

F O R T H
=

LOCAL VARIABLES BY PETER ROSS
9

% Anonymous variables aren't the only way to implement local variables. An alternative is to copy or move items
from the stack to storage allocated in the word that uses them. We can achieve this and preserve a convenient and
readable syntax.

=
VARIABLES FOR PROM-BASED PROGRAMS BY RICHARD A. ALTIMUS

12
Forth definitions typically deal with memory locations within thedictionary boundaries. But special problems arise
with PROM-based systems. Usually, a target system will have a separate area of RAM for the storing variables.
The task is to evolve a system of vectoring variable operations into this RAM area.

I
P A W ALTO SHIPPING CO. AN INTERVIE W

17
These entrepreneurs went from college courses to professional programming, followed quickly by designing,
writing, and selling Mach 2, their Forth for 68000-based micros. Michael Ham continues his series of interviews
with Lori Chavez and Demck Miley, advocates of an integrated, interactive Forth environment.

I
TRANSCENDENTAL FUNCTIONS BY PHIL KOOPMAN, JR.

21

P The author of MVP-FORTH Integer and Floating Point Math had to implement quick, accurate, and relatively
compact math functions. His research resulted in the equations presented here. (Don't even ask about the
derivations)

READABLE FORTH
BY CARL A. WENRZCH

BIT-BASED TRUTH TABLES
BY JEAN-PIERRE SCHACHTER

FULLY INTERACTWE fig-FORTH
BY LARS-ERIK SVAHN

EXTENSIONS FOR F83
BY ANTHONY T. SCARPELLI

EDITORIA L
4

LETTERS
5

ADVERTISERS INDEX
35

FIG CHAPTERS
38

Volume IX, Number 4 3 Forth Dimensions

ime was, computer-users groups were T
the loci of the micro revolutionaries, or at
least of those who iconized them. They
were like open-seating concerts for LED-
heads who derived their main satisfaction
from affiliation itself. At the meetings,
whiz kids and garage-shop pioneers found
other seekers of the satisfaction that ac-
crues from each computing challenge well
met. They ran improvisational meetings,
or else surrendered to the procedural over-
head created by the perennial joiners and
organizers, who showed up in the luke-
warm footsteps of the very first hackers.

The icons are gone now: the garage is
full of cars, Woz went for his degree, and
if you ask someone about Captain Crunch,
chances are they'll give you directions to a
grocery store. (Which, you might say,
shows that not everything changes for the
worse.)

The computer market broadened, and
members began to expect their users
groups to perform more like professional
associations. Services and meeting
agendas shifted (or groups splintered)
because many new users were more inter-
ested in software, applications, and useful-
ness than in hardware, system utilities, and
tricky code. Today, many members want
more from their meetings than a visiting
hacker; and groups need more from their
members than physical attendance.

Participation and open communication
enliven a group's responsiveness to its
members and to changing conditions. I'd
expect a healthy, long-lived group to offer
orderly proceedings, educational and spe-
cial-interest programs, both transactional

and transformational platforms for mem-
bers, aid and comfort, and relevant public
service. In every case, local leaders must
step forward who will intelligently apply a
group's general resources to the specific
interests of its members.

I mention all this hoping that the leaders
and organizing committees of FIG chapters
(and potential ones) will take enough time,
every year, to consider their groups' overall
activities, goals, and interests. They should
provide opportunities for consensual
change in which members are directly in-
volved; encourage diversity in order to stay
flexible and lively; and use creative strate-
gies to foster participation, enjoyment, and
growth. A users group should rub minds
together, returning more warmth and light
than it requires.
* * *

The fall season brings two of the Forth
Interest Group's major events. Many of
you will see this issue first at the Forth
National Convention or the following
FORML conference. We will cover high-
lights of those events in upcoming issues
for those who cannot attend.

Meanwhile, keep working on your let-
ters and articles for Forth Dimensions. We
intend to publish the best and most interest-
ing work from the Forth community, which
is only possible if every reader thinks of
himself as a potential contributing author.
Write to the FIG office for a copy of the
latest writers guidelines, we'd like to hear
from you!

--Marlin Ouverson
Editor

Forth Dimensions
Published by the

Forth Interest Group
Volume IX, Number 4

Novemberpecember 1987
Editor

Marlii Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics
ISSN#O884-0822

Forth Dimensions welcomes editorial mate-
rial, letters to the editor, and comments Gom its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: ForthInter-
est Group, P.O. Box 8231, San Jose, California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright 63 1987 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-cornrner-
cia1 purposes, without the written permission of
Forth Interst Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however, can be used only with pemlis-
sion of the copyright holder.
About the Forth Interest Group

The ForthInterest Group is the associationof
programmers, managers, and engineers who
create practical, Forth-based solutions to real-
world needs. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi-
nars, telecommunications, and area chapter
meetings are among its activities.

"Forth Dimensions is published bi-monthly
for $24/36 per year by the Forth Interest Group,
1330 S. Bascom Ave., Suite D, San Jose, CA
95128. Second-class postage pending at San
Jose, CA 95101. POSTMASTER: Send address
changes to Forth Dimensions, P.O. Box 8231,
San Jose, CA 95155."

I

Forth Dimensions 4 Volume IX, Number 4

Novix Finbonacci
Dear Mr. Ouverson:

The July and August 1987 editions of
BYTE compare various personal comput-
ers running six benchmarks. The August
edition contains a comparison of the times
given for their first benchmark, an algo-
rithm that computes the 24th Fibonacci
number 100 times. The times I have
achieved on two systems using the Novix
NC40 16 Forth engine are:

Svstem Time (secs)
Delta Board:
(4 Mhz NC4016 CPU) 28.2

PC4000:
(5 Mhz NC4016 CPU) 22.6

As can be seen by comparing these
times to those in the article, the NC4016 -
running at a clock rate four times as slow as
a DESKPRO 386 - executes this bench-
mark nearly twice as fast. Also, the
cmFORTH implementation is much more
concise and (to me, at least) less cryptic
than the C version. And, of course, the word
F IB can be run interactively and used inde-
pendently of FIBTEST.

With this benchmark, the power of
Forth and the NC4016 is directly shown.
Just imagine what can be done with an
NC4016 running at 16 Mhz!

Douglas Ross
NASA
Goddard Space Flight Center
Greenbelt, Maryland 2077 1

New SEARCH for (280) F83
Dear Mr. Ouverson,

R.L. Hoffpauer's code SEARCH (FD
1x12) was a very welcome addition to my

100 CONSTANT NTIMES (NUMBER OF TIMES TO COMPUTE FIB VALUE)
24 CONSTANT NUM (BIGGEST ONE WE CAN COMPUTE IN 16 BITS) / I
: FIB (U1 -- U2) RECURSIVE

DUP 2 > IF DUP 1 - FIB SWAP 2 - FIB +
ELSE DROP 1
THEN ;

: FIBTEST (--)
CR NTIMES U. ." ITERATIONS: "
0 (MAKE SURE SOMETHING IS ON STACK)
NTIMES 1 - FOR DROP NUM FIB NEXT
CR ." Fibonacci(" NUM 2 U.R .") = I* U. ;

already cluttered desk I had been trying, off
and on, to write machine code to replace the
high-level F83 SEARCH on my 280-based
system, and was getting nowhere fast. Not
being an 8088 programmer, I hadn't thought
of using an index, not only to point, but also
to count. This is what comes of not working
on IBM PCs.

But while I was doing the conversion, I
realized that Mr. Hoffpauer's code can be
improved, both from a theoretical and a
practical standpoint.

Theory first: Mr. Hoffpauer uses an UN-
TIL structure for his main loop. This is
erroneous, since it means the routine will go
right through a loop even if the string sought
is longer than the buffer. What is actually
needed is a WHILE (because we may not do
any comparing at all). On the other hand, Mr.
Hoffpauer uses a WHILE for his inner loop,
i.e., comparison of the string once the first
character has been found. This is again
mistaken: an UNTIL structure really is nec-
essary this time because we will, in any
event, make at least one comparison. All we
have to do is initialize the inner-loop string

pointerlcounter to zero, then increment it
at the start of the loop, rather than at the
end. And, of course, change the test.

Forth is, after all, a structured lan-
guage. Let's keep it that way, even when
we're translating our algorithms into ma-
chine code; and it's essential that algo-
rithms use the correct structures for a
given problem.

On the practical side, I decided to
shorten the code by storing the initial char-
acter of the string in an anonymous vari-
able. This way, it is only tested for capitali-
zation once, before the main loop begins,
and thereafter is read directly in the form
needed for comparison. (This gives rise to
some stack gymnastics at assembly time.)
I also took advantage of the fact that F83
uses pure Elags to test by INCing BX in-
stead of CMPing it with zero, saving space
and time on each test.

The accompanying screens give my
280 version (in 8080, because that was the
assembler incorporated in the F83 I
bought; and I cannot metacompile a ver-
sion with a 280 assembler, because my

Volume IX, Number 4 5 Forth Dimensions

ASSEMBLER LABEL >UP ASCI I a # AL CMF' ?=
I F ASCI I z # AL CMP .::= I F 20 # AL SI.JE(THEN THEN RET

HERE (Hol. d add ress) NOP \ R e s e r v e o n e b y t e f a r s t r i n g i n i t i a l .

CODE SEARCH (s s a d r s l e n b a d r b l e n -- o f f s e t f l a g)
CLD \ D i r e c t i o n
CX POP BX POP \ CX (- b l e n BX (- b a d r
DX POP D I POP \ DX (- s l e n DI (- s a d r
DX CX SUB EX CX ADD \ CX .::- l a s t a d d r e s s
S I PUSH EX PUSH \ Save IF' and b a d r
BX S I XCHG \ S I .::- b a d r
Q LDIJ AL MOV \ 1st c h a r o f s t r i n g
CAPS #) EX MOV EX INC O= \ Case s e n s i t i v e ?
I F ::.UP #) CALL THEN \ C o n v e r t i f n o t
AL OVER (Assemble a d d r e s s) #) MOV \ S t o r e i t
BEGIN

CX S I CMP .::= \ Loop WH I: I-E i n b u f f el-
WHILE

4 ROLL (Assemble a d r) #) AH MOV \ Get s t r - i n i t i a l t o AH
AL LODS \ Get c h a r f r o m b l ~ f f e r
CAPS #) EX MOV EX INC O= \ Case s e n s i t i v e ?
I F >UP #) CALL THEN \ C o n v e r t i f n o t
AH A L CMP (:I= \ Check f o r ma tch
I F \ F i r s t c h a r matched

S I PUSH \ Save c u r r e n t b - p t r
(1) # BX MOV \ I n i t i a l i z e s - i ndex
BEGIN \ Check s t r i n g

BX INC \ N e x t s -cha r
O CDI+BXJ AL MOV \
HX PUSH \ Save s - i n d e x
CAPS #) EX MOV EX INC O= \ Case s e n s i t i v e ?
I F >UP #) CALL THEN \ C o n v e r t i f n o t
AH A L XCHG \ Keep c h a r
AL LODS \ Get c h a r f r o m b u f f e r
CAPS #) EX MOV EX INC O= \ Case s e n s i . t i v e ?
I F >UP #) CALL THEN \ C o n v e r t i f n o t
EX POP \ Ge t 5 - i ndex
AH A L CMP Oc:> \ Match?

UNTIL \ Loop UNTIL d i f f e r e n t
S I POP \ E u f f e r p o i n t e r
DX BX CMP >= \ Found >= Sough t?
I F \ Yes: h a v e ma tch

EX FOP \ B u f f e r s t a r t a d r
BX S I SUE \ C a l c u l a t e o f f s e t
DX POP \ Ge t F o r t h I P
DX S I XCHG \ S I i s I P
-1 # A X MOV \ Send t r u e f l a g
P U S H

THEN
THEN

REPEAT
DX POP \ C l e a n u p s t a c k
S I POP \ Get F o r t h I P
AX A X XOR \ Send f a l s e f l a g
2PUSH

END-CODE

S I DEC

computer only has about 12K workspace
- see note on IBMs above). I also propose
my modification of Mr. Hoffpauer's code.

Thanks a lot to the whole team for the
magazine.
Sincerely,
Martin Guy
9 rue de la Peupleraie
7 1500 Chateaurenaud
France

Batcher's Last Re-Sort
Dear Marlin,

I was very gratified to see the responses
to the article about Batcher's Sort. I would
like the chance to comment on some of the
things that were not clear in the article.

Mr. Anway is correct. The flag-passing
involving Q is not as clear as it could be.
Originally, Q existed only as a stack value,
and was made explicit only for publication.
Doing this as an afterthought resulted in a
messy structure, which was cleared up
thanks to Mr. Anway's help.

Mr. Thomas' letter initially shocked
me. It is a fundamental characteristic of
Batcher's method that it is data independ-
ent, so I was really surprised by Mr. Tho-
mas' claim to the contrary. I double-
checked Knuth and verified that duplicate
data values are explicitly allowed. Then I
tried sorting data with duplicates, as Mr.
Thomas suggested. No difficulty: He reads
the word 2* *N as the square of an argument
N, whereas the intended meaning is to
return 2 raised to the Nth power. Mr.
Anway's code presents a correct implem-
entation of 2**N. I had thought this was in
theForth-79 Standard Reference Word Set,
so I didn't define it in the article. On check-
ing, I find that it is not there, and I apologize
for this omission and the confusion it may
have caused.

I have since found an unusual use of
sorting I'd like to share: I have an applica-
tion that acquires a signal from a fast ADC
and plots it in graphics. Useful insights into
the experiment being performed can be
obtained by sorting the data and replotting
i t The sorted data is often grouped around
several fixed levels, rather than being
smoothly distributed, as I had expected -
this was not obvious from looking at plots
of the original data.

Sincerely yours,
John Konopka
C/O Kevex Corporation
1 101 Chess Drive
Foster City, California 94404

Tim Lee's Long Names
Dear Marlin,

I was pleased to receive the courtesy
copies of Forth Dimensions containing
Mike Ham's interview with me. Thank
you!

While reading the interview, I had an
impression similar to hearing my own
voice on tape ("Is that what I sound like?").
One thing in particular made me laugh, the
part that has me endorsing the use of long
definitions without comments!

Well, I'd like to set the record straight
on this: what1 meant to say is that I'm using
longer word names and shorter definitions.
When I write a new definition, I try to make
the words it contains read in English as well
as in Forth. For example:
: dither-screen (--)

dither-color
graphicsgage-fill ;

If it happens that, after combining defi-
nitions made this way, the resulting defini-
tion doesn't express a clear idea in English,
it is often a clue that I haven't partitioned
the problem correctly. Then I revise the
names and/or functions of the words that
compose the current definition.

I've been using this method for the past
year, and continue to find it rewarding in
the solutions that it reveals. The few extra
characters required to specify a longer
name each time I type it, is a cost that is
offset by being able to work at a higher level
of abstraction. (There are functions that
cannot be accurately identified with a
single word. The blurring of distinctions
that results from combining fuzzily named
functions limits the level of abstraction that
can be attained.)

Please publish this clarification so im-
pressionable new Forth programmers don't
start writinglengthy, uncommented defini-
tions; and so my more experienced friends
won'tpoint and laugh when I show up at the
Forth Convention!
Sincerely,
Tim Lee
Binary Systems

(Continued on page 15.)

FORTH SOURCET"

WlSC CPUH6
The stack-oriented "Writeable Instruction Set
Computer" (WISC) is a new way of harmonizing the
hardware and the application program with the
opcode's semantic content. Vastly improved
throughput is the result.

