
--.--

Dimensions

Bresenham
Line-Drawing

Well, what I really want i s . . .
a CMOS computer system for dedicated applit*ations

Guess it 's time to get r he tio,sig~~ teurll g o i ~ ~ g .

FORTH D~mens~ons 2 Volume VIII, No. 6

Forth Dimensions
Published by the

Forth Interest Group
Volume VIII, Number 6

March/April 1987
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Production

Cynthia Lawson Berglund
Typesetting

LARC Computing
Forth Dimensions solicits editorial

material, comments and letters. No re-
sponsibility is assumed for accuracy of
submissions. Unless noted otherwise,
material published by the Forth Interest
Group is in the public domain. Such
material may be reproduced with credit
given to the author and to the Forth
Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth Inter-
est Group at $30 per year ($43 foreign
air). For membership, change of address
and to submit items for publication, the
address is: Forth Interest Group, P.O.
Box 8231, San Jose, California 95155.
Administrative offices and advertising
sales: 408-277-0668.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

1 Dimensions
I FEATURES

Advanced; requiring stu-
dy and a thorough under-
standing of Forth.

Code and examples con-
form to Forth-83 stand-
ard.

Code and examples con-
form to Forth-79 stand-
ard.

12 The Bresenham Line-Drawing Algorithm by Phil Koopman, Jr.
The ability to draw a straight line graphically is not included in some Forth im-
plementations, nor is it to be found in many ROM support programs. This
method requires only sixteen-bit integers with addition, subtraction and multi-
plication by two. This feature will permit you to implement next issue's fractal
routines.

18 Unsigned Division Code Routines

k
by Robert L. Smith

Division routines in code may be needed to overcome limits placed on precision

L
by hardware manufacturers or by a Forth implementation. The most fundamen-
tal is unsigned, with a numerator of twice the precision of the denominator, and
the result yields both quotient and remainder. In Forth-83, it would be called
UMIMOD.

i 19 DOS File Disk I/O by Charles G . Wilcox
Here is a simple interface to PC-DOS. The code is written around MVP-FORTH,
but can be incorporated into virtually any Forth, including the files used by F83.
It allows access to DOS files, whether or not they were created with Forth.

28 Seven Thousand, Seven Hundred
and Seventy-Six Limericks by Nathaniel Grossman
Faced with a literary challenge, the author did not hesitate to respond with
limericks. But his six-fold family of poems has n o pretensions to literary merit:
the program is an exercise in the manipulation of data strings.

32' Inverse Video and TI-FORTH by Richard Minutillo
While Tl's built-in video firmware cannot provide an inverse image, software can
be written to d o the trick. Two methods are discussed, and one is implemented
fully. TI-FORTH makes the trick easy.

34 State of the Standard by Marlin Ouverson
A summary of current actions in the Forth standardization movement. Two unex-
pected aspects: these come from outside the Forth Standards Team, and there has
been sur~risinglv little obiection to date. -,

38 FORML '86 in Review
"Extending Forth Towards the 87-Standard" drew much attention, but session
subiects also included Forth internals, methods, processors, a~pl icat ions and - .
artificial intelligence. Here is a partial review of last season's gathering of Forth
experts.

40 Checksum More by Len Zettel
Checksums result from logical or arithmetic operations on a string. These can be
handy, especially when hand entering important code or data. Suralis and Brodie
showed us some checksum words; this article provides an update to handle slight
changes in our coding practices.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

Code and examples con-
form to fig-FORTH.

1 ' ' . ' ... *\ t. . '

Volume VIII. No 6 3
---zl

FORTH D~rnens~ons

DEPARTMENTS
4 Letters

41 Advertisers lndex
42 FIG Cha~ters

Words, Required & Controlled

Dear FIG,
Glen Haydon's essay, "A Forth

Standard?" (FD VIII/4) is a good
discussion of some of the difficulties
of standardizing an extensible, evolv-
ing, community-designed language such
as Forth. Too little standardization
makes it difficult to port applications
between implementations and discour-
ages newcomers from learning Forth.
Too much standardization stifles evo-
lution of the language. His solution
makes sense: don't make a word part
of the official standard until it has
become accepted into common usage.

Ideally, adherence to a standard al-
lows any application written on one
vendor's system to run on any other
standard system, but this ideal is sel-
dom met. Programs written in one
vendor's C, Pascal or BASIC will often
not run without modification on a
different implementation. I agree with
Mr. Haydon that requiring each Forth

application to be written entirely in the
Required Word Set and standard ex-
tensions is unnecessarily restrictive.
Few programmers will be willing to
give up other useful words found in
their implementation just for portabil-
ity. On the other hand, I think every-
one will agree that standard words
should not have different meanings in
different implementations.

An important but underemphasized
part of the Forth-83 Standard is the
Controlled Reference Set - words
which, although not required, cannot
be present with a non-standard defini-
tion. Here is the appropriate place for
most of Mr. Haydon's common-usage
words. Reserve the Required Word Set
for those words that no implementa-
tion can do without. Don't try to
expand the Required Word Set to make
it self-sufficient. To do so would re-
quire too much conformity from ven-
dors, forcing them to leave out innova-
tive variations which might otherwise
never find their way into common

usage and thence into some future
standard. A case can even be made for
moving some of the Required Word
Set into the Controlled Reference Set,
especially words which have more to
do with the implementation than the
language itself, such as file words.
Would a system be any less Forth-like
if it used named, random-access files
instead of blocks?

Standards are important, but they
can also be overdone. Now that there is
talk of an ANSI standard for Forth, it
would be good if the Forth community
could come to some concensus about
what shape they would like it to take,
or even if such a standard is a good
idea at all.

Sincerely,
David Nye
Eau Claire, Wisconsin

Test Your Assertions
Some method of testing assertions

has become a common feature in many

CALL FOR PAPERS I
ON

COMPARATIVE COMPUTER ARCHITECTURES

June 9 - 13, 1987
University of Rochester

Com~uter Architecture Forth Technologr

Parallel processors Forth co-processors
Geometric processors Threaded Engines
High level language engines State machines
Comparisons and benchmarks Metacompilers

Forth AD-
. .

Laboratory
A1
Real-time
Business

Papers may be presented i'n either platform or poster sessions. Please submit a 200 word abstract by April 15.
Papers should be received by May 1, and are limited to a maximum of four single spaced, camera-ready pages.
Longer papers may be presented at the Conference but should be submitted to the refereed Journal of Forth
Application and Research.

Abstracts and papers should be sent to the Conference Chairman, Lawrence P. Forsley, Laboratory for Laser
Energetics, 250 East River Road, Rochester, New York 14623-1299. For more information please write the
Conference Coordinator, Ms. Lynn Hoffee, at LLE, or contact the Conference Chairman at (716) 275-5101.

FORTH Dimensions 4 Volume VIII, No.6

Registration Form

programming languages (See, for ex-
ample, ACM SICPLAN Notices, Au-
gust 1976, pp. 36-37). An example is
the "assert" statement in most ver-
sions of C . I have used this Forth
version for some time and have found
it invaluable.

The rationale is as follows: in writing
a program with a complicated logic
structure, a point is often reached
where we think, "If the program gets
to this point and there are no bugs in
my logic, then this and this must be
true." [ASSERT is intended to assure
ourselves that "this and this" really are
true. This anti-bugging should be done
as the code is written and the condi-
tions occur to YOU. This simple and
natural mechanism has many advant-
ages over temporary, ad hoc debugging
tools, particularly in documentation
and the fact that the assertions are
transparent as maintenance changes
are made, unless an error occurs.

Tousethe[ASSERTJ,executewhat-
ever sequence of words you assume to
be true, ending with a Boolean flag on

Name

Address

i c r - e e r ~ # :1
6.) r i'oinpi 112 t. rille p i i - t a f a:s:ser t NLH 1 :2-7,137) \ CASSERTI
1 r fiesel- t t-f on r.t.ac.11 tor,: I t n o t . stlow scr- . #. 1 i r l e #. :. c a l l - 8

: 1 JIICJ &r:ldr. EIc:~ clt?.dr, ~ t , d c : l .) ,)

:: : CASSEHTI ?LOADING ?COMP ' 131-11 v va l i d i f c o m p l l i n q f ram I

I PLK a ' R I o(:l r~~.unber betncj LnALieci. Cj1!31. i
c B/SCR (Numl:tr?r ,:if- blocl-(r- per 1 t s.cree17. i

/MOD I lC)us.kl- I ,?I-I~. w 1 l 1 becumr acr e r n number ?. ~ r t ~ r n a i r i d r r i

w i ~ 1 becrorne .~. tnt . ~iumber i n s c r e e n +f t e r : *.)

13 16 $ SWAP 2 $ ~ 1 1 1 f t q ~ u o t ~ e n t tc.1 L e f t z t i a i f t3vtets: !
(t t le t e f #we. ma.: .,creel-I riclrnt~er is 1:lF'FFh.)

IN 3 64 / ! Count I r j tc- , te.:+. tmilif er- d i v i d e d b v l e n , o f
1 I I I L I-IF'; i l l , 5:i:r. ; a f t.rr + b e c o m ~ s 1 ~ n e no. I

1 " + + i'om12i ne ricr-eel-) no. '. I I no IIC?. 1 rctn one number. 1

ii CCOMPILEI LITERAL r Ci,rripi l e ri\.\n~her f clr r u n - - t ~ me use.)

COMPILE (ASSERT) 1 C u ~ i r p i l e CFA 0 6 t-c\n--txme a s s e r t . >
15 ; IMMEDIATE

S11ree1i # ::4
!:I r Fi\ .~r l - t I ~ n e par t o f .assert PJLH lI.'EI.'Bh I \ (ASSERT)
I

(fLa,:jT f r i w a p p l l ~ : a t ~ r > n 7 1-11 i r o m [r>SSERTl I)

" <""" i

.) : (ASSERT) SWAP c ~ i p p l i c : a t ~ . c ~ n i l a c j d e t e r m ~ r i e s a c t ~ o n . i
:, IF DROP i I { f l a y I ? . t r u e . ~ I - ~ E ' I I as'ser t . t ~ ' r? I ' t r ~ ~ e u.)

(nn a?: t LOI-, 1 s t.at en e ~ : c e p t t o c l t?c.n 1 . 1 ~ s t a c l . i
7 ELSE CH 16 /MOD (5el:'irr-a1.e p i e c e s o.F a ~ s e r - t 1 i ter -a1 .)

\I: . ,, ASSERT Scr n 'I . ." Line w u

9 R) R 2- H. >R CR (SI-IC>W t h e adclr . w l t h l n t h e
! word r a 1 . 1 1 . n ~ t h e word c o n t a i n i n g t-he TAS9EFrTl; , , 1 (: ai 1 1 nu wur (j tnav be .*n app l 1 c . wc!r d o r IIVTEPPRE I. !

1 ;.' KEY A S C I I C - (T I - C I P I ~ e ~ - t t r r . i s r t ~ t a ~ ~ C * ~ . 'iz IF QUIT (l< r~o l . w i s h t o " (: " r !n t~nue. O l 1 I - r - l e a v l n q !
THEN (t l i p !st.al:l.-: i n t a c t + o r f u r t h e r - dsbngn inq .)

l y THEN ;
Hills Screens

Telephone (1

Registration fee:
- $200
- $150 UR staff and IEEE Comp. Society
- $100 full-time students
- Vegetarian meal option

Conference Services: $ 175

Dormitory housing, 5 nights:
- $125 Single
- $100 Double

- Non-smoking roommate
- 5KFUN RUN

Amount Enclosed: L

COMPARATIVE COMPUTER ARCHITECTURES

June 9 - 13,1987

University of Rochester

The seventh Rochester Forth Conference is
held in cooperation with the College of
En ineering of the University of Rochester, the
I E ~ E Computer Society, and the Institute for
Ap lied Forth Research, Inc. Invited s eakers
wli discuss NASA's Massively Barallel
Processor (MPP), John Ho kins' Advanced
Physics Laboratory's use of VE SI, conventional
languages on unconventional processors and a
writeable instruction set computer (WISC). The
last da of the Conference will be devoted to
tutoria i" s, demonstrations and resentations by P vendors. Registration will be rom 3 - 11 p.m.
on Tuesday, June 9, and will continue from 8
a.m. Wednesday the 10th. The re istration fee
includes all sessions, meals, and t a e published
Conference papers. Lodging is available at
local motels or in the UR dormitories. There
will be an hourly shuttle to the airport during
registration and checkout.

Please make checks payable to the Rochester Forrh
Con erence. Mail your reglstratlon h May 15 to the
RocLester Forth Conference, LLE, ~ d ~ a s t River Rd. .
Rochester, NY 14623 -1299 USA

Volume VIII, No. 6 5 FORTH Dimensions

the data stack. This may be by a DUP of
essential processing. Then write
[ASSERTJ. During execution, if the flag is
true, the flag is dropped and execution
continues; otherwise, the screen number
and line number from which the
[ASSERTJ was compiled are displayed,
along with the address of the call to the
word containing the assertion. (This
address allows you to determine where
you came from in case of multiple calls.)
Then, entry of a "C" allows execution to
resume, while any other key results in a
QUIT, which preserves the data stack.

The word definitions are essentially
fig-FORTH. ASCII C may be replaced
by 67, and H. may be replaced by u. or
defined as
: H. BASE @ SWAP

HEX U. BASE ! ;

If the assertions must be removed
from a production version, redefine
[ASSERTj as DROP. May all your asser-
tions be true!
Norman L. Hills
Des Moines, Iowa

Out of Ireland

Dear Mr. Ouverson,
After reading reference to Henry

Laxen's multi-tasking tutorial, and be-
ing very interested in giving my fig-
FORTH implementation multi-tasking
capability, I felt compelled to purchase
the relevant back issues of Forth
Dimensions (V/4,5).

The tutorial taught me a great deal,
but being a novice programmer, I was
unable to convert Henry's 8080 ex-
ample to run on my 6502. I think this
should be possible, using a BRK in-
struction instead of RST. I would be
very interested in hearing from any of
your readers who might have perform-
ed the conversion.

1 am involved in hardware design,
and at present I am working on a pro-
duct using voice processing. I find
Forth a very convenient language from
the hardware point of view, in that 1
can generate test code very quickly and
without the tedium of assembly coding.

1 would be interested in reading
more about real-life commercial ap-
plications of Forth in the pages of
Forth Dimensions in the future. I'm
sure Forth is doing many interesting
things out there!

Sincerely,

Richard Rooney
Kilsallaghan
Co. Dublin, Ireland

F1. . . F5 for F83

Dear Marlin,
Well, I've finally done it! After 1

mistyped a line five times in a row, I
decided it was time to make the DOS
editing keys (Fl - F5, etc.) available in
Forth (Laxen and Perry's F83 for IBM
P C and compatibles only).

The basic trick is to redefine EXPECT
to make use of the DOS string-input
function. It's simple, but it has side
effects. The original EXPECT did its
own key decoding. The new one,

Emphasis on Programming in the Large:
Tree Structured Scoping of Dictionary
Direct Editing of Dictionary Structure

with Dictionary Editor
Text Editor allows Screens of any Size
Large Memory Model,

32-bit Stack, Arithmetic
Tight Binding of Source and Code:

Modifed Modules are Compiled
upon leaving the Text Editor

New Definition Completely Replaces
the Old Definition in Dictionary

Old Definition is Returned to Free Memory
Implements Compile by Demand
A voids Re-Loading Source Files

8 Online Help Facility:
F l Key Provides Context Sensitive Help

(on Errors, in Editors)
Provides Quick Reference on Primitives
Apropos Help from Text Editor on

both Primitives and User Defined Modules
Turnkey Application Generator:

Produces a Stand Alone EXE File
Strips Unused Primitives, Kernel Routines
Invoked with a Single Keystroke
Vectored Error Handling

Complete Debugging Tools:
Source Level Tracing, Breakpoints
Inspect or Modib Variables during Trace
Shell to the Interpreter During Trace

FORTH D~mens~ons
I

6 Volume VItI, No. 6

shown in Figure One, leaves it to DOS
to do so. (EXPECT is defined on screen
49 - all numbers in decimal - of
KERNEL86.BLK.)

This now allows the use of the DOS
editing keys to edit the string last enter-
ed. It also allows the use of the Super-
key command stack to play back any
of a number of recent entries. ("Super-
key," from Borland Int'l. Software, is
a memory-resident "keyboard enhan-
cer" program that allows pre-defined
key sequences, etc. It also keeps track
of the last twenty or so entries keyed in
on the command line for DOS and
DEBUG.)

Now, about those side effects.
The original EXPECT uses a transla-

tion table (CGFORTH) to handle various
control characters. That will no longer
work with this version of EXPECT.
The definitions of screens 47 - 48 of
KERNEL86.BLK are used only through
EXPECT. They do not function with this
new definition of EXPECT and are
no longer required. If you do bypass

them, also disable the references in
screens 91, line 9; and screen 92, line 3.

Primarily affected are control-C
(reset), control-P (toggle printer) and
control-)< (delete line). Also affected is
the handling of CR.

To accept control-C, add the two lines
in Figure Two (lifted from Wil Baden's
F83X) between the existing lines 4 and 5
of the unnamed cold start routine on
screen 85 of KERNEL86.BLK. This
changes the BIOS break vector so that
on control-C or control-break, Forth is
restarted.

T o toggle the printer, use the Forth
words PRINT ON and PRINT OFF.

T o delete the line being entered, use
the escape key rather than control-)<.

A more insidious problem is that this
DOS function echoes all characters to
the screen, including the CR character
that terminated the input. (In normal
Forth mode, that CR displays as a
single blank. Now, any subsequent
output would overwrite the displayed
input. The Forth word CR is included

in this EXPECT to clean up the display.
It does cause unnecessary blank lines.
It also makes the opening CR in words
such as WORDS and DIR superfluous.

You'll note that I'm using a separate
internal buffer for this EXPECT. The
DOS convention dictates that the first
two bytes of the buffer are for maxi-
mum length and length actually used.
Since this differs from the way Forth
uses its buffers, it could possibly affect
some other words using EXPECT. An
internal buffer of adequate size avoids
that problem.

A last side effect may or may not be
a problem. The original EXPECT will
exit on a buffer-full condition. This
EXPECT will exit only on a CR. This
may affect certain applications. If so,
keep both versions around.

Note that the second count/length
byte controls what the DOS editing
keys "remember." You can actually
change the buffer content (string), and
make sure that the second length byte
agrees with the length of the string.

a Provides Complete Programming Tools:
Primitives for Dynamic Memory Support
Produces Native Code - Very Fast
Complete Access to MS-DOS Files
8087 Floating Point Support
Provides Range Checking
Graphics

a Includes Fifth Source Files:
Inline 8086,8087 Assembler
Forth 83 to Fi fh Convertor
Infix Expression Compiler

a A Shareware Version (Fifth 2.0) is Available
Lacks Some Features of Fifh 2.5
Runs Most Fifh 2.5 Programs
May Be Freely Distributed

For IBM PC's with 128K, DOS 2.0 or better.
Professional Version: $150.00
Shareware Version, Disk and Manual: $ 40.00
Shareware Version, Disk: $ 10.00
System Source Code Available

CLICK Software
P.O. Box 10162
College Station, TX 77840
(409)-696-5432

M S D O S u ~ m g i w m e d ~ o f M i c m o n C c i p .
IBM h 1 m w mdcrnuk of haomtimid Businwa Muhirn Cap.

