
Dimensions

Simple
File Query

A PC DROP-IN BOARD WITH:
Novix Forth engine, 4 MIPS

power, mini computer speed,
parallel PC operation,

Y2 Mbyte on board, multim
tasking capability, software

included. $7,495

YEAH, SURE.

It's finally here! The PC4000. Runs the Sieve in Forth in .09 sec-
Plugs into PCIXT or PC compat- onds-2170 times faster than the
ible. Comes with 4 Mhz clock. Sieve runs on the PC in PC-Basic.
Upgrade to 5 Mhz by adding faster Includes SCForth software package
RAM and Clock. 16K of memory for software development. RAM on
ported to PC bus for PClPC4000 board can be used to extend host
data transfer. memory space.

Csoftware

UUI I L Q L L .

Software Composers

210 California Avenue
Palo Alto, CA 94306

PC4000 41 5-322-8763

SOFTWARE COMPOSERS

FORTH D~mens~ons 2 Volume VIII, No. 4

Forth Dimensions
Published by the

Forth Interest Group
Volume VIII, Number 4

November/December 1986
Editor

Marlin Ouverson
Advertising Manager

Kent Gfford -
Production

Cynthia Lawson Berglund
Typesetting

LARC Computing
Forth Dimensions solicits editorial

material, comments and letters. No re-
sponsibility is assumed for accuracy of
submissions. Unless noted otherwise,
material published by the Forth Interest
Group is in the public domain. Such
material may be reproduced with credit
given to the author and to the Forth
Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth Inter-
est Group at $30 per year ($43 foreign
air). For membership, change of address
and to submit items for publication, the
address is: Forth Interest Group, P.O.
Box 8231, San Jose, California 95155.
Administrative offices and advertising
sales: 408-277-0668.

Symbol Table

8 Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

I Advanced; requiring stu-
dy and athorough under-
standing of Forth.

Code and examples con-
form to Forth-83 stand-
ard.

Code and examples con-
form to Forth-79 stand-
ard.

I Dimensions
I FEATURES

13 Dual-CFA Definitions, Part Two

f
by Mike Elola
The dual-CFA structure provides a new method for decomposing functions into
smaller functions. Its value can be demonstrated in deferred and vectored defini-
tions, and in definitions that dispatch multiple functions. This strategy can be the
basis of a Forth programming philosophy aimed at compactness, brevity and
programming ease.

17 Simple File Query
, bv Edward Petsche

This program allows the user to define and initialize a file, enter data, query on
any combination of fields, delete records and change field values in records. It is
based on data-base elements presented previously in Forth Dimensions and
should work with most versions of Forth-83.

A Forth Standard?
by Glen B. Haydon
Forth does not differ from a natural language: it is evolving. And what is a stan-
dard language? Only after a word is used with a specific meaning for some time
d o dictionary editors accept it. This essay considers common use as a common-
sense paradigm for Forth standards.

Windows for the TI 99/4A
by Blair MacDermid
This program plots algebraic functions in a choice of five windows on the display.
It computes the coordinates of a plotted function, appropriately scaled to fit
within the selected window. (Members of the Fort Wayne FIG Chapter imple-
mented the ACM SIGGRAPH CORE Standard as a group project, from which
this code was adapted later for publication.)

Getting Started with F83
by Greg McCall
Sifting through F83's source shadow screens can be a bewildering first exposure
to that system. This summary of the file words and file-editing facilities will ease
your introduction. It explains how to open a second, read-only file and load
screens from it without changing the CURRENT file.

Batcher's Sort
by John Konopka
An alternative to the sometimes quirky Quicksort was discovered by K.E. Batcher
- slightly slower, but more robust and with consistent sorting times. If you'd
rather not complicate your Quicksort code to handle special cases, Batcher's may
be just the sort for you.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

Code and examples con-
form to fig-FORTH.

31 Advertisers Index
42 FIG Chapters

DEPARTMENTS
5 Letters

12 Editorial: "Conventions"
27 Crossword

Volume VIII. No. 4 3 FORTH Dimens~ons

Visit the MACH 2 Product Support RoundTableTM on GEniem !! I

MACH 2
MULTI-TASKING FORTH 83 DEVELOPMENT SYSTEM

The MACH 2 FORTH 83 Multi-tasking Development System created by Palo Alto Shipping Company
provides a fresh approach to FORTH programming and the FORTH language. The foundation of MACH 2 is
a subroutine threaded FORTH with automatic macro substitution. This state-of-the-art implementation of the
FORTH language allows MACH 2 to take full advantage of the powerful 680x0 microprocessors; therefore
execution times of programs written in MACH 2 are comparable to the execution times of programs written in
the traditional compiled languages.

MACH 2's integrated programming environment consists of a standard (infix), Motorola-format assembler
which supports local labels and forward references, a symbolic debugger/disassembler which allows multiple
task debugging with single-stepping, breakpoints, and more. The Macintosh and Atari ST systems include a
mouse-based, multi-window text editor and all systems support the use of text source files.

The MACH 2 system is a professional development system designed to take the programmer through all
phases of product development -- from initial design/prototyping to the creation of the final, stand-alone
application.

MACH 2 FOR THE
MACINTOSHTM

features full support of the
Macintosh toolbox, support
of the Macintalk speech
drivers, printing, and floating
point, easy 110 redirection
and creates double-clickable,
multi-segment Macintosh
applications. Includes
RMaker, and 500 pg manual.

MACH 2 FOR THE
ATARl S F M

features full GEM and TOS
support, floating point, I10
redirection and creates double-
clickable ST applications.
Includes 300 page manual.

MACH 2 FOR THE O H
'OPERATING SYSTEMTM

provides position-
independent and re-entrant
code execution, full support
of all 0 s -9 system calls.
Creates stand-alone 0s -9
applications. Link FORTH
to C and vice-versa. Includes
400 page manual.

MACH 2 FOR
INDUSTRIAL BOARDS

is 68020 compatible,
provides 6888 1 Floating
Point support, and produces
position-independent,
relocatable, ROM-able code
with no meta-compilation or
target compilation required.
Includes system manual and
porting manual.

VISANC accepted. CA residents include 6.5% sales tax.
Include shipping/handling with all orders: US $5 S/H; Australia $20 S/H; Canada $7 S/H; Europe $10 S B .

RoundTable and GEnle me rrgislcred uademarlts of the General Elecmc Informalion Services Company.

FORTH D ~ m e n s ~ o n s 4 Volume VIII. No 4

Fast SEARCH for F83

Dear FIG,

I am happy to finally contribute
something to the Forth community.
For all of the 8086/8088 F83 users out
there, here is a SEARCH function com-
pletely written in low-level code that
executes very quickly. Since the origi-
nal F83 SEARCH function was threaded
code it was tolerably slow, but a pro-
ject I've been working on lately needed
a quicker SEARCH, so I bit the bullet
and did it. Here, the function is adap-
ted to the Laxen & Perry system . . .
enjoy faster searching!

(In order to maintain the threaded
code "purity" of the UTILITY.BLK
file, this function should be placed in
either the KERNEL.BLK or the
CPU8086.BLK source files, and the ex-
isting SEARCH func t ion in t he
UTILITY.BLK file should be com-
mented out.)

I have been programming exclusively
in Forth for the past three years and,
having written both Z80- and
8086-based systems, I feel qualified to
say that Forth offers the greatest
madmachine interface yet devised in
software. Although it is slightly more
difficult to adapt to Forth's subtle
programming philosophy, the rewards
are quick in coming. I know of many
things that can be done in Forth but
which are impossible in other program-
ming languages.

As a rather lazy person, I would like
to commend all of the FIG community
for their tireless efforts in promoting
the very best programming language
yet designed. And special thanks to
Chuck Moore, Leo Brodie, Henry
Laxen, Michael Perry, Marlin Ouver-
son, Bill Ragsdale and all of the other
regular contributors to the progress of
Forth Dimensions. I hope their example
motivates more people to contribute.

Sincerely,

Bill Zimmerly
St. Charles, Missouri

Natural Word Usage

Dear Mr. Ouverson:

Ting's computation of static F83
word reference counts1 is the first I
have seen. The total number of words
(1 1,063) is large enough to be interest-
ing. I immediately plotted a graph with
the words ordered by frequency of use.
A log-log plot was the cleanest and
had, for me, a surprising result: refer-
ence count was inversely proportional
to frequency, i.e., the data closely fits a
line of slope -1. I tried several other
populations I had available213: one of
spoken English and one of written
English. The results were the same!

While browsing at the library one
day, I came across a volume on Zipf's

law4. The explanation was at hand: this
is a property of human behavior. Thus,
Forth has some of the properties of
natural languages.

I also investigated various coding
techniques6 to determine the amount
of compaction that can be obtained
taking advantage of the frequency-of-
use statistics. The results are somewhat
disappointing. For hardware imple-
mentations, a block encoding is prob-
ably all that can be justified.

Number of different tokens (words) 555
Total number of occurrences 11,063
Block code size 9.1 16 bits
Theoretical code size 7.051
Hoffman code size 7.084
4-8-12 repeated comma code 7.821
4-8-12 non-repeated comma code 7.735
8-16 repeated comma code 9.316
8-16 non-repeated comma code 9.316

In the repeated codes, the same
token (word) can be coded in several
sizes which, of course, lowers the
coding efficiency. The relatively small
number of words (compared to 2**16)
accounts for the poor performance for
the 8-16 codes.

1. C.H. Ting. "F83 Word Usage Stat-
istics." Forth Dimensions VIIM,
pg14, November/December 1985.

2. H .F. Gaines. Cryptanalysis. Dov-
er, 1956.

-

Zimmerly's F83 SEARCH
Bh 223

3 \ S t r i n g f u n c t i o n s . . . WB! 11-09-1985 i S t r i i g f c s c t l u n s . . . WB' 11-07-198;
1
? ASSEHBLER LABEL ! F I N D I i THE EXIT POINT CODE I F I N D ~) 1 5 t h e e x i t ~ o i c t & o r t h e SEACCH f u f i r t : o n t h a t i o l l o w ~ .
J DX S I HOV BX DX NOV BP POP ?PUSH At e n t r , , t h e 6 6 c o n t a i r , s t h e ~ f f s e t add re;^, an! !he
4 6 t c o n t a i c i t h ~ TEOE o r FALSE f!ag.
5 CODE SEARCH (SADH SLEN BADH BLEN -- Y F ! : FIND SUBSTFIN6
i CLD CX POP DI POP 6) FOP G I POP RP PCSH D t S I XCHi SELRCH i s a v e r y h;gh ;peed !hen c c u l d ~t he i?;terli i g n c t i c r ,
7 CS A K HOV i t X Es 8OV 3 [S I l AL NOV HERE BYTE 2EP SCAS O= t h a t ~ c i q s a s t r : n g t r) i n g to i o c a t e !be g i ~ e n ; , ~ b j t r ; ~ ;
B I F i l PUSH S I PUSH D l PBSH Dl DEE 81 16 I O V I qe! i s u n t ' u ~ t h ; ~ i t . The a ~ f 5 ~ i U ; E ~ I S t 3 5 e a r i k t ~ r t h e t i r 5 t
Y BYTE REP: CHPS O= f r o r p a r e t he s t r i n g s i a r e q u a ! i t r L i c.',aracter, a d wher i o u n o , compare th? c t , i r i i t e r s kt,;!

10 I F EX POP A X POP Af FOP BX DEC - 1 t k i HOV i t r u e f l a ; ') i c l i s n i t l o r a c o m p i e t ? match. I i bctb, !a); , t h e r e a r r h
11 i F I N D l 1 t i JNP THEN D l POP 31 POP i r PO; ELSE bI k i ;OR f a r t f i e i i r ~ ! c f a r a c t e r c a n t i r ~ u e s from r b e r e ;I ; e f t l i t

12 !FINDl! 1) JMP THEN 11 JHP EHG-CODE ~ n t i l we ~e ;canned t h e e n t i r e b u f f e r .
1 :
14
15

VolumeVIII, No. 4 5 FORTH Dimensions

Z. :.:

.-. % 3. G.D.A. Brown. A frequency count
Z. ... % of 190.000 words in the London- :3 . . Lund corpus of English Conversa- FORTH' . .-.' tion. Behavior Research Methods,

5. 5 Instruments & Computers, 16 (6):502-532, 1984. . . .C a!.!

4. S.R. Ellis and R.J. Hitchcock.
"The Emergence of Zipf's Law:
Spontaneous Encoding Optimiza-
tion by Users of a Command
Language. " ZEEE Transactions on
Systems, Man, and Cybernetics,

:2
7.- :.. ' ?.. vol. SMC-16(3):423, ~a~ 1986. . . INTEL 3
.f. ,?.. i::. 5. G.K. Zipf. Human Behavior and
2.'
2.. 2 the Principle of Least Effort.
. *
2.'

