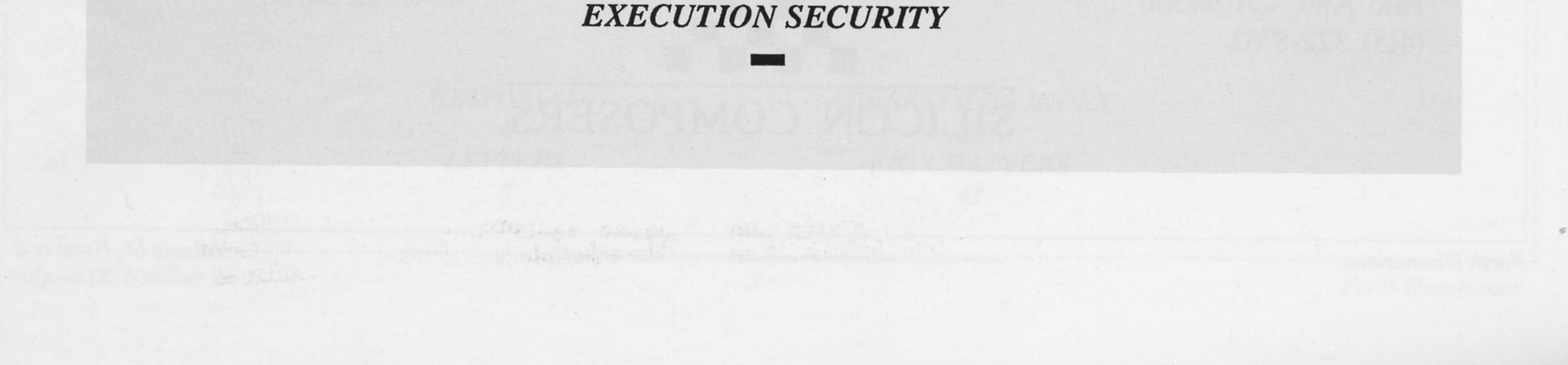
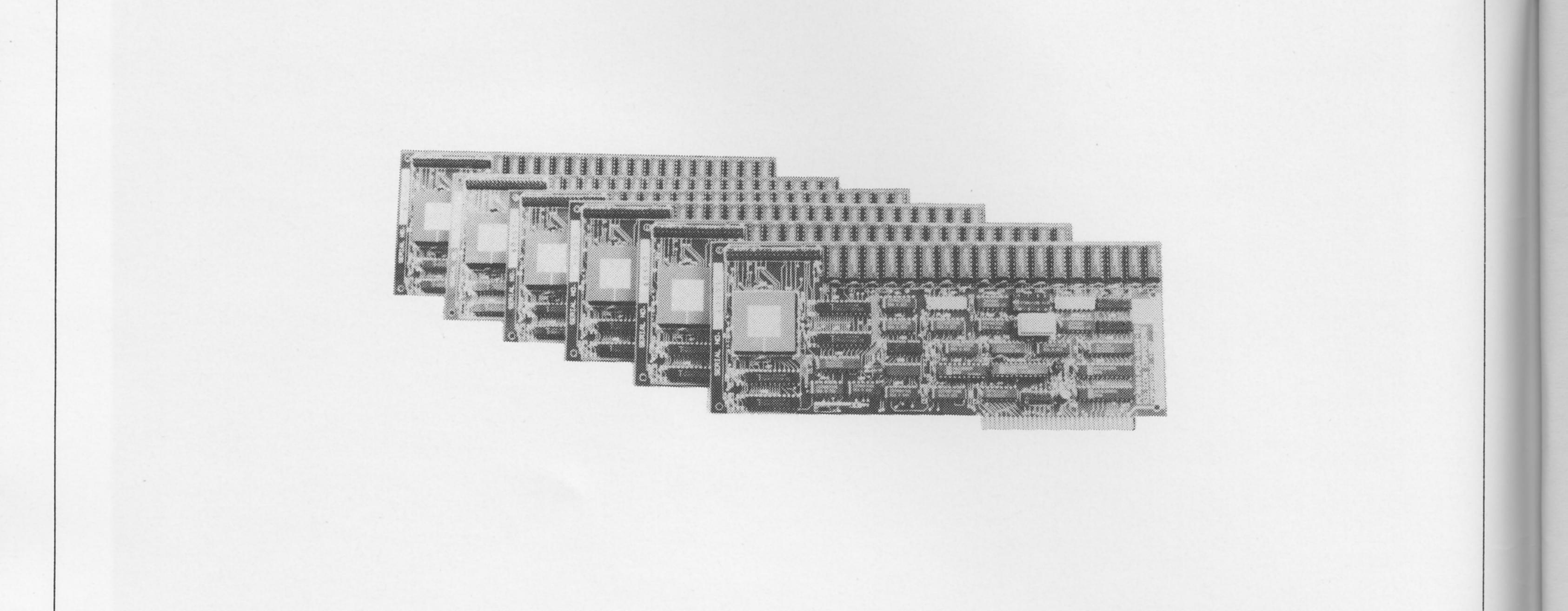
## VOLUME IX, NUMBER 2

## JULY/AUGUST 1987 \$5.00






## FORGETTABLE INTERNAL NAMES


## STARFLIGHT, STAR BRIGHT

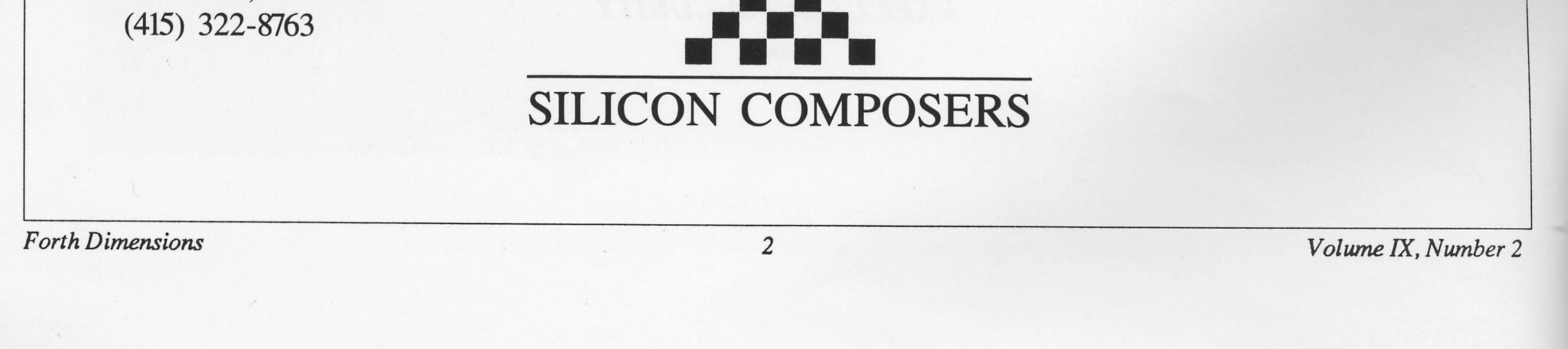
## FLEXIBLE TEST ENVIRONMENT



## **INTRODUCING THE PC-RISC SYSTEM**

For High-Speed Concurrent Parallel Processing ADD UP TO 30 MIPS TO YOUR PC!




## THE PC-RISC SYSTEM

The PC-RISC System can turn your PC into a Forth "mini-supercomputer." This high speed parallel processing system can be configured using your PC, XT, or AT as the host by adding up to six PC4000s, an add-in card with the NC4000 Forth engine on board. PCX operating and development software is included. The PC-RISC System runs SCForth, cmForth, and Delta-C. PC4000/4MIPS \$1295 each. PC4000/5MIPS \$1495 each. OEM pricing available.

The PC-RISC System, Delta Board, and Delta Development System come fully assembled and tested with a 90-day warranty, communication software, user manual, a Forth development system, demo programs, and customer support using the Silicon Composers Bulletin Board (415) 322-2891.

SILICON COMPOSERS 210 California Avenue, Suite I Palo Alto, CA 94306

Formerly SOFTWARE COMPOSERS



#### FLEXIBLE TEST ENVIRONMENT • JOHN MULLEN

9

Forth's interactiveness simplifies testing and debugging, but some words or components can be difficult to verify. The author describes a test environment that optionally prints messages at run time, without modification of source screens. He describes the environment's implementation, and how it may be used.

#### FORGETTABLE INTERNAL NAMES • MICHAEL HORE 12

Internal names are only used locally in an application. Dewey Val Schorre presented three words (INTERNAL, EXTERNAL, and MODULE) to implement this notion. The code here will allow a whole module to be loaded temporarily and then dismissed from memory, leaving subsequent definitions intact.

#### CONSUMERIZED FORTH • KEN TAKARA 18

Many applications hide Forth completely, but a robotic construction kit needs to include a robot control language. What do you include in a language for computer novices? What are the selection criteria?

#### EXECUTION SECURITY • G.R. JAFFRAY, JR.

One reason Forth runs so fast is that it does not have the built-in checks of other high-level languages. During development, this means crashes that could be avoided with this patch that provides execution security.

#### 1987 ROCHESTER FORTH CONFERENCE • JERRY SHIFRIN 26

Technical discussion at the University of Rochester this year included several talks on the massively parallel processors being programmed in Forth, an interesting panel discussion on standards, and many other subjects.

#### STARFLIGHT, STAR BRIGHT • INTERVIEW WITH TIM LEE 29

Two programmer-decades of work have put more alien races, planets, and realistic interaction onto two full disks than a user-century of play may uncover. This game is breaking sales records at warp speed.

#### CANDIDATES' STATEMENTS • FIG BOARD NOMINEES 40

Several individuals have been nominated as candidates for the vacant positions on the Forth Interest Group's Board of Directors. They were asked to submit statements of their candidacy, which are printed here in full.

EDITORIAL 4 LETTERS 5 ADVERTISERS INDEX 28 FIG CHAPTERS 42

## **EDITORIAL**

This year's National Forth Convention will be the occasion to celebrate ten years of the Forth Interest Group. C.H. Ting, the program director, points out that by understanding where Forth has come from, we can better see where it is going. The convention program promises to deliver presentations from people who have figured prominently in the history of the Forth Interest Group, who have made significant contributions to Forth's evolution, and who have witnessed the key turning points in our industry.

This will be a time to look both backward and forward in time, to assimilate the collective experiences of the past, and to gather ourselves for the requirements — and unexpected adventures — that the next ten years will bring. Look for details in this issue; we'll look for you in November.

As for looking forward, FIG's bylaws now provide for membership-wide election of its Board of Directors. Five positions will be filled by vote at the annual FIG meeting and election, to be held at the Forth National Convention this year (see "Candidates' Statements"). As the Forth Interest Group grows and becomes broader based, the full participation of its members is needed if the organization is to best serve the needs of those members. In colloquial terms: don't get frustrated, get involved. Another good reason to be at this year's convention.

Klaus Schleisiek has extended an invitation and call for papers to an upcoming euroFORML conference on "The Forth Programming Language and Forth Processors." From September 18-22, 1987 at Stettenfels Castle, West Germany (sponsored by Forth Gesellschaft eV, FRG), this year's conference will focus on Forth in hardware, and on the possibilities opened up by the quantum leap in speed of the new Forth processors.

Perched in the vicinity of Heilbronn (near Stuttgart), the castle holds 60 overnight guests, and 100 conferees. If you aren't geared up for a stay in the 12th century castle, reservations for more modern, bed-and-breakfast accommodations can be arranged. Conference languages will be English and, of course, Forth. Presentors can publish and orally present papers, hold special-interest "poster sessions," and conduct "ondemand" workshops. An advance deposit of DM200,- is required. Send cameraready papers to Forth Gesellschaft by September 1; write C.D. Osten, Gneisenaustr. 23, D-2000 Hamburg 20, West Germany; or call (49) (40) 422 1694 or (49) (40) 490 5195. Klaus is available on Delphi as KS.

—Marlin Ouverson Editor

"Forth Dimensions is published bimonthly for \$24/36 per year by the Forth Interest Group, 1330 S. Bascom Avenue, Suite D, San Jose, CA 95128. Secondclass postage pending at San Jose, CA. 95101 POSTMASTER: Send address changes to the Forth Dimensions Group, P.O. Box 8231, San Jose, CA 95155." Forth Dimensions Published by the Forth Interest Group Volume IX, Number 2 July/August 1987 *Editor* Marlin Ouverson Advertising Manager Kent Safford Design and Production Berglund Graphics ISSN#0884-0822

Forth Dimensions welcomes editorial material, letters to the editor, and comments from its readers. No responsibility is assumed for accuracy of submissions.

Subscription to Forth Dimensions is included with membership in the Forth Interest Group at \$30 per year (\$43 overseas air). For membership, change of address, and to submit items for publication, the address is: Forth Interest Group, P.O. Box 8231, San Jose, California 95155. Administrative offices and advertising sales: 408-277-0668.

Copyright © 1987 by Forth Interest Group, Inc. The material contained in this periodical (but not the code) is copyrighted by the individual authors of the articles and by Forth Interest Group, Inc., respectively. Any reproduction or use of this periodical as it is compiled or the articles, except reproductions for noncommercial purposes, without the written permission of Forth Interst Group, Inc. is a violation of the Copyright Laws. Any code bearing a copyright notice, however, can be used only with permission of the copyright holder.

#### About the Forth Interest Group

The Forth Interest Group is the association of programmers, managers, and engineers who create practical, Forthbased solutions to real-world needs. Many research hardware and software designs that will advance the general state of the art. FIG provides a climate of intellectual exchange and benefits intended to assist each of its members. Publications, conferences, seminars, telecommunications, and area chapter meetings are among its activities.

## **LETTERS**

#### **Sorting Out Batcher's**

#### Dear Mr. Ouverson,

Many thanks for the article on "Batcher's Sort," by John Konopka (FD VIII/4). I am about the present this to my students in a Forth class here.

When typing **BSORT**, I found two offsetting errors. The program runs correctly, but gives a misleading impression about the role of QQ in **BSORT**. Consider the **BSORT** program fragment:

: BSORT ( n -- ) ... BEGIN QRD-SET QQ BEGIN INNER-LOOP Q-TEST UNTIL... ;

Q-TEST implies establishing a flag for UNTIL to read. However, the written Q-TEST gives a zero flag only if QQ<> PP, otherwise no flag at all.

Secondly, constant QQ of the fragment compensates by providing a number that acts like a flag. By actual test, QQ here is always the maximum possible value (two or greater) for any number *n* that is two or greater.

Enclosed is a rewritten program in Forth-83 — rather than the original Forth-79 — that embodies the change of Q-TEST always supplying a flag.

Thanks for good articles like these, and please keep them coming.

Sincerely yours, Allen Anway Superior, Wisconsin

#### Dear Marlin:

An interesting thing happened on the way to **BSORT**. I keyed in the screens but, not wanting to load a random number generator (see the data.tst screen enclosed), I simply wrote **INIT-DATA** to fill the **DATA** array with memory contents of bytes zero through 100. Then I executed **BSORT**. But what is this? When I executed **LIST-DATA**, the data were only partially sorted!

In a sort of muddled attempt to find out what was going on, I executed BSORT again — and again. After a number of these, the list was properly sorted. Why did it require multiple passes?

The best I can figure it, **BSORT** won't sort the data into proper order on one pass if some of the data are duplicated. Listing the contents of the **DATA** array before sorting, I noted many duplications.

The key to this problem is in the word COMPARE-AND-SWAP, which calls SWAP-DATA if one item of data is greater than the other when the two comparison keys generated by INNER-LOOP are used to index into the DATA array. Envision a sequence of data that gets swapped because 330 is found to be larger than 225 (the second item), but another pass will be required to make the final swap, producing the order ... 330, 225, 225, 225 ....

The listings of the files batcher.blk and data.tst offer one way of fixing the problem. I decided to use variables instead of constants, as I don't think the time savings is significant in my application. I also used F83's DEFER-IS to handle the forward reference to KC.

The fix I finally decided on uses SORT-FLAG to hold a flag that forces BSORT to repeat its execution of the original loops until a pass is made that requires no data swaps. If it is known that the data to be sorted will not have duplications, there is no problem. Otherwise, the definition of SWAP-DATA, or whatever definition replaces it, must set SORT-FLAG "on" when it executes. Of course, a new outer loop for **BSORT** will be needed in that case. Notice that BSORT sets SORT-FLAG **OFF** on each pass of the new outer loop; BSORT may be left as it is and the phrase SORT-FLAG ON put into SWAP-DATA, or not, depending on whether it is needed.

I assumed a purpose (and a definition) for the word **\*\***. I have seen it defined elsewhere to produce altogether different results, but this seemed to make sense, at least to me; so, a reminder to authors: please define your non-standard words, even if they are deemed to be fairly well known.

Sincerely, Gene Thomas Central Arkansas FIG Chapter Little Rock, Arkansas

#### **Forget Automatically**

When you are editing definitions in a block, the load-test-edit cycle can be speeded up by automating the FORGETting of the first word in a block. This can be done by typing CREATE TASK

| <b>NGS FORTH</b><br>A FAST FORTH,<br>OPTIMIZED FOR THE IBM<br>PERSONAL COMPUTER AND<br>MS-DOS COMPATIBLES. |  |
|------------------------------------------------------------------------------------------------------------|--|
| STANDARD FEATURES<br>INCLUDE:                                                                              |  |
| •79 STANDARD                                                                                               |  |
| •DIRECT I/O ACCESS                                                                                         |  |
| •FULL ACCESS TO MS-DOS<br>FILES AND FUNCTIONS                                                              |  |
| •ENVIRONMENT SAVE<br>& LOAD                                                                                |  |
| •MULTI-SEGMENTED FOR<br>LARGE APPLICATIONS                                                                 |  |
| •EXTENDED ADDRESSING                                                                                       |  |
| MEMORY ALLOCATION<br>CONFIGURABLE ON-LINE                                                                  |  |
| •AUTO LOAD SCREEN BOOT                                                                                     |  |
| •LINE & SCREEN EDITORS                                                                                     |  |
| •DECOMPILER AND<br>DEBUGGING AIDS                                                                          |  |
| •8088 ASSEMBLER                                                                                            |  |
| •GRAPHICS & SOUND                                                                                          |  |
| •NGS ENHANCEMENTS                                                                                          |  |
| •DETAILED MANUAL                                                                                           |  |
| •INEXPENSIVE UPGRADES                                                                                      |  |
| •NGS USER NEWSLETTER                                                                                       |  |
| A COMPLETE FORTH<br>DEVELOPMENT SYSTEM.                                                                    |  |
| PRICES START AT \$70                                                                                       |  |
| NEW HP-150 & HP-110<br>VERSIONS AVAILABLE                                                                  |  |
| ß                                                                                                          |  |
| NEXT GENERATION SYSTEMS<br>P.O.BOX 2987<br>SANTA CLARA, CA. 95055<br>(408) 241-5909                        |  |

```
Anway's Screens
             SCREEN # 080
         O CONSTANT TT
                            O CONSTANT RR
         O CONSTANT DD
                            O CONSTANT PP
         O CONSTANT NN
                            O CONSTANT QQ
                      * 2DROP CONSTANT KC
         : 2**N 1 SWAP SHIFT ; ( n --- 2**n )
                           ( index1\index2 --- )
         : KEY_COMP KC EXECUTE ;
                    NN 15 0 DO DUP I 2**N <=
         : SEL_T
            IF DROP I LEAVE THEN LOOP 1- 14 MIN
         ( --- )
                        [ ' TT 2+ ] LITERAL !;
         ( --- )
         : INNER-LP NN DD - O DO I PP AND RR =
            IF I DUP DD + KEY_COMP THEN LOOP ;
         : Q-TEST QQ PP = DUP O= ( --- flag )
            IF QQ PP - [ ' DD 2+ ] LITERAL !
               QQ 2/ [ ' QQ 2+ ] LITERAL !
               PP
                       [ ' RR 2+ ] LITERAL !
            THEN ;
         -->
                  names TT etc from Knuth
            SCREEN # 081
       : QRD-SET
                                          ( --- )
           TT 2**N [ ' QQ 2+ ] LITERAL !
                 [ ' RR 2+ ] LITERAL !
           Ω
                   [ ' DD 2+ ] LITERAL ! ;
           PP
       : BSORT
                                        (n ----)
           (n) ['NN 2+ ] LITERAL ! SEL_T
           TT 2**N [ ' PP 2+ ] LITERAL !
           BEGIN
                   QRD-SET
             BEGIN INNER-LP Q-TEST
             UNTIL PP 2/ DUP
                   [ ' PP 2+ ] LITERAL ! 0=
           UNTIL ;
                                         FORTH-83
       -->
              Allen Anway, Superior, WI, 1-9-87
       Batcher's sort----John Konopka
                              Mitaka Shi, Japan
       Forth Dimensions, Nov-Dec 1986, page 39
       Knuth, Art of Computer Programming,
       Vol 3, pp 111-122, Addison-Wesley 1973
       To use, define SWAPPER ( ind1\ind2 --- )
       later, to check and perhaps swap. Then,
        ' SWAPPER ' KC 2+ !
                               ( n --- ) BSORT
at the start of an editing session, and
                               insertion and deletion of marker words
writing
                               like TASK can be avoided if LOAD and
FORGET TEST CREATE TASK
                               --> are redefined so that they do the job.
at the top of the block. When editing of
                                 The new LOAD constructs a dist-
```

Forth Dimensions

inclive name for the block to be loaded.