7 Volume VIII, No. 6 FORTH Dimensions

That is, make sure:

(LIT) D EXPBUF

1 + COUNT + C!

For those who haven't done this
before, recompile your Forth system
using the following steps. Make sure
the files listed below, as well as
those included through screen 1 of
EXTEND86.BLK, are on the disk(s)
you're using. After editing the source
screens of KERNEL86,BLK, type the
following lines in turn:

OPEN META86.BLK

1 LOAD

BYE

KERNEL EXTEND86.BLK

OK

BYE

F83 PDE.BLK

(or FSED.BLK or VED.BLK, etc.)
1 LOAD

SAVE-SYSTEM F.COM

VARIABLE EXPBUF 128 allot \ tot len 130
:EXPECT (S addr l e n - >)

EXPBUF C! EXPYUF 10 BD3S D,93P CR
EXPBUF 1 + COUNT DUP SPAN 1 ROT S@AP W V E ;

Van Duinen - Figure One

AX AX SUB AX DS W V I40 # dX W V 2 5 6 // M 1vi3V \ Set O r k p t t o
AX 0 0 B X l 1vi3V Cb M , 3 V AX 2 [B X l ivUV \ restart pgm

Van Duinen - Figure Two

ASSEMBLER DEFINITIONS
: FOO (--) HERE . ; \ A boring example

ALSO FORTH DEFINITIONS
SYNONYM FOO FOO

FOO

Bradley - Figure One
...
IF DOES> @ EXECUTE
ELSE DOES> STATE @

If @ ,
. . .

Bradley - Figure Two

: DO-IMMED (--) DOES> @ EXECUTE ; (for an immediate synonym)
: DO-COMP (--) DOES> @ STATE @ (for a non-immediate synonym)

IF , ELSE EXECUTE THEN

: SYNONYM (--) \ new-name old-word
CREATE (make header for new word)
HIDE BL WORD FIND DUP REVEAL (old word found?)
IF SWAP , (yes, compile its cfa)

IMMEDIATE (make new word immediate)
1+ (was old word immediate?)
IF DO-EXEC (yes, set new to execute)
ELSE DO-COMP (no, set new to check state)
THEN

ELSE 1 ABORT" not found" (old word not found)
THEN

Bradley - Figure Three
1

FORTH Dimensions 8 VolumeVIII, No. 6

-- -

Wayland Products

(Those last four lines only if you are not a synonym for the word named FOO Step Up t o Reverse
using a full-screen editor such as one in the ASSEMBLER vocabulary. P o l i s h Array Process ing
of these.) The solution is the same as the solu-

Frans Van Duinen
Toronto, Ontario

An Alias for Synonyms

Dear Marlin,
The synonym technique described

by Victor Yngve (FD V1I/3) is very
useful. I have been using the same
technique (albeit under a different
name; I called it ALIAS) for about two
years, and find it to be an important
part of my toolkit.

There is a subtle bug in the published
implementation. Fortunately, the bug
is easy to fix. Suppose you have a word
FOO in, for example, the ASSEMBLER
vocabulary. You wish to use SYNONYM
to make that word also appear in the
FORTH vocabulary. So you try the code
in Figure One and - BOOM! - the sys-
tem crashes. What happened? Well, the
name H)O is now a synonym for itself,

tion used for preventing recursion
when redefining a colon definition:
HlDE the word just after the CREATE
and REVEAL it after FIND (systems other
than F83 probably need SMUDGE . . .
SMUDGE rather than HlDE . . . REVEAL).

1 also have a minor implementation
quibble. The sequence shown in Figure
Two is unstructured in the sense that
the child word effectively jumps into
the middle of the SYNONYM word (at @

EXECUTE) and then depends on the
ELSE in the SYNONYM word to keep i t
from executing the rest of the definition
after the EXECUTE. This could cause
problems in some implementations.
Figure Three shows a structured
version, including the HlDE . . . REVEAL
fix.

Thanks to Victor Yngve for a fine
article!

Mitch Bradley
Mountain View, California

Wayland Products i s apply-
ing Reverse P o l i s h Nota-
t i o n (RPN) t o a r r a y pro-
cess ing . A t y p i c a l s e s s i o n
would be :

Screen # 70
0 (Usage: SYNONYM <new-name, cold-name, Forth-83 r8/27/86 vhy)
1
2 : SYNONYM (-- 1
3 CREATE (make header for new word)
4 32 WORD FIND DUP (old word found?)
5 IF SWAP , (yes, compile its cia)
6 IMMEDIATE (make new word immediate)
7 1 + (was old word immediate?)
8 IF DOES, @ EXECUTE (yes, set new to execute)
9 ELSE DOES, @ STATE @ (no, set new to check state)
10 IF , (and compile if compiling)
1 1 ELSE EXECUTE (or execute if executing)
12 THEN
13 THEN
14 ELSE 1 ABORT" not found" (old word not found)
15 THEN ;

Screen # 71
0 (SYNONYM Glossary entry revised 8/27/86 vhy)
1
2 SYNONYM --
3 A defining word used in the form:
4 SYNONYM <new-name> cold-name,
5 Create a dictionary entry for cnew-name, so that when
6 <new-name, is later used, it will have substantially the same
7 action that cold-name, would have had. If cold-name, was
8 immediate, the action will be immediate, otherwise not.
9 During compilation, the action is to compile the same thing
10 that cold-name, would have compiled. The dictionary search
1 1 order is not changed and cnew-name, must be different from
12 cold-name,.
13
14
15 Y ngve Screens

The r i g h t arrow as s igns
t h e p r i c e f o r t h r e e k inds
of vege tab le s t o S t o r e A
and S t o r e B. The l a s t l i n e
i s t h e p r i c e of S t o r e C .
The p o l i c y of S t o r e C i s
t o meet t h e p r i c e (i . e .
minimum) of i t s competi-
t i o n . No looping code i s
used. I n a r r a y languagess
many loops a r e i n t e r n a l t o
t h e language. The code i s
reduced, i s n ' t i t ? Reduced
code r e s u l t s i n increased
programmer p roduc t iv i ty .

-

RPN a l s o i n c r e a s e s produc-
t i v i t y . A RPN program i s
an express ion , i .e . any
sequence of symbols. No
symbols have t o be c a r r i e d
t o complete a s ta tement .
Branching s t a r t s and ends
anywhere, no t j u s t from
t h e s t a r t of a s ta tement
t o another .

Wayland Products o f f e r s
RPN a r r a y sof tware because
it improves programmer
and computer performance.

4 Shore Drive
Wayland Mass. 01778 USA

(617) 877-9099
Advancing Reverse P o l i s h

Array Process ing

Volume VIII. No. 6 9 FORTH Dlrnensions

I 6809 Systems available for
FLEX disk sustems $150
OS9/6809 $150

I 680x0 Systems available for
MACINTOSH $1 2s
CP/M-68K $150 I

I tFORTH/20 for 68020
Singk Board Computer I
Disk based development system

under OS9 /68K . . . $290
EpROM set for complete stand-

alone SBC. $390
6 Forth Model Library - List
handler, spreadsheet, Automatic
structure charts . . . each . $40

I Target compikrs : 6809,6801,
6 3 0 3 , 6 8 0 ~ 0 , 8 0 8 8 , 2 8 0 , 6502 I

1927 Curtis Ave
Redondo Beach

CA 90278
(2 13) 376-9941

68020 SBC, 5 1 14" floppy size

bowd with 2MB RAM, 4 x 64K

EPROM sockets, 4 RS232 ports,

Centronics parallel port, timer,

battery backed date/time,

interface to 2 5 1 /4" floppies

and a S AS1 interface to 2
winchester disks$2fSO

68881 flt pt option. $500
OS9 multitask&user 0 s . . $350

speeds w e

Mr. Yngve replies:

Thanks to Mitch Bradley for raising
some interesting points and for notic-
ing that a @ can be factored out, thus
shortening the definition. The improv-
ed version is given on screen 70.

We call it a bug when a program
does not do what we expect it to. We
can fix it by changing the program
or by changing our expectations. We
could say that SYNONYM is restricted to
not directly redefining a word by the
same name, using instead the pattern

SYNONYM FOO A

SYNONYM A FOO

Or we could use a colon definition if
there are problems with vocabularies.
This change in expectations is reflected
in the new glossary entry on screen 71.
It retains the advantage that SYNONYM
is still defined completely within the
Forth-83 Standard, so it will work
without change on any standard sys-
tem. It has the disadvantage that
SYNONYM is not completely general
purpose.

To make it completely general, one
would not only have to include the rele-
vant version of HIDE . . . REVEAL or
SMUDGE, but also implementation-spe-
cific code such as CURRENT @ CONTEXT !
to change the search order, and per-
haps other non-standard code as well.
This would have the disadvantage of
making SYNONYM difficult to install on
a different standard system or to trans-
port a program containing it to a dif-
ferent system. Nevertheless, this was
the option taken in MACRO . . . END-
MACRO (FD VII/3) so as to make it
similar to : . . . ; in its use. Ideally, the
facilities needed for programming gen-
eral versions of such words should be
added to the standard.

ing three words instead of one and it
ties up more overhead in dictionary
space.

Forth treats both : . . . ; and IF . . .
ELSE . . . THEN as structures subject to
error checking when the word contain-
ing them is compiled. But the sequence
CREATE . . . DOES> is no more a
structure than CREATE . . . ALLOT, for
CREATE can be used alone without
DOES> or ALLOT, and CREATE can be
replaced by a word containing CREATE.
Any word con ta in ing DOES>,
however, is unstructured in a different
sense: the first part (before DOES>)
executes when the word is used to
compile a child, and the second part
(after DOES>) executes when the child
is run. The DOES> exits from the word
after compiling into the child a jump
back into the word. This is the very
essence of DOES>, and the source of its
power. Thus in

the nesting code compiled by the colon
executes at the child's compile time but
the unnesting code compiled by the
semicolon executes at the child's run
time! Just as there is no problem using
DOES> to make a child jump into the
middle of a colon definition, provided
there is a proper return on the return
stack, there is even less of a problem
using DOES> to make a child jump into
the middle of an IF . . . ELSE . . . THEN
construction. It's OK to jump in be-
tween ELSE and THEN because no code
is compiled by THEN. It's OK to jump
in between IF and ELSE because ELSE sim-
ply compiles an unconditional branch
around the code between ELSE and THEN,
and this unconditional branch at run
time is in no way dependent on the
preceding conditional branch compiled
by IF.

In regard to the minor implementa-
tion quibble, thegiven definition seems I cannot think of any possible im-
to me to be perfectly legal according to plementation of the standard where the
the Forth-83 Standard. The suggested given definition of SYNONYM would not
alternative requires defining and nam- work and the suggested alternative

(Continued on page 31.)

- - -
FORTH Dlmens~ons 10 Volume VIII. No. 6

THE FORTH SOURCETM

MVP-FORTH
Stable - Transportable - Publ~c Ooma~n - Tools
You need two prlmary features ~n a software development package a stable operating
system and the ab~ l~ t y to move programs eas~ly and qu~ckly to a varlety of computers
MVP FORTH glves you both these features and many extras Th~s publlc domaln product
lncludes an edltor FORTH assembler tools utllltles and the vocabulary for the best selling
book Start~ng FORTH The Programmers K I ~ prov~des a complete FORTH for a varlety of
computers Other MVP-FORTH oroducts w1l1 s~mol~fv the develooment of vour aool~cat~ons

FORTH DISKS
q APPLE by MM $125 "EWO TRS 8O'Mod 4 by Wetmore $125
q Apple by LM. ProDos $150 280 by LM. 8" $100
q Atari ST by Corley $75 q 8086188 by LM, 8" $100
q ATARl by PNS $90 q 68000 by LM. 8" $250
q C64 by HES cartridge $40 q VIC FORTH by HES
q C64 with EXPERT-2 by PS $100 VIC20 Cartr~dge $20
q CP/M bv MM. 8" $125 O Extensions lor LM Soec~fv IBM , ,
q HP-75 bv Cassadv $150 280 or 8086

MVP Books - A Ser~es q HP-85 b; Lange ' $90 q Software Float~ng Po~nt $100
Vol 1, All about FORTH by Haydon Glossary of FORTH 2nd Ed $25 q IBM-PC by LM $150 0 8087 Support (IBM-PC or 8086) $100
Vol 2, MVP-FORTH Assembly Source Code Includes IBM-PC@ q IBM-PC by MM $125 q 951 1 Support (280 or 8086) $100
CP/M@ and APPLE@ lhstlngs for kernel sz0 Mac~ntosh by MM $125 Color Graphlcs (280 or 8086) $100

@ Vol 3, floating Po~nt and Ouad Preclslon Math w ~ t h source code by Koopman $25 q rimer by HW cassette - q Extens~ons for MM Soec~fv IBM Aoole
$1 5 U Vol. 4. Expert System wlth source code by Park q TIS 1000lZX-81 $25 CP/M or Macintosh

Vol. 5, F~ le Management System wlth Interrupt securlty by Moreton $25 q 2068 $30 q Float~ng Po~nt $60
Vol. 6, Expert Tutorial for Volume 4 by M & L Oer~ck S15 q 6809lFLEX by MPE $200 U Graph~cs (Apple only) $60
Vol. 7, FORTH GUIDE to MVP-FORTH by Haydon $20 ~ E W O Or. Oobb's Toolhook wldlsk 0 Module Relocator $60
Vol. 8, MVP-FORTH PADS (IBM) Manual by Wempe $50 Speclfy IBM. Apple II or CP/M 8" $40
Vol. 9, WorkIKalc Manual by Wernpe $30

MVP-FORTH Software - A transportable FORTH
MVP-FORTH Programmer's Kit Including dlsk, documentat~on. Volumes 1 ,2 & 7 of MVP
Serles, FORTH Appl~cations, and Starting FORTH. q CPIM, 0 CPlM86, q Z100.
O Apple. 0 STM PC. q IBM PC, XTIAT & compat~bles, PCIMS-DOS, Osborne.
0 Kaypro, O M~croOec~s~ons, q OEC Ralnbow, q NEC 8201. q TRS-801100. q HP150.
q Macintosh, Atari 600180011200, q ADAM, 0 Amiga, NEWO PDP-11 $175

MVP-FORTH Enhancement Package for IBM PCIXTIAT Programmer's Kit.
lncludes full screen ed~tor, MS-DOS f~ l e Interface, disk, dlsplay and assembler
operators $110

q MVP-FORTH Floating Point and Ouad Precision Math for IBM PCIXTIAT.
Apple, Atar~ 600180011200 or q CP/M, 8" w ~ t h Vol 3 lncludes source

code. $75
N ~ ~ O MVP-LIBFORTH for IBM PCIXTIAT. Four disks01 enhancements, i.e. screen editor.

f~ le ~nterface, math. 8088 and 8087 assemblers. source code $25
N ~ ~ n MVP-FORTH Screen editor for IBM PCIXTIAT. $1 5

MVP-FORTH Floating Point and Matrix Math for q IBM PCIXTIAT with 8087 or
q Apple wlth Applesoft $100
MVP-FORTH Graphics Extension for q IBM PCIXTIAT or O Apple $80
MVP-FORTH Programming Aids for q CPIM. IBM or q APPLE Programmer's
K I ~ Extremely useful tool for decompiling, callfindlng, translating, and
debugg~ng. $200
MVP-FORTH Cross Compiler for CP/M Programmer's Kit Generates headerless
code for ROM or target CPU f 300
MVP-FORTH Meta Compiler for CP/M Programmer's k ~ t Use for applicat~ons on
CP/M based computer, w ~ t h publlc doma~n source $150

MVP-FORTH PADS (Protesslonal Application Oevelopmenl System) for IBM PCIXTIAT
or Apple II II+ or Ile An Integrated system for customlzlng your FORTH programs and
appllcatlons The ed~tor Includes a b~ dlrectlonal strlng search and IS a word processor
specially des~gned for fast development PADS has almost tr~ple the comp~le speed of
most FORTH sand prov~des fast debugg~ng techn~ques Mlnlmum slze target systems are
easy w ~ t h or without heads Vlrtual overlays can be complled In object code PADS IS a
true professional development system Speclfy Computer U IBM q Apple $500

MVP-FORTH MS-DOS file ~nterface for IBM PC PADS $80
MVP-FORTH Floatlng Polnt 6 Ma l r~x Math see above $100
MVP-FORTH Graphlcs Extens~on see above $80

MVP-FORTH EXPERT-2 System for learn~ng and developing knowledge based programs
Both IF-THEN procedures and analyt~cal subroutines are ava~lable Source code IS prov~ded
Spec~fy Apple IBM or 0 CP/M 8" lncludes MVP Books Vol 4 & 6 $100
WordlKalc A Word Processor and calculator system for the IBM PCIXTIAT w ~ t h 256K

Key to Vendors:
HW Hawg Wlld Software PNS P~nk No~se Stud10
LM Laboratory M~crosystems PS Par Sec
MM M~croMot~on MPE M~croProcessor Engrg

FORTH MANUALS, GUIDES & DOCUMENTS
q ALL ABOUT FORTH by Haydon, q FORM1 Proceedings

MVP Glossary $25 q 1980,$30 0 1981. $45
q FORTH Encyclopedia q 1982. $30 0 1983. $30

by Oerlck 8 Baker $25 q 1984, $30 1985. $35
N ~ ~ O Dr. Dobb's Twlbook $23 q 1981 Rochester Proceedings
N ~ ~ O FORTH, A Text 6 Ref. q 1981 0 1982 q 1983

by Kelly & Sp~es $22 1984 q 1985 (Vo13i2) each $25
q FYS FORTH from the Netherlands q Bibliography of FORTH $15

NEwUser Manual, q IBM q Apple ll $25 0 The Journal of FORTH
q FORTH Tools and Appllc. Application 6 Research

by Fe~erbach $22 q Vol 111 q Vol 213 Vol 313
q Ths Complete FORTH by Winf~eld $16 Vol 112 q Vol 214 0 Vol 314
q Learning FORTH by Armstrong $17 Vol 211 q Vol 311
q Understanding FORTH by Reymann $4 q Vol 212 (Vol 312 see above) $15 eac

FORTH. An Applications Approach 0 METAFORTH by Cassady $30
by Toppen $22 q Threaded Interpretive Languages $25

q FORTH Applications by Roberts $10 0 Systems Guide to fig-FORTH
q Mastering FORTH by T~ng

by Anderson & Tracy $18 lns~de F83 Manual by T~ng
q Beglnnlng FORTH by Ch~rl~an $17 F83 Source by T~ng
q FORTH Encycl. Pocket Gutde $10 q NC 4000 FORTH Englne
q And So FORTH by Huang Manual by Tlng

A college level text $25 q FORTH Notebook by T~ng
q STARTING FORTH by Brod~e Best N~~ q More on NC400, 3 vol

~nstructlonal manual ava~lable q lnvltat~on to FORTH
1st Ed $22 q POP-11 User Man

NEWO STARTING FORTH by Brod~e q 6502 User's Manual
2nd Ed $22 by Rockwell lntl

q 68000 kg-Forth w ~ t h assembler $ 2 5 N E ~ 0 FORTH PRIMER. Old But G
Th~nklng FORTH by Leo Brod~e author q FORTH-83 Standard
of best selling ' Startlng FORTH $ 18 q FORTH-79 Standard

MVP FORTH compat~ble kernel w ~ t h F~les Ed~t and Prlnt systems lncludes D~sk and q lnstallat~on Manual tor IIQ-FORTH
Calculator systems and ab111ty to comp~le add~tlonal FORTH words $1 50 q Source Llstlngs 01 119-FORTH Speclfy CPU or Computer

$25
$25
$20

$25
$25
$45
$20
$20

$10
ood $25

$1 5
$15

Order~ng lnlormatlon Payment must accompany order Check Money Order (payable bank Include for handllng and sh~pp~ng by AIR $5 for each Item under $25 $10 for
to MOUNTAIN VlEW PRESS INC) VISA Mastercard Amer~can Express COD s $10 each Item between $25 and $99 and $25 for each Item over $100 All prlces and
extra M~nlmum order $15 No b~lllng or PO s wlthout checks Callfornla res~dents add products subject to change or w~thdrawal without notice Slngle system andlor s~ngle
sales tax Shlpplng costs In US Included In prlce Fore~gn orders pay In US funds on US user llcense agreement requ~red on some products

PO BOX 4656
MOUNTAIN VlEW PRESS, INC.