8 ... Addison-Wesley Press, 1949.
?.' r.'
:::: :.3
.-i

Pi .-.'
!$ 6. R.W. Hamming. Coding and Zn-

:i
.% 3 formation Theory. Prentice-Hall,
?.' 2.' 2.' A' "1980.

MICRO-
'..

.?.a 5.
?.. 2.' 3

$ Sincerely, 1: ,..- coNTROLLERa
,*.' 3 James C. Brakefield, M.S.E.E. -. .-.- $ San Antonio, Texas

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machine

code interrupt handlers
-System tlmekeeping maintains

tlme and date w i th leap
year correction

--Supports ROM-based self-
staiting appl~catlons

COST
130 page manual -S 30.06
8K EPROM w ~ t h manual-S100.00

Postage pad tn North Amer~ca
lnqu~re for l~cense or quantlty prlclng

Bryte Computers, Inc.
P.O. Box 46, Augusta. ME 04330

(207) 547-32 18

Leaky Sieve

Mr. Ouverson:

In the process of optimizing the sieve
benchmark, Terry Noyes has unwit-
tingly rejected a superior algorithm
and departed from the de facto bench-
mark standard. The sieves Mr. Noyes
calls "corrupt" are not corrupt at all.
They correctly count 1899 primes from
3 to 16383. The FLAGS array represents
only odd integers, and only odd multi-
ples of primes are "flicked." Fortun-
ately, the Noyes version is easily modi-
fied to incorporate the better algo-
rithm, and the resulting version finds
the 1899 primes slightly faster than the
unmodified version finds 1028.

Stephen Brault
Chandler, Arizona

i Mr. Ouverson:

t I would like to retract my April letter
i to you (Forth Dimensions VIII/2) and
i live in shame for the rest of my life.

I had thought that the 0 - 8192 loop
in all sieve benchmarks meant they
were calculating the number of primes
from zero to 8192. Not so. A few
weeks after the letter was sent to you,
someone pointed out that these sieves
were actually finding primes in the
range of zero to 16,000+ by looping
through the 8192 odd numbers in that
range.

Oh.
Fortunately, we use identical code to

benchmark other Forth systems, so
they also received the five percent
speed improvement resulting from
using the wrong sieve program. I've
enclosed the proper Forth sieve with
this letter.

Living and Learning,

Terry No yes
Palo Alto Shipping Company
Menlo Park, California

Seeing is Believing

Dear Marlin:

I enjoyed Michael Ham's "Making
Numbers Pretty" (VII/5). I had just
written a routine to calculate the neces-
sary number for masking a given bit
(or bits) and Michael's words .BITS and
16BITS fit in perfectly, although I
modified them slightly.

Referring to the enclosed listing, the
words BIT-MASK and SBIT-MASK return
to the console the number necessary to
mask the desired bit, or bits, in the
current base. The words .BITS and
I~BITS visually confirm the mask, mak-
ing life a little easier for us doubters!

For example, if you want to mask bit
five, then entering 5 BIT-MASK (in base
ten) will give:

32 In base 10
HI: 0000 0000 0010 0000 :LO

while if bits four and six are to be
masked, then 4 6 2BIT-MASK (in base
sixteen) will return:

50 In base 16
HI: 0000 0000 0 101 0000 :LO

FORTH Dtmensions 6 Volume VIII, No. 4

Noyes' Sieve

dec i ma l
8192 constant size

variable flags size va l lo t

: primes (- primes) (does the pr imes once>
flags size 01 f i l l < initialize the arral))
0 (prime counter)
size 0 < range/2 of numbers to do)
W

f lags i + cP (see i f prime already)
I F
3 i + i + dup i + size < (don't go too f a r)
IF

size flags + over flags + i + (range o f nums to tag)
DO
0 i c! dup (tag numbers as non-primes)

+LOOP
THEN
drop 1+ < drop the i used for +loop, increment prime count)

THEN
LOOP ;

: sieve
COUNTER (s ta r t counting >
10 0 DO prlmes LOOP (perform 10 i terations)

T I HER (stop counting)

CR . ." primes" (p r i n t the number of pr imes >
9 0 DO DROP LOW ; C clean-up stack)

CR . (Type 'sieve' to execute th is benchmark program) CR

Forth Sieve. Uses pointer arithmetic to calculate the number of primes from
zero through 16383. To save space and time, it only needs to work with the 8192
odd numbers.

1

Thomas' Bit-Mask Locator
L i s t i n g 1
Screen I 3

0. \ masking-numbmr ca lcu la tor g t AugSb
1. I 8PC 32 HOLD I
2. I 1bBITS (FD 7/5, M.Ham, modif ied) CR . " H I I "
3. <I I I I I (h i n ibb le) SPC I I I I SPC 8PC
4. I I I I 8PC I I I I I> (l o n ibb le) TYPE .I1 ILO" I
5. I .BITS t FD 7/5, M.Ham, modif ied) BASE 8 SWAP
6 . 2 BASE ! 8->D i6BITS BASE ! QUIT I
7. I BAS= BASE 9 DUP DECIMAL ." I n base . BASE ! I
8.
9. I BEE-MASK DUP CR U. BAS= . BIT8 I

10. I MASK DUP I F 1 SWAP 8LA t l e f t s h i f t) ELSE 1 OR THEN I
11.
12. I BIT-MASK (n -- Id isp lay number t o mask b i t n l n-0 t h r u 15)
13. MASK 8EE;flABK I
14. r 2BIT-MhSK (n i n2 -- Id i sp lay number t o mask b i t s nl & n2) ~ 15. MASK SWAP MASK + SEE-MASK I

FORTHki t

5 Mips computer kit

$400

Includes:

Novix NC4000 micro
160x1 00mm Fk3 board
Press-fit sockets
2 4K PROMS

Instructions:

Easy assembly
cmFORTH listing

shadows
Application Notes
Brodie on NC4000

You provide:

6 Static RAMS
4 or 5 MHz oscillator
Misc. parts
250mA Q 5V
Serial line to host

Supports:

8 Pin/socket slots
Eurocard connector
Floppy, printer,

video 1/0
272K on-board memory
Maxim RS-232 chip

I Inquire:
I 1 Chuck Moore's

/ Computer Cowboys

410 Star Hill Road
Woodside, CA 94062

(415) 851-4362

Volume VIII. No. 4 7 FORTH Dimens~ons

1 with LMI FORTHTM 1

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System ' Call or write for detailed product information

and prices. Consulting and Educational Services
available by special arrangement.

* ~ a b o r a t o r ~ Microsystems Incorporated
Post Of f~ce Box 10430, Marlna del Rey, CA 90295

credit card orders to: (213) 306.7412

Overseas Distributors.
Germany: Forth-Systeme Angelika Flesch, Titisee-Neustadt. 7651.1665
UK: System Science Ltd.. London, 01-248 0962
France. Mlcro-Sigma S A R.L., Paris. (1) 42.65.95.16
Japan: Southern Pacific Ltd.. Yokohama, 045-314.9514 , Australia: Wave-onic Associates. Wilson, W A,, (09) 451-2946

Conveniently, both the base of the
mask and its binary representation are
displayed. (Remember, the sixteen bits
are numbered zero through fifteen.)

The word SLA in MASK is my
system's ML shift-left arithmetic word
(nl cnt -- n2). Replace it with your
appropriate instruction. The 1 OR in
MASK takes care of the zero bit
position, as in 0 BIT-MASK.

Forth Dimensions and its contribu-
tors often supply me with either some
finishing touches or an idea to expand
on. Thanks!

Sincerely,

Gene Thomas
Little Rock, Arkansas

Student Roots

Dear Editor,

During this Summer Quarter of
1986, I have been providing the cour-
sework for a student taking "Forth
Programming" at Auburn University
at Montgomery. As one of his assign-
ments, this student (Hunter Moseley)
was required to write a square root in
Forth (F83) based upon a Newton's
method-type algorithm. However,
Hunter went beyond my thought and
wrote code that put mine to shame. My
code is shown in Figure One.

The D*I used does the same thing as
* I but with double-precision numbers.
In other words, (dl d2 63 -- d4). Also,
the 2NIP is a double-precision NIP. I
hated to use the double-precision
words, but for the accuracy needed,
they were necessary.

Hunter's code was simply that
shown in Figure Two.

In a time test on a Zenith-151 with
10,000 iterations, dropping the result
each time, Hunter's code guaranteed
119 seconds with any input from zero
to 32,766. Mine, however, with an
equivalent range of inputs, does the
square root of one in seventy-five
seconds, the square root of two in 280
seconds, and gets even worse after
that.

As can be seen, the two approaches
are based on the same idea, but
Hunter's does no bound checking. His

FORTH Dimensions 8

T
Davies' Square Roots
: SQRT (d l 6 2 -- d 3)

RECURSIVE
ZOVER ZOVER ZOVER 10000 0 ZROT D+/ ZSWAP
ZOVER 10000 0 ZSWAP D+/ ZOVER D- DABS
5 0 D< I F Z N I P Z N I P E X I T

ELSE D+ D Z /
THEN

SQRT I

: S Q R (n l - - nZ
10000 +D 10000 0 SQRT 10000 UM/MOD N I P ;

Figure One

: SQR (n l -- n 2)

1 1 0 0 DO ZDUP / + 2/ LOOP N I P ;

Figure Two

CODE SQR (n l -- n 2)
DX POP S I PUSH DX S I MOV 1 W EX MOV
10 DO

DX DX XOR S I AX MOV EX D I V AX EX ADD EX SAR
LOOP

S f POP EX PUSH NEXT END-CODE

Figure Three

: D S Q R (d l - - d 2)

1 . 19 0 DO ZOVER ZOVER D / D+ D 2 /
LOOP 2SWAP ZDROP I

Figure Four

simpler application of the algorithm is
much slicker - beauty in Forth.

Additionally, as an experiment with
F83's assembler, I translated Hunter's
algorithm into assembly. The code is
listed in Figure Three. A time test on
the Zenith-151 with 10,000 iterations,
dropping the result each time, guaran-
teed five seconds! Yes, that's right -
2,000 iterations per second! Perhaps
this amazes no one else, but 1 was
somewhat shocked.

For those interested, Hunter also has
the signed, double-precision version of
the square root. The code is in Figure

Four. The Dl is a double-precision
divide. If anyone is interested in the
code for these operators and their
double-precision primitives, I will glad-
ly share them.

In any case, I present these attempts
as examples of how traditional mathe-
matical thought sometimes must give
way to the more efficient patterns used
by our friends - the computers - and
Forth.
Sincerely yours,

R.L. Davies
Montgomery, Alabama

Second Take:
Multiple LEAVES by Relay

Dear Mr. Ouverson:

Please discard my previous letter to
you (Forth Dimensions VIII/3), as it
was completely erroneous. My intend-
ed verification test wound up with
confusion between the fig-FORTH
words in my system and the new
words, due to my carelessness! Here is
the new manuscript:

John Hayes' "Another Forth-83
LEAVE" (VII/l) stimulated me to try
to find an even simpler way to handle
multiple Forth-83 LEAVES. I decided
that a straight-forward approach invol-
ved having each LEAVE simply branch
to the next LEAVE, with the last one
removing the index values from the
return stack and branching to the word
following LOOP.

I "grafted" such a construction onto
fig-FORTH with the definitions below;
words with a prefix are used to
identify changes from fig-FORTH.
Unstarred words such as (DO) and
(LOOP) are unchanged. Whenever a
'LEAVE is compiled, the variable PLACE
is used to hold the location of its
branch value for later adjustment. This
variable also serves as a flag to show
that there is a leave branch to be
resolved. 'LOOP calls a >RESOLVE to
install the jump value of the preceding
(if any) 'LEAVE; also, if there is a
'LEAVE in the word, a special
OUTLEAVE is compiled immediately fol-
lowing the (LOOP) closure. OUTLEAVE
removes the (two) loop parameters
from the return stack and proceeds to
the next word, i.e., the word that was
entered after 'LOOP. If the 'LEAVE
command is not invoked at run time,
the normal loop operation removes
these parameters from the return stack,
so OUTLEAVE must be skipped over.
'LOOP compiles this bypass with a
BRANCH 4 which is encountered in nor-
mal loop completion. Alternatively,
(LOOP) could be modified to use
OUTLEAVE in normal loop completion.

Note that OUTLEAVE can be a
primitive which removes two words
from the return stack by using PLA four
times. If OUTLEAVE is defined as a

volume VIII. NO. 4 9 FORTH Dimenstons

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving
November 28 - 30, 1986

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California

Theme: Extending Forth towards the 87-Standard
FORML isn't part of the Standards Team, but the conference is an opportunity to present
your ideas for additions to the Forth standard. Papers are also welcome on other Forth
topics. Meet other Forth professionals and learn about the state of the art in Forth
applications, techniques, and directions.

To get your registration packet call the FIG Business Office (408) 277-0668
or write to: FORML Registration, Forth Interest Group, P. 0. Box 8231,
San Jose, CA 95155.

