

F O R T H
-

FLEXIBLE TEST ENVIRONMENT JOHN MULLEN
9

Forth's interactiveness simplifies testing and.debugging, but some words or components can be
difficult to verify. The author describes a test environment that optionally prints messages at run
time, without modification of source screens. He describes the environment's implementation, and
how it may be used. -

FORGETTABLE INTERNAL NAMES MICHAEL HORE
12

, Internal names are only used locally in an application. Dewey Val Schorre presented three words
(INTERNAL, EXTERNAL, and MODULE) to implement this notion. The code here will
allow a whole module to be loaded temporarily and then dismissed from memory, leaving
subsequent definitions intact -

CONSUMERIZED FORTH KEN TAKARA
18

Many applications hide Forth completely, but a robotic construction kit needs to include a robot
control language. What do you include in a language for computer novices? What are the selection
criteria? -

EXECUTION SECURITY G.R. JAFFRAY, JR.
25

One reason Forth runs so fast is that it does not have the built-in checks of other high-level
languages. During development, this means crashes that could be avoided with this patch that
provides execution security. -

1987 ROCHESTER FORTH CONFERENCE JERRY SHIFRIN
26

Technical discussion at the University of Rochester this year included several talks on the
massively parallel processors being programmed in Forth, an interesting panel discussion on
standards, and many other subjects.

m
STARFLIGHT, STAR BRIGHT INTERVIEW WITH TIM LEE

29
Two programmer-decades of work have put more alien races, planets, and realistic interaction onto
two full disks than a user-century of play may uncover. This game is breaking sales records at
warp speed. -

CANDIDATES' STATEMENTS FIG BOARD NOMINEES
40

Several individuals have been nominated as candidates for the vacant positions on the Forth Interest
Group's Board of Directors. They were asked to submit statements of their candidacy, which are
printed here in full.

EDITORIAL
4

LETTERS
5

ADVERTISERS INDEX
28

FIG CHAPTERS
42

I

Volume IX, Nwnber 2 3 Forth Dimensions

Forth Dimensions
Published by the

Forth Interest Group
Volume IX, Number 2

JulyIAugust 1987
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics
ISSN#O884-0822

This year's National Forth Con-
vention will be the occasion to celebrate
ten years of the Forth Interest Group.
C.H. Ting, the program director, points
out that by understanding where Forth has
come from, we can better see where it is
going. The convention program promises
to deliver presentations from people who
have figured prominently in the history of
the Forth Interest Group, who have made
significant contributions to Forth's evolu-
tion, and who have witnessed the key
turning points in our industry.

This will be a time to look both
backward and forward in time, to
assimilate the collective experiences of
the past, and to gather ourselves for the
requirements - and unexpected
adventures - that the next ten years will
bring. Look for details in this issue; we'll
look for you in November.

As for looking forward, FIG'S by-
laws now provide for membership-wide
election of its Board of Directors. Five
positions will be filled by vote at the
annual FIG meeting and election, to be
held at the Forth National Convention
this year (see "Candidates' Statements'').
As the Forth Interest Group grows and
becomes broader based, the full
participation of its members is needed if
the organization is to best serve the needs
of those members. In colloquial terms:
don't get frustrated, get involved. Another
good reason to be at this year's
convention.

Klaus Schleisiek has extended an
invitation and call for papers to an
upcoming euroFORML conference on
"The Forth Programming Language and

Forth Processors." From September 18-
22, 1987 at Stettenfels Castle, West
Germany (sponsored by Forth Gesell-
schaft eV, FRG), this year's conference
will focus on Forth in hardware, and on
the possibilities opened up by the
quantum leap in speed of the new Forth
processors.

Perched in the yicinity of Heilbronn
(near Stuttgart), the castle holds 60
overnight guests, and 100 conferees. If
you aren't geared up for a stay in the 12th
century castle, reservations for more
modem, bed-and-breakfast accommoda-
tions can be arranged. Conference lan-
guages will be English and, of course,
Forth. Presentors can publish and orally
present papers, hold special-interest
"poster sessions," and conduct "on-
demand" workshops. An advance deposit
of DM200,- is required. Send camera-
ready papers to Forth Gesellschaft by
September 1; write C.D. Osten,
Gneisenaustr. 23, D-2000 Hamburg 20,
West Germany; or call (49) (40) 422
1694 or (49) (40) 490 5195. Klaus is
available on Delphi as KS.

-Marlin Ouverson
Editor

"Forth Dimensions is published bi-
monthly for $241'36 per year by the Forth
Interest Group, 1330 S. Bascom Avenue,
Suite D, San Jose, CA 95128. Second-
class postage pending at San Jose, CA.
95 101 POSTMASTER: Send address
changes to the Forth Dimensions Group,
P.O. Box 8231, San Jose, CA 95155."

Forth Dimensions welcomes editorial
material, letters to the editor, and com-
ments from its readers. No responsibility
is assumed for accuracy of submissions.

Subscription to Forth Dimensions is
included with membership in the Forth
Interest Group at $30 per year ($43
overseas air). For membership, change of
address, and to submit items for
publication, the address is: Forth Interest
Group, P.O. Box 8231, San Jose,
California 95155. Administrative offices
and advertising sales: 408-277-0668.

Copyright O 1987 by Forth Interest
Group, Inc. The material contained in this
periodical (but not the code) is copy-
righted by the individual authors of the
articles and by Forth Interest Group, Inc.,
respectively. Any reproduction or use of
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes, without the written
permission of Forth Interst Group, Inc. is
a violation of the Copyright Laws. Any
code bearing a copyright notice, however,
can be used only with permission of the
copyright holder.

About the Forth Interest Group
The Forth Interest Group is the

association of programmers, managers,
and engineers who create practical, Forth-
based solutions to real-world needs. Many
research hardware and software designs
that will advance the general state of the
art. FIG provides a climate of intellectual
exchange and benefits inkended to assist
each of its members. Publications,
conferences, seminars, telecommunica-
tions, and area chapter meetings are
among its activities.

I

Forth Dimensions 4 Volwne lX, Nunaber 2

LETTERS

Sorting Out Batcher's

Dear Mr. Ouverson,
Many thanks for the article on

"Batcher's Sort," by John Konopka (FD
VIIV4). I am about the present this to my
students in a Forth class here.

When typing BSORT, I found two
offsetting errors. The program runs
correctly, but gives a misleading
impression about the role of QQ in
BSORT. Consider the BSORT program
fragment:

: BSORT (n --) ...
BEGIN QRD-SET QQ

BEGIN INNER-LOOP
Q-TEST UNTIL ... ;

Q-TEST implies establishing a flag
for UNTIL to read. However, the written
Q-TEST gives a zero flag only if QQ
o PP, otherwise no flag at all.

Secondly, constant QQ of the
fragment compensates by providing a
number that acts like a flag. By actual
test, QQ here is always the maximum
possible value (two or greater) for any
number n that is two or greater.

Enclosed is a rewritten program in
Forth-83 -rather than the original Forth-
79 - that embodies the change of Q-
TEST always supplying a flag.

Thanks for good articles like these,
and please keep them coming.

Sincerely yours,
Allen Anway
Superior, Wisconsin

Dear Marlin:
An interesting thing happened on the

way to BSORT. I keyed in the screens
but, not wanting to load a random number
generator (see the data.tst screen enclosed),
1 simply wrote INIT-DATA to fdl the
DATA array with memory contents of
bytes zero through 100. Then I executed
BSORT. But what is this? When I
executed LIST-DATA, the data were
only partially sorted!

In a sort of muddled attempt to find
out what was going on, I executed
BSORT again - and again. After a
number of these, the list was properly
sorted. Why did it require multiple passes?

The best I can figure it, BSORT
won't sort the data into proper order on
one pass if some of the data are
duplicated. Listing the contents of the
DATA array before sorting, I noted many
duplications.

The key to this problem is in the
word COMPARE-AND-SWAP, which
calls SWAP-DATA if one item of data
is greater than the other when the two
comparison keys generated by INNER-
Loop are used to index into the DATA
array. Envision a sequence of data that
gets swapped because 330 is found to be
larger than 225 (the second item), but
another pass will be required to make the
final swap, producing the order ... 330,
225,225,225

The listings of the files batcher.blk
and data.tst offer one way of fixing the
problem. I decided to use variables instead
of constants, as I don't think the time
savings is significant in my application. I
also used F'83's DEFER-IS to handle
the forward reference to KC.

The fix I finally decided on uses
SORT-FLAG to hold a flag that forces
BSORT to repeat its execution of the
original loops until a pass is made that
requires no data swaps. If it is known that
the data to be sorted will not have
duplications, there is no problem.
Otherwise, the definition of SWAP-
DATA, or whatever definition replaces it,
must set SORT-FLAG "on" when it
executes. Of course, a new outer loop for
BSORT will be needed in that case.
Notice that BSORT sets SORT-FLAG
OFF on each pass of the new outer loop;
BSORT may be left as it is and the
phrase SORT-FLAG ON put into
SWAP-DATA, or not, depending on
whether it is needed.

I assumed a purpose (and a definition)
for the word **. I have seen it defined
elsewhere to produce altogether different
results, but this seemed to make sense, at
least to me; so, a reminder to authors:
please define your non-standard words,
even if they are deemed to be fairly well
known.

Sincerely,
Gene Thomas
Central Arkansas FIG Chapter
Little Rock, Arkansas

Forget Automatically

When you are editing definitions in a
block, the load-test-edit cycle can be
speeded up by automating the
FORGETting of the first word in a
block. This can be done by typing
CREATE TASK

I - J

Volume IX, Number 2 5 Forth Dimensions

NGS FORTH
I I A FAST FORTH,

OPTIMIZED F13R THE IBM I 1 1
I I PEBONAL COMPUTER AND

MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

079 STANlXRD

.DIRF,CX' 1/0 ACCESS I

.FULL ACCESS TO MS-DOS
PILES AND FUNCTIONS I
*ENVIRONMENT SAVE

& rnAD I
.MULTI-SEGMENTED FOR
LARGE APPLICATIONS 1
.EXTENDED ADDRESSING I
.MEMORY ALIU)CATION
CONFIGURABLF: ON-LINE 1
.AUTO IDAD SCREEN BOOT I
.LINE & SCREEN EDITORS I
O D E C O M P I ~ AND
DEBUGGING AIDS

08 08 8 ASSEMBLER

GRAPHICS & SOUND

ONGS ENHANCEMENTS

ODETAILED MANUAL

.INEXPENSIVE UPGRADES

oNGS USER NEWS-

A CrmPLGTE FORTH
DEVEU)PMENT SYSTEM.

PRICES START AT $70 I
NEPOeHP-150 & EF-110
VERSIONS AVIIULBLE I

NEXT GENERATION BYSTEM9
PoOoBOX 2987
SANTA CLARA, CA. 95055
(408) 241-5909

SCREEN # 080
0 CONSTANT TT 0 CONSTANT RR
0 CONSTANT DD 0 CONSTANT PP
0 CONSTANT NN 0 CONSTANT QQ

2DROP CONSTANT KC

: 2**N 1 SWAP S H I F T ; (n --- 2**n)

(i n d e x l \ i n d e x 2 ---)

: KEY-COMP KC EXECUTE ;

: SEL-T NN 15 0 DO DUP I 2**N <=
I F DROP I LEAVE THEN LOOP 1- 14 M I N

(---) C ' T T 2+ I L I T E R A L ! ;
(--- 1
: INNER-LP NN DD - 0 DO I P P AND RR =

I F I DUP DD + KEY-COMP THEN LOOP ;

: Q-TEST QQ PP = DUP O= (--- f l a g
I F QQ PP - C ' DD 2+ I L I T E R A L !

QQ 2/ C ' OQ 2+ I L I T E R A L !
PP C ' RR 2+ I L I T E R A L !

THEN ;

--
j names TT e t c f r o m K n u t h

SCREEN # 081
: QRD-SET (---)

TT 2**N C ' QQ 2+ 3 L I T E R A L !
0 C ' RR 2+ 3 L I T E R A L !

PP C ' DD 2+ 3 L I T E R A L ! i

: BSORT (n ---)

(n) C ' NN 2+ I L I T E R A L ! SEL-T
TT 2**N C ' PP 2+ I L I T E R A L !
BEG I N QRD-SET

BEGIN INNER-LP Q-TEST
U N T I L P P 2/ DUP

C ' PP 2+ I L I T E R A L ! 0=
U N T I L ;

FORTH-83
--> A l l e n Anway, S u p e r i o r , W I , 1-9-87
B a t c h e r ' s sort------- John K o n o p k a

M i t a k a S h i , J a p a n
Forth D i m e n s i o n s , Nov-Dec 1986, page 39
K n u t h , A r t of C o m p u t e r P r o g r a m m i n g ,
V o l 3, pp 111-122, A d d i s o n - W e s l e y 1973

T o use, define SWAPPER (ind l \ ind2 ---)

l a te r , t o c h e c k and perhaps swap. Then,
' SWAPPER ' KC 2+ ! (n ---) BSORT

at the start of an editing session, and
writing
FORGET TEST CREATE TASK
at the top of the block. When editing of
the block is complete, the references to
TASK can be erased. Even the manual

insertion and deletion of marker words
like TASK can be avoided if LOAD and
--> are redefined so that they do the job.

The new LOAD constructs a dist-
inctive name for the block to be loaded,
and looks for a word with that

I 1

Forth Dimensions 6 Volwne IX. Nwnber 2

Thomas's Screens

0 2
0 BSORT f i xed . F83 2.0.1 Dec1986: g t \ BSORT Dec1986:gt
1 As presented by John Konopka i n FD Vol 814, BSORT w i l l no t
2 c o r r e c t l y s o r t on one pass i f t he re are data-dupl icates i n the
3 l i s t t o be sorted. The nurber of passes requ i red depends on how \ n -- n i s nurber o f i t e r s t o so r t , r u s t be p o s s i t i v e
4 many d u p l i c a t i o n s the re are o f t h e same nurber, and w i t h how : BSORT SORT-FLA6 ON
5 many d i f f e r e n t numbers t h a t occurs. Here, a s o r t f l a g i s used BEGIN SORT-FLA6 e WHILE DUP SORT-FLA6 OFF
6 t o f o r c e BSORT t o repeat u n t i l 1 a pass w i t h no data swag i s l ade (repeat w h i l e s o r t - f l a g i s on 1 CR .' X X X '
7 'NN ! . SELECT-T TT e z t t ~ PP !
8 BE~IN QRD-SET QQ e
9 6ene Thoras BE6IN INNER-LOOP Q-TEST UNTIL

10 7705 Apache Rd. PP e 21 DUP PP ! O=
11 L i t t l e Rock, AR 72205 UNTIL
12 REPEAT DROP ;
13
14 FROH B:DATA.TST 1 LOAD
15 Centra l Arkansas For th I n t e r e s t 6roup \ count executions o f .' xxx' t o see how rany passes were made

1 3
0 \ BSORT Dec1986:gt \S BSORT
1 DEFER KC ' NOOP I S KC VARIABLE NN VARIABLE RR
2 VARIABLE QQ VARIABLE DD VARIABLE PP VARIABLE TT
3 VARIABLE SORT-FLR6
4 : KEY-COUPARE KC ; KEY-COHPARE
5
b : 21tN (n -- n l n) DUP 1 ; 21tN
7 : SELECT-T NN e 1s o DO DUP I zt tn (= IF DROP I LEAVE THEN LOOP SELECT-T
8 1- 14 HIM TT ! ;
9 : INNER-LOOP NN e DD e - o DO I PP e RND RR e = INNER-LOOP

10 IF I DUP DD e t KEY-COMPARE THEN LOOP ;
11 : Q-TEST QQ e PP e o IF oo e PP e - DD ! ee e 2/ QQ ! a-TEST
12 P P ~ R R ! OTHEN ;
13 : ORD-SET TT e zttn ee ! RR OFF PP e DD ! ; ORD-SET
14
15 -->

Dec 1986: g t

c a l l t he compare-and-swap d e f i n i t i o n t h r u KC
I ' compare-and-swap i s kc
square n
set outer loop l irit

corpare the keys, swap out-of -order-data

t e s t f o r end o f r i d d l e loop

setup i n d i c e f o r 0- test

0 1
0 \S BSORT t e s t ~ e c l 9 8 6 : ~ t \ BSORT t e s t Dec1986: gt
1 VARIABLE X1 VARIABLE X2 CREATE DATA 200 KLOT
2 : INIT-DATA (f i l l data array w i th r e r o r y contents 1
3 INIT-DATA on r y Kaypro I t h i s ensures q u i t e a few data 100 0 DO I e I 21 DATA + I LOOP ;
4 dupl icat ions, sore nurbers occuring >5 t i r e s
5 : SWAP-DATA SORT-FLA6 ON
6 SWAP-DATA swap the data i n DATAtnKey and DATAtrKey XI e DATA t e 12 e DATA t e
7 SET SORT-FLA6 DN I F THIS IS CALLED 11 e DKA t ! x2 e DATA + ! ;
8
9 : CDHPARE-AND-SWAP (n r -- 1

10 COHPARE-AND-SWAP compare the data pointed t o by the keys output 21 X I ! 2 t X2 ! X1 e DATA t e X2 e DATA t e)

11 by BSORT's inner-loop, swap i f datatn i s) I F SWAP-DATA THEN ;
12 data+r ' COHPIRE-AND-SNAP I S KC
15
14 LIST-DATA l i s t DATA array : LIST-DATA CR 100 o DO I 21 DATA t e 7 .R 1 1 t 10 HOD O=
15 I F CR THEN LOOP ;

I

Volume R, Number 2 7 Forth Dimensions

name in the dictionary. If it is found,
FORGET is used to delete it and its
successors. Then the name is used to
CREATE a new null word, and the block
is loaded in the usual way.

The definitions given here assume
that the terminal input buffer can be
temporarily relocated. This would not be
necessary in a version of Forth in which
FORGET and CREATE can be factored
into two parts: a string-grabbing part and
a part that refers to the address of the
string.

To recover the space occupied by all
the null words created by the new LOAD,
FORGET the new LOAD and reload
everything with the old LOAD.

Philip Bacon
Gainesville, Florida

Swift 6502 Multi-Tasking

Editor,
Richard Rooney wrote to you (FD

VII46) asking whether anyone had
implemented the Laxen model multi-
tasker on a 6502. Yes.

Six months ago I, too, worked
through the Laxen tutorial. Of course, the
crux of the matter is getting around the
fixed return stack in page one, and the
data stack in page zero (fig-FORTH). My
solution, after failure with block moves
(too slow), was to add a little hardware.
The "little hardware" is a stack seg-
mentation scheme. Use a PIA to switch
in a new page zerolone pair for the next
task.

Overhead? Two additional assembly
instructions. Very fast. This is very easy
to do on the old OSI Challenger I11
system, because of the presence of pseudo-
address lines A16-A19, which are PIA
controllable. I had to modify an extra
memory board, which became stack
memory. This took only two ICs and
about 25 jumpers. As Richard Rooney
guessed, you use the B R ~ in place of
Laxen's RST. My 6502 fig-FORTH
multi-tasker handles 16 tasks. And it's
fast.

I found Laxen's article to be very
rewarding. So get those back issues and
work through it!

Best regards,
Dale King
Leonard, Texas

Searching for F83

Dear FIG:
When I received the Novern-

ber/December issue of Forth Dimensions,
I was writing a full-screen, mernory-
mapped editor for Laxen and Perry's F83.
I had just gotten to the point where I was
able to use my new editor to add the bells
and whistles - one of which was the
search function. I had not intended to
rewrite the one provided, but Mr. Bill
Zimmerly had submitted a fast, assembly
language version of SEARCH. This got
me interested, so I studied it with the
intention of replacing the high-level
SEARCH provided in F83.

