in ROM or in microcode,
have a standard, family name. There are
many ways of doing this.

Following the style used by the main-
stream, they can be labelled Forth Insuuc-
tion Set Computers (FISC). This form par-
allels that used by other popular processor
architectures: Complex Instruction Set
Computers (CISC) and Reduced Instruc-
tion Set Computers (RISC).

A more technical term could be used:
Threaded, Interpretive Stack Machines
(TISM). This term is more precise and
broadly applicable, and can even be used to
describe processors related to Forth's
architecture; for example, a Writable In-
struction Set Processor. [Or WISC Tech-
nologies' Writable Instruction Set Com-
puters. --ed.]

Another alternative is to honor Charles
H. Moore, the creator of Forth and co-
designer of a commercial Forth engine (the
Novix NC4000), by naming the "two-

stack, two-pointer, 4-space machine" after
him. Unfortunately, the most direct term,
Moore Machine, is already is use in con-
nection with state-machine theory. Maybe
someone can come up with something
else.

The term "Forth engine," while it is still
applicable to a FISC, does not seem cor-
rect, since Forth itself is undefined. Fur-
ther, Forth's extensibility has not been
translated to hardware extensibility. [You
has better look at those WISC machines,
Jose.--ed.] Perhaps, when someoneputs a
Xilinx logic cell array; a writable,
threaded, interpretive stack machine; 8K
EEPROM, and an LCD with nano-key-
board on one tiny chip, and this anything
chip leisurely chugs along at 33 MIPS, we
will have an interactive, real-time engine.

Sincerely,
Jose Betancourt
85 Arlo Road #1A
Staten Island, New York 10301

: (LOCAL)
R> R> ! ; \ restore variable address and value

from return stack

: LOCAL (adr -)

R> SWAP \ save top return address
DUP @ SWAP >R >R \ put variable address and value on

return stack
['1 (LOCAL) >BODY ADDR>S&O >R \ exit via (LOCAL)
>R ; \ restore top return address to con-

tinue current definition

Figure One. Hansen's local variables for PC/FORTH+.

VARIABLE VAR
: N! (n-n!)

VAR LOCAL
DUP VAR !
1- DUP O> I F RECURSE ELSE DROP 1 THEN
VAR @ * ;

\ 10000 times 12 N ! in 45 sec, with PC/FORTH+.

The simpler word n! is much faster, without the local variable: I I
: n! (n-n!)

1 SWAP 1+ 1 ?DO I * LOOP ;
\ lOOOOtimes12 n! in10sec.

Figure Two. Sample use of LOCAL.

Forth Dimensions 6 Volume IX, Number 5

Volume 1X. Nwnber 5 7 Forth Dimensions

A FREE SPIRIT:
WHERE TO FROM HERE?

GLEN B. HAYDON - LA HONDA, CALJFORNIA
rn

A free spirit is, perhaps, the single
most important trait of Forth users. Each
user seems to have his own philosophy,
religion, and brand of the language. Each
certainly has his own expectations. This
free spirit made Forth what it is and, at the
same time, led to its lack of general accep-
tance. Programmers using other languages
have never experienced such a free envi-
ronment

Many Forth programmers need to eat
but find little acceptance of their ideas.
Some have been able to use variations of
Forth in their work place, but not many.
Many accept Forth as their avocation, and
program for a living in other languages.

The efforts of some vendors and appli-
cation programmers to develop a common
basis is in progress. But already some ven-
dors have clashed. One wants exactly the
opposite of what another wants. By codify-
ing a language, a free spirit is stifled.

For some years, I have attempted to
understand the free spirit of the creator of
Forth. Chuck Moore's concepts provide
the fundamental basis of this language,
which he named Forth. He wants control
over the hardware. He wants to keep the
program small, because a small, simple
program is efficient. Over the years, he has
heard many suggestions; most of them he
has discarded.

Han Nieuwenhuyzen objected to giving
the programmer access to all the hardware.
For years he has used file structures of his
own devising in his Forth implementations.
For years, few implementors listened to his
suggestions.

The Forth-79 Standard excludes from

the required word set any primitives that
access the hardware. The Forth-83 Stan-
dard continues this movement away from
the basic hardware. Many users want to run
other programs on their hardware; they use
programs daily which are not a part of
Forth. But at the same time, they have
applications they wish to program in Forth.
All sorts of compromises are made.

The free spirit of Forth irnplementors
has prevented programmers, conditioned to
the constraints of conventional languages
and operating systems, from adhering to a
Forth standard. Is there a common thread
running through all variations of Forth?

zere is no reason for
Forth programmers to be at
odds.

Various new languages (e.g., Fifth,
Reptil, Stoic, Urth) have one thing in com-
mon with Forth: they are threaded, interpre-
tive languages. As a matter of fact, even
Microsoft hascome torecognize the advan-
tages of a threaded, interpretive language.
Their latest version of Quick Basic is imple-
mented in such a manner. And they indicate
they will use a threaded interpreted im-
plementation of C and other packages in the
future.

There is no reason to throw out the baby
with the wash. A subset of Forth is coming
of age, as threaded, interpretive languages
are more widely adopted. Loeliger's book,
Threaded Interpretive Languages was be-
fore its time. Let threaded, interpretive

languages grow.
There is no reason for Forth program-

mers to be at odds with one another. We
could focus on a subset upon which we
agree, and apply our free spirit to other
areas.

Perhaps the Forth Interest Group
should evolve. It could expand its horizons
to include all variations of threaded inter-
preted languages; perhaps it could even
include a threaded, interpretive BASIC.
This wouldbeamoveaway fromtheForth
Chuck gave us along with his concern for
the hardware. (Since,afterall,Chuckis the
creator of Forth, maybe such a new direc-
tion should be given a new name.)

For many years, I have considered
Forth as Chuck's child. I still do. But I sm
not constrained to do everything in Forth.
I have an excellent word processor that is
not written in Forth. (At least, I don't think
it is.) I use several desktop publishing pro-
grams, which I know are not written in
Forth. I use my computers for other things,
too.

Several individuals at the recent
FORML conference, each with his own
concepts, presentedufree-spirit"1anguage
implementations. Tom Zimmer, in the
FIG spirit of public-domain shareware,
provided attendees of FORML a Forth
without BLOCKS. His implementation can
serve as a command-processor shell for
IBM-compatible processors, with access
to DOS functions. He has included an
editor that is very much like Wordstar, but
any word processor producing ASCII files
can be used. I am sure Tom's release is a
subset of what he now uses commercially.

1 with LMI FORTHTM 1

1 For Programming Professionals: I
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
avallabie by special arrangement.

m~aboratory Microsystems incorporated
Post Office Box 10430, Marina del Rey, CA 90295

credit card orders to: (213) 306-7412

Overseas Dlstrlbutors.
Germany: Forth-Systeme Angellka Flesch. Tlt~see.Neustadt. 7651-1665
UK: System Science Ltd., London, 01-248 0962
France: Micro-Slgma S.A.R.L., Paris, (1) 42.65.95.16
Japan: Southern Pacific Ltd., Yokohama. 045-314.9514
Australla: Wave-onic Associates. Wilson, W.A., (09) 451-2946

I I

Forth Dimensions 8

It points out a different, possible direction
for free spirits.

Mitch Bradley has long urged the com-
munity to give up blocks. He has provided
many file-oriented routines. He is con-
strained to use his processors for other
programs than Forth. The people he works
with have trouble with some of the primi-
tive ways of Forth.

Forth adherents adopt their own con-
cept of Forth with a religious fervor. It is
small wonder that Forth, whatever it is, is
not accepted by the rest of the world But
Microsoft has adopted a threaded, inter-
pretive language; so has Adobe with their
Postscript, another of Forth's offspring.
This fundamental aspect of Forth is being
adopted widely.

With the evolution and expansion of
the Board of Directors of the Forth Interest
Group, which took place at the recent na-
tional convention, it may be time to reas-
sess the organization's focus. By recog-
nizing the common denominator in Forth,
and the direction taken by larger software
houses (threaded interpreted languages),
we have a common direction that is less
loaded with emotion.

It might even be appropriate to empha-
size the commonality in the community by
modifying the name of its regular publica-
tion. Maybe a subtitle would serve to indi-
cate a change of emphasis. I am not pro-
posing that the organization and its publi-
cation change their names. But, just
maybe, that extreme step could be consid-
ered. Any such decision is in the hands of
the Board of Directors.

In any case, I feel the community could
be drawn together by focusing on what the
members have in common - a threaded
interpreted language. Let Forth users rally
around their common convictions. There
is plenty of room for difference without
emotional conflict. Improvements will
come through the efforts free spirits:
Chuck Moore, Hans Nieuwenhuyzen,
Tom Zimmer, Mitch Bradley, and many
others have contributed because of their
free spirits, not because of any imposed
standard.

of the WISC CPUII6 and CPUl32

I

Volwne IX, Number 5

MODULE
MANAGEMENT

ALAN T. FURMAN - SANTA CLARA, CALIFORNIA
m

I originally became hooked on extensi- word whose action is to guarantee presence robot simulator requires both GRAPHICS
and ROBOTICS. During the compilation
of GRAPHICS, the trigonometry words
will be compiled by TRIGONOMETRY.
When ROBOTICS compiles, the action of
TRIGONOMETRY will be a no-Op, thereby
preventing redundant compilation. It is this
"smart" behavior that makes nesting of
modules a true convenience.

The module name word also acts as a
place-marker for reclaiming dictionary
space; typing

bility years ago while programming in
SAIL, which heavily supports macros. In
SAIL, one can have files of macro defini-
tions, both private stock and commumnity
contributions, and make them available for
use in a program with the compiler-direc-
tive statement

require <filename>

where the file could itself contain more
requires. A well-designed set of extension
packages permits tiny, highly expressive
programs, with the "require" mechanism
looking after the bringing-in of macros and
their hierarchical dependencies. The "in-
clude" statements of Pascal and C work
similarly. I decided that Forth needed such
a facility. I also wanted to be able to refer to
source code packages by name, rather than
by numerical address.

The module management system de-
scribed here provides, essentially, all the
convenience of the SA1L"require" in seven
lines of source code. It is more limited, but
simpler, than a prior scheme1 described by
Michaloski. It runs under, and is easily
transported to, any Forth system running
under the screen model, whether true
physical blocks or logical 1 kbyte records
in a DOS file. It does not in any way depend
on a DOS file system as such.

What It Does
In brief, the module management sys-

tem is a way of giving a symbolic name to
a group of screens that contain generally
reusable source code. This name is a Forth

FORGET TRIGONOMETRY

of the package in the dictionary, to be used
by applications. (The system involves re-
definition of the module name word. There-
fore, it works only when the module name
word is interpreted, by the text interpreter,
from the keyboard or from a screen being
loaded. It will not work correctly when
called from inside a colon definition.) An
example follows.

Suppose that a module- a named set of
words - called TRIGONOMETRY exists
on disk, and one or more of these words is
needed by a new word about to be defined.
Just type

TRIGONOMETRY

and commence defining the new word. If
the trigonometric functions are not in the
dictionary, TRIGONOMETRY causes them
to be compiled from the disk. If they are
already in the dictionary, TRIGONOME-
TRY is a no-op (nothing happens). That is,
the effect of TRIGONOMETRY is to ensure
that the trigonometry package is in the dic-
tionary, available to be interpreted or com-
piled into a higher-level word.

The Forth user is freed from two chores:
remembering the numerical addresses of
the trigonometry package some, and keep-
ing track of whether they have been com-
piled into the dictionary yet. If a module
depends on another, just embed the lower-
level module's name in the higher-level
module's source. For example, a GRAPH-
ICS module may invoke TRIGONOME-
TRY because it uses the latter's words. A
ROBOTICS module could use TRIGO-
NOMETRY as well. Now suppose that a

shrinks the dictionary back to just before
the trigonometry package.

How It Works
The module management system has

three parts. Fist, the module management
wordset

: MODULE (block#)
CREATE , DOES> @ LOAD ;

: LOADMAP : (- - address)
CREATE HERE -1 ,
DOES> @ ABORT" MODULE
ERROR" :

: LOADED (address)
0 SWAP ! ;

which is compiled from the disk immedi-
ately upon booting Forth.

Second, the module declarations, for
example:

L

Volwne IX, Number 5 9 Forth Dimensions

Australia
Announcing a group travel plan to attend the first Australian Forth
Symposium in Sydney May 19th & 20th, 1988 and World Expo 88 in
Brisbane May 21-23, 1988. Other group events include guided
sightseeing tours and a visit to Lamington National Park located in
South East Queensland. Optional travel additions can be arranged.

Australian Forth Symposium World Expo 88
Charles Moore, Forth's inventor, is the Australia will host one of the world's
keynote speaker at this event. The sym- biggest celebrations in 1988. World
posium has been initiated by a group Expo 88, the international highlight of
of professionally based Forth users Australia's Bicentenary, will be held in
from both industrial and academic the heart of Queensland's capital, Bris-
organizations who believe that the lan- bane, from April 30th to October 30th.
guage should be more widely known World Expo 88 will be the largest single
and used by the professional commu- event in the nation's history with an
nity. The focus is Forth as a program- estimated attendance of almost eight
ming system for productivity. The first million from throughout Australia and
day will feature presented papers and other countries. More than 30 nations
demonstrations to show what can be and 20 corporations will showcase
done in Forth, and how quickly work- their achievements under the theme
ing applications can be developed. The "Leisure in the Age of Technology". The
second day will offer a choice of special 100 acre Expo site is ideally located on
interest Workshops, with instruction the South Bank of the Brisbane River,
and hands-on experience. An exhibi- only 100 meters from the heart of the
tion will be open both days. Sunshine City of Brisbane .

Group Travel Itinerary
Depart San Francisco Monday May 16,1988 arriving Sydney May 18th. Attend the
Australian Forth Symposium May 19th and 20th with local tours arranged for
non-conference guests. Fly to Brisbane on May 21st and visit World Expo 88
through May 23rd; local tours will also be available. Travel to Lamington National
Park May 24th with accommodations in a mountain lodge through May 26th.
Return to Brisbane on May 27th and take the return flight to San Francisco.

Reservations and Information Brochure
Contact the Forth Interest Group, P. 0. Box 8231, San Jose, CA 95155, telephone
(408) 277-0668.

100 MODULE TRIGONOMETRY
120 MODULE GRAPHICS
140 MODULE ROBOTICS

etc.

HERE FENCE !

which are compiled right after the module
management wordset. They create a group
of words in the dictionary that serve as a
kind of "directory" of modules.

Third, the modules themselves. Each
module begins with a "load map" screen,
whose number is the number incorporated
in the definition of the module word. This
loadmap invokes the words LOADMAP :
and LOADED and also causes the remaining
screens (which contain the module's actual
source code) to be loaded. The general
outline of the loadmap is:

LOADMAP : <modulename>
<loading of source screens>
LOADED

This is how the loadmap for TRIGO-
NOMETRY (screen 100) might look:

LOADMAJ?: TRIGONOMETRY
101 LOAD 102 LOAD 103 LOAD
LOADED

The top line is not a comment, but it elimi-
nates the need for one.

Now consider the case where the sys-
tem has been booted and the module man-
agement wordset and the module declara-
tions have been compiled. The word
TRIGONOMETRY defined such that its
action is 10 0 LOAD. Therefore, when the
word TRIGONOMETRY is interpreted by
the text interpreter (typed at the terminal or
read off a screen), its action will be to load
screen 100. This screen redefines TRIGO-
NOMETRY to be a no-op (causing an incon-
sequential "Redefined" or "Isn't Unique"
message), and compiles the code on
screens 101 through 103. The next time
TRIGONOMETRY is interpreted, it will act
according to its new definition, which is a
no-op.

As mentioned, modules can be nested.
For example, screen 120 might look like
this:

LOADMAP: GRAPHICS
TRIGONOMETRY
121 LOAD 122 LOAD 123 LOAD 124
LOAD
LOADED

Screens 121-124 can thus assume that
the trigonometry wordset will be available.

Security
Two provisions in the module manage-

ment system that deal with security remain
to be discussed

First, LOADMAP : does not exactly re-
define the module name to be a no-op.
Indeed, it defines a word that will abort
upon execution. It leaves on the stack a
pointer to the location of the - 1 flag so that
LOADED can subsequently overwrite it
with a 0. Only then has the module name
been redefined as a no-op. The reason for
this two-stage process is that a module
should be either completely missing from
the dictionary, or completely compiled. If
compilation is interrupted (as by a compile
error), the module is unusable. The combi-
nation of LOADMAP : and LOADED prevent
the user from attempting to use a frag-
mented module. It also prevents cata-
strophic infinite-loop mutual recursion in
case two modules try to "require" each
other.