Registration: $275 Double Room

$3 25 Single Room (Limited availability)

$1 50 Non-conference guest (Share a double room)

es room, meals, conference materials, and social events.

Space is limited,
advance registration

FORTH Dlmens~ons

Conventions
We've talked about this before, but the Super-8, R65Fll and F68HCll keynote speaker (separate registration

someone - one of our authors, yet - microprocessors); Forth engine soft- required to reserve a seat), a report
recently confused F83 with Forth-83. ware; and the future of Forth engines. from FORML including this year's trip
Big mistake! F83 is an ultra-superset of Numerous additional events and con- to important Forth sites in China, and
Forth-83, nearly an order of magni- current sessions are planned to serve the a "fireside chat" with Mr. Charles
tude larger. Forth-83 and 83-Standard particular interests of all attendees. Ex- Moore, original developer of Forth.
are common shorthand for the phrase, hibitors will include major vendors of There you have it in a nutshell, or
"Forth-83 Standard." The name F83 commercial Forth hardware and soft- perhaps in a kernel. It seems that as
is not an even shorterhand, it is the ware. Special groups will gather to dis- Forth has matured, it has gathered a
name of an implementation of Forth. cuss F83, MacForth/MultiForth, MVP- potency which can propel it into new
Does everyone understand the differ- FORTH, NC4000, polyFORTH and areas. This integral vitality can lead
ence between a language implementa- 68000 machines (e.g., Macintosh, Atari, Forth in unexpected, surprising direc-
tion and a standard? Amiga). There will be tutorials about tions. Keep abreast by joining us in

As we send this issue to press, last control structure extensions, files and California on November 21-22 at the
minute preparations are underway for string I/O, multi-tasking in polyFORTH, Santa Clara Trade & Convention Cen-
the imminent 1986 Forth National oblique flying wings, target compila- ter, near the new Doubletree Hotel.
Convention. A major component of tion in F83 and vectored execution of And for an intensive immersion in
this year's convention is a six-part I/O words. Forth methodology and experimental
seminar on Forth engines. Those ses- A FIGGRAPH session will feature proposals, stay for the following week-
sions will focus on the new multiple- the latest in computer-generated graph- end's FORML conference at the Asilo-
stack WISC (writeable instruction set ics of significance to the Forth com- mar conference grounds in Pacific
computer) machine; applications of the munity. FIG chapters' representatives Grove, adjacent to Monterey. Infor-
Novix 4000 and the design of the Novix will convene, and there will be a na- mation for either event can be obtained
6000 chip; Forth engines developed by tional meeting of Forth Interest Group by calling 408/277-0668, the FIG hot-
Hartronix, Lockheed and Johns Hop- members. As in past years, the conven- line.
kins; ROM-based Forth engines (i.e., tion will also feature a banquet with -Marlin Ouverson

Editor
I 1

FORTH Dimensions 12 Volume VIII, No. 4

Part Two: New Solutions to Old Problems

Dual-CFA Definitions
Mike Elola

San Jose, California

The introduction of a dual-CFA
definition structure provides a new
building block for Forth programming.
It also provides a new method for
decomposing larger functions into
smaller functions.

Because of the new possibilities af-
forded by dual-CFA decomposition,
worthwhile changes to many imple-
mentations of Forth can be formu-
lated. By contrasting these new defin-
itions with the alternatives currently
available, the value of this new metho-
dology can be demonstrated.

Changes are suggested within each
of three different areas common to
most implementations of Forth. The
areas to be covered are (1) deferred
definitions, (2) vectored definitions
and (3) definitions that dispatch multi-
ple functions. This roughly parallels
the organization of topics in my orig-
inal paper describing dual-CFA de-
composition1. It showed that dual-
CFA definitions h e l ~ maintain a con-

function (aided by the dual-CFA defin-
er). The child transforms itself into a
parentless, single-CFA definition when
executed. After execution, it contains a
reference to a headerless definition at
the top of the dictionary (see Figure
One).

The definition for the parent definer
is:

: DEFER: <word> (--)
CREATE DOCOL , COMPILE-DEF

DOES > (cfa2 --)
DUP @ OVER 2- ! (normalizing cfal)

DUP @ , (compiles doc01)
HERE 2- (MR I (overwriting cfa2)
NFA ." COMPILING BODY OF " ID. CR

COMPILE-DEF ;

Dictionary entry before execution:

CHILD'S DOES> DOCOL CALLTO
NAME CFA CFA EXIT

Dictionary entry after execution:
sistent strategy for decomposition and Self-transformation of a dual-CFA
that this strategy can be the basis of a word created with DEFER
Forth programming philosophy aimed
at memory compactness, brevity of Figure One

UPSTREAM CALL TO
CALL EXIT

CHILD'S
NAME

expression and ease of programming. ; PAiii.fiG-HifiEER; i --
- - - . - - - - - - . i
Y:H:L VULL~L , C C n P i i E - E E F

Deferred Definitions U U C ~ , i siring-add c i a i -- a i
,R 3°F i + La 43 = F i F

DOCOL
CFA

Deferred definitions are used to al-
low a lower-level word to dispatch a
function that is defined in terms of
many high-level support words. When
definitions that require the undefined
function are compiled, a superficial,
"stand-in" definition is com~iled in
lieu of the actual, desired finction.
Later, the stand-in definition's body is
modified to reference the correct, high-
level definition.

Dual-CFA definitions can be used to
implement deferred definitions. The
dual-CFA word functions as the stand-
in definition that is modified later
when the dictionary contains the sup-
port needed for compiling the "real"
definition.

In this implementation, the dual-CFA
definition performs a self-modification

red definitions are initialized with IS,
which patches the specified word. IS
can be used more than once and can be
used with any word, not just those
words that are created with DEFER.

A new disadvantage regarding the
dual-CFA implementation is that the
deferred function must be specified in
a non-standard way: the name of the
deferred definition replaces the colon
and name string at the start of the
definition. Because of this, it is more
difficult to separately recompile the
high-level definition again. For ex-
ample, DEFER: may be used to create
?ERROR, which is defined at a later
time in the following manner:

?ERROR (flag --)
IF ." ERROR " ABORT THEN ;

XI separately recompile ?ERROR
again, a colon must be provided. How-
ever, the first body of ?ERROR still
points at the original, headerless defin-
ition.

One solution is to provide another
support word:

: REDEFER: <old deferred word > (--)

[COMPILE] ' (PFA)
DEFERRED-CFA SWAP CFA! ;

Now you need not change the source
code by adding a colon. Instead, you
enter REDEFER: ?ERROR as a

iii +
L-, iifii M C U I N

preparative step. Then you can load
C06"ERi 3i - UHiiE the source code as-is.

uur CB 3 u P 33 =
jUAp 44 YiTHiN + In the preceding definition, DEFER-

-- --- lvul Ir HUI mi DDEOF R i DEW R i REPCFA is a constant. It points to the
i add = i a Z -- j EXECUTE i " E N

REPEMT iiRirP
DOES> phrase in the parent defining

- . n r ~i DRGP iF DNEGMTE TME'N i word. Its derivation was not shown.
Figure Two One way to derive it is to use:

The advantages of this technique are
the unavailability of the definition-
modifying function except to the unin-
itialized children of DEFER:, the use of
only one name field (as compared
usually to two) and the decreased
chance of crashing (since the
definition-modifying action can't be
applied to just any word).

Note that the first advantage is ac-
tually a limitation that may not appear
advantageous to some. In F83, defer-

DEFER: JUNK

LATEST PFA CFA @ (~fa-value --)
FORGET JUNK

CONSTANT DEERRED-CFA

Note that REDEFER: increases the
chance for crashes, since its definition-
modifying function is not restricted to
deferred words. To remedy this, extra
code can be added to the definition to
ensure that it contains an upstream
reference:

Volume VIII, No. 4 13 FORTH Dimensions

I MasterFORTH I
FORTH-83 STANDARD

6809 Systems avaikbk for
FLEX disk sustem s f 150
OS9/6809 $150

680x0 Systems available for
MACINTOSH $125
CP /M-68K $1 50

I tFMtTH/20 for 68020
Single Board Computer I

I Disk based development system
under OS9 /68K . . . $290

EPROM set for complete stand-
alone SBC. $390

I Forth Model Library - List
handkr , spreadsheet, Automatic
structure charts . . . each . $40

I Target compilers : 6809,6801,
6303,680x0,8088,280,6502 I

Tal bot Microsystems
1927 ~ u r t i s ~ v e
Redondo Beach

CA 90278
(2 13) 376-9941

68020 SBC, 5 1 14" floppy size

board with 2MB RAM, 4 x 64K

EpROM sockets, 4 RS232 ports,

Centronics parallel port, timer,

battery backed date/time,

interface to 2 5 114" floppies

and a SASl interface to 2

winchest~r disks $2750

68881 flt pt option $500

OS9 multitask&user 0s. . $350

FA ST I int. benchmarks

speeds are

Listing One
Processing of counted strings (i.e., already-parsed words)

T a r g e t S t a c k E i i e c t i c a d d -- i
; FAIL IkJ t - iOOKUP; i Cerror-processing-iunctioni i

CREATE DOCOi , COHPILE-DEF
DOES> i c i a 2) >R i c a d d i p i a ien j f l a g -- i

DuP CSRTEXT C Q i F I i 4 D) i cadd i p ia i e n 1 +lag i
O= I F R i i c a d d c i a 2 -- i EXECUTE ELSE R i DROP THEW i

F A I i i ~ b - i O i j i i P ; ?INTERPRET-XunBERi i c a d d -- Z i
WUiiBER-VALUE? ?STACK i o v e r f l o w 7 i
DPL 12 0 i I F DROP T H E i R i k i ZDROP i

FA I WC-LOOiiiiP ; - r ~ O n r l ~ E - i 4 u r i S E R i - . .- -. i c a a d -- ? i

WUiiEER-VAiUE? DPL a i* I F
i C O f i P I L E j D i I T E R A i ELSE i C O n P I i E j i i T E R A i THEN R i R i ZDROP i

; INTERPRET-WORD i c a a d -- i - - . . - - - - - - - - - . !INI:K?K~I-NUIYUCUI
i c a a a p i a ien -- i ROT Z3ROP
i p f a i CFA EXECUTE ?STACK i u n d e r f i o w 7 i i

: INTERPRET-WORD i c a d d -- i ---..--. %unr LE-Mu iBERi
i c a a a p f a ien -- i ROT DROP
(ien i9i > CFA CFA , -..- - -..-"

CAtLUlk l n r l v i

Word Parsers
T a r g e t S t a c ~ E i i e c t i -- i i r g

; iwORDi i s t r e u - a d d -- f iag i . . . TO. BE. SUPPLIED.. . SERE CC i

; TIB-UORD i c -- f l a g i
T i & e iWORD, j

; BiK-WORD i c -- i i a g i
ELK 13 ELOCK iWORDI i

Null-delimited input stream
parsers/processors

T a r g e t S t a c ~ E i f e c t i -- i
VARIABLE PROCESS-WORD'

STREZ+~-P~OCESSOR:
iiparsing-iuncti~n-i-eaving-c~unted-string-at-dpii

CREATE DOCOL , COriPILE-DEF
DOE+> i c i a i -- i i k

EEGIN R 4 EXECUTE WHILE
HERE PROCESS-WORD' 1 EXECUTE REPEAT

E i DROP i

FORTH Dimens~ons 14 ~ o l u r n e V l ~ ~ , NO. 4

r

Listing Two
3TR-An-PRficESSfR; b i K - P R f i < E S S .

JZ a i K - i , j f i E J i i i a g -- i
--.-- ..--- - - - -..-- brMLC nkKk LUUNl I r r k i

; P R i M T I f i G - L f i A D i b i k # -- j

G i 1 i.4 i -. ------- ~ L K - r n u ~ k s s . i

T

: REDEFER: cold deferred word> (--) To define a number-conversion
[COMPILE] ' (PFA) routine suitable for internal use when
DUP @ U< 0 = IF interpreting or compiling, one child

definition might be:
CR ." - MUST BE A DEFERRED WORD"

ABORT THEN
FAILING-NUMBER:

DEFERRED-CFA SWAP CFA ! ;
NUMBER-VALUE? (string-addr -- d?)

Vectored Definitions CR COUNT TYPE
." - NOT RECOGNIZED" ABORT ;

Vectored definitions can often be TO define a version of NUMBER more
rep1aced by fixed-behavior, dual-CFA suitable to an application, another
words. Such words can directly invoke child definition be:
the desired function. For flexible pro-

FAILING-NUMBER:
When you order from SOTA, both the fig
model and 79 standard come complete

cessing, a variety of these words can be with the following extra features at no
defined. Each one would be suited to INPUT-NUMBER (string-addr -- d?)