Assembled and tested WlSC for
IBM PClATlXT $1 500
Wirewrap Kit WlSC for IBM PClATlXT $ 900
WlSC CPUIl6 manual $ 50

MVP-FORTH
Stable - Transportable - Public Domain - Tools
You need two primary features in a software
development package.. .a stable operating system
and the ability to move programs easily and quickly
to a variety of computers. MVP-FORTH gives you
both these features and many extras.
MVP Bwks - A Series

MI. 1, All about FORTH. Glossary $25
MI. 2, MVP-FORTH Source Code. $20
MI. 3. Floating m i n t and Math $25
MI. 4. Orpert System $15
MI. 5, File Management System $25
MI. 6. Expert Tutorial $1 5
MI. 7, FORTH GUIDE $20
MI. 8, MVP-FORTH PADS $50
MI. 9, MrklKalc Manual $30
MVP-FORTH Software - A trans-

portable FORTH
MVP-FORTH Programmer's Kit including
disk, documentation. Volumes 1.2 8 7 of MVP
Series, FORTH Applications, and Starting
FORTH. IBM. Apple, Amiga, CPIM, MS-DOS,
PDP-1 I and others. Specify. $195

I l MVP-FORTH Enhancement Package
for IBM Programmer's Kit. Includes full screen
editor 8 MS-DOS file interface. $110

C] MVP-FORTH Floating Point and Math
I3 IBM. Apple, or CPIM, 8'. $75

[7 MVP-LIBFORTH for IBM. Four disks of
enhancements. $25
MVP-FORTH Screen editor for IBM. $15
MVP-FORTH Graphics Extension for

IBM or Apple $80
MVP-FORTH PADS (Prolsssional
Application Dsvrlopmsnt System)
An integrated system for customizing your
FORTH programs and applications. PADS is a
true professional development system. Specify
Computer: IBM Apple $500
MVP-FORTH Floating Point Math $100
Il MVP-FORTH Graphics Extension $80
Il MVP-FORTH EXPERT-2 System

for learning and developing knowledge based
programs. Specify 13 Apple. I3 IBM, or

CP/M 8'. $100

Order Numbers:
800-321 -41 03

(In California) 415-961-4103

FREE
CATALOG

MOUNTAIN VIEW
PRESS

PO DRAWER X
Mountain View, CA 94040

Volume IX, Number 4 Forth Dimensions

Guy screens:
Ecr an 8 Ecran 23

0 \ Code S 3 R H 22aug87mjg \ Code SGWH 23aug87mjg
1 EX : I X ddc, [assenbler I h ; Defining I X here rakes l i f e easler i n a few seconds.
2 label W ?UP convwts the character i n b t o uppercase i f CWS i s ON.
3 h push c g s h lxi (I 1 mv 1 inr h pop
4 rnz 61 cpi r c M cpi rnc 20 sui re t N.B. 52ED , i s for inst ruct im SBC HL,E
5 code NSEARCH
6 i x pop d pop h pcq p u pcq b push psw push b pop a ora xchg Lots of stack wwk t o get the following allocations:
7 i x push xthl 52ED , xthl i x pop xchy dd c, d dad d push DE i s buffer pointer, BC points at s tar t of str ing t o seek,
8 BEGIN K holds str ing length, I X address of last possible match.
9 i x push xthl a a a 52ED , h pop 0). Check i f last address has been reached, and

10 WHILE while i t hasn't, do the lwp.
11 b ldax 3up cal l b push a b m v d ldax d inx 'up ca l l 6et f i r s t char from str ing and cmpare with next one i n buffer.
12 b clp b pop Os
13 IF I f the f i r s t charactw matches,
14 d push h push 0 h 1x1 save b-ptr and s-lm, and use K as index in to string.
15 -->

Ecran 9 Ecran 24
0 \ Ccde SERRCH 23aug87mjg \ Code SEPlRCH 23aug87mjg
1
2 BEGIN
3 h inx h push b dad m a m v 7up cal l 6et next character f r m string, convert i f necessary, and
4 b push a b m v d ldax d inx ?up ca l l capare with next character i n buffer.
5 b c q b pop h pop L q on th i s u n t i l re f ~ n d different characters.
6 W l L
7 d pop 5'60 , e 1 w v d h MV d pop 0). Then subtract r l m from found-lm, restwe HL = s-1m.
8 I F I f found-len)= s-lm, we have a match.
9 h pop xchg 5ED , h do! xchg So calculate the offset and store i t i n DE.
10 b pop -1 h l x i dpush jlp Then restwe the Fwth IP and send back offset and true flag.
11 MN
12 TEN
13 REEAT End of ra in 1- : we leave here i f end of buffer and no ratch.
14 d pop b pop 0 h l x i dpush jq So get junk (=b-adr) t o DE, restore IP, send back false flag.
15 end-code

GO FOR+ The ProDOS Forth Language implementation for
the Apple Computer / /e, / / c, / / gs and / / /

FORTH is more than just a high level language that combines many of the features of other computer languages. It is a
development environment and a method of approaching problem solving. FORTH is a 'v roots' Ian uage, developed and
enhanced in the real world by working programmers who needed a language that they could S E Many of ti(e concepts of FORTH
are several years ahead of other languages of today. It is a language as Interactive as Applesoft Basic, yet, unlike Applesoft, you
don't have to pay the price in slow execut~on speed. Pro rams wr1ttenJotally in FORTH are usually faster than programs wrltten In C
or Pascal and a heck of a lot smaller. Best of all, FORT# has a large l~brary of publlc domain programs.

Go FORTH is the new FORTH language implementation for the ~ ~ ~ l e @ I 1 e, I I c, I I gs (I I e emulation mode, full 1 lgs version
late Fall) and the ~ ~ ~ l e @ I I I. It is 100% P~ODOS@ and SOS @ supported. Go FORTH code is intercomp?table with all Go
FORTH supported machines machines. Go FORTH is for the hobbyist, the systems developer, the appllcatlons writer, anyone
who wants to leam and use the powerful FORTH language.

Go FORTH Toolkit #I (Applsoft-like commands/utilities): $49.95, order #5809
Starting Forth by Leo Brodie (The training manual for Forth): $21.95, order #5706

Add $1 .OO Shipping and handling per item.

I
Go FORTHcomes with its manual and an assortment of utilities in its SCREEN file. Many other utilities and support systems will
be available soon. For beginners, we highly recommend the Starting Forth manual, and we recommend the Go FORTH Toolkit
series for everyone!

ONLY $69.95 Complete, order #5807

24 HOUR VISA / MASTERCARD ORDER LINES
California Only: (800) 541 -0900. Outside California: (800) 334-3030. Outside U.S.A. : (61 9) 941 -5441

I

I'
Forth Dimensions 8 Volwne lX, Number 4

I PAIR SOFTWARE (9 1 6) 485-6525
3201 Murchison Way, Carmichael, California 95608

Apple I / e, 1 / c, I I gs and I1 I, ProDOS and SOS are registered trademarks of Apple Computer. Inc. No affiliation with Pair Software I

LOCAL
VARIABLES

PETER ROSS - BRISBANE, AUSTRALIA

way to ease the problems of juggling the
stack and writing readable code by imple-
menting local variables. An alternative is to
copy or move items from the stack to stor-
age allocated in the word that uses them.
Suppose we have a double and a single
number on the stack, and that we would like
them copied to local variables DBL and
SNGL. We can achieve this, together with a
convenient and readable syntax, by &fin-
ingcompilerwords {,) and SNGL~O
that we can write, for example,

: T E S T (d n - -)
{ DBL SNGL }

SNGL @ DBL @
D . . . D . ;

where the curly brace construction causes
the enclosed items to be copied to storage
but not removed from the stack, and the
later references SNGL and DBL push the
appropriate storage addresses to the stack
so that values may be fetched or stored.
Since SNGL and DBL are compiler words,
they can be used in the same way in other
definitions without interference. How can
we define the required words?

Definitions
Definitions are given in the accompany-

ing screen listings. The word { is very
simple. It is an immediate word that initial-
izes a counter and switches from compila-
tion state to interpret state. Local variable
reference words that follow must leave
their parameter field addresses on the stack
and increment the counter. The word 1 then

I

Volume IX, Number 4

and to store the appropriate dictionary
addresses in the local variable reference
words, making them temporary pointers to
the local storage. It also compiles the ad-
dress of a primitive word ({)) that copies
the stack items at run time, together with the
number of items. Finally, it resets the
compile state.

All that remains is to ensure that the
local variable reference words DBL and
SNGL, etc., push the appropriate storage
addresses (now stored in their parameter
fields) to the stack atrun time. This is easily
achieved by compiling the addresses as
literals. It is most convenient to use a spe-
cia1 defining word LOCAL to define these
words. LOCAL takes from the stack a value
specifying the number of cells the variable
occupies, and compiles it into the parameter
fieldafter the space allocated for the storage
address. LOCAL defines the word to be
IMMEDIATE and specifies its behavior
during interpreting, when it must push its
parameter field address to the stack and
increment the word pointer; and its behav-
iorduring compiling, when it must compile
theaddress in its parameter field as a literal.
Our words above can then be defined very
easily as:
2 LOCAL DBL
1 LOCAL SNGL

where there is no restriction other than stack
size on the number of cells a local variable
can use.

The primitive ({ }) to copy stack items
is given in Forth but, for speed comparable
with other stack operations, it should be

9

the top item of the return stack points to the
next item in the parameter field of the word
using (I 1) , i.e., to the number of stack
items to be copied. Not all Forth systems
satisfy this assumption, and appropriate
adjustments may be needed.

Forth's power is shown by the com-
pacmess of the words defined so far.
However, this is an invitation to add more.
One useful extension is to define a word
- 1 with the accompanying primitive
((-1 to move items from the stack to
storage, instead of copying them. Thus, we
can write
{ DBL SNGL - 1

where the syntax shows that items are
removed from the stack. The definition of
- 1 is identical to that of } , except that the
primitive ({ - }) is compiled in place of
({ 1 .

Another useful extension is to push
values to the stack, like CONSTANT,^^^^^^
than addresses, like VARIABLE. I have
used a defining word LOCALVALUE
which acts like LOCAL except that, during
compilation, one of two special primitives
(1LV@) and (LV@) is compiled. (LV@)

is the more general, pushing a value of any
cell length to the stack at run time; but it
requires the length to be stored in the fol-
lowing byte, followed by the storage
address. (1 Lv@) assumes a cell length of
one, and requires only the address. Special
primitives could also be defined for double
and triple numbers. Again, the primitives
should be code words so that references to
local values will take no more time than

(Continued on page 13.)

Forth D i m i o n s

ti; (Z 4: 9:?
43 (I . . . (~ca l . v a r i a b l . e s
:I.
2 : (0) i + r e I-19 -- r e * no)
3 R@ :I.+ FS::: C(a i s . t o r a 9 e z d d r ~ # o f :L6-bit i t e m s k .)
4 :I.+ 1 DO I P I C K OVER ! 2 t L O O P i copy i t e m s)
5 '::. F~ i 1.1pdate i t - ~ s t r u c t i o r i ~ a ~ i r ~ t , e r j i
6
7 : 4 : (- - - I
8 9 CCOMPIk.E7 C i IMMEISIATE:
9
I 1 i r f a n r e * r f a l ri ----) j l r e 1-10 --- * r10)
1.1 C O M P I L E (0) H E R E ::>R I AL..L.OT i f o r i t e n 1 c o i ~ r ~ t k.)
I 2 0 (i t e m count) SWAP 0
'1.3 I:IO SWAP H E R E OVER ! s t o r a s e a d c l r -1.- r e fe re r i ce w o r c i)
14 2 t C@ i # o f itemis i n v a r i a b l e) ItUF' 2 1 ALL-CIT 4. L O O P
15 R:::. C ! (t o t a l # o f itemis k) D i

SCR $ 3
0 i L o c a l v a r i a b l e s
.1.
2 : L O C A L j c - - 1 i - - I i ri --- fa rii-I 1
3 C R E A T E 0 r C ? I M M E D I A T E
4 DOES::: S T A T E @
5 I F @ CCOi'lP11.-E7 L-ITERAL.. E L S E SWAP I t T H E N i
6
7 : i X - - 3 I (rik + r e 1-19 -.- r ~ k)
8 H @ 1.1. Fs:> C@ O 110 SWAP OVEFi ! 23- LOOF:' 1::. ;
9

:LO : -.-3 i rf an + + * r f a l 1-1 -.- (rik * + + r10 --- nk)
11 C O M P I L E ((- -> I H E R E :::-R 1 A L L O T 0 SWAP 0
I2 DO SWAP H E R E OVER ! 2 t C@ D U P 2 8 A L L O T + L.QOP
13 R:::. C ! 3 i
I 4
15

SCR # 4
0 (Loc:al . va lues
I
2 : i I L V @) i -- va lue)
3 R::. D{JF 2.1. :::.Fi @ @ ;
4
5 : i L _ V @) (.--- v a l u e)
6 R@ C@ I:IUP 2 8 6::. I t f1UP 2 t ::-FS @ + SWAF' 0
7 DO 2.- DUF:' @ SWAP L O O P DROF' i
8
9 : LCICALVALUE I c ----I i - - - I i n --. r f a 1.14.1)

10 C R E A T E 0 T C r IMME1: I IATE
11 DOES::: STATE: @
12 I F D U P 2 t C@ D U P 1 =
3 . 3 I F C O M P I L E i lL . .V@) DROP
I4 E L S E C O M P I L E i L . V @) C r TFIEN @ r
15 E L S E SWAP 1t T H E N i

I

Forth Dimensions I0 Volume IX, Number 4

!i; (:; F{ .# 5
0 (I... o c ;$:l v a rs :i. a b 1 e s -- e :.: a RI P l e 1
:I.
2 (Assunles f l o a t i n g ~ c) i l . ~ t e : . : t e r ~ ~ i c) r ~ ~ t h a t use .I;ile F o r t h s t a c k 1
3 (I-.oca:l. va r j .ab les a r e t h e n h i s t h l r c jes i r*able >
4
5 3. I-OCAL v 1
6 1 L-OCAI ... v2
7 j. LOCAL-VALUE rl
€3 DEC1:MAL
9

10 : IF' (a d d r l addr2 n -- r)
:L% (g e t i n n e r r r o d u c t r of fr v e c t o r s a t a d d r l and sdd r2 1
12 C v i v2 rl ---3
13 OEO n 0
14 r.10 v l @ F@ v2 @ F@ F t F t F#EYTES 1:IUP vl. t ! v2 4.! LOOP i
:I. :;

SCH # 6
O (L o c a l va r iab l .es - ~ r i m i t i v e s
1 (f o r MM P ias terFor th 6502 Assembler 1
2
3CODE (<3) (+ + + r 1 0 - - + + + no)
4 (c o r r t o r k i t e m s f r om s t a c k t o l o c a l s t u r a s e
c'
..J XSAVE STX IF ') Y L-DA + A ASL N STA N 1.t STA INY
6 1 I.-: BOT LDA IF ') Y STA INX INY N 14. IlEC 1. L..# BNE
7 N INC CL-C N LDA I F ' ADC IF ' STA 2 LC ECC IF ' i t INC
8 2 L: XSAVE LUX NEXT JMP C;
9

3.0 COIIE - 3 1 (rtk + + + 1-10 -*-- r lk)
11. (move Lo r k i t e m s f rom s t a c k t o loca l . st .orage
12 IF ') Y LDA + A ASL N ST4 N I t STA INY
13 1 L: BOT LDA I F ') Y ST4 INX INY N 1t DEC 3. L4: EN€:
14 N INC CLC N 1-DA IF' ADC IF' STA 2 L# ecc IF' I.+ INC
15 2 1-: NEXT JMF' C i

SCR # 7
O (L o c a l va l ues - p r i m i t i v e s
:L (f o r MM Mas te rFo r t h 6502 Assembler 1
2
3 CODE (1LV@) (-- v a l u e)
4 (r u s h a s i n g l e v a l u e t o %he s t a c k
5 I F ') Y LII4 N STA INY IF ') Y L..DA N 14. STA IIEY
6 CLC 2 # LDA IF ' A I lC IF ' STA 1 I...# BCC IF ' I t INC
7 1 L: N) Y LDA F'HA INY N) Y LDA PUSH JMP C;
8
9 CODE (LV@) (-- v a l u e)

10 (F I J S ~ m u l t i - c e l l e d v a l u e t o %he s t a c k
11 2 # 1-TIY IF') Y LDA N 3.4. STA IIEY IF') Y LI~A N STA
12 IIEY I F ') Y I-DA + A ASL T A Y
13 1 L: DEX DEY N) Y 1-DA BOT STA 0 # CF'Y 1 L# ENE
14 CL-C 3 # LDA IF ' ADC I F ' STA 2 L # EiCC I P i t INC
15 2 L: NEXT JMP C i

Volume lX, Number 4 11 Forth Dimemions

CONSIDERATIONS:

VARIABLES FOR
PROM-BASED PROGRAMS

RICHARD A. ALTIMUS - H I G H M D HEIGHTS, OHIO =

F orth is a dictionary-oriented language.
Definitions typically deal with memory
locations within the dictionary boundaries.
The standard treatment of variables in
Forth locates variables in the dictionary,
right alongside definitions of executable
words and constants. Problems arise, how-
ever, when a particular application is tar-
geted for aPROM-based system. Although
this presents no problems with a majority of
definitions, variables must be handled
separately, or they will quickly become
constants. Usually, a target system which
will run from PROM will have a separate
area of RAM set aside for the purpose of
storing variables. The task is to evolve a
system of vectoring variable operations
into this RAM area.