I wish to address three points: 1.
Brother Zimmerly asks, in the shadow
screen accompanying his code, "How
could it be faster?" I can make it faste~
(and smaller, too). 2. Mr. Zimmerly's
code does not return the same results as
the SEARCH provided in F83 - he
returns an address and a flag, while F83
returns an offset and a flag. (3) Mr.
Zimmerly's SEARCH is not case sen-
sitivelneutral, as is Laxen and Perry's
version.

Screen 15 is Mr. Zimmerly's, and
compiles to 87 bytes, including headers
for (FIND1) and SEARCH. If meta-
compiled so that (FIND1) has no
header in the new system, this can be
reduced to 75 bytes.

Screen 16 is my modification of Mr.
Zimmerly's SEARCH. It compiles to 67
bytes, and I claim it will run faster. First,
I eliminated the PUSH and POP of the
BP register, which serve no purpose since
BP is not used and, therefore, is not
changed. This saves four bytes. Next, I
moved the exit code from a labeled
routine into the SEARCH code,
eliminating one jump for each execution
of SEARCH. Finally, I moved the jump
from the end of the routine to HERE (top
of loop) in the I F statement. This will
eliminate a jump every time there is a
match on the first character but failure to
match on the whole string.

(Continued on page 36.,
I

Forth Dimensions 8 Volume IX, Nwnber 2

FLEXIBLE
TEST ENVIRONMENT

A lthough Forth's interactive
environment simplifies testing and
debugging, there are times when a word
or component is difficult to verify. Test
prints can be used to clarify what is
happening within a word at run time; but
it is tedious to insert these print
statements when they are needed, and then
to either delete or comment them out
when they are not.

The words described below set up a
test environment that allows one to
choose whether or not messages will be
printed at run time, without modifying
source screens. I have implemented this
environment in polyFORTH on an IBM-
AT, MVP-FORTH on a Texas Instru-
ments Professional, and SuperFORTH on
a Commodore-64. This article describes
the environment, how to implement it,
and how it may be used.

Test Mode Control
The first step is to establish a means

of controlling the test environment.
Screen 10 defines the constant TEST?
which indicates test status. It is defined as
a constant rather than as a variable, since
it is to be used far more often that it is to
be changed. The constants YES, NO,
TRUE, and FALSE allow some
variation in phrasing commands. The
word .L will display the value of a
logical flag as either YES or NO, so the
effect of TESTING? is:

TESTING? XES

The word TESTING will change the
value of TEST?. For example, the

JOHN MULLEN - AMES, IOWA -

phrase YES TESTING will set the
testing mode.

Conditional Display Words
The test words defined in screen 11

will display information if the test mode
is set, but will have no effect if it is not.
The words T., TCR, and T. S cover
situations I encounter frequently. Their
definition simply makes subsequent words
more compact and easier to read.
However, TESTv1 is a bit more
complicated than the others.

Certainly, one could set up
conditional prints as needed, for example:

. . . TEST? IF ." TWO Real
Roots" THEN ...

The message would appear only if the test
mode is set, but this takes up more room
in each definition, and is far less elegant,
than:

... TEST" Two Real Roots "

...

The effect of TEST" is much like
that of ABORT", except that ABORT is
not called. Its definition was adapted from
that of ABORT" and . " as described in
All About Forth (Glen B. Haydon,
Mountain View Press). Basically, two
words are needed: <TEST1'> to
conditionally print a string compiled into
a word's definition, and TEST" to com-
pile that string.

The immediate word TEST1' will
compile into the definition <TEST">
and the string following TEST" in the

input stream. For example, suppose the
phrase below is entered:

After checking the state, TEST"
compiles the code field address (CFA) of
<TESTv1> into the definition. The
ASCII code for " is 34, so the phrase
3 4 WORD will place the string PHASE
A into the dictionary. But WORD will
not affect the dictionary pointer (DP),
although it does leave its current value
(HERE) on the stack. The phrase C@
1+ ALLOT then increments the
dictionary pointer to the first cell beyond
the end of the string. This series of
events is depicted in Figure One.

<TESTw> expects a string to be
stored in the word's definition im-
mediately after its address. Note that the
string starts at the same address as that
pushed on the return stack when
<TEST1'> is called.

<TEST1'> first Sets up the string
for TYPE, then adjusts the return address
so that it points to the first address
beyond the string. If this were not done,
the interpreter would return to the count
byte and first text byte of the string, with
disastrous results. Then, if the test mode
is set, <TEST"> will display the
compiled string; otherwise, the string's
address and length count are dropped from
the stack. This action is depicted in
Figure Two.

The version of <TEST1'> shown
has worked on all three Forth systems
tested, but TEST" is somewhat system
dependent, so it should be implemented

Volume IX, Number 2 9 Forth Dimemiom

L

Forth Dimemions 10 Volwne IX, Number 2

1. Prepare the string at
adrl adr2 for TYPE using

COUNT.

adr2

2. Change the return
address from adr2 to
adr3 using the length of
the string.

3. Either type the
string or dump the
string's address and

din on the
adr3 !;%ST$

Figure Two. Action of <TESTw>

with care. The version shown works in
MVP-FORTH and SuperFORTH-64, but
the string is compiled in the polyFORTH
version of TESTvv with the phrase 34
STRING, which replaces lines 11 and
12 of screen 11.

If you want to try this in some other
version of Forth, be aware that WORD
does not work the same in all dialects.
Some versions leave HERE on the stack
and others do not. In addition, watch that
TESTn and <TESTq1> agree on where
the next address after the string is stored.

A lot of my personal taste goes into
lo and There are many

synonyms for TRUE and FALSE, and

1.Put the CFA of
adrl <TEST'> at adrl.

Advance DP to adr2.

2. Compile string at
adr2 using WORD.

3.Use ALLOT and the
count at add to advance
DP to adr3.

adr3

FigW One, Action of TEST"

you may wish to add to or delete from the
list of test words. But there are three
suggestions I would make. First of all,
set UP to print the same number of
characters in both the true and false case.
This makes it easier to use . L to set up
tables that look nice. Secondly, be sure
that d l TEST words are stack n e u d .
Note, for example, that T . duplicates the
top value before printing. The final
suggestion is to set up TEST? as a
constant. Not only will you save two
bytes in every defining screen and two in
each definition, but you won't have to
remember whether to use @ or C@.

A Better Way
Nifty as this system is, there are two

major drawbacks to its use. First of all,
although nothing is displayed when the
test mode is not set, TEST? is still
being checked by each test word. TEST"
is a real time consumer, since even when
TEST? is false, <TESTw> must still
manipulate return addresses to avoid a
system crash. The execution time for
TEST" when TEST? is false is about
0.1 msec. on the IBM-AT, and 18.5 msec
on the Commodore-64, which is enough
time to affect some applications.

Secondly, when one is sure that a set
of words no longer needs testing, its
definitions are still cluttered up with the
test prints, which uses dictionary space
needlessly. Of course, you could go back
and comment out all the test prints, but
this is tedious and hard to change back, if
an unexpected bug arises.

Screens 12 and 13 display more
advanced versions of the words defined in

Sgy:NL& SCREEN FOR TEST ENVIRONMENT JPM 06NOV85)
1) LO LOAD
2) 12 13 THRU
3) EXIT
4)
5) THE TEST ENVIRONMENT ALLOWS ONE TO DECIDE AT COMPILE TIME
6) WHETHER OR DOT DEBUGGING CODE SHOULD BE COMPILED INTO A WORD'S
7) DEFINTION. IN ADDITION, THE DEBUGGING CODE IS CONDITIONAL SO
8) ONE CAN DECIDE WHETHER OR NOT TO EXECUTE THE CODE AT RUN TIME.
9)
10)

-

screen 11. If TEST? is true at compile
time, then these words work exactly as
t h e ~ earlier versions. If TEST? is false,
however, nothing at all is compiled into
the definition.

The method used for most of the
words is straightforward. For example,
<TCR> in screen 12 is defined exactly as
TCR was in screen 10. Then, the
immediate word TCR is defined to
compile <TCR> into a word only if
TEST? is true. This pattern can be
followed for any of the other words,
except TEST".

The only problem with TEST" is
how to deal with the string following it
in the input stream if TEST? is false.
The definition of TESTv1 in screen 13
functions just the same as the earlier
version in screen 11 if TEST? is true,
but uses WORD to move the interpreter
beyond the string if TEST? is false. The
polyFORTH version also uses WORD to
do this, but has no DROP in line 10,
since its version of WORD does not leave
HERE on the stack.

Using the System
TEST? may be checked at both

compile time and run time. If TEST? is
true at compile time, conditional code is
inserted so that you can turn displays on
and off at run time. However, if TEST?
is false, the code is not inserted and test
displays will not appear at run time,
regardless of the value of TEST?.

Suppose an application consists of
five screens, four of which are thoroughly
debugged, and one (screen 23) that is not.
A load screen might appear, as follows:

NO TESTING 22 LOAD
YES TESTING 2 3 LOAD
NO TESTING 24 2 6 THRU

The result would be that any test code
in screens 22,24, 25, or 26 would not be
compiled, but test code in screen 23
would. Thereafter, whenever TEST? is
true, the test displays from screen 23
would appear.

SCREEN I10
0) (TEST ENVIRONMENT CONTROL
1) -1 CONSTANT TRUE TRUE CONSTANT YES
2) 0 CONSTANT FALSE FALSE CONSTANT NO

JPM 06NOV85)

3) : .L (LF) IF . " YES " ELSE . " NO " THEN ;
4) YES CONSTANT TEST? - -

5j : TESTING? TEST? . L ;
6) : TESTING (LF) [' I TEST? ! ; EXIT

8j IT IS SET UP TO PRODUCE THE SAME WIDTH OF OUTPUT IN EITHER CASE
9) IN ORDER TO SIMPLIFY SETTING UP TABULAR DISPLAYS.
10) TEST? IS USED TO SIGNAL WHETHER OR NOT THE TEST MODE IS SET.
11) TESTING? WILL REPORT THE CURRENT STATE, TESTING WILL CHANGE IT.
12) E.G. NO TESTING RESETS THE TEST MODE.
13)
14)
15)

SCREEN #I 1
0) (TEST" ETC, V1 - RUN TIME CHECKING OF TEST? JPM 06NOV85)
1) : TCR TEST? IF CR THEN ;
2) : T. TEST? IF DUP . THEN ;
3) : T.S TEST? IF .S THEN ;
4) : <TEST"> (CONDITIONAL PRINT OF A COMPILED STRING)

5j R@ COUNT i SET UP THE STRING FOR TYPE)
6) DUP 1+ R> + >R (ADJUST RETURN ADDRESS)
7) TEST? IF TYPE ELSE 2DROP THEN ;
8) : TEST" (COMPILATION OF A STRING AND <TESTm>)
9) ?COMP (COMPILE ONLY)
10) COMPILE <TESTu> (RUN-TIME CODE FOR TEST")
11) 34WORD (DELIMITER IS ")
12) C@ 1+ ALLOT ; (ADVANCE HERE TO THE END OF THE STRING)
13) IMMEDIATE EXIT
14)
15)

SCREEN #I2
0) (SIMPLE TEST WORDS CHECK TEST? AT COMPILE TIME JPM 06NOV85)
1) : <TCR> TEST? IF CR THEN ;
2) : TCR ?COMP TEST? IF COMPILE <TCR> THEN ; IMMEDIATE
3) : <T. > TEST? IF DUP . THEN ;
4) : T. ?COMP TEST?IFCOMPILE<T.> THEN; IMMEDIATE
5) : <T. S> TEST? IF . S THEN ;
6) : T.S ?COW TEST? IF COMPILE <T.S> THEN ; IMMEDIATE EXIT
7 \

SCREEN #13
0) (TEST". VII - CHECKS TEST? AT COMPILE TIME JPM 04MAY86) - - - - . ~ ~ - ~ - -

ij f <TEST;-> (CONDITIONAL PRINT OF A COMPILED STRING)
2) R@ COUNT (SET UP THE STRING FOR TYPE)
3) DUP 1+ R> + >R (ADJUST RETURN ADDRESS)
4) TEST? IF TYPE ELSE 2DROP THEN ;
5) : TEST" (CONDITIONAL COMPILATION OF A STRING AND <TEST->)
6) ?COW TEST? IF
7) COMPILE <TEST"> (RUN-TIME CODE FOR TEST")
8) 34 WORD C@ 1+ ALLOT (COMPILE THE STRING
9) ELSE
ioj 34 WORD DROP (DISCARD THE STRING)
11) THEN ; IMMEDIATE EXIT

FORTHkit

5 Mips computer kit

Includes:

Novix NC4000 micro
16Ox100mm Fk3 board
Press-fit sockets
2 4K PROMS

Instructions:

Easy assembly
cmFORTH listing

shadows
Application Notes
Brodie on NC4000

You provide:

6 Static RAMS
4 or 5 MHz oscillator
Misc. parts
250mA @ 5V
Serial line to host

Supports:

8 Pin/socket slots
Eurocard connector
Floppy, printer,

video I/O
272K on-board memory
Maxim RS-232 chip

Inquire:

Chuck Moore's

Computer Cowboys

410 Star Hill Road
Woodside, CA 94062

(41 5) 851 -4362

I

Volume IX, Number 2 11 Forth Dimensions

FORGETTABLE
INTERNAL NAMES

F rom time to time, there have been
various proposals for dealing with
internal, or local, names. By these, I
mean the names of words that are only
used internally in an application, never
called from outside. A particularly nice
scheme was presented by Dewey Val
Schorre, back in Forth Dimensions IV5
("Structured Programming by Adding
Modules to Forth"). Dewey brought the
notion of a "module," and presented three
words (INTERNAL, EXTERNAL, and
MODULE) to implement this notion.
Each module is a self-contained unit, and
communicates with the outside world by
means of words defined between EXTER-
NAL and MODULE (as well as any
constants or variables defined before
INTERNAL). Words defined between
INTERNAL and EXTERNAL may be
referenced from within the module, but
are not accessible from outside. Each
module may be a complete application or
a building block in a larger application.

Dewey's implementation of these
words was simple but effective, involving
the replacement of a dictionary link to
remove the internal words from the search
chain. Dewey acknowledges that such a
simple implementation does not allow
the dictionary space savings that could be
possible - the headers of the internal
words are unused after MODULE has

1 been reached, but remain in the
dictionary. (Note that the parameter fields

I of these definitions are needed for
execution, but not the headers.)

Perhaps one reason why Dewey's
words have not gained a wider acceptance

1 is that, since his article, more elaborate

MICHAEL HORE - NUMBULWAR, AUSTRALJA -

vocabulary structures have evolved, and
the effect of Dewey's words can be
obtained by using vocabularies in an
appropriate way. I have always felt,
though, that Dewey's words state more
clearly what is going on, since
vocabularies have many other uses
besides this particular one.

At this point, I am not going to
attempt a full justification of a modular
style of programming, which is now
accepted as an essential discipline in the
construction of any significant ap-
plication. Let me just say that I have
found it very useful to have this
discipline enforced (the temptation to
lapse into spaghetti code is always there).
If I try to call. an internal name from
outside a module, it is good to have the
system throw it back in my face. It
means I probably have not understood
either the problem or my "solution" to it!
It also means that if I want to change the
specification of an internal word, I know I
don't have to look very far to find all the
references to it.

Let us now turn to the question of the
potential space savings. Note that we are
not realizing this with modules im-
plemented by means of vocabularies, any
more than we could with Dewey's
implementation of his words. That is the
reason for the code presented here. I have
found that space savings on the order of
20% is possible - the shorter the
definitions, the greater the savings. This
means that good Forth programmers will
benefit more from this code than bad ones
(bad programmers, please stop reading).
This code will do even more - it will

allow a whole module, parameter fields
and all, to be loaded temporarily and then
dismissed from memory, while leaving
subsequent definitions intact. It is very
useful to be able to do this with an
assembler, as one obvious example.

It turns out that Dewey's three words
are more suitable here than if we tried to
do the job with vocabularies. That would
not be impossible, just more difficult.
Moreover, Dewey's words are very clear
and say exactly what they mean -
unlike, say, FORGET-VOC. Perhaps
they may find a new lease on life with
this implementation.

Working in this area inevitably brings
us to various implementation dependen-
cies, since the Forth standard quite rightly
leaves unspecified such details as the
internal structure of the dictionary. So
what we will do is focus on one specific
implementation model, Laxen and Perry's
F83. This code should be easily adaptable
to any Forth-83 system, however, and
probably to many other Forths as well.
On screen 67 we give the definitions of
most of the non-standard F83 words we
use, in case you need them.
Unfortunately, there are several other
words for which we can't do this without
getting bogged down in a mass of
irrelevant detail. But we will now try to
give enough information for our purposes
here.

Firstly, the words DEFER and IS,
respectively, create and redirect an
execution vector. These words have been
fully described by Henry Laxen in two
"Techniques Tutorials" (FD III/6, Vl6)
that are well worth reading. Secondly, a

I

Forth Dimensioru I2 Volwne IX, Number 2

couple of non-standard words are called
from FIND, which we redefine on screen
72. However, the change we make to the
definition of this word is very minor, and
comes right at the end. Thus, we can
ignore the details of the workings of
FIND. In fact, even if you don't have
F83, the change to FIND will probably
be exactly the same. Thirdly, we need to
refer here to the F83 word HEADER
The change is simply to rename it
(HEADER), SO again we don't need to
go into the details of its workings. We
have more to say about it below.

Our scheme operates by separating the
headers of the internal words. These go
into a special area, the separated heads
area (SH, for short) and are later
forgotten. This is not as simple as it
sounds, since internal words will have
external words compiled after them, at
which time the internal names must still
exist. Later, if we forget the internal
names by simply chopping the dic-
tionary, we will lose the external names,
too. Rather, we must follow the
dictionary links and unlink any internal
names, leaving the rest of the dictionary
intact. We provide here a new forgetting
word to do this - the regular FORGET
need not be changed.

Now we will go into a bit more
detail. The SH area has its own
"dictionary pointer," the variable SH-
DP. The base and top of the area are
pointed to by two other variables, SH-
DPO and SH-TOP. I am defining these
as system variables here, although you
may want to make them user variables if
you do any multitasking on your system.

Each header in the SH area looks
exactly like a normal header. The
difference is that, instead of being
followed by a code field, it is followed by
a pointer to the code field. The code field
itself sits in its usual position in the
dictionary (and, of course, has no header
in front of it). Here is how we set up this
kind of header. In F83, headers are laid
down by the word HEADER, which
returns with the dictionary pointer DP
pointing to where the code field will go.
CREATE calls HEADER, then stores
the code field. Our modification to
HEADER is simply to make it vectored.

I

Volume IX, Number 2

1 with LMI FORTHTM 1

1 For Programming Professionals: /
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

l ~ a b o r a t o r ~ Microsystems Incorporated
Post O l l ~ c e B o x 70430, M a r l n a d e l R e y , CA 90295

c red~ t c a r d o r d e r s to: (213) 306-7412

1 Overseas Distributors.
Germany. Forth-Systerne Angel~ka Flesch, T~t~see.Neustadt. 7651-1665

I UK: System Sclence Ltd. London, 01-248 0962
France Mlcro-Sigma S.A.R.L.. Paris, (1) 42.65.95.16
Japan. Southern P a c ~ f ~ c Ltd , Yokohama, 045-314.9514
Australla Wave-onlc Associates, Wllson. W A , (09) 451-2946

I
I I

13 Forth Dimensions

So rename HEADER to (HEADER)
and follow it with the code:

DEFER HEADER'
(HEADER) IS HEADER

When internal words are being
compiler, HEADER is redirected to
execute SEP-HEADER, which lays
down a separated header and pointer to the
code field. As required, we leave DP
pointing to where the code field will go.
SEP-HEADER is defined on screen 67.
Notice that this word calls (HEADER)
to do most of the work.