MOUNTAIN VIEW, CA 94040 (41 5) 961 -41 03

Volume VIII. N o . 6 11 FORTH D ~ r n e n s ~ o n s

Bresenham Line-Drawing
Algorithm

Phil Koopman, Jr.
North Kingstown, Rhode Island

The task of drawing a straight line
on a graphics screen is a fundamen-
tal building block for most computer
graphics applications. Unfortunately,
this capability is not included in many
Forth implementations and, for that
matter, is not included in the ROM
support programs for many personal
computers. This article will show you
how to draw lines on almost any
graphics display, and gives complete
listings in MVP-FORTH.

The CRT Display Layout

First, let's establish some conven-
tions. I will assume that the graphics
display on your computer is addressed
using (X,Y) Cartesian coordinate pairs,
where X and Y are both non-negative
integers (see Figure One). The point
(0,O) - also called the origin - is
the upper-left corner of the computer
screen. Each addressable point on the
screen is called a pixel (short for "pic-
ture element"). The X coordinates
represent columns of pixels (horizontal
distance from the origin), and the Y
coordinates represent rows of pixels
(vertical distance from the origin).

The exact number of pixels on your
computer's display screen is hardware-
dependent. However, some representa-
tive values are: 320 x 200 pixels (320
horizontal and 200 vertical pixels) for
a PC-style, four-color color graphics
adapter (CGA) display; 640 x 200
pixels for a PC-style, two-color CGA
display; and 640 x 350 pixels for a PC-
style sixteen-color enhanced graphics
adapter (EGA) display.

The mechanics of setting the graphics
display mode desired and plotting a
single point on the display are
hardware-dependent, and will be left to
the user to determine. Screens 3 and 4
of the accompanying listing contain all
the machine-specific primitives for PCs
and clones with compatible BIOS ROM
chips. They are formatted to use the
public-domain 8088 assembler cited1.
These screens will obviously have to be
modified for use on other machines.

SCREEN #3
0 \ "PC" COMPATIBLE EGA, CGA, AND TEXT MODES
1 HEX \ Machine specific -- change for your machine!!
2 CODE SET-CGA-MODE (-) \ Set mode and clear screen
3 AX , # 0004 MOV 10 INT \ 320 x 200 in 3 colors
4 NEXT JMP END-CODE
5 CODE SET-CGA-HIRES-MODE (-) \ Set mode and clear screen
6 AX , # 0006 MOV 10 INT \ 640 x 200 in 2 colors
7 NEXT JMP END-CODE
8 CODE SET-EGA-MODE (>) \ Set mode and clear screen
9 AX , # 0010 MOV 10 INT \ 640 x 350 in 16 colors
10 NEXT JMP END-CODE
11
12 CODE SET-TEXT-MODE (->) \ 80 column text
13 AX , # 0003 MOV 10 INT
14 NEXT JMP END-CODE
15 DECIMAL

SCREEN #4
0 \ "PC" COMPATIBLE POINT PLOT FOR EGA AND CGA
1 HEX \ Machine specific -- change for your machine!!
2 \ Note that fancier direct screen access assembly language
3 \ programming can *SIGNIFICANTLY* speed up point plotting
4 \ at the cost of loss of generality.
5
6 CODE PLOT-POINT (X Y COLOR ->) \ Plot a single point
7 AX POP DX POP CX POP BX , BX XOR (page 0 for EGA)
8 A H , # O C M O V 10INT
9 NEXT JMP END-CODE
10
11 DECIMAL
12 \ XMAX,YMAX delimit screen boundaries
13 319 CONSTANT XMAX \ Change to 639 for EGA or CGA/HIRES
14 199 CONSTANT YMAX \ Change to 349 for EGA
15 4 CONSTANT #COLORS \ Change to 16 for EGA , 2 for CGA/HIRES

SCREEN # 5
0 \ VARIABLE DECLARATIONS, MOVE-CURSOR, SPECIAL BRESENHAM POINT
1 DECIMAL
2 VARIABLE XNOW \ (XNOW,YNOW) is current cursor location
3 VARIABLE YNOW \ (0,O) is top left corner of CRT
4 VARIABLE COLOR \ current line draw color
5 ICOLOR!
6 \ Variables per Foley & Van Dam, Fund. of ICAD, 1st ed. p 435.
7 VARIABLE INCRl VARIABLE INCRZ
8 VARIABLE DX VARIABLE DY
9
10 : MOVE-CURSOR (X Y ->) \ Move cursor location before a draw
11 YNOW ! XNOW ! ;
12 : POINT (X Y ->) \ Point plot using COLOR variable
13 COLOR @ PLOT-POINT ;
14 : B-POINT (X Y DELTA ->) \ For Bresenham line drawing use
15 >R DDUP POINT R> ;

I 1
FORTH D~mens~ons 12 Volume VIII, NO 6

SCREEN # 6
0 \ BRESENHAM LINE DRAW PRIMITIVES +X +Y -X -Y
1 DECIMAL
2 : +X (X1 Y1 DELTA -> X2 Y2 DELTA)
3 ROT 1+ ROT ROT ;
4
5 : -X (X1 Y1 DELTA - > X2 Y2 DELTA)
6 ROT 1- ROT ROT ;
7
8 : +Y (XI Y1 DELTA -> X2 Y2 DELTA)
9 SWAP 1+ SWAP ;
10
11 : -Y (XI Y1 DELTA -> X2 Y2 DELTA)
12 SWAP 1- SWAP ;
13
14
15

SCREEN #7
0 \ BRESENHAM LINE FOR 0 < SLOPE < 1
1 DECIMAL \ Assume DX and DY are already set up
2 : LINEO<M<l (NEWX NEWY ->)
3 DY @ 2* INCRl ! DY @ DX @ - 2* INCR2 !
4 (Pick min x) OVER XNOW @ >
5 IF (current cursor at min x) DDROP XNOW @ YNOW @ THEN
6 DDUP POINT
7 (Compute D) INCRl @ DX @ - \ Stack: (X Y DELTA - - -)
8 DX @ 0 DO DUP O<
9 IF (D < O) +X B-POINT INCR1 @ +
10 ELSE (D >= 0) +X +Y B-POINT INCR2 @ + THEN
11 LOOP
12 DROP DDROP ;
13
14
15

SCREEN #8
0 \ BRESENHAM LINE FOR 1 < = SLOPE < INFINITY
1 DECIMAL \ Assume DX and DY are already set up
2 : LINEl<M<Z (NEWX NEWY ->)
3 DX @ 2* INCRl ! DX @ DY @ - 2* INCR2 !
4 (Pick min y) DUP YNOW @ >
5 IF (current cursor at min y) DDROP XNOW @ YNOW @ THEN
6 DDUP POINT
7 (Compute D) INCRl @ DY @ - \ Stack: (X Y DELTA - - -)
8 D Y @ O D 0 DUP O<
9 IF (D < O) +Y B-POINT INCR1 @ +
10 ELSE (D >= 0) +X +Y B-POINT INCR2 @ + THEN
11 LOOP
12 DROP DDROP ;
13

SCREEN #9
0 \ BRESENHAM LINE FOR -1 < SLOPE < 0
1 DECIMAL \ Assume DX and DY are already set up
2 : LINE-1<M<O (NEWX NEWY ->)
3 DY @ 2* INCRl ! DY @ DX @ - 2 * INCR2 !
4 (Pick min x) OVER XNOW @ >
5 IF (current cursor at min x) DDROP XNOW @ YNOW @ THEN
6 DDUP POINT
7 (Compute D) INCRl @ DX @ - \ Stack: (X Y DELTA - - -)
8 DX @ 0 DO DUP O<
9 IF (D < O) +X B-POINT INCRl @ +
10 ELSE (D >= 0) +X -Y B-POINT INCRZ @ + THEN
11 LOOP
12 DROP DDROP ;
13
14
15

Straightforward Line-Drawing
Algorithms

Now that we can assume the availa-
bility of a point-plotting word, how
can we draw lines? Horizontal and
vertical lines are relatively straightfor-
ward. For example:

: HORIZONTAL-TEST (--)

1OOODO 110POINTLOOP;

shows that horizontal lines are drawn
by merely incrementing an X value for
a constant Y value. Similarly, forty-
five-degree lines may be drawn by
using a word that simultaneously incre-
ments both X and Y values, such as:

: DIAGONAL-TEST (--)
100 0 DO

l l POINT LOOP ;

But what about lines that are in-
between? A line which spans twice as
many X points as Y points would be
drawn by:

: X = 2 ' Y (- -)

0 100ODO

DUP I POINT 1 +
DUP I POINT 1 + LOOP

DROP ;

For a generalized line-drawing word
with a slope between zero and one
(meaning that the X distance of the line
is greater than the Y distance, and that
both distances are drawn from smaller
to larger numbers), we would have:

: GENERAL-LINE (X1 Y1 X2 Y2 --)
SWAP 4 PlCK - SWAP

3PlCK- > R > R 100' R > R >

100 3 PlCK 'I SWAP 1 + 0

DO 3 PlCK 3 PICK 100 1 POINT

SWAP OVER +
ROT 1 + SWAP ROT LOOP

DROP 100 1 POINT ;

The above word takes two (X,Y) co-
ordinate pairs as an input, and scales all
Y values by 100 to allow for non-integer
increments of Y. While this line-drawing
algorithm is conceptually straightfor-

Volume VIII. No. 6 13 FORTH O~mens~ons

FORTH, Inc.

Sample GODSEYE output.

ward, it does require a lot of arith-
metic. Even if clever scaling factors
were chosen to replace most multiplies
and divides with shifts and byte-moves,
the initial division of the difference
between XI and X2 (sometimes called
"delta X" or just plain "DX") by the
difference between Y 1 and Y2 ("DY")
is unavoidable. Another problem is
that sixteen-bit scaled integers are not
big enough for use on high-resolution
screens. In this example, lines that span
more than 100 pixels horizontally are
improperly drawn.

The Bresenham Algorithm

The Bresenham line-drawing algo-
rithm2 requires only sixteen-bit integers
with addition, subtraction and multi-
plication by two (shift left) to draw
lines. Instead of a scaled, non-integer
Y value, the algorithm shown on screen
7 uses the error accumulation term
DELTA and integer X and Y values. For
lines with a slope between zero and
one, the algorithm increments the X
value for each point, and increments
the Y value only if the DELTA value is
negative. If DELTA is negative, a posi-
tive value of DY is added to form the
new DELTA value. If DELTA is positive, a

negative value based on both DX and
DY is used to form a new DELTA value.

Of course, slight variations of this
algorithm are needed to account for
lines with slopes that are not between
zero and one. Screens 5 through 13
contain a complete Bresenham line-
drawing vocabulary for all line slopes.
Horizontal and vertical lines are treat-
ed as special cases for greater speed
and simplicity.

The vocabulary for using this draw-
ing package is:

SET-CGA-MODE (--)
Places the display in graphics mode.
This word may be redefined or renamed
as appropriate for your computer.

SET-TEXT-MODE (--)

Returns the display to an eighty-column
text mode. This word may be redefined
or renamed as appropriate for your
computer.

PLOT-POINT (X Y color --)
Plots a single point on the graphics
screen. This word may be redefined as
appropriate for your computer.

FORTH Dimensions 14 Volume VIII, No 6

SCREEN #lo
0 \ BRESENHAM LINE FOR -INFINITY < SLOPE < -1
1 DECIMAL \ Assume DX and DY are already set up
2 : LINE-Z<M<-1 (NEWX NEWY ->)
3 DX @ 2* INCRl ! DX @ DY @ - 2* INCR2 !
4 (Pick min y) DUP YNOW @ >
5 IF (current cursor at min y) DDROP XNOW @ YNOW @ THEN
6 DDUP POINT
7 (Compute D) INCRl @ DY @ - \ Stack: (X Y DELTA ---
8 D Y @ O D 0 DUP O<
9 IF (D < O) + Y B-POINT INCRl @ +
10 ELSE (D >= 0) -X +Y B-POINT INCR2 @ + THEN
11 LOOP
12 DROP DDROP ;
13
14
15

SCREEN #11
0 \ LINE FOR SLOPE = INFINITY (Vertical)
1 DECIMAL \ Assume DX and DY are already set up
2 : LINEZ (NEWX NEWY ->)
3 (Pick min y) DUP YNOW @ >
4 IF (current cursor at min y) DDROP XNOW @ YNOW @ THEN
5 DDUP POINT 0 (dummy DELTA value)
6 DY @ 0 DO +Y B-POINT LOOP
7 DROP DDROP ;
8
9
10
11
12
13
14
15

SCREEN #12
0 \ LINE FOR SLOPE = 0 (Horizontal)
1 DECIMAL \ Assume DX and DY are already set up
2 : LINEO (NEWX NEWY ->)
3 (Pick min x) OVER XNOW @ >
4 IF (current cursor at min x) DDROP XNOW @ YNOW @ THEN
5 DDUP POINT 0 (dummy DELTA value)
6 DX @ 0 DO +X B-POINT LOOP
7 DROP DDROP ;
8
9
10
11
12
13
14
15

SCREEN #13
0 \ BRESENHAM PROLOGUE & CALLING ROUTINE
1 DECIMAL
2 : LINE (XNEW YNEW ->)
3 DDUP (Extra copy u'sed for final MOVE-CURSOR)
4 OVER XNOW @ - DUP ABS DX ! OVER YNOW @ - DUP ABS DY
5 XOR O< (Determine if signs are different)
6 DY @ IF DX @ IF (Not horizontal or vertical)
7 IF (Negative slope)
8 DX @ DY @ > IF LINE-l<M<O ELSE LINE-Z<M<-1 THEN
9 ELSE (Positive slope)
10 DX @ DY @ > IF LINEO<M<I ELSE LINE~<M<Z THEN
11 THEN
12 ELSE (Vertical) DROP LINEZ THEN
13 ELSE (Horizontal) DROP LINEO THEN
14 MOVE-CURSOR ;
15

:;f , .-
MICRO-

1.-

...a ..
:::: 2.

?3
$$ coNTROLL 5 . .
$3 f. t.

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machlne

code interrupt handlers
-System timekeeping maintains

time and date with leap
year correction

-Supports ROM-based self-
starting applications

1 130 page manual -I 30.00 8 . 8K EPROM w~th manual-S1OO.OO :2
h :.:'

Postage pa~d In North Arner~ca :.' .-.'

, lnqulre for l~cense or quantlty prlclng 2?..

-i .:.: ::.

.-a- h

i:: Bryte Computers, lnc. 2.

P.O. Box 46, Augusta, ME 04330 8 .?Z .?.'
z.. (207) 547-32 18 .:. ,y . . .:.
3 . . :::
i .A-..r.-.-.~-.-~-.-.~C.-.-.-.~.~.-.5-~-~-~.~~~~~-~-~-~-~-~.~-~- -5. .,........ -

Volume VIII, No. 6 15 FORTH Dimens~ons

POINT (X Y --)

Same as POINT, but without a color
value for consistency with LINE.

MOVE-CURSOR (X Y - -)

Move the current drawing cursor loca-
tion to the point (X,Y). This word is not
called MOVE because of possible naming
conflicts in some Forth dialects.

LINE (X Y - -)

Draw a line from the last cursor posi-
tion (set by either a MOVE-CURSOR or a
LINE word) to the point (X,Y). The
color of the line is determined by the
value of the variable COLOR.

The demonstration program GODSEYE
not only draws a pretty picture, but is a
good test for the line-drawing algo-
rithm, since it uses lines from each of
the different slope-range cases of the
line-drawing program.

Conclusion

The Bresenham line-drawing algo-
rithm is an efficient way to draw
straight lines. The lines can be drawn
even faster than with the example pro-
grams by using techniques such as
direct screen-memory access instead of
BIOS ROM function calls, and by
writing optimized assembly language
programs that keep variables in regis-
ters instead of in memory. For more
information on computer graphics (in-
cluding mathematical derivations of
the Bresenham algorithm), please see
the recommended reading list.

In the next issue of Forth Dimensions,
I will show you how to use these line-
drawing words to draw fractal-based
landscapes.

Recommended Reading

Fundamentals of Interactive Computer
Graphics, J.D. Foley and A. Van
Dam, Addison-Wesley, Reading MA,
1982.

Principles of Interactive Computer
Graphics, W.M. Newman and R.F.
Sproull, McGraw-Hill, New York,
1979.

SCREEN # 1 4
0 \ BRESENHAM LINE DRAWING TEST PICTURE -- GODSEYE
1 DECIMAL
2 : GODSEYE
3 SET-CGA-MODE \ Change to SET-EGA-MODE for the EGA, etc.
4 4 0 DO 3 I - COLOR ! (Use this line for CGA)
5 \ 1 O D 0 1 COLOR ! (Use this line for CGA/HIRES)
6 \ 1 6 0 DO 1 5 I - COLOR ! (Use this line for EGA)
7 76 0 DO 75 I -
8 150 OVER 2* - 1 0 0 MOVE-CURSOR
9 150 OVER 2 5 + L I N E

1 0 150 OVER 2* + 1 0 0 L I N E
11 150 I 1 0 0 + LINE
1 2 150 OVER 2 * - 1 0 0 LINE
13 DROP 3 +LOOP
1 4 ?TERMINAL ABORT" BREAK I N GODSEYE"
1 5 LOOP SET-TEXT-MODE ;

Figure One. Pixel layout on a graphics screen with example points.