and looks for a word with that

the block is complete, the references to

TASK can be erased. Even the manual

Thomas's Screens

Ô 0 BSORT fixed. F83 2.0.1 Dec1986:gt \ BSORT Dec1986:ot 1 As presented by John Konopka in FD Vol 8/4, BSORT will not 2 correctly sort on one pass if there are data-duplicates in the 3 list to be sorted. The number of passes required depends on how \ n -- n is number of items to sort, must be possitive 4 many duplications there are of the same number, and with how ....: BSORT SORT-FLAG ON 5 many different numbers that occurs. Here, a sort flag is used BEGIN SORT-FLAG @ WHILE DUP SORT-FLAG OFF CR .\* XXX\* ( repeat while sort-flag is on ) 6 to force BSORT to repeat untill a pass with no data swap is made NN ! SELECT-T TT @ 2##N PP ! 7 8 BEGIN ORD-SET OR @ BEGIN INNER-LOOP Q-TEST UNTIL 9 Gene Thomas 10 PP 8 2/ DUP PP ! 0= 7705 Apache Rd. 11 Little Rock, AR 72205 UNTIL 12 REPEAT DROP ; 13 FROM B:DATA.TST 1 LOAD 14 15 \ count executions of ." xxx" to see how many passes were made Central Arkansas Forth Interest Group 3 1 0 \ BSORT Dec1986:qt \S BSORT Dec1986:qt ' NOOP IS KC VARIABLE NN VARIABLE RR 1 DEFER KC VARIABLE DD VARIABLE PP VARIABLE TT 2 VARIABLE QQ **3 VARIABLE SORT-FLAG** 4 : KEY-CONPARE KC ; KEY-COMPARE call the compare-and-swap definition thru KC 5 ( ' compare-and-swap is kc ) 6:244N (n -- n4n ) DUP 4 ; 2\$\$N square n 7 : SELECT-T NN @ 15 0 DO DUP I 2##N <= IF DROP I LEAVE THEN LOOP SELECT-T set outer loop limit 1- 14 MIN TT ! : 8 INNER-LOOP compare the keys, swap out-of-order-data 9 : INNER-LOOP NN @ DD @ - 0 DO I PP @ AND RR @ = IF I DUP DD @ + KEY-COMPARE THEN LOOP ; 10 11 : Q-TEST QQ @ PP @ <> IF QQ @ PP @ - DD ! QQ @ 2/ QQ ! Q-TEST test for end of middle loop PP & RR ! O THEN ; 12 13 : ORD-SET TT @ 244N DQ ! RR OFF PP @ DD ! ; ORD-SET setup indice for Q-test 14 15 --> 0 1 0 \S BSORT test Dec1986:gt \ BSORT test Dec1986:qt 1 VARIABLE X1 VARIABLE X2 CREATE DATA 200 ALLOT : INIT-DATA (fill data array with memory contents) 2 3 INIT-DATA on my Kaypro I this ensures quite a few data 100 0 D0 I @ I 2# DATA + ! LOOP ; 4 duplications, some numbers occuring >5 times 5 : SWAP-DATA SORT-FLAG ON 6 SWAP-DATA swap the data in DATA+nKey and DATA+nKey X1 @ DATA + @ X2 @ DATA + @ 7 SET SORT-FLAG ON IF THIS IS CALLED X1 @ DATA + ! X2 @ DATA + ! ; 8 9 : COMPARE-AND-SWAP ( n m -- ) 10 COMPARE-AND-SWAP compare the data pointed to by the keys output 2# X1 ! 2# X2 ! X1 @ DATA + @ X2 @ DATA + @ > by BSORT's inner-loop, swap if data+n is > 11 IF SWAP-DATA THEN ; 12 data+ ' COMPARE-AND-SWAP IS KC 13 14 LIST-DATA list DATA array : LIST-DATA CR 100 0 D0 I 2# DATA + @ 7 .R I 1+ 10 MOD 0= 15 IF CR THEN LOOP ;

name in the dictionary. If it is found, FORGET is used to delete it and its successors. Then the name is used to CREATE a new null word, and the block is loaded in the usual way.

The definitions given here assume that the terminal input buffer can be temporarily relocated. This would not be necessary in a version of Forth in which FORGET and CREATE can be factored into two parts: a string-grabbing part and a part that refers to the address of the string.

To recover the space occupied by all the null words created by the new LOAD, FORGET the new LOAD and reload everything with the old LOAD.

Philip Bacon Gainesville, Florida

#### Swift 6502 Multi-Tasking

Editor,

Richard Rooney wrote to you (FD VIII/6) asking whether anyone had implemented the Laxen model multi-tasker on a 6502. Yes.

Six months ago I, too, worked through the Laxen tutorial. Of course, the crux of the matter is getting around the fixed return stack in page one, and the data stack in page zero (fig-FORTH). My solution, after failure with block moves (too slow), was to add a little hardware. The "little hardware" is a stack segmentation scheme. Use a PIA to switch in a new page zero/one pair for the next task.

Overhead? Two additional assembly instructions. Very fast. This is very easy to do on the old OSI Challenger III system, because of the presence of pseudoaddress lines A16-A19, which are PIA controllable. I had to modify an extra memory board, which became *stack memory*. This took only two ICs and about 25 jumpers. As Richard Rooney guessed, you use the BRK in place of Laxen's RST. My 6502 fig-FORTH multi-tasker handles 16 tasks. And it's fast.

I found Laxen's article to be very rewarding. So get those back issues and work through it! Best regards, Dale King Leonard, Texas

#### Searching for F83

#### Dear FIG:

When I received the November/December issue of Forth Dimensions, I was writing a full-screen, memorymapped editor for Laxen and Perry's F83. I had just gotten to the point where I was able to use my new editor to add the bells and whistles — one of which was the search function. I had not intended to rewrite the one provided, but Mr. Bill Zimmerly had submitted a fast, assembly language version of **SEARCH**. This got me interested, so I studied it with the intention of replacing the high-level **SEARCH** provided in F83.

I wish to address three points: 1. Brother Zimmerly asks, in the shadow screen accompanying his code, "How could it be faster?" I can make it faster (and smaller, too). 2. Mr. Zimmerly's code does not return the same results as the **SEARCH** provided in F83 — he returns an address and a flag, while F83 returns an offset and a flag. (3) Mr. Zimmerly's **SEARCH** is not case sensitive/neutral, as is Laxen and Perry's version.

Screen 15 is Mr. Zimmerly's, and compiles to 87 bytes, including headers for (FIND1) and SEARCH. If metacompiled so that (FIND1) has no header in the new system, this can be reduced to 75 bytes.

Screen 16 is my modification of Mr. Zimmerly's SEARCH. It compiles to 67 bytes, and I claim it will run faster. First, I eliminated the PUSH and POP of the BP register, which serve no purpose since BP is not used and, therefore, is not changed. This saves four bytes. Next, I moved the exit code from a labeled routine into the SEARCH code. eliminating one jump for each execution of SEARCH. Finally, I moved the jump from the end of the routine to HERE (top of loop) in the IF statement. This will eliminate a jump every time there is a match on the first character but failure to match on the whole string.

(Continued on page 36.)

## FLEXIBLE TEST ENVIRONMENT

JOHN MULLEN - AMES, IOWA

Although Forth's interactive environment simplifies testing and debugging, there are times when a word or component is difficult to verify. Test prints can be used to clarify what is happening within a word at run time; but it is tedious to insert these print statements when they are needed, and then to either delete or comment them out when they are not.

The words described below set up a test environment that allows one to choose whether or not messages will be printed at run time, without modifying source screens. I have implemented this environment in polyFORTH on an IBM-AT, MVP-FORTH on a Texas Instruments Professional, and SuperFORTH on a Commodore-64. This article describes the environment, how to implement it, and how it may be used.

#### **Test Mode Control**

The first step is to establish a means of controlling the test environment. Screen 10 defines the constant **TEST**? which indicates test status. It is defined as a constant rather than as a variable, since it is to be used far more often that it is to be changed. The constants **YES**, **NO**, **TRUE**, and **FALSE** allow some variation in phrasing commands. The word .L will display the value of a logical flag as either YES or NO, so the effect of **TESTING**? is:

#### TESTING? YES OK

The word **TESTING** will change the value of **TEST?**. For example, the

phrase YES TESTING will set the testing mode.

#### **Conditional Display Words**

The test words defined in screen 11 will display information if the test mode is set, but will have no effect if it is not. The words T., TCR, and T.S cover situations I encounter frequently. Their definition simply makes subsequent words more compact and easier to read. However, TEST'' is a bit more complicated than the others.

Certainly, one could set up conditional prints as needed, for example:

... TEST? IF ." Two Real Roots " THEN ...

The message would appear only if the test mode is set, but this takes up more room in each definition, and is far less elegant, than:

... TEST" Two Real Roots "

The effect of **TEST**" is much like that of **ABORT**", except that **ABORT** is not called. Its definition was adapted from that of **ABORT**" and ." as described in *All About Forth* (Glen B. Haydon, Mountain View Press). Basically, two words are needed: **TEST**"> to conditionally print a string compiled into a word's definition, and **TEST**" to compile that string.

The immediate word **TEST**" will compile into the definition **<TEST**"> and the string following **TEST**" in the input stream. For example, suppose the phrase below is entered:

... TEST" PHASE A " ...

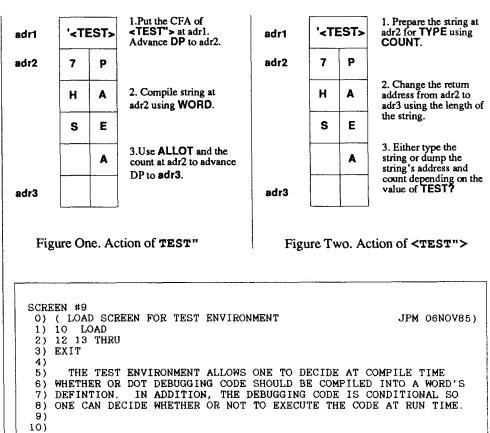
After checking the state, **TEST**" compiles the code field address (CFA) of **<TEST">** into the definition. The ASCII code for " is 34, so the phrase **34 WORD** will place the string PHASE A into the dictionary. But **WORD** will not affect the dictionary pointer (DP), although it does leave its current value (HERE) on the stack. The phrase C@ **1+** ALLOT then increments the dictionary pointer to the first cell beyond the end of the string. This series of events is depicted in Figure One.

**TEST">** expects a string to be stored in the word's definition immediately after its address. Note that the string starts at the same address as that pushed on the return stack when **TEST">** is called.

**TEST">** first sets up the string for **TYPE**, then adjusts the return address so that it points to the first address beyond the string. If this were not done, the interpreter would return to the count byte and first text byte of the string, with disastrous results. Then, if the test mode is set, **TEST">** will display the compiled string; otherwise, the string's address and length count are dropped from the stack. This action is depicted in Figure Two.

The version of **TEST**"> shown has worked on all three Forth systems tested, but **TEST**" is somewhat system dependent, so it should be implemented with care. The version shown works in MVP-FORTH and SuperFORTH-64, but the string is compiled in the polyFORTH version of **TEST**" with the phrase **34 STRING**, which replaces lines 11 and 12 of screen 11.

If you want to try this in some other version of Forth, be aware that WORD does not work the same in all dialects. Some versions leave HERE on the stack and others do not. In addition, watch that TEST" and <TEST"> agree on where the next address after the string is stored.


A lot of my personal taste goes into screens 10 and 11. There are many synonyms for TRUE and FALSE, and you may wish to add to or delete from the list of test words. But there are three suggestions I would make. First of all, set up . L to print the same number of characters in both the true and false case. This makes it easier to use . L to set up tables that look nice. Secondly, be sure that all **TEST** words are stack neutral. Note, for example, that **T**. duplicates the top value before printing. The final suggestion is to set up TEST? as a constant. Not only will you save two bytes in every defining screen and two in each definition, but you won't have to remember whether to use @ or C@.

#### A Better Way

Nifty as this system is, there are two major drawbacks to its use. First of all, although nothing is displayed when the test mode is not set, **TEST**? is still being checked by each test word. **TEST**" is a real time consumer, since even when **TEST**? is false, **<TEST">** must still manipulate return addresses to avoid a system crash. The execution time for **TEST"** when **TEST**? is false is about 0.1 msec. on the IBM-AT, and 18.5 msec on the Commodore-64, which is enough time to affect some applications.

Secondly, when one is sure that a set of words no longer needs testing, its definitions are still cluttered up with the test prints, which uses dictionary space needlessly. Of course, you could go back and comment out all the test prints, but this is tedious and hard to change back, if an unexpected bug arises.

Screens 12 and 13 display more advanced versions of the words defined in



screen 11. If **TEST**? is true at compile time, then these words work exactly as their earlier versions. If **TEST**? is false, however, nothing at all is compiled into the definition.

The method used for most of the words is straightforward. For example, <TCR> in screen 12 is defined exactly as TCR was in screen 10. Then, the immediate word TCR is defined to compile <TCR> into a word only if TEST? is true. This pattern can be followed for any of the other words, except TEST".

The only problem with TEST" is how to deal with the string following it in the input stream if TEST? is false. The definition of TEST" in screen 13 functions just the same as the earlier version in screen 11 if TEST? is true, but uses WORD to move the interpreter beyond the string if TEST? is false. The polyFORTH version also uses WORD to do this, but has no DROP in line 10, since its version of WORD does not leave HERE on the stack. Using the System

**TEST?** may be checked at both compile time and run time. If **TEST?** is true at compile time, conditional code is inserted so that you can turn displays on and off at run time. However, if **TEST?** is false, the code is not inserted and test displays will not appear at run time, regardless of the value of **TEST?**.

Suppose an application consists of five screens, four of which are thoroughly debugged, and one (screen 23) that is not. A load screen might appear, as follows:

| NO  | TESTING | 22 | LOAL | )   |
|-----|---------|----|------|-----|
| YES | TESTING | 23 | LOAL | )   |
| NO  | TESTING | 24 | 26 1 | HRU |

The result would be that any test code in screens 22, 24, 25, or 26 would not be compiled, but test code in screen 23 would. Thereafter, whenever **TEST**? is true, the test displays from screen 23 would appear. SCREEN #10 0) ( TEST ENVIRONMENT CONTROL JPM 06NOV85) **FORTHkit** TRUE CONSTANT YES FALSE CONSTANT NO ." YES " ELSE ." NO " THEN ; -1 CONSTANT TRUE O CONSTANT FALSE 1) 2) (LF) IF 3) . L 5 Mips computer kit 4) YES CONSTANT TEST? TESTING? TEST? L ; : TESTING ( LF) ['] TEST? ! ; EXIT .L DISPLAYS THE VALUE OF A LOGICAL FLAG AS EITHER YES OR NO. I IS SET UP TO PRODUCE THE SAME WIDTH OF OUTPUT IN EITHER CASE : TESTING? 5) : TESTING \$400 6) 7) IT 8) 9) IN ORDER TO SIMPLIFY SETTING UP TABULAR DISPLAYS. 10) TEST? IS USED TO SIGNAL WHETHER OR NOT THE TEST MODE IS SET. 11) TESTING? WILL REPORT THE CURRENT STATE, TESTING WILL CHANGE IT. Includes: NO TESTING RESETS THE TEST MODE. 12) E G 13) 14) 15) SCREEN #11 0) ( TEST" ETC, V1 - RUN TIME CHECKING OF TEST? JPM 06NOV85) TEST? IF CR THEN ; TEST? IF DUP . THEN ; TEST? IF DUP . THEN ; TEST? IF .S THEN ; "> ( CONDITIONAL PRINT OF A COMPILED STRING ) 1) : TCR 2) : T. 3) : T.S 4) : <TEST"> <TEST"> ( CONDITIONAL PRINT OF A COMPL R@ COUNT ( SET UP THE STRING FOR TYPE ) 5) R@ COUNT ( SET UP THE STRING FOR TYPE )
DUP 1+ R> + >R ( ADJUST RETURN ADDRESS)
TEST? IF TYPE ELSE 2DROP THEN ;
TEST" ( COMPILEATION OF A STRING AND <TEST">)
?COMP ( COMPILE ONLY)
COMPILE <TEST"> ( RUN-TIME CODE FOR TEST" )
34 WORD ( DELIMITER IS ")
CC 1+ ALLOT : ( ADVANCE HERE TO THE END OF T 6) 75 8) : TEST" 9) 10) 11) ( ADVANCE HERE TO THE END OF THE STRING ) C@ 1+ ALLOT ; 12) 13) IMMEDIATE EXIT 14) 15) SCREEN #12 0) ( SIMPLE TEST WORDS CHECK TEST? AT COMPILE TIME JPM 06NOV85) TEST? IF CR THEN ; ?COMP TEST? IF COMPILE <TCR> THEN ; IMMEDIATE <TCR> 1) 2) : TCR TEST? IF DUP. THEN; ?COMP TEST? IF COMPILE <T.> THEN; IMMEDIATE 3) ; <T.> 4) : T. 5) : <T.S> TEST? IF . S THEN ; ?COMP TEST? IF COMPILE <T.S> THEN ; IMMEDIATE 6) : T.S EXIT 7) 8) 9) 10) 11) 12) 13) 14) 15) 0) ( TEST", VII - CHECKS TEST? AT COMPILE TIME 1) : <TEST"> ( CONDITIONAL PRINT OF A FILME SCREEN #13 JPM 04MAY86) <TEST"> ( CONDITIONAL PRINT OF A COMPILED STRING ) R@ COUNT ( SET UP THE STRING FOR TYPE ) 2) DUP 1+ R> + >R ( ADJUST RETURN ADDRESS) TEST? IF TYPE ELSE 2DROP THEN ; 3) 4) TEST ( CONDITIONAL COMPILATION OF A STRING AND <TEST"> ) 5) . TEST? IF ?COMP 6) COMPILE (TEST") ( RUN-TIME CODE FOR TEST" ) 7) 8) 34 WORD CO 1+ ALLOT ( COMPILE THE STRING ) 9) ELSE 10) 34 WORD DROP ( DISCARD THE STRING ) THEN ; IMMEDIATE 11) EXIT 12) 13) 14) 15)

#### Novix NC4000 micro 160x100mm Fk3 board Press-fit sockets 2 4K PROMs Instructions: Easy assembly **cmFORTH** listing shadows **Application Notes** Brodie on NC4000 You provide: 6 Static RAMs 4 or 5 MHz oscillator Misc. parts 250mA @ 5V Serial line to host Supports: 8 Pin/socket slots Eurocard connector

Floppy, printer, video I/O 272K on-board memory Maxim RS-232 chip

#### Inquire:

**Chuck Moore's** 

Computer Cowboys

410 Star Hill Road Woodside, CA 94062 (415) 851-4362

Volume IX, Number 2

## FORGETTABLE INTERNAL NAMES

MICHAEL HORE - NUMBULWAR, AUSTRALIA

rom time to time, there have been various proposals for dealing with internal, or local, names. By these, I mean the names of words that are only used internally in an application, never called from outside. A particularly nice scheme was presented by Dewey Val Schorre, back in Forth Dimensions II/5 ("Structured Programming by Adding Modules to Forth"). Dewey brought the notion of a "module," and presented three words (INTERNAL, EXTERNAL, and MODULE) to implement this notion. Each module is a self-contained unit, and communicates with the outside world by means of words defined between EXTER-NAL and MODULE (as well as any constants or variables defined before INTERNAL). Words defined between INTERNAL and EXTERNAL may be referenced from within the module, but are not accessible from outside. Each module may be a complete application or a building block in a larger application.

Dewey's implementation of these words was simple but effective, involving the replacement of a dictionary link to remove the internal words from the search chain. Dewey acknowledges that such a simple implementation does not allow the dictionary space savings that could be possible — the headers of the internal words are unused after MODULE has been reached, but remain in the dictionary. (Note that the parameter fields of these definitions are needed for execution, but not the headers.)

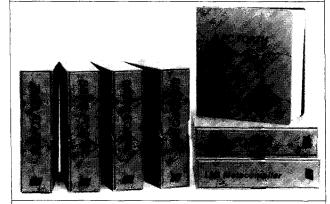
Perhaps one reason why Dewey's words have not gained a wider acceptance is that, since his article, more elaborate vocabulary structures have evolved, and the effect of Dewey's words can be obtained by using vocabularies in an appropriate way. I have always felt, though, that Dewey's words state more clearly what is going on, since vocabularies have many other uses besides this particular one.

At this point, I am not going to attempt a full justification of a modular style of programming, which is now accepted as an essential discipline in the construction of any significant application. Let me just say that I have found it very useful to have this discipline enforced (the temptation to lapse into spaghetti code is always there). If I try to call an internal name from outside a module, it is good to have the system throw it back in my face. It means I probably have not understood either the problem or my "solution" to it! It also means that if I want to change the specification of an internal word. I know I don't have to look very far to find all the references to it.

Let us now turn to the question of the potential space savings. Note that we are not realizing this with modules implemented by means of vocabularies, any more than we could with Dewey's implementation of his words. That is the reason for the code presented here. I have found that space savings on the order of 20% is possible — the shorter the definitions, the greater the savings. This means that good Forth programmers will benefit more from this code than bad ones (bad programmers, please stop reading). This code will do even more — it will allow a whole module, parameter fields and all, to be loaded temporarily and then dismissed from memory, while leaving subsequent definitions intact. It is very useful to be able to do this with an assembler, as one obvious example.

It turns out that Dewey's three words are more suitable here than if we tried to do the job with vocabularies. That would not be impossible, just more difficult. Moreover, Dewey's words are very clear and say exactly what they mean unlike, say, FORGET-VOC. Perhaps they may find a new lease on life with this implementation.