The F83 word NAME> takes the
address of a name field and returns the
corresponding compilation address (in
F83 and most Forths, this is the same as
the address of the code field). This word
must be redefined so that, if the name is
in the SH area, the pointer following the
name is used to obtain the compilation
address. This we do on screen 66. Other
Forths should use either this word or
something very similar. Any other words
that go from a field within a header to the
corresponding code field or parameter field
will also need to be checked. If they use
NAME> (or its equivalent) to make the
transition, there's no problem. In F83,
the only word in this category that
doesn't use NAME> is FIND. As we
mentioned above, the necessary change to
this word is very minor. For complete-
ness, we give the whole definition on
screen 72.

This brings us to the new forgetting
word. One of its features is that it takes a
pair of addresses and forgets everything
between them. So we will call it
<FORGET> Qronouned "forget bet-
ween"). Its definition is given on screen
68. Note the use it makes of the two
other words on that screen, UNLINK and
TRIM TRIM, in its turn, uses
UNLINK - it is UNLINK that does
all the hard work.

F83 has a multi-thread dictionary
structure, with the constant #THREADS
defining the number of threads. TRIM
contains a DO loop over the threads,
calling UNLINK for each one. If your
system does not have a multi-thread
dictionary, removing the DO loop from

I

Forth Dimemions 14 Volwne IX, Number 2

TRIM may be sufficient.
<FORGET> can take a few seconds

to execute, depending on your processor.
This may not matter, as it won't be used
with high frequency. However, if you can
rewrite UNLINK in code for your par-
ticular processor, so much the better.
This may save a few bytes of memory as
well.

If you want to, you can replace the
regular F83 forgetting scheme with this
new one. (Thus, our TRIM has the same
name as its F83 counterpart.) Simply
redefine

: (FORGET) DUP -1
<FORGET> DP ! ;

and replace TRIM with our new one.
FORGET itself need not be altered. The
advantage of doing this replacement is to
save space, since our forgetting scheme is
really an extension of the old one and
covers much of the same ground. It works
identically if there are no SH names, and
the high limit is set to the highest
address. If UNLINK is written in code,
FORGET should run as fast as before.

The word SET-SH-AREA (screen
67) sets up the SH area by initializing the
three pointers to this area. As written, it
sets up 2000 bytes for the area in high
memory, and 200 bytes below the current
top of the parameter stack (which grows
downwards). If this is not suitable for
your system, change it as necessary. The
number 2000, set up as the constant
SH-AREA-SIZE, I found to be suf-
ficient for my needs. If you have a big
application, you may need to increase this
number. The variable SH-MAX keeps
track of the maximum size required so far
for the SH area, so you can find by
experimentation what size you need.
Separate modules (i.e., not nested) reuse
the same space in the SH area, to
minimize the required size.

Modules may be nested in the
fashion:

INTERNAL . . .
INTERNAL. .. EXTE RNAL...
MODULE
EXTERNAL . . .
MODULE

This is the same as provided in
Dewey's original implementation of these
words. Notice that once we are Ex-
TERNAL, we can't become INTERN-
AL again in the same module. This
could, however, be implemented. Being
such perceptive readers, you will no doubt
have noticed that <FORGET> is more
general than we really need. Internal
names to be forgotten will always occur
in a single, contiguous cluster, whereas
our implementation of <FORGET> will
allow them to occur randomly, anywhere
in the dictionary search order. This was,
in fact, easier and shorter to implement
(although slower). But it does mean that
we can implement the more complicated
module format, if necessary, without
much trouble. I haven't done it here,
feeling there may well be different
schools of thought as to whether this
feature will be desireable. Code is
probably easier to follow if all Ex-
TERNAL definitions are together, and
this can usually be arranged quite easily.
But go ahead and implement the more
complicated format if you want to.

Our scheme for the temporary loading
of entire modules (screen 71) is a straight-
forward application of <FORGET>. The
word TEMP-MODULE saves DP on the
stack, then resets it to halfway between
where it was and the bottom of the SH
area. You then load the temporary
module, and use E C T E M P to set DP
back to where it was. Hopefully, there is
enough room between there and the
temporary module for the definitions you
now want to load. When this is done,
FORGET-TEMP forgets the temporary
module. If the temporary module has
defined any vocabularies, remember to
remove them from the search order before
FORGET-TEMP - unless you find
crashes entertaining! A very simple
example is shown on screen 75.

Michael Hore is a missionary Bible
translator with a programming back-
ground. He works among a remote group
of Aborigines and uses an LSI 1112. He
is progressively moving all his sofware
over to Forth, "...the way computers were
meant to be programmed."

0 \ Separate header area
1
2 VARIABLE SH-DPO
3 VARIABLE SH-DP
4 VARIABLE SH-TOP
5 2000 CONSTANT SHARKSIZE
4 VARIABLE EXTNL?
7 VARIABLE SH-CIW
8
?

10
11
12
13 : SH-HERE (-- addr f SH-DP 1 ;
14
1s

flay85 HRH

0 \ SH area, cont. flay85 MRH
1 :WITHIN? I n l o h i -- n f 1 WER - iR WER W P -
2 R ! W P U (N O T ;
3
4
5 : SEP-HDR? (addr -- addr f) SH-DPO 3 SH-TOP 1 UITHIN? ;
6
7 : ?SEP-HDR) ! ?acf -- acf) SEP-HDR? I F 3 THEN ;
8
?

10
11 : M E) (anf -- ac! :
12 1 TRAVERSE I t ?SEP-HDR) ;
13
14
15

\ Separate header area May85 HRH
SH-DPO p o i n t s t o the base o f the SH area.
SH-DP Current SH area po in te r .
SH-TOP Po in ts t o the top o f the SH area.

Note: these three are a l l zero i f the SH area has no t been
i n i t i a l i z e d .

SKAREASIZE Size ue a l l oca te f o r SH area. A l t e r i f necessary.
MTNL? A var iab le t o a l l o u us t o check tha t the order

E.UEWL.. .MODULE i s always f o l loued (otherwise we'd crash).
SH W Records the maximum SH space used so f a r .

SH-HERE Fetches the current SH area po in te r ,

\ SH area, cont. Mar85 MRH
UITHIN? I s n w i t h i n the range l o t o h i inc lus iue? My vers ion

o f t h i s u o r d has a couple o f p e c u l i a r i t i e s - the t e s t ualue
i s not popped, and the a r i thmet i c i s unsigned and c i r c u l a r ,
urapping around from 64K t o 0.

SEP-HDR? I s addr ui t h i n the SH area?

?SEP-HOW) ?acf i s e ~ t h e r the address of a code f i e l d (ac f) ,
or a po in te r t o one i f ue are i n the SH area. Returns the
acf ,

M E) Converts the addr o f a name f i e l d (an f) t o an acf .
TRCWERSE (F83) i s the same as i n Fig-FORTH. Note tha t i n F83
l i n k f i e l d s precede name f i e l d s , so tha t a f t e r the TWERSE
ue are normally l ook ing a t the code f i e l d . At t h i s po in t we
i n s e r t ?SEP-HDR). Th is i s the only change t o the d e f i n i t i o n .

1067

May85 HRH ' SH area, cont.

2 : SEP-HEADER I --(name)) HERE I save ! SH-HERE DP ! SEP-HEADER Lays doun a header i n the SH area. 1 1 3 (HEADER) (rav rd dp 1 DUP , DP 1 SH-DP ! DP ! ;

Hay85 NRH

4
5 : SET-SHAREA SP3 200 - DLlP SHAREASIZE - SET-SHAREA S e t s u p t h e S H a r e a . A l t e r t h i s d e f i n i t i o n 11
6 DUP HERE 200 + U(ABORT' Not enough roan i n memory' necessary f o r your system.
? DUP SH-DPO ! SH-DP ! SH-TDP ! ;
8
9 : ?SET-SHAREA SH-DPO 3 O= I F SET-SHAREA THEN ; ?SET-SH-AREA Sets up the SH area i f not done already,

10
1 1 '\ 0 CCNSTAKI FALSE
12 \ -1 CMSTPM TRUE Here are s m e non-standard words included i n F83. Use these
13 "1 : ON addr -- TRUE W P ! ; d e f i n i t i o n s i f you need t o .
14 \ : OFF I addr -- ! FALSE W P ! ;
15 \ : ?PAIRS (n --) = NOT ABORT' Unbalanced s t ruc tu re ' ;

I

Volume K, Number 2 I5 Forth Dimensions

0 \ (FORGET>, e tc . May85 NRH
1 : LNLINK (l o h i 1s t - l i nk -- l o h i 1 s t - l i n k) DUP ?R
2 BEGIN ?DUP
3 UHILE DUP)R 1
4 $EGlN 2 PICK 2 PICK UITHIN? WHILE 1 REPLA'I
5 DUP R) !
6 REPEAT R) ;
7
8 : TRIM l o h i voc-l ink-addr -- l o h i voc-1 ink-addr 1
Y 1 #THREADS 2* I LITERAL -

I 0 #THREADS 0 DO LNLINK 24 LOOP ;
11
12 : {FORGET? i l o h i --) OVER FENCE 1 U(ABORTa Belcw FENCE'
13 UOC-LINK LNLlNK
14 BEGIN 3 ?DUP WHILE TRIM REPEAT
15 2DROP ;

\ (FORGET), e tc . May85 NRH
LNLINK Goesdouna l i n k e d l i s t s t a r t i n g w i t h 1 s t - l i n k ,

u n l i n k i n g a l l l i n k s located a t addresses u i t h i n the range
l o t o h i (i n c l u s i v e) , T h i s word could pr.of i t a b l y be pu t i n t o
code.

TRIM For the given vocabulary, remoues a11 words whose 1 ink
f i e l d s are located w i t h i n the range l o t o h i .
#THREADS i s a constant g i v i n g the number o f d i c t i o n a r y
threads.

{FORGET) Forgets a l l uords whose I ink f i e l d s are located
w i t h i n the range l o t o h i . DP i s not changed.
We f i r s t check tha t l o i s not below where FENCE po in ts , t o
guard against w t y i ng out the system. Then we use WLINK t o
remove any vocabularies tha t are t o be fo rgo t ten , iUOC-LINK
i s the head o f the vocabulary l i s t . j Then we go dcun the
pruned l i s t o f vocabularies and c a l l TRIM f o r each one.

0 \ Modular programing words May85 MRH
1 : WE-HEADER ! -- acf 20 ! 1'1 HEADER)BODY 'r 20 ;
2
3 : I N l E W L EXTNL? 'r
4 ABORT' INlERML fo l l ows EXTERML - probably MODULE mi t ted '
5 ?$El-SHAREA SH-DP 1 (save 1 WE-HEADER
6 200 SH-DP + ! [.'I SEP-HEADER I S HEADER ;
7
8 IMERML
9

10
11 : RESTORE-HEADER (old-hdr-acf 20 1) 20 ?PAIRS I S HEADER ;
12
13 : (SHFORGET) i faddr --)

14 DUP SH-TOP a {FORGET) SH-DP ! ;
15

0 '\ Modular p rog raming words, cont . May85 MRH
1
2 : (W I E W L) (old-sh-dp old-hdr-acf 20) RESlORE-HEADER
3 SH-HERE SH-OPO 1 - S H M 1 MX S H M !
4 SH-UP ! E:KlNL? ON ;
5
6 (EXIERML)
7
8 : E a E W L !E:X?ERML) ;
P

1 a
I '1

12 : MCIDLILE F m L ? 2 NOT
13 ABORT' MODULE f o l lows IMERNAL - MTERML mi t ted '

, 14 EXTIiL? OFF SH-HERE (SHFORGET! ;

"\ Modular p rog raming words Hay85 MRH
WE-HEADER Saves the current s e t t i n g of HEADER (DEFERredj,

I N l E W L Subsequent d e f i n i t i o n s w i l l have separate headers.
Note we reserve 200 bytes i n the SH area f o r EXTERWL names,
i n case t h i s i s a nested I t f l E W L .

Now I N l E W L i s defined, we can make use of i t r i g h t away.

RESTORE-HEADER Restores the previous s e t t i nq of HEADER.

ISHFURGET) Forgets a l l (SH! names above the l in1 t , taddr.

1070

\ Modular p rog raming words, cont. Mar85 MRH

!EXlEWL) As f o r EXlE!WL belcu, but won't be accessible
l a t e r , as an INlERML i s now current . Needs t o be used
t o make us external again, so E X I E W L i t s e l f w i l l be
accessible.

EXTEWL Subsequent def ined names go where they were going
before the l a s t I N l E M L . These nanes w i l l s t i l l be
accessible a f t e r HODULE.

NODULE Forgets a l I names def ined between I M E W L and
EXTEWi . Names a f t e r EXTERNAL are s t i l l accessible.

I

Forth Dimensions 16 Volume IX, Number 2

0 \ TMP-MODULE, e tc . Hay85 HRH
1
2 : TEMP-MODULE ?SET-$UREA HERE (save i WE-HEADER
3 1'1 (HEADER! I S HEADER
4 HERE SH-DPO 3 WER - 2' i HEX I 7FFE M D [DECIWL I
5 t D P ! ;
t
7

8 : END-TEMP RESTORE-HEADER DP ! ;
?

10
I1 : FORGET-TEMP HERE SH-DPO 3 (FORGET) ;
12
f 3

TEMPJODULE Marks the s t a r t o f a module (such as the assemblerj
uh ich i s t o be fo rgo t ten i n t o t o once i t has f i n i shed .
Th is uo rd leaves DP p o i n t i n g t o where the moduie w i l l be
loaded. Current ly t h i s i s h a l f w a y between HERE and the
b o t t m of the SH area. You can change t h i s i f necessary.

END-TEMP Used a f t e r the temporary module i s loaded. R e s t o r ~ s
DP t o i t s usual pps i t i on .

FORGELTEMP Used uhen the temporary module i s no longer n tede j ,
Forgets i t us ing {FORGEI), so noth ing e lse i s a f fected.

0 i Modif i ed FIND Hay85 HRH '\ Modi f ied FIND Hay85 MRh
1
2 : FlND (addr -- acf f l a g : addr f a l s e i The f i r s t pa r t o f t h i s d e f i a i t i o a i s copied s t r a i g h t f r m F83.
3 PRIOR OFF FALSE NOCS O
4 DO DROP C M E X I I 2r t 3 DUP
5 I F DUP PRIOR 1 WER PRIOR ! =
6 IF DROP FALSE
7 ELSE WER W P WISH 2
8 (FIND) DLF ?LEAVE
? THEN THEN LOOP

10 DUP I F SUAP ?SEP-HDR) W P THEN ; Th is ex t ra 1 ine i s the on ly change t o the d e f i n i t i o n .
1 1 I f the name was found, c a l l ?SEP-HDR? t o ensure ue have the
12 address of the code f i e l d .
13
14
15

0 \ Hodule example Har86 HRH
1
2 1NTElWFIL
3
4 : (CWGLCASE) (c -- c')

5 ASCII A ASCII Z UITHIN? SUAP ASCII a ASCII z UITHIN?
6 ROT OR I F BL XOR THEN ;
7
8 ECIElWFIL
9

10 : CMGE-CASE (addr l en -- BOWDS
11 DO I C1 (C M G L M S E) I C! LOOP ;
12
13 MODULE
14
15

\ Module example Nark4 MtH
Th is screen g ives an exanple o f a very simple nodule, which
provides a s ing le uo rd t o the outs ide u o r l d .

(CWGE-CASE)
Changes the case o f the given character , i f i t i s
a lphabet ic .

User uord:

CMGLCASE
Changes the case o f the s t r i n g (addr, l en) ,
BOWDS (F83) i s equivalent t o WER + W P .

Although CMGE-CASE uses (CMGE-CASE), the l a t te r i s ncu not
accessible, and i t s name i s not tak ing up any memory space.

Volume IX, Number 2 17 Forth Dimemiom

CONSUMERIZED
FORTH

I f you have ever played with Tinker
Toys or Erector Sets, you'll have some
avureciation for the fischertechnik

KEN TAKARA - SAN JOSE, CALIFORNIA

products. In Europe, this West German
company is extremely popular for its
construction kits, ranging from simple
block models similar to those by Lego,
through sophisticated electronic, pneu-
matic, and hydraulic experimentation kits.
The package we are concerned with is
called the "fischertechnik computing"
line, consisting, at the time of this
writing, of a robotic construction kit.

With this kit, you can design and
build simple, two-axis robots, connect
them to your computer, then program and
run them. The original kits from
fischertechnik use BASIC as the pro-
gramming language. When we (at Parsec
Research) saw the kit, we were enthralled
by the possibilities it suggested. Being
Forth-oriented, we naturally couldn't help
but question the choice of BASIC as a
language for conducting experiments with
robots. So we decided to create an
"improvement" on the original. The
result was PaRCL (pronouned "parkul"),
Parsec Robot Control Language.

The original kits came with very little
help by way of manuals. For the dedicated
computer hobbyist, the program listings
and minimal explanations would be
adequate, but to the average consumer, the
thing would be totally cryptic. Given
this, I decided to write a text to help a
novice computerist learn how to program
the robots described in the kit. The
primary consideration in designing
PaRCL was this: I must be able to
explain what is happening as simply as
possible. If the explanation for some

language feature is too cumbersome, then
it probably is inappropriate to include it
in the language.

Why Forth is Used
Most Forth programmers already

know why their favorite language is
superior to all others. Most Forth
programmers are also aware of the fierce
opposition that sometimes exists among
others. Epithets aside, I selected Forth
asthe basis of a consumer-oriented product
for three reasons: functionality,
interactivity , and familiarity.

Forth is a functional language; that
is, when you program in Forth, you
create functions to express an operation
you wish to perform. Thus, you can
.actually create a collection of specialized
vocabularies to talk about the different
types of things you want your program to
do. This makes it very easy for me to
explain to someone how to make the
robot do some sequence of actions.

For example, suppose I give this
description for a robotic arm:

EXTEND-ARM-TO-TARGET
PICK-UP-OBJECT
RETRACT-ARM
ROTATE-TO-POSITION-3
EXTEND-ARM-TO-TARGET
DROP-OFF-OBJECT

This pretty much says it all.
Naturally, we must assume here that I've
already described what each of the steps
entails, and that the reader is acquainted
enough with Forth syntax to accept the
hyphenated words as single commands.

Forth's interactivity is an immediate
benefit. If I have taken the uscr through

the steps necessary to define the words
given in the above example, I can have
him actually try them out immediately.

Finally, I am familiar with Forth.
Given the choice, I generally prefer it to
another language. Of course, given an
appropriate incentive, I might consider
learning COBOL.. .
Consumerization

When micros first became available,
the language of choice (the only lan-
guage, for that matter) was BASIC. Now,
with Borland's efforts, it seems that
everyone is learning Pascal. So how did I
expect to foist yet another language (and a
peculiar one, at that) on an unsuspecting
public? Well, the first problem when
getting someone to try something new, is
to make it palatable (or at least mar-
ginally tolerable). Thus, it was necessary
to "consumerize" Forth for this applica-
tion.

As I stated earlier, when designing
PaRCL, my primary criterion for
inclusion of any language feature was
explainability. If I could explain it, it was
probably useable. If I could not explain
it, then it was probably useless. This
meant that a lot of standard Forth words
were scrapped from the PaRCL voc-
abulary. After all, it is intended to be used
to write robot programs, not computer
programs.