References
2. "Algorithm for Computer Control

1. M V P - F O R T H I n t e g e r a n d of a Digital Plotter," J.E. Bresen-
Floating-point Math, P. Koopman, ham, IBM Systems Journal, Vol. 4,
Mountain View Press, 1985. No. 1, pp. 25-30, 1965.

FORTH D~rnensions 16 Volume VIII, No. 6

SPEED AND POWER
is the name of the game!

PC4000 $995
Use the PC4000 to turn your PC into a high speed Forth development workstation. The PC4000
is a PC plug-in card with the Novix NC4000P Forth engine on board to add speed, 512K memory,
and concurrent processing power to your PC or 100% compatible. The PC4000 runs cmForth,
SCForth, and Delta-C. PolyFORTH (a registered trademark of Forth, Inc.) coming soon.

DELTA BOARD $495
The Delta Board is a single-board stand alone computer using the Novix NC4000P Forth engine
to execute high-level Forth instructions without compilation. It brings minicomputer performance
to industrial control and other tasks using embedded processors. Operates at least 10 times faster
than the 68000-based systems. Memory board, mother board, power supply, cable, and enclosure
available for expansion. The Delta Board runs cmForth, SCForth, and Delta-C.

The PC4000 and Delta Board come fully assembled and tested with 4 MHz operation, 90 day
warranty, PCX (or DCX with the Delta Board) Communication Software in F83, User Manual,
cmForth with editor and demo programs and user support with Silicon Composers Bulletin Board.

SILICON COMPOSERS Formerly
210 California Avenue, Suite I SOFTWARE COMPOSERS
Palo Alto, CA 94306
(415) 322-8763

SILICON COMPOSERS

Volume VIII, No. 6 17 FORTH Dlmenscons

Unsigned Division Code
Routines

Robert L. Smith
Palo Alto, California

Occasionally, you may find it neces-
sary to write division routines in code.
This may occur because you are using a
wider precision than is supplied by the
machine hardware or your Forth ven-
dor, or perhaps because you are writ-
ing your own Forth system. Division
routines seem to have a number of
pitfalls, and the difficulties of writing
these routines are compounded by
poor documentation of carry-bit be-
havior as specified in literature from
various manufacturers.

I consider that the most fundamental
divide routine is that of the unsigned
variety with the numerator having
twice the precision of the denominator,
and in which the result yields both the
quotient and the remainder. In the
Forth-83 Standard, it would be called
UMIMOD. Step-by-step division is fre-
quently accomplished by a series of
trial subtractions and shifting. The new
bit shifted in at the least-significant-bit
position may be the carry bit or its
complement, depending on the particu-
lar machine. Since the carry (or bor-
row) bit is frequently poorly docu-
mented for the case of subtraction, but
almost all machines handle the carry
bit the same way for addition, I often
find it easier to just complement the
divisor before I begin the rest of the
routine, and just do trial additions
instead of subtractions. If you use
subtract or compare operations, but
find that the carry bit is the opposite of
that desired, you may be able to use the
carry bit produced by the computer
and merely complement the quotient at
the end.

Another pitfall of division routines
is the proper handling of the most
significant bit of the numerator. Most
division routines begin by shifting the
double-precision numerator left by one
bit before doing the first subtraction.
That technique is all right, provided
that the most significant bit is not lost
in the process. To see the problem,
consider a very simple numerator with
the most significant bit set to one and
all the remaining bits cleared to zero.

Take a denominator which is just
slightly larger than the high-order part
of the denominator. Assume, for ex-
ample, that we are using the base HEX,
and that we have a single precision of
sixteen bits. The test case would be

The result of this test should be a
remainder of two and a quotient of
FFFE on the top of the stack. If the
initial divisor, 80000000, were to be
shifted left without consideration of
the high-order bit, the result would be
zero!

Most division routines need a counter
to determine when to stop the process.
The count-down test may be perform-
ed at the end of the shifting process, or
in the middle of the shifting process.
The latter case is preferable if the count
down and testing can be done without
disturbing the carry bit. In the former
case, it is necessary to stop the main
loop one count short and then do a
final trial subtraction (or addition),
followed by a shift of the carry bit into
the quotient only.

Before giving a detailed method for
division, it should be noted that there
are a wide variety of techniques. If you
like this sort of thing, there is a rather
fascinating method of non-restoring
division in which you either subtract or
add, depending on the result of the
previous step. Another point worth
noting is that if you are implementing a
fairly wide multiple precision using the
trial subtraction method, the overall
speed may be improved by starting
your trial subtractions at the most
significant byte or word to determine
whether or not you really want to do
the subtraction.

The preliminary part of the divide
routine consists of setting a counter to
the number of bits of precision and
negating the denominator, usually by
popping it off the stack, and placing it
in a special register or variable, which I
will call -DEN. Let us call the next item
on the stack HI and below that the
lower-order part of the numerator,

which we can call LO. These two items
may be popped off the stack, if neces-
sary. The remainder will be developed
from HI, and the quotient will be devel-
oped from LO. As a side comment, we
note that the natural result of this
process is to put the quotient second on
the stack, with the remainder on the
top. The majority of Forth systems
require the reverse of this, necessitating
a final SWAP to complete the process.
One could use an argument based on
factoring to suggest that the proper
primitive for division would leave the
remainder on the top of the stack.

Step I : Shift HI and LO left by one
bit, with both carry-in and carry-out.
If carry-out is zero, go to Step 2. Other-
wise, add -DEN to HI and place the sum
in HI. Decrement the counter. If the
result is non-zero, set the carry bit to
one and repeat this step. Otherwise,
clear the carry bit and go to Step 3.

Step 2: Make a trial addition of -DEN
to HI. If the carry-out is one, put the
sum back into HI. In either case,
remember the carry bit. Decrement the
counter. If the result is non-zero, then
go to Step 1. Otherwise, go to Step 3.

Step 3: Shift LO only left with carry. If
all operands were popped from the
stack, first push HI on the stack, and
then LO. Otherwise, do a SWAP
operation.

That is all there is to it for this
routine. Of course, the optimal method
will vary from machine to machine.
You may be able to obtain a very slight
improvement by doing true subtraction
on your machine and not doing the
initial negation of the denominator.

In my opinion, the arithmetic rou-
tines in Forth need to be augmented by
division functions which allow double-
length divisors. In a version of Forth
that I am currently working on, I have
added such a routine. It is written in
normal 8086/8088 assembly language,
and is presented in Figure One as a real
example of a division routine. The
details of the macro name HEADER are
unimportant for the purposes of this
example.

(See code on page 25.)

L
FORTH D~mens~ons 18 Volume VIII, No 6

DOS File Disk I10
Charles G. Wilcox A: This switches the default

Palo Alto, California drive to drive A.

This short article describes a simple
interface to PC-DOS used on the IBM
PC or equivalent machines. The code
is written around MVP-FORTH, but it
could be incorporated in virtually any
Forth, if desired. A short test indicated
that it is compatible with files used
by F83.

The words used by the operator are
described below. The supporting words
are described later.

OPEN Used in the form "OPEN
filename" to open an exist-
ing DOS file or to create a
new one. If a new one is
being created, then an
appropriate message is dis-
played. An error is returned
if the file cannot be opened.
With this simple system, only
one file can be open at a
time.

CLOSE Used in the form "CLOSE"
to close the presently open
file. If the file has been writ-
ten to, this word updates the
directory accordingly (usually
only the time has changed). If
the file cannot be closed, then
an error message is displayed.

6: This switches the default
drive to drive B.

Supporting Words

GFNAME This word parses a filename
out of the input stream and
moves it to any address you
like. Normally, I use FCB but
in the case of the word DEL 1
use PAD. This prevents the
file control block from being
messed up when I am merely
deleting another file.

FCB This is a variable with 2EH
more bytes allotted. The file
information, including the
filename, is stored here.

DOsiuW The code field of this word
is put into the execution
variable ~ iuw to replace the
usual word (WW) used in
MVP-FORTH. This word
uses the same input as any
other R/W word, namely
address, block number and
either a true flag (indicating
a read is desired) or a false
flag (indicating a write func-
tion is needed).

DEL Used in the form "DEL file- H,, ~t works
name" to delete the file on
the default drive, if it can be
found. If not, an error mes-
sage is displayed.

MVP-DISK This patches the execution
variable 'iuw to point to the
original (iuw) that comes with
MVP-FORTH (basic sector
I/O).

DOS-DISK This patches the execution
variable m / w to point to
the new word oosiuw. With
these two words, you can
toggle back and forth between
the two types of disk I/O.

With PC DOS, there are two ways of
interfacing to disk files. One, the older
method, uses a file control block
(FCB). The newer method uses device
handles. The newer method allows one
to direct I/O easily. I chose the older
method, since it was conceptually
simpler for me. In this method, one
creates a file control block and uses the
address of this block as the entry ad-
dress to a series of interrupt 21H calls.
The register AH is set to the code for
the command and then interrupt 21H is
performed. The error code is usually
returned in AL. MVP-FORTH uses the
word SYSCALL to accomplish this. I use
eight such interrupt calls as follows:

F " ' , ,

Volume VIII. No 6 19

open file OFH
create file 16H
close file 1 OH
delete file 13H
set disk transfer address IAH
set default drive OEH
read random record 21H
write random record 22H

The code should be self explanatory,
and is shown in the accompanying
screens.

One word of caution, since the
parsing word is quite simple: one
must use a period after the filename.
I also use an extension. One could en-
hance this operation if one wanted to
spend the time at it. If a file has no
extension, don't worry; I fill the FCB
with blanks, which are okay. Anyway,
I usually type something like "OPEN
FORTHXX.SCR7'.

In the newest versions of Forth, the
block sizes are one kbyte. I therefore
set the record size to one kbyte when I
open the file. This is done by storing
400H in the file control block starting
at offset OEH.

Since the word R m in Forth requires
(address b# f) for input parameters,
I use the address for setting the transfer
address. The block number is then put
in the relative record number position
in the file control block (offset 21H)
and then either random read or ran-
dom write is called, depending on the
flag. Any disk I/O error is trapped and
a message is displayed.

Use this system as follows:

OPEN FORTHXX.SCR
(opens a new file FORTHXX.SCR)

99 BUFFER DROP UPDATE FLUSH
(write dummy data to disk)

Now you have created a DOS file of
100 kbytes size. Use the familiar words
BLOCK, BUFFER, LIST, LOAD, INDEX,
etc., and they will work as usual.

I
FORTH D~rnenslons

I am not including any code that will
allow you to transfer data from a non-
DOS file to a DOS file, but it is very
easy to create by using the words MVP-
DISK and DosDlsK to switch types and
then BLOCK, UPDATE and FLUSH. YOU
can figure that out for yourself.

Possible Enhancements

By reading through the DOS manual,
one could figure out how to use the file
handle system, which is simpler to use
once you learn it. It is possible, using
the newer file system (indeed, it can be
done with the old one, if more than one
file control block is available), to have
more than one file open at a time. Then
data from one file could be transferred
conveniently to another file. But in the
interest of simplicity, what is presented
is adequate for a lot of programming
needs. Another enhancement would be
to display the DOS directory.

Conclusion

This was very simple code to get
working, taking about two hours to
accomplish. It allows you to access
DOS files for whatever reason you
choose. DOS files not created by Forth
are easily inspected. Just remember
that block zero of any file contains the
first one kbyte of the file. When read-
ing a file less than one kbyte in length,
you will get a disk read error. Don't
worry, though: block zero will still
contain the data, and the remainder of
the block will be filled with zeroes.

This also answers the question a
lot of non-Forth programmers raise:
"Why can't Forth talk to DOS files?"
My answer to them is, "It can, and
here is the code." Then I ask them
about trying to convert DOS-created
files to non-DOS format. That usually
stumps them.

SCR # 3 9
0 HEX \ NEW DOS FUNCTIONS FOR DISK 1/0
1

2 VRRIRBLE FCB 2E RLLOT \ HOLDS F I L E CONTROL BLOCK
3
4 : GFNRME (RDDR ---) \ GETS THE F I L E NRME FROM INPUT STRERM
5 DUP) R 3 0 ERRSE \ CLERRS THE WHOLE FCB TO ZERO
6 RB 1+ 0B BLRNK \ SETS THE NRME F I E L D TO BLRNKS
7 2E WORD COUNT 8 M I N R@ 1+ SWRP CMOVE \ GETS THE FILENRME
8 E L WORD COUNT 3 M IN R) 9 + SWRP CMOVE : \ " " EXT
9

10 \ MUST USE FI PERIOD RFTER FILENRME BUT NO EXT I S REQUIRED
1 1
1 2 : DEL (---) \ " DEL filename "
1 3 PFID GFNFlME
1 4 1 3 PRD SYSCRLL 0FF RND
1 5 RBORT" file not found" ;

SCR # 5 3 I B HEX \ NEW DO8 110

OPEN (---) \ 01 OPEN f i lenarne "
FCB GFNRME
0 F FCB SYSCRLL 0FF RND \ TRIES TO OPEN THE F I L E
I F ." new file "

16 FCB SYSCRLL 0FF RND \ CRERTES NEW F I L E I F NEEDED
RBORT" error opening file"

THEN
4 0 0 FCB 0E + ! : \ SETS THE RECORD S I Z E TO 1K

CLOSE (---) \ dont need filename here
10 FCB SYSCRLL OFF RND
RBORT" error closing file" ;

SCR tl 5 4
0 HEX \ NEW DOS 1 / 0 18RPR86CGW
1
2 : R:
3 0E 0 SYSCRLL DROP ; \ SELECT DRIVE R FOR DEFRULT
4 : B:
= 0E 1 SYSCRLL DROP ; \ SELECT DRIVE B FOR DEFRULT
6
7 : DOSR/W (RDDR B# f ---) \ REPLRCES <R/W) I N MVP
8 SWRP FCB 2 1 + ! \ SETS RRMDOM RECORD NUMBER
9 1R ROT SYSCRLL DROP \ SETS TRRNSFER RDDRESS

1 0 I F 2 1 FCB SYSCRLL 0FF RND \ RRMDOM RERD DISK RECORD
1 1 RBORT" disk read error"
1 2 ELSE 2 2 FCB SYSCFlLL 0FF RND \ RRNDOM WRITE DISK RECORD
13 RBORT" disk write error"
1 4 THEN ;
1 5

(Screens continue on page 25.)

FORTH Dimensions 20 Volume VIII, No. 6

FORTH INTEREST GROUP MAIL ORDER FORM
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

MEMBERSHIP
IN THE FORTH INTEREST GROUP I

109 - MEMBERSHIP in the FORTH INTEREST GROUP & Volume 9
of FORTH DIMENSIONS. No sales tax or handling fee. See
the back page of this order form.

The Forth lnterest Group is a worldwide non-profit member-
supported organization with over 4,000 members and 90 chap-
ters. FIG membership includes a subscription to the bi-monthly
publication, FORTH Dimensions. FIG also offers its members
group health and life insurance, an on-line data base, a large
selection of Forth literature, and many other services. Cost is

is $30.00 per year for USA, Canada & Mexico; all other countries,
$42.00 per year.

The annual membership dues are based on the membership
year, which runs from May 1 to April 30.

When you join, you will receive issues that have already been
circulated for the current volume of Forth Dimensions, and
subsequent issues will be mailed to you as they are published.
You will also receive a membership card and number.

I I

HOW TO USE THIS FORM
1. Each item you wish to order lists three different Price categories:

Column 1 - USA, Canada, Mexico
Column 2 - Foreign Surface Mail
Column 3 - Foreign Air Mail

2. Select the item and note your price in the space provided.

3. After completing your selections enter your order on the fourth page of this form.

4. Detach the form and return it with your payment to the Forth Interest Group.

FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May - April)
101 - Volume 1 FORTH Dimensions (1 979180)$15116118 -
102 - Volume 2 FORTH Dimensions (1 980181)$15116118 -
103 - Volume 3 FORTH Dimensions (1 981 182)$15/16118 -
104 - Volume 4 FORTH Dimensions (1 982/83)$15116118 -
105 - Volume 5 FORTH Dimensions (1 983184)$15116/18 -
106 - Volume 6 FORTH Dimensions (1 984/85)$15116118 -
107 - Volume 7 FORTH Dimensions (1 985/86)$20/21124 -
108 - Volume 8 FORTH Dimensions (1 986/87)$20121124 -

FORML CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML (the Forth Modification Laboratory) is
an informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORML is part of the Forth
Interest Group.
310 -FORML PROCEEDINGS 1980 . . $30133140

Technical papers on the Forth language and extensions.

31 1 - FORML PROCEEDINGS 1981 . . . $45148155
Nucleus layer, interactive layer, extensible layer, metacom-
pilation, system development, file systems, other languag-
es, other operating systems, applications and abstracts
without papers.

312 -FORML PROCEEDINGS 1982 $30133140
Forth machine topics, implementation topics, vectored
execution, system development, file systems and lan-
guages, applications.

313 -FORML PROCEEDINGS 1983 . $30133140
Forth in hardware, Forth implementations, future strategy,
programming techniques, arithmetic & floating point, file
systems, coding conventions, functional programming
applications.

31 4 - FORML PROCEEDINGS 1 984 $30133140
Expert systems in Forth, using Forth, philosophy, im-
plementing Forth systems, new directions for Forth, inter-
facing Forth to operating systems, Forth systems tech-
niques, adding local variables to Forth.

31 5 - FORML PROCEEDINGS 1985 $35138145
Also includes papers from the 1985 euroFORML Con-
ference. Applications: expert systems, data collection,
networks. Languages: LISP, LOGO, Prolog, BNF. Style:
coding conventions, phrasing. Software Tools: decom-
pilers, structure charts. Forth internals: Forth computers,
floating point, interrupts, mulitasking, error handling.

Volume VIII, NO. 6 21 FORTH Dimensions

BOOKS ABOUT FORTH
200 -ALL ABOUT FORTH $25126135

Glen B. Haydon
An annotated glossary for MVP Forth; a 79-Standard Forth.

216 -DESIGNING & PROGRAMMING
PERSONAL EXPERT SYSTEMS . . $1 9120129
Carl Townsend & Dennis Feucht
Introductory explanation of Al-Expert System Concepts.
Create your own expert system in Forth. Written in
83-Standard.

217-F83SOURCE $25126135
Henry Laxen & Michael Perry
A complete listing of F83 including source and shadow
screens. Includes introduction on getting started.

218 -FOOTSTEPS IN AN EMPTY VALLEY
(NC4000 Single Chip Forth Engine) $25126135
Dr. C. H. Ting
A thorough examination and explanation of the NC4000
Forth chip including the complete source to cmForth from
Charles Moore.

219 -FORTH: A TEXT AND REFERENCE $22123133
Mahlon G. Kelly & Nicholas Spies
A text book approach to Forth with comprehensive referen-
ces to MMS Forth and the 79 and 83 Forth Standards.