Constraints on Method Design
Several constraints must be observed.

The method must monitor RAM address
allocation in order to produce a vector
address into RAM which is unique to one
variable, and to ensure that these addresses
are within legal RAM boundaries. The
method must compile pertinent parameters
into the dictionary, so that they are retained
in the PROM-based system. The method
must produce definitions which yield, on
execution, an address into RAM which is
consistent with existing Forth definitions,
such as @ and ! . The method must produce
variable definitions that perform identi-
cally, whether the dictionary is based in
RAM or in PROM.

There are several other desirable per-
formance characteristics the method
should have. It should shield the user from

address and allocation details, so that vari-
ables can be dealt with as a high-level
function. The method should be capable of
handling multi-dimensional variables, so
that arrays and string variables are possible.
The method should be capable of handling
variables of differing width, such as one-
byte, two-byte, etc. The method should be
capable of some diagnostic capability, such
as array overrun detection and RAM
boundary-violation detection. The method
should provide "familiar looking" sub-
scripting; in other words, a subscripted
variable reference should resemble, as
closely as possible, array-access formats of
other high-level language, so that the re-
sulting expression is easily recognizable as
an array function (example: variable-name
(a , b , c)) .

By observing these constraints, a
method will be developed which will be
fully compatible with existing Forth utili-
ties while, at the same time, approaching
the variable-handling capabilities of high-
level languages. This method will be rela-
tively simple to implement while, more
importantly, being consistent and flexible
in use.

Specifying the Structure
of the Method

Under the new method, two pointers are
needed. The first pointer contains the ad-
dress of the next free byte of RAM, which
will be used for defining the next variable.
A utility must perform the 'allot' function
on the RAM area. The second pointer con-
tains the address of the last usable byte of
RAM, which can be used to detect bound-

ary violations. Preferably, these two point-
ers are located in RAM, so the user can alter
the pointer values and deal with multiple
RAM areas. These pointers can be defined
in two ways: as a constant (that constant
being the address containing the pointer) or
as a colon definition (the name of the word
is the pointer name, and the definition
consists of placing the address containing
the pointer on top of the stack). These
pointers must be initialized, by the user, to
handle the RAM area in the system being
used.

By storing these pointers as constants in
the dictionary (prior to burning PROMS)
and defining a word to restore these con-
stants on power-up, a user can take advan-
tage of the unusedRAM area for interactive
variable definition in a PROM-based sys-
tem. This procedure guarantees that vari-
ables defined interactively will not inter-
fere with previously defined variables in
the PROM-based dictionary.

The dictionary entry for a RAM-based
variable should consist of a standard Forth
header (NFA, LFA, CFA, and PFA).
Compiled into the PFA, consecutively,
should be the following:

base address vector
number of dimensions
individual dimensions limits
number of bytes in each entry

These values will be retained in thePROM-
baseddictionary. Upon execution, the PFA
is left on the stack. The subscript-handling
words will construct the absolute address
from the information supplied in the array
reference. The opening bracket will create

I

Forth Dimensions 12 Volume IX, Number 4

an intermediate stack that contains perti-
nent information for the next subscript-
handling word. The subscript separator
will resolve the previously given dimen-
sion and add this count to the offset, leaving
the intermediate stack for the next sub-
script-handling word. The closing bracket
resolves the supplied dimension, resolves
any undeclared dimensions to zero, and
produces the absolute address.

Each subscript entered in a variable
reference is verified against the limit for
that dimension, to prevent boundary viola-
tions. If a boundary violation is detected, an
appropriate message is generated and the
maximum value for the dimensions is sub-
stituted. This yields a usable address, al-
though it is not the requested location. This
also prevents altering data outside the area
being accessed.

Summary
The need exists for a method of han-

dling high-level variables which can be
used in PROM-based systems. By observ-
ing the above-mentioned constraints, a
method can be derived which is easy to use,
yet flexible enough to meet future needs.

the Programmable ~ o n t r o l l e r ~ ~ ~ s t e m s
division of Allen-Bradley,

(Continued form page 9.)
other stack operations.

Note that local variable and value refer-
ences remain valid until they appear in
another curly brace construction. Note also
that any number of curly brace construc-
tions can appear in the same definition,
although more storage will be allocated
each time. Except for simple definitions,
the storage penalty for using local vari-
ables will be partly offset by a saving in
stack manipulations, and the code should
run faster. The biggest benefits are in ease
of programming and in readability. Using
lower case for local variable and value
reference words further enhances readabil-
ity.

uses Forth professionally for instru-
ment control and data acquisition, and
is a member of the Australian Society
of Soil Science.

Volume IX, Number 4

(with LMIFORTHTM 1

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth183 Standard compilers
for microcomputers

For Development:
Interactive Forth43 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

l ~ a b o r a t o r ~ Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295

credft card orders to: (213) 306-7412

Overseas Distributors.
Germany: Forth-Systerne Angellka Flesch. Tltlsee-Neustadt. 7651.1665
UK: System Sclence Ltd., London. 01.248 0962
France: Micro-S~gma S A R.L., Pans, (1) 42.6595.16
Japan: Southern Pacl f~c Ltd.. Yokohama. 045-314-9514
Australia: Wave-onlc Associates. Wilson. W.A.. (09) 451-2946

I J

I3 Forth Dimensions

READABLE
FORTH

CARL A. WENRICH - TAMPA, FLORIDA

T here seems to be an ongoing argument
between those who do and those who do
not feel that Forth code is readable. It is
probably safe to say that Forth allows pro-
grammers to write eminently intelligible or
horrendous code. In this article, I will de-
scribe one way to achieve better readability

The Method
One of the most powerful features of

Forth is its extensible compiler. It allows us
to create cross-assemblers and metacom-
pilers, even other languages. We will focus
here on the idea of creating a language
within a language.

Let us assume a hypothetical case
where we have a talented, software-depart-
ment manager supervising a less-than-tal-
ented crew. (Of course, I have never en-
countered this sort of thing myself, but in
an infinite universe, all things are pos-
sible.) Mr. Manager would dearly love to
use the Laxen & Peny F83 package to
develop software for all of his company's
projects. But he knows he will have a
difficult time finding people who know
how to use it.

What he needs to do is write a little,
easy-to-learn language (one that, perhaps,
looks like the Pascal taught in school), and
place it on top of the Forth.

The Language
Before we get into an actual example, it

might be a good idea to list some probable
design specifications. The first thing we
will need is a postfix-to-infix convertor.
This will help make the listings more read-
able, not only for raw recruits, but also for
other department heads.

Another feature would be a data-type
declaration capability. Of course Forth al-
ready has this, but since we don't want the
junior varsity getting their hands on it, we
had better bring a version of it into the new
language. The list of features that could be
included is, of course, limited only by the
imagination of Mr. Manager.

44 We will focus here on
the idea of creating a
language within a lan-
guage."

The Example
There is an excellent article by Michael

Stolowitz (FD IV/6) and another by Craig
A. Lindley (FD VII/1,2) describing how
algebraic (infix) expressions can be evalu-
ated. The first three screens of this example
are a variation on that theme, so there is no
need to explain them here.

What I have added to it begins in screen
4. The defining word INTEGER is a cross
between CONSTANT and VARIABLE.
Actually, it is nothing more than a self-
fetching variable. But in the new language,
we will use it to declare single-length inte-
gers, so the name INTEGER is more appro-
priate.

The LET . . . NOW pair allows us to
assign a value to a previously declared

I
integer. After declaring X to be an integer,
we could assign it an initial value by writ-
ing:
LET X = 0 NOW

There are a few syntax rules to be ob-

served (even though none are being
checked in this example). The first word
after LET must be a declared integer, and
the second word must be the equal sign.
Between the equal sign and the word NOW,
there must be an algebraic expression.

The algebraic expression may be a
single-length literal (such as the zero
above), or a combination of single-length
literals and declared integers. So an expres-
sion to the right of the equal sign can be
evaluated, and the result is assigned to the
declared integer on the left. This allows us
to set up a loop counter by writing:
LET X = X + 1 NOW

The DISPLAY word allows us to dis-
play the value of a declared integer at the
terminal. It does essentially the same thing
as . (dot) in Forth, except that instead of
popping a value from the data stack, it takes
it from the input stream. So we can display
the value of x by writing:
DISPLAY X

The SHOW word does the same thing as
DISPLAY, except that instead of display-
ing the value of x, it interprets it as an
ASCII code and displays the corresponding
character (like EMIT does in Forth). If x
were set to 7, then DISPLAY x would
display a 7 at the terminal, whereas SHOW
x would beep it.

Control structures will have to be
changed so that we can get away from the
data stack. Don't get me wrong ... I love the
data stack. But phrases like SWAP OVER
DUP are notorious for adding confusion, so
I would suggest avoiding its use. It is easy
enough to do and well worth the effort.

All we have to do is define IF so that it
simply begins the evaluation of an alge-

L

Forth Dimemions 14 Volume IX, Number 4

braic expression whose result will be inter-
preted as a Boolean value (true or false).
THEN will terminate and evaluate the ex-
pression and conditionally branch, de-
pending upon the Boolean result. ELSE is
the same as it is in Forth, but ENDIF will
now serve whereForth's THEN used to go.
For example, we might write:
I F X < 33 THEN

DISPLAY X

ELSE
SHOW X

ENDIF
Looping is again easily converted to an

infix version. BEGIN simply marks the
start of a loop as in Forth. FOREVER marks
the end of an infinite loop like Forth's
AGAIN.

The WHILE function is duplicated by
the IF ... STAY pair. As long as the alge-
braic expression between I F and STAY is
true, the looping between BEGIN and END
will continue. For example, we could dis-
play the digits zero through nine by writ-
ing:
LET X = NOW
BEGIN

I F X < 10 STAY
DISPLAY X
LET X = X + 1 NOW

END
The UNTIL function is similarly dupli-

I I\I C" "" "'
3t.l"l X L- E " 1 X ==: C'

.) t\ICS W
I I \ iPEGEH CK l,.,E"r CH =: 13 NOW
3: NTEEEF~ 1 F::' I... E -r 1.- F: = :I. C! /\I C] w
:[N '1- E G f: I:< SF:' LF.1" SF:' - -,. ,... - -- .:, .<.1 NU1.J

: EXfi!YF'L.E EEGTN
1:)lSPLAY X
1 F '::. ":.-:, "T'WEN . 'i

SHOW %
END IF'
3: F:' X / .# 8 = X 'r 1-1 El: l\i

SI-{OW CR Sl.-iCIW L.F-'
1;;: I,,-

S 1-4 C) W c3F:u
E::'NL) IF::'
L E ' 7 ' X -: .. . x -t. j. td i,:)bJ
1 f- X ::- 128 I,-EAVE

EN[)

!I

cated by the IF ... LEAVE pair. In this case,
the looping will continue until the algebraic
expression between I F and LEAVE is true.
We could display those digits just as easily
by writing:
LET X = 0 NOW
BEGIN

DISPLAY X
LET X = X + 1 NOW
I F X = 10 LEAVE

END

Just for jollies, Figure One is a little
program that will display ASCII codes.

The author points out that he wrote
this article to make a point, not to pro-
vide readers with a new language. For
that, his usual rates apply.

(Continued from page 6.)

FS3 Execution Security
Dear Marlin,

It is now time to look at execution secu-
rity for F83 on the PC, especially because of
the lack of a reset button. This works the
same as before (FD 1x12). XSECUR is the
patch. XSECURITY installs it, and UNSE-
CURE uninstalls it.

Sincerely,
G.R. Jaffray, Jr.
3536 Angelus Ave.
Glendale, California 91208

HEX ASSEMBLER
LABEL X S E C U l 0 [B X] J M P
LABEL XSECUR AX LODS 8 9 C , C 3 , C , I L

0 [B X] AX MOV AX PUSH AX DEC AX DEC
BX AX CMP AX P O P X S E C U l J E

Q U I T @ # AX CMP X S E C U l J E
UNNEST @ # AX CMP X S E C U l J E

' RMARGIN @ # AX CMP X S E C U l J E
B L @ # AX CMP X S E C U l J E
BASE @ # AX CMP X S E C U l J E
KEY @ # AX CMP X S E C U l J E

' E M I T @ # AX CMP X S E C U l J E
AX BX MOV 0 [BX] A L MOV
E 9 # A L CMP X S E C U l J E 103 #) J M P

CODE XSECURITY
>NEXT # BX MOV E 9 # A L MOV
A L 0 [B X] MOV BX I N C XSECUR
>NEXT 3 + - # AX MOV
AX 0 [B X] MOV >NEXT # J M P C ;

CODE UNSECURE >NEXT # BX MOV
AD # [B X] MOV BX I N C
8 B # [B X] MOV BX I N C
D 8 # [B X] MOV >NEXT #) J M P C ;

DECIMAL FORTH

Volume IX, Number 4 15 Forth Dimensions

Wenrich screens:
I

I
. .

\ FTICEAPL - UPSiK @TO5 PUSH-UP POP-OP l 7 f eb8bcw
i
Z vocabu iarv FTICEAPL FTICEaPi a l s o d e f i n i t i o n s
5
4 c r e a t e OPSTl 44 a l !o t \ operand s t a c k
5
b : @TOS i s -- adr i \ f e t c h t o p o f operand s t a c k
7 GPSTE dup @ + ;
6
9 : PUSH-OP (S c i a p rec -- i \ c f a & p rec t o operand s t a c k

10 4 OPSTC t ! ETDS 2 i ;
1 i
1.2 : FOP-!? IS -- i \ drop prec R i n t e r p r e t c f a
13 5TDS 25 -3 GPSTE i! drop

4
i FTiCEAPL - INTEGER LET NOH 17feSBb:w

l a b e l DOINTEGER
U INC U INC O IU1 RX RDY iPUSH END-CODE

: INTEGER c r e a t e 0 , ;uses GOINTEGER ,
: LET s t a t e @ i f c o a p i l e i l i t ! ' 2+ ' drop , compl le EVALl

e l s e ' 2+ ' drop EYKL[t h e n ; immediate

: NOW IEVAL s t a t e @ i f c o w p i l e swap c o ~ p i l e i
e l s e swap ! t h e n : i m m e d ~ a t e

14 s t a t e @ ii , e l s e ~ x e c u t e t h e n :
15

* 5
O \ FTICEAPL - PREC INFIX * i + - (i = NOT AND OH lbfebebcw \ FTICEAPL - ?COMP DISPLAY SHO# l 7 f eb8bcw
i

2 : PREC i S -- prec) FTOS @ ; \ f e t c h precedence f r o r TOS

4 : INFIX ' c r e a t e swap , , i m r e d i a t e '1 c r e a t e an opera tor
5 does:) 2@ b e g i n dup PHEC) n o t w h i l e
O i r ;>r POP-UP r i r i r e p e a t PUSH-OP ;
?
8 7 INFIX t * 7 iNFIX i ! \ s e t PHEC and c f a
9 b INFIX + + b lNFIX - -

10 5 INFIX < ! 5 INFIX > ;)
11 5 I N F I X Z =
12 4 INFIX NOT NOT
13 3 INFIX AND AND
14 2 INFIX OH OR
15

: ?COMP (5 --) s t a t e @ 0- a b o r t q o t C o m p ~ l i n p ' ;

: DISPLAY iS -- i \ d i s p l a y f o l l o w i n g i n t e g e r
s t a t e @ ii compi le (l i t 1 ' ,
compi le 2+ c o r p i l e @ compi le .
e l s e ' 2 t @ . then ; immediate .