Most Forth books start by showing
the novice programmer how to display
messages and numbers. Then they jump
into a discussion of the parameter stack.
Now, this is the second most frequently
criticized fact of Forth life: the existence
of a naked stack. (The first most criticized
aspect is reverse polish.) To a Forth

Forth Dimensions 18 Volume IX, Number 2

Volume

CALL FOR PAPERS
for the ninth annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 27-29, 1987

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California, USA

Theme: Forth and the 32-bit Com~uter
Computers with large address space and 32-bit architecture are now generally available at
industrial and business sites. Forth has been installed and Forth applications programs are
running on these computers. Graphic displays and applications are currently demanded by
users. Implementation of Forth and meeting these requirements is a challenge for the Forth
professional. Papers are invited that address relevant issues such as:

Large address spaces in 32-bit computers.
The graphic display, windows, & menu handling.

Relation to operating systems, other languages, & networks.
Control structures, data structures, objects, & strings.

Files, graphics, & floating point operations.
Comparison with 16-bit computers.

Papers on other Forth topics are also welcome. Mail your abstract(s) of 100 words or less
by September 1, 1987 to:

FORML Conference
P. 0. Box 8231

San Jose, CA 95155, USA

Completed papers are due November 1, 1987. For registration information call the Forth
Interest Group business office at (408) 277-0668 or write to FORML Conference.

Asilomar is a wonderful place for a conference. It combines comfortable meeting and liv-
ing accommodations with secluded forests on a Pacific Ocean beach. Registration includes
deluxe rooms, all meals, and nightly wine and cheese parties.

lX. Number 2 19 Forth Dimensions

Forth Dimensions 20 Volume IX, Number 2

programmer it is simply accepted, and
often abused. To a novice, however, it
can be a major roadblock. Since I was
catering to novices, I decided to reduce the
number of stumbling blocks by elim-
inating any mention of the stack. This
meant that all our beloved stack words
(DUP, SWAP, ROT, DROP, etc.) had
to go.

Instead of the stack, I emphasized the
use of variables. I realize the stack is
inteded to improve certain aspects of
Forth programming. But I also know
from experience that most novice
programmers feel much more comfortable
with variables, which they simply accept,
and often abuse. In the case of a systems
programmer concerned with efficiency or
speed, this is a problem. But for everyone
else, who cares it it's slow, as long as it
works, and the programmer's intention is
clear?

Naturally, for this somewhat lobo-
tomized version of Forth, most of the
disk operators, dictionary operators,
double-word arithmetic, and data-con-
version words were eliminated as
irrelevant for simple robot control. Of
come, the user should have some way to
write programs and to save them, so I
included a source editor and a few disk
operators such as LOAD, THRU, and
LIST. I also included a hard-copy word,
PRINT-SCREENS.

I did use Forth screens. It was easier
to explain screens than to create a file
system, and people seem to get a kick out
of having unrestricted access to the disk.
The business of opening files, appending
to files, and closing files is complicated
enough, and more so to a computer
novice. Also, if I supported a file system,
I would have to explain how to use it,
and that would have been a chore. Being
lazy, I took the easy way out.

Preserved Features
So, considering what was removed,

you probably wonder that I left anything
Forth-like intact. I did. In fact, PaRCL
uses reverse Polish without any mod-
ification. Thinking in terms of passed
parameters, it is relatively easy to explain
how the output from one command (I
called them commands instead of words)
is held by the computer, and is used as

input to another command. To a complete
novice, the computer is quite mysterious
anyway, SO I took the liberty of simply
using reverse Polish without any tech-
nical explanation.

This may seem contradictory,
compared to my previous concern for
explainability. How can I worry about
explaining everything, then decline to
explain the mysteries of reverse Polish?
In fact, my intention was to explain how
to use PaRCL to program the robots.
Since the arithmetic for this kit is
relatively simple, there was no reason to
bother with algebraic parsing. Most
people are willing to accept a few
peculiarities, as long as they are kept to a
minimum.

I also kept single-word integer
arithmetic. Again, for this kit, this was
entirely satisfactory. The physical limits
of the components are well within single-
precision b m h - i e s .

Can Forth Succeed?
It has long been the dream of Forth

programmers to bring their language to
the attention of the masses. We would all
like to see Forth accepted as a "res-
pectable" language for programming.
Will our attempt with PaRCL success-
fully engender acceptance of Forth among
non-Forth users? What is required for
success in this effort?

I don't know whether or not Forth
will ever be popularly received. I certainly
didn't choose it in order to persuade
anyone that it is the best language; it was
simply the easiest language for presenting
robotic programming.

The acceptance of Forth outside the
diehard Forth community depends on two
factors: the manner in which it is
presented, and the receptiveness of the
audience. If you try to proselytize, you
will probably face a great deal of
resistance. If you present it to a novice
programmer with promises of effortless
programming, you will surely disappoint
him. And if you make exaggerated claims
about Forth. you will always provoke an
argument.

An experienced Fortran programmer
usually has no desire to learn another
language; he is already at ease with what
he has, and can do whatever he needs. The

same may be said of a BASIC pro-
grammer, an Ada programmer, and so on.
Half of these people see no point in
struggling through the entire learning
process with an unfamiliar language.
Another quarter of them are actively
hostile to anyone who might challenge
the capabilities of their favorite language.
And the last quarter, interested in pro-
gramming languages in general, will pick
up anything promising that comes their
way.

Any programmer willing t learn and
use Forth should be able to appreciate its
merits (and its drawbacks) without further
argument. For any other programmer, it
is pointless to debate the issue, just as it
is pointless to discuss the merits of PL/1
with a Forth devotee.

A casual computer user will probably
never gain any insight or benefit from
learning Forth (or any other language, for
that matter). A person who uses
computers frequently might, as long as it
doesn't tax his patience every time he
tries to write some simple program with
it. For most computer users, to have to
deal with the complexities of stacks,
dictionary structures, linked lists, reverse
Polish notation, virtual memory, and
memory-mapped I/O in order to patch
together a checkbook-balancing program
(yes, they still do it) is an enormous
bother.

As long as Forth is merely a dedicated
hacker's language, it will remain merely a
dedicated hacker's language. If it is to
become a user's language, as popular as
BASIC, it will have to put on some
respectable clothes and make itself
presentable to the public. And how might
we do that? Well, you'll have to figure
that out for yourself.

Ken Takara is technical director for
Parsec Research (SuperFORTH 64) and
writes the "Designers Debate" column for
Computer Language. Ken says he will
probably continue to embarrass himself
publicly by speaking at the West Coast
Computer Faires.

FIG
MAIL ORDER FORM

MEMBERSHIP IN THE FORTH INTEREST GROUP

I

Volume lX, Number Forth Dimemions

109 - MEMBERSHIP in the FORTH INTEREST GROUP and
Volume 9 of FORTH DIMENSIONS. No sales tax, handling fee, or dis-
count on membership. See the back page of this order form.

The Forth Interest Group is a world-wide, non-profit, member-sup-
ported organization with over 4,000 members and 90 chapters.
FIG membership includes a subscription to the bi-monthly
publication, FORTH Dimensions. FIG also offers its members
group health and life insurance, an on-line data base, a large
selection of Forth literature and many other services. Cost is

$30.00 per year for USA, Canada & Mexico; all other countries
$42.00 per year. The annual membership dues are based on the
membership year, which runs from May 1 to April 30.

When you join, you will receive issues that have already been
circulated for the current volume of Forth Dimensions, and
subsequent issues will be mailed to you as they are published. You
will also receive a membership card and number.

I HOW TO USE THIS FORM
1. Each item you wish to order lists three different price categories:

Column 1 - USA, Canada, Mexico
Column 2 - International Surface Mail
Column 3 - International Air Mail

2. Select the item and note your price in the space provided.

3. After completing your selections, enter your order on the fourth page
of this form.

4. Detach the form and return it with your payment to the Forth Interest
Group.

I FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May - April)

101 - Vol. 1 FORTH Dimensions (1979180) $15116118 -
102 - Vol. 2 FORTH Dimensions (1980181) $15116118
103 - Vo1.3 FORTH Dimensions (1981/82) $15116118 -
104 - Vol. 4 FORTH Dimensions (1982183) $15116118 -
105 - Vo1.5 FORTH Dimensions (1983184) $15116118 -
106 - Vol. 6 FORTH Dimensions (1984185) $15116118
107 - Vol. 7 FORTH Dimensions (1985186) $20/21f24
108 - Vol. 8 FORTH Dimensions (1986187) $20/21/24 -

l F O R M L CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML (the Forth Modification Lab-
oratory) is an infornrnal forum for sharing and discussing new or
unproven proposals intended to benefit Forth. Proceedings are a
compilation of papers and abstracts presented at the annual conference.
FORML is part of the Forth Interest Group.

310 - FORML PROCEEDINGS 1980 $30/33/40
Technical papers on the Forth language and extensions.
311- FORML PROCEEDINGS 1981 $45148155
Nucleus layer, interactive layer, extensible layer, metacompilation,
system development, file systems, other languages, other operating
systems, applications and abstracts without papers.
312- FORML PROCEEDINGS 1982 $30/33/40
Forth machine topics, implementation topics, vectored execution,
system development, file systems and languages, applications.

313-- FORML PROCEEDINGS 1983 $30/33/40
Forth in hardware, Forth implementations, future strategy, pro-
gramming techniques, arithmetic & floating point, file systems.
coding conventions. functional programming applications.
314- F O W L PROCEEDINGS 1984 $30P3140-
Expert systems in Forth, using Forth. philosophy. implementing
Forth systems, new directions for Forth, iterfacing Forth to
operating systems, Forth systems techniques, adding local
variables to Forth.
315- FOWL PROCEEDINGS 1985 $35/38/45
Also includes papers from the 1985 euroFORML Conference.
Applications: expert systems, data collection, networks.
Languages: LISP, LOGO, Prolog, BNF. Style: coding conventions,
phrasing. Software Tools: decompilers, structure charts. Forth
internals: ~ o r t h computers, floating point, interrupts,
multitasking, error handling.
316-FOWLPROCEEDINGS 1986 $30/33/40
Forth intemals, Methods. Standards. Forth processors, Artificial
Intelligence, Applications.

I BOOKS ABOUT FORTH
200 - ALL ABOUT FORTH $2512605
GlenB. HayQn
An annotated glossary for MVP Forth; a 79-Standard Forth.
216 - DESIGNING & PROGRAMMING
PERSONAL EXPERT SYSTEMS $19/20/29
Carl Townsend and Dennis Feucht
Introductory explanation of AI-Expert System Concepts. Create your
own expert system in Forth. Written in 83-Standard.

- -
Leo Brodie $15116118
255 - THINKING FORTH (soft cover) $16117/20 1 409 - JOURNAL OF FORTH RESEARCH V.3 #3

217 - F83 SOURCE $20/21 Po
Henry Laxen & Michael Peny
A complete listing of F83 including source and shadow screens. Includes
introduction on getting started.
218 - FOOTSTEPS IN AN EMPTY VALLEY
(NC4000 Single Chip Forth Engine) $25126135
Dr. C. H. Ting
A thorough examination and explanation of the NC4000 Forth chip
including the complete source to cmForth from Charles Moore.
219 - FORTH: A TEXT AND REFERENCE $22/23/33
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth with comprehensive references to MMS-
FORTH and the 79 and 83 Forth Standards.
220 - FORTH ENCYCLOPEDIA $25/26/35
Mitch Derick & Linda Baker
A detailed look at each fig-FORTH instruction.
225 - FORTH FUNDAMENTALS, V. 1 $16/17/20
Kevin McCabe
A textbook approach to 79-Standard Forth
230 - FORTH FUNDAMENTALS, V.2 $13114118
Kevin McCabe
A glossary.
232 - FORTH NOTEBOOK $25/26/35
Dr. C. H. Ting
Good examples and applications. Great learning aid. PolyFORTH is the
dialect used. Some conversion advice is included. Code is well docu-
mented.
233 - FORTH TOOLS $22/23P2
Gary Feierbach & Paul Thomas
The standard tools required to create and &bug Forth-based
applications.
235 - INSIDE F-83 $25/26/35
Dr. C. H. Ting
Invaluable for those using F-83.
237 - LIBRARY OF FORTH ROUTINES AND UTILITIES
James D. Teny $23125135
Comprehensive collection of professional quality computer wde
for Forth, offers routines that can be put to use in almost any
Forth application,, including expert systems and natural language
interfaces.
240 - MASTERING FORTH $18/19/22
Anita Anderson & Martin Tracy
A step-by-step tutorial including each of the commands of the
Forth-83 International Standard, with utilities, extensions and
numerous examples.
245 - STARTING FORTH, 2nd Edition (soft cover)
Leo Brodie $20/2lPO --

270 - UNDERSTANDING FORTH $3 .50/5/6
Joseph Reyrnann
A brief introduction to Forth and overview of its structure.

I ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Inc. is a non-profit or-
ganization which supports and promotes the application of Forth. It
sponsors the annual Rochester Forth Conference.

321 - ROCHESTER 1981 $25t28/35
(Standards Conference)
79-Standard, implementing Forth, data structures, vocabularies,
applications and working group reports.
322 - ROCHESTER 1982 $25/28P5
(Data bases & Process Control)
Machine independence, project management, data structures, math-
ematics and working group reports.
323 - ROCHESTER 1983 $25/28/35
(Forth Applications)
Forth in robotics, graphics, high-speed data acquisition, real-time
problems, file management, Forth-Like languages, new techniques for
implementing Forth and working group reports.
324- ROCHESTER 1984 $25128/35
(Forth Applications)
Forth in image analysis, operating systems, Forth chips, fw-tional
programming, real-time applications, crosscompilation, multi-tasking,
new techniques and working group reports.
325 - ROCHESTER 1985 $20/21/30
(Software Management & Engineering)
Improving software productivity, using Forth in a space shuttle ex-
periment, automation of an airport, development of MAGICL, and a
Forth-based business applications language; includes working group
reports.

I T H E JOURNAL OF FORTH APPLICATION &
RESEARCH
A refereed technical journal published by the Institute for Applied
Fo&Research, Inc.

401 -JOURNAL OF FORTH RESEARCH V.l
Robotics/Data Structures $30/33/38
403 -JOURNAL OF FORTH RESEARCH V.2 #1
ForthMachin= $15/16/18
404 - JOURNAL OF FORTH RESEARCH V.2 #2
Real-Time Systems $15116118
405 - JOURNAL OF FORTH RESEARCH V.2 #3
Enhancing Forth $1~/1fm8

Forth Dimemiom Volume IX, Nwnber 2

Leo Brodie
The sequel to "Stating Forth". An intermediate text on style and form.
265 - THREADED INTERPRETlVE LANGUAGES
R. G. L&linger %25/26I35

In this new edition of Starting Forth, the most popular and complete
introduction to Forth, syntax has been expanded to include the new
Forth '83 Standard.
246 - STARTING FORTH (hard cover) $20/21 PO

Application Languages $15/16/18
410 - JOURNAL OF FORTH RESEARCH V.3 #4
Applicatians, Arthrnatic extensions $15116118

406 -JOURNAL OF FORTH RESEARCH V.2 #4
Extended Addressing $15116118
407 - JOURNAL OF FORTH RESEARCH V.3 #1
Forth-based laboratory systems and data structures.

Step-by-step development of a non-standard Z-80 Forth. I D R . DOBB'S JOURNAL
267 - TOOLBOOK OF FORTH $23/2s/35 -m This magazine produces an annual special Forth issue which includes
(Dr. Dobb's)
Edited by Marlin Ouverson
Expanded and revised versions of the best Forth articles collected in the
pages of Dr. Dobb's Journal.

source-code listing for various Forth applications.
422 - DR. DOBB'S 9/82 $5/6P
423 - DR. DOBB'S 9/83 $5/6fl
424 - DR. DOBB'S 9/84 $5/6/1
425 - DR. DOBB'S 10185 $516P

I HISTORICAL DOCUMENTS
501 - IU'IT PEAK PRIMER $25127135
One of the first institutional books on Forth. Of historical
502 - fig-FORTH INSTALLATION MANUAL$15/16/18
Glossary model editor - we recommend you purchase this manual
when purchasing the source code listing.
503 - USING FORTH $20I21I22
FORTH, Inc.

IREFERENCE
305 - FORTH 83-STANDARD $15116118
The autoritative description of 83-Standard Forth. For reference, not
instruction.
300 - FORTH 79-STANDARD $15116118
The authoritative description of 79-Standard Forth. Of historical inter-
est.

I REPRINTS
420 - BYTE REPRINTS $5/6fl
Eleven Forth articles and letters to the editor that have appeared in Byte
magazine.

I ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source Listings of fig-FORTH for specific CPUs
and machines with compiler security and variable length names.

I MISCELLANEOUS
601 -T-SHIRT SIZE
"May the Forth Be With You"
Small, Medium, Large and Extra-Large

mm
White design on a dark blue shirt. $12/13/14
602 - POSTER (BYTE Cover) $5/6/7
616 - HANDY REFERENCE CARD FREE
683 - FORTH-83 HANDY REFERENCE FREE

CARD

I FORTH MODEL LIBRARY
The model applications disks below are the first releases of new
professionally developed Forth applications. 5 114" disks are IBM MS-
DOS 2.0 and up compatible and are compatible with Forth-83 systems
listed below.
Laxen/Perry F83
LMI PC/FORTH 3.0
MasterFORTH 1.0
TaskFORTH 1.0
PolyFORTH (R) 11
Macintosh 3 1n" disks are available for MasterFORTH systems only.

Please specify disk size when ordering

701 - A FORTH LIST HANDLER V.l $40143145
by Martin J. Tracy
Forth is extended with list primitives to provide a flexible high-
speed en-vironment for artifkid intelligence. EUSA and W i t o n
& Horn's micro-LISP are included as examples. Documentation is
included on the disk.

702 -A FORTH SPREADSHEET V.2 $40143145
by Craig A. Lindley
This model spreadsheet first appeared in Forth Dimensions Volume
7. Issue 1 and 2. Those issues contain the documentation for this
disk.

703 -AUTOMATIC STRUCTURE CHARTS V.3 .
by Kim R. Harris $40143145
These tools for the analysis of large Forth programs were first
presented at the 1985 FORML conference. Program documentation
is contained in the 1985 FORML Proceedings.

704 -A SIMPLE INFERENCE ENGINE V.4 $40143145
by Martin J. Tracy I
Based on the ~nference Engine in Winstom & Horns book of Lisp,
this volume takes you from pattern variables to a complete
d i c a t i o n algorithm. Accompanied throughout with a running
commentary on Forth philosophy and style.

706 -THE MATH BOX V.6
by Nathaniel Grossman
A collection of mathematical routines by the foremost author on
math in Forth. Extended double precision arithmetic, a complete
32-bit, fied-point math package and auto-ranging text graphics
are included. There are utilities for rapid polynomial evaluation.
continued fractions and Monte Carlo factorization.

I NC400OSERIES
801 - MORE ON NC4000. VOLUME 1 $10111114 &
FIG-Tree style forum on NC4000. Topics including bugs, products, tips,
benchmarks, and NC4000 instruction bit patterns. Chuck Moore's
teleconference. 2nd edition.

802 - MORE ON NC4000, VOLUME 2
NC4000 User's Group's Newsletters. Many contributions from
Chuck Moore, Rick norman an, C.H. Ting and many other users.
Hardware enhancements, software and many; utility programs.

803 - MORE ON NC4000, VOLUME 3 $15116118
NC600015000 data sheets, quans, new DROP, DEF'TH. Eaker's
CASE. PICK, ROLL,floating point math packages, new power
sources and AID converters for NC4000. Many other tips.