Working in this area inevitably brings us to various implementation dependencies, since the Forth standard quite rightly leaves unspecified such details as the internal structure of the dictionary. So what we will do is focus on one specific implementation model, Laxen and Perry's F83. This code should be easily adaptable to any Forth-83 system, however, and probably to many other Forths as well. On screen 67 we give the definitions of most of the non-standard F83 words we use. in case you need them. Unfortunately, there are several other words for which we can't do this without getting bogged down in a mass of irrelevant detail. But we will now try to give enough information for our purposes here.


Firstly, the words DEFER and IS, respectively, create and redirect an execution vector. These words have been fully described by Henry Laxen in two "Techniques Tutorials" (FD III/6, V/6) that are well worth reading. Secondly, a couple of non-standard words are called from FIND, which we redefine on screen 72. However, the change we make to the definition of this word is very minor, and comes right at the end. Thus, we can ignore the details of the workings of FIND. In fact, even if you don't have F83, the change to FIND will probably be exactly the same. Thirdly, we need to refer here to the F83 word HEADER. The change is simply to rename it (HEADER), so again we don't need to go into the details of its workings. We have more to say about it below.

Our scheme operates by separating the headers of the internal words. These go into a special area, the separated heads area (SH, for short) and are later forgotten. This is not as simple as it sounds, since internal words will have external words compiled after them, at which time the internal names must still exist. Later, if we forget the internal names by simply chopping the dictionary, we will lose the external names, too. Rather, we must follow the dictionary links and unlink any internal names, leaving the rest of the dictionary intact. We provide here a new forgetting word to do this — the regular FORGET need not be changed.

Now we will go into a bit more detail. The SH area has its own "dictionary pointer," the variable SH-DP. The base and top of the area are pointed to by two other variables, SH-DP0 and SH-TOP. I am defining these as system variables here, although you may want to make them user variables if you do any multitasking on your system.

Each header in the SH area looks exactly like a normal header. The difference is that, instead of being followed by a code field, it is followed by a pointer to the code field. The code field itself sits in its usual position in the dictionary (and, of course, has no header in front of it). Here is how we set up this kind of header. In F83, headers are laid down by the word HEADER, which returns with the dictionary pointer DP pointing to where the code field will go. CREATE calls HEADER, then stores the code field. Our modification to HEADER is simply to make it vectored.

#### **TOTAL CONTROL** with *LMI* FORTH<sup>™</sup>



#### **For Programming Professionals:**

#### an expanding family of compatible, high-performance, Forth-83 Standard compilers for microcomputers

#### For Development:

#### Interactive Forth-83 Interpreter/Compilers

- 16-bit and 32-bit implementations
- Full screen editor and assembler
- Uses standard operating system files
- 400 page manual written in plain English
   Options include software floating point, ar
- Options include software floating point, arithmetic coprocessor support, symbolic debugger, native code compilers, and graphics support

#### For Applications: Forth-83 Metacompiler

- Unique table-driven multi-pass Forth compiler
- Compiles compact ROMable or disk-based applications
- Excellent error handling
- Produces headerless code, compiles from intermediate states, and performs conditional compilation
- Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051, 8096, 1802, and 6303
- No license fee or royalty for compiled applications

#### For Speed: CForth Application Compiler

- Translates "high-level" Forth into in-line, optimized machine code
- Can generate ROMable code

#### Support Services for registered users:

- Technical Assistance Hotline
- Periodic newsletters and low-cost updates
- Bulletin Board System

Call or write for detailed product information and prices. Consulting and Educational Services available by special arrangement.



Laboratory Microsystems Incorporated Post Office Box 10430, Marina del Rey, CA 90295 Phone credit card orders to: (213) 306-7412

Overseas Distributors. Germany: Forth-Systeme Angelika Flesch, Titisee-Neustadt. 7651-1665 UK: System Science Ltd., London, 01-248 0962 France: Micro-Sigma S.A.R.L., Paris, (1) 42.65.95.16 Japan: Southern Pacific Ltd., Yokohama, 045-314-9514 Australia: Wave-onic Associates, Wilson, W.A., (09) 451-2946 So rename **HEADER** to **(HEADER)** and follow it with the code:

#### DEFER HEADER' (HEADER) IS HEADER

When internal words are being compiler, **HEADER** is redirected to execute **SEP-HEADER**, which lays down a separated header and pointer to the code field. As required, we leave **DP** pointing to where the code field will go. **SEP-HEADER** is defined on screen 67. Notice that this word calls (**HEADER**) to do most of the work.

The F83 word NAME> takes the address of a name field and returns the corresponding compilation address (in F83 and most Forths, this is the same as the address of the code field). This word must be redefined so that, if the name is in the SH area, the pointer following the name is used to obtain the compilation address. This we do on screen 66. Other Forths should use either this word or something very similar. Any other words that go from a field within a header to the corresponding code field or parameter field will also need to be checked. If they use NAME> (or its equivalent) to make the transition, there's no problem. In F83, the only word in this category that doesn't use NAME> is FIND. As we mentioned above, the necessary change to this word is very minor. For completeness, we give the whole definition on screen 72.

This brings us to the new forgetting word. One of its features is that it takes a pair of addresses and forgets everything between them. So we will call it <FORGET> (pronouned "forget between"). Its definition is given on screen 68. Note the use it makes of the two other words on that screen, UNLINK and TRIM. TRIM, in its turn, uses UNLINK — it is UNLINK that does all the hard work.

F83 has a multi-thread dictionary structure, with the constant **#THREADS** defining the number of threads. **TRIM** contains a DO loop over the threads, calling **UNLINK** for each one. If your system does not have a multi-thread dictionary, removing the DO loop from TRIM may be sufficient.

**<FORGET>** can take a few seconds to execute, depending on your processor. This may not matter, as it won't be used with high frequency. However, if you can rewrite **UNLINK** in code for your particular processor, so much the better. This may save a few bytes of memory as well.

If you want to, you can replace the regular F83 forgetting scheme with this new one. (Thus, our **TRIM** has the same name as its F83 counterpart.) Simply redefine

```
: (FORGET) DUP -1
<FORGET> DP ! ;
```

and replace **TRIM** with our new one. **FORGET** itself need not be altered. The advantage of doing this replacement is to save space, since our forgetting scheme is really an extension of the old one and covers much of the same ground. It works identically if there are no SH names, and the high limit is set to the highest address. If **UNLINK** is written in code, **FORGET** should run as fast as before.

The word SET\_SH\_AREA (screen 67) sets up the SH area by initializing the three pointers to this area. As written, it sets up 2000 bytes for the area in high memory, and 200 bytes below the current top of the parameter stack (which grows downwards). If this is not suitable for your system, change it as necessary. The number 2000, set up as the constant SH AREA SIZE, I found to be sufficient for my needs. If you have a big application, you may need to increase this number. The variable SH-MAX keeps track of the maximum size required so far for the SH area, so you can find by experimentation what size you need. Separate modules (i.e., not nested) reuse the same space in the SH area, to minimize the required size.

Modules may be nested in the fashion:

INTERNAL ... INTERNAL...EXTERNAL... MODULE EXTERNAL ... MODULE

This is the same as provided in Dewey's original implementation of these words. Notice that once we are EX-TERNAL, we can't become INTERN-**AL** again in the same module. This could, however, be implemented. Being such perceptive readers, you will no doubt have noticed that **<FORGET>** is more general than we really need. Internal names to be forgotten will always occur in a single, contiguous cluster, whereas our implementation of **<FORGET>** will allow them to occur randomly, anywhere in the dictionary search order. This was, in fact, easier and shorter to implement (although slower). But it does mean that we can implement the more complicated module format, if necessary, without much trouble. I haven't done it here, feeling there may well be different schools of thought as to whether this feature will be desireable. Code is probably easier to follow if all EX-TERNAL definitions are together, and this can usually be arranged quite easily. But go ahead and implement the more complicated format if you want to.

Our scheme for the temporary loading of entire modules (screen 71) is a straightforward application of **<FORGET>**. The word TEMP MODULE saves DP on the stack, then resets it to halfway between where it was and the bottom of the SH area. You then load the temporary module, and use END TEMP to set DP back to where it was. Hopefully, there is enough room between there and the temporary module for the definitions you now want to load. When this is done, FORGET TEMP forgets the temporary module. If the temporary module has defined any vocabularies, remember to remove them from the search order before FORGET TEMP — unless you find crashes entertaining! A very simple example is shown on screen 75.

Michael Hore is a missionary Bible translator with a programming background. He works among a remote group of Aborigines and uses an LSI 11/2. He is progressively moving all his software over to Forth, "...the way computers were meant to be programmed."

65 1065 0 \ Separate header area May85 MRH May85 NRH ∖ Separate header area SH-DPO points to the base of the SH area. 1 2 VARJABLE SH-DPO SH-DP Current SH area pointer. 3 VARIABLE SH-OP SH-TOP Points to the top of the SH area. 4 VARIABLE SH-TOP Note: these three are all zero if the SH area has not been 5 2000 CONSTANT SHLAREA\_SIZE initialized. 6 VARIABLE EXTNL? SH\_AREA\_SIZE Size we allocate for SH area. Alter if necessary. 7 VARIABLE SH-MAX EXTNL? A variable to allow us to check that the order 8 EXTERNAL...NODULE is always followed (otherwise we'd crash). ę SH-MAX Records the maximum SH space used so far. 10 11 12 SH-HERE Fetches the current SH area pointer. : SH-HERE ( -- addr ) SH-DP 2 ; 13 14 15 1066 66 Nay85 MRH May85 MRH  $\land$  SH area, cont. 0 ∖ SH area, cont. : WITHIN? ( n lo hi -- n f ) OVER - >R OVER SWAP -WITHIN? Is n within the range lo to hi inclusive? My version 1 2 R> SWAP U( NOT ; of this word has a couple of peculiarities - the test value is not popped, and the arithmetic is unsigned and circular, 3 wrapping around from 64K to 0. 4 SEP\_HDR? Is addr within the SH area? 5 : SEP\_HDR? ( addr -- addr f ) SH-DPO 2 SH-TOP 2 WITHIN? ; 6 ?SEP\_HDR) ?acf is either the address of a code field (acf); 7 ; ?SEP\_HDR) ( ?acf -- acf ) SEP\_HDR? IF @ THEN ; or a pointer to one if we are in the SH area. Returns the 8 9 act. 10 NAME) Converts the addr of a name field (anf) to an acf. 11 : NAME> ( anf -- >cf ) TRAVERSE (F83) is the same as in Fig-FORTH. Note that in F83 1 TRAVERSE 1+ ?SEP\_HDR> ; 12 link fields precede name fields, so that after the TRAVERSE 13 we are normally looking at the code field. At this point we 14 insert ?SEP\_HDR). This is the only change to the definition. 15 1067 67 May85 MRH May85 MRH ∖ SH area, cont.  $0 \land SH$  area, cont. 1 SEP\_HEADER Lays down a header in the SH area. 2 : SEP\_HEADER ( -- (name) ) HERE ( save ) SH-HERE DP ! (HEADER) ( saved dp ) DUP , DP 2 SH-DP ! DP ! ; 3 4 : SET\_SHLAREA SP2 200 - DUP SHLAREA\_SIZE -SET\_SH\_AREA Sets up the SK area. Alter this definition if 5 necessary for your system. 6 DUP HERE 200 + UK ABORT" Not enough room in memory" 7 DUP SH-DP0 ! SH-DP ! SH-TOP ! ; 8 ?SET\_SH\_AREA Sets up the SH area if not done already. : ?SET\_SKLAREA SH-DPO 2 0= IF SET\_SKLAREA THEN ; Ŷ 10 11 \ 0 CONSTANT FALSE Here are some non-standard words included in F83. Use these 12 \ -1 CONSTANT TRUE definitions if you need to. 13 \; ON (addr -- ) TRUE SWAP ! ţ 14 \: OFF ( addr -- ) FALSE SWAP ! - 1 15  $\land$  ; ?PAIRS ( n -- ) = NOT ABORT\* Unbalanced structure\* ;

#### 68

#### 1068

```
May85 MRH
0 ∖ ⟨FORGET⟩, etc.
  :UNLINK ( lo hi 1st-link -- lo hi 1st-link ) DUP >R
1
       BEGIN ?DUP
2
3
       WHILE DUP DR 2
           BEGIN 2 PICK 2 PICK WITHIN? WHILE 3 REPEAT
4
           DUP R> !
5
       REPEAT R> ;
6
7
   : TRIM ( lo hi voc-link-addr -- lo hi voc-link-addr )
8
9
       T #THREADS 2* 1 LITERAL -
       #THREADS 0 DO UNLINK 2+ LOOP ;
10
11
   : (FORGET) ( to hi -- ) OVER FENCE 2 UK ABORT" Below FENCE"
12
       VOC-LINK UNLINK
13
       BEGIN 2 ?DUP WHILE TRIM REPEAT
14
15
       2DROP ;
```

#### 69

```
May85 MRH
0 \ Modular programming words
  : SAVE_HEADER ( -- acf 20 ) ['] HEADER >BODY 2 20 ;
1
2
3
  : INTERNAL
               EXTNL? 2
      ABORT" INTERNAL follows EXTERNAL - probably MODULE omitted"
4
      ?SET_SH_AREA SH-DP 2 ( save ) SAVE_HEADER
5
```

200 SH-DP +! [/] SEP\_HEADER IS HEADER ;

7 8 INTERNAL

6

9

```
10
11
   : RESTORE_HEADER ( old-hdr-acf 20 ) 20 ?PAIRS IS HEADER ;
12
13
   : (SH_FORGET) ( faddr -- )
14
       DUP SH-TOP 2 (FORGET) SH-DP ! ;
15
```

#### 70

```
0 \ Modular programming words, cont.
                                                       May85 MRH
1
                                              RESTORE_HEADER
2
  : (EXTERNAL) ( old-sh-dp old-hdr-acf 20 )
       SH-HERE SH-DPO 2 - SH-MAX 2 MAX SH-MAX !
3
       SH-DP ! EXTNL? ON ;
4
5
   (External)
6
7
   : EXTERNAL (EXTERNAL) ;
8
Q
10
11
   : MODULE EXTNL? 2 NOT
12
13
       ABORT" MODULE follows INTERNAL - EXTERNAL omitted"
14
       EXTNL? OFF SH-HERE (SH_FORGET) ;
15
```

| ∖ ⟨FORGET⟩, etc.                                       | 1ay85 MRH |
|--------------------------------------------------------|-----------|
| UNLINK Goes down a linked list starting with 1st-link  | ,         |
| unlinking all links located at addresses within the r  | range     |
| to to hi (inclusive). This word could profitably be    | put into  |
| code.                                                  |           |
| TRIM For the given vocabulary, removes all words whose | e link    |
| fields are located within the range lo to hi.          |           |
| #THREADS is a constant giving the number of dictional  | ry        |
| threads.                                               |           |
| (FORGET) Forgets all words whose link fields are local | ted       |
| within the range lo to hi. DP is not changed.          |           |
| We first check that lo is not below where FENCE poin   | ts, to    |
| guard against wiping out the system. Then we use UN    | LINK to   |
| remove any vocabularies that are to be forgotten.      |           |
| is the head of the vocabulary list.) Then we go down   | n the     |
| pruned list of vocabularies and call TRIM for each o   | ne.       |
|                                                        |           |
|                                                        |           |

#### 1069

- May85 MRH \ Modular programming words SAVE\_HEADER Saves the current setting of HEADER (DEFERred).
- INTERNAL Subsequent definitions will have separate headers. Note we reserve 200 bytes in the SH area for EXTERNAL names, in case this is a nested INTERNAL.

Now INTERNAL is defined, we can make use of it right away.

RESTORE\_HEADER Restores the previous setting of HEADER.

(SH\_FORGET) Forgets all (SH) names above the limit, faddr.

#### 1070

- May85 MRH \ Modular programming words, cont.
- (EXTERNAL) As for EXTERNAL below, but won't be accessible later, as an INTERNAL is now current. Needs to be used to make us external again, so EXTERNAL itself will be accessible.

EXTERNAL Subsequent defined names go where they were going before the last INTERNAL. These names will still be accessible after MODULE.

MODULE Forgets all names defined between INTERNAL and EXTERNAL. Names after EXTERNAL are still accessible.

71 1071 May85 NRH 0 \ TEMP\_MODULE, etc. May85 MRH \ TEMP\_MODULE, etc. 1 : TEMP\_MODULE ?SET\_SH\_AREA HERE ( save ) SAVE\_HEADER TEMP\_MODULE Marks the start of a module (such as the assembler) 2 ['] (HEADER) 15 HEADER which is to be forgotten in toto once it has finished. 3 4 HERE SH-DPD 2 OVER - 2/ ( HEX ) 7FFE AND ( DECIMAL ) This word leaves DP pointing to where the module will be + DP ! ; 5 loaded. Currently this is half-way between HERE and the 6 bottom of the SH area. You can change this if necessary. 7 8 : END\_TEMP RESTORE\_HEADER DP ! END\_TEMP Used after the temporary module is loaded. Restores j 9 DP to its usual position. 10 11 : FORGET\_TEMP HERE SH-DPO 2 (FORGET) ; FORGET\_TEMP Used when the temporary module is no longer needed. 12 Forgets it using (FORGET), so nothing else is affected. 13 14 MODULE 15 72 1072 0 \ Modified FIND May85 MRH \ Modified FIND May85 MRH 1 2 : FIND ( addr -- acf flag ! addr false ) The first part of this definition is copied straight from F83. 3 PRIOR OFF FALSE #VOCS 0 4 DO DROP CONTEXT I 2\* + 2 DUP 5 IF DUP PRIOR 2 OVER PRIOR ! = 1F DROP FALSE 6 ELSE OVER SWAP HASH 2 7 8 (FIND) DUP ?LEAVE 9 THEN THEN LOOP 10 DUP IF SWAP ?SEP\_HDR> SWAP THEN This extra line is the only change to the definition. 1 11 If the name was found, call ?SEP\_HDR> to ensure we have the 12 address of the code field. 13 14 15 1075 75 Nar86 MRH Mar86 MRH \ Module example ∖ Module example 0 1 This screen gives an example of a very simple module, which 2 INTERNAL provides a single word to the outside world. 3 4 : (CHANGE\_CASE) ( c -- c' ) (CHANGE\_CASE) 5 ASCII A ASCII Z WITHIN? SWAP ASCII a ASCII Z WITHIN? Changes the case of the given character, if it is ROT OR IF BL XOR THEN ; alphabetic. 6 7 8 EXTERNAL User word: 9 : CHANGE\_CASE ( addr len -- ) BOUNDS CHANGE\_CASE 10 DO I C2 (CHANGE\_CASE) I C! LOOP ; Changes the case of the string (addr, len). 11 12 BOUNDS (FB3) is equivalent to OVER + SWAP . 13 MODULE 14 Although CHANGE\_CASE uses (CHANGE\_CASE), the latter is now not 15 accessible, and its name is not taking up any memory space.

## CONSUMERIZED FORTH

KEN TAKARA - SAN JOSE, CALIFORNIA

I f you have ever played with Tinker Toys or Erector Sets, you'll have some appreciation for the fischertechnik products. In Europe, this West German company is extremely popular for its construction kits, ranging from simple block models similar to those by Lego, through sophisticated electronic, pneumatic, and hydraulic experimentation kits. The package we are concerned with is called the "fischertechnik computing" line, consisting, at the time of this writing, of a robotic construction kit.

With this kit, you can design and build simple, two-axis robots, connect them to your computer, then program and run them. The original kits from fischertechnik use BASIC as the programming language. When we (at Parsec Research) saw the kit, we were enthralled by the possibilities it suggested. Being Forth-oriented, we naturally couldn't help but question the choice of BASIC as a language for conducting experiments with robots. So we decided to create an "improvement" on the original. The result was PaRCL (pronouned "parkul"), Parsec Robot Control Language.

The original kits came with very little help by way of manuals. For the dedicated computer hobbyist, the program listings and minimal explanations would be adequate, but to the average consumer, the thing would be totally cryptic. Given this, I decided to write a text to help a novice computerist learn how to program the robots described in the kit. The primary consideration in designing PaRCL was this: I must be able to explain what is happening as simply as possible. If the explanation for some language feature is too cumbersome, then it probably is inappropriate to include it in the language.

#### Why Forth is Used

Most Forth programmers already know why their favorite language is superior to all others. Most Forth programmers are also aware of the fierce opposition that sometimes exists among others. Epithets aside, I selected Forth asthe basis of a consumer-oriented product for three reasons: functionality, interactivity, and familiarity.

Forth is a functional language; that is, when you program in Forth, you create functions to express an operation you wish to perform. Thus, you can actually create a collection of specialized vocabularies to talk about the different types of things you want your program to do. This makes it very easy for me to explain to someone how to make the robot do some sequence of actions.

For example, suppose I give this description for a robotic arm: EXTEND-ARM-TO-TARGET PICK-UP-OBJECT RETRACT-ARM ROTATE-TO-POSITION-3 EXTEND-ARM-TO-TARGET

DROP-OFF-OBJECT

This pretty much says it all. Naturally, we must assume here that I've already described what each of the steps entails, and that the reader is acquainted enough with Forth syntax to accept the hyphenated words as single commands.

Forth's interactivity is an immediate benefit. If I have taken the user through the steps necessary to define the words given in the above example, I can have him actually try them out immediately.

Finally, I am familiar with Forth. Given the choice, I generally prefer it to another language. Of course, given an appropriate incentive, I *might* consider learning COBOL...