C@ BACKSPACES use in a particular context.
Dual-CFA words offer flexibility in TIB 12 EXPECT o >IN ! emtension set

a fundamental Forth form: compile- 32 WORD HERE RECURSE ;
time selection of the desired behavior
by a reference to the correct word from
the dictionary. This practice retains the The advantages of the dual-CFA
ease-of-use that characterizes normal, definitions over vectored definitions
fixed-behavior words1. are the memory compactness of the

For example, NUMBER often employs compiled words, the absence of inter-
a vector to provide a means for flexible mediary variables, the absence of re-
processing. Because the behavior you quired initializations and greater im-
desire is usually known at compile munity to crashes.
time, you do not really need run-time Normally, decomposition of the
flexibility - just a wider selection of error-handling code within NUMBER
compilable behaviors. This makes would not be possible, unless such code
NUMBER a good candidate for dual- is moved outside of the BEGIN WHILE
CFA decomposition. REPEAT loop. This would allow the

The function of NUMBER is to con- error instructions to be separately
vert an input string into a number. specified within any number of parent
When the conversion process fails, definitions.
program execution is immediately This is similar to the approach taken
aborted in many Forth implementa- in F83. This Forth implementation
tions. Such an outcome is fine during includes a primitive version of NUMBER
the interpret or compile phase, but that does not abort on error. Instead, it
often is undesirable in a finished ap- leaves a flag on the stack that can be
plication. used by parent words to trigger any

Several versions of NUMBER are kind of error processing desired. Since
needed. Each would have a different parent words must process the flag left
failure outcome. This can be achieved on the stack, a conditional phrase is
by creating a definer word that incor- normally required in all the parent
porates NUMBER (see Figure Two). words where (NUMBER) is used.

Volume VIII. NO. 4 15 FORTH Dlmens~ons

To avoid having to repeat that
failure processing with each use of the
F83 NUMBER primitive, enlarged func-
tions could be created. If desired, ver-
sions equivalent to INPUT-NUMBER and
NUMBER-VALUE could be created. Such
versions would exhibit the same ease-
of-use as the dual-CFA versions.

The dual-CFA versions would retain
a very slight advantage over their F83
equivalents: they should compile in less
memory and should execute slightly
faster due to a decreased number of
conditionals.
Definitions That Dispatch
Multiple Functions

When implementing function-dis-
patching words, dual-CFA definitions
can also be advantageous. Listing One
includes several examples that help
illustrate those advantages.

In most Forth implementations, the
main function-dispatching routine is
INTERPRET. Both the compiling and
interpreting functions are often per-
formed within INTERPRET. Since there
is so much commonality between these
two distinct functions, it is easy to
think of them as children of the same
parent process. But what exactly
should this parent process be? The
answer can be found by more clearly
discerning what functional areas are to
be combined.

The common ground between the
compiler and the interpreter is the
input parser. The input parsing func-
tion is the same, whether compiling or
interpreting. It remains a static func-
tion even if there are mid-line transi-
tions between the compiling and inter-
preting functions.

But because of input redirection, the
input-parsing function is not always
static. When loading a block, the input
source must be the block buffer, not
the text input buffer (TIB). Normally,
this flexibility is achieved as a run-time
function of WORD. So WORD normally
has a variable behavior dispatched
through a conditional phrase. A ma-
jority of the time, this conditionally-
variable behavior can be eliminated.
Input redirection is rarely exercised
during run time. For those exceptions,
a variable-behavior version of WORD
can be defined by referencing the fixed-
behavior versions. By defining LOAD

with a fixed-behavior version of WORD
that only parses blocks, the input
redirection required by LOAD is enabled
using only fixed-behavior words at
compile time.

The implementation shown in List-
ing One factors the function of input-
stream parsing to a parent definer.
Each of the two dual-CFA children
dispatch a different version of WORD.
The correct one can then be selected at
compile time to suit a given context.
Refer to STREAMPROCESS, TIB-PROCESS
and BLK-PROCESS in Listing One (as
well as PRINTING-LOAD in Listing Two).

To provide additional, run-time flex-
ibility, WORD can be defined in terms of
the new primitives:

:WORD (C - -)

BLK @, IF BLOCK-WORD

ELSE TIEWORD THEN DROP ;

To make a nicer, error-detecting
version, the flag returned by the primi-
tive versions of WORD could be proces-
sed as follows:

:WORD (C --)

BLK @ IF BLOCK-WORD

ELSE TIEWORD

THEN O = IF

CR ." UNEXPECTED ENPOF-INPUT."

ABORTTHEN ;

The variable-behavior version of
WORD is needed for single-word parsers
such as (tick) and CREATE. Having all
three versions (WORD, TIEWORD and
BLOCK-WORD) provides the program-
mer with more choices. Why use the
variable-behavior version of WORD,
with its extra overhead, when input-
redirection flexibility is not necessary
at run time?

As an extensible programming lan-
guage, Forth can exhibit a wide range
of functionality that broadens with
each new word added. For every pro-
gramming problem confronted, Forth
can be extended in ways that make the
solution easy to program. Not only is
the original problem more easily sol-
ved, but also many related problems
become easier to solve.

See Listing Two for a printing ver-
sion of LOAD that is defined very sim-
ply. It could be useful on those few
occasions when a screen will not load

(Continued on page 32.)

FORTH Dimensions 16 Volume VIII. NO. 4

Simple File Query
Edward Petsche file (#ACTIVE). These items occupy the

Greenport, New York first four bytes of this record.
This article describes an implementa- Screen 24 shows the file and field

tion of a simple file query based on the definitions for a sample application.
data-base elements presented in Forth Three Parameters must be specified
Dimensions (see volumes three and when defining a file: the starting block,
four). The parameter fields of words maximum number and the
defined by FILE and FIELD have been record length. In the EMPLOYEES file
extended to include some new parame- definition, sixty-four is the record
ters necessary for the query. The DOER length, 100 is the maximum and
and MAKE vectored execution words is the starting
described in Thinking Forth are also When a field is defined, three Pa-
used in this program. Implementations rameters must be specified: field type,
of these words for various versions of offset and field width. A width is
Forth are given in that appen- specified even for mmXr i~ types for
dix. If you don't have access to that
book, the implementation in screen 8 FIELDS compiles a list @f CFAs of
should work for all versions of field words. The address of the start of
~ 0 ~ t h - 8 3 . ~f you prefer the D ~ ~ ~ R and this list is stored in FIELD-LIST. The
IS vectored execution words, the neces- Syntax for FIELDS is: <file
sary modifications, aside from replac- FIELDS. The file name executes and
ing DOER with DEFER (screen 16), in- becomes the current file. The number
volve only screen 23. of fields is then left on the stack to

 hi^ program allows the user to control the loop that compiles the list.
define and initialize a file, enter data, After the program has been loaded
query a file on any of along with the sample file application
fields, delete records and change field (screen 2419 type NEWFILE EMPLOYEES.
values of records. We are now ready to enter data into the

F I L ~ is the defining word for files. EMPLOYEES file. Figure One shows a
The pFA of a word defined by FILE sample data entry session. Actually,
contains the following parameters: the field entry prompts appear one at a

byte time on the screen. When a field entry

offset is terminated with a carriage return,
the next field entry prompt will appear

0 starting block of file on the next line. After all the fields in
maximum number for FIELD-LIST have been entered, the user
file is asked if there is more data to be

4 bytes/block entered. The word NEXTREC in the
6 record length in bytes ENTRY routine reclaims space occupied
8 current record number by deleted records.

Before querying a file, a display 10 address of list of fields for this mode should be chosen by entering file either the STEP or SELECT commands.
FIELD is the defining word for fields. STEP is the default mode. Figure Two
The PFA of a word defined by FIELD shows a display using the STEP mode.
contains the following parameters: It displays all the fields of each record

byte found by the query. Records are dis-
offset played one at a time and the user is

0 field width presented with the following options
with each displayed record: modify a

byte offset from of record record, continue the query or quit.
4 field type STEP does not require any arguments.

The first record of each file (0 The SELECT display mode allows the
RECORD) is used for information re- user to choose which fields will be
garding the length of the file (LASTREC) displayed. This mode prints a heading
and the number of active records in the with the names of the selected fields.

The field values for each record found
are displayed under the corresponding
field name in the heading. The syntax
for SELECT is:
SELECT < file name > < field 1 >
< field2 > . . . < fieldn >

The maximum number of selections
(EXCERPTS) is five. This is arbitrary.
More fields could be selected depend-
ing on the total number of characters
of the selections. They should all fit on
one display line. An example of a
SELECT display is given in Figure Three.

FIND is the end-user query word. It
will search any combination of fields
for each record in a file. The condi-
tions are GR.THAN, LS.THAN, IS and
ISNT. The logical operators AND and OR
are also used by the query. The maxi-
mum number of conditions (a#) for the
query is set for four. This could be
increased, but since TIB will only accept
eighty characters, I felt this was a
reasonable maximum. A query requir-
ing more than eighty characters could
be input from a block using LOAD. If
#ARGS is modified to use a command-
line delimiter, a number of query com-
mands could be included on a block
and loaded.

After the query command line has
been entered, the program executes the
next word in TIB which is a file name. It
is now the current file. Next, the num-
ber of words that follow the file name
in TIB is counted (#ARGS). This number
is incremented by one. If dividing this
number by four leaves a zero remaind-
er, the number of arguments is valid.
The quotient is the number of condi-
tions for this query. This value is left
on the stack to be used by FOUND? and
Q-ARRAYS. Now the query arguments
are stored. The search arguments (the
values that are to be compared with the
specified fields) are stored in T A R G O S .
The maximum number of search argu-
ments is thirty. Strings for numeri~
search arguments are converted by
NUMBER before they are moved to
TARGETS by the word BRING.

The file is searched, checking each
record to see if it is active (not re-
moved). If it is active, the query argu-
ments are executed by FOUND?, which

Volume VIII. No. 4 17 FORTH Dimensions

4Jt
E-rj-1 I.,: (~ : p l ~ ~ l .. i.i',.'l I .. I,,::

I l i l l : ' , ::.;I I I 'I I I
1 li'll!l:,l.. ., - !.::b, [I:: :: ; ! ,, 1,4i,!

I li-;\!f,'; ,, "' ,. . j i

F. . I i i i C 1

.~I- I jirta.., t t-,' ' ~ , , ; P.1 :

lJ;ll,lt. :: ;,I. !.I: PS
- . , , . ' Z .i. l I t I

I I I I I 1 1 *!> . . . , . .. 'I!.!

I I : I l r ~ l l l l

4 1 I , ,!I, , I ,) I ! ! ! , . I

Figure One

processes the query arguments for each
condition to see if the current record
satisfies the conditions. After all the
conditions have been tested, a flag is
left on the stack. If it is true, then the
query conditions have been matched by
the current record and i t will be dis-
played.

A word to list the entire file has not
been included in this program. The
entire file can be listed by entering a
query with conditions that will be satis-
fied for all records (e.g., FIND EMPLOY-
EES NAME ISNT XXX). The program
includes very little error checking. If
the user enters field names or condi-
tions that have not been defined, the
program aborts displaying the usual
Forth system error message.

Query Glossary

'OPEN Contains parameter field ad-
dress of current file.

'FIELD Contains parameter field ad-
dress of current field.

FIELDLIST Address within parameter
field of current file that contain? ad-
dress of list of fields for that file.

/ / I
<;; [-- p <J!
I: .I t 11.1 I. l,<lVL-! I ,(Lk:::, I I!.I!.JF.,?, i3F(. LI];:!,t.s ->,#I&

1.1 ,:, 1'1 E:' .. :: c.! ..! 1. j i !- ' 1 '
I 4C.jl,.JF*: 1- .i 4:: i P. :; .-? , - , ',; . ,
I-I! ll.ll?!::. :: ::!.I
l l r l ' l :].!I-'

[::I; -I.!. lF:q I .b ,,A ,::I[-,. I. k: [I:'!."! . . i',, mailif <"<

=.I.(I . i : . c I ~ I . . . <spacebar>

I ~l;,l.lE:. :: l!J I I,, ::!:lPd
I-li-jI jI:?l.. ; .. :;:i>l'T'; . ; -7 -7,:- r r , ..J
I lri,..lF.:'.:; : ,+o
(,I ' - - # ' I ,, ,, ,.~.[:,

I)I I \ !l::iP! l:;2 \.:I 1 i 1 L: !:: ... : .. ,. ... i .I i7'1i::)(.j I. 4- v
I , j < ESC >

; 1 , I : t : 1 I , , I ? , l L t l , , L.;I 1 , ! , , l ,. , t ! L > ~ " L , i ;-2 , I [(-1
! ; I ! ; ,.III~, # . I ! ; 1 , , ! , I 1 0 I.,,-, , l,:<i~i::.,,l
i I:::,,

1 !I-1: Il:':, ;, ' , \ ,

1 ' 1 l ! J I , : I I I , , , 1 1 1 1 ! 1 '.>I. !. 8 . 1 (II,.,,.~J ? ,

. I , I .-.. I.* 8 . i l i : I , .) . , <space bar>

! i t ,! IF :: r .I ;.,, l I I
1 : l . l l ! : .,,[, . ! ? , , :; , ' 2 J .. r;, - ,

I ' l l ' , 1 . 1

i , l I ' ! ,: 1 >!:L I

i , l . I1 !1 , ,11 1 0 (! I . .~ I L I I . , < i. 8 , tff"i:l1 : ,

,111 ! 1 . 1 I I <CR>

l i .I:, % I , , , I I . ' 3 I

Figure Two -
LASTREC First byte of record number
zero. It contains record number of last
record in current file.