The second unexplained provision is the
P-

HERE FENCE !

which makes whatever precedes it UnFOR-
GETtable. The very first word added to the
dictionary when a module is compiled is the
redefinition of <modulename> performed
by LOADMAJ? : . AS a result, one can cleanly
wipe out a module from the dictionary with

FORGET <modulename>

which works fine if the module is there. If
the module is not, then the most recently
compiled word named <modulename> is
somewhere in the "directory" of modules,
which FORGET would partially destroy, if
it could reach the word. Having the "direc-
tory" protected in its entirety saves the user
from having to keep track of a module's
presence in the dictionary. Trying to FOR-

I

Volwne IX, Number 5 11

NGS WRTH
A FAST FORTH,
OPTIMIZED FOk THE IBM
PERSONAL COMHJTER AND
MS-DOS COMPATIBLES,

I STANDARD F'EATURES I /
INCLUDE:

a79 STANIlARD I I I @DIRECT 1/0 ACCESS (/
OFLILL ACCESS TO m-DOS I FILES AND FUNCTIONS I I

I aE3MRONMENT SAVE 61 rnAD I I
I aMULTI-SEGMENTED FOR W G E APPLICATIONS I I
(.EXTENDED ADDRESSING I 1

I *LINE & SCREEN EDITORS I 1
aDECOMPILER AND
DEBUGGING AIDS

08088 ASSEMBLER

I .GRAPHICS & SOUND I 1
I .DETAILED MANUAL I I
aINEXPENSIVE UFGRADES

eNGS USER NEWS-

A COMPLETE I;r)Kl'H
DEVEW- SYSTEM.

I PRICES S!l!ART AT $70 I I
I NEW+BP-150 & HP-110
VERSIONS AVAILABLE I /

NEXT GENERATION SYSTEMS
P.O.BOX 2987
BANTA CLARA, CA. 95055
(408) 241-5909

0
Forth Dimensions

FORTHWRITE..SM.W
FORTHCOM. l%.d)5
OATAHANDLER 59.95
DATAHANDLER-PLUS' S%F)S
EXPERT-2. 69.85
UTILITIES 49.93
'Single-computer, 81ngle-uaar prices; Mr-
porete Bale licenses from $1.000 addtfional.
3%" format, add $%disk; Tsndy 3000 , scld
$20. Add Sf H, ptuS 6% Zax M Masr. otclws. :
OH+ not avatl for TAS-60s.
GREAT FORT U BOPPORT:
Frw user t~ps, MMSFORTH Newstartter.
consutt~ng on hardware selection, staff
training. and programmtng assignments
large or smatJ.
OREAT FORTH 800US;
FORTH. A TEXT (L. REF..$21.95'
THlNKiNG FORTH 16.95
Many others in stock.

MILLER YICROCQMPUTER SERVICES
61 Lake Shore Ro.d, htick, MA at780

(617/653-%138,9 am - 0 pn) u

presence in thedictionary. Trying to FOR-
GET an uncompiled module will then re-
sult in a harmless error message.

Forth Dimensions 12 Volume IX, Number 5

and in the process, delete everything else
compiled in since boot-up. It may be just as
practical to reboot the system and type

Further Enhancements
The module management system is

shown in its final form in Listing 0ne.The
first screen maybe usedverbatim (theother
screens are usage examples). Normally, it
is loaded first thing upon booting the sys-
tem; it will often be the only screen number
the user has to memorize. In the process,
the module directory on the following
screen will be compiled into the dictionary
and protected by FENCE, and a constant
MODULES will be the screen number of the
directory source. Type

MODULES LIST

to list the modules.
The word THRU (see Appendix) makes

loadmaps more concise. Given the first and
last screen numbers, THRU loads the inclu-
sive range of screens. The word +B con-
verts a relative screen number to an
absolute one. Using it in loadmaps makes
modules relocatable on the disk. The load-
map in the TRIGONOMETRY example
given above can be reduced to the form
shown as Screen 100 in Listing Two. The
module can now be moved (as a unit, in-
cluding the load map) to another region of
the disk. No editing isrequired, either in the
module itself or in modules that require it
(the name TRIGONOMETRY remains as
before). However, the original declaration

100 MODULE TRIGONOMETRY

on line 2 of Screen 8 1 will have to be edited
(to reflect the new address of the load map)
and recompiled.

Whenever the module declaration
screen is edited (due to the addition, dele-
tion, or moving of a module), the module
directory in the dictionary must be com-
piled anew from the disk. It is first neces-
sary to FORGET the prior directory, but it is
protected by FENCE. The following proce-
dure will recompile the directory:

MODULEMARK FENCE !
FORGET MODULEMARK
80 LOAD

80 LOAD

as usual. Both alternatives seem trouble-
some, but seldom need to be performed.
Once a module has reached final size, ac-
quired a reliability record, and received
heavy reuse in applications, it is unlikely
to move about.

Conclusion
A system has been described for nam-

ing reusable, Forth source code packages,
reminiscent of the "require" and "include"
facilities of other languages, in which the
package name becomes a word that com-
piles the package into the dictionary, as
needed. It is easy to use and install, and
supports hierarchies of packages.

The extreme simplicity and degree of
control afforded by screens makes this
system very easy to port, whether in a true
native Forth or an emulated one with a
single "screen file."

References
1. J. Michaloski, "A Forth Profile Man-
agement System," Journal of Forth Appli-
cation and Research, Vol. 2, No. 3, p 63-
75 (1984).

Appendix: System Dependencies
FENCE (-- address)

The commonest name of a variable that
points to the last protected word in the
dictionary. Unfortunately, the choice of
which of a word's fields FENCE points to
is unstandardized. The value of the con-
stant MODULEMARK as generated in
Screen 80 should reliably defeat the pro-
tection of MODULEMARK frOm FORGET
when written into FENCE.

The following words are easily defined
if a system lacks them. Their definitions
are best put in screen 80, between the defi-
nitions of MODULES and MODULE.

: THRU (firstscreen lastscreen --)
1+ SWAP DO LOAD LOOP ;

: +B (relativeblock -- abso-
luteblock)

In a system without ABORT " replace

ABORT" MODULE ERROR" 1

with

IF ." MODULE ERROR" ABORT
THEN

Listing One. Source code for module system; assumes that module declarations are on
screen 8 1.

SCREEN # 80
0 (MODULE SYSTEM - LOAD ME FIRST AFTER BOOT-UP)

1 HERE 1- CONSTANT MODULEMARK (USE FOR ERASING MODULE
WORDS)

2 1 +B CONSTANT MODULES (DECLARE MODULES IN FOLLOWING
SCREEN)

3
4 : MODULE (BLOCK#)
5 CREATE , DOES> @ LOAD ;
6 : LOADMAP: (- ADDRESS)
7 CREATE HERE -1 , DOES> @ ABORT" MODULE ERROR" ;
8 : LOADED (ADDRESS)
9 0 SWAP ! ;

10
11 MODULES LOAD HERE FENCE !

Listing Two. Examples of module usage.
1

SCREEN # 81
0 (MODULE DECLARATIONS F(1 EXAMPLES)

1 85 MODULE SCREENEDITOR
2 100 MODULE TRIGONOMETRY
3 120 MODULE GRAPHICS
4 140 MODULE ROBOTICS
5
6
7

SCREEN # 100
0 LOADMAP: TRIGONOMETRY (CXAMPLE)
1 1 +B 3 +B THRU (ACTUAL :ODE ON SCREENS 101-103)
2 LOADED

SCREEN # 120
0 LOADMAP: GRAPHICS (EXAI 'LE-NESTED MODULES)
1 TRIGONOMETRY
2 1 +B 4 +B THRU (ACTUAL :ODE ON SCREENS 121-124)
3 LOADED

:.- INTEL 1
.-.a :.a

8 031
.*.a .Z ..
.f.
?.- %. ..'
?.-
?..
%.-. . -

a*.' .5' s3 MICRO- ::: ::: .. CONTROL Lmij
'4 :a: f. :::

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machine

code interrupt handlers
-System timekeeping maintains

time and date with leap
year correction

-Supports ROM-based self-
starting applicat~ons

COST
130 page manual -S 30.00
8K EPROM wlth manual-S100.00

Postage paid In North America.
Inquire for license or quantlty prtclng.

..:. .-.
?*'
?.* $

Bryte Computers, Inc. ... k
P.O. Box 46. Augusta, ME 04330 !; .-..

7.- (207) 547-32 18 .:. 3 . 2. .

Volume IX, Nwnber 5 Forth Dimensions

1987 FORTH
NATIONAL CONVENTION

Te Forth Interest Croup (FIG) held its
ninth annual convention on November 13-
14, the day after the second ANS Forth
standards meeting, in San Jose, California.
This is the first FIG convention I've at-
tended, and I found it to be another enjoy-
able Forth experience.

The theme was the evolution of
Forth." Ironically, a number of people
seemed concerned with whether or not
Forth was dying. In the Forth philosophy
session, Alan Furman pointed out that it's
difficult to convince people you have a
better mousetrap (Forth) so they'll beat a
path to your door, when the neighboring
house (C) has a freeway running through it!
Several other speakers seemed to echo this
concern. In a response of sorts, Chuck
Moore pointed out that it really doesn't
matter if a lot of people are using Forth, or
even if anyone else is, since he can improve
his own productivity with i t

This is not to imply that the meeting was
downbeat - there were numerous discus-
sions on new and exciting developments in
the Forth world: new Forth chips, new
implementations, new books, and many
new applications.

1 Friday
Several sessions were dedicated to the

1 history of Forth, with presentations from
many of its pioneers: Chuck Moore, Eliza-
beth Rather, Bill Ragsdale, Kim Harris,
and so on. In this paper, I'll only comment
on the technical sessions.

Charles Johnson gave an interesting
talk on their MlSC (Minimal Instruction
Set Computer) chip, which is still in devel-

JERRY SHIFRIN - MCLEAN, VIRGINIA
m

opment. It seems to be an inexpensive
implementation of a Novix-like architec-
ture. So far, the MISC chip has only been
run in simulation.

I found the philosophy panel discussion
to be the highlight of the conference. This
included Wil Baden (who showed up in his
philosopher's robes), Glen Haydon, Chuck
Moore, Alan Furman, and Howard
Pearlmutter. One of the main themes of this
discussion was the "less is more" idea, that
we should return to minimal Forth systems.
Wil Baden described some of the current
implementations as "garbage pail Forths,"
as in garbage pail pizza (with everything).
Glen Haydon pointed out that Forth pro-
grammers need to decide whether they
want to be free spirits or professionals,
whether Forth is their vocation or
avocation, and to act accordingly. Howard
Pearlmutter "performed" (the only re-
motely appropriate verb) a metaphor on
Forth. Variously entitled "Fow Thoughts,"
"Forethoughts," and "Forth Oughts," he
described Forth as a tree with its roots in dirt
and sand (silicon) and it leaves and
branches reaching out to the sunshine
(people). He noted that Forth allows us to
get close to the silicon, but that we should
pay more attention to the users.

Friday wrapped up with a "Point1
Counterpoint" discussion (renamed to
"Count, Pointer, Count") with Mitch Bra-
dley, Mike Peny , and Martin Tracy.

Saturday
Saturday continued the oral history of

Forth with presentations from the fig-
FORTH and F83 implementation teams.

Guy Kelly gave a-history of the Forth-83
Standard.

George Nichols gave a presentation on
their NOVIX-based PC-RISC system, run-
ning multiple Novix co-processors in an
IBM PC.

Along with Martin Tracy, Bob Smith,
and Larry Forsley, I participated in a panel
discussion on the ANS Forth effort. This
wasn't a tembly crowded session, but the
response seemed positive overall. People
were happy that the effort was underway;
they approved of using the Forth-83 Stan-
dard as the basis; and were mainly con-
cerned that the standard include some op-
tional extensions, floating point being
mentioned most often. When introduced,
the ANS Forth members received what can
only be described as a smattering of a p
plause.

Gary Feierbach described their Super-8
system, optimized for Forth and including
Forth in ROM. It directly executes NEXT,
DOCOL, and EXIT in a single instruction
(though each instruction requires multiple
machine cycles). The chip is expected to
sell for$7 in single unit quantity. It supports
a 64K program space and a 64K data space.
The Zilog development board costs $88
and the Inner Access ROM costs $65. The
processor has an effective cycle time of 10
MHz.

There was a well-attended panel discus-
sion on the GEnie Forth service. Dennis
Ruffer, Scott Squires, Marlin Ouverson,
and Lori Chavez described various aspects
of the available facilities. Alan F m a n
described the user interface as "technologi-
cally nostalgic."

Forth Dimensions 14 Volwne IX, Number 5

Volwne IX, Nwnber 5 15 Forth Dimensions

The annual meeting noted the resigna-
tions of Thea Martin and Kim Harris from
the FIG Board of Directors, the continu-
ance of Robert Reiling and Martin Tracy,
the re-election of John Hall, and the elec-
tion of Wil Baden, Bob Smith, Dennis
Ruffer, and Terri Sutton.

Other sessions included a FIG Chapters
breakfast, a second talk on the MISC chip,
a talkfiomPhilBurkon HMSL (an object-
oriented, Forth-based music language),
Glen Haydon on the 32-bit WISC engine,
Lori Chavez on the Unstable Flying Wing
Project, a roundtable on 32-bit applica-
tions, and one on Forth in education.

Another highlight of the conference
was Chuck Moore's "Fireside Chat."

The conference was capped off with an
after-dinner speech by Dr. Robert Trelease
on "Brains, AI, and Forth." He gave an
overview of current Forth activity in Nand
expert systems (see his article in the Octo-
ber 1987 issueofAIExpert), and went on to
discuss the current state of affairs in under-
standing how the brain operates, and neural
network technology.

Notes
As always, there is at least as much

going on outside the sessions as there is on
the inside. Here are some of the notes I
made:

There is a new Forth BBS for our friends
to the North: a Vancouver, British Colum-
bia board at 604-434-5886. Zafar Essak is
the operator.

Martin Tracy has begun developing an
iconic (picture-oriented) programming
language. Where does he find the time?
Martin's next Dr. Dobbs column is sched-
uled for December 1987, and should in-
clude some of the material from the ECFB
discussion of strings.

Gary Betts mentioned that his company
(SabaTechnologies) is planning to upgrade
their inexpensive document scanner (pro-
grammed in Forth) to take advantage of the
Novix chip.

I saw an actual demonstration of Har-
vard Softworks' and Softmills' GigaForth.
It looked like a powerful, well-thought-out
implementation. First customer shipment
is scheduled for January 1988. It sells for
$245 as an add-on to HS/Forth ($395).
Another add-on, Gigaloom and Rosetta, is
still in development; this is intended to

allow programmers to develop and link
modules from a variety of languages within
a single environment.

HyperForth! The current rage in the
personal computer arena is something
called hypertext, a way of scattering your
data all over, but still being able to retrieve
it quickly. Well, the inventor of hypertext,
Ted Nelson, has been involved with the
Forth community for many years. Bob
LaQuey has concluded that they are
kindred systems, and has begun designing
an integration of the two concepts into a
single system. (He will presented apaperon
this at FORML.)

A new book of interest from MIT Press:
Cellular Automata Machines by Tommaso
Toffoli and Norman Margolus ($30, 260
pages). Presents the theory of cellular auto-
ma@ and develops a language for &=rib-
ing cellular automata rules, CAM Forth,
which has been implemented to support a
CAM board in an IBM PC.

Dr. C. H. Ting's Offete Enterprises has
a few new additions to its catalog of Forth
material: Forth Notebook, Volume I1 ($25:
ROMable F83,8086 and 68000 &sassem-
blers, parallel processing, array processing,
neural network simulation, et~.); F83 Ref-
erence Manual ($10); the More on NC4000
series is now up to 5 volumes (total cost for
the series is $70).

Guy Kelly is selling his portable Forth
editor for $20, which includes his PD PC-
Forth implementation and support for LMI,
F83, MVP, UniForth, and his own system.

An Forth S ~ m ~ s i u m is
scheduled for May 19-20.1988 at the NSW
Institute of Technology. Chuck Moore will
be the keynote speaker. Contact Jose Al-
fonso, NSWIT, P. 0. Box 123, Broadway
NSW 2007.

As some of you might have noticed
recently, some of the mail sent to the Insti-
tute for Applied Forth Research (publisher
of The Journal of Forth Application and
Research, or EAR) was returned without
explanation or with something along the
lines of "moved, left no forwarding ad-
dress." Well, it turns out that they did move,
but the post office decided not to forward
their mail. Larry Forsley reports this wasn't
discovered for several weeks - not until
someone handed him an envelope with the
post office's practical joke on it. According
to Larry, this problem has been resolved,

but here are the correct addresses:
For subscriptions: Total Information,

844 Dewey Avenue, Rochester, NY
14613. (Total InfoIInation is one of those
subscription fulfillment services.) The new
address for The Institute for Applied Forth
Research is: 70 Elmwood Avenue, Roch-
ester, NY 1461 1.

Manuscript submissions should be
mailed to: Jim Basile, 17 Target Rock
Drive, Huntington, NY 11743. (Jim is the
new Editor-in-Chief of JFAR. Larry For-
sley is the publisher, Mahlon Kelly is the
US Editor, and Hans Nieuwenhuyzen is the
European Editor.