220 -FORTH ENCYCLOPEDIA $25126135
Mitch Derick & Linda Baker
A detailed look at each fig-Forth instruction.

225 -FORTH FUNDAMENTALS. V.l $1 611 7/20
Kevin McCabe
A textbook approach to 79-Standard Forth

230 -FORTH FUNDAMENTALS. V.2 $1 311 411 8
Kevin McCabe
A glossary.

232 -FORTH NOTEBOOK . . $25126135
Dr. C. H. Ting
Good examples and applications. Great learning aid.
PolyFORTH is the dialect used. Some conversion advice is
included. Code is well documented.

. . . 233 -FORTH TOOLS . . $22123132
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

235 -INSIDE F-83 $25126135
Dr. C. H. Ting
Invaluable for those using F-83.

237 -LEARNING FORTH $1 7/18/27
Margaret A. Armstrong
Interactive text, introduction to the basic concepts of Forth.
Includes section on how to teach children Forth.

240 -MASTERING FORTH . . $1 811 9/22
Anita Anderson & Martin Tracy
A step-by-step tutorial including each of the commands of
the Forth-83 International Standard; with utilities, exten-
sions and numerous examples.

245 -STARTING FORTH (soft cover) . $22123132 --
Leo Brodie
A lively and highly readable introduction with exercises.

246 -STARTING FORTH (hard cover) . $20121130
Leo Brodie

255 -THINKING FORTH (soft cover) $1 611 7120
Leo Brodie
The sequel to "Starting Forth". An intermediate text on
style and form.

265 -THREADED INTERPRETIVE
LANGUAGES . . $25126135
R. G. Loelinger
Step-by-step development of a non-standard Z-80 Forth.

267 -TOOLBOOK OF FORTH
(Dr Dobb's) $23125135 : Edlted by Marlln Ouverson
Expanded and revlsed verslons of the best Forth artlcles
collected In the pages of Dr Dobb's Journal

270 -UNDERSTANDING FORTH $3 501516
Joseph Reymann
A brlef lntroduct~on to Forth and overvlew of ~ t s structure

ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Inc. is a non-profit organization
which supports and promotes the application of Forth. It sponsors the
annual Rochester Forth Conference.
321 -ROCHESTER 1981

(Standards Conference) $25128135
79-Standard, implementing Forth, data structures, vocabu-
laries, applications and working group reports.

322 -ROCHESTER 1982
(Data bases & Process Control) $25128135
Machine independence, project management, data struc-
tures, mathematics and working group reports.

323 -ROCHESTER 1983
(Forth Applications) $25128135
Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like languages,
new techniques for implementing Forth and working group
reports.

324 -ROCHESTER 1984
(Forth Applications) . . . $25128135
Forth in image analysis, operating systems, Forth chips,
functional programming, real-time applications, cross-
compilation, multi-tasking. new techniques and working
group reports.

325 -ROCHESTER 1985
(Software Management & Engineering) $20121 130
Improving software productivity, using Forth in a space
shuttle experiment, automation of an airport, development
of MAGICIL, and a Forth-based business applications
language; includes working group reports.

I THE JOURNAL OF FORTH APPLICATION & RESEARCH
A refereed techn~cal journal published by the lnstltute for Applled Forth
Research, Inc
401 -JOURNAL OF FORTH RESEARCH V 1

Robot~cslData Structures $30133138
403 -JOURNAL OF FORTH RESEARCH V 2 # I

Forth Machlnes $1 511 611 8
404 -JOURNAL OF FORTH RESEARCH V 2 #2

Real-Tlme Systems $1 511 611 8
405 -JOURNAL OF FORTH RESEARCH V 2 #3

Enhanc~ng Forth $1 511 611 8
406 -JOURNAL OF FORTH RESEARCH V 2 #4

Extended Addressing $1 511 611 8
407 -JOURNAL OF FORTH RESEARCH V 3 # I

Forth-based laboratory systems and data structures
$1 511 611 8

409 -JOURNAL OF FORTH RESEARCH V 3 #3
$1 511 611 8

41 0 -JOURNAL OF FORTH RESEARCH V 3 #4
$1 511 611 8

FORTH D~mens~ons 22 Volume VIII. No. 6

-

DR. DOBB'S JOURNAL
Thls magazlne produces an annual specla1 Forth Issue whlch Includes
source-code llstlng for varlous Forth appllcatlons
422 -DR DOBB'S 9/82 $51617
423 -DR DOBB'S 9/83 $51617
424 -DR DOBB'S 9/84 $51617
425 - DR DOBB'S 1 0185 $51617
426 -DR DOBB'S 7/86 $51617

HISTORICAL DOCUMENTS
501 - KITT PEAK PRIMER $25127135

One of the flrst ~nst~tutlonal books on Forth Of hlstorlcal
Interest

502 - Fig-FORTH INSTALLATION MANUAL $1 511 611 8
Glossary model ed~tor - We recommend you purchase
thls manual when purchas~ng the sourcecode llst~ng

503 -USING FORTH $20121 I22
FORTH, Inc

' REFERENCE
305 -FORTH 83-STANDARD $1 511 611 8

The autoritative description of 83-Standard Forth. For
reference, not instruction.

300 -FORTH 79-STANDARD $1 511 611 8
The authoritative description of 79-Standard Forth. Of
historical interest.

REPRINTS
420 -BYTE REPRINTS $51617

Eleven Forth articles and letters to the editor that have
appeared in Byte Magazine.

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source Llstlngs of flg-Forth for Speclflc CPUs and
rnach~nes wlth cornpller secur~ty and varlable length names
514 -6502lSEPT 80 $1 511 611 8
51 5 -6800lMAY 79 $1 511 611 8
516 -6809lJUNE 80 $1 511 611 8 -
51 7 -8080lSEPT 79 $1 511 611 8
518 - 80861881MARCH 81 $1 511 611 8
519 -9900lMARCH 81 $1 511 611 8
521 -APPLE IllAUG 81 $1 511 611 8
523 -IBM-PCIMARCH 84 $1 511 611 8
526 -PDP-11 /JAN 80 $1 511 611 8
527 -VAXIOCT 82 $1 511 611 8
528 - Z801SEPT 82 $1 511 611 8

MISCELLANEOUS
601 -T-SHIRT SIZE

Small, Medlum, Large and Extra-Large
Wh~te deslgn on a dark blue shlrt $1 011 111 2

602 -POSTER (BYTE Cover) $51617
61 6 -HANDY REFERENCE CARD FREE
683 -FORTH-83 HANDY REFERENCE CARD FREE

FORTH MODEL LIBRARY
The model applications disks described below are new additions to the
Forth Interest Group's library. These disks are the first releases of new
professionally developed Forth appl~cations disks. Prepared on 5 114"
disks, they are IBM MSDOS 2.0 and up compatible The disks are
compatible with Forth-83 systems currently available from several Forth
vendors. Macintosh 3 112" disks are available for MasterFORTH systems
only.

Forth-83 Compatibility 18M MSDOS
LaxenIPerry F83 LMI PCIFORTH 3.0
MasterFORTH 1.0 TaskFORTH 1.0
PolyFORTH@ II

Forth-83 Compatibility Macintosh
MasterFORTH

ORDERING INFORMATION.
701 -A FORTH LIST HANDLER V.l . $40143145

by Martin J. Tracy
Forth is extended with list primitives to provide a flexible
high-speed environment for artificial intelligence. ELlSA
and Winston & Horn's micro-LISP are included as ex-
amples. Documentation is included on the disk.

702 - A FORTH SPREADSHEET V.2 $40143145
by Craig A. Lindley
This model spreadsheet first appeared in Forth Dimensions
Volume 7, lssue 1 and 2. These issues contain the
documentation for this disk.

703 -AUTOMATIC STRUCTURE CHARTS V.3 $40143145
by Kim R. Harris
These tools for the analysis of large Forth programs were first
presented at the 1985 FORML conference. Program docu-
mentation is contained in the 1985 FORML Proceedings.

704 - A SIMPLE INFERENCE ENGINE V.4 $40143145
N by Martin J. Tracy
E Based on the Inference Engine in Winston & Horns book of
W Lisp, this volume takes you from pattern variables to a

complete unification algorithm. Accompanied throughout
with a running commentary on Forth philosophy and style.

706 -THE MATH BOX V.6 $40143145
N by Nathaniel Grossman
E A collection of mathematical routines by the foremost
W author on math in Forth. Extended double precision arith-

metic, a complete 32 bit fixed point math package and auto
ranging text graphics are included. There are utilities for

I rapid polynomial evaluation, continued fractions and Monte
Carlo factorization.

1 Please specify disk size when ordering

Volume VIII. No. 6 23 FORTH Dimensions

-

FORTH INTEREST GROUP
P.O. BOX 8231

Member Number

Check enclosed (payable to: FORTH INTEREST GROUP)

VISA MASTERCARD

Expiration Date
HANDLING FEE

Signature
($15.00 minimum on charge orders)

PAYMENT MUST ACCOMPANY ALL ORDERS

MAIL OROERS
Send to: Call 4081277-0668 to place All orders must be prepald. Prlces are Prlces ~nclude shlpplng. A Books ln stock are sh~pped Deliveries to Alameda.

Forth Interest Group credit card orders or for subject to change without notice Cred~t $2 00 handllng fee is wi th~n f ~ v e days of receipt Contra Costa. a Mateo.

P.O. Box 8231 customer servlce Hours: card orders will be sent and b~l led at requlred with all orders of the order. Please allow Lm A w e s , Cnn

San Jose, CA 95155 Monday-Fr~day. 9am-5pm current prices $15 mlnimum on charge 4-6 weeks for out-of-stock i"dSanFranascoCounbes,

PST orders. Checks must be in US$, drawn books (delivery ~n most En::&
on a US Bank. A $10 charge will be cases wlll be much sooner). cdfmnla munhes, add 6%.
added for returned checks.

3-1 -87

FORTH Dimensions 24 Volume VIII. No. 6

(Continued from page 20.)

SCR # 78
8 HEX \ DOS 1/0 CONTINUED
1

2 : MVP-DISK \ CHRNGES EXECUTION VRRIRBLE TO (R/W)
3 * (R/W) CFQ * R/W ! ;
4
5 : DOS-DISK \ CHQNGES EXECUTION VRRIQBLE TO DOSR/W
6 * DOSR/W CFR * R/W ! ;
7
0 \ Note that the above works for for th 79 standard.
9 \ For for th 83 standard change * t o [' I and delete CFa.

18 \ Since t h i s code was wr i t ten primari ly for MVP users
11 \ t h i s comment i s superfluous.
12
13
14
15
end of f i l e ok

- - - - -

(Continued from page 18.)

; UDMOD/ D i v i d e quad by d o u b l e . (uquad u d d i v - - u d q u o t udrem)
HEADER lJDMOD/

UDDIV: POP CX ; Denomina to rHi
POP DX ; Denomina to rLo
POP AX ; Accumula to rHi
POP BX ; Accumula to rLo
MOV BP, 32 ; S e t c o u n t t o 3 2
PUSH BP ; Keep t h e c o u n t on t h e s t a c k .
MOV BP, SP ; P o i n t t o s t a c k
CLC ; Not r e a l l y needed

U D 1 : RCL WORD PTR I B P + 4 l I 1 ; S h i f t 6 4 b i t Accum l e f t by 1
RCL WORD PTR [B P + 2 l I 1
RCL BX, 1
RCL AX, 1
JNC UD2 ; I f n o c a r r y , d o t e s t s u b t r a c t .

UDlSUB: SUB EX, D X ; C a r r y was s e t : We mus t s u b t r a c t .
C BB AX, CX ; AX is t h e mos t s i g n i f i c a n t p a r t .
DEC BYTE PTR [BPI ; Decrement t h e c o u n t e r
STC I

J N Z UD 1 ; C o n t i n u e u n t i l c o u n t e r is z e r o
JMP UD3 ; Go t o t r a i l e r when n e a r l y d o n e .

I

UD2 : CMP AX, CX ; S t a r t c o m p a r i s i o n a t MS word
J C UD 2 CC ; I f c a r r y is s e t , d o n ' t s u b t r a c t .
J N Z UDlSUB ; I f r e s u l t is n o n - z e r o , s u b t r a c t .
CMP BX,DX ; O t h e r w i s e compare LS word
J N C UDlSUB ; I f c a r r y is c l e a r , s u b t r a c t .

UDZCC: DEC WORD PTR [BPI ; Decrement t h e c o u n t e r .
CLC ; C l e a r t h e c a r r y b i t .
J N Z U D 1 ; C o n t i n u e t i l l c o u n t is z e r o .

UD3: RCL WORD PTR 4 [B P l l l ; F i n a l a d j u s t m e n t of q u o t i e n t .
RCL WORD PTR [BP+21 ,1
MOV [BPIIBX ; P u t LS of r e m a i n d e r on s t a c k .
PUSH AX ; P u s h MS of r e m a i n d e r on s t a c k .
NEXT ; Normal e n d i n g . . .

I '

Figure One. 8086/8088 division routine allowing double-length divisors.

Volume VIII, No. 6 25

FIG-FORTH for the Compaq,
IBM-PC, and compatibles. $35
Operates under DOS 2.0 or later,
uses standard DOS files.
Full-screen editor uses 16 x 64
format.
Editor Help screen can be called
up using a single keystroke.
Source included for the editor
and other utilities.
Save capability allows storing
Forth with all currently defined
words onto disk a s a .COM file.
Definitions are provided to allow
beginners to use Starting Forth
a s an introductory text.
Source code is available a s an
option. add $20.

Async Line Monitor
Use Compaq to capture,

display, search, print, and
s a v e async data at 75-19.2k

baud. Menu driven with
extensive Help. Requires two
async ports. $300

A Metacompiler on a
host PC, produces a PROM

for a target 630316803
Includes source for 6303

FIG-Forth. Application code
can b e Metacompiled with
Forth to produce a target

application PROM $280

FIG-Forth in a 2764 PROM
for the 6303 as produced by

the above Metacompiler.
Includes a 6 screen RAM-Disk
for stand-alone operation. $45
An all CMOS processor

board utilizing the 6303.
Size: 3.93 x 6.75 inches.

Uses 1 1-25 volts at 12rna,
plus current required for

options. $210 - $280
Up to 24kb memory: 2 kb to
16kb RAM, 8k PROM contains
Forth. Battery backup of RAM
with off board battery.
Serial port and up to 40 pins of
parallel 110.
Processor buss available at
optional header to allow expanded
capability via user provided
interface board.

Micro Computer
Applications Ltd

8 Newfield Lane
Newtown, CT 06470

203-426-61 64
Foretgn orders add $5 shipping and handling..

Connect~cut restdents add sales lax.

FORTH Dlmens~ons

Well, what I really want i s . . .
Well, what I really want is a CMOS computer system for dedicated
applications, that has low enough power requirements to be solar-.
powered i f need be, with WAIT and STOP modes to really cut
down on power consumption when necessary . . .

I r k got to have some advanced features, too, like a built-in, high-level language and an
operating system that can autostart m y user applications without a lot of hassle . . .
It should have some built-in EEPROM and some scratch pad RAM . . .
Boj, for those imbedded applications, it S got to have a watchdog timer system that checks
for the computer operating properly and resets the system r f there's a power glitch or
something. . .

Let 's see, for I / 0 I usually need several parallel ports . . .
and perhaps a serial port or two . . .
and a 16-bit timer sj9stem that can handle some inputs to latch the count and some outputs
that (.an be set up to toggle at the correct time without further processor attention and
maybe a pulse ac~cumulator . . .
And ald converter, with a couple channels would sure be the ticket! It would have to be
fairly fast, though, and maybe be taking readings all the time, so the processor can just get
fresh data when needed. . .
And maltbe thereS a way I could do my editing on a PC and download the source to the
dedicated system. Perhaps il could even put the downloaded program into its own
EEPROM. . .
But really, the final system requires a low dollar unit, it just can't cost too much . . .
It u9ould be nice if it were smaller than a bread basket . . .
I ~londer how much the first prototype is going to cost this time? It sure would help if
there were a pretested, full up version of the system, with a prototyping area built on, and
majqbe even a target version ofthat same system . . .
Yeah, I majl be dreaming, but i f one existed, I'd buy it in a minute. Guess it S lime to get
the design team going.

1-800-255-4664 for New Micros, Inc. Sales

NEW MICROS, INC.
1601 CHALK HILL ROAD
DALLAS, TEXAS 7521 2

21 41 339-2204

FORTH Dimensions 26 Volume VIII, No. 6

... Hey!
Hey! I operate on lOma typical at 8 Mhz, lower in WAIT mode, with a STOP mode in the
lOua range.

I've got a full featured FORTH and an operating system that can easily autostart an
internal or external user program.

How 'bout 1/2K EEPROM and 1/4K of RAM.

My watch dog timer and computer operating properly circuit is built-in and programmable.

Configure me with 5 8-bit parallel ports, or 3 with a 64K address and data bus.

I've got two serial ports, one that's async and one that's sync.

My 16-bit timer has three input captures and 5 output compares and is cascadable with my
8-bit pulse accumulator.

You want AID? How 'bout 8-bit, 8 channels, ratiometric, 17uS conversions, with continuous
conversions possible on four selected channels.

I've been known to carry on a conversation with communication packages and I've got
built-in EEPROM handlers.

How about $37.25 in singles? under $20 in volume?
How about smaller than a postage stamp?

Listen, you can buy the NMIX-0023 full development system for $199. (Try getting a board
wire wrapped for that price).

Hey, I'm available for immediate delivery!*

68HCll hardware by Motorola, Inc., F68HCll
Max-FORTH TM internal firmware by New
Micros, Inc., NMIX and NMIT series boards by
New Micros, Inc.

* NMIX-0023 - $199,
RS232 Cable for NMIX-0023 - $15,
Manuals only - $25 items in limited stock. Volume production on F68HCll 6/15/87.

Volume VIII. No. 6 27 FORTH D~rnens~ons

7776 Limericks
Nathaniel Grossman

Los A ngeles, California

In 1961, Raymond Queneau - writer,
editor, critic, linguistic experimenter,
enthusiastic amateur mathematician
and logician - published the remark-
able and unique Cent rnille milliards de
poemes.' Having care for a slight dif-
ference in terminology between French
and (American) English, the title may
be rendered as "One hundred thousand
billion poems," that is, 1014 poems
which are, in fact, sonnets. While the
book does not contain the promised
lot4 sonnets, it does contains ten son-
nets (each of fourteen lines) and, by
means of an ingenious system of slits in
the pages, the reader may progress
downward, selecting and displaying
lines from any of the ten sonnets.
Thus, any one of 1014 sonnets can be
displayed for reading. Queneau calcu-
lated that, alloting forty-five seconds
to reading a sonnet and fifteen seconds
more to resetting the pages, with eight
hours per day of reading for 365 days
per year, over 190 million years would
be required to read all the possible
variants.