#ACTIVE Third byte of record number
zero. It contains the number of active
records (not removed) in current file.

FILE File-defining word. When a word
defined by FILE is executed, it places its
parameter field address in 'OPEN.

FIELD Field-defining word. When a
word defined by FIELD is executed, it
places its parameter field address in
'FIELD and leaves the address of the
field on the stack.

FLD-WIDTH Contains the width of the
current field. A field width is required
for all field types. For numbers, the
field width is required for display for-
matting.

FLD-TYPE Field types are 0, 2, 4 and 6,
for text, single numbers, double numbers
and dollar amounts.

TABLE Defining word for execution
tables of type-dependent functions.
When executing, words defined by
TABLE use the current field width to
select a function to be executed.

FORTH Dimensions 18 Volume VIII, NO. 4

!. :, I-
(.. .., k.. ... 1 ... [{:(: '1 L.1 pll. *I. ~j t .?I... 1. ... *: ..t 1 l;:li':l[.;. i.,[: , .. r-~ '1 t.l(:jLJ[:?i ,,.. 'y 1 F:- t.. I I
I: 't r. IL) 1;: i.~r-~l..,, u ./ 1:: 5; I-II.:JI...I~.,;(~ c~F:: 1 1. .~i.:,p 1 .::::;
1.11 'I PI 1.. 1,) 1: I::, 1. 11:) I.! F7: 1.. ~k: -. I< 1;
-- - -. - -. , .. . , ,. , , .

1- 1 1 ; '1. I. I , , ..> . ..[c:: K ..I r . I '

(.. , . .
~ 7 r , I . 1 1.i ;I 1:; t;, I $2 ,, ! , I t I

fil. L I.PI 1 1 6' 11.1.1 ' I' 4::
-.I ,, 1 "..J

E(I? $; 0 ~jl.:, . , . OK ~ . . I ! . J .

(..I I :

1Fi.11!.) 1'1"11-'1 Itil.:..i: '.; i l l l ' i I , . : #:,I. I I i i i l l ! i i l l l i l , : . 1 ,-<.. ! i l l ,I-1 la i

Iblf lPil !.'li I.' I I..!! l!..ll :I 'j; I.',, ! I .-

I,?(l ! ~ ~ k I?!:, i i l .(. ! . : I - t.:. I I

(iiil I i I I ,..!I I . \.' r I:.; " ' " .
(,I

Figure Three

(ENTER) An execution table contain-
ing entry words for all field types. The
words in this table all expect a field
address on the stack at execution time.

DISPLAY An execution table contain-
ing display words for all field types. A
field address is expected on the stack at
execution time.

COMPARE An execution table contain-
ing words for comparing fields to
search arguments. Words in this table
expect two addresses on the stack and
return - 1 , 0 or 1, for less than, equal or
greater than.

DASHES Used for prompting input
for record entry.

ENTER Prompts the user for a field
entry. Accepts the input and stores the
entry in the file.

REMOVED? True if record has been
marked as deleted.

#ARGS Counts the number of argu-
ments remaining in TIB. Should be
modified if block input is to be used
for commands.

Q# Maximum number of conditions
searched for by query.

#HITS Number of records found. In
this application, #HITS is only used as a
flag, but it is easy to imagine other uses
for it.

LOGICALS Array of logical operations
(AND and OR) to be performed by
query.

OPERANDS Array of field operands to
be compared by query.

CONDITIONS Array of query condi-
tions (GR.THAN, LS.THAN, IS or ISNT).

TARGETS Address of start of storage
area for search arguments.

+TARGET Uses index on stack to off-
set into TARGETS.

BRING Execution table for words that
bring the search arguments to T A R G m .

GET-TARGET Brings next word in TIB
to TARGETS using index on stack to
offset.

P~YM
YOUR PROGRAM
FROM CONCEPT

TO REALITY
4 TO 10 TIMES

FASTER

THE ONLY INTEGRATED SOFWARE
DEVELOPMENT PACKAGE DESIGNED

FOR REAL-TIME APPUCATIONS

It you're a real-time software developer,
polyFORTH can be your best ally in
getting your program up and running
on time. In fact, on the overage, you
will develop a program 4 to 10 times
faster than with traditional program-
ming languages.

polyFORTH shortens development
time by making the best use of y~
time.There ore no long waits while you
load editors, compilers, assemblers, and
other tools, no long waits while they
run- because everything you need is
in a single, easy-to-use, 100% resident
system. Using polyFORTH, you take a
raw idea to fast, compiled code in
seconds-and then test it interactively.

poiyFORTH has everything you need
to develop real-time applications: fast
multi-tasking, multi-user OS; FORTH
compiler, interpreters, and assemblers;
editor and utilitiez and over 400 primi-
tivesand debugging aids. With its unique
modulor structure, polyFORTH even
helps you test and debug custom hard-
ware interactively, and it is available for
most 8.16, and 32-bit computers.

FORTH,Inc,also provides itscustomers
with such professional support services
as custom application programming,
polyFORTH programming courses, and
the FORTH, Inc. "Hotline:

For more information and a free
brochure, contact FORTH, lnc. today.
FORTH, Inc., 111 N. Sepulveda Blvd.,
Manhattan Beach. CA 90266. Phone
(213) 372-8493.

fi FORTH, Inc.

Volume VIII, NO. 4 19 FORTH Dimensions

.HEADER A quick and dirty format-
ting word for the SELECT display mode.

SPREAD A quick and dirty formatting
word which attempts to keep the dis-
played field values lined up under the
field names in the display header.

SELECT End-user word for choosing
fields to be displayed. Maximum num-
ber is five in this application. Can be
changed, but the total number of
characters of the fields selected should
be less than eighty.

FIELDS Includes fields in the field list
for a file after they have been defined.
Expects the number of fields on the
stack (<file name> n FIELDS).

STEP An end-user word to control
display. All fields for a record will be
displayed, one record at a time.

NEWFILE Initializes file by setting
LASTREC and #ACTIVE to zero.

QARRAYS Uses the number on stack
- which is the number of conditions

for a particular query - as a loop
index to load query arrays with argu-
ments from TIB. First entry in LOGICALS
is a no-op word.

FOUND? Compares fields with search
arguments to determine if query condi-
tions are satisfied.

FROM Executes the next word in TIB
which is a file name.

(FIND) Examines every record in the
current file, checking first to see if the

Screen # 8 Screen # 10
\ DOERJHAKE \ System ex tens ion words e l p 0Zsepa5
: NOTHING ; 6 CONSTANT FALSE
: DOER CREATE ['I NOTHING >.BODY , DOES? @ >R ; -1 CONSTANT TRUE
VARIABLE HARKER : BLANK-PAD PAD 80 BL F ILL :
: (HAKE) R> DUP ?+ DUF 2+ SWAP @ ?BODY ! @ ?DUP : TEXT (c --I BLANK-PAD #ORD COUNT PAD SWAP CHOVE> ;

I F >.R THEN ; : -TEXT i ad. n adr -- n) 2DUP + SWAP DO DROP 1+ DUP 1-
: hAKE STATE @ I F COHPILE (HAKE) HERE HARKER ! 0 , C@ I C@ - DUP I F DUP AES ! LER'JE THEN LOOP SWAP DROP ;

ELSE HERE [COHPILEI ')BODY ! 1 STATE ! INTERPRET : -ROT ROT ROT ;
THEN ; IMMEDIATE : -DCUELE (a1 a? -- n) \ works l i k e -TEXT f o r double t s

: ;AND COHPILE EXIT HERE HARKER @ ! ; IHHEDIATE ?@ ROT 2@ 2SWAP D- 2DUP DO=
: UNDO I 'I NOTHING)BODY [COHPILEI ' !BODY ! ; I F 6 ELSE 2DUP .O D> I F 1 ELSE -1 THEN THEM

;R ZDROP R> ;
: ARRAY CREATE ?* ALLOT DOES> SWAP 2, + ;
: IF-NOT LOWILE 6= [COHPILEI I F : IHHEDIATE
: #HILE-MOT COHPILE 6= ICOliPILEl WHILE ; InHEDlATE

Screen # 11 Screen # 12
\ FILE words from FORTH D i rens ions Vol. I V I 5 ': FILE word5 e l p 03sepe5
VARIAELE 'OPEN \ p o i n t s t o c u r r e n t f i l e b l o c k : LASTREC 0 RECORD : \ l e n g t h o f f i l e
: RECt 'OPEN @ '2 + ; ' h o l d s c u r r e n t r e c o r d number : #ACTIVE 0 RECORD 2+ ; \ t o f reco rds n o t marked by REHOVE
: LAYOUT \ leave by tes l reco rd -2 , by tes lb lock -1 : FILE

'OPEN C 4 + 2@ ; CREATE , \ s t a r t i n g b l o c k i n f i l e
: HAXRECS (-- n) 'OPEN @ 2+ @ ; 1+ , \ wax i ru r number o f r e c o r d s i n f i l e
: READ (n - th r e c , on s tack, i s aade c u r r e n t) D U P b l B U F O V E R ! a , \ # b y t e s / b l o c k

6 HAX DUP HAXRECS ! IF-NOT . V i l e e r r o r " Q U I T THEN , 0 , O , \ b y t e s 1 r e c o r d , c u r r e n t r e c t, and
RECI ! ; \ adr o f f i e l d - l i s t

: RECORD (n -- a) \ l eave address o f n - th r e c o r d DOES> 'OPEN ! ;
LAYOUT */HOD 'OPEN @ @ + BLOCK t ;

: ADDRESS I -- a l \ l eave address o f c u r r e n t r e c o r d VARIR5LE 'FIELD \ p o i n t s t o c u r r e n t f i e l d
RECI C RECORD ; : FIELD \ usage: ALPHA 0 20 FIELD HAHE

: FIELD-LIST (-- a1 'OPEN @ 10 + ; CREATE , (l e n g t h) , (o f f s e t) , (t ype 1
: REC-LEN 'OPEN C 6 + @ ; DOES> DUP 'FIELI! ! 2+ @ ADDRESS + ;

: FLD-WIDTH (-- n) 'FIELD @ @ ;

FORTH Dlmens~ons 20 Volume VIII, No. 4

* * SEE OUR HOLIDAY SPECIALS * *
FORTH INTEREST GROUP MAIL ORDER FORM

P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

MEMBERSHIP
IN THE FORTH INTEREST GROUP

108 - MEMBERSHIP in the FORTH INTEREST GROUP &Volume 8
of FORTH DIMENSIONS. No sales tax, handling fee or
discount on membership. See the back page of this order
form.

The Forth Interest Group is a worldwide non-profit member-supported
organization with over 4,000 members and 90 chapters. FIG membership
includes a subscription to the bi-monthly publication, FORTH Dimensions.
FIG also offers its members publication discounts, group health and life
insurance, an on-line data base, a large selection of Forth literature, and
many other services. Cost is $30.00 per year for USA, Canada & Mexico; all

other countries may select surface ($37.00) or air ($43.00) delivery. I
The annual membership dues are based on the membership year, which
runs from May 1 to April 30.

When you join, you will receive issues that havealready been circulated for
the current volume of Forth Dimensions and subsequent issues will be
mailed to you as they are published.

You will also receiveamembership card and number which entitlesyou to a
10% discount on publications from FIG. Your member number will be
required to receive the discount, so keep it handy.

HOW TO USE THIS FORM
1. Each item you wish to order lists three different Price categories:

Column 1 - USA, Canada, Mexico
Column 2 - Foreign Surface Mail
Column 3 - Foreign Air Mail

2. Select the item and note your price in the space provided.
GOODTHROUGH (JPiNUARl 31, 1987 I

3. After completing your selections enter your order on the fourth page of this form.

4. Detach the form and return it with your payment to the Forth lnterest Group.

1 31 1 -FORML PROCEEDINGS 1981 $45148155

FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May - April)
101 - Volume 1 FORTH Dimensions (1 979/80)$15/16118 -
102 - Volume 2 FORTH Dimensions (1 980181)$15116118 -
103 - Volume 3 FORTH Dimensions (1 981 182)$15/16/18 -
104 - Volume 4 FORTH Dimensions (1 982/83)$15116118 -
105 - Volume 5 FORTH Dimensions (1 984/85)$15116118 -
106 - Volume 6 FORTH Dimensions (1 983184)$15116118 -
107 - Volume 7 FORTH Dimensions (1 985/86)$20121 124 -

ALL 7 VOLUMES $75.00 SAVE $35.00

FORML CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML (the Forth Modification Laboratory) is
an informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORML is part of the Forth
lnterest Group.
310 -FORML PROCEEDINGS 1980 . . . $30133140

Technical papers on the Forth language and extensions.