: SHOW (S --) \ e m i t f o l l o w i n g a s c i ! ode
s t a t e @ i f :ap i !e I l i t ! ' ,
compi le ?+ compi le @ compi le e r i t
e l s e ' ?+ @ e m i t t h e n : i m s e d i a t e

3 b
0 \ FTICERPi -)nISSINC. (! EVALt IEVRL l7 febBbcn \ FTlCEkPL - I F THEN ELSE ENDIF BEGIN STAY L E N E END IBtebBbca

1
2 :)HISSING 1 a b a t " t l i s s i n g)" \. e r r o r c f a t o p a t c h : I F ?COHP EVAL[; immediate
3 : THEN ?COHP IEVAL c o r p i l e ?branch ?)nark ; !amed!ate
4 : I ['I)HISSING 1 PUSH-UP ; \ a l g e b r a i c l e f t p a r e n t h e s i s : ELSE ?COHP [compi le1 e l s e ; l m r e d i a t e
5 : ENDIF ?COlP ? i r e s o l v e ; immediate
b : ! b e g i n 1 PHEC (w h i l e \ a l g e b r a i c r i g h t p a r e n t h e s i s
7 POP-UP r e p e a t 1 PHEC = : BEG!N ?COW ?<mark ; i r n e d i a t e
8 i f - 4 0 P S T X t ! e l s e l a b o r t n : STRY ?COMP jEVRL compi le 'branch ?>mark ; i e m e d ~ a t e
9 H i s s i n g ("hen ; immediate : LEAVE ?COtiP 1EVAL c c m p ~ l e O=

' 10 compi le ?branch ?>mark ; iamrd!ate
1 1 : EVRCt 0 OPSTE ! ; \ b e g i n express ion e v a l u a t i o n : END ?COlV t c o ~ p i l e l ?snap I c o n p i i e l aga ln
12 ') reso lve ; i m r e d ~ a t e
13 : IEVAL b e g i n PREC w h i l e \ t n d express ion e v a l u a t i o n : FOREVER 7COMP c a r p l i e branch ? (r e s o l v e : :mnediate
14 POP-UP r e p e a t ;

I

Forth Dimensions 16 Volume IX, Number 4

PAL0 ALTO
SHIPPING CO.

AN INTERVIEW WITH LORI CHAVEZ AND DERRICK MILEY =

Analysts like to proclaim the end of the
low-budget, high-tech startup, but more
than a few challengers disprove the rule.
FD interviewer Michael Ham caught up
with Lori Chavez andDerrick Miley a year
after their company first released its Forth
system for the Macintosh.

MH: How did you get involved in Forth?

DM: Stanford has a "smart products"
course in which mechanical engineers for
the Master's year learn how to integrate
mechanical systems and control them with
microcomputers. That's where, basically,
our entire company came from: the Smart
Products Design Lab at Stanford.

MH: Were you all in it the same year?

DM: Teny just got done jamming on the
Atari, and now he's doing some consulting
independently. Tim Lee is going to help us
with Atari maintenance and things. Also, to
get the Amiga done, we are going to work
Tim into the schedule.

MH: I wanted to ask about the high quality
of packaging for Palo Alto Shipping
Company's products. Who is the packag-
ing genius in your company?

LC: What do you mean by packaging? The
components of the product?

"I was ecstatic when
we hit two sales."

DM: No. Aleksey Novicov taught us, and
then I taught Lori.

MH: Three generations of a Master's
Degree program.

LC: Actually fourgenerations,because the
next year they used the core of our Forth.

MH: How big is Palo Alto Shipping
Company?

DM: Oh, we have about 1400 square feet!
[laughs] There are three of us now. Aleksey
decided that Europe was very interesting,
so that's where he is.

MH: And Terry Noyes is on sabbatical
now, right?

MH: I mean that what you sell looks like a
product. It has a box, a binder, documenta-
tion - it looks complete, it looks like a real
product.

LC: Our first product, for those who got it,
wasn't quite as glossy. It's been a learn-as-
you-go process. We didn't know how to
make a manual, how to put a package
together,and what you saw at this show was
a year's worth of knowledge. It came to-
gether nicely. It took us a while to realize
that the binder format was the way to go.

MH: Why is that the way to go?

LC: Well, it's the way to go if you can
afford it. At $49.95 we couldn't - we had
to do the manual's binding like a paperback

book. A binder is the way to go, because
you can keep the customers updated on
documentation. When you print the man-
ual as apaperback, you pretty much have to
buy a new version whenever there's a
change.

DM: And Apple changes. The Mac is our
big product and it changes almost monthly.
They'll bring out a new manager and sur-
prise everyone. Or a new machine.

MH: How has Apple been about keeping
you vendors informed?

DM: We have a line to Apple, we get all
their technical docs, and we're always
there. They have a mechanism that allows
us to get the documentation we need.

MH: How did you decide to target the
Mac?

DM: Availability. And we didn't want to
compete with the company targeting the
PC.

MH: And it's getting hot again.

LC: Well, it was a hot, new machine then.
And, being at school, we found a lot of
Macs. Apple really pushes it at the univer-
sity.

MH: The Mac seems to be on the move
again, and they're not going to let it die.

DM: I also had PDP-11 background; that
was my first-assembly language. And when

Volume IX, Number 4 17 Forth Dimensions

::: 33
6 ::: BRYTE 1:.
8 W

,:.'

INTEL
8031

W FORTH ' ::j ,.>
... 2

.?.' .:. .:. ::j ..;

5.

MICRO-
%. :::
::: :.:

you see PDP-11 and then you see 68000,
you just know you don't want to go with
Intel.

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and rnachlne

code interrupt handlers
-System timekeeping marntains

time and date w ~ t h leap
year correction

--Supports ROM-based self-
startlng appl~catlons

MH: Interesting that there was no market-
ing person.per re.

LC: And our marketing presence, I think,
MH: Three graduate students fresh out of
school starting a company - interesting.
Did any of you do other work outside the
university before starting this company?

COST
130 page manual -S 30.00
8K EPROM with manual-S100.00

Postage pa~d In Nonh Amer~ca
Inquire for llcense or quantlty priclng

shows that.

DM: In terms of where we are going, that's
the final step.

.:. . .
2. 2. 2.

Bryte Computers, Inc.
P.O. Box 46, Augusta, ME 04330 $

(207) 547-32 18 2. <:

DM: We met at a start-up in Fremont
funded by Dysan. They were developing a
new Forth, and that was where we learned
Forth and how to write it. And we saw
limitations in the product we were using.
We saw there was a way to do an even
better implementation; that's where we
learned how to do it and how to do it better.

MH: That was before the Stanford course,
or after?

DM: After Stanford.

MH: If you had it to do over again at the
company, knowing what you now know,
what would you do differently?

LC: I think we would not have initially
comeout at the low price we did. It was very
altruistic, and coming out of school, our
thought of marketing was, "low price, high
sales." But you learn that there are many
more factors than price involved in whether
a person buys your product. In fact, price
has very little to do with it. That's the major
thing.

LC: A year after graduating. / MH: Rick, what would you do differently? /

DM: Lori and I were graduating, Terry
came back from a winter in Germany, and
we just came together and said, "Let's do
it."

MH: How was the company born? One
night you were sitting around saying,
"Hey, I've got a garage, and you've got a
computer; we could get together and put
on a real show!"

MH: Was there a historic placemat, as
with Compaq?

DM: The pricing; Lori answered the big
one. But also running ourselves too thin -
don't spread yourself too thin.

MH: In the number of processors?

DM: We were all sitting around a queen-
sized bed-

LC: --crammed in a dorm room-

MH: How did the jobs parcel out among
the four of you in the start-up year?

DM: Aleksey was the vision. He and I
would bat around what it was going to be.
He did the research and looked at every-
thing that we would do. And Lori did the
documentation; the whole manual was
written by Lori. Terry and I did the grunt
work - we did the coding! I did more
Forth, he did the assembler and the debug-
ger.

DM: No, we never really switched proces-
sors - we stayed with the Motorola. It was
the number of computers we tried. When
you only have two or three people, you
can't afford to lose three months on any
project. You have to ship. When the Atari
and the Amiga came out, we tried to gel
them all. We came up short on the Amiga.

MH: Probably the right one to come up
short on.

DM: Yes, it would have been better just to
have all of that work back.

MH: To spend on another machine.

DM: Or anything else. I
MH: Had you done any programming be-
fore the Smart Products Design Lab, Lori?

i LC: Just college courses: 68000 program-
ming, Pascal. No real programming, never

Forth Dimensions 18 Volume IX, Number 4

on a microcomputer. (gabbing away.

MH: And it sounds like only in a class
environment, with assigned problems and
such.

LC: You find out that real programming is
very different.

MH: You are all mechanical engineers?

MH: Seemed like a good idea at the time?

DM: Yes, and it is a good name. People
think we're much larger than we are.

LC: Everyone has to ask why we have it, so
for that reason it sticks in their mind. It's so
- odd.

I

Volwne lX, Nwnber 4 19

DM: Yes. Lori doesn't have a Masters,
she's the baby.

MH: What is your future direction? Let's
start with where you are now. You have a
product for the Mac, and it's now version
2.0, which is Mach 2.

DM: Another thing we'd do differently is
not pick names that people sue us for. We
got into litigation over the name Mach 1, so
we had to switch to Mach 2. That has
caused confusion in the marketplace.

MH: Not too bad. Perhaps you should let
Mach 2 mean version 2.0, and when you
come out with version three, call it Mach 3.
I thought it was a clever ploy, that every
new version was going that much faster.

DM: Except that we were advertising. We
had labels of Mach 1 and product of Mach
2, and ads ...

MH: Is your Atari version released now?

DM: 1t7s out.

MH: And your Amiga product?

DM: That's not shipping yet.

LC: I think the biggest thing that's hap
pened this year is that people know the
name of Palo Alto Shipping.

MH: How did you get the name?

DM: Detroit Diesel was taken.

MH: Right. Now, how did you get the
name?

DM: We were sitting around on the bed and
we wanted a generic name. We were all just

ASK FORTH
ENGINEE W NG

ABOUT
REAL TIME

THAT'S ON TIME.

Find Out How To Implement
Real-T~me Systems In

Dtg~tal Slgnal Processing
Manufacturing Process
Control
Machlne Vlsion
Robotlcs
on t~me and under

budget

For The Answers To Your
Quest~ons, Call Our
Eng~neerlng AnswerLlne
Today

(213 372-8493, L. 444.

FORTH, Inc ,111 N Sepulveda
Blvd, Manhattan Beach, CA
90266

ON TIME.
UNDER BUDGET.

@-

MH: I certainly agree that "Palo Alto Ship-
ping Co." is established now. How do you
make yourself known?

DM: MacWorld.

LC: For shows and conventions, we try to
stay in the area.

DM: We've gone to Chicago for conven-
tions, and Silicon Valley conventions are
big. A lot of Mac conventions are out here.

MH: Is the 68000 your future? Any 68000
machine that comes out, you'll at least look
at?

DM: Right. We're on the OS-9, we're on
the CD-I stuff that we're hoping is a mar-
ket, and the EPROM version. 68000 across
the board.

MH: You have a target compiler that
people can order and get now?

DM: Yes.

MH: What is your product line?

DM: Macintosh, number one, biggest;
Atari, smaller; and OS-9; and EPROM, the
target compiler.

MH: What is the OS-9?

DM: It's a multi-tasking operating system
from a company in Iowa. It's the operating
system that was chosen by Sony and Phil-
lips for CD-I (Compact Disk-Interac-
tive). It's like a simple Unix.

MH: You don't see any departures from
the 68000?

DM: The IBM market is attractive, but it's FORTH, lnc. I
Forth Dirnemiom

HOLIDAY
SPECIALS !!

FORTH MODEL

FORTH DIMENSIONS
BACK VOLUMES

CONFERENCE
PROCEEDINGS

See Our Order Form
Inside for Details

Forth Dimensions

very competitive.

MH: I think the opening ante in that market
is fairly substantial now. When did Mach
first hit the market?

LC: December 15th of 1985.

MH: A Christmas present for people.

DM: We barely had it done; I don't think
we'd delivered it.

MH: What other goals do you have?

DM: We want to make Forth more main-
stream.

MH: In what way?

DM: We're advocates of having text files,
infix assemblers, and standard debuggers
and linkers. Our goal is to have Forth be an
interactive environment. That's its
strength. And then on top of that, use all the
other stlengths of all the other languages. I
want to be a Forth programmer who can
converse with C programmers and not be
ostracized or put off.

LC: It seems as if the emphasis today is
going away from what language you use-
C, Pascal, or Forth - and toward how good
your environment is. Other languages are
very powerful and give access to things you
didn't have before, but the big thing now is
your environment: how nice it is, how well
the tools are integrated, how fast it gets
work done, how much it helps you. Forth
doesn't usually have that much of an envi-
ronment around it. So we're trying to add
that environment, which other languages
seem to have as a standard.

MH: In almost every company, particu-
larly among start-ups, there is a particular
black moment, a moment when you say,
"This is not going to work." Did you have
a black moment?

DM: I 've been with start-ups since I was
seventeen. I've had a soundand light show,
I've installed stage lighting, all contract
work. I've had a flight-case company, I
have been manufacturing as a single person

for eight years. This is nothing. Black
moments are-

MH: -a dime a dozen.

DM: You see, for me, I've worked man
years and then sold one. So I was ecstatic
when we hit two sales.

MH: I see; the secret is to have a low
threshold of satisfaction.

DM: Well, I'd been in business, as a young
person with the drive tobe in business. This
is phenomenal success for me, even if from
an engineering or accounting perspective it
is mediocre or survival. To me, survival is
success. If I can sell in singles, I'm happy.

MH: What's a flight case?

DM: A heavy-duty metal transport case. I
was into sound and light shows, and-

MH: -you needed something to carry
them around in.

DM: Right, it was a natural evolution. I was
getting reamed at the stores, so I started
making them.

MH: So how did you get this entrepre-
neurial bent?

DM: I've got brain damage.

MH: [laugh] No, no, come on now. That's
evasive.

DM: It's insideof me. It's not something-

MH: Not from a parental example, or a
competitive brother or a teacher who said,
"Young Rick, I want you to ..." Just some-
thing on your own?

DM: Yes, it's what I have; it's the ability to
never give up. I could say, as long as it pays
the rent, I'm in the game.

MH: It seems that one needs two things.
One is persistence. That's the one you just
described. The other is initiative, taking the
step that wasn't required. Stepping up
above where you are.

(Continued on page 37.)

20 Volume lX. Number 4

TRANSCENDENTAL
FUNCTIONS

PHIL KOOPMAN, JR. -NORTH KINGSTOWN, RHODE ISLAND -

0 ne of the things no developer of a
complete floating-point math package can
escape is the horror of designing transcen-
dental functions. While writing my book
MVP-FORTH Integer and Floating Point
Math1, I found myself faced with the di-
lemma of how to implement quick, accu-
rate, and relatively compact math functions
(optimizing for any two of these qualities is
easy - all three at once is no fun at all).

My first step was a simple engineer's
reflex: I picked up my CRC math hand-
book2. This handbook has a complete set of
formulas for implementing almost every
function that exists. However, there was a
slight problem. Watching a Taylor-
Maclaurin expansion for arc-tangent con-
verge is like watching grass grow. I decided
there had to be a better way.

After surviving a numerical analysis
course and many hours of research in the
dusty comers of a university library, I
emerged with a set of equations that I be-
lieve are relatively efficient, accurate, and
compact. I have not presented derivations
for these formulas, as each equation takes at
least an hour and many sheets of paper to
derive. All the equations given here are
designed to be used with 31-bit mantissa
intermediate calculations, and produce an
accurate (seven to eight decimal digit), 24-
bit mantissa result with the minimum
number of required terms. Readers who
desire different precisions (such as l&bit
scaled integer), or who want to understand
the theory behind these equations, are in-
vited to wade through a book like Numeri-
cal Analysis3, and books on computer arith-
metic, such as Computer Approximations4,

Mathematical Functions and Their Ap-
proximation?, and Mathematical Methods
for Digital Computers6..