Queneau was inspired with the notion
of his book while handling a children's
book in which leaflets are flipped to
depict chimerical animals. But Queneau
did not write chimeras. He composed
his sonnets so that lines were inter-
changeable: if two kth lines are inter-
changed, the new sonnets still make
sense. All 1014 sonnets are readable on
their own! (One must form this conclu-
sion inductively. No one, not even the
author, could read more than a vanish-
ingly small fraction of the essentially
infinite number of possibilities.)

I was lucky to find a copy of this
uncommon book in the library of the
University of Durham (England) while
living for a while in that city. It is
worth looking for in your locale, just
to see a splendid piece of bookmaking
and paper engineering. I was struck
with the thought that Queneau's out-
of-print work could be made available
to all by means of a simple computer

program that would print out as many
of the sonnets as the reader wished.
Unfortunately, my command of liter-
ary French is not great, and I would
prefer to savor the sonnets in English.
Translation of the 140 lines into English
would be a formidable task, given that
the meter and rhyme would be severely
constrained. Copyright considerations
would also intrude. And only a writer
of Queneau's power could compose
fourteen new, blendable sonnets in
English to his plan.

Nevertheless, I found a way to realize
the project in miniature. While I shy
away from sonnets, I do not hesitate at
creating limericks, doggerel as they
may be. Therefore, 1 wrote lines suffi-
cient for creating a six-fold family of
limericks, 65 = 7776 in all. I had no
pretensions toward creating poems of
literary merit: that must be left to the
likes of Queneau. I was satisfied if every
limerick made "reasonable" sense. To
ensure that, it was necessary to choose a
vague theme for each line in turn. The
restriction to six samples for each line is,
of course, arbitrary, but the possibility
of only two rhyme schemes will even-
tually halt proliferation.

Rather than write a program to dis-
play all 7776 limericks (who would
want to read all of them?), I decided to
generate limericks at random from the
store of lines, the better to happen
upon amusing combinations. Aleatori-
cal composition is neither novel or
disreputable: Mozart, for one, was
fond of the technique and experimented
with it. Naturally, I wrote the program
in Forth, specifically in the standard
dialect Forth-83. Two non-standard
words peculiar to the implementation I
use - DARK and @TIME - are glossed
on the screens. They are inessential, in
any event. There are more robust algo-
rithms for generating random integers,
but they are hardly necessary here. The
program is an exercise in the manipula-
tion of data strings, using CMOVE.

Reference

1. Queneau, Raymond. Cent mille
milliards de poemes, Editions
Gallimard, Paris, 1961.

An afterword: Several months after
writing the above paragraphs, I dis-
covered that the Cent mille milliards
depoemes had been reprinted within
the last few years, although as yet I
have not seen a copy of the reprint.
What I have seen and acquired is a
copy of One Hundred Million Million
Poems, published by Kickshaws in
Paris in 1983, which is a translation by
John Crombie into English of the Cent
mille. . . . Crombie rendered Queneau's
hexametric alexandrines into the Shake-
spearian pentametric sonnets familiar
to English readers, but he claims to
have preserved the essence of the
Queneauisms. I'll leave assessments of
the translator's success to those fully
bilingual, but reading some of the as-
sembled poems in English, with their
odd and unexpected jumps in place,
tense and subject, makes me feel a little
less apologetic about my limericks, and
a lot more admiring of Queneau's
enormous linguistic talents.

Returning by water from Ghent,
My family was drenched as they went,

While the son of the Czar
Reeking of rose attar,

Held a fight with a bibulous gent.

Returning by water from Ghent,
A lover fell into the Trent,
All the folks near and far

Reeking of rose attar,
Engrossed with amassing argent.

FORTH Dirnens~ons 28 Volume VIII. No. 6

SCRt 1 SCRI 2
\ Poem -- loader screen N6 04/03/86 0 \ Random integer generator N6 03/22/86
\ Randomly generate 7776 d i f f e r e n t l imer i cks 1 \ f o l l o a i n g Anderson and Tracy's 'Mastering Forth'
\ 1 LOAD br ings program in , FOR6ET MARKER fo rge ts i t 2

3 : FLIP (n l -- n2 1 \ interchanges bytes of n l t o form n2
: MARKER (n u l l act ion ; \ FORGET MARKER t o shuck 4- SPLIT SWAP COMBINE ;

5
2 12 THRU 6 VARIABLE SEED \ s to re an in teger t o i n i t i a l i z e RAND

7 \ The word C T I K i s contained i n MicroMotion For th 83, IBM ver.
\ Opening prompt 8 \ The next l i n e i s an implementation-dependent self-seeding.
DARK ! c l s and home I CR 9 @TIME (d from OOS 1 DROP SEED ! (new seed f o r each booting) . Executing .POEM (return) w i l l coapose and p r i n t a 1 CR 10 . (l imer ick chosen a t random f r o @ 7776 p o s s i b i l i t i e s ava i lab le 1 11 : RAND --- new random integer

CR .(t o you from t h i s progr&&.) CR CR 12 SEED e 5421 t 1+ DUP SEED ! ;
13
14 : RANDOM (n --- random integer betreen 0 and n-1 i n c l u s i v e 1
15 RAND FLIP SWAP moo ;

SCRt 3 SCRt 4
\ Size and length var iables N6 04/03/86 0 \ k k e an i n i t i a l i z e a b u f f e r f o r a11 the l i n e s N6 04103186

1
VARIABLE POEMSISTOCK 6 POEMSISTOCK ! 2 \ make a byte array long enough t o ho ld a l l the chars of a11 the

3 \ l i n e s o f a11 the poems
VARIABLE LINESIPOEM 5 LINESIPUEH ! 4

5 CREATE LIRESTORE ILINESTORE e ALLOT
VARIABLE CHARSILINE 40 CHARSILINE ! 6

7 \ b l a n k i t out
\ Adjust the above three values as requi red by Scrs I 8-... 8

9 LIESTORE #LIMESTORE C BLANK
10

VARIABLE KINESTORE (I of bytes t o be a l l o t e d t o LINESTORE I 11
12

POEMSISTOCK e LINESIPOEM e CHARSILINE P t t tLlNESTORE ! 13
14
15

SCRI 9 SCRI 6
\ Find s t a r t of any l i n e of any poem i n bu f fe r N6 04/03/86 0 \ Hove l i n e from master l i s t t o bu f fe r , p r i n t i t N6 04/03/86

1
: BYTE-OFF (n i n2 addr --- addr' = addr + n l t n 2 2 :)LS (addr count n l n2 --- I
\ Compute s t a r t i n g address of n l s t l i n e i n n2nd poem, 3 \ take s t r i n g (addr count 1 from stack and move i t s contents
\ given s t a r t i n g address o f the bu f fe r o f l i n e s 4 \ t o the n l s t l i n e and n2nd poem p o s i t i o n i n the LINESTORE

)R \ park addr 5 LINESTIME
SW AP 6 BYTE-OFF
POEMSISTOCK P t + \ ' w t r i x ' o f f s e t 7 SWAP
CHARSILIE @ * \ t imes t c h a r s l c e l l i n 'matrix' 8 CMOVE ;
R) t ; \ byte o f f s e t = addr ' 9

10 : .LINE ! addr count --- 1
11 -1RAILIN6TYPE ;
12
13 : RANDOM-POEH (--- n; random integer (POEMSISTOCK)

14 POEMSISTOCK e RANDOM ;
15

Volume VIII, No. 6 29 FORTH D~mens~ons

SCRt 7 SCRt 8
\ Pr int a poem composed at randoe N6 04103186 0 \ F i r s t l i nes

1
: .POEM I --- 1 2 [I begin interpret ing t

LILSIPOEM C 0 DO \ fo r each l i n e of the poer 3
I RANDON-POEM LINESTORE \ select a suitable l ine, move C' Returning by water from Ghent,'
BYTE-OFF CHARSILINE C \ t o i t s s ta r t i n LINESTORE 5 ' Relaxing beneath a blue tent,'
.LINE CR \ p r i n t it, l inefeed b ' Repairing a furni ture dent,'

LOOP 7 ' Deciding on fast ing fo r Lent,'
CR CR ; 8 ' Forgetting t o fasten the vent,'

9 ' Adopting an absurd accent,'
10
11 I I begin compiling 1
12
13
14
15

SCRt 9
\ Second l ines

[I begin interpret ing

' I noticed my clothespin was bent,'
' The widow was l a t e with the rent,'
' A lover f e l l i n t o the Trent,'
' Hy f a r i l y was drenched as they went,'
' The tour is t f e l t dusty and spent,'
' Disturbed t o an unknown extent,'

1 (begin coapil ing

SCRI 11
\ Fourth l ines

I I begin interpret ing 1

' And a worldly-wise lar,'
' 'Cause I smoke a cigar,'
' Looking up at a star,'
' Reeking of rose attar,'
' To a mournful guitar,'
' Running out of the jar,'

1 I begin compiling t

SCRt 10
N6 04/03/86 0 \ Third l i nes

1
2 I: I b q i n interpret ing 1
3

1 0)LS 4 ' Though the l i t t l e grey car'
1 1)LS 5 ' With the tears of the char'
1 2 >LS 6 ' And the ren a t the bar'
1 3)LS 7 ' A11 the fo l ks near and far'
1 4 >LS 8 ' But except f o r catarrh'
I 5)LS 9 ' While the son of the Czar'

10
11 I (begin compiling 1
12

SCRI 12
116 04106186 0 \ F i f t h l ines

1
2 [I begin interpret ing t
3

3 0)LS 4 ' Saw the ships sa i l i n t o the Solent.'
3 1)LS 5 ' Met twenty birds flown i n from Kent.'
3 2 X S b ' Engrossed with aaassing argent.'
3 3)LS 7 ' Beneath the entombing cerent.'
3 4)LS 8 ' By sacred devotions repent.'
3 5)LS 9 ' Held a f i gh t with a bibulous gent.'

10
11
12
13 \ f i n i sh i n the interpret ing state
14
15

FORTH Dimensions 30 Volume VIII, No. 6

A FAST mm,
OPTIMIZED FOR THE IBM
PERSONAL COMFUTER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE :

0 7 9 STANDARD

oDIRECT 1/0 ACCESS

@FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

@ENVIRONMENT SAVE
t WAD

MULTI-SEGMENTED FOR
LARGE APPLICATIONS

@EXTENDED ADDRESSING

.MEMORY ALLOCATION
CONFIGURABLE ON-LINE

.AUTO WAD SCREEN Boo11

.LINE f SCREEN EDITORS

ODECOMPILER AND
DEBUGGING AIDS

GRAPHICS & SOUND

.NGS ENHANCEMENTS

ODETAILED MANUAL

.INEXPENSIVE UH;RADES

.NGS USER NEWS-

A COMPLETE FOKTH
DEVELO- SYSTEM.

NEM*BP.150 & HP-110
VERSION8 AVAILABLE

NEXT GENERATION SYBTEM
P.OmBOX 2987
BANTA CLARA, CAm 95055

1 (408) 241-5909
I

(Letters, continued from page 10.)

would. It would be interesting to know
if one exists. I think it would be more
likely (although also doubtful) that
some implementation would balk on
DOES> being in a separate word, for
there is a question as to whether this
would be strictly legal in Forth-83: the
usage pattern for DOES> in the stan-
dard glossary might be taken to imply
that DOES> should itself appear in
the compiler word, although CREATE
can be replaced by a word containing
CREATE.

Sincerely yours,

Victor H. Yngve
Chicago, Illinois

Antecedent Sieve

Dear Marlin,
I was happy to see my improved

version of the sieve benchmark in
Forth Dimensions (VI11/4, page
seven). I'm confused, however, by the
label " Noyes' Sieve."

This implementation grew out of
discussions between Dean Sanderson
and myself in 1982. Enclosed please
find a copy of page nine from Dr.
Dobb's Journal (September 1983), in
which this algorithm first appeared in
print.

Learning and Living,

Don Colburn
Rockville, Maryland

PORTABLE
POWER
WITH

MasterFORTH

Dl Whether you program
on the Macintosh, the
IBM PC, an Apple II ser- \- TM ies, a CP/M system, or the

Commodore 64, your ,, - -
program w~ l l run un- &I
changed on all the rest. ='--='=TM

If you write for yourself, eM MasterFORTH w~ l l protect
your Investment. If you wr~te
forothers, ~ t w ~ l l expand your

marketplace
Forth IS interactwe -

you have ~mmed~ate feed-
backas you program, every
step of the way. Forth IS

CK
fast, too, and you can CP/M use its bu~l t -~n as.

T~ sembler to make ~t
even faster Master-

FORTH's relocatable u t ~ l ~ t ~ e s and
headerless code let you pack a lot
more program Into your memory. The
resident debugger lets you decom-
pile, breakpoint and trace your way
through most programmlng prob-
lems. A string package, f~ le ~nterface
and full screen ed~tor are all standard
features. And the opt~onal target com-
pller lets you opt~mlze your appl~ca-
tlon for virtually any programmlng
environment.

The package exactly matches Mas-
tering Forth (Brady, 1984) and meets
all provlslons of the Forth-83 Standard

MasterFORTH standard package $1 25
(Commodore 64 wlth graph~cs) $100

Extens~ons

Float~ng Po~nt $60
Graph~cs (selected systems) $60
Module relocator(wcth uttl~ty sources) $60
TAGS (Target Appllc Generat~on System) -
MasterFORTH, target comp~ler and
relocator $495

Publ~cat~ons 8 Appl~cat~on Models
Pr~nted source Ilst~ngs (each) $35
Forth83 lnternat~onal Standard $15
Model L~brary, Volumes 1-3 (each) $40

(21 3) 821 -4340

ROMOTION
8726 S Sepulveda BI , #A1 71

Los Angeles, CA 90045

Volume VIII, No. 6 31 FORTH D~mens~ons

r - , . , , , , , , , , , -7
FORTH D~mens~ons 32 Volume VIII, No 6

Inverse Video and TI-FORTH
Richard Minu tillo

Roslindale, Massachusetts

I had always thought of inverse video
as something other computers could do
but my TI-99/4A could not. When I
obtained TI'S Microsoft Multiplan and
saw that program's use of inverse video,
I realized the obvious: while TI'S built-
in video firmware cannot provide an
inverse image, software can be written
to do the trick. TI-FORTH makes the
trick easy.

One approach to writing an inverse
video routine makes use of an internal
memory map which leaves all 256 ASCII
characters available for definition and
display. This is the approach taken by
Multiplan, and there is plenty of room
in that configuration to define a whole
alternative set of inverted characters
between characters 128 and 256. Since
the VDP processor thinks of the screen
image as a long array of single byte
values, it is an easy trick to just find the
values which define the section of the
screen you want to invert, and then add
the 128 offset to each byte to obtain the
inverted characters.

Unfortunately, there are several draw-
backs to that approach. First, you have
to store the ninety-five inverted charac-
ter definitions in your TI-FORTH
routine, and that's a lot of wasted
space. Second, you have very few
characters available for graphics, if
you want them. Finally, it is extremely
inelegant.

A relatively compact, and much
more elegant, solution can be written in
TI-FORTH. I found it so valuable that I
added it to my personalized "BSAVEd"
kernel, so it can be available for all my
applications as I write them.

Here's an outline of the task:
1) Define the screen segment to be
inverted by position and length.
2, Read the defined segment of the
screen image byte array into a charac-
ter buffer.
3) Read the eight-byte character defini-
tions of each character to be inverted
into a pattern buffer.
4) Invert the pattern buffer.
5) Write the inverted patterns consecu-
tively into VDP memory to redefine a

SCR #68
0 (inverse video / FORTH translation from assembly language
1 stack: row col len - I RGM 090584) BASE->R DECIMAL
2
3 0 VARIABLE CARBUF 39 ALLOT (character buffer
4 0 VARIABLE INVBUF 319 ALLOT (pattern buffer)

5 0 VARIABLE LOC 0 VARIABLE LEN (variables)

6
7 : VARS LEN ! SCRN-WIDTH @ • + LOC ! : (sets variables 1
8
9 : READSCR LOC @ (screen address in vdp

:: CARBUF (buffer address)

LEN Q (length to read)

12 VWBR : (read section to invert)

13 - - >
14
15

SCR #69
0 (invert -- screen 2)

1
2 : READCHAR LEN @ o DO (loop index)

3 CARBUF I C@ 8 * 2048 + (address in patt table)

4 INVBUF I 8 (offset into char buffer)

5 8 (bytes to read)

6 VMBR LOOP ; (read charpat into buff)

8 : INVERTBUF INVBUF 319 + INVBUF DO (loop index)

9 I Q INU US 1- I !
10 2 +LOOP ; (invert entire buff)

11
12 : PATTTOVDP INVBUF (inversion buffer)

l3 3072 (address of char W128

:: 320 (bytes to write)

VHBW ; (read to patt table) - - >

SCR #70
0 (invert - screen 3
1
2 : WRITESC LEN Q 0 DO
3 I 128 + (character to write)

4 LOC 8 I + (location on screen
5 VSBW LOOP ; (re-write screen)

6
7
8 : INVERT VARS READSCR READCHAR INVERTBUF PATTTOVDP WRITESC ;
9
10 : REVERT CARBUF LOC @ LEN Q VHBW :
11
12 : INVERTS >R VARS READSCR READCHAR INVERTBUF PATTTOVDP WRITESC
13 R> o DO REVERT 2000 o DO LOOP WRITESC 2000 o DO LOOP
14 LOOP REVERT :
15 R->BASE

predetermined set of unused ASCII
characters.
6) Write an appropriately sized section
of redefined characters into the screen
image array at the correct location.

By use of variables to hold the screen
location and the segment length, and a
character buffer to hold the original
screen segment, reversal of the inver-
sion is simple: rewrite the character
buffer to the saved screen location.

The program outlined above is easily
implemented in TI-FORTH. The version
presented here is actually a direct con-
version from TMS 9900 assembly lan-
guage. The set of "system synonyms"
provided in TI-FORTH makes it pos-
sible to translate many machine lan-
guage tasks without using the separate
(and somewhat cumbersome) ASSEMBLY
and CODE vocabularies. All kinds of
VDP memory manipulation is possible,

and since this program is almost entire-
ly VDP manipulation, all you need to
do is make sure the -SYNONYMS screen
is loaded before you load the screens
listed here.

The program listing is largely self
documenting and straightforward.
Enter a row number, a column number
and a segment length on the stack fol-
lowed by the word INVERT and you get
inverse video. REVERT restores the
original characters. INVERTS uses the
same primitives to repeatedly flash the
inversion, and requires additionally the
number of flashes on the stack. Use of
the user variable SCRN-WIDTH to con-
vert row and column to screen location
means the procedure will work in
GRAPHICS or TEXT modes. It will not
work in bit-mapped or multi-color
modes, obviously.

Notice that extremely deep stack

manipulations are avoided by the
simple expedient of using the LOC and
LEN variables, and the word VARs to set
those variables once from the initial
stack. The information could be passed
on the stack, but that would make for
a much less elegant solution, and for a
listing far less easy to read. The defini-
tions as presented provide no error
checking, and allow for a maximum of
forty characters.