Nucleus layer, interactive layer, extensible layer, metacom-
pilation, system development, file systems, other languag-
es, other operating systems, applications and abstracts
without papers.

31 2 - FORML PROCEEDlNGS 1 982 . $30133140
Forth machine topics, implementation topics, vectored
execution, system development, file systems and lan-
guages, applications.

31 3 - FORML PROCEEDINGS 1983 $30133140
Forth in hardware, Forth implementations, future strategy,
programming techniques, arithmetic & floating point, file
systems, coding conventions, functional programming
applications.

314 -FORML PROCEEDINGS 1984 $30133140
Expert systems in Forth, using Forth, philosophy, im-
plementing Forth systems, new directions for Forth, inter-
facing Forth to operating systems, Forth systems tech-
niques, adding local variables to Forth.

31 5 -FORML PROCEEDINGS 1985 . $35138145
Also includes papers from the 1985 euroFORML Con-
ference. Applications: expert systems, data collection,
networks. Languages: LISP, LOGO. Prolog, BNF. Style:
coding conventions, phrasing. Software Tools: decom-
pilers, structure charts. Forth internals: Forth computers,
floating point, interrupts, mulitasking, error handling.

* FORML SPECIAL $150 FOR ALL 6 . . . SAVE $50.00 *
- --

Volume VIII, NO 4 2 1 FORTH D~mens~ons

BOOKS ABOUT FORTH
200 -ALL ABOUT FORTH $25126135

Glen B. Haydon
An annotated glossary for MVP Forth; a 79-Standard Forth.

216 -DESIGNING & PROGRAMMING
N PERSONAL EXPERT SYSTEMS $1 9120129
E Carl Townsend & Dennis Feucht
W Introductory explanation of Al-Expert System Concepts.

Create your own expert system in Forth. Written in
83-Standard.

217 -F83 SOURCE $25126135
N Henry Laxen & Michael Perry
E A complete listing of F83 including source and shadow
W screens. Includes introduction on getting started.

218 -FOOTSTEPS IN AN EMPTY VALLEY
N (NC4000 Single Chip Forth Engine) $25126135
E Dr. C. H. Ting
W A thorough examination and explanation of the NC4000

Forth chip including the complete source to cmForth from
Charles Moore.

219 -FORTH: A TEXT AND REFERENCE $22123133
N Mahlon G. Kelly & Nicholas Spies
E A text book approach to Forth with comprehensive referen-
W ces to MMS Forth and the 79 and 83 Forth Standards.

220 -FORTH ENCYCLOPEDIA . . $25126135
Mitch Derick & Linda Baker
A detailed look at each fig-Forth instruction.

225 -FORTH FUNDAMENTALS, V.l $1 611 7120
Kevin McCabe
A textbook approach to 79-Standard Forth

230 -FORTH FUNDAMENTALS, V.2 $1 311 411 8
Kevin McCabe
A glossary.

232 -FORTH NOTEBOOK . . . $25126135
Dr. C. H. Ting
Good examples and applications. Great learning aid.
PolyFORTH is the dialect used. Some conversion advice is
included. Code is well documented.

233 -FORTH TOOLS $22123132
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

235 -INSIDE F-83 $25126135
Dr. C. H. Ting
Invaluable for those using F-83.

237 -LEARNING FORTH . . $1 711 8/27
Margaret A. Armstrong
Interactive text, introduction to the basic concepts of Forth.
Includes section on how to teach children Forth.

240 -MASTERING FORTH $1 811 9/22
Anita Anderson & Martin Tracy
A step-by-step tutorial including each of the commands of
the Forth-83 International Standard; with utilities, exten-
sions and numerous examples.

245 -STARTING FORTH (soft cover) . $22123132
Leo Brodie
A lively and highly readable introduction with exercises.

246 -STARTING FORTH (hard cover) . $20121 130
Leo tcroale

255 -THINKING FORTH (soft cover) . . . $1 611 7120
Leo Brodie
The sequel to "Starting Forth". An intermediate text on
style and form.

265 -THREADED INTERPRETIVE LANGUAGES . $25126135
R. G. Loelinger
Step-by-step development of a non-standard 2-80 Forth.

270 -UNDERSTANDING FORTH . . . $3,501516
Joseph Reymann
A brief introduction to Forth and overview of its structure.

FORTH Dimensions

ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Inc. is a non-profit organization
which supports and promotes the application of Forth It sponsors the
annual Rochester Forth Conference.
321 -ROCHESTER 1981

(Standards Conference) $25128135
79-Standard, implementing Forth, data structures, vocabu-
laries, applications and working group reports.

322 -ROCHESTER 1982
(Data bases & Process Control) $25128135
Machine independence, project management, data struc-
tures, mathematics and working group reports.

323 -ROCHESTER 1983
(Forth Applications) $25128135
Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like languages,
new techniques for implementing Forth and working group
reports.

324 -ROCHESTER 1984
(Forth Applications) $25128135
Forth in image analysis, operating systems, Forth chips,
functional programming, real-time applications, cross-
compilation, multi-tasking, new techniques and working
group reports.

325 -ROCHESTER 1985
(Software Management & Engineering) $20121 130
Improving software productivity, using Forth in a space
shuttle experiment, automation of an airport, development
of MAGICIL, and a Forth-based business applications
language; includes working group reports.

THE JOURNAL OF FORTH APPLICATION 81 RESEARCH
A refereed techn~cal journal publ~shed by the lnst~tute for Appl~ed Forth
Research, Inc
401 -JOURNAL OF FORTH RESEARCH V.l

RobotrcsIData Structures $30133138

403 -JOURNAL OF FORTH RESEARCH V 2 #1
Forth Mach~nes $1 511 611 8

404 -JOURNAL OF FORTH RESEARCH V 2 #2
Real-T~me Systems $1 511 611 8

405 -JOURNAL OF FORTH RESEARCH V 2 #3
Enhanc~ng Forth $1 511 611 8

406 -JOURNAL OF FORTH RESEARCH V 2 #4
Extended Addressing $1 511 611 8

407 -JOURNAL OF FORTH RESEARCH V 3 # I
Forth-based laboratory systems and data structures

$1 511 611 8

409 -JOURNAL OF FORTH RESEARCH V 3 #3
$1 511 611 8

41 0 -JOURNAL OF FORTH RESEARCH V 3 #4
$1 511 611 8

REPRINTS
420 -BYTE REPRINTS $51617

Eleven Forth articles and letters to the editor that have
appeared in Byte Magazine.

DR. DOBB'S JOURNAL I MISCELLANEOUS
Thls magazlne produces an annual speclal Forth Issue whlch Includes
sourcecode l~st~ng for varlous Forth appl~cat~ons
422 -DR DOBB'S 9/82 $51617
423 -DR DOBB'S 9183 $51617
424 -DR DOBB'S 9/84 $51617
425 - DR DOBB'S 10185 $51617
426 -DR DOBB'S 7186 $51617

ALL 5 VOLUMES $15.00 . . . SAVE $10.00

- --

HISTORICAL DOCUMENTS
501 -KITT PEAK PRIMER $25127135

One of the first lnst~tutional books on Forth Of historical
Interest

502 -Fig-FORTH INSTALLATION MANUAL $1 511 611 8
Glossary model ed~tor - We recommend you purchase
this manual when purchasing the source-code l~sting

503 -USING FORTH $20121 122
FORTH Inc

REFERENCE
305 -FORTH 83-STANDARD $1 511 611 8

The autoritative description of 83-Standard Forth. For
reference, not instruction.

300 -FORTH 79-STANDARD $1 511 611 8
The authoritative description of 79-Standard Forth. Of
historical interest.

BOTH FOR $25.00

- -- - -

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source L~sttngs of flg-Forth for Speclflc CPUs and
rnach~nes wlth compller securlty and var~able length names
514 -6502lSEPT 80 $1 511 611 8
51 5 -6800lMAY 79 $1 511 611 8
516 -6809lJUNE 80 $1 511 611 8
51 7 -8080lSEPT 79 $1 511 611 8
518 -8086188lMARCH 81 $1 511 611 8
519 -9900lMARCH 81 ':$ $1 511 611 8
521 -APPLE IIIAUG 81 $1 511 611 8
523 - IBM-PCIMARCH 84 $1 511 611 8

601 -T-SHIRT SIZE
Small, Medium, Large and Extra-Large.
White design on a dark blue shlrt $1 011 111 2

602 -POSTER (BYTE Cover) $51617
616 -HANDY REFERENCE CARD FREE
683 -FORTH-83 HANDY REFERENCE CARD FREE

FORTH MODEL LIBRARY
The model applications disks described below are new additions to the
Forth Interest Group's library. These disks are the first releases of new
professionally developed Forth applications disks. Prepared on 5 114"
disks, they are IBM MSDOS 2.0 and up compatible. The disks are
compatible with Forth-83 systems currently available from several Forth
vendors. Macintosh 3 112" disks are available for MasterFORTH systems
only.

Forth-83 Compatibility IBM MSDOS
LaxenlPerry F83 LMI PCIFORTH 3.0
MasterFORTH 1.0 TaskFORTH 1.0
PolyFORTHm II

Forth-83 Compatibility Macintosh
MasterFORTH

ORDERING INFORMATION
701 -A FORTH LIST HANDLER V.l $40143145

by Martin J. Tracy
Forth is extended with list primitives to provide a flexible
high-speed environment for artificial intelligence. ELlSA
and Winston & Horn's micro-LISP are included as ex-
amples. Documentation is included on the disk.

702 -A FORTH SPREADSHEET V.2 $40143145
by Craig A. Lindley
This model spreadsheet first appeared in Forth Dimensions
Volume 7, lssue 1 and 2. These issues contain the
documentation for this disk.

703 -AUTOMATIC STRUCTURE CHARTS V.3 $40143145 -
by Kim R. Harris
These tools for the analysis of large Forth programs were first
presented at the 1985 FORML conference. Program docu-
mentation is contained in the 1985 FORML Proceedings.

Please specify disk size when ordering

701 - A FORTH LIST HANDLER V 1 $35 00

702 - A FORTH SPREADSHEET V 2 $25 00

703 -AUTOMATIC STRUCTURE CHARTS V 3 $25 00

$1 511 611 8
$1 511 611 8
$I 511 611 8 I HOLIDAY SPECIALS !!

Volume VIII. NO. 4 23 FORTH Dlrnens~ons

FORTH INTEREST GROUP I
P.O. BOX 8231 SAN JOSE, CALIFORNIA 95155 408/277-0668 I

Name

Member Number

Company

Address

City

StateIProv. ZIP

Country

Phone

I ":"I TITLE I AUTHOR I QTY I zFE 1 TOTAL 1 1

Ir HOLIDAY SPECIALS ARE GOOD ON ORDERS FOR CANADA, MEXICO & USA ONLY. EUROPE ADD 40°/o
' AUSTRALIA AND ASIA ADD 60%. SORRY - MEMBER DISCOUNTS ARE NOT APPLICABLE WITH HOLIDAY SPECIALS. Ir

SUBTOTAL

108

VISA MASTERCARD

MEMBERSHIP
I I I

)

Check enclosed (payable to: FORTH INTEREST GROUP)

SEE BELOW

Card # I C A RESIDENTS SALES TAX I I I I

10% MEMBER DISCOUNT

I

SUBTOTAL

Expiration Date

I
I

I

HANDLING FEE $2.00 1 1 I

I PAYMENT MUST ACCOMPANY ALL ORDERS I-.-J I
Signature

M E M B E R S H I P F E E

PRICES I POSTAGE & HANDLING
All orders must be oreoa~d Prlces are Prlces include shloolna A

MAIL ORDERS
Send to
Forth Interest Group
PO. Box 8231
San Jose. CA 95155

subject to change wlthout nottce Cred~t
card orders will be sent and billed at
current prlces $15 mlnlmum on charge
orders Checks lnust be In US$ drawn
on a US Bank A $locharge will be
added for returned checks

I

PHONE ORDERS
Call 4081277-0668 to place
cred~t card orders or for
customer servlce Hours:
Monday-Fr~day. 9am-5pm
PST

$2 00 handling fee 1s
requlred w ~ t h all orders

($15.00 minimum on charge orders)

SHIPPING TIME
Books In stock are sh~pped
w ~ t h ~ n f ~ v e days of recelpt
of the order Please allow
4-6 weeks for out-of-stock
books (dellvery In most
cases will bemuch sooner)

NEW n RENEWAL $30137143

SALES TAX
Dellverles to Alameda
Conha Costa San Mateo
Los Angeles Santa Cruz
and San Franclxo Counnes
add 6'/r% Santa Clara
County add 7% Oner
Calltornla countles add 6%