804 -MORE ON NC4000, VOLUME 4 $15116118 ls'
Chuck Moore's Application Notes 1-7, Tiny Modula-2 by Lohr, F83
extensions and other tips from Bill Muench, VanNorman's screen editor.
Tig ' s 32-bit engine design and Fourier transform

Volume ZX, Number 2 Fwth Dimemions

FORTH INTEREST GROUP
P.O. BOX 8231 SAN JOSE, CALIFORNIA 95155 (408)2 77-0668

Name
Member Number
Company
Address
City
s tatmov. ZIP
Country
Phone

OFFICE USE ONLY
BY Date T Y P ~ -
Shipped by Date
UPS Wt. Amt.
TNT Wt. Amt.
USPS Wt. Amt.
BO Date BY
Wt. Arnt.

card # 1 CA. RESIDENTS ADD SALES TAX 1

ITEM #

109

CHECK ENCLOSED (Payable to: Forth Interest Group)

VISA M/C

I HANDLING FEE I $2.00

QTY

SUB-TOTAL

ORDERS OF $50.00 OR MORE
RECEIVE A 10% DISCOUNT

SUB-TOTAL

Expiration Date
MEMBERSHIP

Signature ENCLOSED IS $30142 FOR 1

($15.00 minimum on all VISA/MC orders.) FULL YEARS DUES. THIS INCLUDES
$24136 FOR FORTH DIMINSIONS.

TITLE

MEMBERSHIP

MAIL ORDERS
Send to.
Forth Interest Group
PO. Box 8231
San Jose. CA 95155

UNIT PRICE AUTHOR

PHONE ORDERS
PAYMENT MUST ACCOMPANY ALL ORDERS

1 PRICES I POSTAGE & HAWDLIN I SHIPPING TIME

TOTAL

SEE BELOW

I

I

Call 4081277-0668 to place
credit card orders or for
customer service. Hours:
Monday-Fr~day. !?am-5pm
PST

All orders must be prepa~d Rlces are
subject l o change w~thout notlce. Cred~t
card orders w ~ l l be sent and b~ l l ed at
current prlces $15 mlnlrnum on charge
orders. Checks must be In US$. drawn
on a US Bank. A $10 charge w ~ l l be
added for returned checks

Pr~ces Include s h ~ p p ~ n g A
$2 00 handl~ng fee IS

required w ~ t h al l orders.

Books In stock are shlpped
w~ th ln f ~ v e days of recelpt
of the order Please allow
4-6 weeks for out-of-stock
books (dellvery ~n most
cases w ~ l l be much sooner)

SALES TAX
Del~verles to Alameda
Cwlba Costa Sm Mateo
cos Angeles Santa Cruz
ax San F r a n u m Counbes
& 6'Y2 5b Santa Clara
County add 7% O h r
Calflmnla counhs add 6%

M-2
1

Forth Dimemiom Volume IX, Number 2

EXECUTION
SECURITY

G.R. JAFFRAY, JR. -

0 ne reason Forth runs so fast is that
it does not have the built-in checks of
other high-level languages. But during
development, this means frequent crashes,
and the annoying need for hardware reset
and reentry of new words into the
dictionary.

This can be avoided with a temporary
patch to NEXT, the Forth thread
interpreter. This patch decreases execution
speeds, but provides considerable execu-
tion security, removing annoying crashes.

The method is to examine CFAs for
valid contents: CFA+2 for code words,
and one of six values for high-level words
(060D = DOCOL, 0669 = DOVAR,
067B = DOUSE, 064F = DOCON,
OAC8 = DODOE, and 020D = IDO). A
jump is made to 0103H for any other.

Note: execution time is 25 to 50%
longer. Remove patch after debugging.

[Editor's note: It would be interesting
to make this table-driven, and to have the
table automatically updated by defining
words. Slowness shouldn't be too much
of a drawback here.]

Patch 8080 fig-FORTH as follows:
Put JMP XSPTCH at 014B.

XSPTCH:MOV E,M
I N X H
MOV D,M
I N X H
MOV A,D
CMP D
J N Z X S P T C l
MOV A , E
CMP L
J N Z X S P T C l
DCX H
JMP 0 1 4 E H

XSPTC1:DCX H
MVI A , 0 6 H
CMP D
J N Z XSPTC3
MVI A,ODH
CMP E
J Z 0 1 4 E H
MVI A, 69H
CMP E
J Z 0 1 4 E H
MVI A,7BH
CMP E
J Z 0 1 4 E H

XSPTCZ: JMP 0 1 0 3 H
XSPTC3: MVI A,OAH

CMP D
J N Z XSPTC4
MVI A, OC8H
CMP E
J N Z 0 1 0 3 H
JMP 0 1 4 E H

XSPTC4: MI1 A , 0 2 H
CMP D
J N Z 0 1 0 3 H
MVI A, ODH
CMP E
J N Z 0 1 0 3 H
JMP 0 1 4 E H

J

Volume IX. Nwnber 2 25 Forth Dimensions

1987 ROCHESTER
FORTH CONFERENCE

I JERRY SHIFRIN, SYSOP - EAST COAST FORTH BOARD I

hanks to Larry Forsley and company
for putting on another fine Forth con-

1 ference at the University of Rochester. As
usual, the meeting had a number of
excellent speakers and presentations, with
a high level of good technical discussion.
I was happy to meet some of the folks
we've been typing at for a while: Bob
Brown, John Hall, Dennis Ruffer, Mike
Ham, Jim Callahan, Bob Davis, and
others. Amazing how no one looks the
way you imagine they might.

I had a brief chat with Glen Haydon
about Loglan (currently being discussed
on the ECFB); one interesting note was
that Chuck Moore reviewed some of the
early Loglan notes, and that there may
have been some cross-fertilization bet-
ween the two languages.

John Hall reported that the FIG GEnie
network was still on hold. I passed on the
ECFB files (about 30 or so disks) to
Dennis Ruffer for use on the FIG GEnie
network. It'll be nice to see this get a
wider audience.

There were several talks on the
massively parallel processors (1 1,520
16,384 separate processors) at Goddard
and Luckheed, both of which are being, at
least partly, programmed in Forth.
George Nicol of Silicon Composers
described their ability to connect mul-
tiple, Novix-based coprocessor cards to an
IBM PCIAT. So far, they've been able to
drive up to eight boards at a time, giving
an aggregate capability of 56 MIPS (or
MOPS)! In terns of raw compute power,
this is easily in the mainframe range.
George said that his goal is to get twenty
of these things going at once so they'd be
in the Crayballpark.

I

A few new pubs were available - a
third edition of Thea Martin's excellent
Bibliography of Forth References, the
1986 FORML Conference Proceedings,
and an interesting, but overpriced book
($16.95 for 90 pages) called Forth: The
NEXT Step by Ron Geere. I was tempted
to dismiss this book because it's based on
fig-FORTH and Forth-79, and a number
of its examples use 6502 code definitions.

W e are seeing Forth-based
applications in several
advanced-technology areas.

But it actually has a fair amount to offer:
numerous tools on math, time/calendar
manipulation, trig, large numbers, sort-
ing, rational numbers, etc. There's some
useful stuff here, but $16.95?

We had an interesting panel dis-
cussion on Forth standards. The panel
consisted of Mahlon Kelly, Larry Fors-
ley, Martin Tracy, and myself, moderated
by Jim Basile. There was no general
theme; people seemed generally in favor
of an ANSI standard, but didn't want
anyone tinkering with the language. Glen
Haydon said that standards were for people
who had nothing better to do. He wanted
to see standardization based on common
usage and indicated that he was compiling
a book on this. Dick Miller sim-
ply didn't want any changes, calling
himself a conservationist. Other people
objected to a self-appointed group decid-
ing on new standards. Bob Brown

suggested that Forth look towards Lisp
for a model of standardization, due to its
many similarities. I apologize if I missed
or misrepresented any of the salient
points.

Portions of the following are taken
directly from the session notes distributed
at the conference. Many fascinating
presentations are not reviewed here at all,
due to space limitations, but you can find
the complete proceedings in The Journal
of Forth Application and Research
(Volume 5, Number 1).

Sessions
"The Massively Parallel Processor,"

John Dorband (NASA Goddard Space
Flight Center). John described this two-
dimensional array of 16,384 bit-serial
processors. It is programmed in Parallel
Forth, based on Unified System's Uni-
Forth.

"High-Density Parallel Processing: I.
The Processor Array and Macro Control-
ler; 11. Software and Programming,"
Nguyen, Raghaven, C. H. Ting, and
Truong (Lockheed Palo Alto Research
Laboratories). Another huge array of pro-
cessors - this one has only (!) 11,520
individual processors. Dr. Ting noted that
this one obeys the rule "Never trust a
computer you can't lift," but he seemed
to conclude that meant without chassis
and power supply.

"Parallel Processing using the PC-
4000 RISC System," George Nicol
(Silicon Composers). George described
the Novix NC4016-based, add-on boards
for the PC/XT/AT, along with their PCX
multitasking control and communications
system which allows you to interact with
each of the processors via separate

I

Fortth Dimemions 26 Voliune IX, Number 2

windows.
"Machine Comprehension as a

Control and Planning Tool," Henry
Harris (JPL). Henry, always a step ahead
of the pack, gave a fascinating, but much
too brief, talk on "conceptual depen-
dency," the idea of extracting the deeper,
semantic meaning from natural language.
He gave just a glimmer of the potential
applications of this: translation (of
course), data discrimination, bandwidth
conservation, and more.

"Mathcalc," David Jageman (AT&T
Bell Laboratories). David put together a
fairly extensive math package which
provides numerous queuing, statistical,
and telephony-oriented computational
facilities. This may be available from
him without charge (depending on Bell
Labs' policy).

"ClusterFORTH in the Factory,"
Adam Shakleford (FORTH, Inc.). De-
scribed FORTH, Inc.'s facility for
networking IBM PCs and Z80-based,
single-board computers.

"Forth and CAI From Mainframe to
Micro: From Coursewriter to Forth,"
Brooks J. Breeden (Ohio State Uni-
versity). Brooks had one of the best
presentations this year, describing his use
of Forth-based graphics systems for
teaching aspects of landscape architecture

"Six RePTIL Verbs and the Mac-
intosh," Dr. Israel Urieli (College of
Engineering, Ohio University). Noted
that, "We have bred a community which
genetically accepts Ctrl-Alt-Del as a
meaningful statement."

"A Concurrent Architecture for Real-
Time Intelligent Process Control," Jack
Park (Visiting Scientist, USAF). Jack
talked on their PC/AT-M68000 (copro-
cessor) based multiprocessor expert
system.

"Object-Oriented Loca1VariablesPat.a
Structures for F83," Robert H. Davis.
Bob talked about a number of extensions
he made to F83. These files are down-
loadable from the ECFB.

"LMI Forth for OS/2," Dr. Ray
Duncan (Laboratory Microsystems, Inc.).
Ray described and demonstrated his Forth
system for the long-awaited OS/2 system.

"Toward an Iconic Forth," Gregory
Dickerhoof (SARNS-3M). An interesting
talk about icons for user interface.

Showed several examples of Macintosh
applications that use icons for most of
the user interface.

"High-Performance Networks," Dr.
William Dress (Martin Marietta). Bill
gave a fascinating talk about his
experiments with programming a bug
that learns from its activities.

"The Biological Aspects of Neural
Networks," Dr. Iben Browning. Dr.
Browning's talk was humorous, literate,
and incisive. He discussed the potential
for AI, robotics, and consciousness,
combined with some scary ideas about
how AIDS will impact our society. Dr.
Browning was also the after-dinner
speaker at the Friday evening banquet,
where he expanded on the AIDS threat. A
few people walked out on this talk,
expressing disagreement or disbelief. In
any case, this one won't go away by
being ignored.

"Harris Force Processor," David
Williams (Harris Semiconductor). De-
scribed FORCE (Forth Optimized RISC
Computing Environment), a high-speed
system suitable for real-time control
systems, digital signal processing, etc. It
is configurable with numerous "standard
cells" (hardware modules) available from
Harris. It can be used as a co-processor,
stand-alone, or parallel-processing sys-
tem.

"Chuck Moore's Non-linear Least
Squares Fitting Routine using poly-
FORTH on the Silicon Composers
NC4016 Board," Elizabeth Rather
(FORTH, Inc.). Typical of Chuck's code,
this package fits on 2.5 screens (about 25
lines of code).

"VME-based Language Processor,"
Tom Harkoway (Xycom). Based on Allen
Winfield's MetaForth system. In de-
scribing performance, Tom defined MIPS
as "Meaningless Information Provided by
Salespeople."

Working Groups
Unfortunately there was only one

round of concurrent working groups this
year and I felt obligated to attend the one
on Forth standards. Elizabeth Rather
moderated, gave a recap of recent history,
and described the ANSIICBEMA process
and Technical Committee membership
requirements. I described the bulletin

bytes for simple threaded utilities -
as small as 2 kbytes for a full Forth
execution core. HWFORTH is the
best base from which to spin off either
d W or indirect threaded s stems,
small or k r . or anything e&e you
might inve8~h ia is abalutel the
most fbxible Forth system awiLble.
at an price, with no expensive extras
youJ n w i to buy later. ~ i b u t e
metacornpiled tools, or turnkeyed
applications royalty free.
ALthough HSlFORTH is unmatched
for language experimwtation and
development, remember that we
wrote it to be a top notch application
development system. Your appli-
cation will have all of DOS at its dis-

We can't possibly cwer everything in
thlsad, so please call or writeand ask
for our brochure. We'll also be happy
to answer any questions.
HS/FORTH comptste ayrrtern: w.
Forth: Text (L Retmce (fjO(lpg)
Kslly&Spim Prentice Hall $22.
WWFORTH: Tutwial (L Reference
Kelly&Gallrrhen (mpg) 5. s.
H w F O R r H ~ r y 5 10.
DEm DlSK $ lo.

E] Visa Mastercard

HARVARD
SOF'WORKS

POBOxClg
SPRINGBORO. OH (IJ086

(93) 7ss-cmso
J

Volume IX, Number 2 2 7 Forth Dimensions

I

Fortth Dimemiom 28 Volwne IX, Nwnber 2

llMl PC/XT, ATIT (L300, ETC.

The ~AI)$FORTH

A total roftwm Hnironmf cwtom
drivers tor printer, video and keyboard
improw rpnd and flexibility (New fRS-
eo M 4 vwrion, tool)
~ommon SYS fomat given you a big
395(< (1%K singbsided) per dkk, plus a
boot track1
Common wordw (WStandard plus
MMSFORTH extensions) on all sup-
ported computers.
~ommon and powerful applications pro-
grams available (most wtth MMSFORTH
mrco code) so you can use them com-
pattMy (with the same data dtsks) across
all supported computem
Very fast comptle speeds and advanced
program dbvelopment envtronment
A fantasttc full-scfeen Forth Edttor
~ u t o - ~ t n d (or -Replace) any word (tor-
ward or beck), compare or Patrs-Edtt
any two ranges of blocks, much more
Temporary dtctionary areas
QUANs, VECTs. vsctored 110, and many
mom of the latest htgh-performance
Forth constructs
Manual and demo programs are btgger
and better than evert
same thorough support users Newslet-
ter, User Grwps worldwtde, telephone
ttps FUII consulting sewtces
Personal Ltcenstng (one person on one
computer) IS standard Corporate Site
Ltcensing and eutk Distribution ~tcens-
tng available to prohwstonal users

There were more people using 32-bit
Forth implementations this year than
previously. The days of the 16-bitters
appear numbered, other than for
specialized, ROMISBC applications.

The total softwareenvironment for Summary
IBM PC/XT, TRS-80 Model 1.3.4 This year we are seeing real, Forth-
and close friends.
*Personal Lfcense (requtred) based applications coming out of several

advanced-technology areas: multi-proces-
*Personal License (Wtional m~tu~es) sors, object-oriented programming, Lisp-

like data structures, AI, and the Novix
Forth chip. Also notable is Forth usage
in some brand new areas: massively
parallel processors and neural networks.
It's fascinating to see Forth adapt so
readily to these new frontiers.

Expert systems seem to have been Harvard Softworks - 27

something of a disappointment, with few
people reporting applications or new
advances in this area. I wonder whether
this is just a lull in activity, or have
expert systems fizzled out?

YlllFRY#MOCOrPVTaRmVICE#) This conference seemed a bit less
6lL8katl#r,lkwl,rmdt,YA011(0 organized than in previous years, and I

was sad to learn that Thea Martin is

board, initially funded by MCI, that will
be provided for ANS Forth announce-
ments, proposals, etc. Also discussed was
Guy Kelly's plans for Forth extension
proposals to be communicated via the
new FIG conference on GEnie. A general
discussion followed, but again there was
no consensus on standards activity,
though most people agreed on the need to
minimize changes in a new standard.

Vendor Meeting
There were a number of concurrent

vendorluser meetings. I attended Labora-
tory Microsystems' meeting hosted by
Ray Duncan and Mike Ham. About 20
people attended. Ray announced they
would be shipping PCfForth Release 3.2
in July. A number of enhancements were
Suggested. Most of these were acceptable
to Ray, and he said they would try to
squeeze them into the July release.

News
Look for Ray Duncan to have another

bestseller next year when Microsoft Press
releases his new book, Advanced OS/2
Progr~mmi.ng, in January 1988. Let's
hope this little gold mine doesn't totally
distract him from Forth development.

leaving her position as editor of the
Journal of Forth Application and
Research. Still, it was as enjoyable as
ever, with lots of good conversation and
opportunities to chat with folks I've
previously known only by their typed
output. Five days at this conference were
worth a great deal in terms of
information, education, and conversation.

This review was adaptedfrom the East
Coast Forth Board (703-442-8695) with
permission from the authorlsysop. Jerry
Shifrin works for MCI, and is one of the
best sysops anywhere, i f the tree can be
judged by its fruit.

STARFLIGHT
STAR BRIGHT

T hese are the voyages of the video
game Starflight. The programming crew
set about creating strange, new worlds,
bravely going into greater and more
realistic detail than a sci-fi, role-playing
simulation - or any other game - had
gone before. Michael Ham continues his
special series of interviews, with Tim Lee
of the imaginative - and persevering -
team whose creation continues to break
sales records throughout the explored
universe.

MH: You work for Binary Systems,
which developed a software product for
Electronic Arts. Could you describe the
product?

TL: It's a role-playing game in outer
space - Star Wars, where you are one of
the characters.

MH: It runs on an IBM PC and takes
two full disks of program and data, right?

AN INTERVIEW WITH TIM LEE -

MH: You programmed all this in Forth?

TL: And assembly language.

MH: Forth and assembly language. Now
is this the original crew?

TL: Three or four members have come
and gone, spending some time on the
project.

MH: How long has the project been
going on?

T h e r e are three, cooperat-
ing expert systems in tke
game.

You can represent a repeat-
able, fractally generated
planet with just a couple of

, numbers.

, TL: Less 40K. Yes, virtually.

MH: That's only 10K empty per side, so
that's still pretty full. I will say that my
son has been playing this game non-stop 1 since he got it. He even maintains a log
in a little spiral book to keep track of
where he is and what he's done. It's quite
a game. How many people were working
on it when the product came to market?

TL: There were five members of the
team. One administrative and logistics
person, and one designer and three
programmers.

TL: Three and one-half years.

MH: When did you come on board?

TL: About six months into it.

MH: It didn't start out quite this big in
concept, did it? Did somebody say, "Let's
write a program that'll be the biggest
game ever released?"

TL: I wasn't there at the time, but it's
my understanding from those who were
that it was to be a very big-field game.

But the idea of fractally generating unique
planets that you can return to ...

MH: Talk a little bit about fractally
generated planets.

TL: It's using the technique developed by
Mandelbrot. He takes, essentially, a
repeatable random sequence of numbers
based on a seed. Using that, you can, in a
very compact way, represent a planet with
just a couple of numbers, then run it
through a function and use that to
determine the terrain for the surface of the
planet.

MH: So each one is unique but doesn't
take up that much room, is that the
advantage?

TL: That's the advantage.

MH: David Boulton was one of the early
principles.

TL: Right. He really had an impact on
shaping the possibility. of doing a huge
environment. He wrote the first prototype
fractal routines.

MH: What does the designer do?