I don't know if it's the hackermentality,
but there seemed to be hostility directed
towards some of the Forth vendors, mainly
FORTH, Inc. There appeared to be some
gloating that the public-domain, Laxen &
Perry F83 implementation had forced
Forth vendors to provide more complete
systems. Even if true, I found the attitude
less than attractive.

Computer Literacy Bookstore and
Fry'sElec~onics can almostjustify the trip
to San Jose on their own. Computer Liter-
acy has, by far, the best selection of corn-
puterbooks I'veever come across (in D.C.,
try Reiter's for one almost as good). Fry's
is a supermarket with food, audiolvideo,
computers, software, and electronics parts.
Take a shopping cart and your credit card.

Jerry Shifrn is a prolific talent; see
,re his work in this issuess r r ~ ~ ~

~~~~h ~~~~i~~ N ~ ~ ~ ~ . ~  1 

~;~~~~,';;;~ ~;;~~t~;~~;e~~;$\~;;~c;;~~;~~; 

~;;;~,i~;~;~~r;;;;;;h~;;;;~;;n~;~;~;; 
machines, respected Forth theorists. and programmers or 
ngnlncanl Forth appilcations. Should you prepare, or Just 
aeSp.tn rind hoUI Forth's rutUre could arrCCt U O U ~  



1 NOVEMBER 1987 1 

ANS FORTH 
MEETING NOTES 

JERRY SHIFRIN - MCLEAN, VIRGINIA 

TC Meeting 1 
The second meeting of the ANS Forth 

Technical Committee (TC) was held on 
November 11-12,1987 in San Jose, Cali- 
fornia. Local arrangements were provided 
by Bill Ragsdale and the Forth Interest 
Group. The TC still does not have an offi- 
cial Chair and Vice-chair. Some candi- 
dates for these positions were unable to get 
approval from their companies for suffi- 
cient time away from work. As a result, the 
meeting was officiated by Elizabeth 
Rather as Acting Chair, with Martin Tracy 
as Acting Secretary. The Chair and Vice- 
Chair positions are still open if anyone 
wishes to volunteer. ANSIICBEMA de- 
cided not to appoint permanent officers 
until they had more people to choose from. 
At the moment, candidates for Chair are 
Charlie Keane of PPI and John Dorband of 
GSFC. Ray Duncan is the only candidate 
for Vice-chair. 

Most of the attendees from the August 
meeting were present here with the excep- 
tion of Charlie Keane, David Petty, and 
the ANSIICBEMA folks. New to this 
meeting were Wil Baden, Andy Kobziar 
of NCR (user), John Gotwals of Purdue 
(user), and John Stevenson (user). Attend- 
ing as an observer was Dennis Ruffer 
(GEnie SYSOP) from Allen Test Prod- 
ucts. 

We received a letter from our CBEMA 
liaison, John Kurihara, congratulating us 
on the quality of our efforts to date and 
complimenting Ray Duncan on the min- 
utes of the first meeting. 

The TC approved the meeting sched- 
ule without objection. The next meeting is 
scheduled for February 10-12, 1988 in 

I 

Forth Dimensions 16 Volume IX, Nwnber 5 

Southern California, to be hosted by Eliza- 
beth Rather. Subsequent meetings are 
planned for Rochester, New York (Larry 
Forsley); Beaverton, Oregon (Gary Beus); 
and Washington, DC (Jim Rash). Chuck 
Moore suggested that meeting hosts at- 
tempt to fmd sites in surroundings more 
pleasant than hotels. Ms. Rather agreed to 
look into holding the February meeting on 
Catalina Island. Larry Forsley said he was 
investigating the availability of a mountain 
retreat. Meeting plans will be announced 
when available. Anyone interested in at- 
tending should contact the appropriate 
meeting host for information. 

I t's to your advantage that 
your products can be 
stamped "ANSI Forth" 

A form for technical proposals was 
discussed. The documentation committee 
was directed to add a cover sheet with 
detailed instructions, and to remove any 
fields intended for internal TC usage. This 
was to have been circulated and voted on by 
mail ballot within two weeks of the meet- 
ing. 

Next was a report from the Research 
Committee on current Forth practices. A 
total of 274 surveys were mailed out, but 
only 24 responses were received. Of these, 
only 14 indicated 200 or more users (re- 
quired for consideration of "common us- 
age," by a previous vote). The results from 
this survey were rather interesting: respon- 
dees who differed from the Forth-83 stan- 
dard did so in the areas of word addressing, 

32-bits, lack of floored division, and lackof 
disk commands. Most respondees offered 
extensions in the areas of strings, multi- 
tasking, graphics, floating point, etc. Sug- 
gestions from respondees varied widely, 
but a number of people thought the stan- 
dard should be layered (allow optional, 
standard extensions), and that it needed to 
deal with 32 bits, floating point, OS inter- 
face, strings, graphics, and ROMability. 
The Research Committee was directed to 
make another attempt to obtain responses 
from "major" vendors who had not re- 
turned their questionnaires. 

The Technical Subcommittee (TSC) 
next reported on areas of consensus and 
controversy with respect to the Forth-83 
Standard. Surprisingly, there were a few 
areaswheretheTSCwasinunanimityon 
keeping certain items from the 83 standard: 
DUP, DROP, OVER, SWAP, >R, R>, AND, 
OR, XOR, +, -, ABS (ABS was later found 
to be controversial), 0=, 0<, =, u<, @, ! , 
and the ASCII collating sequence. Every- 
thing else in the 83 standard had either 
major or minor controversy associated with 
it. 

Elizabeth Rather read letters from Lany 
Forsley and Guy Kelly on the IEEE Forth 
Standard activity. We haven't received 
official word yet, but it appears that the 
IEEE Forth proposal has been withdrawn in 
acknowledgment of the openness of the 
ANSUCBEMA effort. One major benefit 
from this controversy is that members of 
the IEEE Computer Society may attend 
ANS Forth TC meetings without paying 
any fees. Since Computer Society member- 
ship costs about $20, there is a clear advan- 
tage to this alternative approach. 



I 

Volwne IX, Number 5 17 Forth Dimensions 

The TC then had a fairly lengthy dis- 
cussion on the Technical Proposal p m -  
ess. Briefly, pmposals are to be sent to the 
secretary (Martin Tracy at FORTH Inc.). 
The secretary will pre-filter proposals, re- 
turning any in obvious need of work. He 
will distribute remaining proposals to the 
TSC, which will return them to the TC 
with a recommendation to adopt, reject, 
return for more information, or table. If 
the TC agrees to adopt, it would be sent to 
the Documentation subcommittee - 
who will develop the final language - 
then to the TC, who will either ratify or 
return it. The TC voted (14-0) to allow a 
proposal to be tabled indefinitely. The 
secretary was directed to maintain a data- 
base (in a format of his choice) of all 
proposals. 

I pointed out a problem, in that Tech- 
nical Proposals were supposed to be sub- 
mitted in the form of updates to the Basis 
document (this is the Forth-83 standard 
initially, but it evolves into the draft stan- 
dard as updates are made). However, we 
arenot allowed (by CBEMA) to make the 
Basis document publicly available. The 
sense of the TC was that, initially, people 
should submit proposals as updates to the 
Forth-83 Standard. Later, they will have 
to develop their proposals in conjunction 
with a TC member. 

The TC voted (12-3) to maintain a 
public status list of all proposals. I will be 
maintaining this on the MCI Mail ANS 
Forth Bulletin Board. The TC also voted 
(13-2) to similarly publish all proposal 
abstracts received on electronic media. 

The TC then adjourned to allow for 
subcommittee meetings. 

TSC Meeting 
The TSC (Technical Ad Hoc Sub- 

committee) immediately convened to 
begin deliberations. Greg Bailey was still 
Acting Chair and Martin Tracy continued 
as Acting Secretary. 

The first order of business was to dis- 
cuss the process for dealing with Techni- 
cal Proposals within the TSC. The final 
conclusion, to the best of my understand- 
ing, is that proposals found to be contro- 
versial will be directed to a "magnet" 
assigned to each major area of contro- 
versy. The magnet will collect comments 
from the entire TC and circulate them for 

review. The goal here is to allow work to 
continue expeditiously outside formal TC 
meetings. Noncontroversial proposals go 
directly to the TC with aTSC recornmenda- 
tion. 

There were discussions on word or cell 
size (non-controversial) and signed divi- 
sion (controversial). 

Next were discussions on voting rights. 
I have two conflicting notes here: one says 
that only formal members of the TC (in- 
cluding alternates and observers) may vote 
on TSC issues; the other states that, since 
the TSC is a totally ad hoc committee, 
anyone who attends can vote. I'll clarify 
this ruling whenlif I can. 

There was a discussion on getting a TSC 
secretary. Martin Tracy cannot continue, 
since he is too busy as the TC secretary. No 
one else cared to volunteer. Don Colburn 
said he'd do it as a last resort, but that he'd 
make us pay for it! (Don, who was the 
secretary of the Forth Standards Team, felt 
he had suffered enough.) Finally, I agreed 
to take on the work, but I cautioned the 
group that I would not be able to attend all 
of the meetings. 

We agreed that MCI Mail was not a 
suitable facility for holding TSC discus- 
sions between meetings (MCI Mail Bulle- 
tin Boards are mainly oriented towards 
posting announcements). We then dis- 
cussed the advantages of GEnie vs. Com- 
puserve. Don Colburn offered to make 
available a section of his Compusewe Forth 
conference, and Dennis Ruffer offered to 
do the same on FIG'S GEnie Forth confer- 
ence. 

There was discussion and vote on Eliza- 
beth Rather's cell-size proposal (eliminat- 
ing references to 16-bit words). This was 
found to be non-controversial by a vote of 
17-2-1-0 (strongly in favor, prefer inclu- 
sion, prefer exclusion, strongly in favor of 
exclusion) and was referred to the TC. From 
the vote, I conclude that at this point anyone 
present was eligible to vote. 

As secretary, Martin Tracy had received 
four proposals to date. Naturally, none of 
thesemeet therequirements for aTechnical 
Proposal (which has yet to be finalized). 
Two of these (from Wil Baden and Richard 
Gray) were declared to be comments or 
advice, and were to be returned to their 
originators, requesting that they state them 
as proposals. 

One of the proposals, from Roy Martens 
of Mountain View Press, consisted of the 
following hand-written note: "711187, 
Elizabeth -We submit the enclosed docu- 
ment, "Forth Floating Point" by Philip J. 
Koopman, Jr., MVP-FORTH Series, Vol- 
ume 3, revised, to The Technical Commit- 
tee for consideration as the standard for 
integer and floating point math. It conforms 
to IEEE Floating Point Standard (Task 
W54) short. There are no restrictions on its 
use. Sincerely, Roy Martens7'. This was 
attached to a copy of their MVP-FORTH 
floating-point documentation. My notes 
fail me here, but I believe it was sent back 
for rework. 

The final proposal (so far) was on the 
treatment of DO loops with equal arguments 
(n DUP DO) from Lee Brotzman of Uni- 
Forth. This was discussed at some length. 
Lee proposed that such loops should run 
zero times. Some people felt the proposal 
should be returned, since it didn't meet our 
(non-documented) proposal format. Don 
Colburn felt it should be returned for clari- 
fication in the case of +LOOP structures (he 
thought it didn't work as expected in such 
cases). Chuck Moore opposed it for histori- 
cal reasons, stating that DO was intended to 
always run at least once. Ultimately, the 
proposal was declared controversial and 
referred to the DO loop magnet, Ray Dun- 
can, for further analysis and comment. 

From the TSC survey, Greg Bailey put 
together a list of 14 controversial areas. 
Members of the TSC (except the secretary) 
were assigned tobe magnets for the individ- 
ual areas. Members of the TSC were to write 
one paragraph on each of the controversial 
subareas. (See the accompanying list of 
magnets and their areas.) 

TC Meeting 2 
I had to leave for a few hours to do some 

training for my company's field personnel 
and missed some of the discussion, but 
here's what I understand to have occurred: 

The TSC unanimously agreed to bring a 
cell-size proposal (removing all references 
to 16-bit words) to the TC for ratification. 
The FIG representative, Bill Ragsdale, in- 
voked the two-week rule, which allows any 
member to put off a vote for two weeks in 
order to allow sufficient time for review. 
This apparently created some discord, and 
someone moved to disband the TSC. The 



I 
Forth Dimensions 18 Volume IX, Number 5 

TC voted to continue the TSC and every- 
thing seemed to be smoothed over by the 
time I was able to rejoin the proceedings. 
No one said this was going to be easy! 

The Research subcommittee was di- 
rected to publish the Forth vendor list on 
MCI Mail. The Logistics subcommittee 
was requested to attempt to supply com- 
puter and copying facilities at each TC 
meeting. The Vocabulary Representative 
was directed to research and resolve any 
conflicts between ANSI definitions and 
those used in the Basis document. Eliza- 
bethRather agreed toclarify the questionof 
guests with CBEMA. 

The TC then adjourned to the bar. 

Summary and Comments 
Well, it's been over a year since the first 

meeting (October, 1986) organized to de- 
velop an ANS Forth standard. Under- 
standably, I think, some of the members 
feel a fair amount of frustration at the 
amount of energy being dedicated to ad- 
ministrivia. There was a smng desire to 
show some small amount of progress. The 
first such proposal was to send the non- 
controversial list of words (DUP, SWAP, 
etc.) to the TC for ratification, but it was 
pointed out that this was a no-op, since it 
didn't involve a change to the basis docu- 
ment. Next was an attempt to solve the 
floored division problem, proposing that 
division operators with remainders (MOD, / 
MOD, */MOD) should only work on un- 
signed values - this was declared contro- 
versial. Finally, we had unanimous agree- 
ment on the cell-size proposal, but this was 
tabled due to the invocation of the two- 
week rule. Even if no one said this wouldbe 
easy, neither did anyone tell us it would be 
impossible! 

The next meeting is scheduled to take 
three days, and I think there's a fair chance 
it will be more productive. Also, we will be 
returning mail ballots on a couple of key 
issues: Technical Proposal format, and cell 
size. There is visible progress from this 
effort, but it's painfully slow. 

The TC directed that members present 
our current status and request input from 
both the forthcoming FIG convention and 
the FORML meetings. Additionally, the 
research committee was directed to take 
another shot at gathering vendor input. 

Folks, we have a serious effort here to reach 
out and obtain guidance from the entire 
Forth community. My sense is that the TC 
is determined to involve as many people as 
possible, to go the extra mile in gathering 
input, and to give serious consideration to 
everyone's points of view. With the way 
this effort is proceeding, I don't see how 
anyone has grounds for complaint if they 
end up with a standard they don't like. 

The TC is not a set of finite-state auto- 