FORTH D~rnens ions 24 VolurneVIII . N o 4

Volume VIII. NO 4 25 FORTH D~menstons

h

S c r e e n # 1 3 S c r e e n # 1 4
\ Tables o f t y p e dependent f u n c t i o n s e l p 03sep85 \ TABLES o f t ype dependent f u n c t i o n s e l p 03sep85
6 CONSTANT ALPHA \ o f f s e t i n t o t a b l e s of t y p e dependent : SFORHAT t d -- adr u) DUP >R DABS,<# # 8 ASCII . HOLD liS
2 CONSTANT SINGLE ! f u n c t i o n s R:) SIGN #> ;
4 CONSTANT DOUBLE : T-TYPE (adr --1 FLD-WIDTH TYPE :
b CONSTANT SS : S-TYPE ! adr --) @ FLD-WIDTH .R ;
: FLD-TYPE (- -n l 'FIELD @ 4 + @ ; : D-TYPE (adr - -) 2@ FLD-WIDTH D.R ;
: TABLE : DOES: FLD-TYPE + e EXECUTE ; : $-TYPE (adr --) 2@ SFORHAT FLD-WIDTH DUF ROT -
: PAD)NUN (-- d) PAD 1- FLD-WIDTH OVER C! NUHBER ; SPACES TYPE ;
: T-! (adr --1 PAD SUAP FLD-UIDTH CHOVE ; TABLE DISPLAY T-TYPE S-TYPE D-TYPE S-TYPE ;
: S-! ! adr --) PAD>NUH DROP SWAP ! ;
: D-! (adr --) PADjNUN ROT 2! ;
TABLE (ENTER) T-! S-! D-! D-! ; \ s t o r e f i e l d e n t r y

S c r e e n # 15 S c r e e n # 1 6
TABLES con t ' d e l p 03sep85 \ FILE i n p u t words e l p 03sepB5

: T-COHPARE (a1 a? -- n) FLD-WIDTH SWAP -TEXT ; : DASHES (n --1 SPACE DUP O DO 95 EMIT LOOP O DO 8 ENIT
: S-COHPARE L a1 a? -- n) SWAP @ SWAP @ - ; LODP ; \ use f o r i n p u t prompt
: D-COHPARE (a1 a? -- n) -DOUBLE ; : INPUT QUERY BL TEXT ;
TRBLE COHPARE T-COHPARE S-COHPAHE D-COHPARE D-COHPBRE : : .PROMPT CR .FIELD-NAHE SPACE FLD-WIDTH DASHES ;

: ENTER \ prompts, accepts and s t o r e s f i e l d e n t r i e s
: GR.THAM COHPARE 0) : .PROHPT INPUT (ENTER) UPDATE :
: LS.THAN COHPARE O! ; ! Query words
: I S COHPARE O= ; : REMOVED? i r e c t -- ?? RECORD C@ ASCII * = :
: ISNT COHPARE ; : WARGS ! --n) count arguaents i n coarand l i n e
\ Record d i s p l a y words >IN @ O BEGIN BL WORD C@ WHILE 1+ REPEAT SWAP
: .FIELD-NAHE 'FIELD @ BODY; >NkHE .NAHE ASCII : EHIT : :IN ! ;
: .FIELD DISPLAY ; DOER . DISPLAY
: .LINE CR .FIELD-NAHE SPACE DISPLAY : DOER DELAY
: .RECORD FIELD-LIST @ BEGIN DUP 6 'DUP WHILE EXECUTE DOER HEADING

.LINE 2+ REPEAT DROP ;

S c r e e n # 1 7 S c r e e n # I S
\ F i l e m o d i f i c a t i o n words \ Query set-up words
: SIGNAL 7 EHIT CR COUNT TYPE .' i s n o t a v a l i d f i e l d ' ; 4 CONSTANT Q1 \ sax# query c o n d i t i o n s
: CHANGE VARIABLE #HITS i # o f r e c o r d s found by query

BEGIN CR ." Ente r name o f f i e l d t o be changed' CR QUERY Q# ARRAY LOGICALS
BL WORD FIND WHILE-NOT SIGNAL REPEAT EXECUTE ENTER : Oli ARRAY OPERANDS

: REHOVE Q# ARRAY CONDITIONS
ASCII t kDDRESS C! UPDATE -1 #ACTIVE +! UPDATE : : TARGETS HERE 200 + ;

: +TARGET i i - - I 30 * TARGETS + ;
: HODIFY : T-BRING i a - - 1 TEXT PAD SWAP FLD-WIDTH CMOVE ;

CR . " E n t e r C t o change o r R t o reaove r e c o r d " K E Y : 1-BRING i a --1 MORD NUHBER DROP SWAP ! ;
DUP ASCII C = I F DROP CHANGE ELSE ASCII R = : ?-BRING (a --I WORD NUHBER ROT 2 ! ;
I F RENOVE THEN THEN DELAY ; TABLE BRING T-BRING l-BRING ?-BRING 2-BRING ;

: GET-TARGET (i --) +TARGET BL BRING ;

S c r e e n # 19 S c r e e n # 20
\ QUERY words e l p O3sep85 \ QUERY words e l p 03sep85
: Q-ARRAYS (n --1 ['I NOTHING O LOGICALS ! : FIND \ end user query no rd

O DO I I F ' I LOGICALS ! THEN FROM
' DUP I OPERANDS ! >BODY 'FIELD ! IARGS 1+ 4 /HOD SMAP ABORTYncor rec t # o f arguaents"
' I CONDITIONS ! I GET-TARGET LOOP ; DUP D# , ABORTn i n c o r r e c t R o f arguaents"

: LOGIC (i --I LOGICALS B EXECUTE ; CR HEADING DUP Q-ARRAYS (FIND) ;
: OPERAND (i --1 OPERANDS @ EXECUTE ; \ usage: FIND EMPLOYEE DEPT I S PARTS AND HOURS GR.THAN 40
: CONDITION (i --) CONDITIONS B EXECUTE ; \ Other nords

: TARGET +TARGET ; : DONE? (-- t=no-nore=entr ies)
: FOUND1 (n -- f) O DO 1 OPERAND I TBRGET I CONDITION CR ." any sore? YtN " KEY DUP EnIT ASCII N = ;
I LOGIC LOOP ;

: FROH ' (f i i e n a r e) EXECUTE ;
: (FIND) (n --) 0 #HITS ! LASTREC Q 1+ 1

DO I REHOVED1 IF-NOT I RECt ! (n) DUP FOUND?
I F 1 #HITS t! CR .DISPLAY CR DELAY THEN THEN

LOOP DROP #HITS @ IF-NOT CR ." search f a i l e d ' THEN ;

S c r e e n # 21 S c r e e n # 22
\ FILE e n t r y no rds e l p 03sep85 \ D i s p l a y header
: NEWFILE FROH O #ACTIVE ! O LASTREC ! ;
: FREE (-- r e c #) LASTREC 4 1+ 1 DO I REHOVED? 'VARIABLE EXCERPTS 12 ALLOT \ p o i n t s t o f i e l d t o be d i sp layed

I F I LEAVE THEN LOOP ; : DASH-LINE CR 72 O DO ASCII - EMIT LOOP CR ;
: NEXTREC (-- re[#) LASTREC B #ACTIVE @ > : .HEADER EXCERPTS BEGIN DUP @ ?DUP UHILE DUP !BODY

I F FREE REC# ! ADDRESS REC-LEN BL F ILL UPDATE 'FIELD ! BODY: >MAE DUP .NAME C@ 31 AND FLD-WIDTH
ELSE LASTREC DUP Q 1+ DUP READ SWAP ! UPDATE THEN ; SWAP - ABS 1+ SPACES ?+ REPEAT DROP DASH-LINE CR ;

: WRITE
FIELD-LIST B BEGIN DUP B ?DUP WHILE EXECUTE ENTER 2+
REPEAT DROP ;

: 3DOWN CR CR CR ; : SPREAD FLD-TYPE I F 'FIELD @ BODY> >NAflE C@ 31 AND
: ENTRY #ARES 1 0 ABORT" needs f i l ename " FROM FLD-WIDTH SWAP - ABS FLD-WIDTH + SPACES ELSE 2 SPACES

BEGIN CLEARSCREEN 3DOWN NEXTREC WRITE 1 #ACTIVE + ! THEM ;
UPDATE 3DOWN DONE? UNTIL
SAVE-BUFFERS ;

S c r e e n # 23 S c r e e n # 24
\ f i l e d i s p l a y words e l p l2sep85 ? A p p l i c a t i o n f i l e and f i e l d d e f i n i t i o n s
: .EXCERPTS EXCERPTS BEGIN DUP @ 1DUP WHILE EXECUTE

.FIELD SPREAD 2+ REPEAT DROP ; b4 !0O 50 FILE EHPLOYEES
: SELECT \ usage: SELECT <f i l e n a a e j (f i e l d l i . . .(f i e l d n)

FROM EXCERPTS RARGS DUP 5) ABORTVoo many V RLPHA 1 20 FIELD NRHE
DO ' OVER ! ?+ LOOP 0 SNAP ! HAKE DELAY NOOP ;AND $0 21 b FIELD HOURLY-RATE
HAKE .DISPLAY .EXCERPTS ; AND MAKE HEADING .HEADER ; SINGLE 25 2 FIELD HOURS

: FIELDS \ usage: f i l ename n FIELDS f i e l d 1 f i e l d ? f i e l d 3 ALPHA 27 b FIELD DEFT
HERE SWAP 0 DO ' , LOOP O , FIELD-LIST ! ;

: .MSSG CR . " RETURN t o q u i t ESC t o r o d i f y Y R EYPLOYEES 4 FIELDS NAME HOURLY-RATE HOURS DEFT
. h a y key t o c o n t i n u e V R ;

: STEP HAKE DELAY .HSSG KEY DUP 27 = I F DROP HODIFY
ELSE 13 = I F CR . " q u e r y abor ted VBORT THEN THEN
;AND HAKE .DISPLAY .RECORD :AND HAKE HEADING NOTHING :

STEP \ d e f a u l t d i s p l a y rode

FORTH Dimensions 26 volume vIII. NO. 4

record has been deleted. If it hasn't, it
is checked to see if it matches the
conditions specified in the query com-
mand line.

FIND End-user query word. Checks to
see if an incorrect number of
arguments has been entered in the
query command line.

NEXTREC If the number of active
records is less than LASTREC, the first
deleted record (found by FREE) is used
for the next entry. If there are no
deleted records, the file is extended one
more record.

WRITE Goes through the list of fields
for the current file, prompting and
accepting entries.

ENTRY A generic entry word for all
files defined by FILE. The fields must be
included in the field list (FIELDS).

EXCERPTS Address of start of the list
of fields chosen by SELECT to be dis-
played.

Across
1. A process control language
5 . What a computer does
8. Pertaining to metal men

10. Changes in the flow of a program

Down
2. What a bad program should do:

abbr.
3. Liked by squirrels
4. Remove solid H20
6. Programmers in a frenzy
7. Type of transistor
9. Measure of resistance

Across
5. Exchange
6. Average
8. Make bigger
9. Indicates an address

11. Not odd
12. A computer noise

Down
1 . Creates machine code
2. What a programmer never

wants to do
3. Give out
4. What stops the processor
7. Character -----
9. Look at memory location

10. Layer

(Answers on page 31 .)

NGS FORTH
A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMHTTER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE :

e79 STANDARD

.DIRECT 1/0 ACCESS

.FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

mENVIRONMENT SAVE
& LOAD

.MCTLTI0SEGMENTED FOR
LARGE APPLICATIONS

.EXTENDED ADDRESSING

.MEMORY ALLI3CATION
CONFIGURABIIE ON-LINE

.AUTO U A D SCREEN BOOT

.LINE & SCREEN EDITORS

.DECOMPILER AND
DEBUGGING AIDS

*8 08 8 ASSEMBLER

.GRAPHICS & SOUND

.NGS EmHANCEMENTS

mDETAImD MANUAL

.INEXPENSIVE UPGRADES

A CDMPLETE F O R T H
DECtEWBfENT SYSTEM.

PRICES START AT $ 7 0 1
NEW--150 & EP-110
VERSIONS AVAILABLE

NEXT GENERATION SYSTEM8
PoO.BOX 2987
BANTA CLARA, CAo 95055
(4 0 8) 241-5909

Volume VIII. NO. 4 27 FORTH Dimens~ons

A Forth Standard?
Glen B. Haydon

La Honda, California

What is a standard language? Natu-
ral languages evolve. Only after a word
is used with a specific meaning for a
period of time do dictionary editors
consider including it. Many words have
multiple meanings. Many definitions
include examples of their use. Some
words become obsolete or archaic.
Languages are dynamic. They cannot
be set in concrete. There is no such
thing as "standard language." Dic-
tionaries only record current usage.