TL: I hesitate to define the roles too
exactly, because there is a good deal of
design and feedback, give and take.

MH: When I played the game, I
encountered these interesting alien races,
and with wonderful speech patterns.

TL: That was great. The personality of

I

Volume IX, Number 2 29 Forth Dimensions

Emphasis on Programming in the Large:
Tree Structured Scoping of Dictionary
Direct Editing of Dictionary Structure

with Dictionary Editor
Text Editor allows Screens of any Size
Large Memory Model,

32-bit Stack, Arithmetic
Tight Binding of Source and Code:

Modifed Modules are Compiled
upon leaving the Text Editor

New Definition Completely Replaces
the Old Definition in Dictionary

Old Definition is Returned to Free Memory
Implements Compile by Demand
Avoids Re-Loading Source Files

Online Help Facility:
Fl Key Provides Context Sensitive Help

(on Errors, in Editors)
Provides Quick Reference on Primitives
Apropos Help from Text Editor on

both Primitives and User Defined Modules
Turnkey Application Generator:

Produces a Stand Alone EXE File
Strips Unused Primitives, Kernel Routines
Invoked with a Single Keystroke
Vectored Error Handling

Complete Debugging Tools:
Source Level Tracing, Breakpoints
Inspect or ModifL Variables during Trace
Shell to the Interpreter During Trace

TL: No, but it was one of the early ones.

MH: It was on the first weekly status
report, I recall hearing that.

TL: Yes, it's the only Electronic Arts
product that has been tracked, to date, on
all the different status report forms
they've ever had.

MH: So it was the longest in
development and, of course, the most
ambitious in scope. It was released when?

TL: End of August 1986.

MH: And sold out instantly, as I recall.
And still going strong.

TL: As I understand, yes.

MH: I see notices about it on the boards,
by the way. People are saying, "I can't
believe it."

the game is Greg Johnson. He was the
designer. That's what I mean. He designed
the scenario; the programmers' role was
more to design the game system that you
could write the scenario for. You can
design subsequent scenarios and not be a
technical person; the programmers created
a game system that could be expanded by
a nonprogrammer designer.

MH: How much did those races and
their characteristics evolve as you worked
on it? Did they stay pretty much as he
first designed them, or did you decide
some of them were too evil or too simple-
minded?

TL: The races were a collaborative
effort - Greg Johnson, Paul Reiche I11
(who worked on Archon), myself, and a
number of other people. We got into a
sort of roundtable, but the bulk of them
were done by Greg Johnson. His
playfulness is manifested throughout the
entire game.

Fortth Dimension. 30 Volwne K, Number 2

MH: I don't want to go into how
many alien races there are, because it's
constant surprise when you are out there
and you bump into someone. But did they
change? You have the idea for a race. You
implement it. Then you interact with
them ... Did you then decide, no, it's too
much this or too many that?

TL: Yes, there was tuning the
personality of the race. We had a data
record called the race personality record, or
something like that, and the designer
established and modified parameters.

MH: The dialog is great. Is that also
Greg's?

TL: That is also Greg. And also, again,
Paul Reiche and a number of other
people.

MH: Was this the first product Elec-
tronic Arts signed?

TL: That's great!

MH: What aspect of the game gave you
the most problems, what was the most
difficult thing to accomplish?

TL: The - enclosure of the design.

MH: You set a monster in motion that
didn't want to close down?

TL: Yes, that was really tough. And
communicating among the programmers
was also a challenge.

MH: Did you work in one place, or did
each one work at home?

TL: We did a little bit of both. Bob
Gonsalves, one of the other programmers,
and I worked at the Binary Systems
location, and Bob was getting down a
couple of days a week - he was the other
programmer. So that's the whole crew.
Myself, Bob, Alec, Greg, and Rod on the
administrative end. Rod McConnell was

really the entrepreneur, the one who
brought the team together.

MH: In communicating among them,
how did you handle the word explosion?
Large Forth projects tend to generate a lot
of words. Did you maintain any sort of
dictionary, or did you brief each other, did
you read each other's code? How did you
know what words other people had
developed?

TL: We segmented things hierarchically,
so one person was responsible for
primitives, stack operatives, and system
primitives.. And everybody else used those
primitives. So, of course, when you work
with primitives, we'd document them
(that was me, in this case) and build a
glossary of graphics words. It would take
a week or two of the other guys using
this thing, referencing the document, for
them to fully understand how the words
worked. Then they'd say, "I've got a great
idea for a primitive, let's put it in"
Then it would require looking at how

many bytes were involved here and there.
One of the more challenging things was
squashing the amount of source code we
have on those disks. We have over four
megabytes of source.

MH: Really! Screen files or text files?

TL: Screen files, so there is a lot of
white space in many places. The text is
pretty dense, and with the aliens' speech
is a lot of text.

MH: (grinning) And of course, the
source code is contains lots of comments,
right?

TL: Well, our styles vary.

MH: With really good code, you don't
need comments. (laughs)

TL: (grins) That's my latest feeling.
Write long definitions, and the comments
and the code are the same thing. In fact,
the product chronicles the development of

Provides Complete Programming Tools:
Primitives for Dynamic Memory Support
Produces Native Code - Very Fast
Complete Access to MS-DOS Files
8087 Floating Point Support
Provides Range Checking
Graphics

Includes Fifth Source Files:
Inline 8086,8087 Assembler
Forth 83 to Fifth Convertor
Infix Expression Compiler

A Shareware Version (Fifth 2.0) is Available
Lacks Some Features of Fifth 2.5
Runs Most Fifth 2.5 Programs
May Be Freely Distributed

For IBM PC's with 128K, DOS 2.0 or better.
Professional Version: $150.00
Shareware Version, Disk and Manual: $ 40.00
Shareware Version, Disk: $ 10.00
System Source Code Available

CLICK Software
P.O. Box 10162
College Station, TX 77840
(409)-696-5432

I
Vp 31 Forth Dimensions

our programming styles. The earlier code
was really temble, and you can see the
conceptual hurdles we leaped as we went
on.

MH: I noticed that, too, in my pro-
gramming. When I look at the early stuff,
I can't believe I wrote it. Does your
program come in in overlays?

TL: Yes, there are about sixty overlays.

MH: I heard in some discussions that
there is a bit of artificial intelligence in it
- adaptability to the player.

TL: Yes, there are, I think, three separate
expert systems in the game. That was
another thing I was involved with. We
wrote an expert system that allowed the
game designer, who was not a
programmer, to design the rules for the
behavior of the aliens and communication
module, how the ships behaved, how the
life forms on the planets work - all of
those were cooperating expert systems.
He wrote the rules for them, and he didn't
have to know Forth or any programming.

MH: And that freed the programmers
from much tedious work.

TL: That's right, and it allowed him to
tune the thing without needing us in the
loop. It was great.

MH: What are the expert systems?

TL: There's one for handling the aliens
on the surface of a planet, one for the
aliens in space - that's the ship move-
ment rules - and one for commun-
ications, handling the personality of the
talking character.

MH: You lived with that project for a
long time. Knowing what you know
now, what would you do differently?

TL: I'd have to think about it a little bit
to give you a real good answer.

MH: We're satisfied with a mediocre
answer at this time. You can always tune
it.

TL: I think I would have recognized,
based on the knowledge I've acquired, that
we were designing a game, an enter-
tainment product, and not a model of the
universe. We spent a lot of time trying to
model things that didn't add to the play of
the game. I mean Starflight, believe it or
not, is a vastly cut-down subset of the
original.

MH: You went for verisimilitude with a
vengeance - you wanted the whole
thing. In fact, you ended up with how
many stars and planets?

TL: There are 810 planets and 200 star
systems.

MH: And you can visit any of them in
any sequence. The player is free to move
around.

TL: That's right.

MH: So you put a lot of time and effort
into making ever-finer details of reality. I
would think that, having a lot of people
working on it, you'd get to challenging
each other to get further and further into
it.

TL: Yes. The whole thing acquired a
personality. The morale of the team went
up and down in cycles, based on a number
of factors, the least of which was paying
the rent.

MH: Yes, three and one-half years is a
long development cycle, especially when
you are paid on milestones. Just out of
curiosity, are all of you science fiction
fans?

TL: Yes.

MH: So you were into this as an art
form already. Was your concept influenc-
ed during the course of this development,
as various science fiction movies came
out? This was after the first Star Wars?

TL: Oh, yes - much later.

MH: Was it influenced by anything you
saw or read as you went along?

TL: A great deal. We have a rotating
planet, which was why I originally hired
in. The rotating planet figured prom-
inently in Star Wars, and we had to have
it. You see that view of the planet
turning as you're watching it.

MH: So this is how you got in, because
they wanted the planet to turn.

TL: Yeah, and I could do that.

MH: You were the graphics guru ...

TL: Graphics, virtual memory manage-
ment, cache system, and object-handling
data base, which was very significant in
allowing the program modules to talk to
each other.

MH: What is an object-handling data
base?

TL: When I say "object handling," it's
really a fancy name for a list manager, a
pre-structured list manager. And I wrote a
language for manipulating objects on this
tree.

MH: And the object in this case would
be a planet description, for instance?

TL: Planet description, alien ship ... it
was open-ended, in the sense that you
could take an object anywhere in the
universe, and then we defined a record
description for that object, and we'd write
code that would look at the fields within
that object.

MH: What were the other programmers'
special ties?

TL: Bob Gonsalves spent a great deal of
his time generating the life forms and the
ecosystems for the life-bearing planets.
He spent many, many months on that.
He also designed the interactional planet
site. The planet site is pretty much Bob
Gonsalves.

MH: The planet site where you are
1 seeking out minerals and encountering
I aliens.

1 TL: Dave Boulton's prototypes created a

I

Forth Dimensions 32 Volwne IX, Nwnber 2

3-D terrain. I adapted that to map it onto
a sphere, making it a planet. The planet
builder, which places minerals, life
forms, and other planetary features, was
mostly Bob's work.

MH: The planet descriptions are
extremely detailed regarding the eco-
system, the atmosphere, and the mass;
depending on whether you've trained your
science officer. If you haven't trained your
science officer, the basic description of
the planet is, "Don't know." But if
you've got a well-trained science officer,
you have an amazing amount of detail.

TL: It's hard to talk about the game in
terms that someone else would under-
stand. I took the fractal system that
generated the planet and displayed the
graphics. But the life-form responses -
where they move around a lot, the terrain
vehicle interface, all of the functions on
the terrain vehicle before the player goes
into outer space, that's Bob. Alec Kersco
singlehandedly wrote the star port
module. Everything that happens in star
port, he designed code for it, he wrote the
code for that. Greg Johnson designed the
interface. Actually, he was fundamentally
responsible for the design of it. Again,
good ideas came from all quarters.

MH: The star port is shopping, getting
lists of things, the training, and so on.
The player moves a small figure around
the six stores, going through the little
safari shop.

TL: The other thing Alec was
responsible for was the module for
communicating with aliens. I helped in
the design of that, he actually had it built
by another programmer who left the
project, then he tore it down and rebuilt it
in three weeks with the addition of the
expert system.

MH: If, God forbid, all the code was lost
and you redid it again from scratch, would
it be much more compact?

TL: No question about it.

MH: You really learned a lot?

TL: Oh, yes.

MH: You've never really given serious
thought to throwing it out and totally
rewriting it ...

TL: 1.have.

MH: Oh, you have! The perfectionist in
the Forth programmer arises yet again. If
one were to play'this on the ideal system,
what would you recommend - an AT
with a composite color monitor? That's
the ideal?

TL: Yes. It has a caching system that
takes up about all of available RAM, so
you don't even need to have a hard disk. If
you have a lot of memory, it will take
advantage of it.

MH: The composite monitor is for the
better color. You've written an amazing
system, and I'm thinking of all the
techniques you developed. Do you see a
way to apply them in a business
application, to store and retrieve data,
graphical information? You've got a way
of handling data that is interesting and
fast. Will you use these tools in your
later applications?

TL: Yes. I don't think I will get into the
business realm, but I'm certainly going
to use the tools that we developed.

MH: Do you think you'll do more
games, or are you interested in doing
more games after this one? They're only
three and a half years each, is the way I
see it ... in ten years you can do three
games.

TL: I do have a game that I'd like to do.

MH: Do each of you have a game in
mind?

TL: Yeah.

MH: What was your first encounter with
Forth?

TL: My fist encounter with Forth was
as a contractor on a project for tax

Forth lnterest Group Presents

Ninth Annual

FORTH NATIONAL
CONVENTION
November 13-14, 1987

Red Lion Inn
2050 Gateway Place

San Jose, California 951 10

FIG'S 10th Anniversary Celebration
EXHIBITS

CONFERENCE PROGRAM

THE EVOLUTION OF FORTH
Past - Present - Future

The founders, writers, producers,
and evaluators of Forth look at:

Forth in development
Forth at work

Forth in the future

Conference & Exhibit Hours
Fri. Nov.13 12 noon - 6 pm
Sat. Nov. 14 9am-5pm

Hotel Reservations
Telephone Red Lion Inn, San Jose
800 547-801 0 or 408 279-0600
Request special Forth lnterest Group
Rates.

Convention Registration
Preregistration $20
Registration at the door $25
Banquet Saturday 7 p.m. $35

(with keynote speaker)

Y e s , I will attend the convention.

Preregistrations @ $20 $-
Banquet Tickets @ $35 $-
Total check to FIG (US funds) $

Name
Address
Company
City
State ZIP
Country
Phone()

Return to: Forth Interest Group
P. 0 . Box 8231
San Jose, CA 951 55

Information Phone: (408) 277-0668

Volume IX. Number 2 33 Forth Dimensions

preparation. It was to be written in
BASIC, because at that time the only
thing that was really common was
BASIC. So it was going to be in BASIC,
but for the work we had to do, we decided
the best thing short of going to assembly
language would be Forth. We used C.H.
Ting's Forth interpreter written in BASIC
and buried that in the product. It was fast
enough for going through the form and
doing calculations.

MH: Did you get into computers
through a major?

TL: In high school, I read a book about
computers and they had an example of a
tic-tac-toe playing computer made with
matchboxes. That was the very first step.
But then it was about six years before I
could get onto a real computer, and that
was at the University of Illinois at
Champaign-Urbana, the Plato system. I
was in high school at the time, and a
friend of mine showed it to me. I stole
access time, I begged, borrowed and stole
keys, I wrote a fake sign-on thing that

system access, and we could then create
all of our own passwords from then on
in. At that time, the morality of my
access didn't occur to me. Having to do it
over again, I would do it differently; but
nevertheless, I wrote my first games
when I was about, let's see, seventeen.

MH: In BASIC?

TL: TUTOR. That's the Plato system.

MH: And what was TUTOR like?

TL: It's very loose, I don't remember
much about it. It seemed like a mongrel
language. BASIC-like commands. I don't
think it had line numbers.

MH: When you went to college, were
you going to be in computers right from
the start?

TL: No, I was going to be a dentist,
because my mom wanted me to be a
dentist. So I went for two semesters.
Well, I went for two semesters and I

couldn't take the garbage. At the same
time, I was working part-time at Texas
Instruments in the programmable cal-
culator division, in their software
exchange. So that's where my real
education took place, and when I quit
going to school I just went full-time at
Texas Instruments.

MH: What were you doing for TI?

TL: I was evaluating programs written
for the SR56, the SR52, and the TI59
programmable calculators. People would
submit programs, and we'd send them free
copies of other programs in return. The
programs would then be published in
booklets.

MH: When was that?

TL: 1977 and '78. I was there while they
were designing the TI 9914A.

MH: That could have been a great
computer.

Wt the llWI 2 Product Support RoundTableTM on GEnieTM I!

MACH 2
Multi-tasking FORTH 83 Development System

MACH 2 FOR THE 99.95
MACINTOSHTM
features full support of the Macintosh
toolbox, support of the Macintalk
speech drivers, printing and floating
point, easy I/O redirection and
creates double-clickable, multi-
segment Macintosh applications.
Includes RMaker,disassembler,
debugger, Motorola-format (infix)
68000 assembler and 500 pg manual.

MACH 2 FOR THE OS-9 495.00
OPERATING SYSTEMTM
provides position-independent and
re-entrant execution and full support
of all 0s-7 system calls. Creates
stand-alone 0s-7 applications. Link
FORTH to C and vice-versa. Includes
debugger,disassembler, Motorola-
format (infix) 68000 assembler, and

, 400 page manual.

W H 2 FOR
INDUSTRIAL BOARDS 49smoo 1
is 680x0 compatible, provides
68881 floating point support, and
produces position-independent,
relocatable, ROM-able code (no
target compilation required).
Includes disassembler, Motorola-
format (infix) 68000 assembler,
and 350 pg. manual.

VISAFlC accepted. CA residents include 6.5% sales tax.
Include shippinoandling with all orders: US $6; Canada $8; Europe $25; Asia $30

RoundTable and GEnie are registered trademarks of the General Electric Information Services Company.

I

Forth Dimemiom 34 Volwne IX, Number 2

TL: The designers knew they were
screwing it up; they didn't have any
choice. They were dealing with other
specifications that they hadn't developed,
and they said, "You h o w , we could make
these teeny little changes, it would be
great! But we can't." They had to follow
this huge set of specifications.

MH: Bureaucracy rears its ugly head.
How did you get to California?

TL: I came out on vacation and I just
decided to stay. This is the greatest place.

MH: Was it in California that you hit
Forth?

TL: Yes. Prior to that time I had never
heard of it, and I'd done a lot of reading
and programming, because it was a
hobby. But I never heard of Forth. That
would have been 1979. That was seven
years since it hit the public scene.

1 MH: You liked it, apparently. I
TL: Loved it. After seeing how it worked
under BASIC, 1 felt a little bit ludicrous
putting in these SWAPS and DROPS and
shoo-bops. And then I tried to think
about how I would write an interpreter, if
I was going to do it; and, hey, there was
no simple way. Then I got to
understanding what colon definitions
were, because these were just strings of
things that [would go in the] interpreter

1 and I could rule the world with this!

MH: Yeah, this is dangerous ...

/ TL: Never look back! I
MH: Was Starflight your first major
Forth project?

TL: I'd done a Forth video game for
Datasoft, called Genesis, and it was never
shipped in the IBM format because they
didn't want to ship a Forth product. It ran
as fast as the assembly language versions
of the Apple and the Commodore ver-
sions, and yet they didn't want to ship it.

1 MH: Religious differences, I take it. I
TL: Well, that and they wanted to make

sure it ran on the PCjr, which at that
time was hot property. I decided to leave
at that time and they didn't have anybody
else, so it never got out.

MH: So Starflight was your fust, giant
project of original work-

TL: -in Forth. My first giant project
was as Vice-President of Datax
Corporation, a financial-planning com-
puter-services company that did policy
analysis for life insurance companies. I
wrote more lines of programming, in a
language called PICK-BASIC on Quan-
tel's computers, than I w e to think
about.

MH: Is that the small computer the
agents carried into the field?

TL: No, this was a minicomputer. I
think Unisys bought them. I had fifteen
employees at the high point, and I
managed to spend half a million dollars of
someone else's money. So I've been an
entrepreneurial type, and like to live on
the riskier side of things than being in the
corporate environment. After I got out of
Texas Instruments, I decided corporations
came with too much politics. If anything
needed to get done, and you went by the
book, it never happened. If you knew
people and exchanged pull and favors, you
managed to get things done. That was the
way things happened.

MH: How long do you think it takes to
learn Forth? I thought I knew Forth fairly
early in this project, but now I realize I
didn't really. What does it take to learn
Forth so that your code is reasonably
fluent and sound and easy to follow? It
takes more than just reading Starting
Forth.

TL: My own philosophy is that you
need to write your own Forth.

MH: From the ground up?

TL: When you get to the point where
you understand how to write your own
Forth from the ground up, you are ready

1 to write good Forth code.