#### Consumerization

When micros first became available, the language of choice (the *only* language, for that matter) was BASIC. Now, with Borland's efforts, it seems that everyone is learning Pascal. So how did I expect to foist yet another language (and a peculiar one, at that) on an unsuspecting public? Well, the first problem when getting someone to try something new, is to make it palatable (or at least marginally tolerable). Thus, it was necessary to "consumerize" Forth for this application.

As I stated earlier, when designing PaRCL, my primary criterion for inclusion of any language feature was explainability. If I could explain it, it was probably useable. If I could not explain it, then it was probably useless. This meant that a lot of standard Forth words were scrapped from the PaRCL vocabulary. After all, it is intended to be used to write *robot* programs, not *computer* programs.

Most Forth books start by showing the novice programmer how to display messages and numbers. Then they jump into a discussion of the parameter stack. Now, this is the second most frequently criticized fact of Forth life: the existence of a naked stack. (The first most criticized aspect is reverse polish.) To a Forth

#### CALL FOR PAPERS

for the ninth annual

## FORML CONFERENCE

The original technical conference for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 27-29, 1987

Asilomar Conference Center Monterey Peninsula overlooking the Pacific Ocean Pacific Grove, California, USA

#### Theme: Forth and the 32-bit Computer

Computers with large address space and 32-bit architecture are now generally available at industrial and business sites. Forth has been installed and Forth applications programs are running on these computers. Graphic displays and applications are currently demanded by users. Implementation of Forth and meeting these requirements is a challenge for the Forth professional. Papers are invited that address relevant issues such as:

Large address spaces in 32-bit computers. The graphic display, windows, & menu handling. Relation to operating systems, other languages, & networks. Control structures, data structures, objects, & strings. Files, graphics, & floating point operations. Comparison with 16-bit computers.

Papers on other Forth topics are also welcome. Mail your abstract(s) of 100 words or less by September 1, 1987 to:

FORML Conference P. O. Box 8231 San Jose, CA 95155, USA

Completed papers are due November 1, 1987. For registration information call the Forth Interest Group business office at (408) 277-0668 or write to FORML Conference.

Asilomar is a wonderful place for a conference. It combines comfortable meeting and living accommodations with secluded forests on a Pacific Ocean beach. Registration includes deluxe rooms, all meals, and nightly wine and cheese parties. programmer it is simply accepted, and often abused. To a novice, however, it can be a major roadblock. Since I was catering to novices, I decided to reduce the number of stumbling blocks by eliminating any mention of the stack. This meant that all our beloved stack words (DUP, SWAP, ROT, DROP, etc.) had to go.

Instead of the stack, I emphasized the use of variables. I realize the stack is inteded to improve certain aspects of Forth programming. But I also know from experience that most novice programmers feel much more comfortable with variables, which they simply accept, and often abuse. In the case of a systems programmer concerned with efficiency or speed, this is a problem. But for everyone else, who cares it it's slow, as long as it works, and the programmer's intention is clear?

Naturally, for this somewhat lobotomized version of Forth, most of the disk operators, dictionary operators, double-word arithmetic, and data-conversion words were eliminated as irrelevant for simple robot control. Of course, the user should have some way to write programs and to save them, so I included a source editor and a few disk operators such as LOAD, THRU, and LIST. I also included a hard-copy word, PRINT-SCREENS.

I did use Forth screens. It was easier to explain screens than to create a file system, and people seem to get a kick out of having unrestricted access to the disk. The business of opening files, appending to files, and closing files is complicated enough, and more so to a computer novice. Also, if I supported a file system, I would have to explain how to use it, and that would have been a chore. Being lazy, I took the easy way out.

#### **Preserved Features**

So, considering what was removed, you probably wonder that I left anything Forth-like intact. I did. In fact, PaRCL uses reverse Polish without any modification. Thinking in terms of passed parameters, it is relatively easy to explain how the output from one command (I called them commands instead of words) is held by the computer, and is used as input to another command. To a complete novice, the computer is quite mysterious anyway, so I took the liberty of simply using reverse Polish without any technical explanation.

may This seem contradictory. compared to my previous concern for explainability. How can I worry about explaining everything, then decline to explain the mysteries of reverse Polish? In fact, my intention was to explain how to use PaRCL to program the robots. Since the arithmetic for this kit is relatively simple, there was no reason to bother with algebraic parsing. Most people are willing to accept a few peculiarities, as long as they are kept to a minimum.

I also kept single-word integer arithmetic. Again, for this kit, this was entirely satisfactory. The physical limits of the components are well within singleprecision boundaries.

#### Can Forth Succeed?

It has long been the dream of Forth programmers to bring their language to the attention of the masses. We would all like to see Forth accepted as a "respectable" language for programming. Will our attempt with PaRCL successfully engender acceptance of Forth among non-Forth users? What is required for success in this effort?

I don't know whether or not Forth will ever be popularly received. I certainly didn't choose it in order to persuade anyone that it is the best language; it was simply the easiest language for presenting robotic programming.

The acceptance of Forth outside the diehard Forth community depends on two factors: the manner in which it is presented, and the receptiveness of the audience. If you try to proselytize, you will probably face a great deal of resistance. If you present it to a novice programmer with promises of effortless programming, you will surely disappoint him. And if you make exaggerated claims about Forth, you will always provoke an argument.

An experienced Fortran programmer usually has no desire to learn another language; he is already at ease with what he has, and can do whatever he needs. The

same may be said of a BASIC programmer, an Ada programmer, and so on. Half of these people see no point in struggling through the entire learning process with an unfamiliar language. Another quarter of them are actively hostile to anyone who might challenge the capabilities of their favorite language. And the last quarter, interested in programming languages in general, will pick up anything promising that comes their way.

Any programmer willing to learn and use Forth should be able to appreciate its merits (and its drawbacks) without further argument. For any other programmer, it is pointless to debate the issue, just as it is pointless to discuss the merits of PL/1 with a Forth devotee.

A casual computer user will probably never gain any insight or benefit from learning Forth (or any other language, for that matter). A person who uses computers frequently might, as long as it doesn't tax his patience every time he tries to write some simple program with it. For most computer users, to have to deal with the complexities of stacks, dictionary structures, linked lists, reverse Polish notation, virtual memory, *and* memory-mapped I/O in order to patch together a checkbook-balancing program (yes, they still do it) is an enormous bother.

As long as Forth is merely a dedicated hacker's language, it will remain merely a dedicated hacker's language. If it is to become a *user's* language, as popular as BASIC, it will have to put on some respectable clothes and make itself presentable to the public. And how might we do that? Well, you'll have to figure *that* out for yourself.

Ken Takara is technical director for Parsec Research (SuperFORTH 64) and writes the "Designers Debate" column for Computer Language. Ken says he will probably continue to embarrass himself publicly by speaking at the West Coast Computer Faires.

## FIG MAIL ORDER FORM

#### MEMBERSHIP IN THE FORTH INTEREST GROUP

109 - MEMBERSHIP in the FORTH INTEREST GROUP and Volume 9 of FORTH DIMENSIONS. No sales tax, handling fee, or discount on membership. See the back page of this order form.

The Forth Interest Group is a world-wide, non-profit, member-supported organization with over 4,000 members and 90 chapters. FIG membership includes a subscription to the bi-monthly publication, FORTH Dimensions. FIG also offers its members group health and life insurance, an on-line data base, a large selection of Forth literature and many other services. Cost is \$30.00 per year for USA, Canada & Mexico; all other countries \$42.00 per year. The annual membership dues are based on the membership year, which runs from May 1 to April 30.

When you join, you will receive issues that have already been circulated for the current volume of Forth Dimensions, and subsequent issues will be mailed to you as they are published. You will also receive a membership card and number.

HOW TO USE THIS FORM 2. Select the item and note your price in the space provided. 1. Each item you wish to order lists three different price categories: 3. After completing your selections, enter your order on the fourth page of this form. Column 1 - USA, Canada, Mexico Column 2 - International Surface Mail

Column 3 - International Air Mail

#### FORTH DIMENSIONS BACK VOLUMES

The six issues of the volume year (May - April)

| 101       — Vol. 1         102       — Vol. 2         103       — Vol. 3         104       — Vol. 4         105       — Vol. 5         106       — Vol. 6 | FORTH Dimensions | (1980/81)              | \$15/16/18               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|--------------------------|
|                                                                                                                                                           | FORTH Dimensions | (1981/82)              | \$15/16/18               |
|                                                                                                                                                           | FORTH Dimensions | (1982/83)              | \$15/16/18               |
|                                                                                                                                                           | FORTH Dimensions | (1983/84)              | \$15/16/18               |
|                                                                                                                                                           | FORTH Dimensions | (1984/85)              | \$15/16/18               |
| 106 — Vol. 6<br>107 — Vol. 7<br>108 — Vol. 8                                                                                                              |                  | (1984/85)<br>(1985/86) | \$15/16/18<br>\$20/21/24 |

#### ■ FORML CONFERENCE PROCEEDINGS

FORML PROCEEDINGS - FORML (the Forth Modification Laboratory) is an informal forum for sharing and discussing new or unproven proposals intended to benefit Forth. Proceedings are a compilation of papers and abstracts presented at the annual conference. FORML is part of the Forth Interest Group.

|        |           |           | EDINGS<br>Forth lang | 1980<br>uage and e        |           | 33/40                    |          |
|--------|-----------|-----------|----------------------|---------------------------|-----------|--------------------------|----------|
| 311—   | FORML     | PROCE     | EDINGS               | 1981                      | \$45/     | 48/55                    |          |
| system | n develop | oment, fi | le system            |                           | languages | metacomp<br>, other op   |          |
| 312    | FORML     | PROCE     | EDINGS               | 1982                      | - \$30/   | 33/40                    |          |
|        |           | -         | -                    | entation to<br>and langua | -         | ctored exclored exclored | ecution, |
|        |           |           |                      |                           |           |                          |          |

4. Detach the form and return it with your payment to the Forth Interest Group.

313-FORML PROCEEDINGS 1983 \$30/33/40 Forth in hardware, Forth implementations, future strategy, programming techniques, arithmetic & floating point, file systems, coding conventions, functional programming applications. 314—FORML PROCEEDINGS 1984 \$30/33/40 Expert systems in Forth, using Forth, philosophy, implementing Forth systems, new directions for Forth, iterfacing Forth to operating systems, Forth systems techniques, adding local variables to Forth. 315-FORML PROCEEDINGS 1985 \$35/38/45 Also includes papers from the 1985 euroFORML Conference. Applications: expert systems, data collection, networks. Languages: LISP, LOGO, Prolog, BNF. Style: coding conventions, phrasing. Software Tools: decompilers, structure charts. Forth internals: Forth computers, floating point, interrupts, multitasking, error handling. NEW 316—FORML PROCEEDINGS 1986 \$30/33/40 Forth internals, Methods, Standards, Forth processors, Artificial Intelligence, Applications. BOOKS ABOUT FORTH \$25/26/35 200 — ALL ABOUT FORTH Glen B. Haydon An annotated glossary for MVP Forth; a 79-Standard Forth. 216 - DESIGNING & PROGRAMMING PERSONAL EXPERT SYSTEMS \$19/20/29 \_\_\_\_\_ Carl Townsend and Dennis Feucht Introductory explanation of AI-Expert System Concepts. Create your own expert system in Forth. Written in 83-Standard.

| 217 — F83 SOURCE<br>Henry Laxen & Michael Perry                                                          | \$20/21/30                | Joseph Reymann                                                                                      | \$3.50/5/6             |
|----------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------|------------------------|
| A complete listing of F83 including source and shadow screens. Includes introduction on getting started. |                           | A brief introduction to Forth and overview of its s                                                 | tructure.              |
| 218 — FOOTSTEPS IN AN EMPTY VALLEY                                                                       |                           | ROCHESTER PROCEEDINGS                                                                               |                        |
| (NC4000 Single Chip Forth Engine) \$25/26/35                                                             |                           | The Institute for Applied Forth Research, Inc<br>ganization which supports and promotes the ap      |                        |
| Dr. C. H. Ting<br>A thorough examination and explanation of the NC4000 Forth chip                        |                           | sponsors the annual Rochester Forth Conference.                                                     | prication of roral. It |
| including the complete source to cmForth from C                                                          |                           | -                                                                                                   |                        |
| 219 — FORTH: A TEXT AND REFERENCE                                                                        | \$22/23/33                |                                                                                                     | \$25/28/35             |
| Mahlon G. Kelly & Nicholas Spies                                                                         |                           | (Standards Conference)                                                                              |                        |
| A textbook approach to Forth with comprehensi<br>FORTH and the 79 and 83 Forth Standards.                | ve references to MMS-     | 79-Standard, implementing Forth, data stru<br>applications and working group reports.               | ictures, vocabularies, |
| 220 — FORTH ENCYCLOPEDIA                                                                                 | \$25/26/35                |                                                                                                     | \$25/28/35             |
| Mitch Derick & Linda Baker                                                                               |                           | (Data bases & Process Control)                                                                      |                        |
| A detailed look at each fig-FORTH instruction.                                                           |                           | Machine independence, project management, o                                                         | lata structures, math- |
| 225 FORTH FUNDAMENTALS, V.1                                                                              | \$16/17/20                | ematics and working group reports.<br>323 — ROCHESTER 1983                                          | \$25/28/35             |
| Kevin McCabe<br>A textbook approach to 79-Standard Forth                                                 |                           | (Forth Applications)                                                                                | \$23/26/33 <u> </u>    |
| 230 — FORTH FUNDAMENTALS, V.2                                                                            | \$13/14/18                | Forth in robotics, graphics, high-speed data                                                        | acquisition, real-time |
| Kevin McCabe                                                                                             |                           | problems, file management, Forth-like language                                                      | es, new techniques for |
| A glossary.                                                                                              |                           | implementing Forth and working group reports.                                                       | A.S. (0.0. 10.5        |
| 232 — FORTH NOTEBOOK                                                                                     | \$25/26/35                |                                                                                                     | \$25/28/35             |
| Dr. C. H. Ting                                                                                           | aid DahyEOPTU is the      | (Forth Applications)<br>Forth in image analysis, operating systems, Fo                              | orth chins func-tional |
| Good examples and applications. Great learning<br>dialect used. Some conversion advice is include        |                           | programming, real-time applications, cross-com                                                      |                        |
| mented.                                                                                                  |                           | new techniques and working group reports.                                                           |                        |
| 233 — FORTH TOOLS                                                                                        | \$22/23/32                | 325 — ROCHESTER 1985                                                                                | \$20/21/30             |
| Gary Feierbach & Paul Thomas                                                                             |                           | (Software Management & Engineering)                                                                 |                        |
| The standard tools required to create an                                                                 | d debug Forth-based       | Improving software productivity, using Forth i                                                      |                        |
| applications.<br><b>235</b> — INSIDE F-83                                                                | \$25/26/35                | periment, automation of an airport, development                                                     |                        |
| 255 — INSIDE F-85<br>Dr. C. H. Ting                                                                      | \$23/20/33                | Forth-based business applications language; in                                                      | cludes working group   |
| Invaluable for those using F-83.                                                                         |                           | reports.                                                                                            |                        |
| 237 - LIBRARY OF FORTH ROUTINES AN                                                                       | D UTILITIES               | THE JOURNAL OF FORTH APPLICATIO                                                                     | N &                    |
| James D. Terry                                                                                           | \$23/25/35                | RESEARCH                                                                                            |                        |
| Comprehensive collection of professional q                                                               |                           | A refereed technical journal published by the Inst                                                  | itute for Applied      |
| for Forth; offers routines that can be put<br>Forth application, including expert systems                |                           | Forth Research, Inc.                                                                                |                        |
| interfaces.                                                                                              | and natural language      | 401 JOURNAL OF FORTH RESEARCH V.1                                                                   |                        |
| 240 — MASTERING FORTH                                                                                    | \$18/19/22                | Robotics/Data Structures                                                                            | \$30/33/38             |
| Anita Anderson & Martin Tracy                                                                            |                           | 403 - JOURNAL OF FORTH RESEARCH V.2                                                                 |                        |
| A step-by-step tutorial including each of                                                                |                           | Forth Machines                                                                                      | \$15/16/18             |
| Forth-83 International Standard; with util                                                               | lities, extensions and    | 404 — JOURNAL OF FORTH RESEARCH V.2                                                                 |                        |
| numerous examples.<br>245 — STARTING FORTH, 2nd Edition (soft of                                         | over                      | Real-Time Systems 405 — JOURNAL OF FORTH RESEARCH V.2                                               | \$15/16/18             |
| Leo Brodie                                                                                               | \$20/21/30NEW             | Enhancing Forth                                                                                     | \$15/16/18             |
| In this new edition of Starting Forth, the mos                                                           |                           | 406 — JOURNAL OF FORTH RESEARCH V.2                                                                 |                        |
| introduction to Forth, syntax has been expand                                                            | led to include the new    | Extended Addressing                                                                                 | \$15/16/18             |
| Forth '83 Standard.                                                                                      | <b>600/01/00</b>          | 407 — JOURNAL OF FORTH RESEARCH V.3                                                                 |                        |
| <b>246</b> — STARTING FORTH (hard cover)<br>Leo Brodie                                                   | \$20/21/30                | Forth-based laboratory systems and data structure                                                   |                        |
| 255 — THINKING FORTH (soft cover)                                                                        | \$16/17/20                | 409 JOURNAL OF FORTH RESEARCH V.3                                                                   | \$15/16/18             |
| Leo Brodie                                                                                               | ¢10/11/20                 | Application Languages                                                                               | \$15/16/18             |
| The sequel to "Starting Forth". An intermediate                                                          | text on style and form.   | 410 — JOURNAL OF FORTH RESEARCH V.3                                                                 |                        |
| 265 — THREADED INTERPRETIVE LANGU                                                                        |                           | Applications, Arthmatic extensions                                                                  | \$15/16/18             |
| R. G. Loelinger                                                                                          | \$25/26/35                |                                                                                                     |                        |
| Step-by-step development of a non-standard Z-8<br>267 — TOOLBOOK OF FORTH                                | \$23/25/35NEW             | <b>DR. DOBB'S JOURNAL</b>                                                                           | h issue which includes |
| (Dr. Dobb's)                                                                                             |                           | This magazine produces an annual special Fort<br>source-code listing for various Forth applications |                        |
| Edited by Marlin Ouverson                                                                                |                           | 422 — DR. DOBB'S 9/82                                                                               | \$5/6/7                |
| Expanded and revised versions of the best Forth                                                          | articles collected in the | 423 — DR. DOBB'S 9/83                                                                               | \$5/6/7                |
| pages of Dr. Dobb's Journal.                                                                             |                           | 424 — DR. DOBB'S 9/84                                                                               | \$5/6/7                |
|                                                                                                          |                           | <b>425</b> — DR. DOBB'S 10/85                                                                       | \$5/6/7                |