SIN(X)
Sine is the basic trigonometric function.

The equation given is a Chebyshev polyno-
mial, and is valid on the range -7~14 to z14
radians.

COSgr)
The cosine equation given is a Chebyshev
polynomial, and is valid on the range -z/4 to
7~14 radians.

cos (X) =

1 . 0
- 0 . 4 9 9 9 9 9 9 9 4 3 x2
+ 0 . 0 4 1 6 6 6 6 1 6 7 x4
- 0 . 0 0 1 3 8 8 6 6 1 8 6 2 x6
+ 0 . 0 0 0 0 2 4 3 7 9 8 8 0 3 1 x8

ATAN(X)
Arctangent is the primary inverse trig

function, and may be heavily used by
graphics applications. Series approxima-
tions for this function can be painfully slow
when the range is near kl (and the resultant
angle is near 45"). The equation given is a
Chebyshev polynomial, is valid on the
range -1 to 1, and gives a result in radians.

LOG2(X)
Log base 2 is a crucial function for calculat-
ing any logarithm, and for output format-
ting. The equation given is valid on the
range 0.5 to 1 .O, and was derived by taking
the Taylor-Maclaurin expansion for ln(x)
and dividing it by ln(2). The choice of base
2 as the primitive logarithm reduces the
number of terms in the expansion by limit-
ing the range, and provides for efricient
range reduction in a binary-exponent,
floating-point package.

Let Y = (X-1) / (X+1)
LOG2 (X) =

2 . 8 8 5 3 9 0 0 8 2
+ O . 9 6 1 7 9 6 6 9 3 9
+ 0 . 5 7 7 0 7 8 0 1 6 4
+ 0 . 4 1 2 1 9 8 5 8 3 1
+ 0 . 3 2 0 5 9 8 8 9 8 0
+O . 2 6 2 3 0 8 1 8 9 3
+ 0 . 2 2 1 9 5 3 0 8 3 2
+ 0 . 1 9 2 3 5 9 3 3 8 8
+ 0 . 1 6 9 7 2 8 8 2 8 3

2X
A primitive exponential function is

required to complement the logarithm
function, and is useful for output format-

I
Volume IX, Number 4 21 Forth Dimensions

ting. The equation given is a Chebyshev
polynomial, and is valid on the range 0.0 to
1.0.

Range Reduction
By now, you have noticed that the equa-

tions given have restricted ranges for the
input variable X. This limits the number of
terms in the equation, while keeping accu-
racy high. Simple trigonometric and alge-
braic identities can be used to force all
inputs into the required ranges. Some of the
more useful identities are given below (all
arguments are in radians):

SIN(X) = SIN (X+2n)
-SIN(X) = SIN(-X)
cos (X) = cos (-X)
SIN (X) = COS (X-~/2)
LOG(X*Y) = LOG(X) + LOG(Y)

Derived Functions
The formulas given in this article may

be used to derive all desired transcendental
functions. The CRC handbook gives useful
identities for creating any desired function.
Special care must be taken when using
these identities, to avoid exceeding range
limitations and to avoid division by zero.

TAN(X) = SIN(X) / COS (XI
SEC(X) = 1 / COS (X)
CSC(X) = 1 / SIN(X)
COT (X) = COS (X) / SIN(X)

ARCSIN (X) = ARCTAN (X/SQRT (1-

XZ)
ARCCOS (X) = 7C/2 - ARCSIN (X)
ARCCOT (X) = I C / ~ - ARCTAN (X)
ARCSEC (X) = ARCTAN (SQRT (X2 -

1)
ARCCSC (X) = ARCTAN (1 /SQRT (x2

- 1))

Logarithms and exponentials use the
formula:

LOG (base a) (X) =

LOG (base b) (X) /
LOG (base b) (a)

LOG (base 10) (X) =

LOG (base 2) (X) /
LOG (base 2) (10)

LN(X) =

LOG (base 2) (XI /
LOG (base 2) (e)

References
1. P. Koopman, Jr., MVP-FORTH Integer
and Floating Point Math, Mountain View
Press, 1985.
(This is a complete, machine-independent
mathematics package written in MVP-
FORTH. The equations presented in this
paper are the same approximations used by
the math package included in this book.)

2. S. Selby, ed., CRC StandardMathemati-
cal Tables, CRC Press, 1975.
(This old standby is filled with useful
mathematical formulas and tables. It should
be owned by anyone interested enough in
mathematics and/or computers to get this
far in the article.)

3. R. Burden, J.D. Fakes, and A. Reynolds,
Numerical Analysis, Prindle, Weber &
Schmidt, 1978.
(This is a college textbook full of algo-
rithms for numerical methods and approxi-
mations.)

4. J. Hart, et al., Computer Approximations,
John Wiley and Sons, 1968. Reprinted by
R. Krieger Publishing Co. Inc., 1978.

5. Y. Luke, Mathematical Functions and
Their Approximations, Academic Press,
1975.
(This book contains pre-computed, 20-
digit coefficient tables for just about any
function you would care to approximate.

These tables were used for the equations in
this article. A considerable amount of work
is required to transform these raw coeffi-
cients into an approximation with appro-
priate accuracy.)

6. A. Ralston, and H. Wilf, Mathematical
Methods for Digital Computers, John
Wiley & Sons, 1967.
(This book has a great deal of theory on
how approximations can work, and covers
many methods.)

I Phil Koopman, Jr., is the vice-presi- I
dent and chief engineer for WISC
Technologies.

Forth Dimensions 22 Volume TX, Number 4

BIT-BASED
TRUTH TABLES
-- - --

JEAN-PIERRE SCHACHTER - LONDON, ONTARIO
m

Volume IX, Number 4 23 Forth Dimensions

What makes this attractive to undergradu-
ates and their teachers is exactly what
makes it attractive to the programmer;
namely, that it utilizes a mechanical deci-
sion procedure for testing logical validity.
This procedure is based on a matrix called
a "truth table."

Truth-Functional Logic
Logic, in general, has only one objec-

tive. That is to determine whether argu-
ments are, or are not, valid. We say that an
argument is valid when it is impossible,
short of embracing a contradiction, for its
premises to be true while its conclusion is
false. This criterion is often picturesquely
expressed by the dictum that an argument is
valid if and only if the conditional that
corresponds to it is true in "all possible
worlds."

When using truth-functional logic, it is
possible to give this way of putting it a very
COncrete form. Truth-functionallogic is, in
a sense, the least sensitive logic, taking as
its smallest particle the unopened sentence
and testing c o m ~ u n d s of sentences to see
if they could possibly be false. Since the
logic stops at the level of the the
content of a sentence is of no only
its truth-value.

However, truth value in the actual world
is also of no interest, for logic's only con-
tern is whether there exists a Pattern of
possible truth values for a set of sentences
in a logical compound, such that the Corn-

pound itself is false. This leads us to the
connectives used in forming com~ounds,

I

T : T : T : T : T

: : : F : T

1 1
F : T : T : T : T

F : F : T : F : T

Figure One. Modus Ponens: If ((if p then q) and p) then q I

called the truth-functional connectives.
These connectives, including AND, OR,
and IF THEN, among others, are them-
selves defined in terms of patterns of truth-
values. The connectiveOR, for example, is
defined as follows:

Iz OR
T : T : T
T : F : T

: T : T
F : F : T

The P'S and q's stand for any pro~osi-
tions whatever, and the matrix is an ex-
ample of a truth-table (here used not to test
for validity, but to define). The four rows
under p and q generate all the possible
worlds for two propositions, and the col-
umn under p OR q defines the OR connec-
tive for each of the four worlds: OR com-
pounds are true in all worlds except those in
which both (or all) its disjuncts are false.
Once the connectives have been defined, a
compound based on those connectives can
be evaluated for truth-value; if it evaluates
as true in every distribution of truth values
across itsconstituentpropositions, then it is
a tautology and the argument that corre-

sp~nds to it is valid. The argument form i
called Modus Ponens, for example, which
reads "If ((if P then q) and P) then q," is
shown in Figure One to be valid.

With the exceptionof languages such as
Prolog and Lisp, the coding of a logical,
validity-testing algorithm presents intirni-
dating obstacles. While most languages
support at least a minimal set of logical
operators, typically NOT, AND, OR, and
XOR (a few having also IMP and EQV),
they are there primarily in the interest of
allowing compound tests; it is not obvious
how they could be easily adapted to the
evaluation of statements in the proposi-
tional calculus.

It is important to note, initially, the
difference between the IF THEN supported
by all languages and the W supported by
some; the IF THEN is, in fact, what 1'11 call
an "executive7' conditional, in view of the
fact that its consequent is an operation to be
executed, not a proposition. IMP is the
operator found in propositional logic,
where it occurs as "material implication"
and is commonly represented by the
"horseshoe" symbol (I have used ->
above).

When approaching the problem ini-

tially, the inclination is to think in terms of
byte arrays set up to receive 1's and 0's in
the pattern of a truth table. The memory
overhead for this strategy is quite large, and
the code for it is cumbersome. A better
solution would be one capable of taking ad-
vantage of the built-in logical functions
without having to administer a large array.
In what follows,I offer an algorithm which
does just that, turning the microcomputer
into an interactive, propositional logic cal-
culator.
Number Representation Reviewed

The algorithm takes advantage of the
fact that the microcomputer stores its infor-
mation at the byte level in binary code. One
byte can represent the decimal numbers
from 0 to 255, covering thereby every
possible combination of 1's and 0's on
eight registers. The standard, eight-bit
micro, however, normally uses sixteen
bits to represent signed integersbetween
-32768 and +32767 (thus utilizing, in ef-
fect, fifteen 1 's, the sixteenth being used for
the sign). Some computer languages allow
for unsigned integers, extending the posi-
tive integers to 65535 (sixteen 1's). In
addition, Forth very conveniently supports
double-precision numbers, which utilize
32 bits. It is a short step from seeing that our
decimal integers are represented in the
machine as bit arrays containing 1's and
O's, to realizing it is possible to determine
the distribution of those 1's and 0's and to
generate exceptionally memory-efficient
truth tables.

Since Forth supports 32-bit numbers, I
will set the algorithm up to generate a 32-
row table. I will add, however, that Forth's
extensibility and plasticity are such as to
allow for the generation of 64-bit and
higher numbers. As will become obvious
when we look at the algorithm itself. Forth
was the perfect vehicle for this exercise, not
only for its interactivity, but because its
ability to switch radix made debugging
much easier and because only a language as
extensible as Forth could allow the pro-
grammer to create the necessary new func-
tions for evaluating 32-bit numbers.

The essential part of the program actu-
ally does nothing more than to generate n
integers to be the values of the n proposi-
tional variables heading the truth table.
Since we are assuming a truth table with 32
rows, we are also assuming arguments

having no more than five variables. The
integers will be so chosen as to create a truth
table array, thereby generating all possible
worlds for five elements. While the code
could be made general enough to allow the
program user to decide the size of the truth
table, there are coding obstacles -such as
the absence of a square-root function -
that make such efforts not worth the prize.
The best approach for the user is to code,
once and for all, the largest case and use that
code for smaller cases as well.

p XOR q
T : T : F
T : F : T
F : T : T
F : F : F . - .

decimal 480 =
binary 00000001111 00000

decimal 3278 =
binary 00001 1001 1001 110

and the XOR =
binary 00001 10100101 110, or
decimal 3374

This is intuitively satisfying because
the conjuncts themselves are Boolean,
capable of bearing truth value. In non-
symbol-processing languages, the only
Booleans are those based on the arithmetic
comparison operators, e.g., =, <, >, etc.
Since we are taught to use the connectives
with these Boolean conjuncts, and since
this is intuitively well supported, we tend
to forget that their use in this situation is, in
fact, derivative. The logical connectives
do their work natively, not at the macro but
at the micro level; not at the level of
Booleans, but at the level of bits. AND, for
example, typically (in an eight-bit envi-
ronment) compares a two-byte value with
another two-byte value on a bit-by-bit
basis, generating a new two-byte value
whose bits are 1, where those compared
were both 1 and 0, where at least one of
those compared was 0. As an example, let
us consider the decimal numbers 480 and
3278 connected by xoR. The truth-func-
tional definition for XOR illustrated in
Figure Two.

The two, two-byte values compared

Figure Two. Truth-Functional Definition
of XOR.

Logical Connectives
To understand how the program works,

one must take a closer look at how the
logical connectives work in computer lan-
guages. As I indicated earlier, they are
primarily taught to be used in the construc-
tion of complex tests and, thus, occur in the
antecedents of executive conditionals,or in
the test positions of other control struc-
tures. Typically, we would see a line like:
1 0 IF A=l AND B = l
THEN P R I N T (Ai-B)

are typically returns from the evaluations
of Booleans, but they need not be. They
could have been any integers at all. In a
word, the logical connectives actually
operate on integers, and they do so at the
bit level.

But! If it is really integers that we logi-
cally connect, and integers can be made to
have appropriate bit patterns, then using
appropriate integers in propositional for-
mulae is the same thing as running them
through a truth table. The point may, per-
haps, be best seen by looking at the actual
integers and their binary representation in
Figure Three.

-Column
q 1 6 5 5 3 5
r 2 1 6 7 1 1 9 3 5
s 3 2 5 2 6 4 5 1 3 5
t 4 8 5 8 9 9 3 4 5 9
u 5 1 4 3 1 6 5 5 7 6 5
tautology 8 5 8 9 9 3 4 5 9 1
contradiction 0

I I

Figure Three. Integer Representation as Truth Table.

1

Forth Dimensions 24 Volume IX, Number 4

Tilting one's head to the right (looking
at the binary rows as columns) reveals a
standard truth table for five variables. To
check whether a formula is a tautology,
contradiction, or contingency, we simply
enter the formula, using as propositional
variables double-number variables whose
values are the above numbers with 32-bit
versions of the logical connectives binding
them together. Forth will evaluate the for-
mulaand yield either 8589934591 (all 1 's),
0 (all O's), or a number in between. As
might be expected, 8589934591 implies
tautology (true in all possible worlds), 0
implies contradiction (false in all possible
worlds), and between implies contingency
(true in some worlds, false in others).

The Code
Screen 1 contains all the variable decla-

rations, as well as amixedmodemultiplica-
tion operator D * (d n - - d) borrowed from
Alan Winfield's excellent book, The Com-
plete Forth, and a double = operator. It
should be noticed that the variables q, r, s ,
t , and u, which will hold the propositional
variable values, are allotted four bytes
each, since they have to hold double-preci-
sion numbers.

Screen 2 holds defined, 32-bit logical
connectives (-, v, &, xv, ->)and five short
words, ql through ul, included only to
make the entered formulae easier to read by
making the @ unnecessary.

Screen 3 contains, first, TVCOLM,
which generates the double integers listed
earlier, and which could be expanded to
yield a similar set of numbers for 64 bits.
This enterprise would involve not only
machinery for representing numbers of that
size, but all of the supporting functions as
well; not only the bigger multiplier and the
bigger connectives, but a bigger @, ! , DUP,
and so on; items supplied already for this
code, since Forth substantially supports
double numbers.

The task is not impossible, but if under-
taken, perhaps it should be done with
numbers much larger than 64 bits in mind,
since moving to 64 would only add one
more propositional variable or column.
Should one choose to set the program up for
10 variables, one would need numbers
1024 bits long. The ten numbers being
logically connected would jointly occupy

Volume IX, Number 4

1280 bytes of memory, plus another 128
bytes for the evaluation column itself.
While this may seem a lot, consider that
doing the same with a byte array would use
10240 bytes plus another 1024 for evalu-
ation; 11264 bytes vs. 1408. The other
word, ?v, simply checks the top of the stack
for the result, yielding the appropriate
screen printout for the formula in question.