mata. Wedon't speak withonevoice. Some 
of us (well, me) don't even stay consistent 
from day to day. By its nature, Forth seems 
to attract people with a strong sense of 
individualism and creativity. Still, I sense 
some general areas of agreement opening 
up the process, avoiding attempts to gar- 
bage up the language, allowing for future 
extensions, and proceeding quickly to a 
draft standard we can standbehind. 

If you have a strong opinion, I encour- 
age you to get involved and join the TC. If 
you have a proposal, write it up and send it 
to the TC secretary. If you have some 
unformed thoughts on a subject, get in 
touch with one of the TC members and ask 

for help on developing a proposal. The 
greatest problem I sense is the general 
apathy of the Forth community. There are 
no automatics; you may think that some- 
thing is so obvious that it will certainly be 
changed, but that probably won't happen 
unless someone is there to champion the 
cause. If your Forth vendor is not listed 
among the TC membership, perhaps you 
should question them about it. If you are a 
Forth vendor, it's to your advantage to 
attempt to sway the committee to do things 
in such a way that your products can be 
stamped "ANSI Forth" with a minimum of 
changes to your product. 

In case there's any doubt, this is not an 
official communique from the ANS Forth 
Technical Committee, only the notes of a 
non-finite-state automaton. My thanks to 
Ray Duncan for some helpful reminders 
about the meeting activity. 

Jerry shvrin for MCI, and is 
well hewn for his excellent ,rust 
coast ~~~~h Board (703-442-8695). m 

~ i ~ t  Of ~ ~ ~ i ~ ~  and "Magnets" 

Tppir Magnet 

Vocabularies and : John Stevenson 
Mass Storage (blocks and text) Andy Kobizar 
Loops, EXIT, and Termination Ray Duncan 
Division Bob Smith 
Documentation Gary Betts 
Testing Chuck Moore 
Assemblers Greg Bailey 
Controlled Reference Set Mike Nemeth 
ROMability Martin Tracy 
Host and File Structures Don Colburn 
Interpreter Dean Sandersen 
I, >BODY, [ \ I , etc. Charles Keane 
Numeric output John Gotwals 
Control, ABORT, QUIT, etc. Wil Baden 



ASSEMBLER 
CHESTER H .  PAGE - SILVER SPRING, MARYLAND 

l h e  only weakness I have encountered 
in Forth is the unavailability of primitive 
subroutines, called by JSR. For example, I 
have written a floating-point routine which 
has fast multiplication and division (using 
primitives), but slow s IN and similar func- 
tions. The polynomial approximation to 
SIN is slowed by high-level looping and 
iteration. If the computation routine for 
s IN were written as aprimitive, using JSR 
to call repeated multiplications as object 
code subroutines, it would be faster. 

To correct this defect, I have written a 
Forth 6502 assembler designed, not for 
long programs, but for assembling primi- 
tive words, one by one. It has provision for 
20 labels and 20 label references (per 
word); this should be sufficient, but it can 
easily be increased. This assembler is not 
computer specific; it requires only that the 
computer is 6502 based. 

Since the 6502 uses 100 - IFF hex as its 
stack area (return stack), addresses in this 
range never appear as target addresses in 
source code. I take advantage of this by 
using 101,102,103, etc. as the label names, 
and use the low byte to index into an array 
of label addresses. During the first pass of 
the assembly, label targets are compiled as 
label names (single-word addresses), to be 
replaced by single-word label addresses in 
the second pass. In the case of a branching 
instruction, where only one byte is to be 
compiled, the low byte of the label name is 
compiled. On the second pass, this byte will 
be replaced by the jump offset. In both 
cases, the compilation address of the target 
is saved in a reference table, along with a 

1 flag to distinguish between branching 

commands and commands requiring an 
absolute address. When a label assignment 
is encountered, its location address is saved 
in an array of label addresses, indexed by 
the low byte of the label name. In the second 
pass, the reference table is stepped through, 
a label name is found at a compilation 
address and is converted to the correspond- 
ing label address, or the offset for a branch 
is computed and compiled. 

W h y  shouldn't 
extensions to the nucleus use 
primitives? 

The 6502 mnemonic words are in 
Ragsdale's form, consisting of the standard 
mnemonics suffixed by commas (to distin- 
guish, for example, between ADC as a hex 
number and ADC, as a mnemonic). Each 
mnemonic word returns a base opcode 
single-byte value and a single-precision 
number which serves as an admissibility 
key for rejec tion of inadmissible addressing 
modes. Roughly speaking, each addressing 
mode adds a characteristic number to the 
base value of each opcode. There are sev- 
eral exceptions; these are identified by 
special bits in the admissibility keys. 

Absolute address modes are distin- 
guished from zero-page address modes by 
examining the address given with a 
command. , x and , Y are, thus, defaulted to 
zero-page modes, but upmoded when ad- 
dresses above 200 are given ("addresses" 
between 100 and 200 are label names). 

Each mode is assigneda single-bit number 
for logical comparison with admissibility 
keys. There are two exceptional cases; the 
, Y mode and the immediate mode (#) have 
additional bits. These are used to allow 
zero-page , Y to be used with LDX, and 
STX, ,and to change the opcode increment 
producedby #in thecasesof LDX, , LDY, , 
CPX,, a n d c ~ ~ ,  . 

Screen #3 gives the mode identifica- 
tions, keys, and effects on opcodes. Screen 
#9 gives JSR, and the special words , , 
and C , , which provide for compiling data 
with address labels; also the time and space 
savers * and GONEXT. Screen #11 gives 
illustrative examples. 

JSRs within a word are handled by la- 
bels; JSRs to other words (primitives end- 
ing in RTS) are supplied with target ad- 
dresses by 

' <name> >BODY JSR,  

JSRs to entry points in ROM are sup- 
plied with addresses, e.g., in the Apple, 
FC5 8 JSR, to clear the screen. 

Test Results 
My 13digit-precision, floating-point 

system required 180 milliseconds to 
compute FS IN. Simply replacing all stack 
manipulations with primitives reduced 
this time to 100 ms. Replacing the high- 
level loop evaluation of the polynomial a p  
proximation with a primitive (collection of 

-- 

Volume IX, Number 5 19 Forth Dirnenswm 



ASSEMBLER SCR # 1 
0 1 A s s e m b l  y samp 1 e 
1 \ C o n v e n t  i o n a l  f o r m a t  
2 \ LDA #0 
3 \ LDY #%80 
4 \ L1 STA 3 0 0 , Y  
5 \ DEY 
6 \ BPL L l  
7 \ JMP NEXT 
8 
9 \ F o r m a t  f o r  t h i s  a s s e m b l e r  

1 0  \ ASSEMBLE TEST 
1 1  \ 0 # LDA, 8 0  # LDY, 1 0 1  3 0 0  ,Y STA, DEY, 1 0 1  BPL,  
1 2  \ END 
13 
1 4  --> 
15 

GONEXT 

ASSEMBLER SCR # 2 
0 \ 
1 HEX 
2 VOCABULARY ASSEMBLER 
3 ASSEMBLER D E F I N I T I O N S  
4 VARIABLE MODE 
5 VARIABLE MODE.KEY 
6 1 4  ARRAY LABEL.TABLE \ P r o v i d e  f o r  20 l a b e l s ,  a n d  
7 CREATE REF.TABLE 0 , 0 , 38 ALLOT \ f o r  2 0  t a r g e t s  
8 VARIABLE REF-POINTER 
9 --> 

1 0  
1 1  
1 2  
1 3  
1 4  
1 5  

ASSEMBLER SCR # 3 
0 \ M o d e s  19JUN87CHP 
1 : ZP 0 MODE ! 0 MODE.KEY ! ; \ A d d s  4 t o  o p c o d e  
2 : ,X 1 MODE ! 1 MODE.KEY ! ; \ A d d s  1 4  ( z e r o  page,XZ 
3 : ,Y 2 MODE ! 2 0 2  MODE.KEY ! ; \ A d d s  1 4  - LDX, STX, o n l y  
4 : X )  3 MODE ! 4 MODE.KEY ! ; \ A d d s  0 (ZP ,X )  
5 : ) Y  4 MODE ! 8 MODE.KEY ! ; \ A d d s  1 0  ( Z P ) , Y  
6 : # 5 MODE ! 110  MODE.KEY ! ; \ A d d s  8 I m m e d i a t e  
7 : ,A 6 MODE ! 2 0  MODE.KEY ! ; \ A d d s  8 A c c u m u l  a t o r  
8 : > 7 MODE ! 40  MODE.KEY ! ; \ A d d s  2C - I n d i r e c t  JMPB o n l y  
5". 8 A d d s  C - A b s o l  u t e  a d d r e s s  

1 0  \ 9 A d d s  1C - A b s o l u t e , X  
1 1 '*, A A d d s  1 8  - A b s o l u t e , Y  
1 2  
1 3  CREATE ADD-TABLE \ I n d e x e d  by mode v a l u e  
1 4  1 4 0 4  , 0 0 1 4  , 0 8 1 0  , 2C08  , l C 0 C  , 1 8  C, 
1 5  - ->  

I 
Forth Dimemiom 20 Volume IX, Number 5 



ASSEMBLER SCR # 4 
0 \ A i s  a g i v e n  a d d r e s s  24JUN87CHP 
1 \ C i s  a d d r e s s  r e t u r n e d  by o p c o d e  mnemon ic  
2 : RANGE.CXECK ( A C---A C) OVER 1 0 0  U <  0= \ T r u e ,  a b s o l u t e  a d d r  
3 I F  MODE 3 DUP 3 < I F  DROP 8 MODE + ! \ m o d i  f y ZP m o d e s  
4 MODE.KEY @ 2 0 2  = I F  2 0 0  MODE.KEY ! THEN \. A b s o l u t e , Y  
5 ELSE 5 < ABORT" I 1  l e g a l  Opcode"  THEN THEN ; 
6 
7 : CODE-CHECK ( C---GI 
8 DUP 1+ @ \, Admi ssi b i  1 i t y  k e y  
9 MODE .KEY @ AND ?DUP \. T e s t  mode 

1 0  I F  DUP FF AND ABORT" I 1 1 e g a l  O p c o d e "  
1 1  DUP 1 0 0  = I F  DROP - 2  MODE + !  \ F o r  IMMEDIATE a n d  CPX, 
1 2  \ CPY, LDX, LDY, STX, c o n v e r t  t o  a d d  0 
1 3  ELSE 2 0 0  = O= ABORT" Code e r r o r "  \ N o t  LDX ZP,Y 
1 4  THEN THEN ; 
15 --> 

ASSEMBLER SCR # 5 
0 \ 19JUN87CHP 
1 : LABEL.SAVE FF AND DUP LABEL.TABLE a \ N o t  new l a b e l ?  
2 ABORT" D u p l i c a t e  l a b e l "  
3 HERE SWAP LABEL.TABLE ! ; \ S a v e  1 a b e l  a d d r e s s  
4 
5 : LCI spa SO 4 - = IF SWAP LABEL.SAVE THEN ; 
6 : L C 2  S p a  SO 6 - = I F  ROT LABEL.SAVE THEN ; 
7 
8 : COMPILE.ADDRESS C A- - - )  
9 DUP FFOO AND DUP 1 0 0  = \ I s  i t  a l a b e l ?  

10 I F  HERE REF.POINTER @ 0 OVER C!  \ F u l l  a d d r e s s  l a b e l  n e e d e d  
1 1  1 +  ! \. Save  c o m p i  l a t  i o n  a d d r e s s  
1 2  3 REF.POINTER + !  \ A d v a n c e  f o r  n e x t  e n t r y  
13 THEN 
1 4  I F  , ELSE C ,  THEN ; \ C o m p i l e  a b s o l u t e  a d d r e s s  o r  ZP b y t e  
1 s  --> 

ASSEMBLER SCR # 6 
0 \ CREATE o p e r a t o r s  f o r  d e f i n i n g  m n e m o n i c s  19JUN87CHP 
1 \ Mu1 t i m o d e  o p c o d e s  
2 : M/CPU CREATE 2 ALLOT C, , DOES) L C 2  RANGE.CHECK 
3 CODE.CHECK 
4 C@ MODE C@ ADD-TABLE + C@ + C, \ A d j u s t  o p c o d e  
5 COMPILE .ADDRESS ZP ; 
6 
7 \ S i n g l e - m o d e  o p c o d e s  
8 : CPU CREATE 2 ALLOT C, DOES? LC1 C3 C ,  ZP ; 
9 

1 0  : BRANCHES CREATE 2 ALLOT C, DOES) LC2  
1 1  c a c , c ,  
1 2  HERE 1-  REF.POINTER 3 1 OVER C !  \. .. B r a n c h  o f f s e t  n e e d e d  
13 1+ ! \ Save  c o m p i l a t i o n  a d d r e s s  
14 3 REF.POINTER + !  ZP ; \.. A d v a n c e  f o r  n e x t  e n t r y  
1 5  --> 

I 

Volume IX, Number 5 21 Forth Dimensions 



ASSEMBLER SCR # 7 
0 \ S e c o n d  p a s s  r e p l a c e s  s t o r e d  l a b e l  t a r g e t s  19JUN87CHP 
1 : SECOND.PASS 
2 BEGIN -3  REF.POINTER + !  REF.POINTER a DUP I+ a 
3 \ F i n d  l a b e l  c o m p i l a t i o n  a d d r e s s  
4 DUP WHILE DUP CP DUP LABEL.TABLE a \ L a b e l  a d d r e s s  
5 3 ROLL C@ \ W o r d - o r - b y t e  f l a g  
6 I F  2 PICK - 1- \ O f f s e t  
7 DUP ABS 7F  > 
8 I F  DROP CR ." B r a n c h  t o  " 100 + . ." i s  t o o  f a r "  SP! Q U I T  
9 THEN ROT C! 

10 ELSE ROT ! 
1 1  THEN DROP REPEAT DROP DROP ; 
1 2  
1 3  : CLEAR.TABLES 8 1 DO 0 I LABEL.TABLE ! LOOP 
1 4  REF.TABLE 3 + REF.POINTER ! ; 
1 5  --> 

ASSEMBLER SCR # 8 
0 \ D e f i n i t i o n s  o f  m n e m o n i c s  27JUN87CHP 
1 0 0 6 2  6 1  M/CPU ADC, 0 0 6 2  21  M/CPU AND, 0 0 6 2  C1 M/CPU CMP, 
2 0 0 6 2  4 1  M/CPU EOR, 0 0 6 2  0 1  M/CPU ORA, 0 0 6 2  E l  M/CPU SBC, 
3 0 0 6 2  8 1  M/CPU STA, 0 0 6 2  A1 M/CPU LDA, 
4 005E 0 2  M/CPU ASL, 005E 4 2  M/CPU LSR, 
5 005E 2 2  M/CPU ROL, 005E 6 2  M/CPU ROR, 
6 007E C2 M/CPU DEC, 007E E 2  M/CPU INC, 
7 016F  EO M/CPU CPX, 0 1 6 F  C0 M/CPU CPY, 
8 036D A 2  M/CPU LDX, 0 16E A0 M/CPU LDY, 0 1  7D 82 M/CPU STX, 
9 007E 80  M/CPU STY, 0 0 7 F  20 M/CPU B I T ,  0 0 3 F  40 M/CPU JMP, 

10 00 CPU BRK, 1 8  CPU CLC, 0 8  CPU CLD, 58 CPU C L I ,  B8 CPU CLV, 
1 1  CA CPU DEX, 8 8  CPU DEY, E8  CPU INX,  C8 CPU INY,  EA CPU NOP, 
1 2  4 8  CPU PHA, 0 8  CPU PHP, 6 8  CPU PLA, 28 CPU PLP, 40 CPU R T I ,  
1 3  60  CPU RTS, 3 8  CPU SEC, F 8  CPU SED, 78 CPU S E I ,  AA CPU TAX, 
1 4  A 8  CPU TAY, BA CPU TSX, 8A CPU TXA, 9A CPU TXS, 98 CPU TYA, 
1 5  --> 

ASSEMBLER SCR # 9 
0 \ M o r e  m n e m o n i c s  a n d  s p e c i a l  d e f i n i t i o n s  27JUN87CHP 
1 90  BRANCHES BCC, B0 BRANCHES BCS, F0 BRANCHES BEQ, 
2 30 BRANCHES BMI , DO BRANCHES BNE, 10  BRANCHES BPL, 
3 50 BRANCHES BUC, 7 0  BRANCHES BUS, 
4 : JSR, SPP SO 4 - = I F  SWAP LABEL.SAUE THEN DUP 2 0  C, , 
5 200 U< I F  REF.POINTER @ DUP 0 SWAP C! \ A d d r e s s  i s  a l a b e l  
6 1+ HERE 2- SWAP ! \ Save c o m p i l a t i o n  a d d r e s s  
7 3 REF.POINTER + !  THEN ; 
8 
9 : ,, SP@ SO 4 - = I F  SWAP LABEL.SAUE THEN , ; 

10 : C,, SPP SO 4 - = I F  SWAP LABEL.SAVE THEN C, ; 
1 1  : END SECOND.PASS CURRENT P CONTEXT ! ?EXEC ?CSP ; IMMEDIATE 
1 2  : GONEXT [ ' I  NEXT >BODY JMP, ; 
1 3  : A ' >BODY JSR, ; \, U s e f u l  i n  c o m p o s i t e  p r i m i t i v e s  
1 4  i. e . g . , ASSEMBLE PROGRAM * A * 8 * C GONEXT END 
1 5  - ->  

I 

Forth Dimensions 22 Volume IX, Number 5 



subroutine jumps) further reduced the time 
to 74 ms. 

These results raise a philosophical 
question: Does a liberal use of primitives 
really affect portability? Since the nucleus 
of Forth depends on primitives, why 
shouldn't the extension of the nucleus to 
double-precision or floating-point arith- 
metic also use primitives? It doesn't seem 
sensible to saddle floating-point users with 
slow routines to satisfy an aesthetic pride in 
colon definitions. Applications using either 
integer or floating-point arithmetic can be 
written in completely portable, high-level 
defmi tions. 

Note on Using the Assembler 
The simplest way to use a Forth assem- 

bler is to append it to the nucleus dictionary 
and then assemble a desired application. 
This leaves the assembler vocabulary in 
memory between the nucleus and the appli- 
cation. Each compiled application saved to 
disk includes the entire assembler; this 
wastes disk space as well as fast-access 
memory. 

This waste can be avoided by a simple 
routine. When the Forth nucleus is booted, 
note the name of its last word, and the 
normal next-word location. Call this ad- 
dress cdp>. @nte r"~~RE . ")Leave space 

for the application by entering "n ALLOT" 
wheren is, say, 5000. Then load the assem- 
bler and enter "cdp> DP ! " to restore the 
dictionary pointer to follow the nucleus 
vocabulary. Assembling the application 
will locate the application vocabulary as if 
it were a normal continuation of the nu- 
cleus vocabulary. After the application has 
been assembled, the assembler vocabulary 
can be eliminated by linking the first word 
of the application directly to the last word 
of the nucleus, by entering 

I <last nucleus name> >NAME 
<first application name> 

>LINK ! 

ASSEMBLER SCR # 1 0  
0 \ A s s e m b l  e r  c a n c  1 u d e d  
1 
2 FORTH D E F I N I T I O N S  
3 
4 : PRIM - 2  ALLOT HERE 2+ , ; 
5 
6 : ASSEMBLE ?EXEC CREATE ASSEMBLER PRIM 
7 C ASSEMBLER 3 CLEAR.TABLES ZP !CSP ; 
A 
P IMMEDIATE 

10 
1 1  DECIMAL 
1 2  
1 3  
1 4  
15 

ASSEMBLER SCR # 1 1  
0 '\ SAMPLES 
1 HEX 
2 ASSEMBLE (TEST)  O # LDA, 8 0  # LDY, 1 0 1  3 0 0  ,Y STA, 
3 1 0 1  BPL,  RTS, END 
4 ASSEMBLE TEST * (TEST)  GONEXT END 