| HISTORICAL DOCUMENTS<br>501 — KITT PEAK PRIMER \$25/27/35<br>One of the first institutional books on Forth. Of historical<br>502 — fig-FORTH INSTALLATION MANUAL \$15/16/18<br>Glossary model editor — we recommend you purchase this manual<br>when purchasing the source code listing.<br>503 — USING FORTH \$20/21/22<br>FORTH, Inc. | <ul> <li>701 — A FORTH LIST HANDLER V.1 \$40/43/45</li> <li>by Martin J. Tracy</li> <li>Forth is extended with list primitives to provide a flexible high-speed en-vironment for artificial intelligence. ELISA and Winston &amp; Horn's micro-LISP are included as examples. Documentation is included on the disk.</li> <li>702 — A FORTH SPREADSHEET V.2 \$40/43/45</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                         | by Craig A. Lindley                                                                                                                                                                                                                                                                                                                                                               |
| REFERENCE                                                                                                                                                                                                                                                                                                                               | This model spreadsheet first appeared in Forth Dimensions Volume                                                                                                                                                                                                                                                                                                                  |
| 305 FORTH 83-STANDARD       \$15/16/18         The autoritative description of 83-Standard Forth. For reference, not instruction.                                                                                                                                                                                                       | 7, Issue 1 and 2. Those issues contain the documentation for this disk.                                                                                                                                                                                                                                                                                                           |
| 300 — FORTH 79-STANDARD \$15/16/18                                                                                                                                                                                                                                                                                                      | 703 — AUTOMATIC STRUCTURE CHARTS V.3.                                                                                                                                                                                                                                                                                                                                             |
| The authoritative description of 79-Standard Forth. Of historical inter-                                                                                                                                                                                                                                                                | by Kim R. Harris \$40/43/45                                                                                                                                                                                                                                                                                                                                                       |
| est.                                                                                                                                                                                                                                                                                                                                    | These tools for the analysis of large Forth programs were first<br>presented at the 1985 FORML conference. Program documentation                                                                                                                                                                                                                                                  |
| REPRINTS                                                                                                                                                                                                                                                                                                                                | is contained in the 1985 FORML Proceedings.                                                                                                                                                                                                                                                                                                                                       |
| 420 — BYTE REPRINTS \$5/6/7                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |
| Eleven Forth articles and letters to the editor that have appeared in Byte                                                                                                                                                                                                                                                              | 704 — A SIMPLE INFERENCE ENGINE V.4 \$40/43/45 NEW                                                                                                                                                                                                                                                                                                                                |
| magazine.                                                                                                                                                                                                                                                                                                                               | by Martin J. Tracy                                                                                                                                                                                                                                                                                                                                                                |
| ASSEMBLY LANGUAGE SOURCE CODE LISTINGS                                                                                                                                                                                                                                                                                                  | Based on the Inference Engine in Winstom & Horns book of <i>Lisp</i> , this volume takes you from pattern variables to a complete                                                                                                                                                                                                                                                 |
| Assembly Language Source Listings of fig-FORTH for specific CPUs                                                                                                                                                                                                                                                                        | unification algorithm. Accompanied throughout with a running                                                                                                                                                                                                                                                                                                                      |
| and machines with compiler security and variable length names.                                                                                                                                                                                                                                                                          | commentary on Forth philosophy and style.                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   |
| 514 — 6502/SEPT 80       \$15/16/18         515 — 6800/MAY 79       \$15/16/18                                                                                                                                                                                                                                                          | <b>706</b> — THE MATH BOX V.6 \$40/43/45 NEW                                                                                                                                                                                                                                                                                                                                      |
| 515     6800/MAT 79     \$15/16/18       516     6809/JUNE 80     \$15/16/18                                                                                                                                                                                                                                                            | by Nathaniel Grossman<br>A collection of mathematical routines by the foremost author on                                                                                                                                                                                                                                                                                          |
| 517     — 8080/SEPT 79     \$15/16/18                                                                                                                                                                                                                                                                                                   | math in Forth. Extended double precision arithmetic, a complete                                                                                                                                                                                                                                                                                                                   |
| 518 — 8086/88/MARCH 81 \$15/16/18                                                                                                                                                                                                                                                                                                       | 32-bit, fixed-point math package and auto-ranging text graphics                                                                                                                                                                                                                                                                                                                   |
| 519 9900/MARCH 81 \$15/16/18                                                                                                                                                                                                                                                                                                            | are included. There are utilities for rapid polynomial evaluation,                                                                                                                                                                                                                                                                                                                |
| 521 — APPLE II/AUG 81         \$15/16/18                                                                                                                                                                                                                                                                                                | continued fractions and Monte Carlo factorization.                                                                                                                                                                                                                                                                                                                                |
| 523 — IBM-PC/MARCH 84 \$15/16/18                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                   |
| 526 PDP-11/JAN 80         \$15/16/18           527 VAX/OCT 82         \$15/16/18                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>528</b> — Z80/SEPT 82 \$15/16/18                                                                                                                                                                                                                                                                                                     | NC4000SERIES                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                         | 801 — MORE ON NC4000, VOLUME 1 \$10/11/14NEW                                                                                                                                                                                                                                                                                                                                      |
| MISCELLANEOUS                                                                                                                                                                                                                                                                                                                           | FIG-Tree style forum on NC4000. Topics including bugs, products, tips,                                                                                                                                                                                                                                                                                                            |
| 601 T-SHIRT SIZE NEW                                                                                                                                                                                                                                                                                                                    | benchmarks, and NC4000 instruction bit patterns. Chuck Moore's                                                                                                                                                                                                                                                                                                                    |
| "May the Forth Be With You"<br>Small, Medium, Large and Extra-Large                                                                                                                                                                                                                                                                     | teleconference. 2nd edition.                                                                                                                                                                                                                                                                                                                                                      |
| White design on a dark blue shirt. \$12/13/14                                                                                                                                                                                                                                                                                           | 802 MORE ON NC4000, VOLUME 2 \$15/16/18                                                                                                                                                                                                                                                                                                                                           |
| 602 POSTER (BYTE Cover) \$5/6/7                                                                                                                                                                                                                                                                                                         | NC4000 User's Group's Newsletters. Many contributions from                                                                                                                                                                                                                                                                                                                        |
| 616 — HANDY REFERENCE CARD FREE                                                                                                                                                                                                                                                                                                         | Chuck Moore, Rick VanNorman, C.H. Ting and many other users.                                                                                                                                                                                                                                                                                                                      |
| 683 — FORTH-83 HANDY REFERENCE FREE                                                                                                                                                                                                                                                                                                     | Hardware enhancements, software and many; utility programs.                                                                                                                                                                                                                                                                                                                       |
| CARD                                                                                                                                                                                                                                                                                                                                    | 803 — MORE ON NC4000, VOLUME 3 \$15/16/18                                                                                                                                                                                                                                                                                                                                         |
| FORTH MODEL LIBRARY                                                                                                                                                                                                                                                                                                                     | 803 — MORE ON NC4000, VOLUME 3 \$15/16/18<br>NC6000/5000 data sheets, quans, new DROP, DEPTH, Eaker's                                                                                                                                                                                                                                                                             |
| The model applications disks below are the first releases of new                                                                                                                                                                                                                                                                        | CASE, PICK, ROLL, floating point math packages, new power                                                                                                                                                                                                                                                                                                                         |
| professionally developed Forth applications. 5 1/4" disks are IBM MS-                                                                                                                                                                                                                                                                   | sources and A/D converters for NC4000. Many other tips.                                                                                                                                                                                                                                                                                                                           |
| DOS 2.0 and up compatible and are compatible with Forth-83 systems                                                                                                                                                                                                                                                                      | 804 - MORE ON NC4000 VOLUME 4 \$15/16/18 NEW                                                                                                                                                                                                                                                                                                                                      |
| listed below.<br>Laxen/Perry F83                                                                                                                                                                                                                                                                                                        | 804 — MORE ON NC4000, VOLUME 4 \$15/16/18<br>Chuck Moore's Application Notes 1-7, Tiny Modula-2 by Lohr, F83                                                                                                                                                                                                                                                                      |
| LAXEN/FEITY F85<br>LMI PC/FORTH 3.0                                                                                                                                                                                                                                                                                                     | extensions and other tips from Bill Muench, VanNorman's screen editor.                                                                                                                                                                                                                                                                                                            |
| MasterFORTH 1.0                                                                                                                                                                                                                                                                                                                         | Ting's 32-bit engine design and Fourier transform.                                                                                                                                                                                                                                                                                                                                |
| TaskFORTH 1.0                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                   |
| PolyFORTH (R) 11                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                   |
| Macintosh 3 1/2" disks are available for MasterFORTH systems only.                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |
| Please specify disk size when ordering                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                   |
| B                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   |

#### FORTH INTEREST GROUP

P.O. BOX 8231

SAN JOSE, CALIFORNIA 95155 (408)277-0668

| ZIP |
|-----|
|     |
|     |
|     |

| OFFICE USE ONLY |      |  |  |  |
|-----------------|------|--|--|--|
| By Date         | Туре |  |  |  |
| Shipped by      | Date |  |  |  |
| UPS Wt          | Amt  |  |  |  |
| TNT Wt          | Amt  |  |  |  |
| USPS Wt.        | Amt  |  |  |  |
| BO Date         | Ву   |  |  |  |
| Wt              | Amt  |  |  |  |

| ITEM #                                                                           | TITLE                                                                                               | AUTHOR                                                                                                                                                                                                                                                                                                           | Q                                                                                                       | TY UNIT PRICE                                                                                                                                                                                    | TOTAL                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 109                                                                              | MEMBERSHIP                                                                                          |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  | SEE BELOW                                                                                                                                                                                                   |
|                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
|                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  | +                                                                                                                                                                                                           |
|                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
|                                                                                  | <u></u>                                                                                             |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
|                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
|                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
|                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
|                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
| <u> </u>                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
|                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
|                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         | SUB-TOTAL                                                                                                                                                                                        |                                                                                                                                                                                                             |
| CHECK                                                                            | K ENCLOSED (Payable to: Fo                                                                          | orth Interest Group)                                                                                                                                                                                                                                                                                             |                                                                                                         | OF \$50.00 OR MORE<br>E A 10% DISCOUNT                                                                                                                                                           |                                                                                                                                                                                                             |
| VISA                                                                             | ☐ M/C                                                                                               |                                                                                                                                                                                                                                                                                                                  | SUB-TOTAL                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                                                                             |
| Card #                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                  | CA. RESIDEN                                                                                             | TS ADD SALES TAX                                                                                                                                                                                 |                                                                                                                                                                                                             |
| Data in the D                                                                    |                                                                                                     |                                                                                                                                                                                                                                                                                                                  |                                                                                                         | HANDLING FEE                                                                                                                                                                                     | \$2.00                                                                                                                                                                                                      |
|                                                                                  | Date                                                                                                |                                                                                                                                                                                                                                                                                                                  |                                                                                                         | MEMBERSHIP<br>RENEWAL \$30/42                                                                                                                                                                    |                                                                                                                                                                                                             |
| o ignatar o -                                                                    | num on all VISA/MC orders.)                                                                         | L                                                                                                                                                                                                                                                                                                                | FULL YEAR                                                                                               | NCLOSED IS \$30/42 FOR 1<br>AS DUES. THIS INCLUDES<br>FOR FORTH DIMINSIONS.                                                                                                                      |                                                                                                                                                                                                             |
| MAIL ORDERS<br>Send to:<br>Forth Interest Gr<br>P.O. Box 8231<br>San Jose, CA 95 | PHONE ORDERS<br>Call 408/277-0668 to place<br>credit card orders or for<br>customer service. Hours: | ENT MUST ACCOMP<br>PRICES<br>All orders must be prepaid. Prices are<br>subject to change without notice. Credit<br>card orders will be sent and billed at<br>current prices. \$15 minimum on charge<br>orders. Checks must be in USS. drawn<br>on a US Bank. A \$10 charge will be<br>added for returned checks. | POSTAGE & HANDLING<br>Prices include shipping. A<br>\$2.00 handling fee is<br>required with all orders. | SHIPPING TIME<br>Books in stock are shipped<br>within five days of receipt<br>of the order. Please allow<br>4-6 weeks for out-of-stock<br>books (delivery in most<br>cases will be much sooner). | SALES TAX<br>Deliveries to Alameda,<br>Contra Costa, San Mateo,<br>Los Angeles, Santa Cruz<br>and San Francisco Counties,<br>add 6½ %. Santa Clara<br>County, add 7%; other<br>California counties, add 6%. |

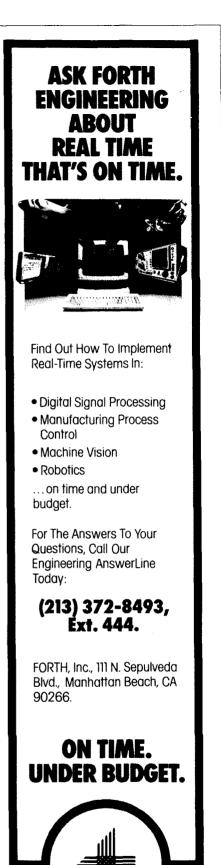
## EXECUTION SECURITY

#### G.R. JAFFRAY, JR.

O ne reason Forth runs so fast is that it does not have the built-in checks of other high-level languages. But during development, this means frequent crashes, and the annoying need for hardware reset and reentry of new words into the dictionary.

This can be avoided with a temporary patch to **NEXT**, the Forth thread interpreter. This patch decreases execution speeds, but provides considerable execution security, removing annoying crashes.

The method is to examine CFAs for valid contents: CFA+2 for code words, and one of six values for high-level words (060D = DOCOL, 0669 = DOVAR, 067B = DOUSE, 064F = DOCON, 0AC8 = DODOE, and 020D = IDO). A jump is made to 0103H for any other.


Note: execution time is 25 to 50% longer. Remove patch after debugging.

[Editor's note: It would be interesting to make this table-driven, and to have the table automatically updated by defining words. Slowness shouldn't be too much of a drawback here.]

Patch 8080 fig-FORTH as follows: Put JMP XSPTCH at 014B.

| XSPTCH: MOV E, M                       |
|----------------------------------------|
| INX H                                  |
| MOV D,M                                |
| INX H                                  |
| INX H<br>MOV A,D                       |
| CMP D                                  |
| JNZ XSPTC1                             |
| MOV A,E                                |
| CMP L                                  |
| JNZ XSPTC1                             |
| DCX H                                  |
| JMP 014EH                              |
| XSPTC1: DCX H                          |
| MVI A,06H                              |
| CMP D                                  |
| JNZ XSPTC3                             |
| MVI A,ODH                              |
| CMP E                                  |
| JZ 014EH                               |
| MVI A,69H                              |
| CMP E                                  |
| JZ 014EH                               |
| MVI A,7BH                              |
| CMP E                                  |
| JZ 014EH                               |
| XSPTC2: JMP 0103H<br>XSPTC3: MVI A,0AH |
| CMP D                                  |
|                                        |
| JNZ XSPTC4                             |
| MVI A,0C8H<br>CMP E                    |
| CMP E<br>JNZ 0103H                     |
| JMP 014EH                              |
| XSPTC4: MVI A,02H                      |
| CMP D                                  |
| JNZ 0103H                              |
| MVT A.ODH                              |
| CMP E                                  |
| JNZ 0103H                              |
| JMP 014EH                              |
|                                        |

YODTOH MON F M



FORTH.Inc.

### 1987 ROCHESTER FORTH CONFERENCE

JERRY SHIFRIN, SYSOP - EAST COAST FORTH BOARD

hanks to Larry Forsley and company for putting on another fine Forth conference at the University of Rochester. As usual, the meeting had a number of excellent speakers and presentations, with a high level of good technical discussion. I was happy to meet some of the folks we've been typing at for a while: Bob Brown, John Hall, Dennis Ruffer, Mike Ham, Jim Callahan, Bob Davis, and others. Amazing how no one looks the way you imagine they might.

I had a brief chat with Glen Haydon about Loglan (currently being discussed on the ECFB); one interesting note was that Chuck Moore reviewed some of the early Loglan notes, and that there may have been some cross-fertilization between the two languages.

John Hall reported that the FIG GEnie network was still on hold. I passed on the ECFB files (about 30 or so disks) to Dennis Ruffer for use on the FIG GEnie network. It'll be nice to see this get a wider audience.

There were several talks on the massively parallel processors (11,520 16,384 separate processors) at Goddard and Lockheed, both of which are being, at least partly, programmed in Forth. George Nicol of Silicon Composers described their ability to connect multiple, Novix-based coprocessor cards to an IBM PC/AT. So far, they've been able to drive up to eight boards at a time, giving an aggregate capability of 56 MIPS (or MOPS)! In terms of raw compute power, this is easily in the mainframe range. George said that his goal is to get twenty of these things going at once so they'd be in the Crayballpark.

A few new pubs were available — a third edition of Thea Martin's excellent *Bibliography of Forth References*, the 1986 FORML Conference Proceedings, and an interesting, but overpriced book (\$16.95 for 90 pages) called Forth: The NEXT Step by Ron Geere. I was tempted to dismiss this book because it's based on fig-FORTH and Forth-79, and a number of its examples use 6502 code definitions.

#### We are seeing Forth-based applications in several advanced-technology areas.

But it actually has a fair amount to offer: numerous tools on math, time/calendar manipulation, trig, large numbers, sorting, rational numbers, etc. There's some useful stuff here, but \$16.95?

We had an interesting panel discussion on Forth standards. The panel consisted of Mahlon Kelly, Larry Forsley, Martin Tracy, and myself, moderated by Jim Basile. There was no general theme; people seemed generally in favor of an ANSI standard, but didn't want anyone tinkering with the language. Glen Haydon said that standards were for people who had nothing better to do. He wanted to see standardization based on common usage and indicated that he was compiling a book on this. Dick Miller simply didn't want any changes, calling himself a conservationist. Other people objected to a self-appointed group deciding on new standards. Bob Brown suggested that Forth look towards Lisp for a model of standardization, due to its many similarities. I apologize if I missed or misrepresented any of the salient points.

Portions of the following are taken directly from the session notes distributed at the conference. Many fascinating presentations are not reviewed here at all, due to space limitations, but you can find the complete proceedings in *The Journal* of Forth Application and Research (Volume 5, Number 1).

#### Sessions

"The Massively Parallel Processor," John Dorband (NASA Goddard Space Flight Center). John described this twodimensional array of 16,384 bit-serial processors. It is programmed in Parallel Forth, based on Unified System's Uni-Forth.

"High-Density Parallel Processing: I. The Processor Array and Macro Controller; II. Software and Programming," Nguyen, Raghaven, C. H. Ting, and Truong (Lockheed Palo Alto Research Laboratories). Another huge array of processors — this one has only (!) 11,520 individual processors. Dr. Ting noted that this one obeys the rule "Never trust a computer you can't lift," but he seemed to conclude that meant without chassis and power supply.

"Parallel Processing using the PC-4000 RISC System," George Nicol (Silicon Composers). George described the Novix NC4016-based, add-on boards for the PC/XT/AT, along with their PCX multitasking control and communications system which allows you to interact with each of the processors via separate windows.

"Machine Comprehension as a Control and Planning Tool," Henry Harris (JPL). Henry, always a step ahead of the pack, gave a fascinating, but much too brief, talk on "conceptual dependency," the idea of extracting the deeper, semantic meaning from natural language. He gave just a glimmer of the potential applications of this: translation (of course), data discrimination, bandwidth conservation, and more.

"Mathcalc," David Jagerman (AT&T Bell Laboratories). David put together a fairly extensive math package which provides numerous queuing, statistical, and telephony-oriented computational facilities. This may be available from him without charge (depending on Bell Labs' policy).

"ClusterFORTH in the Factory," Adam Shakleford (FORTH, Inc.). Described FORTH, Inc.'s facility for networking IBM PCs and Z80-based, single-board computers.

"Forth and CAI From Mainframe to Micro: From Coursewriter to Forth," Brooks J. Breeden (Ohio State University). Brooks had one of the best presentations this year, describing his use of Forth-based graphics systems for teaching aspects of landscape architecture.

"Six RePTIL Verbs and the Macintosh," Dr. Israel Urieli (College of Engineering, Ohio University). Noted that, "We have bred a community which genetically accepts Ctrl-Alt-Del as a meaningful statement."

"A Concurrent Architecture for Real-Time Intelligent Process Control," Jack Park (Visiting Scientist, USAF). Jack talked on their PC/AT-M68000 (coprocessor) based multiprocessor expert system.

"Object-Oriented LocalVariables/Data Structures for F83," Robert H. Davis. Bob talked about a number of extensions he made to F83. These files are downloadable from the ECFB.

"LMI Forth for OS/2," Dr. Ray Duncan (Laboratory Microsystems, Inc.). Ray described and demonstrated his Forth system for the long-awaited OS/2 system.

"Toward an Iconic Forth," Gregory Dickerhoof (SARNS-3M). An interesting talk about icons for user interface. Showed several examples of Macintosh applications that use icons for most of the user interface.

"High-Performance Networks," Dr. William Dress (Martin Marietta). Bill gave a fascinating talk about his experiments with programming a bug that learns from its activities.

"The Biological Aspects of Neural Networks," Dr. Iben Browning. Dr. Browning's talk was humorous, literate, and incisive. He discussed the potential for AI, robotics, and consciousness, combined with some scary ideas about how AIDS will impact our society. Dr. Browning was also the after-dinner speaker at the Friday evening banquet, where he expanded on the AIDS threat. A few people walked out on this talk, expressing disagreement or disbelief. In any case, this one won't go away by being ignored.

"Harris Force Processor," David Williams (Harris Semiconductor). Described FORCE (Forth Optimized RISC Computing Environment), a high-speed system suitable for real-time control systems, digital signal processing, etc. It is configurable with numerous "standard cells" (hardware modules) available from Harris. It can be used as a co-processor, stand-alone, or parallel-processing system.

"Chuck Moore's Non-linear Least Squares Fitting Routine using poly-FORTH on the Silicon Composers NC4016 Board," Elizabeth Rather (FORTH, Inc.). Typical of Chuck's code, this package fits on 2.5 screens (about 25 lines of code).

"VME-based Language Processor," Tom Harkoway (Xycom). Based on Allen Winfield's MetaForth system. In describing performance, Tom defined MIPS as "Meaningless Information Provided by Salespeople."

#### **Working Groups**

Unfortunately there was only one round of concurrent working groups this year and I felt obligated to attend the one on Forth standards. Elizabeth Rather moderated, gave a recap of recent history, and described the ANSI/CBEMA process and Technical Committee membership requirements. I described the bulletin

WITH THE CONVENIENCE **OF CONVENTIONAL LANGUAGES** HS FORTH Now you can compile even large programs in the blink of an eye. If you don't need to compile the huge fast programs we handle so well, use the metacompiler to spin off compact ones - as small as a few hundred bytes for simple threaded utilities as small as 2 kbytes for a full Forth execution core. HS/FORTH is the best base from which to spin off either direct or indirect threaded systems, small or large, or anything else you might invent. This is absolutely the most flexible Forth system available, at any price, with no expensive extras you'll need to buy later. Distribute

COMBINE THE RAW POWER OF FORTH

metacompiled tools, or turnkeyed applications royalty free. Although HS/FORTH is unmatched for language experimentation and development, remember that we wrote it to be a top notch application development system. Your application will have all of DOS at its disposal, commands, other programs, functions, everything! I/O is easier than in Pascal or Basic, but much more powerful - whether you need parsing, formatting, or random ac-cess. Send display output through DOS, BIOS, or direct to video memory. Windows organize both text and graphics display. Math facilities include both software and hardware floating point plus an 18 digit integer (finance) extension and fast arrays for all data types. The hardware floating point covers the full range of trig, hyper and transcendental math including complex. Forth gives you total control of your computer, but only HS/FORTH gives you imple-mented functionality so you aren't left hanging with "great possibilities" (and lots of work!)