Enter inappropriate values on the
stack at your own risk! The original
machine-language version was meant
to link with TI'S Extended BASIC and
could use only characters 128 through
143. The longer segment lengths in TI-
FORTH are achieved at the cost of
increased memory size for the buffers.
One could easily modify the buffers
and maximum segment length to con-
serve memory.

Visit the Wll2 Produet Support RoundTablem on GEnieTIM !I

MACH 2
Multi-tasking FORTH 83 Development System

MACH 2 FOR THE 99.95
MACINTOSHTM
features full support of the Macintosh
toolbox, support of the Macintalk
speech drivers, printing and floating
point, easy I/O redirection and
creates double-clickable, multi-
segment Macintosh applications.
Includes RMaker,disassembler,
debugger, Motorola-format (infix)
68000 assembler and 500 pg manual.

MACH 2 FOR THE OS-9 495.00
OPERATI WG SYSTEMTM
provides position-independent and
re-entrant execution and full support
of all 0 s - 9 System calls. Creates
stand-alone 0s-9 applications. Link
FORTH to C and vice-versa. Includes
debugger,disassembler, Motorola-
format (infix) 68000 assembler, and
400 page manual.

MACH 2 FOR 495.00
INDUSTRIAL BOARDS
is 680x0 compatible, provides
68881 floating point support, and
produces position-independent,
relocatable, ROM-able code (no
target compilation required).
Includes disassembler, Motorola-
format (infix) 68000 assembler,
and 350 pg. manual.

3 ALTO SNIPPING COMPANY

VISA/MC accepted. CA residents include 6.5% sales tax.
Include shippinglhandling with all orders: US $6; Canada $8; Europe $25; Asia $30

RoundTable and GEnre are reewered trademarks of the General Elecwic Informalton Serv~ces Comoanv.

Volume VIII. NO 6 33 FORTH D~mens~ons

State of the Standard
Marlin Ouverson

La Honda, California

Forth s tandards have arisen,
throughout the history of the language,
from self-governing committees com-
prised of expert users of Forth. Par-
ticipation was open, and becoming a
voting member was a matter of meeting
minimal requirements. Coming from
different backgrounds, these experts
often had deeply vested opinions about
what should and should not be part of
a common Forth kernel, about how
those functions would operate and
what their names would be, and about
standardization itself. The Forth Stan-
dards Team (FST) has been the arena
in which these elements converge and,
at times, diverge. The team has had a
benign relationship with the Forth In-
terest Group, but operates indepen-
dently. And while it has been the sub-
ject of harsh criticism, it has also
received a great deal of praise.

What have been the rough spots?
One easy target is the malleability
that permits Forth to become what
each programmer or developer needs
(or wants) it to be. More generality
and less bulk seem to be called for in
a Forth standard than in languages
frozen at the moment of creation:
Forth systems grow with their users,
and those users may resent being told
that the programs they develop are
non-standard. And creating new Forth
standards brings the added wrath of
both vendors and users if it creates
incompatibilities with previously stan-
dard systems.

Most of the history of Forth stan-
dards has been recorded in these pages
and elsewhere, in articles and letters to
the editor. We will not attempt a his-
torical summation, but present a sam-
pling of the ideas in active circulation
at this time. The amount of material
precludes reproduction in toto; what
follows is a general survey, quoting
liberally from documents in our files.
To get a reading on the opinions of one
cross-section of the Forth community,
see "FORML '86 in Review," elsewhere
in this issue. We must also acknowledge
that, for many people working indepen-

dently or on some in-house systems, the
issue of standards may be only of secon-
dary importance. If, however, this topic
is of concern to you, the best way to be
fully informed and to participate is to
make contact with the people and or-
ganizations directly involved.

ANSI Standard Requested

Elizabeth Rather, President of FORTH,
Inc., wrote in December to say that a
project proposal for an ANS Forth
had been filed with ANSI. The group
that filed the proposal consisted of
Ms. Rather (also an FST member);
Don Colburn (FST member, Creative
Solutions, Inc.); W.B. Dress (Oak Ridge
National Laboratory); Ray Duncan (Lab-
oratory Microsystems, Inc.); Burt Feliss
(IBM Corporation); Charles Moore (in-
ventor of Forth, Computer Cowboys);
Dean Sanderson (FST Referee, FORTH,
Inc.); Gerald Shifrin (MCI Telecornrnuni-
cations Corp.); and Martin Tracy (FIG
board member, FORTH, Inc.).

Ms. Rather wrote, "To date we have
not heard from ANSI. If and when
they do form a Technical Committee
for Forth, it will be publicly announced
according to their standard procedures,
and everyone who is interested and
willing to make the required commit-
ment will be able to participate.

"According to ANSI rules, a voting
member of a technical committee pays
a fee of $175 to ANSI and must attend
at least two out of three meetings to
retain voting status. The first meeting
is usually held at ANSI headquarters in
Washington, D.C. Subsequent meet-
ings are held in various parts of the
country. Meetings typically occur four
times a year for four or five days each.
The C committee has been working for
five years."

First of all, this means that ANSI
has to accept the proposal. And the
proposal group does not intend revolu-
tion, for the formal proposal states, as
the first item in the program of work,
"Identify and evaluate common exist-
ing practices in the area of the Forth
programming language." Under the
category of implementation impacts,
the proposal points out current incom-

patibilities among popular Forth dia-
lects and says, "While the Forth-83
Standard has stabilized the language to
a great extent, it has proven too restric-
tive and machine-dependent. Assum-
ing the ANS Forth standard confines
itself to such changes as are necessary
to resolve the problems in Forth-83,
the effect on current practice will be
modest." It also projects a five-year
useful life of such an ANS standard.

It has long been the view of some
that an ANS Forth standard would
greatly boost the language's accept-
ance in the corporate and government
world. Others argue that a Forth sys-
tem stands on its own merits, and that
going to ANSI would remove the stan-
dardization process too far from the
Forth community. The project pro-
posal cited above states, "Preserving
machine independence and maintain-
ing a close liaison with any other Forth
standardization efforts should prevent
problems related to restraint of trade
and public interest." It concludes, "If
any Forth standard committees are
formed by the I S 0 or IEEE, a close
liaison should be formed."

IEEE Action Requested

George Shaw of Shaw Laboratories,
Ltd., points out that there is more than
one route to an ANSI standard. In one
letter, he said, "It took the thirty or so
individuals directly involved (and prob-
ably several times as many lobbyist and
mail participants) in Forth-83 to repre-
sent the diversity of implementations
and usage. Some important considera-
tions may only have been represented
by a single individual. . . . Considering
a standards group with such a small
number of participants would end up
standardizing a particular group of
vendor's implementations at the ex-
pense of others. The CBEMA effort, I
fear, will produce such a small group."

Shaw explained that ANSI itself
doesn't create standards, but endorses
them. It is primarily concerned with
whether a standards document was
obtained from one of their usual chan-
nels, like CBEMA (the route chosen by

FORTH D~mens~ons 34 Volume VIII, No. 6

(with LMIFORTHTM 1

1 For Programming Professionals: /
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact RQMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-60, 8086, 68000, 6502, 8051,
8096,1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

l ~ a b o r a t o r ~ Microsystems Incorporated
Post Office Box 10430, M a r ~ n a del Rey, CA 90295

credit card orders to: (213) 3067412

Overseas Distributors.
Germany: Forth.Systeme Angel~ka Flesch, Tltlsee-Neustadt, 7651.1665
U K . System Sc~ence Ltd . London. 01.248 0962
France: Micro-Slgma S.A.R.L., Parls. (1) 42.65.95.16
Japan: Southern Paclflc Ltd., Yokohama. 045.314.9514
Australfa. Wave-on~c Associates, W~lson. W.A.. (09) 451-2946

Rather, et al.) and IEEE. The actual
procedure for creating a standard
document is dictated by the particular
channel. Shaw feels that IEEE can
provide for participation and meaning-
ful input from a broader cross-section
of the Forth community. Under its
own rules, participation by mail must
be allowed, and individuals participat-
ing by mail are allowed to vote. Tele-
conferencing and other options are
available in consideration of the dif-
ficulties of individual participation.
CBEMA requires four to six meetings
per year, of four or five days each; and
the voting membership is virtually
restricted to organizations and busi-
nesses, not individuals. Shaw's letter
continues, "Meeting [CBEMA] require-
ments to maintain voting privileges
would cost approximately $3000 a year
in dues and travel expenses, not to
mention lost wages or use of vacation
time.. . ."

Shaw feels that a CBEMA effort to
developing an ANS Forth standard is
unnecessarily restrictive, considering
how widely expertise is distributed
throughout the Forth community. He
said that to CBEMA, in a letter asking
them not to approve the proposal they
received. He points out that the group
who wrote the proposal is made up
mostly, if not entirely, of current or
former employees, customers or sub-
contractors of FORTH, Inc. He wrote,
"They may be well intentioned, but I
do not believe this group represents the
interests of the Forth community and
vendors at large."

This matter was presented at a Janu-
ary meeting of the Microcomputer
Standards Committee of the IEEE.
Shaw says, while the members of that
committee "wished to avoid the pos-
sibility of and the political problems
involved in having a joint IEEE/
CBEMA committee . . . the group
voted with no dissension (nineteen yea,
four abstentions) to untable and re-
place a motion made in 198 1 for a PAR
(program action request) and to addi-
tionally request that the members who
are also voting members in CBEMA
vote against approval of the ANS
Forth project." In the IEEE, a PAR is
the first step in getting a standard
project going.

Volume VIII, No. 6 35 FORTH Dlmenslons

f \
COMBINE THE

RAW POWER OF FORTH
WITH THE CONVENIENCE

OF CONVENTIONAL LANGUAGES

H%oRTH
Why HS/FORTH? Not for speed
alone, although it is twice as fast as
other full memory Forths, with near
assembly language performance
when optimized. Not even because
it gives MANY more functions per
byte than any other Forth. Not be-
cause you can run all DOS com-
mands plus COM and EXE programs
from within HS/FORTH. Not be-
cause you can single step, trace, de-
compile & dissassemble. Not for the
complete syntax checking 8086/
8087/80186 assembler & optimizer.
Nor for the fast 9 digit software float-
ing point or lightning 18 digit 8087
math pack. Not for the half mega-
byte LINEAR address space for
quick access arrays. Not for com-
plete music, sound effects & graph-
ics support. Nor the efficient string
functions. Not for unrivaled disk flex-
ibility - including traditional Forth
screens (sectored or in files) or free
format files, all with full screen edi-
tors. Not even because I/O is as
easy, but far more powerful, than
even Basic. Just redirect the charac-
ter input and/ or output stream any-
where - display, keyboard, printer
or com port, file, or even a memory
buffer. You could even transfer con-
trol of your entire computer to a
terminal thousands of miles away
with a simple >COM <COM pair.
Even though a few of these reasons
might be sufficient, the real reason
is that we don't avoid the objections
to Forth - WE ELIMINATE THEM!
Public domain products may be
cheap; but your time isn't. Don't
shortchange yourself. Use the best.
Use it now!
HS/FORTH, complete system: $395.
with "FORTH: A Text & Reference"
by Kelly and Spies, Prentice-Hall
and "The HS/FORTH Supplement"
by Kelly and Callahan

Visa Mastercard - 0
HARVARD

SOFTWORKS
PO BOX 69 ,

SPRINGBORO, OH 45066
(51 3) 748-0390

\ I

Forth Standards Team

The above actions may have been
prompted by dissatisfaction with the
Forth-83 Standard itself, with the
process used by the Forth Standards
Team or with the continuing unrest in
some parts of the Forth community
over standardization in general. Vocal
dissent over the latest standard seems
to have found a home on the East
Coast Forth Board (703-442-8695, up
to 2400 baud). Sysop Gerald Shifrin
sent me standards discussions archived
on diskettes that, when printed, arnount-
ed to a stack of paper larger than most
book manuscripts. I sent a copy of the
diskettes to Guy Kelly, FST chairman,
to get his reactions.

According to Kelly's analysis, much
of the debate over Forth standards on
the East Coast Forth Board has been
from a vocal few (two participants
together account for nearly half the
780 messages; the overall average is
twenty-eight messages per participant).
Most of the messages fall into a few
categories, the first of which is com-
plaints about Forth-83. On the techni-
cal side, dissension focuses primarily
on floored division, Do LOOPS, FIND,
alleged ambiguities and, in particular,
new or modified actions assigned to
word names already used. About the
last item Kelly says, "Giving old names
new meanings was considered the most
offensive action that was taken. I agree
that it was a radical step and one which
should never be repeated! However, it
was not done in ignorance, but only after
a great deal of careful consideration.

"Something that seems to be com-
pletely overlooked in the current dis-
cussions is that all the attempts to
produce a standard prior to Forth-79
were preliminary gropings and that
Forth-79 was fatally flawed. . . .

"Now if the major vendors had said
no to the 'obnoxious' changes between
the 1979 and the 1983 standards, the
standards team probably would have
produced a somewhat different
Forth-83 Standard (we had received
twenty-two yes votes and zero no votes
from the twenty-six voting members
when the standard was finally
released)."

DASH, FIND
6; ASSOCIATES

Our company. DASH. FIND & ASSOCIATES,

is in the business of placing FORTH Program-
mers in positions suited to their capabilities.

We deal only with FORTH Programmers
and companies using FORTH. If you would
like to have your resumt included in our

data base, or if you are looking for a
FORTH Programmer, contact us or

send your resumi to:

DASH, FIND & ASSOCIATES

808 Dalworth. Suite B
Grand Prairie TX 75050

(214) 642-5495 m
Committed to Excellrnce

FORTH D~mensions 36 Volume VIII. NO. 6

Other topics of discussion from the
electronic, standards debate include
organization of the FST, suggestions
for future standardization efforts and
specific work needed (such as surpass-
ing sixteen bits, local or stack vari-
ables, data and programming struc-
tures, bit manipulation, vectored I/O,
quans and transient headers). Exten-
sions have been requested to provide
floating-point math, operating system
interfaces, files, graphics, strings and
math/statistics packages.

Kelly observes that most disliked by
the electronic conferees are: floored
division, dumb tick (,), smart tick, new
LEAVE, Forth-83, Forth-79, the small
wordset and new actions associated
with old word names. He contrasts
those with the things conferees have
said they like: floored division, dumb
tick, smart tick, new LEAVE, Forth-83,
Forth-79 and the small wordset.

Regarding FORTH, Inc.'s part in
the history of Forth standardization,
Kelly says, "FORTH, Inc. was force-
fully involved in the standards efforts.
They hosted the 1977 and 1978 meetings
and had three or four participants . . . at
every standards meeting. FORTH, Inc.
has tended to track the various stan-
dards, and because Forth is still evolving,
the standards have also tended to track
the work at FORTH, Inc. The following
quote from a May 1978 FORTH, Inc.
bulletin entitled 'FORTH-77' Im-
plementation on FORTH, Znc. Systems
may be of interest:

"'We feel that the adoption of stan-
dards is an extremely important step in
the growing acceptance of Forth, so
long as these represent a "minimum
vocabulary" with options rather than
being interpreted in a restrictive sense.'

Kelly continues, "The fact that Mr.
Moore does not personally feel bound

by a standard and is continually evolv-
ing his own version of the language he
invented is, I believe, all to the good."

Finally, the FST chairman calls our
attention to these words from the for-
ward to the Forth-83 Standard:

"Forth's extensibility allows the lan-
guage to be expanded and adapted to
special needs and different hardware
systems. A programmer or vendor may
choose to strictly adhere with the stan-
dard. but the choice to deviate is
acknbwledged as beneficial and some-
times necessary. If the standard does
not explicitly specify a requirement or
restriction, a system or application
may utilize any choice without sacrific-
ing compliance to the standard provid-
ed that the system or application
remains transportable and obeys the
other requirements of the standard."

P

Volume VIII, No. 6 37 FORTH D~mens~ons

-?

Lower prices for the best
Forth Systems

Interactive multi-tasking environments with built-in assembler, editors, turnkey compiler (royalty free), extensive hard-
ware interfaces, large installed base of users and applications. Now at prices that can't be beat. Call our 800 number be-
low for a technical data sheet or check CompuServe at GO FORTH to see the hundreds of public domainlshareware
programs written in MacForth and Multi-Forth.

MacForth Plus $199 (was $299) Multi-ForthlAtari ST $ 89 (was $149)
Multi-ForthlAmiga $ 89 (was $179) Multi-ForthlHP 2001300 $695 (was $995)

~ C & c s4&bw
470 1 Randolph Rd. Suite 12 301-984-0262 in MD or
Rockville, MD 20852 1-800 FORTH-OK (367-8465)

4

f
Byte Magazine February 1987 - MacForth \ '~acintosh Buyer's Guide - Anniversary '
Plus is Productof the Month ... by Bruce Webster
"MacForth Plus has come a long way since the original
product and...represents one of the finest Forth develop-
ment environments on any system."

Issue - Awards MacForth Plus as one of the "Top
100" of companies, products, and people. One of the
best 33 products chosen by users.

\ J L J

Forth-79 and Forth-83 Standards to Then evaluate your risk tolerance, level
work with the twenty-bit Nicolet 1280. of personal effort and involvement,
Don Colburn stressed that future inventiveness, cleverness and degree of
standards should be independent of self direction. The next stage is decid-
stack width, and recommended that ing what will you deal in: real estate,
text files and local variable$ be commodities, stock, etc. Tinling and
considered. Guy Kelley reported that leverage (how much cash is exposed)
the Forth Standards Team was not are determining factors, and the degree
currently active and had no present of risk depends on the range of vari-
plans of becoming active. Martin ance in the particular market's rates.
Tracy summarized the progress of an There are optimizing formulas for
ANSI Forth standardization effort. all this and that is what the group
-Martin Tracy focused on. A few tools written in

Forth aid in financial analysis. While
one prays they bring an edge, they are

Working Groups providing ariother set of tools to feed
one's personal insight. Evaluating dif-

"Forth Engines": Conversation cen- ferent methods was a n area of concern,
tered around comparisons o f (he Novix and detailed discussion ensued.
4000 and the Johns Hopkins chip. The "CBBS: FIG on-Line,v chaired by
tH.0 groups flad f3nco~ntered many of Robert Berkey. FIG has been talking
the same design decisions, but their for two or tl,ree years about on
approaches were often different. The a large network. This year, G E ~ ~ ~
future of Forth engines was discussed approached and specifics have
at length, with a considerable amount been discussed. invitations to prospec-
of interest and expressed optimism. t ive sysops were issued by FIG, ,heir
11 appears a considerable amount of resumes received and evaluated. GEnie
resource consumption is required to a con,ract recently, details of
provide thirty-two bits (Johns Hopkins' which are being negotiated. ~h~~~ an-
is thirty-two, Novix' NC4000 is sixteen). noullcemenls excited [he group, tllollgh
Some discussion mentioned thal Forth details remain unresolved.
in gerleral is lacking a good of The working group addressed the con-
benchmarks, a lack deserving consider- tract i n detail, [he difficulty of access
able community effort to remedy. to GEnie by non-U.S. residents posing

"Prolog in Forth," chaired by Louis an area of major concern. ~l~~ con,-
Odette. Data-base, pattern-matching pany evidently is good inten-
and search utilities are the basis of ,ions i n this regard by working with
Prolog. The manner of Prolog's corn- Canada and England to provide ser-
putation was discussed, and was con- ,ices i n [hose countries, a[least. G E ~ ~ ~
trasted Lisp. After a general survey is the largest network in the world, but
of the language's features, the group consume, service lo date has been re-
dissected its strengths and weaknesses. stricted lo the uni ted states. l t is an-
Next, discussion centered on the ways ticipated [hat using [his service would
in which hardware can be brought to greatly enhance FIG
aid Prolog's performance. The chair- to interact, to discuss ~~~~1~ with ,lie
man observed that even with its limita- world, have access to files of code, etc.
tions, Prolog's inertia in the user base
is likely to help it retain dominance in "Forth Standards," chaired by David
the field of artificial intelligence. Petty. This working group had more

"Financial Planning," chaired by agreement than anyone expected, con-
William Ragsdale, reported by Jack sidering the sometimes volatile topic.
Park. What do you do after you've One issue was the ANSI standard re-
spent your professional career hacking quest filed recently; the second was
code for others? Exposing a small body that of the standard as a communica-
of earned cash to the world and hoping tions document. The group's concen-
to come back with more was the topic sus was that we do need a standard, if
for this group. Their views: first, estab- for no other reason than to comniuni-
lish a reasonable target rate of return. cate among ourselves. There was also

(Continued on page 41 .)