MH: A demanding requirement. There is

a book that takes one through that:
ThreadedInterpretativelanguages.It'sf~r
the Z8O. I'd hate to do write my own
Forth, though. I like to buy it out of the
box.

We've covered quite a bit here.
Suppose a reader decides, "That's a great
idea. I'll write a computer game and make
a lot of money because it's so popular,
and I'll go out and be rich and famous,
too." What would you say to such a
person?

TL: I would say, if that's what you want
to do, do it. But I tell you, the road is
rocky. I don't mean in any way to
dissuade someone from doing what they
like to do. For me, it's been worth it, but
it's been tough. As far as making lots of
money, if we sell one hundred thousand
units of Starflight, which is really a lot
for a game - I think ultimately we will
sell that many - then for three and a half
years, I will have been making $6.50 an
hour.

MH: Starflighr, by the way, because it is
so exceptional a game, may have a longer
shelf life than most. You're saying,
though, that if someone wants to write a
game, it's interesting and they can learn
lots, but they shouldn't quit their job.

TL: No. Keep your day job, that's im-
portant.

MH: If you were going to write a game,
what computer would you write it for?

TL: The IBM PC.

MH: Really!

TL: Yes. I
MH: Would you do a graphics game
again, or would you make it text only?

TL: I think graphics are so much more
appeabng, as evidenced by [the fact that]

1 all the really hot products that stay hot
products, have graphical stimulators. If
you can combine that with depth, then so 1 much the better.

Volume IX, Number 2 35 Forth Dimensions

MH: But why the PC?

TL: There's just a lot of them out there,
and it's a decent machine to develop on.

MH: The PC has enough power.

TL: It's getting cheap, too.

MH: Pretty soon, if you buy over fifty
dollars worth of groceries, you get one
free at your supermarket. If you are
talking to someone who knows nothing
about graphics, and he or she says, "Okay
I want to do graphics. How do I do
graphics?" Is there a book?

TL: Yes, there are several really good
books. One by Newman and Sproull
that's called The Principles of Interactive
Computer Graphics, and another is Foley
and Van Dam's, Fundamentals of Inter-
active Computer Graphics.

MH: Tim, thank you very much.

TL: You're welcome.

Michael Ham is a professional Forth
programmer who writes extensively and
works in large-scale data processing. One
of Tim Lee's Starflight associates wanted
us to be sure that, while giving credit all
around, Tim accepts his own fair share.
We hear that he not only takes a logical
approach to problem solving, but applies
his own inner spirit of adventure to
programming.

Congratulations to the whole team:
Only days ago, Starflight received Elec-
tronic Arts' awardr for "Best Creation of
New Worlds" and "Best Entertainment
Product." Maybe the Forth really is with
them!

(Letters-Continued from page 8.)
Bacon's Screens

S C R # 18
0 (F o r g e t f u l LOAD 1
1 HEX
2 VARIABLE BUF
3 : SAYBLOCK (u -- 1
4 BASE @ DECIMAL HERE A 8 + BUF !
5 S W A P U S > D < # B L H O L D # # # 5 7 H O L D # >
6 BUF @ SWAP CMOVE B A S E ! .
7 : LOAD (u --) DUP S A Y B L ~ C K
8 B L K @ O B L K ! T I B @ B U F @ T I B ! > I N @ O > I N !
9 - F I N D I F DROP DROP 0 > I N ! FORGET THEN

10 0 > I N ! CREATE > I N ! T I B ! BLK ! LOAD ;
11 : --> (-- 1 BLK @ 1+
1 2 S T A T E @ O= I F DUP SAYBLOCK 0 BLK !
13 T I B @ BUF @ T I B ! 0 > I N ! CREATE T I B ! THEN
14 0 > I N ! B L K ! ; IMMEDIATE
15 DECIMAL

Screen 17 is my improvement to the
modification, to return an offset into the
buffer, rather than the address of the
matched string. This added five bytes to
the code sue: a PUSH to save the buffer
address on the stack, a POP and a SUB
in the event of a successful exit, and an
additional POP in the case of an
unsuccessful search (to clean up the stack
before returning).

Even with my improvements, this
implementation falls short of the full
functionality provided by Laxen and
Perry, since it is not sensitive/neutral to
the case of the pattern or object string
(depending on the state of the variable
CAPS). Admittedly, Brother Zimmerly
was designing for use in some specific,
but unspecified, application of his own,
where this might not be a shortcoming.
However, I wish to replace the SEARCH
provided in the F83 system, so it had
better behave exactly as the original. I
have included the code for such an
assembler version of SEARCH.

This code compiles to a whopping
169 bytes - more than twice the sue of
the code in screen 17. I have made one
concession to size by moving the
conversion of characters into upper case , to a labeled subroutine. In trying to arrive
at a satisfactory tradeoff between size and
speed, I have left the decision about
converting a character with the main 1 SEARCH code, only making the call if
CAPS is on. This decision, along with a
PUSH and a POP of the BX register,
which I have used as a working register
for this operation, could be moved to the
subroutine to save additional bytes of

dictionary space, or the whole routine
could be embedded into SEARCH at the
appropriate places, for speed at the
expense of size.

While I have offered some critical
observations of Brother Zimmerly's code,
I wish to thank him for his effort, and
Forth Dimensions for publishing it.
Without this to pique my interest. I
wouldn't have done this work. Being a
neophyte programmer, I have learned a lot
about F83 in the process, and am pleased
with the results.

I enjoy the magazine and wish it came
monthly.
Sincerely,
Robert Lee Hoffpauer
Richardson, Texas

Mods Quad Divides
Dear Mr. Ouverson:

The enclosed code modifies that of
Robert L. Smith (FD VIIIl6) for a quad-
by-double divide in several respects. First,
it is in a form suitable for the LMI
assembler from which many Forth
assemblers are derived. Second, it does the
entire procedure in registers, resulting in
about a 30% speed-up in the code. Third,
it adds error checking by executing the
divide-overflow interrupt where approp-
riate. Fourth, it preserves the BP register
(along with SP and SI) , which many
8088 Forths use as the return pointer.

LMI's 32-bit PC/Forth+ has a similar
procedure that is bulkier, a shade slower,
and proprietary.
Sincerely,
Michael Barr
Mount Royal, Quebec

I

Forth Dimensions 36 Volume IX. Nwnber 2

Hoffpauer's Screens

ACSEVELE;, :$BE? ~ Q P A,SC:! 3 ft GL LnF = : Cnar :; qpprrasE,

!F $SC!! : t ;L CltF .!= TF 11:' # j L j2r TbE;d THE?] ;2FTq

. .
4 . 5 ;adr 5i.s 3sjr a len --- j t i r e t fl3?

Ci? '; Set 6ire;t:or: o f searct...
c,(p ~ p B': :OF Set Zab3- len i, S k i a i - a d r .
P k PGF D I F'CF : he? I X s t r - i e c i El5 t r -3dr .
2: z . ~ S g E B x 2) 422 '. C:<!ast-adr I 135? p?s:ia!e l a t r ~ , i

51 PUS6 BX PbSh ' 5 s) ~ ~ F a r t ? Btbu!-adr.
E:t 11:Pk B$kui-3dr 7: ;Iau+-:tr i g r i'zDS,
p :CI: 9~ no!,: . 1 s t T13r c f s t r i n g .
,- . > ; 2 # 3'1 ; J ~ F cu :, Test dc.!i c w :j52, ,,,j~,

1; ;JF k l :k?L TgEh '. .Lo:.,,ert char t o ue je r racs l f CAFS ci.,
>b AL 12: ', ?byZ2 a-,:!~:.
5S.:Iy ,, M ~ I ~ J ~ m . " q z s , - ... -- ~ h s r i r c n Csf ie r , inzr SItuJ-air.

E 5 a:, # CML C. Test -" ;ow jiag. i JE!

I: 2~ #) C;-L ~ d ~ b ~ 1f or,, :m>.srt z7 ,37.

4~ 4; : n ~ I:;= ',. Do tne; fiatrt.' i i N E '
: F ' i' e g d ,

51 FSSH .' s s ~ e cur ren t S l ~ u i - o t r ,
: B BWP; 3e+ ~15:r-1132: :; Tnz ~ n i r ,
E;EiIli ';. ana :hecr rer! : i st+-in?,

':: [~ i t i ! ~ ! Ai ~ 6 ' ; ', c h 3 ~ 3 t f i : : : ~ - ~ ; ~ T ~ ~ , : t ~ - ~ ~ c ~ . , .
E r Pilin

, y cI k g!. c f i ~) . ' ??st IiEz. :E,
- .

IF 'UF' (: CTLL THE!(:t on, c z n i e r t .
AH Swao ::,!-a:,
AL -,2l;'t ; .:?r { r ~ f i " + f ~ : $:nrr s i b u f - s t r .

,+! z;,' I: # cy; . ;;E
IF t-!E #! ~ 2 - i THEP~ .. I J I-,, con~er:.
g (PI:

4; C ~ F "= ', is in.: eairt;- :;NE'
I~K! LE db8!i5 jn~t:r~;; ,

E r :ti: : ? c r e m ~ c i Frctr-:rice ,
; ZFX27 ;n? ,o;~.

p z L -v 51 , ,,-.,. a, E Sl~!-a:v.
5: CRF .= . '- ., E$jte--:n;e. = D ls ' r - iec - IJ:)

It . sj r e t u ~ ? r!rij2?;:.
E:; 7 3 ,Zr;q!nal i ~ ~ f i e r ;,;jress.

6; 51 <,'? . ._ I_ , a i ~ ~] i t ~ ;+i-p! c: $sui t? n?r:-l;.
- 7 "PC
2: "ILL

r;, rrj; ' P 5 5 t y ~ C F ~ G : - , ~ ; F:P::

:=, + - :1 :I W E - .- - . q :i+s?t :; 9.
- : $; k K z ' , ' > T r , , G J ' - , z . q n - , c -- , . a i - - 2 , . =odriI"
-;, ;r -. 2=H

r i: ---. ; 6e::a' d h : 4 i i r 5 t c>rr of : t r15 ; ,
:, f i ~ ;4c1: ' ;st :?3r Z + ::rlr,ga

1' P I 30', :, # 81 i:k~ ,:I" , :eft c3se. ;JE',
:F IL 3: !:ALL r k i v . 7 .

L - JC. :,:n.er:.
A? 4: lCHE , Eat at,L?.i.

T?EI.i
,-., 2 7 .-,? 7 . r .1 I s z I D $ i - ? t ~ . r(;ast-3:r' :FE'

8 6 , 7 '. !r 50 r e r u r r W,!]FT-FO.'H:I, jc log:. -Y,:L

~ ' t ~ 9 7 3.2 asf-32: f s r rean!n;!e:j . 3 ; g ~ .

Pgc P e ~ t i r ~ rrig:raa: Fcrt f , !F.

;r L: i35 F 2 1 zz :I 34 ,:: y,31 5 74zT-KcL14L I

-r!,- - -3k

L,,c-f-zT5
5::~: : j ~ t,t:e~ :E;J:~Z,:; -e~:er: i - r d~ 37: .;Ec~:c~

(Continued)

Volume IX, Number 2 37

FIG-FORTH for the Compaq,
IBM-PC, and compatibles. $35
Operates under DOS 2.0 or later,
uses standard DOS files.
Full-screen editor uses 16 x 64
format.
Editor Help screen can be called
up using a single keystroke.
Source included for the editor
and other utilities.
Save capability allows storing
Forth with all currently defined
words onto disk as a .COM file.
Definitions are provided to allow
beginners to use Starting Forth
as an introductory text.
Source code is available as an
option, add $20.

Async Line Monitor
Use C0mpaq to Capture,

display, search, print, and
save async data at 75-19.2k

baud. Menu driven with
extensive Help. Requires two
async ports. $300

A Metacompiler on a
host PC, produces a PROM

for a target 630316803
Includes source for 6303

FIG-Forth. Application code
can be Metacompiled with
Forth to produce a target

application PROM $280
FIG-Forth in a 2764 PROM
for the 6303 as produced by

the above Metacompiler.
Includes a 6 screen RAM-Disk
for stand-alone operation. $45
An all CMOS processor

board utilizing the 6303.
Size: 3.93 x 6.75 inches.

Uses 11-25 volts at 12ma,
plus current required for

options. 5\90 $&$- $280
Up to 24kb memory: 2 to
l6kb RAM, 8k PROM contains
Forth. Battery backup of RAM
with off board battery.
Serial port and up to 40 pins of
parallet 110.
Processor buss available at
optional header to allow expanded
capability via user provided
interface board.

Micro Computer
Applications Ltd

8 Newfield Lane
Newtown, CT 06470

203-426-6 1 64

Fore~gn orders add $5 shipplng and handl~ng.
Connecticut residents add sales tax.

b

Forth Dimensions

PORTABLE

MasterFORTH

Dl Whether you program
on the Macintosh, the
IBM PC, an Apple I I ser- \%
les, a CP/M system, or the

Commodore 64, your -, - - - - --- program will run un- p F- ,,.
changed on all the rest ==='= TM

If you wr~te for yourself, eM MasterFORTH will protect
your Investment. If you wr~te
forothers, ~t w ~ l l expand your

marketplace.
Forth IS Interactwe -

you have lmmed~ate feed-
backas you program, every
step of the way. Forth IS

C!
fast, too, and you can CP/M use r s bu~ l t -~n as-

T~ sembler to make ~t
even faster. Master-

FORTH's relocatable ut l l~t~es and
headerless code let you pack a lot
more program ~ n t o your memory. The
res~dent debugger lets you decom-
plle, breakpoint and trace your way
through most programmlng prob-
lems. A strlng package, f ~ l e Interface
and full screen ed~tor are all standard
features. And the opt~onal target com-
pller lets you optlmlze your appllca-
t~on for v~rtually any programrnlng
environment.

The package exactly matches Mas
tenng Forth (Brady, 1984) and meets
all provlslons of the Forth-83 Standard

MasterFORTH standard package.. $1 25
(Commodore 64 wlth graphics) $100

Extens~ons

Floatlng Polnt.. $60
Graph~cs (selected systems). $60
Module relocator(w~th utlllty sources). . $60
TAGS (Target Appllc. Generat~cn System)-
MasterFORTH, target compller and
relocator.. $495

Publlcat~ons 8 Appllcatlon Models
Printed source llstlngs (each) $35
Forth83 lnternatlonal Standard. $1 5

. . . Model Library. Volumes 1-3 (each). $40

8726 S. Sepuhteda BI., #A1 71
Los Angeles CA 90045

Forth Dimensions

Hoffpauer's Screens, continued.
r

5cr # 15 ~:TGOLC,.BL~'
< ; - . . -!ar?r!>'5 search f r s n F m h Ditnen5:ons vol 'iIIi 1 4 p 5 i
i .!OAFIN& HE?
- ,
- ,

1 2:SEMELEF GBEL <FI!IDl! EX SI f?UV Ek DX MOV BP POP 2FUSH FORTH
4 %

5 CODE SEjlFCh !,5 sadr s i ? n badr nlen --- adr t f l g I , un r f f l g :
b CLI: CX PW' D I POP BY POP DX POF BF FUSh DX S! ICHG - i:j A;I :'jy; A % EC, ;IO:' p [j:] fiL
6 HEBE E'(?E F;EF SiAS !jz

Ic ix ';I PUjH D I PUSH DI DEC BX 501 E'yTE kEp: cMpS ?=
i(' I F 61 P?P BY, POP RX POF 8 % DEC -1 f 2Y tiOV !FINCi! i! JKF
i i THEN 31 ~ 3 p 9: 2 FOP
.A

1: ELSE k t fir i O R !FIND!! t j JNP THEN t ' JflP END-CDE
:: .LM!ED E; \,s
13 '. Ccde 51:s: 97 n!t25 ir :clci '?i . ;~ n e a d e r i r SEAKC:! ?1 [F:N>!i
* C ' . .

jcr 1 13 5: E,?:

C. : !!>?:!led Zlnne::., :parch '
: .,3ADIYG i E l
- , . , . "r... . cduE ?EAF.CH (5 5aJ: j i z n bag. g l e n --- i d r ri!g ; ?uni i i l g
r, cs A; noc ;:! ES NG\: IL:
= - ? i - , , pgF @i PI$ 2~ F~,P 6 (p$
t :I S I WCn: :I En;

3EFE E;TE REF SCAS <I=

e I F LY BY C ; Kil;' S I PUS^ D I ~ g ~ h p! >E:
9 EYTE FEF: CMFS (!r

4 ,, ,. IF DY 5 1 MOV DY " O F DX DEC 4 # SF A9E
4 , . , -1 +! A1 Kjl/ TJS~ THE)] . -
1 - b i ">L 5: FOP i): PDF F.2: t \ ,'fit
! EL:: 6; :I 43: S]i ;? 'YC6 ZPvSH TpEri E+.rP-"EE
1 4 .LIG~EC DEC ,;
1: , k d ? EL:?: 6: o:tes ~nr!uding 3 neader i o r ,:E;FCH.

5:r # i- EI:TOKj.EIL!.
' 5 , lapr>;ei! !~nlaer l ' ; ;e;r:a ,

1 ,L IA f i INL HEY

- .
. . : 5?CE EEARCH ' 5 ssdr ;len 3adr en --- ' i f s e t t i : ; I ! un i t t l j

4 C S 21 M?'V A i E i ME! i i T
f: [Y 'gp c; 'CF 5:< p g ~ , i p: C G 3 E
: L r $1 (C$h ,:! [S I] & tj;;'

dEPE YITE FEF' ,LA5 :=
2 !r
u A , C i Fcsh E) Nzi 5: 5i C I 2EC
3 P':7E PEF: CyP,; ':I=
; c 21 5: 38:' 3.i pa! FY EEC 4 # S F A311 PY
< < . . p; 5: 3!JE - i # ~ p ' , :;'us!- T5EQ

1: "2: 5; POL f k t a F FGT # , JbF
.- . - E i j E ;! I ! ?44,.' > l j J p ;{ 4: (DF. ThEN Eq;-';CDE

i L ,;':;IDEP CE: 5
.= - 4 - . -- ..,= ..:?: : 5 . t ~ !?ciud!n? 5 neacer f o r ZEAFCa. ..

38 Volwne IX, Nwnber 2

Burr's Screens

Screen # 61
171~arI-131 VI s ~ o n MR 1 T : Y l i - r 5 / l ? i B 7 !

~ S V H h CODE (IC~AD/MOE
CY POP
D.i POF
A X POP
R > POP C X . A X CMP hz -16 7s JNE E X , RS CMF 73 m a

6.5: DI POF
ST PUSH
BP PiJEH
RF'. i;P MOV
C I . 4 LEP3 MOV
R P . TX MDV
C * , # -2 MOV
CI-I-

I f : ST. 1 RCL
i l l , 1 RCL

5 c u e ~ n # b Z
: i;l~ tad-dl v l S I an. cnn*

R X , 1 FCL
A Y . 1 RCL
73- J N C

2s: ex. nx SUFI
A X . EF SE;B
ST13
1s L O O F
53 .JPlF'

'$: A X , BF CMP
4s J C
2 f .JNZ
B X , Pt' CMP
?f J N C

4s: r,LC
- -

--. w-t-qrrl # 61.
(Ptcae-di si on, end

i B LDOD
5 : S I , ! RCL

D J : 1 F:Ci-
EL'? S I MLIV
BF POP
S I POP
n'i FOP
p y pL's!-i
t'i:*: FtJSti .. ,

!: r F'!.jSH
I.1 Fl lSH
l i F K T . 75: i) I N 1
END-CiJDE

I I

Volume IX, Number 2 39 Forth Dimensions

I

I

FOFITH SOURCET"

WlSC CPUl16
The stack-oriented "Writeable Instruction Set
Computer" (WISC) is a new way of harmoniz~ng the
hardware and the application program wlth the
opcode's semantic content. Vastly ~mproved
throughput is the result.