We can't possibly cover everything in this ad, so please call or write and ask for our brochure. We'll also be happy to answer any questions.

| HS/FORTH complete system:                                     | \$395. |
|---------------------------------------------------------------|--------|
| Forth: Text & Reference (500pg)<br>Kelly&Spies, Prentice Hall | \$ 22. |
| HS/FORTH: Tutorial & Reference                                | ¥ 22.  |
| Kelly&Callahan (500pg)                                        | \$ 59. |
| HS/FORTH Glossary                                             | \$ 10. |
| DEMO DISK                                                     | \$ 10. |

HARVARD

SOFTWORKS

PO BOX 69

SPRINGBORO, OH 45066

(513) 748-0390

Visa Mastercard

#### FOR TRS-80 MODELS 1, 3, 4, 4P IBM PC/XT, AT&T 6300, ETC.

#### The MMSFORTH System. Compare.

- A total software environment: custom drivers for printer, video and keyboard improve speed and flexibility. (New TRS-80 M.4 version, tool)
- Common SYS format gives you a big 395K (195K single-sided) per disk, plus a boot track!
- Common wordset (79-Standard plus MMSFORTH extensions) on all supported computers.
- Common and powerful applications programs available (most with MMSFORTH source code) so you can use them compatibly (with the same data disks) across all supported computers.
- Very fast compile speeds and advanced program development environment.
- A fantastic full-screen Forth Editor: Auto-Find (or -Replace) any word (forward or back), compare or Pairs-Edit any two ranges of blocks, much more.
- Temporary dictionary areas.
- QUANs, VECTs, vectored I/O, and many more of the latest high-performance Forth constructs.
- Manual and demo programs are bigger and better than ever!
- Same thorough support: Users Newsletter, User Groups worldwide, telephone tips. Full consulting services.
- Personal Licensing (one person on one computer) is standard. Corporate Site Licensing and Bulk Distribution Licensing available to professional users.



### The total software environment for IBM PC/XT, TRS-80 Model 1, 3, 4 and close friends

| and close mends.                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Personal License (required):<br>MMSFORTH V2.4 System Disk \$179.95<br>(TRS-80 Model 1 requires lowercase, DDBN, 1 40-track drive.)                                                                                                                                                                            |
| Personal License (additional modules):<br>FORTHCON communications module \$ 49.95<br>UTILITIES                                                                                                                                                                                                                |
| Some recommended Forth books:<br>FORTH: A TEXT & NEF. (best text!) \$ 18.95<br>THINKING FORTH (best n technique) 19.95<br>STARTMG FORTH (popular text) 19.95<br>Shipping/handling & tax extra. No returne on software.<br>Ask your dealer to show you the world of<br>MMSFORTH, or request our free brochure. |
| MILLER MICROCOMPUTER SERVICES<br>61 Lake Shore Road, Netick, MA 01760<br>(617) 653–6136                                                                                                                                                                                                                       |

board, initially funded by MCI, that will be provided for ANS Forth announcements, proposals, etc. Also discussed was Guy Kelly's plans for Forth extension proposals to be communicated via the new FIG conference on GEnie. A general discussion followed, but again there was no consensus on standards activity, though most people agreed on the need to minimize changes in a new standard.

#### Vendor Meeting

There were a number of concurrent vendor/user meetings. I attended Laboratory Microsystems' meeting hosted by Ray Duncan and Mike Ham. About 20 people attended. Ray announced they would be shipping PC/Forth Release 3.2 in July. A number of enhancements were suggested. Most of these were acceptable to Ray, and he said they would try to squeeze them into the July release.

#### News

Look for Ray Duncan to have another bestseller next year when Microsoft Press releases his new book, *Advanced OS/2 Programming*, in January 1988. Let's hope this little gold mine doesn't totally distract him from Forth development.

There were more people using 32-bit Forth implementations this year than previously. The days of the 16-bitters appear numbered, other than for specialized, ROM/SBC applications.

#### Summary

This year we are seeing real, Forthbased applications coming out of several advanced-technology areas: multi-processors, object-oriented programming, Lisplike data structures, AI, and the Novix Forth chip. Also notable is Forth usage in some brand new areas: massively parallel processors and neural networks. It's fascinating to see Forth adapt so readily to these new frontiers.

Expert systems seem to have been something of a disappointment, with few people reporting applications or new advances in this area. I wonder whether this is just a lull in activity, or have expert systems fizzled out?

This conference seemed a bit less organized than in previous years, and I was sad to learn that Thea Martin is leaving her position as editor of the *Journal of Forth Application and Research*. Still, it was as enjoyable as ever, with lots of good conversation and opportunities to chat with folks I've previously known only by their typed output. Five days at this conference were worth a great deal in terms of information, education, and conversation.

This review was adapted from the East Coast Forth Board (703-442-8695) with permission from the author/sysop. Jerry Shifrin works for MCI, and is one of the best sysops anywhere, if the tree can be judged by its fruit.

#### ADVERTISERS INDEX

Bryte - 8 Click Software - 30 Computer Cowboys - 11 FORML - 19 FORTH, Inc. - 25 Harvard Softworks - 27 Laboratory Microsystems, Inc. - 13 MCA - 37 MicroMotion - 38 Miller Microcomputer Services - 28 Mountain View Press - 39 Next Generation Systems - 6 Pair Software - 41 Palo Alto Shipping Company - 34 Silicon Composers - 2

## STAR BRIGHT

#### AN INTERVIEW WITH TIM LEE

L hese are the voyages of the video game Starflight. The programming crew set about creating strange, new worlds, bravely going into greater and more realistic detail than a sci-fi, role-playing simulation — or any other game — had gone before. Michael Ham continues his special series of interviews, with Tim Lee of the imaginative — and persevering team whose creation continues to break sales records throughout the explored universe.

MH: You work for Binary Systems, which developed a software product for Electronic Arts. Could you describe the product?

TL: It's a role-playing game in outer space — Star Wars, where you are one of the characters.

MH: It runs on an IBM PC and takes two full disks of program and data, right?

TL: Less 40K. Yes, virtually.

MH: That's only 10K empty per side, so that's still pretty full. I will say that my son has been playing this game non-stop since he got it. He even maintains a log in a little spiral book to keep track of where he is and what he's done. It's quite a game. How many people were working on it when the product came to market?

TL: There were five members of the team. One administrative and logistics person, and one designer and three programmers.

MH: You programmed all this in Forth?

TL: And assembly language.

MH: Forth and assembly language. Now is this the original crew?

TL: Three or four members have come and gone, spending some time on the project.

MH: How long has the project been going on?

#### T

*L* here are three, cooperating expert systems in the game.

You can represent a repeatable, fractally generated planet with just a couple of numbers.

TL: Three and one-half years.

MH: When did you come on board?

TL: About six months into it.

MH: It didn't start out quite this big in concept, did it? Did somebody say, "Let's write a program that'll be the biggest game ever released?"

TL: I wasn't there at the time, but it's my understanding from those who were that it was to be a very big-field game. But the idea of fractally generating unique planets that you can return to...

MH: Talk a little bit about fractally generated planets.

TL: It's using the technique developed by Mandelbrot. He takes, essentially, a repeatable random sequence of numbers based on a seed. Using that, you can, in a very compact way, represent a planet with just a couple of numbers, then run it through a function and use that to determine the terrain for the surface of the planet.

MH: So each one is unique but doesn't take up that much room, is that the advantage?

TL: That's the advantage.

MH: David Boulton was one of the early principles.

TL: Right. He really had an impact on shaping the possibility of doing a huge environment. He wrote the first prototype fractal routines.

MH: What does the designer do?

TL: I hesitate to define the roles too exactly, because there is a good deal of design and feedback, give and take.

MH: When I played the game, I encountered these interesting alien races, and with wonderful speech patterns.

TL: That was great. The personality of

the game is Greg Johnson. He was the designer. That's what I mean. He designed the scenario; the programmers' role was more to design the game system that you could write the scenario for. You can design subsequent scenarios and not be a technical person; the programmers created a game system that could be expanded by a nonprogrammer designer.

MH: How much did those races and their characteristics evolve as you worked on it? Did they stay pretty much as he first designed them, or did you decide some of them were too evil or too simpleminded?

TL: The races were a collaborative effort — Greg Johnson, Paul Reiche III (who worked on Archon), myself, and a number of other people. We got into a sort of roundtable, but the bulk of them were done by Greg Johnson. His playfulness is manifested throughout the entire game. MH: I don't want to go into how many alien races there are, because it's constant surprise when you are out there and you bump into someone. But did they change? You have the idea for a race. You implement it. Then you interact with them... Did you then decide, no, it's too much this or too many that?

TL: Yes, there was tuning the personality of the race. We had a data record called the race personality record, or something like that, and the designer established and modified parameters.

MH: The dialog is great. Is that also Greg's?

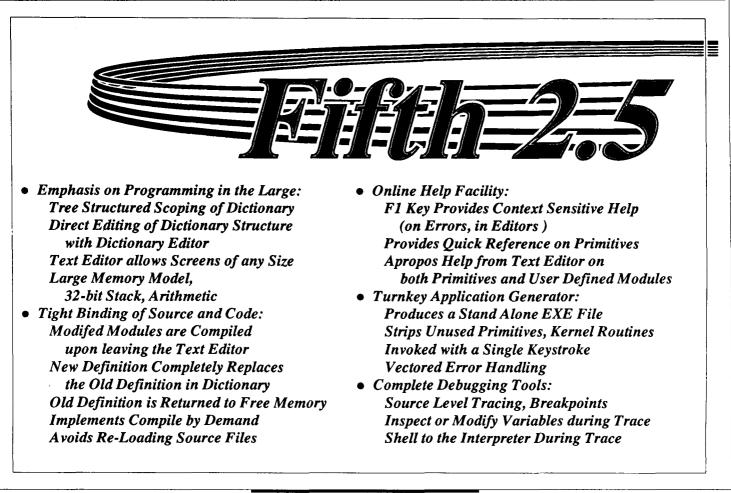
TL: That is also Greg. And also, again, Paul Reiche and a number of other people.

MH: Was this the first product Electronic Arts signed?

TL: No, but it was one of the early ones.

MH: It was on the first weekly status report, I recall hearing that.

TL: Yes, it's the only Electronic Arts product that has been tracked, to date, on all the different status report forms they've ever had.


MH: So it was the longest in development and, of course, the most ambitious in scope. It was released when?

TL: End of August 1986.

**MH:** And sold out instantly, as I recall. And still going strong.

TL: As I understand, yes.

MH: I see notices about it on the boards, by the way. People are saying, "I can't believe it."



TL: That's great!

MH: What aspect of the game gave you the most problems, what was the most difficult thing to accomplish?

TL: The — enclosure of the design.

MH: You set a monster in motion that didn't want to close down?

TL: Yes, that was really tough. And communicating among the programmers was also a challenge.

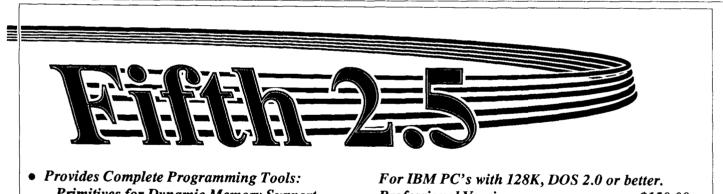
MH: Did you work in one place, or did each one work at home?

TL: We did a little bit of both. Bob Gonsalves, one of the other programmers, and I worked at the Binary Systems location, and Bob was getting down a couple of days a week — he was the other programmer. So that's the whole crew. Myself, Bob, Alec, Greg, and Rod on the administrative end. Rod McConnell was really the entrepreneur, the one who brought the team together.

MH: In communicating among them, how did you handle the word explosion? Large Forth projects tend to generate a lot of words. Did you maintain any sort of dictionary, or did you brief each other, did you read each other's code? How did you know what words other people had developed?

TL: We segmented things hierarchically, so one person was responsible for primitives, stack operatives, and system primitives. And everybody else used those primitives. So, of course, when you work with primitives, we'd document them (that was me, in this case) and build a glossary of graphics words. It would take a week or two of the other guys using this thing, referencing the document, for them to fully understand how the words worked. Then they'd say, "I've got a great idea for a primitive, let's put it in...." Then it would require looking at how many bytes were involved here and there. One of the more challenging things was squashing the amount of source code we have on those disks. We have over four megabytes of source.

MH: Really! Screen files or text files?


TL: Screen files, so there is a lot of white space in many places. The text is pretty dense, and with the aliens' speech is a lot of text.

MH: (grinning) And of course, the source code is contains lots of comments, right?

TL: Well, our styles vary.

MH: With really good code, you don't need comments. (laughs)

TL: (grins) That's my latest feeling. Write long definitions, and the comments and the code are the same thing. In fact, the product chronicles the development of



- Provides Complete Programming Tools: Primitives for Dynamic Memory Support Produces Native Code - Very Fast Complete Access to MS-DOS Files 8087 Floating Point Support Provides Range Checking Graphics
- Includes Fifth Source Files: Inline 8086, 8087 Assembler Forth 83 to Fifth Convertor Infix Expression Compiler
- A Shareware Version (Fifth 2.0) is Available Lacks Some Features of Fifth 2.5 Runs Most Fifth 2.5 Programs May Be Freely Distributed

For IBM PC's with 128K, DOS 2.0 or better.Professional Version:\$150.00Shareware Version, Disk and Manual:\$40.00Shareware Version, Disk:\$10.00System Source Code Available

CLICK Software P.O. Box 10162 College Station, TX 77840 (409)-696-5432

MS-DOS is a registered trademark of Microsoft Corp. IBM is a registered trademark of International Business Machines Corp. our programming styles. The earlier code was really terrible, and you can see the conceptual hurdles we leaped as we went on.

MH: I noticed that, too, in my programming. When I look at the early stuff, I can't believe I wrote it. Does your program come in in overlays?

TL: Yes, there are about sixty overlays.

MH: I heard in some discussions that there is a bit of artificial intelligence in it — adaptability to the player.

TL: Yes, there are, I think, three separate expert systems in the game. That was another thing I was involved with. We wrote an expert system that allowed the game designer, who was not a programmer, to design the rules for the behavior of the aliens and communication module, how the ships behaved, how the life forms on the planets work — all of those were cooperating expert systems. He wrote the rules for them, and he didn't have to know Forth or any programming.

MH: And that freed the programmers from much tedious work.

TL: That's right, and it allowed him to tune the thing without needing us in the loop. It was great.

MH: What are the expert systems?

TL: There's one for handling the aliens on the surface of a planet, one for the aliens in space — that's the ship movement rules — and one for communications, handling the personality of the talking character.

MH: You lived with that project for a long time. Knowing what you know now, what would you do differently?

TL: I'd have to think about it a little bit to give you a real good answer.

MH: We're satisfied with a mediocre answer at this time. You can always tune it.

TL: I think I would have recognized, based on the knowledge I've acquired, that we were designing a game, an entertainment product, and not a model of the universe. We spent a lot of time trying to model things that didn't add to the play of the game. I mean *Starflight*, believe it or not, is a vastly cut-down subset of the original.

MH: You went for verisimilitude with a vengeance — you wanted the whole thing. In fact, you ended up with how many stars and planets?

TL: There are 810 planets and 200 star systems.

MH: And you can visit any of them in any sequence. The player is free to move around.

TL: That's right.

MH: So you put a lot of time and effort into making ever-finer details of reality. I would think that, having a lot of people working on it, you'd get to challenging each other to get further and further into it.

TL: Yes. The whole thing acquired a personality. The morale of the team went up and down in cycles, based on a number of factors, the least of which was paying the rent.

MH: Yes, three and one-half years is a long development cycle, especially when you are paid on milestones. Just out of curiosity, are all of you science fiction fans?

TL: Yes.

MH: So you were into this as an art form already. Was your concept influenced during the course of this development, as various science fiction movies came out? This was after the first *Star Wars*?

TL: Oh, yes — much later.

MH: Was it influenced by anything you saw or read as you went along?

TL: A great deal. We have a rotating planet, which was why I originally hired in. The rotating planet figured prominently in *Star Wars*, and we had to have it. You see that view of the planet turning as you're watching it.

MH: So this is how you got in, because they wanted the planet to turn.

TL: Yeah, and I could do that.

MH: You were the graphics guru...

TL: Graphics, virtual memory management, cache system, and object-handling data base, which was very significant in allowing the program modules to talk to each other.

MH: What is an object-handling data base?

TL: When I say "object handling," it's really a fancy name for a list manager, a pre-structured list manager. And I wrote a language for manipulating objects on this tree.

**MH:** And the object in this case would be a planet description, for instance?

TL: Planet description, alien ship... it was open-ended, in the sense that you could take an object anywhere in the universe, and then we defined a record description for that object, and we'd write code that would look at the fields within that object.

**MH:** What were the other programmers' specialties?

TL: Bob Gonsalves spent a great deal of his time generating the life forms and the ecosystems for the life-bearing planets. He spent many, many months on that. He also designed the interactional planet site. The planet site is pretty much Bob Gonsalves.

MH: The planet site where you are seeking out minerals and encountering aliens.

TL: Dave Boulton's prototypes created a

3-D terrain. I adapted that to map it onto a sphere, making it a planet. The planet builder, which places minerals, life forms, and other planetary features, was mostly Bob's work.

MH: The planet descriptions are extremely detailed regarding the ecosystem, the atmosphere, and the mass; depending on whether you've trained your science officer. If you haven't trained your science officer, the basic description of the planet is, "Don't know." But if you've got a well-trained science officer, you have an amazing amount of detail.

TL: It's hard to talk about the game in terms that someone else would understand. I took the fractal system that generated the planet and displayed the graphics. But the life-form responses ---where they move around a lot, the terrain vehicle interface, all of the functions on the terrain vehicle before the player goes into outer space, that's Bob. Alec Kersco singlehandedly wrote the star port module. Everything that happens in star port, he designed code for it, he wrote the code for that. Greg Johnson designed the interface. Actually, he was fundamentally responsible for the design of it. Again, good ideas came from all quarters.

MH: The star port is shopping, getting lists of things, the training, and so on. The player moves a small figure around the six stores, going through the little safari shop.

TL: The other thing Alec was responsible for was the module for communicating with aliens. I helped in the design of that, he actually had it built by another programmer who left the project, then he tore it down and rebuilt it in three weeks with the addition of the expert system.

MH: If, God forbid, all the code was lost and you redid it again from scratch, would it be much more compact?

TL: No question about it.

MH: You really learned a lot?

TL: Oh, yes.

MH: You've never really given serious thought to throwing it out and totally rewriting it...

TL: I have.

MH: Oh, you have! The perfectionist in the Forth programmer arises yet again. If one were to play this on the ideal system, what would you recommend — an AT with a composite color monitor? That's the ideal?

TL: Yes. It has a caching system that takes up about all of available RAM, so you don't even need to have a hard disk. If you have a lot of memory, it will take advantage of it.

MH: The composite monitor is for the better color. You've written an amazing system, and I'm thinking of all the techniques you developed. Do you see a way to apply them in a business application, to store and retrieve data, graphical information? You've got a way of handling data that is interesting and fast. Will you use these tools in your later applications?

TL: Yes. I don't think I will get into the business realm, but I'm certainly going to use the tools that we developed.

MH: Do you think you'll do more games, or are you interested in doing more games after this one? They're only three and a half years each, is the way I see it... in ten years you can do three games.

TL: I do have a game that I'd like to do.

MH: Do each of you have a game in mind?

TL: Yeah.

MH: What was your first encounter with Forth?

TL: My first encounter with Forth was as a contractor on a project for tax

Forth Interest Group Presents

#### Ninth Annual FORTH NATIONAL CONVENTION

November 13-14, 1987

Red Lion Inn 2050 Gateway Place San Jose, California 95110

FIG's 10th Anniversary Celebration EXHIBITS CONFERENCE PROGRAM

THE EVOLUTION OF FORTH Past - Present - Future

The founders, writers, producers, and evaluators of Forth look at:

Forth in development Forth at work Forth in the future

Conference & Exhibit HoursFri. Nov.1312 noon - 6 pmSat. Nov. 149 am - 5 pm

Hotel Reservations Telephone Red Lion Inn, San Jose 800 547-8010 or 408 279-0600 Request special Forth Interest Group Rates.

| Convention Registration  | )    |
|--------------------------|------|
| Preregistration          | \$20 |
| Registration at the door | \$25 |
| Banquet Saturday 7 p.m.  | \$35 |
| (with keynote speaker)   |      |

\_Yes, I will attend the convention.

|   | Preregistrations @ \$20 \$<br>Banquet Tickets @ \$35 \$<br>Total check to FIG (US funds) \$ |
|---|---------------------------------------------------------------------------------------------|
|   | Name<br>Address                                                                             |
|   | Company                                                                                     |
|   | StateZIP<br>Country                                                                         |
| İ | Phone ()                                                                                    |
|   | Return to: Forth Interest Group<br>P. O. Box 8231<br>San Jose, CA 95155                     |
|   | Information Phone: (408) 277-0668                                                           |

preparation. It was to be written in BASIC, because at that time the only thing that was really common was BASIC. So it was going to be in BASIC, but for the work we had to do, we decided the best thing short of going to assembly language would be Forth. We used C.H. Ting's Forth interpreter written in BASIC and buried that in the product. It was fast enough for going through the form and doing calculations.

MH: Did you get into computers through a major?

TL: In high school, I read a book about computers and they had an example of a tic-tac-toe playing computer made with matchboxes. That was the very first step. But then it was about six years before I could get onto a real computer, and that was at the University of Illinois at Champaign-Urbana, the Plato system. I was in high school at the time, and a friend of mine showed it to me. I stole access time, I begged, borrowed and stole keys, I wrote a fake sign-on thing that system access, and we could then create all of our own passwords from then on in. At that time, the morality of my access didn't occur to me. Having to do it over again, I would do it differently; but nevertheless, I wrote my first games when I was about, let's see, seventeen.