5 
6 ASSEMBLE TRY 5 STX, 1 # LDX, 1 0 1  I N X ,  7 # CPX, 1 0 1  
7 (TEST)  5 LDX, GONEXT END 
8 
? ASSEMBLE HOME FC58  JSR, GONEXT END 

1 0  
1 1  ASSEMBLE T H I S  3 # LDY, 1 0 1  102 ,Y LDA, CLC, 1 0 3  ,Y 
1 2  1 0 2  ,Y STA, DEY, 1 0 1  BPL, I N Y ,  GONEXT 1 0 2  1 C , ,  
13 2 C, 3 C, 4 C, 1 0 3  2 0  C , ,  3 0  C ,  40 C, 50 C, END 
1 4  \ T H I S  h a s  2 - l a b e l  s n t r i e s ,  a n d  d a t a  l a b e l  1 i n g  
1 5  DECIMAL 

27JUN87CHP 

DEY , 

BNE , 

Volume IX, Number 5 23 Forth Dimensions 



VECTORED EXECUTION 
& A FULL-SCREEN EDITOR 

RICHARD E. HASKELL - ROCHESTER, MICHIGAN 
ANDREW MCKEWAN - LAKEVILLE, MICHIGAN 

m 

ectored execution is a useful tool for v 
directing the flow of control in a program. 
Various forms of the CASE statement are 
often used for this purpose. We have found 
that different types of jump tables are often 
more convenient, and execute faster, than a 
corresponding CASE statement. In this 
paper, we will present three different types 
of jump tables: a simple jump table contain- 
ing consecutive execution addresses, a 
jump table containing both key codes and 
execution addresses, and a jump table in 
which the key codes can be computedusing 
any Forth statement. This last form of the 
jump table will be illustrated by anF83 full- 
screen editor. Each of the jump tables will 
be created using a defining word. Both F83 
and fig-FORTH versions of these defining 
words will be given. 

A Simple Jump Table 
Figure One shows the structure of a 

jump table called do . k e y  that contains the 
CFAs of five Forth words. The number of 
entries in the jump table is stored as the first 
element in the parameter field. When 
do.key is called with a value of 0 - 4 on the 
stack, the corresponding word in the jump 
table will be executed. For example, 2 
do . k e y  will cause 2 word to be executed. 
The jump table is created by using the 
defining word JUMP. TABLE in the fol- 
lowing form: 

For example, the jump table in Figure 
One is created by the statement 

5 JUMP .TABLE do. key 
Oword lword 2word 3word 4word 

The colon definition of JUMP. TABLE 
in F83 is 

: JUMP .TABLE ( -- ) 
CREATE DUP , 0 ?DO ' , LOOP 
DOES> ( n pfa -- ) 

SWAP 1+ SWAP 2DUP @ > 
I F  2DROP 
ELSE SWAP 2 *  + PERFORM 
THEN ; 

A powerful method of 
defining jump tables. 

The corresponding definition in fig- 
FORTH is: 

: JUMP .TABLE ( -- ) 
<BUILDS DUP , 0 DO 

[COMPILE] ' CFA , LOOP 
DOES> (np fa - - )  

SWAP 1 + SWAP 2DUP @ > 
I F  2DROP 
ELSE SWAP 2 * + @ 

EXECUTE 
THEN ; 

An F83 example of using this jump table is 
shown in Figure Two. 

A Jump Table with 
Arbitrary Stack Values 

A limitation of the jump table shown in 
Figure One is that the key values on the 
stack that select one of the words to be 
executed must be consecutive values, start- 
ing with zero. This is often easily arranged 
in small, dedicated systems where one 
scans only a few keys. With a standard 
keyboard, on the other hand, one usually 
has available the ASCII code of the key that 
has been pressed. In this case, it is more 
convenient to have a jump table that con- 
tains both the key (ASCII) code and the 
CFA of the word to be executed when that 
key code is on the stack. The jump table 
shown in Figure Three is such a table. In 
this case, the first element in the table is the 
number of key code1CFA pairs, not count- 
ing the final, default CFA (CHROUT). This 
jump table is created using the defining 
word MAKE. TABLE as follows: 

MAKE.TABLE do.key 
0 FKEY 
8 BKSPACE 
8 1  QWORD 
2 7  ESC 
-1 CHROUT 

The colon definition of MAKE. TABLE 
in F83 is: 

: MAKE. TABLE ( -- ) 
CREATE HERE 0 , 0 

BEGIN BL WORD NUMBER DROP 
DUP 1+ WHILE , ' , 1 +  

REPEAT DROP ' , SWAP ! 
DOES> ( n pfa -- ) 

Forth Dimensions 24 Volume lX, Number 5 



DUP 2+ SWAP @ 0 
DO 2DUP @ = 

IF NIP 2+ LEAVE 
THEN 4 + LOOP 

PERFORM ; 

The corresponding definition in fig- 
FORTH is: 

: MAKE. TABLE ( -- ) 

<BUILDS HERE 0 , 0 
BEGIN BL WORD NUMBER DROP 

DUP 1+ 
WHILE , [COMPILE] 
' CFA , 1 + 

REPEAT DROP ' CFA , 
SWAP ! 

DOES> ( npfa-- ) 
DUP 2 + SWAP @ 0 
DO 2DUP @ = 

IF SWAP DROP 2 + LEAVE 
ELSE 4 + 
THEN LOOP 

@ EXECUTE ; 

An example of using this jump table is 
shown in Figure Four. 

Creating the Jump Table 
with Forth Words 

The jump table given in Figure Three is 
a convenient, generalized jump table. 
However, you need to know the numerical 
value of each key code before creating the 
jump table with MAKE. TABLE. It would 
be even more convenient if you could use 
Forth statements to compute the key codes 
during the creation of the jump table. We 
will use a new defining word called 
EXEC. TABLE to define this same jump 
table. The jump table shown in Figure 
Three is created by executing the following 
statements: 

EXEC.TABLE do.key 
0 1 FKEY ( functionkeys) 

CONTROL H 1 BKSPACE 
( backspace key ) 

ASCII Q 1 QWORD (key Q) 
HI 2B I ESC (quittoDOS ) 

In this method of constructing the jump 
table, the statements to the left of the verti- 
cal bar I can be any Forth statement that 
leaves a numerical value on the stack. The 

I 

Volume lX, Number 5 

vertical bar itself is a Forth word whose 
colon definition is: 

: I (addrn--ad&) 
, ' , 1 OVER +!  ; 

The corresponding fig-FORTH defini- 
tion is: 

: I (addrn--addr)  
, [COMPILE] ' 
CFA , 1 OVER +! ; 

This word commas into the jump table the 
key code value on the stack as well as the 
CFA of the Forth word following I . It also 
adds 1 to the pair count stored in the first 
element of the jump table. 

The colon definitions of EXEC . TABLE 
and DEFAULT : in F83 are: 

: EXEC. TABLE ( -- ) 
CREATE HERE 0 , 
DOES> ( n p f a - - )  

DUP 2+ SWAP @ 0 
DO 2DUP @ = 

IF NIP 2+ LEAVE 
THEN 4 + LOOP 

PERFORM ; 

and 

: DEFAULT: ( ad&-- ) 

DROP ' , ; 

The corresponding definitions in fig- 
FORTH are: 

: EXEC. TABLE ( -- ) 

<BUILDS HERE 0 , 
DOES> ( l ip fa - - )  

DUP 2 + SWAP @ 0 
DO 2DUP @ = 

IF SWAP DROP 2 + LEAVE 
ELSE 4 + THEN LOOP 

@ EXECUTE ; 

and 

: DEFAULT : ( addr -- ) 

DROP [COMPILE] ' CFA , ; 

Note that DEFAULT : stores the CFA of 
the default word in the jump table, after 
dropping the address of the first element in 

these words call built-in words rather than 
use BIOS or DOS calls. We can, therefore, 
redisplay the entire screen without any 
noticeable delay. If BIOS or DOS calls are 
used for EMIT and TYPE, the editor should 
be modified to update only changed parts of 
the screen, in order to obtain an acceptable 
response time. 

In summary, the EXEC-TABLE defin- 
ing word given in screen 7 of Figure Five 
provides a powerful method of defining 
jump tables. Two examples of such jump 
tables are given in screens 8 and 9. It is, 
obviously, a simple matter to modify this 
full-screen editor by adding and subtract- 
ing entries to these jump tables. 

do. key 

5 

Oword 

lword 

2word 

3word 

4word 

Figure One. Structure of CFA-only 
jump table. 

do. key 

4 

0 

FKEY 

8 

BKSPACE 

8 1 

QWORD 

2 7 

ESC 

CEROUT 

Figure Three. Structure of key code- 
CFA jump table. 

25 Forth Dimensions 



the jump table (left on the stack by HERE 
when the jump table was created). As an 
exZiInple of using EXEC. TABLE, a full- 
screen editor that can be added to F83 will 
be described in the next section. 

F83 Full-Screen Editor 
Figure Five gives the listing of a full- 

screen editor we have added to the IMB PC 
version of F83. This full-screen editor is 
activated by typing v from the editor. For 
example, to edit screen 26, you would type: 

2 6  E D I T  

v 

Pressing the ESC key from within the 
full-screen editor returns you to the F83 
editor. Typing DONE will then save any 
changes you have made, and will return 
you to Forth. 

Note that the definition of V in screen 9 
is simply: 

: v ( - - I  
.MODE B E G I N  EDIT-AT 
KEY DO-KEY AGAIN : 

After waiting for each key to be 
pressed, the jump table DO-KEY directs 
control to the proper Forth word to be 
executed. The jump table DO-KEY defined 
in screen 9 handles all control characters 
used, and defaults to VCHAR, which either 
inserts or overwrites a character at the 
current cursor position. On the IBM PC, 
the function keys and the cursor keys on the 
numeric keypad return an ASCII code of 0 
when called by KEY. In this case, KEY must 
be called again to retrieve the scan codes 
for these keys. Note that in the DO-KEY 
jump table, this is handled by the word 
FKEY. The colon definition of FKEY is 
simply: 

: FKEY KEY DO-FKEY : 

where DO-FKEY is another jump table 
definedby EXEC-TABLE in screen 8. This 
jump table handles all the function and 
cursors keys, PgUp, PgDn, Ins, and Del, 
etc. 

The shadow screens in Figure Five 
describe the functions of the words corre- 
sponding to the various keys. Many of 

Scr U 33 A:CSE241.BLK 
0 \ Figure 2 
1 
2 : jump.table ( -- ) 
3 CREATE DUP , 0 ?DO ' , LOOP 
4 DOES, ( n pfa - -  ) 
5 SWAP 1+ SWAP 2DOP @ > IF 2DROP 
6 ELSE SWAP 2* + PERFORM THEN ; 
7 
8 : (lword CR . "  This is word 0 " ; 
9 : lword CR . "  This is word 1 " ; 
10 : 2word CR . "  This is word 2 '' ; 
11 : 3word CR . "  This is word 3 '' ; 
12 : 4word CR . "  This is word 4 " ; 
13 
14 5 jump.table jump.test Oword lword 2word 3word 4word 
15 
ok 

3 jump. test 
This is word 3 ok 
0 jump.test 
This is word O ok 
2 jump.test 
This is word 2 ok 
4 jump.test 
This is word 4 ok 
1 jump.test 
This is word 1 ok 
5 jump.test ok 

I 

Figure Two. Example use of jump table do . key. 

Scr U 31 
0 \ Figure 4a 
1 
2 : make.table 
3 
4 
5 
6 
7 
8 
9 

( - -  ) 
CREATE HERE O 0 
BEGIN BL W O R ~  NUMBER DROP 

DUP 1+ WHILE , . , 1+ 
REPEAT DROP ' , SWAP ! 

DOES, ( n pfa - -  ) 
DUP 2+ SWAP @ 0 

DO 2DUP @ = IF NIP 2+ LEAVE 
THEN 4 + LOOP 

PERFORM ; 

32 list 
Scr U 32 A:CSE241.BLK 

0 ( Figure 4 
1 ) 
2 : default.word . "  This is the default word '' . ; 
3 : 3word . "  This is word 3" ; 
4 : 5word . "  This is word 5" ; 
5 : 17word . "  This is word 17" ; 
6 
7 make.table make.test 
8 3 3word 
9 5 5word 
10 17 l7word 
11 -1 default.word 
12 
13 
14 
15 

5 mnke.test Thie is word 5 ok 
3 make.test This is word 3 ok 
17 make.test This is word 17 ok 
14 make.test This is the default word 14 ok 

Figure Four. Example use of key code-CFA jump table. 

Forth Dimensions 26 Volume lX, Number 5 



Figure Five. Listing of F83 full-screen editor for IBM PC. 

1 
0 '\ Editor Visual W e  Load Screen 
1 EDITOR ALSO DEFINITIONS 
2 2 9 T h R U  
3 M Y  FORTH ALSO DEFINITIONS 
4 CR . ( Visual Editor Loaded 
5 
b 
7 
8 
9 

10 
11 
12 
13 
14 

I1 
03tlar67AH \ Editor Visual W e  Load Screen 

2 
0 \ Display 03flarfl7W 
1 VARIABLE INSERTING 
2:.nODE ( - )  

3 45 0 AT INSEFtTIN6 B 
4 IF . ' Insert ' ELSE .' Overnrite' MM ; 
5 : INS ( -- 1 INSERTING B NOT INSERTIN6 ! .a ; 
b 
7 : (REDO-LINE) ( l ine# - ) 
8 DX OVER DY + AT CIL ? 'START + C/L TYPE ; 
9 : (REW-SCRON) ( - ) 

10 DX b + 0 AT SCR ? 
11 L/SCR 0 DO C FORTH I I (RU)[I-LINE) LOOP ; 
12 
1; : REEHINE ( -- LINE# (REDO-LIE1 NUDIFIED : 
14 : REDO-SCREEN ( - ) (REDO-SEEN) MDIFIED ; 

I2 
\ Display 03flar87M 
INSERTING Current insert wde. 
.m3DE Display current nade. 
INS Toqgle between insert and overwrite mode. 
(Rma-LINE) Redis~lav a line. 
(REDO-SCREEN) Redisplay ent ire screen. 
REDO-LINE Redisplay current l ine and mark screen as d i f i e d .  
REDO-XXEN Redisplay screen and mark as modified. 

3 13 
0 \ Character InsertIDelete 13Clpr87CYI \ Character InsertIDelete 0 4 ~ a r a 7 ~  
1 : (VCHCIR) ( char - ) (W) Insert or overnrite acharacter at thecursor. 
2 INSERTING @ IF 'lXl?333 W 1+ #fWER 1- CBOV€> THEN V M  Ingore non-printable characters. 
3 'CURSOR C! ( store char ) WW-LINE 1 C ( move cursor ) ; DEL Delete the character a t  the cursor. 
4 : VCW ( char - bKB Backspace and erase a character. 
5 DUP BL - 95 U< IF ( printable (VCHCIR) ELSE DROP THEN ; 
6 : W .  ( - )  

7 'CURSOR rClFTER 1 DELETE ( delete 1 char ) EDCHINE ; 
8 : BKSP ( - ) 
9 MKR IF -1 C ( Rave cursor back ) INSERTING @ I F  DEL 

10 ELSE BL'CURSORC! REW-LINE THEMTHEN; 
11:TAB ( - )  

I2 4 MnX Z AND - ( # positions to  next tab stop ) 

1: INSERTING B IF = * DROP wm TUWR ~ W ~ E R  INSERT 
14 REDO-LINE THEN C ( move cursor to tab stop ; 
15 

I I 

Volwne IX. Number 5 27 Forth Dimensions 



4 
0 \ Cursor Rovenent 
1 : RIGHT 1 C : 
2:LEFT - 1 C :  
3 : UP C/L NEMTE C ; 
4 : w m  C/LC;  
5 : m  l + T :  
6 : EOL LINE# T 'LINE C/L -WILING NIP C ; 
7 : m  TOP; 
8 : END TOP 'STCIRT CISCR -WILING NIP C ; 
9 :  ~ 6 1 1 ~  S C R ~  (don ' t  y o p a s t s c r e e n o )  

10 IF '?STW B (REDO-SCREEN) ELSE BEEP THN ; 
11 : PGDN SCR e CCIPKITY 1- < ( don't f a l l  o f f  end ) 

12 IF ?STW N (REDO-SCREEN) ELSE BEEP MN; 
13 : ALT ( - : alternate between screen and shadow ) 

14 ?STW A (REDO-SCREEN) ; 
15 

14 
17kr87M \ Curursor tbvement 

RIWT tbve c u m r  riqht. 
LEFT Hove cursor le f t .  
W tlove cursor up one line. 
DOWN Hove cursor dorm me line. 
WR Hove cursor to  beqinninq of next line. 
E l l  Hove cursor t o  end of current line. 
KE Hove cursor to  top of xreen. 
END Move cursor to  end of screen. 
TAB Rove cursor t o  next tab position. 
PGUP 60 to previws screen. 
P6DN 60 to  next screen. 
ALT Alternate between a xreen and i t s  shadow. 

5 15 
0 \ Line Insert/Delete Ol)(arE7M \ Line hsert/Delete 04Rar87M 
1 : W  ( - 1  MHL Insert a blank l i ne  before the current line. 
2 'LINE C/L OVER I#ND INSERT 'LINE C/L BLAIN REDO-- : DELL Delete the current line. Save i n  insert buffer. 
3 : DELL X REW-SCREEN ; DEOL Deleta to  the end of the line. 
4 : DEOL 'CM BLANK REDO-LINE ; REPL Replace l ine from the insert buffer. 
5 : REPL 'INSERT l+ 'LINE C/L CmM REDO-LIM ; INSL Insert contents of insert buffer before current line. 
6 : INSL REPL: S A K  b v  l i ne  to  insert buffer. 
7 : SClVL KEEP 0 18 AT .LINE : VWIPE Wipe screen clean. 
8 VDISCARD Iqnore chanses made to  screen. 
9 : WIPE WIPE (REDO-SCREEN) ; VSPLIT S p l i t  l ine at  cursor. 

10 : VDISCMD DISCARD CWED OFF (REDO-SCREEN) ; VJOIN Join next l i ne  at cursor. 
11 
12:VSPLIT - SPLIT R E W - D M :  
13 : VJOIN ( - 1 JOIN REDO-SCREEN ; 
14 
15 

6 16 
0 \ Other Visual Operations 03tIar87M \ Other Visual Operations 03lar67Atl 
1:DELW ( - )  DELH Delete the next word. 
2 'C#A 2WP TUCK BL SCAN BL SKIP NIP - Wm REDU-LINE : +WORD Hove cursor to the beginning of the next word. 
3:+HORD ( - )  (-WORD) Reclove non-blank characters from a string. 
4 'CUAS[IR RRMCIINING TUCK BL SCAN BL SKIP NIP - C ; -WORD tlove cursor the beginning of previws word. 
5 

b : (-WORD) ( addrl Ienl - adr2 len2 1 
7 DLP 0 ?W 2WP + 1- ce BL = ?LEAVE 1- L W  ; 
8:-WORD ( - 1  
9 'CURSiRC@BLO IF -1 C THEN 

10 'START CURSOR -TRAILING (-WD) R I  ! W)P ; 
11 
12 
1s 
14 
15 

Forth Dimensions 28 Volume lX, Number 5 



7 
O \ Execution Table 
1 : EXEC-TABLE ( - addr ) 

2 CREATE HERE O , 
3 WES> i n { p f a ) - - )  
4 w 2 t s w e o  
5 ?W ~ W P  e = IF NIP 2+ LEAVE TIEN 
6 mm; 
7 
8 : :  ( a d d r n - a d d r )  ' l W E R + ! :  
9 

10 : DEFCWLT: ( addr -- ) DROP ' , : 
11 
12 
13 
14 
15 

17 
04tlar87M \ Execution Table 04nar87M 

EXEC-TABLE Define an execution table. It- are compile with 
I. A t  runt i re  a value i s  placed on the stack and the table 