Assembled and tested WlSC for
IBM PCIATIXT $1500
Wirewrap Kit WlSC for IBM PCIATIXT 5 900
WlSC CPU116 manual $ 50

MVP-FORTH
Stable - Transportable - Public Domain - Tools
You need two primary features in a software
development package. . .astable operating system
and the ability to move programs easily and quickly
to a vartety of computers. MVP-FORTH gives you
both these features and many extras.
MVP Books - A Series
0 #I. 1, All about FORTH. Glossary $25
0 #I. 2. MVP-FORTH Source Code. $20
C] #I. 3, Floating Point and Math $25

#I. 4, Expert System $15
0 #I. 5, File Management System $25
C] #I. 6. Experl Tutorial $15
• #I. 7. FORTH GUIDE $20
C] MI. 8, MVP-FORTH PADS $50
0 #I. 9, WorklKalc Manual $30
MVP-FORTH Software - A trans-

portable FORTH
MVP-FORTH Programmer's Kit including
disk. documentation. Volumes 1,2 8 7 of MVP
Sertes, FORTH Applications, and Starting
FORTH, IBM, Apple, Amiga, CP/M. MS-DOS.
POP-1 1 and others. Speclfy. $175
MVP-FORTH Enhancement Package
for IBM Programmer's Kit. lncludesfull screen
editor 8 MS-DOS file interface. $1 10
MVP-FORTH Floating Point and Math

IBM. Apple, or CP/M, 8'. $75
MVP-LIBFORTH for IBM. Four disks of
enhancements. $25
MVP-FORTH Screen editor for IBM. $15
MVP-FORTH Graphics Extension for

IBM or Apple $80
0 MVP-FORTH PADS (Professional

Appllcatlon Developmsnt System)
An integrated system for customizing your
FORTH programs and applicat~ons. PADS is a
true professional development system. Specify
Computer- IBM Apple 5500

C] MVP-FORTH MS-DOS file interface $80
MVP-FORTH Floatinp Point Math $100
MVP-FORTH Graphics Extension $80
MVP-FORTH EXPERT-2 System
for learning and developing knowledge based
programs. Specify Apple, IJ IBM, or

CP/M 8'. $100

Order Numbers:
800-321 -41 03

(In Californ~a) 415-961-4103
FREE

CATALOG

MOUNTAIN VIEW
PRESS
PO BOX X

Mountain View, CA 94040

L

CANDIDATES '
STATEMENTS

NOMINEES TO THE FIG BOARD OF DIRECTORS -

F orth Interest Group members in good
standing will elect members of its Board
of Directors at the Forth National
Convention on November 13-14, 1987.
The Board will expand from five to seven
members at that time. Robert Reiling and
Martin Tracy will continue serving, and
John D. Hall is running for reelection.

Kim Harris and Thea Martin are
leaving the Board, after donating
countless hours to the benefit of the
entire Forth community. Kim is one of
the five original founders of the Forth
Interest Group, and has played an
important role ever since then in the
shaping of organizational policy and
activities, and the Forth language. He
will direct the program again at this
year's FORML conference.

The following individuals have been
proposed by the Nominating Committee
as candidates for the five vacant positions
on the Board of Directors. Nomination of
additional individuals is by petition,
requires the signatures of 25 members in
good standing of the Forth Interest
Group, and must be received by Sep-
tember 19, 1987. A voting mechanism
will be provided at the convention.

Nominees were asked to submit
statements of their candidacy in 250 or
fewer words:

Wil Baden
My first computer experience was the

MANIAC at Princeton in the 1940's, but
I did not become a programmer until
1960. In the meantime I worked as a
translator, private detective, editor, and
other interesting but uneconomical jobs.
Since then I have worked or consulted for
Collins Radio. Marshall Communi-

cations, CDC, Corregated Computing
Techniques, ARAMCO, Logicon, IBM,
General Automation, Honeywell, Bur-
roughs, HP, and others. At present I am
"senior tool designer" at Doelz Networks,
Inc., and am implementing a compiler for
LUCREZIA, a programming language
named after Lucretia Borgia, to enable
programmers to write poisonous spaghe-
tti code in a high-level language. Outside
interests include being emcee-director of a
stag show with over a thousand perfor-
mances coast to coast; and lay reader,
chalice-bearer, and religious instructor in
the Episcopal Church. I have a wife, two
daughters, two sons (one a computer
hardware expert, the other a software ex-
pert, but both excellent Forth prograrn-
mers), and a small assortment of dogs,
cats, and personal computers. I sing se-
cond tenor.

John D. Hall
I appreciate being nominated once

again as a director of the Forth Interest
Group. I am willing to serve and I am
looking forward to continued active
participation.

The first five years of the Forth
Interest Group showed rapid growth and
many starts in several directions. The

current three years have set us on a fm
financial and organizational foundation.
When I accepted the directorship, I set
three goals to work toward. First was the
consolidation and stabilization of FIG
Chapters. Second was the growth of
income to stabilize the foundation for
future growth of the organization. Third
was the consolidation and coordination of
all Forth organizations into the effort of

promoting Forth.
The first two of these goals have now

been fully realized and, in accepting the
nomination and if elected, I will continue
with my third goal and I will set three
other goals. First, we should broaden our
reach to include professional Forth
programmers and companies with pro-
ducts based on Forth. We can and should
expect an extraordinary effort on their part
in supporting the Forth Interest Group.
Second, we must expand and support all
educational efforts which promote Forth,
whether through FORML, or programs
by our members and chapters, or at
universities. Third, we must provide
additional communication programs to
support these first two goals.

The Forth Interest Group will con-
tinue to stand as the centerpiece in the
promotion of Forth.

Dennis Ruffer
Not many of you have heard of me,

so I should explain my background.
Fifteen years ago, I took a BASIC
programming course and, liking it so
much, I switched career directions to
Computer Science. Four years later, I
graduated from Western Michigan
University with a major in Mathematics
and a minor in Computer Science (only
because they did not offer a Major in CS).
I started my career in Data Processing,
with RPG. Mastering that, nine years ago
I was offered a job in engineering. The
rest is the history of the Smart Scope, an
automobile-diagnostics tool produced by
the Test Products Division of the Allen
Group. We now produce four products
using Forth, with eight programmers and
a patented diagnostic method I developed.

I

Forth Dimensions 40 Volwne lX, Nwnber 2

sembler. I have just finished a one-year
term as Treasurer on the Board of
Directors of the Silicon Valley FIG
Chapter. I traveled to Taiwan and China
last fall to tak about the history of FIG.
These experiences have led me to the
conclusion that FIG isn't sure what its
role should be. As a board member, I will
work to determine clear goals for the
organization and how to implement them.
For example, I want FIG to be able to
support its members better by offering
workshops and seminars. I would like to
look into improving the employment
service now offered. Forth isn't getting
the credit it deserves, and companies that
could profit from using Forth are
choosing not to use it. I think FIG
should try to change this, possibly by
educating programmers and/or companies.
I believe that, as a Board member, I can
improve FIG'S future.

But why should 1 direct the Forth
Interest Group? My goal is to increase the
acceptability of Forth as a viable
computer language. Forth suffers from a
bad image, an image that it is unsuitable
for large applications, that the principles
of Computer Science do not work with
Forth. I, for one, do not agree with this
image, but the image is not completely
unjustified. Forth is not much different
than many other languages; we still need
to use the tools of Software Engineering,
but I have not seen much effort in that
direction. Our founding fathers (of Forth)
have created a very fine language, but
software is more than just a language.
The software life cycle includes require-
ments, design, testing, and maintenance,
in addition to the implementation of the
code. I would like to help this industry
move beyond the implementation details,
and on to solving the management
concerns. Hopefully, I will at least make
an impression.

Robert L. Smith
I have been actively involved in the

.

.

GO FORTHL The ProDOS F o r t h Language implementation f o r
the Apple Computer / /e, / / c, / / gs and / / /

Forth community for 10 years, beginning
with my membership in the fig-FORTH
Implementation Team. I have attended a
majority of business meetings of FIG,
and have been a member of the board of
our local FIG Chapter. I have been the
Secretary of the Forth Standards Team
since 1982. I have used Forth pro-
fessionally for the majority of time since
learning it. I am the author of the
"Standads Corner," which appeared in
Forth Dimensions, and have also
published a number of other Forth papers.

If elected to the Board, I will strive to
represent the various parts of the Forth
community. My particular interest is in
the needs of the professional Forth
programmer. As a member of the Board, I
would be eager to hear suggestions for
improving theForth Interest Group.

Teri Sutton
My name is Tem Sutton, and I am

candidate for the FIG Board of Directors. I
have been a Forth programmer for over
six years. I am currently programming
real-time firmware, using Forth as-

FORTH is more than just a high level language that combines many of the features pf other computer languages. It is a
development environment and a method of approaching problem solving. FORTH is a rass roots' Ian uage, developed and
enhanced in the real world by working programmers who needed a language that they m u l d b ~ ~ . Many of tze concepts of FORTH
are several years ahead of other languages of today. It is a language as ~nteractive as Applesoft Basic, yet, unlike Applesoft, you
don't have to pay the price in slow execution speed. Pro rams written totally in FORTH are, usually faster than programs written in C
or Pascal and a heck of a lot smaller. Best of all, FORTI? has a large library of publ~c domain programs.

Go FORTH is the new FORTH language implementation far the ~ ~ ~ l e @ I I e. I I c, / I gs (I / e emulation mode, full I Igs version
late Fall) and the ~ ~ ~ l e @ 11 I . It is 100% P~ODOS@ and SOS @ supported. Go FORTH code is intercornpatable with all Go
FORTH supported machines machines. Go FORTH is for the hobbyist, the systems developer, the applications writer, anyone
who wants to learn and use the powerful FORTH language.

Go FORTHcomes with its manual and an assortment of utilities in its SCREEN file. Many other utilities and support systems will
be available soon. For beginners, we highly recommend the Starting Forth manual, and we recommend the Go FORTH Toolkit
series for everyone!

ONLY $69.95 Complete, order #5807

Go FORTH Toolkit #1 (Applsoft-like cornmands/utilities): $49.95, order #5809
Starting Forth by Leo Brodie (The training manual for Forth): $21.95, order #5706

Add $1 .OO Shipping and handling per item.

24 HOUR VISA / MASTERCARD ORDER LINES
California Only: (800) 541 -0900. Outside California: (800) 334-3030. Outside U.S.A. : (61 9) 941 -5441

PAIR SOFTWARE (91 6) 485-6525
3201 Murchison Way, Carmichael, C a l i f o r n i a 95608

Apple I1 e. 1 I c. 1 I gs and 11 I, ProDOS and SOS are registered trademarks of Apple Computer. Inc. No affiliation with Pair Software

Volume IX. Number 2 41 Forth Dimensions

FIG
CHAPTERS

/ U.S.A.

ALABAMA
Huntsville FIG Chapter
Tom Konantz (205) 88 1-6483

. ALASKA
Kodiak Area Chapter
Horace Simmons (907) 486-5049

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Dennis L. Wilson (602) 956-7578
Tucson Chapter
2nd & 4th Sun., 2p.m.
Flexible Hybrid Systems
2030 E. Broadway #u)6
John C. Mead (602) 323-9763

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat.. 2 p.m. &
4th Wed., 7 p.m.
Jungkind Photo, 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat., 10 a.m.
Hawthome Public Library
12700 S. GreviUea Ave.
Phillip Wasson (213) 649-1428
MontereylSalinas Chapter
Bud Devins (408) 633-3253
Orange County Chapter
4th Wed.. 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032
Sacramento Chapter
4th Wed., 7 p.m.
1798-59th St., RW A
Tom Ghormley (916) 444-7775
San Diego Chapter
Thursdays. 12 noon
Guy M. Kelly (619) 454-1307
Silicon Valley Chapter
4th Sat., 10 a.m.
H-P, Cupertino
Gwrge Shaw (415) 276-5953
Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut
Chapter
Charles Krajewski (203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson (305) 855-4790
Southeast Florida Chapter
Coconut Grove area
John Forsberg (305) 252-0108
Tampa Bay Chapter
1st Wed.. 7:30 p.m.
Terry McNay (813) 725-1245

Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ., 214 Comp. Sci.
Rodrick Eldridge (515) 294-5659
Fairfield FIG Chapter
4th day. 8:15 p.m.
Gurdy Leete (5 15) 472-7077

KANSAS
Wichita Chapter (FIGPAC)
3rd Wed.. 7 p.m.
Wilbur E. Walker Co..
532 Market
Arne Flones (3 16) 267-8852

MASSACHUSETTS
Boston Chapter
3rd Wed.. 7 p.m.
Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7206

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3147
Cei~tral Illinois Chapter
Urbana
Sidney BowhiU (217) 333-4150
Rockwell Chicago Chapter
Gerard Kusiolek (312) 885-8092

GEORGIA
Atlanta Chapter
3rd Tues.,6:30 p.m
Western Sizzlen. Doraville
Nick Hennenfent (404) 393-3010

INDIANA
Central Indiana Chapter
3rd Sat., 10 a.m.
John Oglesby (317) 353-3929
Fort Wayne Chapter
2nd Tues., 7 p.m.
I/P Univ. Campus, B71 Neff Hall
Blair MacDermid (219) 749-2042

MICHIGAN
DetroitlAnn Arbor area
4th n u n .
Tom Chrapkiewicz (3 13) 322-
7 862

IOWA
I Iowa City Chapter

4th Tues.
Engineering Bldg.. Rm. 2128
University of Iowa
Robert Benedict (319) 337-7853

MINNESOTA
MNFIG Chapter
Minneapolis
Even Month. 1st Mon.. 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall, Univ. of MN
Fred Olson (612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues.. 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9 189
St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Contad Robert Washam
91 Weis Dr.
Ellisville, MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi (201) 338-9363

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
FIG, New York
2nd Wed., 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1 157
Rochester Chapter
4th Sat., 1 p.m.
Monroe Comm. College
Bldg. 7, Rm. 102
Frank Lanzafame (716) 235-0168
Syracuse Chapter
3rd Wed., 7 p.m.
Henry J. Fay (3 15) 446-4600

NORTH CAROLINA
Raleigh Chapter
Frank Bridges (919) 552-1357

OHIO
Akron Chapter
3rd Mon., 7 p.m.
McDowell Library
Thomas Franks (216) 336-3 167
Athens Chapter
Isreal Urieli (614) 594-373 1
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom (216) 247-2492
Dayton Chapter
2nd Tues. & 4th Wed., 6:30 p.m.
CFC. 11 W. Monument Ave.,
#612
Gary Ganger (513) 849-1483

. OKLAHOMA
Central Oklahoma Chapter
3rd Wed.. 7:30 p.m.
Health Tech. Bldg., OSU Tech.
Contact Lany Somers
2410 N.W. 49th
Oklahoma City. OK 73 112

OREGON
Greater Oregon Chapter
Beaverton

Forth Dimensiom 42 Volume lX, Number 2

2nd Sat., 1 p.m.
Tektronix Industrial Park,
Bldg. 50
Tom Almy (503) 692-281 1
Willamette Valley Chapter
4th Tues., 7 p.m.
Li -Benton Comm. College
Pam McCuaig (503) 752-5 113

PENNSYLVANIA
Philadelphia Chapter
4th Sat., 10 a.m.
Drexel University. Stratton Hall
Melanie Hoag (215) 895-2628

TENNESSEE
East Tennessee Chapter
Oak Ridge
2nd Tues., 7:30 p.m.
Sci. Appl. Intl. C o p , 8th F1.
800 Oak Ridge Turnpike,
Richard Secrist (615) 483-7242

. TEXAS
Austin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718
DallaslFt. Worth
Metroplex Chapter
4th Thurs., 7 p.m.
Chuck Durrett (21 4) 245-1064
Houston Chapter
1st Mon., 7 p.m.
Univ. of St. Thomas
Russel Harris (713) 461-1618
Periman Basin Chapter
Odessa
Carl Bryson (915) 337-8994

. WISCONSIN
Lake Superior FIG Chapter
2nd Fri., 7:30 p.m.
Main 195, UW-Superior
Allen Anway (715) 394-8360
MAD Apple Chapter
Contact Bill Hortm
502 Atlas Ave.
Madison, WI 53714
Milwaukee Area Chapter
Donald.Kines (414) 377.-(no8

INTERNATIONAL

. AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Contact Lance Collins

. UTAH
North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem, UT 84057

VERMONT
Vermont Chapter
Vergemes
3rd Mon., 7:30 p.m.
Vergemes Union High School
Rm. 210, Mmkton Rd.
Don VanSyckel(802) 388-6698

VIRGINIA
First Forth of Hampton
Roads
William Edmonds (804) 898-4099
Potomac Chapter
Arlington
2nd Tues., 7 p.m.
Lee Center
Lee Highway at Lexington St.
Joel Shprentz (703) 860-9260
Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full (804) 739-3623

65 Martin Road
Glen Iris. Victoria 3 146
03R9-2600
Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., Rm. LG19
Univ. of New South Wales
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
021524-7490

. BELGIUM
Belgium Chapter
4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343
Southern Belgium Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
071R13858

CANADA
Northern Alberta Chapter
4th Sat., 1 p.m.
N. Alta. Inst. of Tech.
Tony Van Muyden (403) 962-2203
Nova Scdia Chapter
Halifax
Howard Harawitz (902) 477-3665
Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
Genl. Sci. Bldg., Rm. 212
McMaster University
Dr. N. Solntseff (416) 525-9 140
ext. 3
Toronto Chapter
Contact John Clark Smith
P.O. Box 230, Station H

DENMARK
Forth Interesse Gruupe
Denmark
Copenhagen
Erik Oestergaard, 1-520494

. ENGLAND
Forth Interest Croup- U.K.
London
1st Thurs.. 7 p.m.
Pdytechnic of South Bar&
Rm. 408
Borough Rd.
Contact D.J. Neale
58 Woodhid Way
Morden, Surry SM4 4DS

FRANCE
French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
31100 Toulouse
(16-61)44.03.06
FIG des Alpes Chapter
Annely
Georges Seibel. 50 57 0280

. GERMANY
Hamburg FIG Chapter
4th Sat.. 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

. HOLLAND
Holland Chapter
Contact Adriaan van Roosmalen
Heusden Houtsestraat 134
4817 We Breda
31 76713104

IRELAND
Irish Chapter
Contact Hugh Dobbs
Newton School
Waterford
051 fl5757 or 0511'74124

ITALY
FIG Italia
Contact Marco Tausel
Via Gerolamo Fomi 48
20161 Milano
02/43 5249

REPUBLIC O F CHINA
(R.O.C.)
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

SWEDEN
Swedish Chapter
Hans Lidstrom, 46-3 1-166794

SWITZERLAND
Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-Industrie
Stationsstrasse
8306 Bruttisellen
01 I833 -3333

. COLOMBIA
Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota 214-0345

Toronto, ON M4C 5J2
Vancouver Chapter
Don Vandenveele (604) 94 1-4073

Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hmgo, Bunkyo,ll3
812-21 11 ext. 7073

NORWAY
Bergen Chapter
KjeU Birger Faeraas, 47-51 8-7784

. JAPAN
Japan Chapter
Contact Toshi Inoue

SPECIAL GROUPS

Apple Corps Forth Users
Chapter
1st & 3rd Tues.. 7:30 p.m.
15 15 Sloat Boulevard. #2
San Francisco, CA
Dudley Ackerman
(4 15) 626-6295

Baton Rouge Atari Chapter
Chris Zielewski (504) 292-1910

. FIGGRAPH
Howard Pearlmutter
(408) 425-8700

NC4000 Users Group
John Carpenter (415) 960-1256

1 Forth Dimensions

Volwne IX, Number 2