FORTHki t

5 Mips computer kit

$400

Includes:

Novix NC4000 micro
160x 1 00mm Fk3 board
Press-fit sockets
2 4K PROMS

Instructions:

Easy assembly
cmFORTH listing

shadows
Application Notes
Brodie on NC4000

You provide:

6 Static RAMS
4 or 5 MHz oscillator
Misc. parts
250mA @ 5V
Serial line to host

Supports:

8 Pinlsocket slots
Eurocard connector
Floppy, printer,

video I10
272K on-board memory
Maxim RS-232 chip

Inquire:

Chuck Moore's

Computer Cowboys

410 Star Hill Road
Woodside, CA 94062

(415) 851 -4362

Vglume VIII, No. 6 39 FORTH Dimensions

Checksum More
Len Zettel

Trenton, Michigan

Checksums are numbers that result
from doing some kind of logical or
arithmetic operations on a string of
numbers. The simplest checksum is
exactly that, the running total. Check-
sums are very handy gadgets. They are
usually used as a verification that two
sets of numbers are the same - same
checksums, same numbers, same order.

Klaxon Suralis and Leo Brodie show-
ed us some words that did checksums
on Forth screens, treating the charac-
ters as their ASCII-valued numbers1.
The idea was, if you hand-entered a
source screen from Forth Dimensions,
say, you could be reasonably sure you
had entered it correctly when your
system gave you back the same check-
sum value that had been furnished.
I find it also comes in handy when I
can't remember if my hard copy bac-
kup is of the latest version. If the
checksum is still the same, it is.

So, since checksums will have their
maximum usefulness if everybody in
the world uses the same scheme, why
not just dig out the back issues and use
the ones already published? Mostly
because of one small problem, which
Leo Brodie himself created. Because
we are only interested in the letter-
perfect accuracy of the source code,
the checksum words treated multiple
blanks as one blank, and skipped com-
ments, which at the time their article
was written only came in the form of
text enclosed in parentheses. Nowadays,
we all use the backslash as another
comment indicator2.

Not to worry, Forthwrights, our
favorite language can rise to this occa-
sion. The accompanying screens show
how. Naturally, once I got my sticky
little fingers into the definitions, I
couldn't help rearranging things in the
name of improvement. The functions
of the words VERIFY and VER are the
same, and should produce the same
CRC (checksum) values as the originals.
If anyone comes across an instance
where this is not the case, please let me
know and we'll see what we can do.
That is, 1 expect results to be the same

In VERIFY we start by putting the cur-
rent values of BLK and >IN on the return
stack for safekeeping (users of fig-FORTH
can get compatibility by typing : >IN IN ;
and :WORD WORD HERE;). Then
we BEGIN asking MORE to checksum,
which we do in DISPOSE until there
isn't any more, at which point we
restore >IN and BLK and then exit.

MORE gets us more to checksum. We
skip any comments and come up with
the address of the next blank-delimited,
non-comment entry. Then we check
whether we have come to the end of
the screen. The differences between
various flavors of Forth force a rather
elaborate scheme to get the right en-
ding for everybody. We identify the
end as a word with a count less than
two and ASCII value less than thirty-

three. Forth-83 and Forth-79 systems
return a count of zero at the end of a
block and fig-FORTH systems return
one, so we have both of those covered.
The last character could be either a
blank or a null, and they are both less
for screens in upper case. Various
machines take liberties with their codes
for lower-case letters, and this can
cause problems. For instance, while I
can get the right CRC value for Suralis
and Brodie's original screen 129 on my
Amiga, I cannot for their screen 130,
which is lower-case text. VERIFY takes a
screen number off the stack and places
the checksum for that screen there. vUI
displays the checksum of the last screen
listed. Note that the checksum is treat-
ed as an unsigned number, as Suralis
and Brodie recommend.

I SCREEII $85
Bj < CHECKSUMS FOR SCREENS - ACCUMULHTE DISPOSE MORE 'VERIFY 'VER 'j I
2, : HI:IW~IULHTE I ULDCRC CHAR --.-- t.IEbICRC)
3) 256; % %US: 8 0 DO DUP 0.C I F 16386; >::OR DUP + 1+

ELSE DUP + THEN LOOP ;
1 5i ' DISPOSE CRC HDDR --- t4EWCRC) I 6) COUNT 3R SWRP R> 0

7) I1U OVER I + C 1 HCCUHULHTE LOOP SClHP DROP BL HCCUPIULHTE ;
.st : I I I~RE i: --- HDDF: >
9 j St::IF'.CUPIMEt.iTS DUP COUt.iT 2 ,< SWAP C@ 33 <: Ht4D

10) I F IlRClP B THEPI ;
11) : ',,/ERIF1r' i: 5CREEt.i --- CHECKSUHj ELK @ >R > I t 4 @ >R ELK ! @ >It4 !
12) B EEGIt,I MORE ?DUP WHILE DISPOSE REF'EHT
13) P,) >. 11.4 ! R>. ELI:: ! ;
14) ' 'VER SCR @ VERIFY U. ;
15)

SCF;EEt.I #8c
01 ', SKIP. COtlFlEtlTS
1 :! 0 CObISTAt,lT FHLSE 1 COk18TFitlT TRlJE

SK I p. C I) ~ ~ ~ ~ E ~ . I T S c - HDDR'?
EEGII.4 EL LIORJJ DUP 2.t CE! EL =.

i F DIJF' I + C 1 DUP 4i3 =
11' ZDROF' 4 1 LnJORD DROP TRUE
ELSE 92 = I F CC!jIIF'IiEl \ DF:TJF TRUE

EL:SE FALSE
T'tlEt.4

TtiEt4
ELSE FALSE
THE14

WHILE REFER? ,

than thirty-three, so we have both of
those taken care of; so it should do for
just about everyone. When MORE hits
the end, it puts a zero on the stack that
will act as a false flag for the WHILE in
VERIFY. (This assumes that zero cannot
be a valid block buffer address.)

SKIP.COMMENTS is designed to do
exactly what its name implies. It skips
down the input stream until it comes to
something non-blank that is not a com-
ment. Right now it is set up to handle
two situations. In the first, it runs into
a left parenthesis (ASCII 40). Then it
uses WORD to find the corresponding
right parenthesis (ASCII 41), and sol-
diers onward. In the other case, it finds
a backslash (ASCII 92) and then ex-
ecutes a backslash and continues. Note
that a left parenthesis or backslash
indicates a comment only when im-
mediately followed by a blank, so we
check for that first. I suppose if the use
of braces gets more popular, another
change will be in order; but we now
have comment handling factored out
and should be able to deal with any
fiendish future schemes right here in
the code. (Note to Commodore users:
on your machines (C64 and VIC-20, at
least), ASCII 92 is a British pound
sign. It makes a good substitute for the
backslash.)

DISPOSE disposes of a non-comment
word. It does the checksum on it.
~ C c u ~ u l A l ~ does the bit-twiddling, char-
acter by character. It is exactly the same
as the Suralis and Brodie ACCUMULATE,
so we can get the same answers if a
backslash is not involved. As a last
glitch, by the way, VERIFY will not
work the way it ought to on the screen
containing the colon definition of back-
slash. I'm too tired to find a way
around that one.

References

1. Suralis, Klaxon and Leo Brodie.
"Checksums for Hand-Entered
Source Screens," Forth Dimensions
IV/3, pg. 15.

2. Brodie, Leo. Thinking Forth,
Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1984.

(Continued from page 39.) and structured walk-throughs. These
wide awareness of the fact that many are any project
self-contained applications of ~~~~h manager, resulting in clearer under-

do not require, in themselves, adher- standing of a program and in clearly

ence to a standard. Standards can. written and more easily maintained

however, make hiring programmers
and maintaining programs easier in a
great many cases.

Establishing a good process for col-
lecting, evaluating, disseminating and
collating standard-related proposals
before voting for them was a major
concern. Use of a CBBS or of GEnie
was considered a possible solution, but
the Forth Standards Team could also
issue a yearly, printed collection of the
proposals it has received. Then a long
period (perhaps five years) of field
testing should ensue - to see what gets
used and liked - before incorporating
anything into the standard. About two-
thirds of the entire attendance was in
favor of seeing ANSl sanction the next
standards effort, even though i t is
bound to be a difficult process. I t was
felt that Forth's survival would be
enhanced by such a standard. The fact
that any ANSl standard could simply
define a minimal. "least common de-

code.
Stephen Pelc spoke about treating

vocabularies as objects, allowing them
to be referenced without affecting
CURRENT or CONTEXT. An audience
remark suggested storing a search
method in the object description.

Geoffrey lnett of British Telecom
believes the Forth systems developed
for them are truly state-of-the-art.
Their one caveat is that they would like
the system to look more "normal."
They use a file-based system, but don't
like having the file come up in screens.
Also, having developed a product,
they'd like to sell it, but finding ap-
plications already done in Forth was
difficult. Forth has the reputation of a
hacker's language and needs a profes-
sional image. Suggestions included a
directory of applications using Forrh
[See FD V111/5, page 37. -Ed.],
a guide to utilities and tools available
in Forth, independent verification of
- ~

nominatorw of Forth systems Forth standard adherence (for cus-

seemed cause for some optimism. tomers who want that assurance) and
outreach efforts that go beyond the I Impromptu Talks Forth community.

Kim Harris reviewed theories and
methods for formal code inspections -Marlin Olr verson

<

Index to Advertisers

Bryte - 15
Click Software - 6, 7
Computer Cowboys - 39
Creative Solutions - 37
Dash, Find & Associates - 36
Forth, Inc. - 14
Forth Interest Group - 21-24, 44
Harvard Softworks - 36
Laboratory Microsystems - 35
MCA - 25

MicroMotion - 31
Miller Microcomputer Services - 8
Mountain View Press - 11
New Micros - 2, 26-27
Next Generation Systems - 31
Palo Alto Shipping Company - 33
Software Composers - 17
Talbot Microsystems - 10
University of Rochester - 4, 5
Wayland Products - 9

Volume VIII, No. 6 4 1 FORTH Dimensions

U.S. Bay Area Chapter Fort Wayne Chapter St. Louis Chapter
Silicon Valley Chapter Monthly, 2nd Tues., 7 p.m. Monthly, 1st Tues., 7 p.m.
Monthly, 4th Sat. IPFW Campus Thornhill Branch Library

ALABAMA FORML 10 a.m., Fig 1 p.m. Rm. 138, Neff Hall Contact Robert Washam
Huntsville FIG Chapter H-P Auditorium Call Blair MacDermid

Wolfe Rd. & Pruneridge,
91 Weis Dr.

Call Tom Konantz 219/749-2042
Cupertino

Ellisville, MO 6301 1
205/881-6483

Call John Hall 415/532-1115
IOWA NEVADA

ALASKA or call the FIG Hotline: Iowa City Chapter Southern Nevada Chapter
408/277-0668 Monthly, 4th Tbes. Call Gerald Hasty

Kodiak Area Chapter Stockton Chapter Engineering Bldg., Rm. 21 28 702/452-3368
Call Horace Simmons Call Doug Dillon University of Iowa

Call Robert Benedict
NEW HAMPSHIRE

%7/486-5049 209/931-2448 New Hampshire Chapter

COLORADO
319/337-7853 Monthly, 1st Mon., 6 p.m.

ARIZONA Central Iowa FIG Chapter Armtec Industries Denver Chapter Call Rodrick A. Eldridge Shepard Dr., Grenier Field
Phoenix Chapter Monthly, 1st Mon., 7 p.m. 5 15/294-5659 Manchester
Call Dennis L. Wilson Cliff King

Fairfield FIG Chapter Call M. Peschke
602/956-7678 303/693-3413

Monthly, 4th day, 8:15 p.m. 603/774-7762
m a o n Chapter CONNECTICUT Call Gurdy Leete
Twice Monthly, NEW MEXICO

Central Connecticut Chapter 515/479-7077
2nd & 4th Sun., 2 p.m. Albuquerque Chapter

Call Charles Krajewski
Flexible Hybrid Systems

Monthly, 1st Thurs., 7:30 p.m.
203/344-9996 KANSAS

2030 E. Broadway #206 Physics & Astronomy Bldg.

Call John C. Mead FLORIDA Wichita Chapter (FIGPAC) Univ. of New Mexico

602/323-9763 Orlando Chapter Monthly, 3rd Wed., 7 p.m. Jon Bryan

Every two weeks, Wed., 8 p.m. Wilbur E. Walker CO. Call 505/298-3292

Call Herman B. Gibson 532 Market
ARKANSAS 305/855-4790 Wichita, KS NEW YORK

Central Arkansas Chapter Call Arne Flones
Southeast Florida Chapter FIG, New York

Tivice Monthly, 2nd Sat., 2p.m. & Monthly, Thurs., p.m.
316/267-8852 Monthly, 2nd Wed., 7:45 p.m.

4th Wed., 7 p.m. Coconut Grove area Manhattan

Call Gary Smith Call John Forsberg
LOUISIANA Call Ron Martinez

501/227-7817 305/252-0108 New Orleans Chapter 212-749-9468

Tampa Bay Chapter Call Darryl C. Olivier
504/899-8922

Rochester Chapter
CALIFORNIA Monthly, 1st. Wed., p.m. Bi-Monthly, 4th Sat., 2 p.m.

Los Angeles Chapter Call Terry McNay MASSACHUSETTS Hutchinson Hall

Monthly, 4th Sat., 10 a.m. 813/725-1245 Univ. of Rochester

Hawthorne Public Library GEORGIA Boston Chapter Call Thea Martin

12700 S. Grevillea Ave.
Monthly, 1st Wed. 716/235-0168

Call Phillip Wasson
Atlanta Chapter Mitre Corp. Cafeteria

213/649-1428
Monthly, 3rd Tues., 6:30 p.m. Bedford, MA Syracuse Chapter
Computone Cotilion Road Call Bob Demrow Monthly, 3rd Wed., 7 p.m.

Monterey/Salinas Chapter Call Nick Hennenfent 617/688-5661 after 7 p.m. Call Henry J. Fay
Call Bud Devins 404/393-3010 MICHIGAN 3 15/46-4600 408/633-3253 ILLINOIS
Orange County Chapter Cache Forth Chapter Detroit/Ann Arbor area OHIO
Monthly, 4th Wed., 7 p.m. Call Clyde W. Phillips, Jr. Monthly, 4th Thurs. Akron Chapter

Fullerton Savings Oak Park Call Tom Chrapkiewicz Call Thomas Franks

ThIbert & Brookhurst 312/386-3147 3 13/322-7862 or 313/562-8506 216/336-3 167

Fountain Valley Central Illinois Chapter MINNESOTA Athens Chapter
Monthly, 1st Wed., 7 p.m. Urbana MNFIG Chapter Call Isreal Urieli
Mercury Savings Call Sidney Bowhill Even Month, 1st Mon., 7:30 p.m. 6141594-3731
Beach Blvd. & Eddington 217/333-4150 Odd Month, 1st Sat., 9:30 a.m.
Huhtington Beach Fox Valley Chapter Vincent Hall Univ. of MN Cleveland Chapter
Call Noshir Jesung Call Samuel J. Cook Minneapolis, MN Call Gary Bergstrom
714/842-3032 3 12/879-3242 Call Fred Olson 216/247-2492

San Diego Chapter Rockwell ~h ica~o 'chap te r 612/588-9532 Cincinatti Chapter
Weekly, Thurs., 12 noon Call Gerard Kusiolek
Call Guy Kelly MISSOURI Call Douglas Bennett

312/885-8092
619/268-3100 ext. 4784

513/831-0142

INDIANA Kansas City Chapter
Sacramento Chapter Monthly, 4th Tues., 7 p.m. Dayton Chapter
Monthly, 4th Wed., 7 p.m. Central Indiana Chapter Midwest Research Institute Tivice monthly, 2nd Thes., &
1798-59th St., Room A Monthly, 3rd Sat., 10 a.m. MAG Conference Center 4th Wed., 6:30 p.m.
Call Tom Ghormley Call John Oglesby Call Linus Orth CFC 11 W. Monument Ave.
916/444-7775 3 17/353-3929 913/236-9189 Suite 612

FORTH Dimensions 42 Volume VIII. No. 6

NOW AVAILABLE
Forth Model Librarym Volume 4

A SIMPLE INFERENCE ENGINE by b art in J.Tracy

Forth-83 for the IBM PC DOS 2.0 Not copy protected-proceeds go to expand

Laxen/Perry F83 the library. Other systems and dialects

LMI PC/FORTH 3.0
available.
Available from: Forth lnterest Group

MasterFORTH 1.0 P.O. BOX 8231
PolyFORTH 11 ED-4 San Jose, CA 951 55

Oioaa (408) 277-0668

Forth Model Library volume 6

TH E MATH BOX by Nathaniel Grossrnan

Forth-83 for the IBM PC DOS 2.0 Not copy protected-proceeds go to expand

Laxen/Perry F83 the library. Other systems and dialects

LMI PC/FORTH 3.0
available.
Available from: Forth Interest Group

MasterFORTH 1.0 P.O. BOX 8231
PolyFORTH II ISD-4 San Jose, CA 951 55

0 toas (408) 277-0668

TWO NEW ADDITIONS TO THE FORTH MODEL LIBRARY!

$40 EACH

FROM THE FORTH INTEREST GROUP

FORTH INTEREST GROUP
BULK RATE

U S POSTAGE

P. O. BOX 8231 Permit NO 3107

Sari Jose, CA 95155 San Jose CA

F O R T H
INTEREST
G R O U P

F O R T H
INTEREST
G R O U P

Address Correction Requested