i s  searched for  a aatchinq value. I f  i t  i s  found, the 
selection value i s  dropped and the corresponding nord i s  

4 +  LOOP executed. Othemise the default wwd is executed a i t h  the 
selection value s t i l l  on the stack. 

I 
I W i l e  a table entry. 
DEFAULT: Coaoile the default action and end table def i n i t i m .  

I f  no deiault action i s  desired use DEFAULT: DRW. 

0 
0 \ IBH Function kevs 
1 EXEC-TABLE W-FKFI 
2 59 I NOOP ( F 1 )  
3 61 I SAVL i F3 ) 

4 63 1 REFL ( F5 ) 

5 65 1 NOOP ( F7 ) 

6 67 1 VWlPE ( F9 ) 

7 
8 71 1 HOHE (Home) 
9 73 I PW ( PquP ) 

10 77 : RIGHT ( Right 
11 80 : DOWN ( Down 
12 82 : INS ( Ins ) 

13 115 : -WRD ( "Left ) 

14 MFAILT: DROP 
15 

18 
04tlar87M \ IBH Function kevs O?&r871Yl 

W-FKM Table of actions for  IBEI function and special purpase 
MI 1 1x1 ( F2 ) keys. The scan code i s  on the stack. 
62 : SELL ( F 1 )  
64 I INSL ( F b )  
66 1 NOOP ( F8 ) 

68 1 VDISCMD ( F10 

72 1 UP ( L b )  
75 I LEFT ( Lef t  ) 

79 1 END ( End ) 

81 1 P6DN ( PqDn ) 

83 : DEL ( Del ) 

Ilb : +WORD ( "Right ) 

9 19 
0 \ Editor Visual M e  Mar87AH \ Editor Visual Elode 03nar87M 
1:FKEY - WDO-fkEY: FKEY 6et exented kev code and perform function key action. 
2 : ESCAPE ( - ESCAPE Ex i t  from visual mode to  edi tor c m n d  mode. 
3 ?STW 0 ( R E W I N E )  'START 'VIDEO B/BN C M  WIT ; GQ-KE( Execution table fo r  control keys. 
4 EXEC-TABLE DO-KEY V Enter visual mode from the editor. 
5 0 : FKEY CONTROL E : E M  
b CONTROL H 1 BKSP CUNTROL I 1 TAB 
7 CONTROLJ : VJOIN COW ti  I CRR 
8 CONTROL N : NEWL CWJTROL S I VSPLIT 
9 CWROL T I DELH CONTROL U I DEOL 

lr) MINTROL Y : E L L  27 : ESCAPE 
11 DEFAULT: VCHAR 
12 
1 3 : V  ( - - )  

14 .MOM BEGIN EDIT-AT KEY M Y  MIN ; 
15 

1 
Volume lX, Number 5 29 Forth Dimensions 



Figure Six. F83 partial editor glossary. 
- 

#AFTER 
WEND 
#REMAINING 
' CIA 
' CURSOR 
' INSERT 
'LINE 
' START 
+T 
?STAMP 
A 
AT 
B 
C 
C/L 
CAPACITY 
COLW 
DELETE 
D l SCARD 
DX 
DY 
1 NSERT 
JOIN 
KEEP 
L/SCR 
LINE# 
MOD 1 F I ED 
N 
R# 
SPLIT 
T 
TOP 
WIPE 

( - -  n 1 
( - - n )  
( -- n 1 
( -- addr n 1 
( -- addr 1 
( -- addr 
( -- addr ) 

( -- addr 
( n -- ) 

( -- ) 

( -- 
( col row -- ) 

( -- ) 

( n -- 1 
( - - n )  
( -- n 1 
( - - n )  
( addr len # -- 
( - -  ) 

( -- n )  
( - -  row ) 

( a1 n1 a2 n2 - 
( -- 1 
( -- 1 
( - - n )  
( -- n )  
( --  1 
( -- ) 

( --  addr 
( -- 
( n -- ) 

( -- ) 

( -- 1 

# chars after cursor on current line 
# chars between line start and screen end 
# chars after cursor on screen 
address of cursor and #AFTER 
address of char at cursor 
address of insert buffer 
address of beginning of current line 
address of start of screen 
go to beginning of line relative to current 
update screen id if changed 
toggle screen and its shadow 
position cursor 
go back one screen 
move cusor n characters right or left 
characters per line (64)  
number of blocks in the file 
current column number 
delete # characters from string 
ignore latest changes 
column for upper left corner of screen 
row for upper left corner of screen 
insert string 1 at beginning of string 2 
copy next line at cursor 
put current line in insert buffer 
lines per screen (16) 
current line number 
mark screen as modified 
go to next screen 
variable for cursor position (0-1023) 
split line at cursor 
go to beginning of line n 
go to top of screen 
erase screen 

Forth Dirnenswns 30 



PROFILES IN FORTH: 
John D. Hall 

Volwne IX, Number 5 31 Forth Dimensions 

common? Can YOU tell what makes achap- 
ter work? 

JH: Yes: dynamic personality, of the 
leader or leaders. We're really fortunate in 
Silicon Valley because we have several 
dynamic people. If one person drops out, 
somebody else steps in. I've tried to en- 
courage other chapters to start - to see if 
they can't find these dynamic people to 
help them run the chapter. When they 
haven't been able to find such people, the 
chapter doesn't seem to be able to survive. 
It takes somebody who's dedicated to help- 
ing other people and who's really enthusi- 
astic about it. 

What we're beginning to find out is that 
it takes more than one person. One person 
is important. But as soon as that person gets 
tired, who do you pass it on to? It really 
takes two, or three. You really need to find 
a core of two or three - you need to find a 
team, so bat  when one person's on vaca- 
tion, things don't fall apart. When one 
person wants to go to Thanksgiving, or to 
FORML, things can't fall apart. SO you 
need a team of people. And that's really 
what it takes. 

MH: You mentioned in the Silicon Valley 
chapter meetings a morning session and 
afternoon session. How do those work? 

JH: When the Silicon Valley chapter first 
started, the morning session was called 
FORML, just like the FORML conference. 
The reason was, we had technical subjects 
in the morning. In the afternoon, we had 
people showing applications, things they 
had done. It's become a little confused 

Mike Ham, frequent FD interviewer, 
recently spoke with one of the Forth Inter- 
est Group's Board of Directors. John 
David Hall shared his professional back- 
ground, and his views of FIG and of the 
greater Forth community. 

How long have you ken FIG chapter 
coordinator? 

JH: Five years; I started in 1983. I went to 
a board meeting, and there were two things 
going on. I was interested in the chapter 
mailings: John Cassady was sending the 
handouts to the various chapters. At the 
board meeting, the suggestion came up that 
maybe the work that John was doing wasn't 
getting completed soon enough. I volun- 
teered to John, and the board said* 

James needs some 
help." 

I said, "John James?" And they said, 
"Yes- he's trying to Put together some 
chapters." They wanted to formalize the 
process and set up a formal contact between 
FIG and the chapters. John James had al- 
ready started writing up the documents, and 
he also needed some help. And that's how 
I got started with the chapters. 

MH: many chapters did have 
then? 

JH: About l6 are 
the core of what we have now as chapters. 
We hadcontacts in Tokyo already, theNew 
York chapter* the Potomac the 

Silicon Valley chapter, the Orange County 
chapter. 

MH: How many do we have now? 

JH: We have a list of 80 chapters. Last year, 
I sent out recertification forms and got them 
back from about 50, but out of the remain- 
ing 30 there are chapters that exist and are 
very strong, like the Potomac chapter, who 
never answer any inquiries. Lately I call 
people and ask if there really is a chapter 
there. I thought the Chicago chapter had 

E r t h  is used more and 
more, but it somewhere 
underneath.. . J )  

fallen apart. But today I got a contact with 
one of the people, and it's very active; I just 
had the wrong Person. The person who had 
been the contact had moved on and left it 
with someone who had not gotten ahold of 
us yet. 

MH: The chapter movement is important 
for members. 

JH: We  anted to start the chapters as a 
way of keeping the membership growing. 
YOU redly can't do it flDm a ~entral place. 
We can do only SO much with Forth Dimen- 
si0n.S. The authority and the ability to gather 
new members needs to be passed on to the 

MH: What do SUCWSS~U~ chapters have in 



lately, because we have technical papers in 
the afternoon, as well as in the morning, or 
we have applications in the morning as well 
as the afternoon. So the structure of morn- 
ing anddternmn has been blurred. I'm not 
quite sure why that is. We also see a decline 
in the number of papers being presented. In 
the Silicon Valley we see more applications 
being demonstrated than code being dem- 
onstrated. I think it's just our lack of em- 
phasis on trying to get the technical people 
there. 

MH: What do other chapters do? 

JH: San Diego County has an interesting 
format. They meet at lunchtime. Silicon 
Valley meets the fourth Saturday of every 
month, and it's pretty much an all day: 10 
o'clock in the morning until 5 o'clock. San 
Diego meets every Thursday at lunchtime, 
and it's very informal. I was talking to them 
this morning. Guy Kelley is more or less the 
leader of the group, and it's a roundtable. 
Physically, there's a U-shaped table. Guy 
sits in the middle of the U, and whoever 
wants to talk gets up and goes up to the 
blackboard and the podium and starts talk- 
ing. They don't have a secretary or treas- 
urer, and they have been meeting success- 
fully for five or six years that way. Every- 
body brings his lunch. They have a good 
group; they're kind of a rebellious group. If 
someone wants to get up and say something 
controversial, they do. And often they get 
into a good discussion. 

MH: What about your own background? 
When did you first find Forth? 

JH: I was a physics and chemistry major in 
Alaska and at Berkeley, and I didn't quite 
finish college when I went into the Army. I 
came back from the Army in 1963 and went 
back to Berkeley. By then I wasn't as inter- 
ested in chemistry as I had been earlier, but 
I had to finish my degree, so I went on with 
a chemistry degree. At the same time, 
computers - big computers - were be- 
ginning to be used, and I learned FOR- 
TRAN. I was becoming interested in com- 
puters. 

I returned to Korea as a civilian, my 
wife and I were married. I returned to the 
U.S. in 1967. I decided that computers were 

chemical company and started working as 
a lab assistant. They had an IBM 1130. It 
was a brand-new computer, but it was sit- 
ting idle, and I did some programs for the 
chemical engineers. 

In 1970, I worked with an accountant in 
Oakland, where I now live, using an IBM 
1130. I've worked off and on for account- 
ants, and the University of California, in 
the Agricultural Extension Service, which 
did a lot of 4H registration. All on the IBM 
1130. 

MH: What language? I 
JH: All this was business applications in 
FORTRAN. When COBOL became avail- 
able on the IBM 1130, it was in COBOL. 
This was in 1974. In '75 I read the article 
about the MITS computer and I bought an 
Altair computer. I put that together myself. 
My whole background has always been 
software; this was the first project where I 
had picked up a soldering iron and worked 
with hardware. 

That got me into microcomputers. I was 
still working at the University of California 
at that time. About two years later the 
Processor Technology SOL computer 
came out. I had been working in the ac- 
counting service before, and I went there 
with a proposal: let's put together an ac- 
counting package. BASIC was all that was 
available at that time. So my sister, Beckie 
Harvey, and I began programming in 
BASIC and wrote a complete accounting 
package. 

This was around August of 1980, and as 
we read the Byte articles about Forth we 
realized this was really the direction we 
would like to go. Because we were trying to 
make our BASIC programs as flexible as 
possible: we were building small tools. I 
had a sort package I could move from 
application to application, I had a string 
data-entry package I could easily move. 
We were trying to put together these mod- 
ules, and here was a modular language. 

So we started to reprogram everything 
we had written. We had a general ledger 
and accounts receivable for convalescent 
hospitals, vertical markets at that time. We 
had all these written in BASIC, and they 
were slow. We started rewriting them in 
Forth and were well on our way when 

I FORTH, lnc. 
what I wanted to be involved in. I found a Processor Technology died on us, right in 

I I 

Forth D i m e n s i ~  32 Volume lX, Number 5 



the middle. We had an orphan. that time the buzzword was "user- 
We could have continued, and we could friendly." By the end of a year, it turned out 

have sold the few processors we had. We we were doing it almost 180 degrees out of 
had about 12 of them installed in several phase from the original specifications. 
convalescent hospitals, doing accounts Originally, we had started a controller with 
receivable. But the Sol was gone. The next very little user interface: it was to do engine 
question was, where to go? We were stuck. testing. When we were all done, it was an 

So in 1981, Beckie and I split up. She engineer's workstation, with a much larger 
went down to Los Angeles and worked for user interface. 
a company, programming in Forth; and I In most applications, a user interface is 
became a consultant and found jobs in a good 50% of the project, so we had almost 
Forth. One was for a company called Stafa, doubled what we had set out to do in the first 
where they were beginning to do control- place. 
lers for ducts: environmental control. They 
had a controller built right into the ducts, MH: Did it come out as a product? 
and they could talk to the device through 
the AC connections. It was a singlechip and JH: It eventually came out as a product, 
it had Forth on it. though it was completed by another group. 

After that. I went to work with Rising 
MH: The 8080? Star. They had already been working for a 

year or so on putting together a personal 
JH: No, but it was an embedded 8080-like computer, a turnkey kindof computer. You 
processor; an 8080 controller chip with turned it on, it came up in an editor; you hit 
everything on it, A-to-Ds, everything. A a calc key and went into the spreadsheet; 
single chip with all the hardware on it. you hit "mail," you went into the mail 

programs; you hit the copy key to copy a 
MH: A long way from the 1130? disk. It was a basic, novice, entry system. 

That was the concept. At that time, the IBM 
JH: A long way from the 1130! 1130s at PC still had not really picked up, and they 
that time were considered minicomputers, were doing it on an Epson computer with a 
and they were designed as scientific mini- 2-80. The interesting part was that we were 
computers, but we had used them as busi- showing what aZ-80couldreally do. It was 
ness machines because they were inexpen- amazing. We had multiple banks of 64K 
sive. memory. We put a spreadsheet in one bank, 

The Stafa project took about 8 months the editor in another bank, the operating 
or so. Then about that time Gary Feierbach system in a third bank, and so on. And 
had a job to do an engine test device for a graphics - we had graphics that nobody 
company in Ventura. Paul Thomas, Gary else had at that time. 
Feierbach, Matthew Johnson, and myself 
were all working as a team. The project was MH: You actually drew the letters on the 
what I now characterize as a typical Forth screen. 
project putting out a fire. Somebody had 
attempted a project, had put a lot of money JH: Yes, the editor was What-You-See-Is- 
into it, decided they couldn't do it in the What-You-Get; we hadbold and italicsand 
traditional languages, came to us and said, all the stuff. And most of the upper-level 
"We really need to get this thing done, and applications were written in Forth, pretty 
we really need to get it done by a certain much in high-level Forth. The operating 
date, and we've heard that Forth can do this system was written in assembler, by a 