One sets the stage for an evaluation by
running TVCOLM, which not only generates
the five numbers, but stores them in the
variables q through u. After that, it is only a
matter of noting that we will use the words
ql through ul instead of the variables q
through u, the former automatically leav-
ing their values on the stack, and becoming
accustomed to reverse Polish, or postfix,
notation. Most philosophers were taught
their logic in algebraic notations, but RPN
is not totally unknown, is not difficult to
master, is easier for the machine to digest,
and may, for all that, be aesthetically supe-
rior. At any rate, notations come in three un-
surprising options: prefix, found in Polish
Notation and Lisp; Infix, found in algebra
and BASIC; and postfix, found in Forth and
on Hewlett-Packard calculators. Using the
32-bit connectives defined on screen 1,
Hypothetical Syllogism is entered as fol-
lows:
ql rl -> rl sl -> & ql sl ->

Evaluation proceeds: ql and r 1 go on
the stack, two double numbers taking up
four sixteen-bit locations; they are IMP^^
by ->, leaving one double number on the
stack; r 1 and s 1 are pushed onto the stack
and we get six sixteen-bit locations taken up
until thelast two are IMP^ and we are back
to four; the two doubles are AND^^ by &,

leaving again one double number. The
1 ~ p i n g is repeated for ql and s 1, leaving
a total of two doubles, 1 ~ P e d again for one
double number remaining on the stack. If
the trick works, the remainder should be
8589934591, or 32 binary 1's. indicating a
tautology.

Conclusion
Once it is realized that the key to the

above procedure lies in generating the inte-
ger whose binary form has the bit distribu-
tion appropriate to the left-hand column of

a vuth table for the given number of vari-
ables, one also realizes that a language
which handles larger integers is more
adapted to our purpose. It should now be
apparent that the choice of Forth for coding
this program was not casual; no other lan-
guage could have provided the capability
for creating integers of any size, the opera-
tors for manipulating them, and the de-
buggng ease and extensibility that was
necessary. Where plasticity is called for,
Forth is unquestionably the language of
choice; as logicians once were wont to say
at the end, Q.E.D.

Arts and Social Science at Ontario's
Huron College.

25 Forth Dimensions

(S c r 1 - TV a l g for 5 vars u s i n g d o u b l e n u m b e r s 1

V a r i a b l e E u Variable El Variable F u V a r i a b l e F 1
V a r i a b l e q 4 allot Variable r 4 allot V a r i a b l e 6 4 allot
Variable t 4 allot Variable u 4 allot V a r i a b l e H 4 allot
V a r i a b l e N 8 allot

: D* s - > d E u ! El ! F u ! F 1 ! (d n - - d 1
El @ F u @ u* (m i x e d - m o d e * operator 1
El @ F u @ u* drop +
E u @ Fl @ u* drop + ;

: s* 65535 xor ; (1 6 bit bit-not 1

: D= rot = rot rot = + 1 = if 1 e l s e 0 t h e n i
- - >

(S c r 2 - T V a l g for 5 vars u s i n g d o u b l e n u m b e r s)

(32 bit logic operators 1
: ql q 26 i

: xv rot xor rot rot xor s w a p ; (x o r 1 : r l r 2 @ ; . CC . swap 6- swap c* i (b i t not 1 : sl r 2@ 1
: @t rot and rot rot and s w a p ; (a n d 1 : tl t 2 @ ;
: v rot or rot rot or swap ; (o r 1 : u l u 2 @ ;
: - > rot s* or swap rot s* o r ; (i m p ant c o n s - 1

- - >

(SCR 3 - T V a l g f o r 5 var s using double numbers 1

: T V C O L M 65535. (makes 5 ints, 1 for e a c h column I
2 d u p H 2 ! 2 4 1 6 256
8 0 d o N I + ! 2 +loop
8 0 d o

H 2@ 2 d u p N I + @ D* xv'2dup H 2 !
2 +loop
q 2 ! r 2 ! s 2 ! t 2 ! u 2 ! i

: ?V 2 d u p 8589934591. D= if (outputs decision 1 . " TAUTOLOGY - VALID " drop d r o p e l s e
0 . D= if ." CONTRADICTION - INVALID " e 1 r e ." CONTINGENT - INVALID ' t h e n t h e n i

FULLY INTERACTIVE

ould you like to use all Forth words w
from the interpreter-including words like
DO, m,andBEGIN? Withouthaving tore-
define them? Then just patch QUIT and
?COMP as described below.

First of all, you have to reserve a block
of memory:

THERE (-- adr)
address of reserved memory

S IZE (--#bytes)
number of bytes reserved

It really doesn't matter how you do this,
but there are two obvious ways:

512 CONSTANT SIZE

LARS-ERIKSVAHN - TYRESO, SWEDEN =

0 VARIABLE THERE SIZE 2- ALLOT

In this case, you put the field in the word
list. Another way is to permanently de-
crease the number of screen buffers by one.
In my system, that could be done like this:

1028 CONSTANT SIZE
FLUSH SIZE MINUS LIMITS +!
L I M I T CONSTANT THERE

In this memory, all nested blocks of
words that begin with a word containing
?COMP will be precompiled and executed
when interpreted! Now you can do condi-
tional loading (as in screen 3) and alterna-
tive loading (as in screen 4).

The principles are:

(1) every leading structure word (e.g., DO,
IF, and BEGIN) starts with ?COMP, and
(2) every leading structure word pushes a
value on the stack (to be checked by
?PAIRS).

The PRECOMPILE routine compiles
every word from the first structure word to
the last, and the last structure word pops the
stack back to the initial level, thereby ex-
iting the WHILE loop in PRECOMPILE.

When a structure block has been
compiled THERE, PRECOMPILE makes it
execute by pushing THERE on the return
stack. PRECOMPILE, itself, runs every
time a word containing (the patched)
?COMP is interpreted.

There are no special limitations to nest-
ing different structures, since the code is

(Continued on page 36.)

O (I r , t r r i : - a t i i a f i3-FORTH; L a r s - E r i k SiaCin janB6)
1 DECIMAL O VARIAELE OLCP
2 : >THERE (- - !CSP HERE OLDP ! THERE DP ! I i
3 : THERE? (- - f 1 THERE SIZE t HERE < O= HERE THERE t O= AI?ID ;
4
5 : PRECOMPILE (- - !
6 BEGIN SF@ CSP C! <
7 WHILE -FIND

S I F STATE Q (I F CFA , ELSE CFA EXECUTE TtIEN
9 ELSE WERE NUMBER DPL @ 1+
: 9 I F CCOHPILEI DLITERAL
11 ELSE DROP CCOHPILEI LITERAL
12 THEtl
13 TCiEEI
1 4 REPEAT CCCMPILEI C ' i S CFA ,
15 OLDP @ DP ! THERE >R i - - >

I

Volume IX, Number 4 27 Forth Dimemion!

scr #2

0 (I n t e r p r e t i v e fig-FORTH
1
2 : PREPARE (- - 1 >THERE
3 R: R) ' PRECOMPILE)R >R)R i
4
5 : (?COMP) (- -) STATE @ 0s
6 I F PREPARE THEN R> DROP ;
7
8 : (QUIT) (-- 1 THERE? I F OLDP @ DF ! THEN (new p a r t 1
9 0 BLK ! ICOMPILEI I (o l d QUIT)

10 BEGIN CR RP! QUERY INTERPRET
11 STATE @ I F okl1 THEN
12 AGAIN i
13
14 (And now - t h e pa t ch ! 1
15 ' (QUIT) DUP NFA FENCE ! CFA ' QUIT ! ' (?COflP) CFA ' ?COMP

scr #3

0 ! Load screen 1 DECIHAL
1
2 -FIND TEST I F DROP DROP ELSE 40 LOAD THEN
=i
4 SO 40 DO I LOAD LOOP i S
5

scr X4

0 (Menu screen 1 DECIHAL
1
2 ."MENUn CR CR
3 .' 1 a l t e r n a t i v e A " CR
4 .' 2 a l t e r n a t i v e B V R
5 . " 3 a l t e r n a t i v e C " 2 SPACES
6
7 BEGIN KEY CASE ASCII 1 OF 10 LOAD ENDOF
8 ASCII 2 OF 20 LOAD ENDOF
9 ASCII 3 OF 30 LOAD ENDOF

10 DUP OF 7 EMIT 0 START ! ENDOF
11 ENDCASE START B
12 UNTIL CR CR START @ EXECUTE i S
13 I t is a good i d e a t o s t a r t t h e execu t i on o f t h e loaded
14 words o u t s i d e t h e precompi led b l o c k ! Then t h e r e i s no
15 impor tan te code l e f t THERE.

I
Forth Dimensions 28 Volume IX. Number 4

EXTENSIONS
FOR F83

ANTHONY T. SCARPELLI - PORTLAND, MAlNE

I

Volume IX, Nwnber 4 29 Forth Dimensions

screensIcreatedforF83.Theycoverawide
range of subjects. Two are a revamp of the
screen checksum calculation presented in
Forth Dimensions some time ago, but here
are modfied to compensate for the special
words of F83. Others include a special set
of words to access some of the BIOS and
PC DOS interrupts. There are also screens
that allow you to set and print the date and
time,sothey canbeinsertedintoyourindex
and screen lists.

One of the first things we need is a set of
words that can utilize the BIOS and DOS
interrupts. In this way, we have at our
disposal a host of routines for most any
purpose. I did not want to use the few
simple interrupt calls available in F83, but
a set that would be more versatile.

In screen #1, we have created our first
BIOS word, INTCALL. It is not your usual
BIOS call word, since it looks like it only
calls interrupt 0. But we don't really use it
for that purpose. The 0 is actually the loca-
tion where we install any interrupt number
we want. So, first, we create a variable
INTADR to hold the address of that loca-
tion in the word. Next we create a code
word INTCALL that popsfour numbers off
the stack and puts them into theirrespective
registers. We save the two registers, SI and
BP (by necessity), and then see the 0 INT.

This is where the interrupt number will
go. It is nine bytes from the beginning of the
code field address. We then return BP and
SI, and push all the registers back onto the
stack.

To use this routine, we merely put all the
required register values on the parameter
stack, as wellas the interrupt number. What

registers - intact, so that any one or more
returned values can be used.

This, then, is our basic word to call any
BIOS interrupt.

The routine in line 9 finds the address of
INTCALL, adds nine to it, and saves it.
Finally the word BIOSINT is created. It
merely finds the interrupt number on top of
the stack and places it in the byte before the
I N T instruction. Thus, we have made a
universal call word that can handle almost
any interrupt need.

To show this, screen #2, creates some
general routines that all have a similar
structure; they only differ in what they
leave behind. The use of any of them is
determined by which interrupt you are us-
ing, and which registers you need returned.

The word FUNCREQ in line 12, for in-
stance, is used for the BIOS call 21H, that
requires afunction number in the AHregis-
ter, and some value in the DX register. It
leaves the AX register on the stack.

As some other examples, I've created
some more handy words that demonstrate
how these interrupt words can be easily
used. Screen #3 has two very handy words
that get the time and date. The word GET-
TIME in line 4 first calls function request
2CH via interrupt 21H. It leaves the time on
the stack, which can be cleaned up for
various uses. Some later words show how
this can be done.

The word GETDATE in line 9, in a
similar manner, leaves the date.

There are two words in the next screen
that either must be in your dictionary, or
they must be loaded in with their own
screen. They are "MONTH and "DAY. They

#2. The word that creates these arrays,
"ARRAY, must also be available.

Screen #4 uses the GETT IME and GE -
TDATE words to form two more usable
words. The word (DATE) in line 2 first
gets the date, prints the month (from the
''MONTH array), and then prints out the
day, a comma, and then the year. The word
DATE in line 12 merely adds a space. Thus,
this word can then be used when printing
out a listing of screens.

The word in line 8, (TIME) works in a
similar manner, but first determines
whether the time is after noon or not, then
adjusts for 12-hour timekeeping. The hour
is printed, a colon, and then the minute
(after we add a zero if the number is less
than ten). This is just to keep the alignment
correct. Finally we determine whether we
are in the a.m. or p.m. with the word in line
5, and print it. The word in line 13, TIME,
is the general-use word and adds a space.
This word, and the DATE word above,
make documenting screen and index list-
ings a breeze. No longer do you need to
hand-print the date and time.

To show how the date and time can be
easily added to an index listing, screen #5
shows my word called P I N D E X (Print
Index). The word on line 2, IT I TL (Index
title), f is t prints the filename, and then the
date and time. The P I N D E X word on line 5
includes my word P R I N T , which turns on
the printing command. It is defined as
P R I N T I N G ON. The word CRT is defined
as P R I N T I N G OFF. These words go back
to when all I used was MMS-FORTH. It's
hard to change some habits that seem so
logical. The word FF is a form feed, and is

defined as 1 2 EMIT 12 EMIT.
These words are all right as long as you

have already set the date and time from
DOS. But if you haven't, you need some
words to set the time and date from Forth.
That is done with the two words in screen
#6.

The word INPUT? in this screen is also
fromF83's CLOCK. BLK, screen#4, and is
used to get the numbers we need for the set
words. If you have this word already in your
dictionary, you won't need to load it; other-
wise, place it at the beginning of this screen.

The word SET-DATE is a continuous
loop that won't exit until you input the
correct form for the date. That is, as an
example, you can't enter 13 for a month or
32 for a day. In line 4, after the BEGIN, we
set up some of the parameters for the inter-
rupt. We next get the year, month, and day,
and adjust them for interrupt 33D, function
43D. This interrupt leaves a zero for a valid
date, and an FFH if the date is invalid. We
then will get an error message if we don't
put in the right data.

The word in line 10, GET-TIME, works
in a like manner; however, it waits for you
to press a key to set the time. This allows for
a more accurate setting of the time, which
can be down to the second.

There is one other time word I find
useful. That word allows us to time inter-
vals. To do that to a greater degree than the
TIME word, we use all the stack values that
are left by the GETT I M E word. This allows
accuracies to 11100 second. The word is in
line 2 of screen #7. Of course you have to
allow for various timing inconsistencies in
any use of this word, but it will allow for the
timing of the execution of loops, words, etc.

The next word I had to develop, on a
lower level, was for stopping the system
when it was executing various words. That
is, I needed a true Control-Break routine
that would cause a jump to the warm-start
word. The screen #8 shows how this was
done.

F83's warm start can be executed by
either typing the word WARM, or it can be
jumped to via a vector that is located at
offset0103H. Thejump has tobedone with
machine code, so in line 10 we create an
interrupt routine called INTRTN. We use
the LABEL word to create it, so the address
of the routine is left on the stack when we
use it.

Get next char $ig::i
Get next

Figure One. Checksum flow chart.

1

Forth Dimensions 30 Volume IX, Number 4

Screen # 1 c r c ver = 17675

0 \ BIOS INTERRUPTS -- i n t c a l 1 09FEBBbat s
1
2 HEX
3 VARIABLE INTADR
4 CODE INTCALL DX POP CX POP BX POP AX POP
5 S I PUSH BP PUSH 0 INT
6 BP POP S I POP
7 AX PUSH EX PUSH CX PUSH DX PUSH
8 NEXT END-CODE
9 ' INTCALL 9 + INTADR !