MH: In BASIC?

TL: TUTOR. That's the Plato system.

MH: And what was TUTOR like?

TL: It's very loose, I don't remember much about it. It seemed like a mongrel language. BASIC-like commands. I don't think it had line numbers.

MH: When you went to college, were you going to be in computers right from the start?

TL: No, I was going to be a dentist, because my mom wanted me to be a dentist. So I went for two semesters. Well, I went for two semesters and I couldn't take the garbage. At the same time, I was working part-time at Texas Instruments in the programmable calculator division, in their software exchange. So that's where my real education took place, and when I quit going to school I just went full-time at Texas Instruments.

MH: What were you doing for TI?

TL: I was evaluating programs written for the SR56, the SR52, and the TI59 programmable calculators. People would submit programs, and we'd send them free copies of other programs in return. The programs would then be published in booklets.

MH: When was that?

TL: 1977 and '78. I was there while they were designing the TI 99/4A.

MH: That could have been a great computer.



TL: The designers knew they were screwing it up; they didn't have any choice. They were dealing with other specifications that they hadn't developed, and they said, "You know, we could make these teeny little changes, it would be great! But we can't." They had to follow this huge set of specifications.

MH: Bureaucracy rears its ugly head. How did you get to California?

TL: I came out on vacation and I just decided to stay. This is the greatest place.

MH: Was it in California that you hit Forth?

TL: Yes. Prior to that time I had never heard of it, and I'd done a lot of reading and programming, because it was a hobby. But I never heard of Forth. That would have been 1979. That was seven years since it hit the public scene.

MH: You liked it, apparently.

TL: Loved it. After seeing how it worked under BASIC, I felt a little bit ludicrous putting in these SWAPs and DROPs and shoo-bops. And then I tried to think about how I would write an interpreter, if I was going to do it; and, hey, there was no simple way. Then I got to understanding what colon definitions were, because these were just strings of things that [would go in the] interpreter and I could rule the world with this!

MH: Yeah, this is dangerous...

TL: Never look back!

MH: Was *Starflight* your first major Forth project?

TL: I'd done a Forth video game for Datasoft, called *Genesis*, and it was never shipped in the IBM format because they didn't want to ship a Forth product. It ran as fast as the assembly language versions of the Apple and the Commodore versions, and yet they didn't want to ship it.

MH: Religious differences, I take it.

TL: Well, that and they wanted to make

sure it ran on the PCjr, which at that time was hot property. I decided to leave at that time and they didn't have anybody else, so it never got out.

MH: So *Starflight* was your first, giant project of original work----

TL: —in Forth. My first giant project was as Vice-President of Datax Corporation, a financial-planning computer-services company that did policy analysis for life insurance companies. I wrote more lines of programming, in a language called PICK-BASIC on Quantel's computers, than I care to think about.

MH: Is that the small computer the agents carried into the field?

TL: No, this was a minicomputer. I think Unisys bought them. I had fifteen employees at the high point, and I managed to spend half a million dollars of someone else's money. So I've been an entrepreneurial type, and like to live on the riskier side of things than being in the corporate environment. After I got out of Texas Instruments, I decided corporations came with too much politics. If anything needed to get done, and you went by the book, it never happened. If you knew people and exchanged pull and favors, you managed to get things done. That was the way things happened.

MH: How long do you think it takes to learn Forth? I thought I knew Forth fairly early in this project, but now I realize I didn't really. What does it take to learn Forth so that your code is reasonably fluent and sound and easy to follow? It takes more than just reading *Starting Forth*.

TL: My own philosophy is that you need to write your own Forth.

MH: From the ground up?

TL: When you get to the point where you understand how to write your own Forth from the ground up, you are ready to write good Forth code.

MH: A demanding requirement. There is

a book that takes one through that: *ThreadedInterpretativeLanguages*.It'sfor the Z80. I'd hate to do write my own Forth, though. I like to buy it out of the box.

We've covered quite a bit here. Suppose a reader decides, "That's a great idea. I'll write a computer game and make a lot of money because it's so popular, and I'll go out and be rich and famous, too." What would you say to such a person?

TL: I would say, if that's what you want to do, do it. But I tell you, the road is rocky. I don't mean in any way to dissuade someone from doing what they like to do. For me, it's been worth it, but it's been tough. As far as making lots of money, if we sell one hundred thousand units of Starflight, which is really a lot for a game — I think ultimately we will sell that many — then for three and a half years, I will have been making \$6.50 an hour.

MH: Starflight, by the way, because it is so exceptional a game, may have a longer shelf life than most. You're saying, though, that if someone wants to write a game, it's interesting and they can learn lots, but they shouldn't quit their job.

TL: No. Keep your day job, that's important.

MH: If you were going to write a game, what computer would you write it for?

TL: The IBM PC.

MH: Really!

TL: Yes.

MH: Would you do a graphics game again, or would you make it text only?

TL: I think graphics are so much more appealing, as evidenced by [the fact that] all the really hot products that stay hot products, have graphical stimulators. If you can combine that with depth, then so much the better. MH: But why the PC?

TL: There's just a lot of them out there, and it's a decent machine to develop on.

MH: The PC has enough power.

TL: It's getting cheap, too.

MH: Pretty soon, if you buy over fifty dollars worth of groceries, you get one free at your supermarket. If you are talking to someone who knows nothing about graphics, and he or she says, "Okay I want to do graphics. How do I do graphics?" Is there a book?

TL: Yes, there are several really good books. One by Newman and Sproull that's called *The Principles of Interactive Computer Graphics*, and another is Foley and Van Dam's, *Fundamentals of Interactive Computer Graphics*.

MH: Tim, thank you very much.

TL: You're welcome.

Michael Ham is a professional Forth programmer who writes extensively and works in large-scale data processing. One of Tim Lee's Starflight associates wanted us to be sure that, while giving credit all around, Tim accepts his own fair share. We hear that he not only takes a logical approach to problem solving, but applies his own inner spirit of adventure to programming.

Congratulations to the whole team: Only days ago, Starflight received Electronic Arts' awards for "Best Creation of New Worlds" and "Best Entertainment Product." Maybe the Forth really is with them! (Letters-Continued from page 8.) Bacon's Screens

```
SCR # 18
    ( Forgetful LOAD )
  0
       HEX
  1
    VARIABLE BUF
  2
  3
    : SAYBLOCK
                   ( u --
                            )
        BASE @ DECIMAL HERE A8 + BUF !
  4
       SWAP US>D <# BL HOLD # # #
  5
                                         57 HOLD #>
  6
        BUF @ SWAP CMOVE BASE !
        DAD (u -- ) DUP SAYBLOCK
BLK @ 0 BLK ! TIB @ BUF @ TIB ! >IN @ 0 >IN !
    : LOAD
  7
  8
  9
        -FIND IF DROP DROP
                                0 > IN !
                                           FORGET THEN
        O > IN ! CREATE > IN ! TIB !
 10
                                           BLK ! LOAD
                                                          ;
        -> ( -- ) BLK @ 1+
STATE @ 0= IF DUP SAYBLOCK
      -->
 11 :
                                          O BLK !
 12
       TIB @ BUF @ TIB ! O >IN !
O >IN ! BLK ! ; IMMEDIATE
 13
                                          CREATE TIB !
                                                            THEN
                 BLK ! ; IMMEDIATE
 14
 15
        DECIMAL
```

Screen 17 is my improvement to the modification, to return an offset into the buffer, rather than the address of the matched string. This added five bytes to the code size: a PUSH to save the buffer address on the stack, a POP and a SUB in the event of a successful exit, and an additional POP in the case of an unsuccessful search (to clean up the stack before returning).

Even with my improvements, this implementation falls short of the full functionality provided by Laxen and Perry, since it is not sensitive/neutral to the case of the pattern or object string (depending on the state of the variable **CAPS**). Admittedly, Brother Zimmerly was designing for use in some specific, but unspecified, application of his own, where this might not be a shortcoming. However, I wish to replace the **SEARCH** provided in the F83 system, so it had better behave exactly as the original. I have included the code for such an assembler version of **SEARCH**.

This code compiles to a whopping 169 bytes — more than twice the size of the code in screen 17. I have made one concession to size by moving the conversion of characters into upper case to a labeled subroutine. In trying to arrive at a satisfactory tradeoff between size and speed, I have left the decision about converting a character with the main **SEARCH** code, only making the call if **CAPS** is on. This decision, along with a **PUSH** and a **POP** of the BX register, which I have used as a working register for this operation, could be moved to the subroutine to save additional bytes of dictionary space, or the whole routine could be embedded into **SEARCH** at the appropriate places, for speed at the expense of size.

While I have offered some critical observations of Brother Zimmerly's code, I wish to thank him for his effort, and *Forth Dimensions* for publishing it. Without this to pique my interest, I wouldn't have done this work. Being a neophyte programmer, I have learned a lot about F83 in the process, and am pleased with the results.

I enjoy the magazine and wish it came monthly.

Sincerely,

Robert Lee Hoffpauer

Richardson, Texas

#### **Mods Quad Divides**

Dear Mr. Ouverson:

The enclosed code modifies that of Robert L. Smith (FD VIII/6) for a quadby-double divide in several respects. First, it is in a form suitable for the LMI assembler from which many Forth assemblers are derived. Second, it does the entire procedure in registers, resulting in about a 30% speed-up in the code. Third, it adds error checking by executing the divide-overflow interrupt where appropriate. Fourth, it preserves the BP register (along with SP and SI), which many 8088 Forths use as the return pointer.

LMI's 32-bit PC/Forth+ has a similar procedure that is bulkier, a shade slower, and proprietary. Sincerely, Michael Barr Mount Royal, Quebec

#### Hoffpauer's Screens

|                                         | I a # AL DMP >= ∖ Dhar to uppercase.<br>= IF 20 # AL SUB THEN THEN FET FOFTH             |
|-----------------------------------------|------------------------------------------------------------------------------------------|
| 1007 073-011 17 1 1                     |                                                                                          |
| CODE SEARCH (S sadr si                  | en badr blen offset flag )                                                               |
| CLD \                                   | Set direction of search.<br>Get CXbuf-len & BXbuf-adr.                                   |
| CX PUP BX PUP                           | bet UXbut-len & BXbut-adr.                                                               |
|                                         | Get DXstr-len & Distr-adr.                                                               |
| DX CX BUB BX CX ADD /                   | CXlast-adr (last possible match.)<br>Saye Forth IP & BXbuf-adr.                          |
| SI PUSH BX PUSH                         | Saye Forth IP & BXbut-adr.                                                               |
|                                         | BXbuf-adr to SIbuf-otr for LODS.                                                         |
| 0 EDID AL MOV                           |                                                                                          |
|                                         | CMF 1040 \ Test up/low case. (JE)                                                        |
| TE SUP #1 GALL IBEN \                   | Donvert char to uppercase if DAPS on,                                                    |
| XH AL XSHG \<br>Begin \                 | MATN I DOP                                                                               |
|                                         | Char from buffer, incr SIbuf-ptr.                                                        |
|                                         | BX CMP 040 \ Test up/low flag. (dE)                                                      |
| TE VIE HY PART THEN                     | A che over trest about they. Wall.                                                       |
| AH AL CNF 0=                            | . Do they match? (JNE)                                                                   |
|                                         | If agus 1                                                                                |
| 17                                      | . IT EQUAL.                                                                              |
|                                         | . If equal,<br>. save current SIbuf-ptr,<br>. Set BXstr-index to 2nd char,               |
| - <del>8</del> DA 1704 - 1<br>DECTH - 1 | and check rest of string.                                                                |
|                                         | / \ Char at Distr-adr + BXstr-index.                                                     |
| BX PUSH                                 | A Char at Distradur Y DAStraindex.                                                       |
|                                         | 0 # BX CMF - 0<> \ Test case. (JE)                                                       |
|                                         |                                                                                          |
| 17 207 #2 CHLL  <br>Au 31 Volk          | THEN \ If on, convert.                                                                   |
|                                         | ∖ Swao ah≿al.<br>\ Char from buffer & incr SIbuf-ptr.                                    |
| HE LUDS<br>CADE AN BY MOU               | A GREE FROM DUTTER & INLE SIDUTEDUT.                                                     |
|                                         | 0 # BX CMP 000 \ Test case. (JE)                                                         |
| BX POP                                  | THEN \ If on, convert.                                                                   |
|                                         | \ Do they match? (JNE)                                                                   |
| HE BE DAF OF MULLE                      | ( DO LNEY MELLIN:                                                                        |
| MHILE<br>BX INC<br>REPEAT               | <pre>increment Bistr-index.</pre>                                                        |
| DA INI<br>DEREAT                        | and long                                                                                 |
| 01 ER:                                  | <ul> <li>And root.</li> <li>Restore SIbuf-ptr.</li> </ul>                                |
|                                         |                                                                                          |
| IF .                                    | \ Is 8Xstr-index >= DXstr-len? (JL)<br>I4 so retugo ₩/FDUND.                             |
| PY POP                                  | \if so return w/FDUND.<br>Driginal buffer address.<br>\Calculate offset of found string. |
| RY ST SUR                               | .joriginal sante, saorissi<br>\fCalculate offcet c⊄ frund string.                        |
| BI DEC                                  | s derearder officer en fødne ver figt                                                    |
| DY POP                                  | Restore original Forth IP.                                                               |
| DY ST YCHG                              | V IP to 31. offset to DX.                                                                |
|                                         | \ True flag signals FOUND!                                                               |
| ЗРЦЕН                                   |                                                                                          |
|                                         | ∖ Reload AH w/first char of string.                                                      |
|                                         | <pre>\ Ist char of string.</pre>                                                         |
|                                         | 0 # BX CMP O(> \ Test case. (JE)                                                         |
| IF UP #) CALL                           |                                                                                          |
| AH AL XCH5                              | Swap ah&al.                                                                              |
| THEN                                    | n anverse attended t                                                                     |
| THEN                                    |                                                                                          |
|                                         | )<br>1 Is Sibuf-ptr > CXlast-adr? (JBE)                                                  |
|                                         | \ If so return w/NOT-FOUND, else loop.                                                   |
|                                         | <ul> <li>Use buf-adr for meaningless value.</li> </ul>                                   |
|                                         | \ Restore criginal Forth IF.                                                             |
|                                         | \ False flag signals NOT-FOUND!                                                          |
| 2PUGH                                   | ം പോലം നടയ്യ മട്ടിയായ നയന്നയില്.<br>1.<br>1.                                             |
|                                         | X.                                                                                       |
| ENG-CODE                                |                                                                                          |
| END-CODE<br>Fode size: 149 bytes        | (including headers for OUF and SEARCH)                                                   |



#### FIG-FORTH for the Compaq, IBM-PC, and compatibles. \$35 Operates under DOS 2.0 or later, uses standard DOS files. Full-screen editor uses 16 x 64 format.

Editor Help screen can be called up using a single keystroke. Source included for the editor and other utilities.

Save capability allows storing Forth with all currently defined words onto disk as a .COM file. Definitions are provided to allow beginners to use *Starting Forth* as an introductory text.

Source code is available as an option, add \$20.

Async Line Monitor Use Compaq to capture, display, search, print, and save async data at 75-19.2k baud. Menu driven with extensive Help. Requires two async ports. \$300

A Metacompiler on a host PC, produces a PROM for a target 6303/6803 Includes source for 6303 FIG-Forth. Application code can be Metacompiled with Forth to produce a target application PROM \$280

FIG-Forth in a 2764 PROM for the 6303 as produced by the above Metacompiler. Includes a 6 screen RAM-Disk for stand-alone operation. \$45

#### An all CMOS processor board utilizing the 6303. Size: 3.93 x 6.75 inches. Uses 11-25 volts at 12ma, plus current required for options. \$190 \$200 - \$280 Up to 24kb memory: 2 kb to 16kb RAM, 8k PROM contains Forth. Battery backup of RAM with off board battery. Serial port and up to 40 pins of parallet I/O.

Processor buss available at optional header to allow expanded capability via user provided interface board.

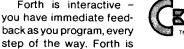
Micro Computer Applications Ltd 8 Newfield Lane Newtown, CT 06470 203-426-6164

Foreign orders add \$5 shipping and handling. Connecticut residents add sales tax.

Volume IX, Number 2

#### PORTABLE POWER WITH **MasterFORTH**




Whether you program on the Macintosh, the BM PC, an Apple II series, a CP/M system, or the

Commodore 64, your ===== program will run unchanged on all the rest.



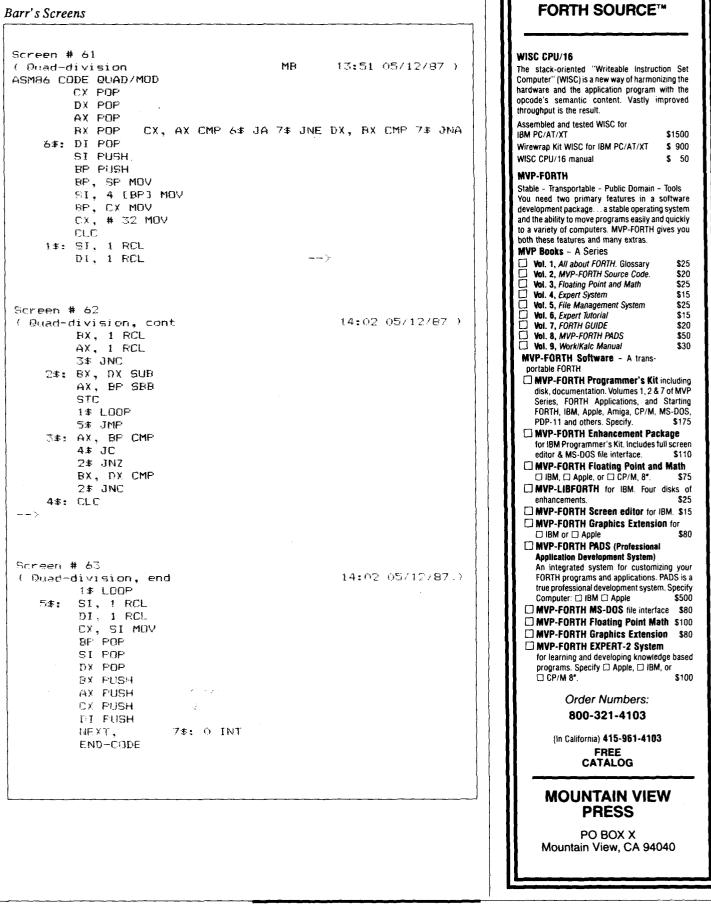
If you write for yourself, MasterFORTH will protect your investment. If you write for others, it will expand your marketplace.

Forth is interactive vou have immediate feedback as you program, every



fast, too, and you can CP/M use its Duilt-III ac sembler to make it even faster. Master-

FORTH's relocatable utilities and headerless code let you pack a lot more program into your memory. The resident debugger lets you decompile, breakpoint and trace your way through most programming problems. A string package, file interface and full screen editor are all standard features. And the optional target compiler lets you optimize your application for virtually any programming environment.


The package exactly matches Mastering Forth (Brady, 1984) and meets all provisions of the Forth-83 Standard.

| (Commodore 64 with graphics) \$100                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extensions                                                                                                                                                                                                   |
| Floating Point. \$60<br>Graphics (selected systems) \$60<br>Module relocator (with utility sources). \$60<br>TAGS (Target Applic. Generation System)-<br>MasterFORTH, target compiler and<br>relocator \$495 |
| Publications & Application Models<br>Printed source listings (each) \$35<br>Forth-83 International Standard \$15<br>Model Library, Volumes 1-3 (each) \$40                                                   |

8726 S. Sepulveda Bl., #A171 Los Angeles, CA 90045

```
Hoffpauer's Screens, continued.
```

```
Scr # 15
               5:TOOLS.BLK
 0 ( Zimmerly's search from Forth Dimensions vol VIII # 4 p 5 )
 1 .LOADING HEX
 J ASSEMBLER LABEL (FINDI) DX SI MOV BX DX MOV BP POP 2PUSH FORTH
 5 CODE SEARCH (S sadr slen badr blen --- adr tflg | junk fflg )
 6 CLD CX POP DI POP BX POP DX POP BF PUSH DX SI XCH5
    CS AX MOV AX ES MOV 0 [SI] AL MOV
 8 HERE BYTE REF SCAS 0=
 ? IF CX PUSH SI PUSH DI PUSH DI DEC BX CX MOV BYTE REPZ CMPS 0=
10
    IF BX POP AX POP AX POP BX DEC -1 # AX MOV (FIND1) #) JMP
11
       THEN DI POP SI POP CX FOP
12 ELSE AX AX XOR (FIND1) #) JMP THEN #) JMP END-CODE
13 .LOADED DEC \S
14
    A Code size: 87 bytes including headers for SEARCH & (FIND1)
 15
3cr # 16
               B: TOOLE. BLK
 0 ( Modified Zimmerly search )
 1 .LOADING HEX
 CODE SEARCH (S sadr slen badr blen --+ adr tflg ( junk fflg )
 4 CS AX MOV AX ES MOV CLD
 5 CX POP
                DI POP
                           BX POP
                                      DX POP
 ċ.
    DX SI XCHG ( ISI) AL MOV
    HERE BYTE REF SCAS 0=
 8 IF CX PUSH BX CX MOV
                                SI PUSH DI PUSH
                                                    DI DEC
          BYTE REFZ CMPS 0=
 9
10
          IF DX SI MOV DX POP DX DEC 4 # SP ADD
11
                -1 # AX MOV
                               2PUSH
                                             THEN
          DI POF SI POP CX POF ROT #) JMP
12
13 ELSE DX 31 MOV AX AX XOR 2PUSH THEN END-CODE
14 .LOADED DEC \S
15 \odot Code size: 67 bytes including a header for SEARCH.
3cr # 17
               B: TOOLS, BLK
 0 ( Improved Zimmerly search )
 1 .LOADING HEX
 CODE SEARCH (5 sadr slen badr blen --- offset tflg ( junk fflg )
 4 CE AX MOV AX ES MOV CLD
 S EX POP
                DI FOP
                           BY POP
                                      DX POP
                                                DT PUSH
 6 DX SI XCH6 0 ISI] AL MOV
     HERE BYTE REP BOAS
                         0=
 8
          CX FUSH BX CX MOV
    IF
                                SI PUSH DI PUSH DI DEC
 3
          BYTE REPZ CMPS
                          ()=
                DX SI MOV DX POP DX DEC 4 # SP ADD
10
          1F
                                                        BX PDF
               PX DY SUB -1 # AX MOV
11
                                            2PUSH
                                                        THEN
          DI POP SI POP CX POP ROT #) JMP
12
13 ELSE DX SI MOV DX POP AX AX XOR DRUGH THEN END-CODE
14 LECADED DEC \S
. 5
     Code size: 72 bytes including a header for SEARCH.
```



## CANDIDATES' STATEMENTS

NOMINEES TO THE FIG BOARD OF DIRECTORS

**C** orth Interest Group members in good standing will elect members of its Board of Directors at the Forth National Convention on November 13-14, 1987. The Board will expand from five to seven members at that time. Robert Reiling and Martin Tracy will continue serving, and John D. Hall is running for reelection.