-do it for us." company that had started up way back when 

Gary was teaching Forth and was doing CP/M was starting. They had written their 
some hardware at the time, and decided to own workalike CP/M called TP/M. Now 
take on the project. they were reforming, with the same people 

The project really wasn't well defined. and with their own operating system, CP/M 
And as we went along, the requirements compatible but with extensions. They had 
changed. Theclient thought wecould make one graphics guru; he took w e  of the 
the project a little more user-friendly - at graphics engine. We made calls to the 

hanging with'preat pocreibilitii" (and lots of 
work!) With over 1500 functions you are 
almost done before you start! 
WELCOME TO HWFORTH. where megabvte 

w at IO,QOO lines per &mite, 
and execute taster man oms built in 64k 
limited systems. Then use AUTOOPT to 
reach within a few pwceqt of full assembler 
performance - not a native code compik 
linking only simpte code primitives. but a full 
mamive &scant optimizer with most  all of 
HS/FORTH as r useable resource. Both 
optimizer and ammbier can creete inde 
pendent programs a8 weN a8 code primitives. 
The meteoom* creates systems 
from a b w  huwhd bytes to as large as re- 
quired, and can produce ANY threading 
scheme. And the entire system can be saved, 
sealed, w turnkeyed for distribution either on 
dlsk or in ROM (with or without 610s). 

1/0 is easier than in Pascel or W i c ,  but much 
more powwhd - whether you need parsing, 
formatting. or random access. Send display 
output through DOS, BtOS, ordirect to video 
memory. Windows oqanke both text and 
graphk8 display, and pat ly  enhance both 
time 8th and round robin muititasking utili- 
ties. Math Wlitles include both software and 
hardware floating point plus an 18 digit 
integer (finance) extendon and fest arrays for 

Me full range of trig. hyper and t r m n -  
trl mnth including complex. 
Undeniably the most flexible 8 complete 
Forth system awdlable, at any prke, with no 
e x M m  extras to bw Wer. Comolb 79 b 

I PO BOX 69 
SPRINGBORO. OH 45066 

(513) 7480390 

1 
Forth Dimensions Volume IX, Nwnber 5 33 



graphics engine to draw a line or change 
fonts -that kind of thing. We didn't draw 
the characters in Forth, we called the graph- 
ics engine. But again it was all the Z-80 
machine: the same 2-80 machine, with us 
calling it from different places. 

MH: So when you switched the applica- 
tion, you would just drop into the operating 
system, and it would switch the bank - is 
that the way it worked? 

MH: What was your job in the Rising Star 
project? 

JH: My job switched very quickly. Origi- 
nally, I was to help do the menus. Between 
applications, there were menus that would 
allow you to switch applications. The first 
thing that struck me was that the Forth 
underneath was very large, very overbuilt. 
So it was decided toreinstall the underlying 
Forth. That was a three-person job, and I 
got involved. We installed a simplified, 83- 
Standard model with separated heads (like 
the original F83). 

Then we put that underneath the appli- 
cations - the applications were already 
building. The most complete was the 
spreadsheet, so we took that one, moved the 
new Forth under the spreadsheet, and found 
that no changes had to be made to the 
spreadsheet. We had integrated it enough 
into what the old system looked like, that it 
really fit underneath - it surprised me. I 
thought there would be tools that we didn't 
include, but it didn't happen; it fit in very 
nicely. 

But Rising Star was out on a limb. They 
were being fed money by Epson, and that's 
how they were able to keep about 30 pro- 
grammers going. The programmers were 
scattered all over the United States. There 
were a team of 6 or 7 assembly language 
programmers who did the operating system 
and the mail program; they were back East. 
There were a couple of people in Oregon, 
who did documentation of the team that did 
the new Forth. I lived in Oakland, Paul 
Thomas lived in San Francisco, and Ron 
Braithwaite lived in San Diego county. 

This was the first time I had seen pro- 
gramming at a distance. We all worked at 
home and sent modules back and forth by a 

Forth Dimensions 34 Volume lX, Number 5 

bulletin board system on the team leader's 
computer. We all used the EPon computer 
- they were UP enough and running so we 
could use it. We would upload and down- 
load modules using the team leader's bulle- 
tin bard. Every month. everybody ~ o u l d  
come across the United States to meet in 
Los Angela, in Torrance where the head- 
quarters were. 

It was a nice environment, pleasant for 
programmers. It worked as a management 
tool, and it worked very nicely - particu- 
larly for I%rth Programmers. beause we 
were V W  independent. We liked to work 
by ourselves on projects and then come 
together to pool the pieces and the knowl- 
edge, rather than all working together in a 
office. Really, you do the same thing in an 
office. You get together, pull off apiece, go 
work on it, Put it back together again. It's 
just that often you have someone come in 
and look over your shoulder to see how 
you're doing, see if you're doing it fast 
enough. It turns out that if youdo it at home, 
You work more hours on Your project than 
in the office, because YOU work until ten or 
twelve at night. At the office you go home 
at five. 

Rising Star ended in December of 1984. 
I was there for about half the project, about 
8 months. BY then the IBM was beginning 
to make an impact. EPon decided they no 
longer wanted to continue with a 2-80 
product, they wanted an tl088 product 

thought we could fmish. so they gave 
us a little extra life. I think they would have 
cut it off in August or September, but they 
thought, "Well, we're very close to getting 
the product done and getting it out the 
door," so they gave us until lkcember 
before they cut off the money. We weren't 
done, and Rising Star just collapsed in 
December. 

If You want to point any fingers. it was 
because of the editor. The editor was a 
concept picked UP from Forth - it was the 
typical Forth line editor extended to this 
glorious What You See Is What You Get. 
The idea of the line editor is that you edit on 
the single line in the middle of the screen; as 
You scroll UP or down, the screen moved 
and you were editing that line. But a line of 
text extends any distance; you have to mark 
it - there were a lot of complications. B~lt 
the whole model was limited in how it was 
first conceived, and it grew beyond its 

bounds. 
The original concept should have been 

m&ied earlier. Rising Star spent a lot of 
money putting people in hotels. They took 
the editor team and locked them in a hotel 
for three weeks at a time trying to get the 
product up to a certain level. It was a very 
intense situation. There was no time even to 
go back and think. They just plowed along 
at this point. Probably that should have said 
the end is coming. 

MH: If you get off on the wrong foot with 
a concept, you can go a long way; but 
there's a certain point beyond which you 
need to say,"This was a wrong turn, let's go 
back to the very beginning and rethink 
this." 

JH: You have to back up, but when money 
is involved, time is involved, and reputa- 
tions are involved, sometimes you can't 
back up. And if you can't back up and you 
can't go ahead, the fate is sealed. mat 
doesn't seem to be acceptable either, but it 
often comes to a tragic end. 

MH: And you were back to consulting. 

JH: I was working for Rising Star as a 
consultant. From Stafa to Inner Access to 
Rising Star, I was a consultant. When Ris- 
ing Star fell, it caught me off guard, and it 
took me until about March to find some 
other work. I took a job at Lockheed Re- 
search and Development in Palo Alto, and 
it turned out to be very interesting work. 
Lockheed's research and development is 
right next to Stanford, and it gives the area 
amundLockheedanacademicatmosphere. 
I thought it was an opportunity to get in and 
do something with ~ o r t h  that wasn't just 
grinding out code. Not that all my other jobs 
were just grinding out code - there were 
some opportunities to explore. That was in 
1985, and now I have worked there almost 
three years. 

MH: Programming in Forth? 

JH: Yes. Our major department is called 
Applied Physics. As a subgroup, we are 
about 10 people; our sub-group is called 
"fast p-ssors." The idea is to build fast 
sensors.  he leader of the group is very 
interested in FO&. Some are software 



Volume IX, Nwnber 5 35 Forth Dimemiom 

people, and the rest are hardware people. 
But in Forth, there is not a clear distinction 
between the software and hardware people. 
I have learned a lot more of hardware than 
I would ever have thought was possible. 

Forth has opened my eyes to these 
things I at one time called black boxes. On 
the IBM 1130, I knew the language but I 
didn't know what the operating system did, 
I didn't know the drivers - everything but 
the language and application was a black 
box. There are no black boxes any more. 
Forth is so simple, I can cut through and see 
that all these things I called black boxes 
were probably overly built, complicated 
structures that didn'treally need tobe there. 
Maybe the machinery of the time was more 
primitive and that may have caused some of 
complexity. 

MH: What processor do you use now? 

JH: When I first started at Lockheed, we 
were using Intel development machines, 
essentially 8086s and 286s running parallel 

processes. They communicated through a 
common memory on a bus. There were four 
independent cpu boards communicating 
through common memory, each board col- 
lecting, storing, manipulating, and logging 
the data. 

Our group has now moved to the Novix 
4016chips. Wefoundwiththe4010wecan 
replace hardware with software. If some- 
body wants a sensor, we can take the 4016, 
attach it to whatever we want to sense, and 
run it fast enough that we don't need hard- 
ware in between. We don't need much 
hardware in front of us - maybe an A-to- 
D. We can do a lot of high-speed sensing. 

We were using Computer Cowboy's 
boards. We have a project now to see if we 
can't put together a parallel Novix system, 
where a lot of Novix chips and boards are 
all working together. 

MH: How many? 

JH: We're starting with 10 independent 
cpus connected in parallel. We're begin- 

FORTH, Inc. - 32 

Forth Interest Group - 10,24,40 

Harvard Softworks - 33 

Inner Access -36 

Laboratory Microsystems - 8 

Miller Microcomputer Services -12 

Mountain View Press - 6 

Next Generation Systems - 11 

Pair Software - 35 

Silicon Composers - 2 

ning to do some of the software. It's a 
master-and-slaves concept, where the 
master decides what the whole project is all 
about and posts on a blackboard jobs to be 

4 

- 

GO FORTHL The ProDOS Forth Language implementation for 
the Apple Computer / /e, / / c, / / gs and / / / 

FORTH is more than just a high level language that combines many of the features of other computer languages. It is a 
development environment and a method of approaching problem solving. FORTH is a ' rass roots' Ian uage, developed and 
enhanced in the real world by working programmers who needed a language that they m u l d b s ~ .  Many of tKe qncepts of FORTH 
are several years ahead of other languages of today. It is a language as ~nteractive as Applesoft Basic, yet, unl~ke Applesoft, you 
don't have to pay the price in slow execubon speed. Pro rams written totally in FORTH are usually faster than programs written in C 
or Pascal and a heck of a lot smaller. Best of all.  FORT^ has a large library of public domain programs. 

Go FORTH is the new FORTH language implementation for the AppleB I I e, I I c, I I gs ( I I e emulation mode, full I lgs version 
late Fall ) and the AppleB I I I. It is 100% P~ODOS@ and SOS @supported. Go FORTH code is intercompatable with all Go 
FORTH supported machines machines. Go FORTH is for the hobbyist, the systems developer, the applications writer, anyone 
who wants to learn and use the powerful FORTH language. 

Go FORTHcomes with its manual and an assortment of utilities in its SCREEN file. Many other utilities and support systems will 
be available soon. For beginners, we highly recommend the Starting Forth manual, and we recommend the Go FORTH Toolkit 
series for everyone! 

ONLY $69.95 Complete, o r d e r  #5807 

Go FORTH Toolkit #I (Applsoft-like commandslutilities): $49.95, order #5809 
Starting Forth by Leo Brodie (The training manual for Forth): $21.95, order #5706 

Add $1 .OO Shipping and handling per item. 

24 HOUR VISA / MASTERCARD ORDER LINES 
California Only: (800) 541 -0900. Outside California: (800) 334-3030. Outside U.S.A. : (61 9) 941 -5441 

PAIR SOITWARE (91 6) 485-6525 
3201 Murchison Way. Carmichael, California 95608 

Apple I 1 e. I I c. I I gs and 11 1. ProDOS and SOS are registered trademarks of Apple Computer, Inc. No affiliation wilh Pair Software 



done. The slave's job is to take a task, do it. 
and post the results back on the blackboard, 
picking up the next task. 

MH: Let's talk a moment about FIG. What 
is your take on where FIG is going? 

JH: FIG, not Forth, has come to a level, a 
plateau. My impression is that Forth is 
continuing to be used more and more, but it 
is somewhere underneath everything. It 
shows up continuously: Rapid File, VP 
Planner, the Canon Cat - all the things we 
point out as examples of where Forth is 
being used-they're still growing, butFIG 
is plateaued at the moment. 

1 MH: It sounds like FIG at the beginning 
was an incubator for the fledgling language 
and then, once the language was estab- 
lished, FIG looks around for a new direc- 
tion. I feel as if FIG is still an entry for 
people to get into Forth, but FIG'S mission 
with regard to established Forth is not clear. 

JH: You're right There wasn't any use of 
Forth by the common programmer before 
FIG came along. The only two companies 
that existed were Forth, Inc. and Miller 
Microcomputer Services. The FIG group 
came along and decided that they wanted to 
build a people's version of Forth. It was a 
good Forth, and that sparked an interest - 
now everybody could know about it, every- 
body could get involved. 

Because Forth opens up these black 
boxes, people who didn't know they could 
get into compilers, got into compilers. 
Before, you used languages, you didn't 
inquire as to how they were constructed, 
why they were there, what they did. Forth 
was both language and operating system, 
so you opened up the operating system. 
You opened a lot of people's eyes, who 
didn't realize what power was there. 

Martin Tracy calls these people hobby- 
ists, but I would say they're really profes- 
sionals who got into this. They knew hard- 
ware,theyknew software-they may have 

come'fm other disciplines, but they got 
into microcomputers at the beginning. 

Nowadays, though. you don't go out 
and buy an Imsai, an Altair, or a Sol and put 
it together yourself and put your own lan- 
guage into it. You go out and buy a Macin- 
tosh, and immediately you have applica- 