10
11 : BIOSINT (ax bx cx dx i n t # -- ax bx cx dx 1

1 4
15 DECIMAL -- >
Screen # 2 c r c v e r = 23233

0 \ BIOS INTERRUPTS -- int0,1,2,3, f u n c r e q 09FEB86ats
1
2 HEX
3 : INTO (ax bx c x dx i n t # -- 1
4 BIOSINT 2DROP 2DROP ;
5 : I N T l (ax bx c x dx i n t # -- ax 1
6 BIOSINT 2DROP DROP ;
7 : INT2 (ax bx c x dx i n t # -- c x dx 1
8 BIOSINT ROT DROP ROT DROP ;
9 : INT3 (ax bx c x dx i n t # -- ax bx 1

10 BIOSINT 2DROP ;
11
12 : FUNCREB (f unc# dx -- ax : i n t 21 1
13 SWAP 100 t SWAP 0 0 ROT 21 I N T l ;
14
15 DECIMAL -->
Screen # 3 c r c v e r = 47261

0 \ DOS FUNCTIONS -- g e t t i m e & g e t d a t e 09FEB86at s
1
2 HEX
3
4 : GETTIME (-- 1/100sec seconds m i n u t e s hours 1
5 2C 100 t 0 0 0 21 INT2
6 DUP OOFF AND SWAP 100 /
7 ROT DUP OOFF AND SWAP 100 / ;
8
9 : GETDATE (-- y e a r day m o n t h 1

10 2A 100 t 0 0 0 21 INT2
11 DUP OOFF AND SWAP 100 / ;
12
13 DECIMAL
14
15 -->

Volume IX, Number 4 31 Forth Dimensions

Screen # 4 c r c v e r = 40071

0 \ d a t e & t i m e 06JAN86at s
1
2 : (DATE) (-- d a t e) GETDATE
3 1- "MONTH TYPE SPACE (U.1 TYPE ." , " (U.) TYPE ;
4
5 : ?CIFI/PM (-- 11 >
& I F ." pm" ELSE ." am" THEN ;
7
8 : (TIME) < -- t i m e) GETTIME
9 DUP DUP 12 > I F 12 - THEN (U.) TYPE ." :" SWAP

10 DUP 10 < I F ." 0" THEN (U.) TYPE ?AM/PM DROP DROP ;
11
12 : DATE (-- mon day, year) (DATE) SPACE ;
1 3 : TIME (- - h o u r : m i n am/pm) (TIME) SPACE;
14
15 -->
Screen # 5 c r c v e r = 43911

0 \ EXTENSION WORDS -- pindex
1
2 : I T I T L CR ." INDEX FOR: " FILE?
3 20 SPACES DATE SPACE TIME ;
4
5 : PINDEX (f r o m t o --
6 PRINT I T I T L CR INDEX FF CRT;
7
8
9

10
11
12
13
14
15 -->
Screen # & c r c ve r = 25080

\ DATE AND TIME -- set-date, s e t - t i me 09FEBBAats

: SET-DATE (--) BEGIN 43 256 0
CR ." Year? " INPUT? DROP
CR ." M o n t h ? " INPUT? DROP 25& *
CR ." Day? " INPUT? DROP OR 33 I N T l 255 AND
I F CR ." I n v a l i d d a t e ! " 0 ELSE -1 THEN UNTIL ;

: SET-TIME (--) BEGIN 45 256 8 0
CR ." Hour? " INPUT? DROP 256 *
CR . " M i n u t e ? " INPUT? DROP OR
CR ." Second? " INPUT? DROP 25& *
CR ." H i t any key t o start." CR KEY DROP 33 I N T l
255 AND I F CR I n v a l i d t i m e ! " 0 ELSE -1 THEN UNTIL ;

Forth Dimensions 32 Volume IX, Number 4

S c r e e n # 7 c rc ver = 16488

0 \ INTERVAL T I M E -- i t i m e 09FEB86ats
1
2 : (I T I M E) (-- t i me) GETTIME
3 (U.) TYPE ." :" (U. TYPE ." :"
4 (U.) TYPE ." :" (U. 1 TYPE ;
5
6 : I T I M E (-- hr :m in : sec : 1/100s) (I T I M E) SPACE ;
7
8
9

10
11

13
14
15 -->
S c r e e n # 8 c rc ver = 22508

0 \ CTRL-BREAK SCREEN 0 9 F E B 8 6 a t s
1
2 \ T h e w a r m s t a r t vector i s a t locat ion 0 1 0 3 H - By j u m p i n g t o it,
3 \ you can e x e c u t e the WARM w o r d w h i c h i n i t i a t e s a w a r m s ta r t .
4 \ I n order t o a l l o w the keyboard CTRL/BREAK t o use th is vector,
5 \ i t has t o be i ns ta l l ed i n t o the DOS in terrupt vector t a b l e v i a
6 \ an in te r rup t rout ine w h i c h can be done by the S E T I N T w o r d .
7
8 HEX
9

10 LABEL INTRTN S T 1 20 # A L MOV 20 # A L OUT (send E O I
11 0103 #) JMP (j u m p t o WARM vector FORTH
12 : S E T I N T (set the in terrupt address i n t o in terrupt vector 1
13 2523 0 0 INTRTN 21 I N T O ;
14
15 S E T I N T (E x e c u t e i t 1 DECIMAL -->
S c r e e n # 5, c rc ver = 65086

CHECKSUM FOR SCREENS -- 1 1 7 J A N 8 6 a t s
VARIABLE BADDR VARIABLE CHRCNT
GETBLOCK (b lock # --) BLOCK BfiDDR ! -1 CHRCNT ! ;
GETCHR (-- chr BADDR @ CHRCNT @ + C@ :
DECCNT -1 CHRCNT +! 1 :
GETNXTCHR 1 CHRCNT +! GETCHR :
CHKEND CHRCNT 3 1023 >= :
?<>EL B E G I N GETNXTCHR BL = NOT CHEEND OR U N T I L :

?i GETCHR 40 = ;
?) BEGINGETNXTCHR 41 = U N T I L 0 3
S K I P (GETNXTCHR EL = I F ?) ELSE DECCNT THEN ;

?\ GETCHR 92 = ;
SEIPLINE C/L C H R C N T ~ C / L M ~ D - 1- CHRCNT+! O :
S K I P \ GETNXTCHR EL = I F S K I P L I N E ELSE DECCNT THEN : -->

Volwne IX, Number 4 33 Forth Dimensions

The first instruction, STI, SeT Inter-
rupt flag, is used to be sure that other
interrupts can occur when this routine is
called. The next instructions, MOV AL, 2 0
and OUT 2 0, AL, sends an End Of Interrupt
command to the 8259 interrupt controller
chip so that other intermpts can be col-
lected by the chip. And, finally, we jump to
the warm start vector.

That's the whole interrupt routine. We
have to do all these things because, in a
normal interrupt sequence, the routine
would have to save all registers, and return
with an IRET instruction. Since we are not
returning from the interrupt routine, certain
things must be done - not only those
mentioned above, but also the stack has to
be cleared. This is done by the warm-start
routine. The only things we haven't done is
to determine the need for more than one
EOI command, and the possibility of hav-
ing to reset some of the 110 boards. I
haven't used this interrupt in all occasions,
so if you are having difficulty with this
routine, these two things might have to be
done.

Next, we have to make sure this routine
can be used. To do that we have to insert its
address into the control-break interrupt
vector. The interrupt vectors are all located
starting at 0:O (segment 0, offset O), but we
don't have to know where the control-break
vector is: we have a DOS interrupt that
takes care of that. All we have to do is feed
it the address of the interrupt routine. Line
12 creates the word that does it. 25H is the
function number of the interrupt that does
the moving and it goes into the AH register.
It transfers the address of our interrupt
routine INTRTN (which goes into the DX
register), into the interrupt vector table. AL
must be loaded with the control break inter-
rupt function #23H. Once the these words
have been created, line 15 executes them.

This screen should be one of the first
that gets loaded to be sure the interrupt can
occur early on. Then whenever you press
the Control-Break key combination, you
should see a "warm start" message. Thus,
you should be able to break out of most 110
operations. Some notes, though: if you
don't load this screen to compile it (that is,
if you were to make this screen part of your
system by metacompiling it), you have to
execute this SET I N T word some other way
so that it will take effect. Also, it is a good

idea to set the DOS BREAK ON command
before you enter Forth. This will ensure that
B Control-Break will operate whenever a
program requests any DOS function. If it is
not set, Control-Break is checked only on
standard I/O operations. You can automati-
cally set this command 'on' during boot-up
by creating a CONFIG.SYS file that
specifies BREAK=ON. Also note that if your
computer runs away, a Control-Break may
not work at all, whereas a system reset, or
even a power-up reset, may be the only way
to get running again.

Back a long time ago in Forth Dimen-
sions (IV/3), Klaxon Suralis and Leo
Brodie had an article called "Checksum for
Hand-Entered Source Screens." The article
concerned itself with the fact that, when you
enter screens by hand, you can make typing
mistakes. They suggested a method to cal-
culate a checksum for a screen and print it
before the screen is listed. Thus, after you
enter your own screen you can compare the
checksum with that of the original, and if
they differ you know that, somewhere,
there could be a typing mistake. All you
have to do is compare the screens to find the
error. The program skips over comments
and spaces, so they won't be counted in the
total.

The program was such a good idea, I
have been using it ever since the article.
When I got F83 however, I found a few new
words that messed up the checksum. One of
the words useda lot in F83 screens is \.This
allows a comment on a line and causes
compiling to skip to the end of the line.
After trying to modify Suralis' and
Brodie's program to compensate for this
word and finding, for myself, no easy way
of doing it, I decided to rewrite the program
to fix the problem.

The way I did it was to count characters.
There not only are no line delimiters in an
F83 screen, but there are no screen delimit-
ers. So, in order to know where you are in a
line when the \ word occurs, you have to be
able to count characters in order to get to the
end of the line.

To show how I developed the program,
take a look at the flow chart for the program
which is shown in Figure One. The first
thing we do is get the character in the text
stream and check to see if it is a blank. If it
is, we get the next character. If the charac-
ter is a (we have to check to see whether it

is a true comment or not by checking the
next character. If the character is a blank,
we know it is a comment and can skip to the
) word.

If we don't have a (comment we check
to see if the character is a \ word. We also
have to see if the next character is a blank,
which would indicate a comment. If it is,
we can then calculate to the end of the line.

If there were no comments in this
check, we can then go to the routine that
does the checksum calculation. If the char-
acter did turn out to be a comment, we have
to check to see if we reached the end of the
screen and then start again on the next
character. The checksum is the same as that
used in the original version, so the end
result will be the same.

Screens #9 and 10 contain all the words
for the checksum program. In line 1 we
define two variables, one to hold the block
address of the screen we are checking, and
one to hold the running total of the number
of characters we have checked. The word
GETBLOCK in line 2 not only saves the
block address, but initializes the character
count to -1, which is necessary since we
increment the count before we do any
work.

The word GETCHR in line 3 gets the
block address, adds the character count
offset, and then fetches the character. We
also need a word to decrement the count
when we are checking for spaces after the
(and \ words. That is done, of course, with

DECCNT.
GETNXTCHR is ~elf-e~plaflatory, and

CHKEND indicates when we have reached
the total of 1024 characters in a screen. The
word ?<>BL in line 7 asks whether the
next character is a blank or not, and will
keep on getting a new character until it is
either non-blank or the end of the screen.

The three words in lines 9 to 11 are set
up to find and skip over (comments. The
three words in lines 13 to 15 are set up to
find and skip over \ comments. The word
SKIP LINE merely calculates the number
of characters to the end of the line and
increments the character count by that
amount.

In screen #lo, line 2, we have the same
algorithm used in the old version. Thus, we
can be sure the results will be the same.

The word in line 6, CHKCHR, combines
the words that check for both types of

I

Forth Dimensions 34 Volume IX, Number 4

comments. The word in the next line,
CHKWORD, is used because the space after a
word has to be included in the checksum
calculation.

The word CHKSUM does all the work in
the program and requires an initial value of
zero on the stack. It will leave the checksum
on the stack when it has finished. I have
t i e d both this version and the older ver-
sion, and though both take a few seconds to
do the calculation, my version is slightly
longer. When I get more time, I'd like to
speed up the process by doing some of the
work in assembly code. The time taken is
well worth it, though, since errors found
save more time in the long run.

The word CRCCHKis thenext step in the
process. It requires the block number of the
screen to check and leaves the checksum.
The final word VER is the same as that used
in the old version; in this way you don't
have to change the name if you use this

' word in your screen-listing words.

Even though this checksum method
checks for the two typical comment words,
there are two other words in F83 that it
doesn't check for, (S and \ s. One indicates
a stackcomment, and the otherjumps to the
end of the screen so that numerous lines of
comment can be added to the end of a
screen. Since I rarely use these words, I felt
the time to add them to the program was not
worth it to me. If you wish to add them, the
method I used in the checksum program
makes it not too difficult to do. Let us all
know how you did it, if you decide to add
them.

I have shown in this article a number of
words I have created to do a number of low-
level and high-level operations. Especially
important and interesting are the ones that
get to the BIOS and DOS interrupts. These
words allow you to do many new things
with Forth that make programming a lot
easier.

Bryte - 18

FORTH, Inc. - 19

Forth Interest Group - 20

Harvard Softworks - 37
Laboratory Microsystems - 13

Miller Microcomputer Services - 37

Mountain View Press - 7
Next Generation Systems - 36

Pair Software - 8

Silicon Composers - 2

Wayland Products - 36

S c r e e n # 10 crc ver = 55006

CHECKSUM FOR SCREENS -- 2 12JAN86ats

CALCCRC (oldcrc chr -- newcrc 1 256 $ XOR 8 O DO DUP O<
I F 16386 XOR DUP + 1+ ELSE DUP + THEN LOOP ;

CHKCHR '?(I F S K I P (ELSE ?\ I F SKIP \ ELSE 1 THEN THEN :
CHKWORD GETNXTCHR BL = I F BL CALCCRC THEN DECCNT DROP ;

CHKSUM BEGIN ?<>BL CHKEND NOT I F CHKCHR
I F GETCHR CALCCRC CHKWORD THEN THEN CHKEND UNTIL ;
CRCCHE (block # -- crcvalue 1 GETBLOCK O CHKSUM :

VER SCR @ CRCCHK U. ;

1
Volume IX, Number 4 35 Fotrh Dimensions

A FAST FORTH,
OPTIMIZED MIR THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

BTANDARD FEATURES
INCLUDE:

m79 STANDARD

@DIRECT 1/0 ACCESS

I I @RTLL ACCESS TO MS-DOS
F I L E S AND FUNCTIONS

@ENVIRONMENT SAVE I I IDAD

1 I @MULTI-SEGMENTED FOR
LARGE APPLICATIONS

1 I @EXTENDED ADDRESSING I I 1
.MEMORY ALLOCATION 1 I CONFIGURABLE ON-LINE I 1 1

I I .AUTO IDAD SCREEN m
@LINE & SCREEN EDITORS

@DECOMPILF=R AND
DEBUGGING A I D S

@8 08 8 ASSEMBLER I
.GRAPHICS & SOUND I
@NGS ENHANCEMENTS

@DETAILED MANUAL

@INEXPENSIVE UPGRADES

mNGS USER NEWSLETTER

A CtXYPLETE FDmH
DEVEWPME'NT SYSTEM.

NEW-HP-150 & HP-110
VERSIONS AVAILABLE

NEHT GENERATION SYSTEMB
P.O.BOX 2987
6ANTA CLARA, CA. 95055
(4 0 8) 241-5909

Forth Dimensions

STEP UP TO PROCESSING ARRAYS WITH REVERSE POLISH!

Wayland Software Syatems. an innovator i n process ing a r r a y s
wi th Reverse P o l i s h Notation. announces a new i n t e r p r e t e r .
vec to r Rudimentary Language (v e c R ~) . It i s now a v a i l a b l e i n
pre-re leaae form f o r people i n t e r e s t e d i n experimenting wi th
t h i a new approach. Right now vecRL ope ra t e s under DOS. but
even tua l ly it w i l l become a s tand-alone DOS compatible
ope ra t ing syrtem. You can ovn e i t h e r t h e sou rce o r t h e
o b j e c t a t a ve ry reaaonable cos t .

VecaL i a metacornpiled wi th s e v e r a l a r i t hme t i c vocabular iea ,
and more t o come. For example. + under t h e I vocabulary adds
untyped 16 b i t i n t e g e r s whi le + under t h e L vocabulary adds
untyped 32 b i t long in t ege r s . The untyped a r i t h m e t i c
vocabular ies . C I L E. provide f u l l FORTH c a p a b i l i t i e s o f
8. 16. 32 b i t process ing and 16 b i t p o i n t e r s r e spec t ive ly .

Ari thmet ic vocabu la r i e s a r e under development t h a t process
typed a r r a y da t a . For example. t h e + under t h e i vocabulary
w i l l add 16 b i t i n t e g e r a r r ays element by element wh i l e +
under t h e 1 vocabulary adds 32 b i t long i n t e g e r a r r a y s
element by element. The + under t h e v vocabulary w i l l add
typed a r r a y s element by element u s ing t h e a p p r o p r i a t e
addi t ion. These a r r a y a r i t hme t i c vocabular iea w i l l be
a v a i l a b l e i n l a t e r versions.