Kim Harris and Thea Martin are leaving the Board, after donating countless hours to the benefit of the entire Forth community. Kim is one of the five original founders of the Forth Interest Group, and has played an important role ever since then in the shaping of organizational policy and activities, and the Forth language. He will direct the program again at this year's FORML conference.

The following individuals have been proposed by the Nominating Committee as candidates for the five vacant positions on the Board of Directors. Nomination of additional individuals is by petition, requires the signatures of 25 members in good standing of the Forth Interest Group, and must be received by September 19, 1987. A voting mechanism will be provided at the convention.

Nominees were asked to submit statements of their candidacy in 250 or fewer words:

#### Wil Baden

My first computer experience was the MANIAC at Princeton in the 1940's, but I did not become a programmer until 1960. In the meantime I worked as a translator, private detective, editor, and other interesting but uneconomical jobs. Since then I have worked or consulted for Collins Radio, Marshall Communications, CDC, Corregated Computing Techniques, ARAMCO, Logicon, IBM, General Automation, Honeywell, Burroughs, HP, and others. At present I am "senior tool designer" at Doelz Networks, Inc., and am implementing a compiler for LUCREZIA, a programming language named after Lucretia Borgia, to enable programmers to write poisonous spaghetti code in a high-level language. Outside interests include being emcee-director of a stag show with over a thousand performances coast to coast; and lay reader, chalice-bearer, and religious instructor in the Episcopal Church. I have a wife, two daughters, two sons (one a computer hardware expert, the other a software expert, but both excellent Forth programmers), and a small assortment of dogs, cats, and personal computers. I sing second tenor.

#### John D. Hall

I appreciate being nominated once again as a director of the Forth Interest Group. I am willing to serve and I am looking forward to continued active participation.

The first five years of the Forth Interest Group showed rapid growth and many starts in several directions. The

current three years have set us on a firm financial and organizational foundation. When I accepted the directorship, I set three goals to work toward. First was the consolidation and stabilization of FIG Chapters. Second was the growth of income to stabilize the foundation for future growth of the organization. Third was the consolidation and coordination of all Forth organizations into the effort of promoting Forth.

The first two of these goals have now been fully realized and, in accepting the nomination and if elected, I will continue with my third goal and I will set three other goals. First, we should broaden our reach to include professional Forth programmers and companies with products based on Forth. We can and should expect an extraordinary effort on their part in supporting the Forth Interest Group. Second, we must expand and support all educational efforts which promote Forth, whether through FORML, or programs by our members and chapters, or at universities. Third, we must provide additional communication programs to support these first two goals.

The Forth Interest Group will continue to stand as the centerpiece in the promotion of Forth.

#### **Dennis Ruffer**

Not many of you have heard of me, so I should explain my background. Fifteen years ago, I took a BASIC programming course and, liking it so much, I switched career directions to Computer Science. Four years later, I graduated from Western Michigan University with a major in Mathematics and a minor in Computer Science (only because they did not offer a Major in CS). I started my career in Data Processing, with RPG. Mastering that, nine years ago I was offered a job in engineering. The rest is the history of the Smart Scope, an automobile-diagnostics tool produced by the Test Products Division of the Allen Group. We now produce four products using Forth, with eight programmers and a patented diagnostic method I developed.

But why should I direct the Forth Interest Group? My goal is to increase the acceptability of Forth as a viable computer language. Forth suffers from a bad image, an image that it is unsuitable for large applications, that the principles of Computer Science do not work with Forth. I, for one, do not agree with this image, but the image is not completely unjustified. Forth is not much different than many other languages; we still need to use the tools of Software Engineering, but I have not seen much effort in that direction. Our founding fathers (of Forth) have created a very fine language, but software is more than just a language. The software life cycle includes requirements, design, testing, and maintenance, in addition to the implementation of the code. I would like to help this industry move beyond the implementation details. and on to solving the management concerns. Hopefully, I will at least make an impression.

#### **Robert L. Smith**

I have been actively involved in the

Forth community for 10 years, beginning with my membership in the fig-FORTH Implementation Team. I have attended a majority of business meetings of FIG. and have been a member of the board of our local FIG Chapter. I have been the Secretary of the Forth Standards Team since 1982. I have used Forth professionally for the majority of time since learning it. I am the author of the "Standards Corner," which appeared in Forth Dimensions, and have also published a number of other Forth papers.

If elected to the Board, I will strive to represent the various parts of the Forth community. My particular interest is in the needs of the professional Forth programmer. As a member of the Board, I would be eager to hear suggestions for improving the Forth Interest Group.

#### **Teri Sutton**

My name is Terri Sutton, and I am candidate for the FIG Board of Directors, I have been a Forth programmer for over six years. I am currently programming real-time firmware, using Forth assembler. I have just finished a one-year term as Treasurer on the Board of Directors of the Silicon Valley FIG Chapter. I traveled to Taiwan and China last fall to talk about the history of FIG. These experiences have led me to the conclusion that FIG isn't sure what its role should be. As a board member, I will work to determine clear goals for the organization and how to implement them. For example, I want FIG to be able to support its members better by offering workshops and seminars. I would like to look into improving the employment service now offered. Forth isn't getting the credit it deserves, and companies that could profit from using Forth are choosing not to use it. I think FIG should try to change this, possibly by educating programmers and/or companies. I believe that, as a Board member, I can improve FIG's future.

Go FORTH the Apple Computer //e, //c, //gs and /// FORTH is more than just a high level language that combines many of the features of other computer languages. It is a development environment and a method of approaching problem solving. FORTH is a 'grass roots' language, developed and enhanced in the real world by working programmers who needed a language that they could USE. Many of the concepts of FORTH are several years ahead of other languages of today. It is a language as interactive as Applesoft Basic, yet, unlike Applesoft, you don't have to pay the price in slow execution speed. Programs written totally in FORTH are usually faster than programs written in C or Pascal and a heck of a lot smaller. Best of all, FORTH has a large library of public domain programs. Go FORTH is the new FORTH language implementation for the Apple® //e, //c, //gs (//e emulation mode, full //gs version late Fall ) and the Apple  $^{(0)}$  ///. It is 100% ProDOS<sup>®</sup> and SOS <sup>®</sup> supported. **Go FORTH** code is intercompatable with all **Go FORTH** supported machines machines. **Go FORTH** is for the hobbyist, the systems developer, the applications writer, anyone who wants to learn and use the powerful FORTH language. Go FORTH comes with its manual and an assortment of utilities in its SCREEN file. Many other utilities and support systems will

be available soon. For beginners, we highly recommend the Starting Forth manual, and we recommend the Go FORTH Toolkit series for everyone!

#### ONLY \$69.95 Complete, order #5807

Go FORTH Toolkit #1 (Applsoft-like commands/utilities): \$49.95. order #5809 Starting Forth by Leo Brodie (The training manual for Forth): \$21.95, order #5706 Add \$1.00 Shipping and handling per item.

24 HOUR VISA / MASTERCARD ORDER LINES

California Only: (800) 541-0900. Outside California: (800) 334-3030. Outside U.S.A.: (619) 941-5441

#### PAIR SOFTWARE

(916) 485-6525 3201 Murchison Way, Carmichael, California 95608

The ProDOS Forth Language implementation for

Apple // e, // c, // gs and ///, ProDOS and SOS are registered trademarks of Apple Computer, Inc. No affiliation with Pair Software

## FIG CHAPTERS

U.S.A.

 ALABAMA Huntsville FIG Chapter Tom Konantz (205) 881-6483

 ALASKA Kodiak Area Chapter Horace Simmons (907) 486-5049

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Dennis L. Wilson (602) 956-7578
Tucson Chapter
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
John C. Mead (602) 323-9763

#### • ARKANSAS

Central Arkansas Chapter Little Rock 2nd Sat., 2 p.m. & 4th Wed., 7 p.m. Jungkind Photo, 12th & Main Gary Smith (501) 227-7817

#### CALIFORNIA

Los Angeles Chapter 4th Sat., 10 a.m. Hawthome Public Library 12700 S. Grevillea Ave. Phillip Wasson (213) 649-1428 Monterey/Salinas Chapter Bud Devins (408) 633-3253 **Orange County Chapter** 4th Wed., 7 p.m. Fullerton Savings Huntington Beach Noshir Jesung (714) 842-3032 Sacramento Chapter 4th Wed., 7 p.m. 1798-59th St., Room A Tom Ghormley (916) 444-7775 San Diego Chapter Thursdays, 12 noon Guy M. Kelly (619) 454-1307 Silicon Valley Chapter 4th Sat., 10 a.m. H-P, Cupertino George Shaw (415) 276-5953 Stockton Chapter Doug Dillon (209) 931-2448

- COLORADO Denver Chapter 1st Mon., 7 p.m. Clifford King (303) 693-3413
- CONNECTICUT Central Connecticut Chapter Charles Krajewski (203) 344-9996

#### • FLORIDA

Orlando Chapter Every other Wed., 8 p.m. Herman B. Gibson (305) 855-4790 Southeast Florida Chapter Coconut Grove area John Forsberg (305) 252-0108 Tampa Bay Chapter 1st Wed., 7:30 p.m. Terry McNay (813) 725-1245

#### • GEORGIA

Atlanta Chapter 3rd Tues.,6:30 p.m Western Sizzlen, Doraville Nick Hennenfent (404) 393-3010

#### • ILLINOIS Cache Forth Chapter Oak Park

Clyde W. Phillips, Jr. (312) 386-3147 Ceitral Illinois Chapter Urbana Sidney Bowhill (217) 333-4150 Rockwell Chicago Chapter Gerard Kusiolek (312) 885-8092

#### • INDIANA

Central Indiana Chapter 3rd Sat., 10 a.m. John Oglesby (317) 353-3929 Fort Wayne Chapter 2nd Tues., 7 p.m. I/P Univ. Campus, B71 Neff Hall Blair MacDermid (219) 749-2042

• IOWA Iowa City Chapter 4th Tues.

Engineering Bldg., Rm. 2128 University of Iowa Robert Benedict (319) 337-7853 Central Iowa FIG Chapter 1st Tues., 7:30 p.m. Iowa State Univ., 214 Comp. Sci. Rodrick Eldridge (515) 294-5659 Fairfield FIG Chapter 4th day, 8:15 p.m. Gurdy Leete (515) 472-7077

- KANSAS Wichita Chapter (FIGPAC) 3rd Wed., 7 p.m. Wilbur E. Walker Co., 532 Market Ame Flones (316) 267-8852
- MASSACHUSETTS Boston Chapter 3rd Wed., 7 p.m. Honeywell 300 Concord, Billerica Gary Chanson (617) 527-7206
- MICHIGAN Detroit/Ann Arbor area 4th Thurs. Tom Chrapkiewicz (313) 322-7862
- MINNESOTA MNFIG Chapter Minneapolis Even Month, 1st Mon., 7:30 p.m. Odd Month, 1st Sat., 9:30 a.m. Vincent Hall, Univ. of MN Fred Olson (612) 588-9532

#### MISSOURI Kansas City Chapter 4th Tues., 7 p.m. Midwest Research Institute MAG Conference Center Linus Orth (913) 236-9189 St. Louis Chapter 1st Tues., 7 p.m. Thomhill Branch Library Contact Robert Washam 91 Weis Dr. Ellisville, MO 63011

NEW JERSEY
 New Jersey Chapter
 Rutgers Univ., Piscataway
 Nicholas Lordi (201) 338-9363

#### • NEW MEXICO Albuquerque Chapter 1st Thurs., 7:30 p.m. Physics & Astronomy Bldg. Univ. of New Mexico Jon Bryan (505) 298-3292

#### NEW YORK FIG, New York 2nd Wed., 7:45 p.m. Manhattan Ron Martinez (212) 866-1157 Rochester Chapter 4th Sat., 1 p.m. Monroe Comm. College Bidg. 7, Rm. 102 Frank Lanzafame (716) 235-0168 Syracuse Chapter 3rd Wed., 7 p.m. Henry J. Fay (315) 446-4600

 NORTH CAROLINA Raleigh Chapter Frank Bridges (919) 552-1357

#### • OHIO **Akron Chapter** 3rd Mon., 7 p.m. McDowell Library Thomas Franks (216) 336-3167 Athens Chapter Isreal Urieli (614) 594-3731 **Cleveland Chapter** 4th Tues., 7 p.m. Chagrin Falls Library Gary Bergstrom (216) 247-2492 **Dayton Chapter** 2nd Tues. & 4th Wed., 6:30 p.m. CFC. 11 W. Monument Ave., #612 Gary Ganger (513) 849-1483

• OKLAHOMA Central Oklahoma Chapter 3rd Wed., 7:30 p.m. Health Tech. Bldg., OSU Tech. Contact Larry Somers 2410 N.W. 49th Oklahoma City, OK 73112

• OREGON Greater Oregon Chapter Beaverton 2nd Sat., 1 p.m. Tektronix Industrial Park, Bldg. 50 Tom Almy (503) 692-2811 Willamette Valley Chapter 4th Tues., 7 p.m. Linn-Benton Comm. College Pann McCuaig (503) 752-5113

#### PENNSYLVANIA

Philadelphia Chapter 4th Sat., 10 a.m. Drexel University, Stratton Hall Melanie Hoag (215) 895-2628

TENNESSEE East Tennessee Chapter Oak Ridge 2nd Tues., 7:30 p.m. Sci. Appl. Int'l. Corp., 8th Fl. 800 Oak Ridge Tumpike, Richard Secrist (615) 483-7242

#### • TEXAS

Austin Chapter Contact Matt Lawrence P.O. Box 180409 Austin, TX 78718 Dallas/Ft. Worth Metroplex Chapter 4th Thurs., 7 p.m. Chuck Durrett (214) 245-1064 Houston Chapter 1st Mon., 7 p.m. Univ. of St. Thomas Russel Harris (713) 461-1618 Periman Basin Chapter Odessa Carl Bryson (915) 337-8994

• UTAH

North Orem FIG Chapter Contact Ron Tanner 748 N. 1340 W. Orem, UT 84057

#### • VERMONT

Vermont Chapter Vergennes 3rd Mon., 7:30 p.m. Vergennes Union High School Rm. 210, Monkton Rd. Don VanSyckel (802) 388-6698

• VIRGINIA

First Forth of Hampton Roads William Edmonds (804) 898-4099 Potomac Chapter Arlington 2nd Tues., 7 p.m. Lee Center Lee Highway at Lexington St. Joel Shprentz (703) 860-9260 Richmond Forth Group 2nd Wed., 7 p.m. 154 Business School Univ. of Richmond Donald A. Full (804) 739-3623

#### WISCONSIN Lake Superior FIG Chapter 2nd Fri., 7:30 p.m. Main 195, UW-Superior Allen Anway (715) 394-8360 MAD Apple Chapter Contact Bill Horton 502 Atlas Ave. Madison, WI 53714 Milwaukee Area Chapter Donald Kimes (414) 377-0708

#### INTERNATIONAL

AUSTRALIA Melbourne Chapter 1st Fri., 8 p.m. Contact Lance Collins 65 Martin Road Glen Iris, Victoria 3146 03/29-2600 Sydney Chapter 2nd Fri., 7 p.m. John Goodsell Bldg., Rm. LG19 Univ. of New South Wales Contact Peter Tregeagle 10 Binda Rd., Yowie Bay 02/524-7490

BELGIUM

Belgium Chapter 4th Wed., 20:00h Contact Luk Van Loock Lariksdreff 20 2120 Schoten 03/658-6343 Southern Belgium Chapter Contact Jean-Marc Bertinchamps Rue N. Monnom, 2 B-6290 Nalinnes 071/213858

• CANADA

Northern Alberta Chapter 4th Sat., 1 p.m. N. Alta. Inst. of Tech. Tony Van Muyden (403) 962-2203 Nova Scotia Chapter Halifax Howard Harawitz (902) 477-3665 Southern Ontario Chapter Quarterly, 1st Sat., 2 p.m. Genl. Sci. Bldg., Rm. 212 McMaster University Dr. N. Solntseff (416) 525-9140 ext. 3 **Toronto Chapter** Contact John Clark Smith P.O. Box 230, Station H Toronto, ON M4C 5J2 Vancouver Chapter Don Vanderweele (604) 941-4073

 COLOMBIA Colombia Chapter Contact Luis Javier Parra B. Aptdo. Aereo 100394 Bogota 214-0345

- DENMARK Forth Interesse Gruupe Denmark Copenhagen Erik Oestergaard, 1-520494
- ENGLAND Forth Interest Group- U.K. London 1st Thurs., 7 p.m. Polytechnic of South Bank Rm. 408 Borough Rd. Contact D.J. Neale 58 Woodland Way Morden, Surry SM4 4DS

• FRANCE French Language Chapter Contact Jean-Daniel Dodin 77 Rue du Cagire 31100 Toulouse (16-61)44.03.06 FIG des Alpes Chapter Annely Georges Seibel, 50 57 0280

• GERMANY Hamburg FIG Chapter 4th Sat., 1500h Contact Horst-Gunter Lynsche Common Interface Alpha Schanzenstrasse 27 2000 Hamburg 6

 HOLLAND Holland Chapter Contact Adriaan van Roosmalen Heusden Houtsestraat 134 4817 We Breda 31 76 713104

• IRELAND Irish Chapter Contact Hugh Dobbs Newton School Waterford 051/75757 or 051/74124

• ITALY FIG Italia Contact Marco Tausel Via Gerolamo Forni 48 20161 Milano 02/435249

 JAPAN Japan Chapter Contact Toshi Inoue Dept. of Mineral Dev. Eng. University of Tokyo 7-3-1 Hongo, Bunkyo 113 812-2111 ext. 7073

 NORWAY Bergen Chapter Kjell Birger Faeraas, 47-518-7784

Volume IX, Number 2

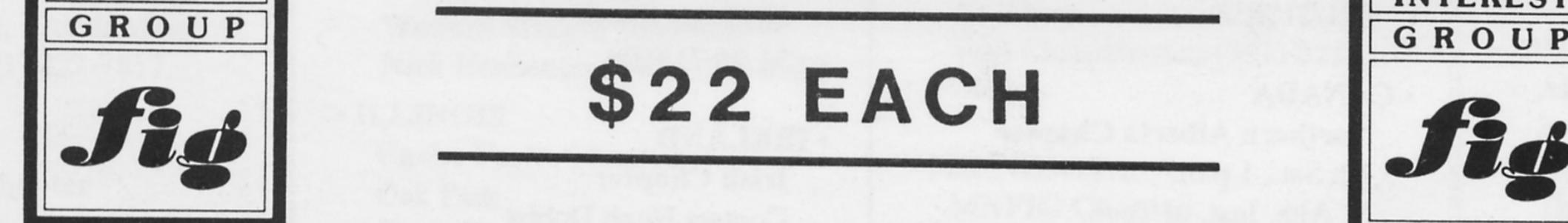
• REPUBLIC OF CHINA (R.O.C.) Contact Ching-Tang Tzeng P.O. Box 28 Lung-Tan, Taiwan 325

- SWEDEN Swedish Chapter Hans Lindstrom, 46-31-166794
- SWITZERLAND Swiss Chapter Contact Max Hugelshofer ERNI & Co., Elektro-Industrie Stationsstrasse 8306 Bruttisellen 01/833-3333

#### SPECIAL GROUPS

 Apple Corps Forth Users Chapter
 1st & 3rd Tues., 7:30 p.m.
 1515 Sloat Boulevard, #2 San Francisco, CA Dudley Ackerman (415) 626-6295

• Baton Rouge Atari Chapter Chris Zielewski (504) 292-1910


• FIGGRAPH Howard Pearlmutter (408) 425-8700

 NC4000 Users Group John Carpenter (415) 960-1256

## NOW AVAILABLE

"For all versions of FORTH, with additional information on extension wordsets of the MMSFORTH System."





# FROM THE FORTH INTEREST GROUP

Forth Interest Group P.O.Box 8231 San Jose, CA 95155