tions sitting in front of you. You may want 
to go back down and write an application of 
your own, but you are going down to write 
the application, you're going down from 
the level you were at. You've got to build 
the user interface, you've got to build a lot 
of things. So people have different expecta- 
tions now. Earlier, people had no expecta- 
tions at all - they had to build everything, 
and fig-FORTH was a tool to get them 
through it. That group of people-and they 
could be called hobbyists - I don't think 
we can count on as much now. 

Fifty percent of FIG are hobbyists, 50% 
are professionals. We have tried to decide 
how to support each. We're coming to the 
conclusion that FIG now satisfies the hob- 

Our Forth Super.8 Development System GmNo and Your IBM Compatible PC - 

YOU CAN 
Start 
Something 

Do your target application right on the target. 
Your PC becomes the file server and terminal. 
Development board comes complete with development ROM, F83 on PC diskette with terminal emulation and file 
server software. 
F ~ I I  documentation. LIST $295 
$ Inner Access Corporation 

LI 1155-A Chess Dr., #Dl Foster City, CA 94404 (415) 574-8295 Telex 494-3275 lMNACC 

Forth Dimemions 36 Volume lX, Nvmber 5 



byists and is the base for the professionals, 
but it doesn't satisfy the professionals 
completely. We're looking for techniques 
to meet those professionals' needs. 

MH: And you would be interested to hear 
from any professionals as to what they need 
and want. 

JH: We'd be interested to hear, but what 
they need and want is becoming clear. 
They need money, and they need moral 
support. They don't want to hear their 
managers ask, "What's Forth and why are 
you using it? Why aren't you using C?" 
They want to hear their managers say, 
"We've heard about this wonderful idea - 
you've got to use Forth." 

I think we can approach that. This is 
something we've been discussing at this 
convention: techniques of helping those 
people - maybe not directly, but indi- 
rectly, by opening management eyes. 

MH: What steps do you think FIG needs to 
take? 

JH: Communication, in all senses. In the 
past, we have left it up to Forth Dimensions 
and the chapters to communicate to our 
members. Now we have branched out into 

GEnie. That's another kind of communica- 
tion. What I'm beginning to see is that 
there's a whole spectrum of communica- 
tion: we need a newsletter that may go out 
monthly, we need chapters talking directly 
to other chapters (GEnie will help that), we 
need to encourage authors to write general 
interest articles that can go into magazines 
that are about applications, but not specifi- 
cally about Forth. 

If I could go back and do things over, I'd 
start by saying that we won't promote Forth 
directly. I would take an indirect approach, 
go around the outside and present some 
really interesting applications. "Just look at 
these - aren't these really useful to you? 
By the way, they're written in Forth. And 
they're ten man-year kind of projects that 
took two man-years to do, and the dollars 
per line of code is x." 

I would try that approach. I know many 
people along the way said that's what we 
should be doing; but I didn't hear it, and 
many of the rest of us didn't hear it. 

MH: One problem is that when you're 
workinginForth, it's soevident. It's always 
hard to talk about the obvious. When you're 

, working in Forth you can tell how produc- 
I tive you're being, you can tell how much 
/ you can do with how little. You can tell how 

your accumulated tools and understanding 
add up and give you increasing leverage in 
a way that I didn't feel I had with Fortran or 
assembly language. It becomes so obvious 
it's hard to explain. That's where the idea 
of the Forth zealot came from: they say it's 
real good, and when you ask them why, 
they can't explain - it's hard to explain, 
because it's so obvious. They finally say, 
"Just use it." And then you think, "Hmm. 
Zealot." 

JH: One curiosity that has bothered me is, 
why haven't assembly language program- 
mers used Forth as their language tool? It's 
obvious that they have the power of writing 
an asseinbly language application using 
Forth and have the interactive ability right 
in front of them - which they don't have 
in assembly. They just don't have anything 
in the assembler along this line. That's a 
real curiosity to me: why we don't have 
those people using Forth. A large potential 
group, but I think the time's past. Those 
days may have changed; they may be all 
using C now. 

Mike Ham is dp product manager at 
CTBIMcGraw-Hill in Monterey, Cali- 

Rumor Stack 
by The Inner Interpreter 

One of the Big Ten (Five? Seven?) of 
Forth systems vendors is combing their in- 
house archives for utilities and/or applica- 
tions to package as off-the-shelf products. 
(Whether they give credit, much less pro- 
vide access, to the underlying Forth re- 
mains to be seen.) Did this departure from 
past practice come from new, middle- 
managerial blood (a total transfusion, I'm 

I told), or was it the other way around? Of 
I course, people have been saying for years 
that sy stems-only vendors can't tackle the 
market size-and-share problem with just a 
limited ad budget. You can bet other ven- 
dors will be watching the experiment 
closely. 

Meanwhile, a different big hitter ap- 
pears to be quietly defecting to a less-frus- 
trating market and a less-interesting lan- 
guage (see what I mean). Several program- 
mers I know have been studying those tor- 
tuous straits, and now their arguments for 
Forth are more reasoned than rabid. But the 
dark side is more powerful than we know, 
Luke. What's happening here? 

A small but well-known Forth shop 
dropped out of sight a few years ago, but 
they are back with a proposal in hand for a 
tasty dollop of the government's budgetary 
mousse. OK, this is premature, even as 
rumours go, but it's the kind of project that 
could put the work of more than one Forth 

notable into the sights of the Great Chefs of 
Washington. 

Question of the day: who will offer the 
first, full-blown Sourceless Forth? Our 
rangy wrangler, that computer cowboy, 
mentioned this in his Fireside Chat - and 
so did some FORML-goers. Good idea - 
I'dlike to try oneon for size. Soon, please? 
(ABEND) 

"The Inner Interpreter" listens - 
send him your juicy tidbits, clo Forth Di- 
mensions. He's carefirl, but be advised: 
the rumors he reports may be no more 
than rumors. 

Volume IX, Number 5 37 Forth Dimensions 



FIG 

U.S.A. 

ALABAMA 
Huntsville FIG Chapter 
Tom Konantz (205) 881-6483 

ALASKA 
Kodiak Area Chapter 
Horace Simmons (907) 486-5049 

ARIZONA 
Phoenix Chapter 
4th Thurs., 7:30 p.m. 
Dennis L. Wilson (602) 956-7578 
Tucson Chapter 
2nd & 4th Sun., 2 p.m. 
Flexible Hybrid Systems 
2030 E. Broadway #206 
John C. Mead (602) 323-9763 

ARKANSAS 
Central Arkansas Chapter 
Little Rock 
2nd Sat., 2 p.m. & 
4th Wed., 7 p.m. 
Jungkind Photo, 12th & Main 
Gary Smith (501) 227-7817 

. CALIFORNIA 
Los Angeles Chapter 
4th Sat.. 10 a.m. 
Hawthorne Public Library 
12700 S. Grevillea Ave. 
Phillip Wasson (213) 649-1428 
MontereylSaIinas Chapter 
Bud Devins (408) 633-3253 
Orange County Chapter 
4th Wed., 7 p.m. 
Fullerton Savings 
Huntington Beach 
Noshir Jesung (714) 842-3032 
San Diego Chapter 
Thursdays, 12 noon 
Guy Kelly (619) 450-0553 
Sacrnmcnto Chapter 
4th Wed., 7 p.m. 
1798-59th St., Room A 
Torn Ghormley (916) 444-7775 
Silicon Valley Chapter 
4th Sat., 10 a.m. 
H-P, Cupertino 
George Shaw (415) 276-5953 
Stockton Chapter 
Doug Dillon (209) 93 1-2448 

COLORADO 
Denver Chapter 
1st Mon., 7 p.m. 
Steven Sams (303) 477-5955 

CONNECTICUT 
Central Connecticut 
Chapter 
Charles Krajewski (203) 344-9996 

FLORIDA 
Orlando Chapter 
Every other Wed., 8 p.m. 
Heman B. Gibson (305) 855-4790 
Southeast Florida Chapter 
Coconut Grove area 
John Forsberg (305) 252-0108 
Tampa Bay Chapter 
1st Wed., 7:30 p.m. 
Terry McNay (813) 725-1245 

GEORGIA 
Atlanta Chapter 
3rd Tues.,6:30 p.m 
Westem Sizden, Doraville 
Nick Hennenfent (404) 393-3010 

. ILLINOIS 
Cache Forth Chapter 
Oak Park 
Clyde W. Phillips, Jr. 
(312) 386-3147 
Central Illinois Chapter 
Urbana 
Sidney Bowhill (217) 333-4150 
Rockwell Chicago Chapter 
Gerard Kusiolek (312) 885-8092 

. INDIANA 
Central Indiana Chapter 
3rd Sat., 10 a.m. 
John Oglesby (317) 353-3929 
Fort Wayne Chapter 
2nd Tues.. 7 p.m. 
Ill' Univ. Campus, B71 Neff Hall 
Blair MacDermid (219) 749-2042 

IOWA 
Iowa City Chapter 
4th Tues. 
Engineering Bldg., Rm. 2128 
University of Iowa 
Kobcrt Benedict (319) 337-7853 

Central Iowa FIG Chapter 
1st Tues., 7:30 p.m. 
Iowa State Univ., 214 Comp. Sci. 
Rodrick Eldridge (515) 294-5659 
Fairfield FIG Chapter 
4th day. 8:15 p.m. 
Gurdy Leete (515) 472-7077 

KANSAS 
Wichita Chapter (FIGPAC) 
3rd Wed., 7 p.m. 
Wilbur E. Walker Co., 
532 Market 
Ame Flones (316) 267-8852 

MASSACHUSETTS 
Boston Chapter 
3rd Wed., 7 p.m. 
Honeywell 
300 Concord. Billerica 
Gary Chanson (617) 527-7206 

MICHIGAN 
DetroitIAnn Arbor area 
4th Thurs. 
Tom Chrapkiewicz (3 13) 322- 
7862 

MINNESOTA 
MKFIG Chapter 
Minneapolis 
Even Month, 1st Mon., 7:30 p.m. 
Odd Month, 1st Sat., 9:30 a.m. 
Vincent Hall, Univ. of MN 
Fred Olson (612) 588-9532 

MISSOURI 
Kansas City Chapter 
4th Tues.. 7 p.m. 
Midwest Research Institute 
MAG Conference Center 
Linus 01th (913) 236-9189 
St. Louis Chapter 
1st Tues., 7 p.m. 
Thornhill Branch Library 
Contact Robert Washam 
91 Weis Dr. 
Ellisville, MO 6301 1 

. NE\V JERSEY 
New Jersey Chapter 
Rutgers Univ., Piscataway 
Nicholas Lordi (201) 338-9363 

NEW MEXICO 
Albuquerque Chapter 
1st Thurs., 7:30 p.m. 
Physics & Astronomy Bldg. 
Univ. of New Mexico 
Jon Bryan (505) 298-3292 

NEW YORK 
FIG, New York 
2nd Wed., 7:45 p.m. 
Manhattan 
Ron Martinez (212) 866-1 157 
Rochester Chapter 
4th Sat., 1 p.m. 
Monroe Comm. College 
Bldg. 7, Rm. 102 
Frank Lanzafame (716) 235-0168 
Syracuse Chapter 
3rd Wed., 7 p.m. 
Henry J. Fay (315) 446-4600 

NORTH CAROLINA 
Raleigh Chapter 
Frank Bridges (919) 552-1357 

OH10 
Akron Chapter 
3rd Mon., 7 p.m. 
McDowell Library 
Thomas Franks (216) 336-3167 
Athens Chapter 
Isreal Urieli (614) 594-3731 
Cleveland Chapter 
4th Tues., 7 p.m. 
Chagrin Falls Library 
Gary Bergstrom (216) 247-2492 
Dayton Chapter 
2nd Tues. & 4th Wed., 6:30 p.m. 
CFC. 11 W. Monument Ave., 
#612 
Gary Ganger (513) 849-1483 

OKLAHOMA 
Central Oklahorna Chapter 
3rd Wed., 7:30 p.m. 
Health Tech. Bldg., OSU Tech. 
Contact Lany Somers 
2410 N.W. 49th 
Oklahoma City, OK 73 1 12 

~ I O11ECOh' 
Greater Oregon Chapter 
Beaverton ' 2nd Sat., 1 p.m. 

I 

Forth Dimensions 38 Volume IX,  Number 5 



Tektronix Industrial Park, 
Bldg. 50 
Tom Alrny (503) 692-281 1 
Willamette Valley Chapter 
4th Tues., 7 p.m. 
Linn-Benton Comm. College 
Pann McCuaig (503) 752-51 13 

PENNSYLVANIA 
Philadelphia Chapter 
4th Sat., 10 a.m. 
Drexel University, Stratton Hall 
Melanie Hoag (215) 895-2628 

TENNESSEE 
East Tennessee Chapter 
Oak Ridge 
2nd Tues., 7:30 p.m. 
Sci. Appl. Intl. Corp., 8th Fl. 
800 Oak Ridge Turnpike, 
Richard Secrist (615) 483-7242 

TEXAS 
Austin Chapter 
Contact Matt Lawrence 
P.O. Box 180409 
Austin, TX 78718 
Dallasmt. Worth 
Metroplex Chapter 
4th Thurs.. 7 p.m. 
Chuck Durrett (2 14) 245-1064 
Houston Chapter 
1st Mon., 7 p.m. 
Univ. of St. Thomas 
Russel Harris (713) 461-1618 
Periman Basin Chapter 
Odessa 
Carl Btyson (915) 337-8994 

UTAH 
North Orem FIG Chapter 
Contact Ron Tanner 
748 N. 1340 W. 
Orem, UT 84057 

VERMONT 
Vermont Chapter 
Vergemes 
3rd Mon., 7:30 p.m. 
Vergemes Union High School 
Rm. 210. Monkton Rd. 
Don VanSyckel(802) 388-6698 

VIRGINIA 
First Forth of Hampton 
Roads 
Wfiam Edmonds (804) 898-4095 
Potomac Chanter 
Arlington 
2nd Tues.. 7 p.m. 
Lee Center 
Lee Highway at Lexington St. 
Joel Shprentz (703) 860-9260 
Richmond Forth Group 
2nd Wed., 7 p.m. 
154 Business School 

WISCONSIN 
Lake Superior FIG Chapter 
2nd Fri., 7:30 p.m. 
Main 195, UW-Superior 
Allen Anway (715) 394-8360 
MAD Apple Chapter 
Contact Bill Horton 
502 Atlas Ave. 
Madison, WI 53714 
Milwaukee Area Chapter 
Donald Kimes (414) 377-0708 

INTERNATIONAL 

AUSTRALIA 
Melbourne Chapter 
1st Fri., 8 p.m. 
Contact Lance Collins 
65 Martin Road 
Glen Iris, Victoria 3 146 
03/29-2600 
Sydney Chapter 
2nd Fri., 7 p.m. 
John Goodsell Bldg., Rm. LG19 
Univ. of New South Wales 
Contact Peter Tregeagle 
10 Binda Rd., Yowie Bay 
021524-7490 

BELGIUM 
Belgium Chapter 
4th Wed., 20:OOh 
Contact Luk Van Loock 
Lariksdreff 20 
2120 Schoten 
031658-6343 
Southern Belgium Chapter 
Contact Jean-Marc Rertinchamps 
Rue N. Monnom, 2 
B -6290 Nalinnes 
0711'213858 

CANADA 
Northern Alberta Chapter 
4th Sat., 1 p.m. 
N. Alta. Inst. of Tech. 
Tony Van Muyden (403) 962-2203 
Nova Scotia Chapter 
Halifax 
Howard Harawitz (902) 477-3665 
Southern Ontario Chapter 
Quarterly, 1st Sat., 2 p.m. 
Genl. Sci. Bldg., Rm. 21 2 
McMaster University 
Dr. N. Solntseff (416) 525-9140 
ext. 3 
Tornnto Chapter 
Contact John Clark Smith 

Univ. of Richmond Aptdo. kereo 100394 / Donald A Full (804) 739-3623 1 Bogota 214-0345 

DENMARK 
Forth Interesse Gruupe 
Denmark 
Copenhagen 
Erik Oestergaard, 1-520494 

ENGLAND 
Forth Interest Group- U.K. 
London 
1st Thurs., 7 p.m. 
Polytechnic of South Bank 
Rm. 408 
Borough Rd. 
Contact D.J. Neale 
58 Woodland Way 
Morden, Suny SM4 4DS 

FRANCE 
French Language Chapter 
Contact Jean-Daniel Dodin 
77 Rue du Cagire 
3 1 100 Toulouse 
(16-61)44.03.06 
FIG des Alpes Chapter 

I Annely 
Georges Seibel, 50 57 0280 

Hamburg FIG Chapter 
4th Sat.. 1500h 
Contact Horst-Gunter Lynsche 
Common Interface Alpha 
Schanzenstrasse 27 
2000 Hamburg 6 

HOLLAND 
Holland Chapter 
Contact Adriaan van Roosmalen 
Heusden Houtsestraat 134 
4817 We Breda 
31 76 713104 

IRELAND 
Irish Chapter 
Contact Hugh Dobbs 
Newton School 
Waterford 

1 051fl5757 or 051fl4124 

P.O. Box 230, Station H 
Toronto, ON M4C 552 
Vancouver Chapter 
Don V anderweele (604) 941 -4073 

COLOMBIA 
Colombia Chapter 
Contact Luis Javier Parra B. 

ITALY 
FIG Italia 
Contact Marco Tausel 
Via Gerolarno Fomi 48 
20161 Milano 
021435249 

JAPAN 
Japan Chapter 
Contact Toshi Inoue 
Dept. of Mineral Dev. Eng. 
University of Tokyo 
7-3-1 Hongo, Bunkyo 113 
812-2111 ext. 7073 

REPUBLIC O F  CHINA 
(R.O.C.) 

Contact Ching-Tang Tzeng 
P.O. Box 28 
Lung-Tan, Taiwan 325 

SWEDEN 
Swedish Chapter 
Hans Lindstrom, 46-3 1-166794 

SWITZERLAND 
Swiss Chapter 
Contact Max Hugelshofer 
ERNI & Co., Elektro-Industrie 
Stationsstrasse 
8306 B~ttisellen 
011833-3333 

SPECIAL GROUPS 

Apple Corps Forth Users 
I Chapter 

1st & 3rd Tues., 7:30 p.m. 
15 15 Sloat Boulevard, #2 
San Francisco, CA 
Dudley Ackerman 
(415) 626-6295 

Baton Rouge Atari Chapter 
Chris Zielewski (504) 292-1910 

FIGGRAPH 
Howard Pearlmutter 
(408) 425-8700 

NC4000 Users Group 
John Carpenter (415) 960-1256 

NORWAY 
Bergen Chapter 
Kjell Birger Faeraas, 47-518-7784 

I . _ I  

Volume IX ,  Number 5 39 Forth Dimensions 



NOW AVAILABLE 

FROM THE FORTH INTEREST GROUP 

F O R T H  
INTEREST 
G R O U P  

$20 EACH 

F O R T H  
INTEREST 
G R O U P  

Forth Interest Group 
P.O.Box 8231 
San Jose, CA 95155 