Wayland Software Systems o f f e r s VecRL because it improves
programmer and computer performance. P l ease c a l l o r m i t e
f o r d e t a i l s .

Wayland Software Systems
Advancing t h e Process ing of Arrays wi th Reverse P o l i s h

10 Shore Drive
Wayland Mass. 01778 USA

(617) 877-9099

h

(Continued form page 27.) I

36 Volume IX, Number 4

compiled just as it normally would have
been.

Perhaps it seems to be a bit wasteful of
memory, to have a field like the one
THERE. But Ioften needjust sucha field, to
be used temporarily. You can use it - with
care - instead of the restless PAD field.
The patches don't change the normal be-
havior of the system, in case of normal
compiling or normal interpreting. It is still
a Forth system!

However, the method does have some
limitations:
1. You cannot interpret structures that nest
?EXEC words. For example:
I F : TASK ; THEN

will not work, since PRECOMP ILE tries to
compile the word : (which is prohibited
by ?EXEC).
2. You must be careful with the code com-
piled THERE, while it is still running. For
example, if you interpret a structure that
nests the sequence
QUERY INTERPRET

and you try to interpret a ?COMP word by
this sequence, it will overwrite the code
that already runs THERE, and the system
will probably crash.

Interpret Forth!

� NOW FOR IBM PC, XT, AT, PSZ\
AND TRS-80 MODELS 1,3,4,4P I The Gifted I

/ Computer
1 Buy MMSFORTH before year's end,

to let your computer work harder and
faster.

2 Then MMS wtll reward ~t (and you)
w ~ t h the MMSFORTH GAMES DISK,
a $39 95 value whtch we'll add on at
no additional chargel

MMSFORTH IS the unusually smooth
and complete Forth system w ~ t h the
great support Many programmers repon
four to ten times greater productivity
wtth thts outstanding system, and MMS
provtdes advanced applications pro-
grams tn Forth for use by begtnners and
for custom mod~ftcattons Unltke many
Forths on the market. MMSFORTH gtves
you a rtch set of the Instructions, edlttng I and debugg~ng tools that professtonal
programmers want The Itcensed user
gets continuing, tree phone tips and a
MMSFORTH Newsletter IS avablable
The MMSFORTH GAMES DlSK tncludes
arcade games (BREAKFORTH, CRASH-
FORTH and, for TRS-80, FREEWAY),
board games (OTHELLO and TIC-TAC-
FORTH), and a top-notch CRYPTO-
QUOTE HELPER wlth a data f ~ l e of
coded messages and the abtltty to en-
code your own All of these come wtth
Forth source code, for a valuable and
enjoyable demonstration of Forth pro-
grammlng techntques
Hurry, and the GAMES DlSK wtll be our
free gtft to you Our brochure ts free,
too, and our knowledgeable staff IS
ready to answer your questtons Write.
Better yet, call 617/653-6136.

and a free gift!
GREAT FORTH:
MMSFORTH V2.4 $179.955
The one you've read about in FORTH: A
TEXT & REFERENCE. Available for ISM
PC/XT/AT/PS2 etc., and TRS-80 M.l, 3
and 4
GREAT MMSFORTH OPTIONS:
FORTHWRITE..$99.95'
FORTHCOM 49.95
DATAHANDLER 59.95
DATAHANDLER-PLUS* 99.95
EXPERT-2.. 69.95
UTILITIES 49.95
'Single-computer, single-user prices; cor-
porate site licenses from $1,000 additional.
3%" format, add $5/disk; Tandy 1000, add
$20. Add SIH. plus 5% tax on Mass. orders.
DH+ not avail. for TRS-80s.
GREAT FORTH SUPPORT:
Free user tips, MMSFORTH Newsletter,
consulting on hardware selection, staff
training, and programming assignments
large or small.
GREAT FORTH BOOKS:
FORTH: A TEXT & REF..$21.95*
THINKING FORTH 16.95
Many others in stock.

MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road, Natick, MA 01760

(6171653-6136,Q am - 9 pm)

(Continued from page 20.)

DM: That's what you have to do to be in the
game, I felt.

MH: [to Lori] How did you get into this
game?

LC: It started when I took programming in
school and liked it. It's rare to find some-
thing you really like to do. I don't think I
have the entrepreneurial spirit that Rick
does, but it's definitely something I like
doing.

MH: What about it do you like?

LC: The programming, and - we have a
high sense of responsibility, and that comes
out. You feel you have a direct effect on
what happens.

MH: And that's the part you like - seeing
your Machs going out the door?

LC: Yes, and you don't see that in a big
company. Rarely do you see it.

f 1
COMBINE THE

RAW POWER OF FORTH
WITH THE CONVENIENCE

OF CONVENTIONAL LANGUAGES

H%oRTH
Yes, Forth gtves you total control of your
computer, but only HS/FORTH gtves you
tmplemented functionalrty so you aren't left
hangtng with "great possrbil~t~es" (and lots of
wcrkl) Wtth over 1500 functtons you are
almost done before you start!
WELCOMETO HS/FORTH, where megabyte
programs comp~le at 10,000 ltnes per mlnute.
and execute faster than ones built tn 64k
l im~ted systems. Then use AUTOOPT to
reach withtn a few percent of full assembler
performance - not a native code comptler
ltnktng only stmple code prtmttfves, but a full
recursive descent optimizer wtth almost all of
HS/FORTH as a useable resource. Both
opttm~zer and assembler can create tnde-
pendent programs as well as code prtmtt~ves
The rnetacomptler creates threaded systems
from a few hundred bytes to as large as re-
quired, and can produce ANY threadtng
scheme And theentire system can be saved,
sealed, or turnkeyed fordtstrfbut~on either on
disk or In ROM (w~th or wtthout B!OS).
HS/FORTH IS a ftrst class appltcatton devel-
opment and ~mptementat~on system. You can
explolt all of DOS (commands, funct~ons.
even shelled programs) and link to .OBJ and
LIB ftles meant for other languages inter-

actively!
l/O tseasiefthan In PascalorBastc, but much
more powerful - whether you need parsing,

formatttng, or random access Send dtsplay
output through DOS, BIOS, or direct to vtdeo
memory. Windows organrze both text and
graphtcs dtsplay, and greatly enhance both
time slice and round rob~n mulbtasktng uttll-
t~es Math facll~ties tnclude both softwareand
hardware floating potnt plus an 18 digtt
rnteger (finance) extension and fast arrays for
all data types. Hardware floating potnt covers
the full range of tng, hyper and transcenden-
tal math tncluding complex
Undentably the most flexible & complete
Forth system available, at any prtce, wtth no
expensive extras to buy later Complles 79 &
83 standard programs. Drstribute metacom-
ptled tools, or turnkeyed appltcations royalty
free
HSfFORTH (complete system) $395
HSIFORTH Tutor1al8 Ref (500pg) $ 59
Forth Text & Reference (500 pg) $ 22
HSIFORTH Glossary $ 10
GIGAFORTH Optton (Beta release) $245

(Nat~ve Mode from SOFTMILLS. INC)

Visa Mastercard

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390
\ J

Volume I X , Number 4 37 Forth Dimensions

USA.

ALABAMA
Huntsville FIG Chapter
Tom Konantz (205) 881-6483

ALASKA
Kodiak Area Chapter
Horace Simmons (907) 486-5049

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Dennis L. Wilson (602) 956-7578
Tucson Chapter
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
John C. Mead (602) 323-9763

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat., 2 p.m. &
4th Wed.. 7 p.m.
Jungkind Photo, 12th & Main
Gary Smith (501) 227-7817

. CALIFORNIA
Los Angeles Chapter
4th Sat., 10 a.m.
Hawthome Public Library
12700 S. Grevillea Ave.
Phillip Wasson (213) 649-1428
MontereyISallnas Chapter
Bud Devins (408) 633-3253
Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032
San Diego Chapter
Thursdays. 12 noon
Guy Kelly (619) 450-0553
Sacramento Chapter
4th Wed., 7 p.m.
1798-59th St., Room A
Tom Ghormley (9 16) 444-7775
Silicon Valley Chapter
4th Sat, 10 a.m.
H-P, Cupertino
George Shaw (415) 276-5953
Stockton Chapter
D o ~ g Dillon (209) 93 1-2448

FIG
CHAPTERS

COLORADO
Denver Chapter
1 st Mon.. 7 p.m.
Steven Sams (303) 477-5955

CONNECTICUT
Central Connecticut
Chapter
Charles Krajewski (203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson (305) 855-4790
Southeast Florida Chapter
Coconut Grove area
John Forsberg (305) 252-0108
Tampa Bay Chapter
1st Wed.. 7:30 p.m.
Teny McNay (8 13) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues..6:30 p.m
Westem Sizzlen, Doraville
Nick Hennenfent (404) 393-3010

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3147
Central Illinois Chapter
Urbana
Sidney Bowhill (217) 333-4150
Rockwell Chicago Chapter
Gerard Kusiolek (3 12) 885-8092

INDIANA
Central Indiana Chapter
3rd Sat, 10 a.m.
John Oglesby (317) 353-3929
Fort Wayne Chapter
2nd Tues., 7 p.m.
UP Univ. Campus. B71 Neff Hall
Blair MacDermid (219) 749-2042

IOWA
Iowa City Chapter
4th Tues.
Engineering Bldg., Rm. 2128
University of Iowa
Robert Benedict (319) 337-7853

Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ., 214 Comp. Sci.
Rodrick Eldridge (5 15) 294-5659
Fairfleld FIG Chapter
4th day, 8:15 p.m.
Gurdy Leete (515) 472-7077

KANSAS
Wichita Chapter (FIGPAC)
3rd Wed., 7 p.m.
Wilbur E. Walker Co.,
532 Market
Ame Flones (316) 267-8852

MASSACHUSFITS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroidAnn Arbor area
4th Thurs.
Tom Chrapkiewicz (3 13) 322-
7862

MINNESOTA
MNFIG Chapter
Minneapolis
Even Month, 1st Mon., 7:30 p.m.
Odd Month. 1st Sat. 9:30 a.m.
Vincent Hall, Univ. of MN
Fred Olson (612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189
St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Contact Robert Washarn
91 Weis Dr.
Ellisville, MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi (201) 338-9363

NEW MEXICO
Albuquerque Chapter
1st Ihurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexim
Jon Bryan (505) 298-3292

NEW YORK
FIG, New York
2nd Wed.. 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1 157
Rochester Chapter
4th Sat. 1 p.m.
Monroe Canm. College
Bldg. 7, Rm. 102
Frank Lanzafarne (716) 235-0168
Syracuse Chapter
3rd Wed. 7 p.m.
Henry J. Fay (315) 446-4600

NORTH CAROLINA
Raleigh Chapter
Frank Bridges (919) 552-1357

. OHIO
Akron Chapter
3rd Mon., 7 p.m.
McDowell Library
Thomas Franks (216) 336-3167
Athens Chapter
Isreal Urieli (614) 594-3731
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstran (216) 247-2492
Dayton Chapter
2nd Tues. & 4th Wed., 6:30 p.m.
CFC. 11 W. Monument Ave.,
#612
Gary Ganger (513) 849-1483

OKLAHOMA
Central Oklahoma Chapter
3rd Wed., 7:30 p.m.
Health Tech. Bldg., OSU Tech.
Contad Larry Somers
2410 N.W. 49th
Oklahoma City, OK 73 1 12

OREGON
Greater Oregon Chapter
Beaverton
2nd Sat., 1 p.m.

I

Forth Dimensions 38 Volume IX, Number 4

Tektronix Industrial Park,
Bldg. 50
Tom Almy (503) 692-281 1
Willamette Valley Chapter
4th Tues.. 7 p.m.
Linn-Benton Comm. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Philadelphia Chapter
4th Sat., 10 a.m.
Drexel University, Stratton Hall
Melanie Hoag (215) 895-2628

TENNESSEE
East Tennessee Chapter
Oak Ridge
2nd Tues.. 7:30 p.m.
Sci. Appl. Intl. Corp., 8th F1.
800 Oak Ridge Turnpike,
Richard Secrist (615) 483-7242

. TEXAS
Austin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718
Dallasmt. Worth
Metroplex Chapter
4th Thurs., 7 p.m.
Chuck Durreu (214) 245-1064
Houston Chapter
1st Mon., 7 p.m.
Univ. of St. Thomas
Russel Harris (713) 461-1618
Periman Basin Chapter
Odessa
Carl Bryson (915) 337-8994

UTAH
North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem. UT 84057

VERMONT
Vermont Chapter
Vergemes
3rd Mon., 7:30 p.m.
Vergemes Union High School
Rm. 210. Monkton Rd.
Don VanSyckel(802) 388-6698

VIRGINIA
First Forth of Hampton
Roads
William Edrnonds (804) 898-4099
Potomac Chapter
Arlington
2nd Tues.. 7 p.m.
Lee Center
Lee Highway at Lexington St.
Joel Shprentz (703) 860-9260
Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full (804) 739-3623

Volume IX, Number 4

WISCONSIN
Lake Superior FIG Chapter
2nd Fri., 7:30 p.m.
Main 195. UW-Superior
Men Anway (715) 394-8360
MAD Apple Chapter
Contact Bill Horton
502 Atlas Ave.
Madison, WI 53714
Milwaukee Area Chapter
Donald Kimes (414) 377-0708

INTERNATIONAL

AUSTRALIA
Melbourne Chapter
1st Fri.. 8 p.m.
Contact Lance Collins
65 Martin Road
Glen Iris, Victoria 3 146
03/29-2600
Sydney Chapter
2nd Fri.. 7 p.m.
John Goodsell Bldg., Rm. LC19
Univ. of New South Wales
Contact Peter Tregeagle
10 Binda Rd.. Yowie Bay
02/524-7490

BELGIUM
Belglum Chapter
4th Wed.. 20:OOh
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343
Southern Belgium Chapter
Contact Jean-Marc Beninchamps
Rue N. Monnom. 2
B-6290 Nalinnes
071/213858

CANADA
Northern Alberta Chapter
4th Sat., 1 p.m.
N. Alta. Inst. of Tech.
Tony Van Muyden (403) %2-2203
Nova Scotia Chapter
Halifax
Howard Harawitz (902) 477-3665
Southern Ontarlo Chapter
Quarterly, 1st Sat., 2 p.m.
Genl. Sci. Bldg., Rm. 212
McMaster University
Dr. N. Solntseff (416) 525-9140
ext. 3
Toronto Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C 5J2
Vancouver Chapter
Don Vanderweele (604) 941 -4073

COLOMBIA
Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota 214-0345

DENMARK
Forth Interesse Gruupe
Denmark
Copenhagen
Erik Oestergaard, 1-520494

ENGLAND
Forth Interest Group- U.K.
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
Rm. 408
Borough Rd.
Contact D J. Neale
58 Woodland Way
Morden. Surry SM4 4DS

FRANCE
French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1100 Toulouse
(16-61)44.03.06
FIG des Alpes Chapter
Annely
Georges Seibel, 50 57 0280

GERMANY
Hamburg FIG Chapter
4th Sat.. 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

HOLLAND
Holland Chapter
Contact Adriaan van Roosmalen
Heusden Houtsestraat 134
4817 We Breda
31 76713104

IRELAND
Irish Chapter
Contact Hugh Dobbs
Newton School
Waterford
051/75757 or 051fl4124

ITALY
FIG Italia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/435249

JAPAN
Japan Chapter
Contact Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-2111 at. 7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas. 47-518-7784

REPUBLIC O F CHINA
(R.O.C.)

Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

SWEDEN
Swedish Chapter
Hans Lindstrom, 46-3 1-166794

SWlTZERLAND
Swlss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-Industrie
Stationsstrasse
8306 Bmttisellen
01/833-3333

SPECIAL GROUPS

Apple Corps Forth Users
Chapter
1st & 3rd Tues.. 7:30 p.m.
15 15 Sloat Boulevard, #2
San Francisco. CA
Dudley Ackerman
(415) 626-6295

Baton Rouge Atari Chapter
Chris Zielewski (504) 292-1910

. FIGGRAPH
Howard Pearlmuuer
(408) 425-8700

NC4000 Users Group
John Carpenter (415) 960-1256

39 Forth Dimensions