Forth does not differ from any other
language. It is evolving. That is the
way Charles Moore designed it. He
changed his kernel and application
utilities almost daily. Many of you are
aware that he includes a meta-compiler
with most of his applications so he can
easily recompile his kernel. It will be
interesting to see what direction he
takes now that he has cast his kernel in
the Novix 4000 chip.

Before going any further, I would
like to make a distinction between a
kernel and a functional language. The
Forth kernel is, in essence, the emula-
tion of a hardware processor. The
Novix 4000 is the implementation of a
kernel in hardware. On the other hand,
Forth as a functional language is built
upon a kernel. It utilizes its exten-
sibility to develop an operating system,
compiler directives and utilities to solve
problems. The functional language is
a bridge between application require-
ments and the kernel. The beauty of
Forth is the ease with which the neces-
sary and sufficient functions can be
added to a kernel.

The kernel usually includes between
sixty and seventy hardware-related
functions. There is little problem iden-
tifying these, but in actual hardware it
has becomes obvious that some of the
emulated functions are not optimal.
Some of the problems were not an-
ticipated by anyone.

The best example of a problem is the
DO LOOP structure. The original fig-
FORTH implementation requires a
range in reverse order. What did the
emulation do when a range crossed the

boundary of a signed number? Con-
siderable error checking was added to
the LOOP function in the 79-Standard
definition. This proved to be a real
boat anchor for speed nuts. This prob-
lem was addressed again in the
83-Standard and was improved. In the
Novix 4000 the function was replaced
by FOR NEXT. This function takes a
count and decrements it to zero. The
hardware requirements for speed dic-
tated that a count-down register would
work better and faster. Now the
higher-level DO LOOP function becomes
a part of the functional language, if it
is going to be used. So the language
changes.

With any Forth kernel, in hardware
or emulated, it is an easy job to imple-
ment any desired dialect of functional
Forth. Each vendor has his own idea of
what should be included and what
should be excluded. Each vendor pro-
vides a slightly different dialect of
Forth. Most vendors make their kernel
and the basic part of their functional
Forth proprietary.

Let us review the public-domain ver-
sions of the primitive Forth functions.
I started with the first public-domain
version readily available - the fig-
FORTH Model. The installation man-
ual provided a verbal definition, and
the several implementations clarified
any possible misunderstandings. The
system worked well. I did a moderate
amount of programming with it.

Then came the 79-Standard. This
was the result of about twenty Forth
programmers who addressed some of
the "problems" of the fig-FORTH
Model. They did several things.

First, they changed the functional
definitions for forty words previously
defined in the fig-FORTH Model.
Some of the changes were simply the
use of an alias for the same function.
Other changes were of a minor nature.
The improvement to the compiler dir-
ective CREATE DOES> was perhaps the
most significant. The ability to write
special compiler directives as part of an
application program is unique to Forth
among computer languages.

Second, the 79-Standard went be-
yond these functional changes. It in-

cluded a list of additional "Require-
ments" for any program adhering to
the 79-Standard. In the Standard pub-
lication under Section 8, "Use":

"A Forth Standard program may
reference only the definitions of the
Required Word Set, and definitions
which are subsequently defined in
terms of these words . . . "

This is patently ridiculous. At the
November 1981 FORML Conference, I
had an implementation of Forth which
contained only the 148 words in the
required word set. None of the mem-
bers of the Standards Team who were
there could do anything with the pro-
gram. No vendor I know of has built a
product in complete conformity with
the restrictions imposed by the
79-Standard document.

About this same time, Robert L.
Smith released and copyrighted a
Forth-79 Standard Conversion. This
publication consisted of a series of
screens which could be loaded on a fig-
FORTH Model. They would redefine
the necessary forty words in the re-
quired word set. He admonishes the
user to meet the other requirements of
the 79-Standard.

Instead of conversion screens, I
modified the compiler source code for
the fig-FORTH Model to conform
with the 79-Standard Required Word
Set and made the additional functions
required for a headerless operating
system. This was a simple matter of
changing a flag for the cross-compiler.
I must acknowledge the efforts of Jerry
Boutelle, who adapted his cross-com-
piler for the job and added many of the
features. In a period of months two
revisions were made. The resulting
MVP-FORTH has remained stable for
four years! The glossary All About
Forth provides a reference to the com-
mon functions in public-domain im-
plementations of FORTH up to that
time.

Added to the MVP-FORTH kernel
are a number of utilities and some
supplemental definitions that will make
this functional Forth almost completely
compatible with Leo Brodie's Starting
Forth. The differences are related to his
use of a proprietary product (poly-

FORTH Dimensions 28 Volume~l l l . NO. 4

FORTH) which was supposed to be
79-Standard. Alan Winfield's The
Complete Forth provides an excellent
alternative tutorial.

Copyright protection of software is a
continuing problem. The spirit of fig-
FORTH was to put all of the source
code and documentation in the public
domain, asking only for appropriate
acknowledgment. MVP-FORTH adop-
ted the same spirit and placed all of the
basic source code and documentation
in the public domain. The contents of
Volume 1 in the MVP-FORTH Series,
All About Forth, are released without
restrictions. Each entry includes a
functional definition, indicates the
source, an implementation, the usage
in the MVP-FORTH kernel, an ex-
ample with a note and a general com-
ment. The general comment includes
known differences in function among
dialects.

As an interesting aside concerning
the significance of copyrights, we had
some correspondence with the publish-
er of Starting Forth. They claimed they
had a copyright on all of the functional
definitions included in their book.
They claimed we could not include any
of their functional definitions in All
About Forth. I made an exhaustive
study of prior functional definitions of
the same words and was able to cite at
least one prior definition for each
word. Some of those prior definitions
were also copyrighted and the publish-
er had failed to secure a proper release.
So much for copyrights.

Other vendors approached the
79-Standard in various ways.
Generally, their documentation has
been excellent. I have always felt that
the more implementations of Forth
there are available, the more Forth will
be used. By the time these products
were on the market, the Standards
Team was at it again and came out with
the 83-Standard. In my opinion, this
was a great disservice t o the
advancement of Forth.

When the 83-Standard was first
available, I made a very careful com-
parison of the new functional defini-
tions of the Required Word Set with
those in the 79-Standard. The number
of required words was reduced from
148 to 132. All but five had some

change in the functional definitions.
No implementations were included as
in the original Model. In
fact, some of the adopted functions
had never been tested by the team.

In fairness to the members of the
Standards %am, they are a dedicated
group whose sole objective has been to
improve and advance Forth. Many of
the changes I found were simply at-
tempts to clarify the wording of the
previous standard.

However, they saw fit to change the
functional definition of some words
without changing the names. PICK and
ROLL are examples. They required that
the value on the stack be decreased by
one from the value according to the
79-Standard. Thus:

: ROT 3 ROLL ; (79-Standard)
: ROT 2 ROLL ; (83-Standard)

When you know of this incompat-
ibility, it is easy to go through your
code and change all the values to make
it function. But I can see no improve-
ment. Once a convention is adopted,
stay with it.

I have no inclination to go through
such a careful comparison again. Most
of the changes made little difference.
However, as has been observed by
members of the Standards Team, most
people don't do floored division. Forth
has enough problems as it is. Why add
to them with obscure changes? Forth
needs stability.

In addition to the changes in the
Required Word Set, similiar require-
ments to those cited above in the
79-Standard are included in the 1983
document. There is no way to verify
the compliance of the many systems
purporting now to be 83-Standard.

In the best spirit of Forth, Laxen and
Perry have done an implementation of
Forth which has become known as F83.
It is unfortunate that this has been
assumed to be the 83-Standard. It goes
far beyond the 83-Standard. It in-
cludes nearly 1200 words, and contains
many excellent examples of problem
solving with Forth. They provide full
source code and shadow screens to
assist the user. Unfortunately, there is

DASH, FlND
6; ASSOCIATES

Our company, DASH, F l N D & ASSOCIATES.

1s in the busmess of placing FORTH Program-

mers in positions suited to their capab~lities.

We deal only wilh FORTH Programmers

and companies uslng FORTH. I f you would

like to have your resum6 included in our

data base, or i f you are looking for a

FORTH Programmer, contact us or

send your resume to.

DASH, FIND & ASSOCIATES

BOP Dalworth. Suite B
Grand Prairie TX 75050

(214) 642-5495 m
Committed to Excellence

VolumeVIII. No. 4 29 FORTH Dimens~ons

p.lFH
L

FIG-FORTH tor the Compaq,
IBM-PC, and compatibles. $35
Operates under DOS 2.0 or later.
uses standard DOS files.
FulCscreen editor uses 16 x 64
format.
Editor Help screen can be called
up using a single keystroke.
Source included tor the editor
and other utilities.
Save capability allows storing
Forth with all currently defined
words onto disk as a .COM file.
Definitions are provided to allow
beginners to use Starting Forth
as an introductory text.
Source code is available as an
option. add 520.

Async Line Monitor
Use Compaq to capture,

display, search, print, and
save async data at 75-19.2k

baud. Menu driven with
extensive Help. Requires two
async ports. $300

A Metacompiler on a
host PC, produces a PROM

for a target 630316803
lncludes source for 6303

FIG-Forth. Application code
can be Metacompiled with
Forth to produce a target

application PROM $280
FIG-Forth in a 2764 PROM
for the 6303 as produced by

the above Metacompiler.
Includes a 6 screen RAM-Disk
for stand-alone operation. $45
An all CMOS processor

board utilizing the 6303.
Size: 3.93 x 6.75 inches.
Uses 1 1-25 volts at 12ma,
plus current required for

options. $210 - $280
Up to 24kb memory: 2 kb to
16kb RAM, 8k PROM contains
Forth. Battery backup of RAM
with off board battery.
Serial port and up to 40 pins of
parallet VO.
Processor buss available at
optional header to allow expanded
capability via user provided
interface board.

Micro Computer
Applications Ltd

8 Newfield Lane
Newtown, CT 06470

20342661 64
FoniQlad.n.ddS5~ngmdhndling.

bnnmullwiduaB.ddulwux.
2

no tutorial such as Starting Forth to go
along with it. Every Forth programmer
should be familiar with the many tech-
niques these master Forth program-
mers have used.

Among the vendors, Laboratory Mic-
rosystems, Inc. has a version which is
supposed to comply with the 83-Stand-
ard. After finishing his implementation,
Ray Duncan wrote a most interesting
commentary on the 83-Standard which
was published in Dr. Dobb's Journal.
Other vendors have also implemented
what they call 83-Standard Forth.
Each of the vendors has excellent
documentation for its particular im-
plementation. A variety of other books
on Forth are gradually appearing. Each
i: based on a specific Forth dialect,
many of which are proprietary and
copyrighted. However, many of the
examples and ideas are portable to
other Forth dialects with minimal ef-
fort. These books are a great help to
the intermediate Forth programmer.

Already, some members of the Stan-
dards Team are soliciting suggestions
for an 87-Standard. It is hoped that
the FORML Conference this year will
be able to address some of these recom-
mendations.

I would humbly urge those interested
in promoting the careful evolution of
Forth to take a lesson from the phar-
maceutical industry. Only after years
in the chemical laboratory and more
years of animal testing, are new drugs
released for clinical trials. Only after
all of the testing and trials have proven
satisfactory are drugs finally released
for general clinical use.

The Forth Modification Laboratory,
FORML, is a fitting place for the
laboratory development of modifica-
tions. The modifications should first

There is a recurring question of stan-
dard libraries. If people would publish
their techniques, they could be adapted
into most Forth dialects. But there is a
reservation on the part of many auth-
ors. They want to have some return
from all of their efforts. It is only
reasonable that they be rewarded for
their efforts.

Mountain View Press has found a
partial answer to the problem. Namely,
though some of their nine volumes are
copyrighted, the contents are released
for non-commercial use. At least the
user can learn from the examples. It is
highly likely that he will want to redo
any algorithm in his dialect for his own
application. Certainly it is not reason-
able to let others reprint a book for
profit as has been done with Volume 1
of the MVP-FORTH Series.

The current edition of Volume 3 in
the MVP-FORTH Series is an example
of the evolution of such thinking. The
original text was written more than
four years ago, and has been actively
used since then. In 1985, author Phil
Koopman agreed to a restricted copy-
right releasing it for non-commercial
use. Each entry is modeled on All
About Forth and includes a functional
definition, a high-level Forth imple-
mentation, an example with a note and
a comment.

The local fig-FORTH community
still objected: they could not use it
because of the copyright, as open as it
was. Some in the community have
copyrighted their work and made no
concessions to non-commercial use.
This year, Phil Koopman released his
work from copyright, with no restric-
tions. I hope more Forth authors will
see fit to follow his example.

be tried in the laboratory. Favorable To argue Forth standards is
results from such work should be sub- for those who have nothing better to
mitted to clinical trial in the hands of do. Let Forth evolve like any natural
vendors' Only by acceptance On the language. Unlike other programming
part of vendors should changes to a languages, it is easy to start over and
standard be adopted. But then it will meta-compile a new kernel. It is easy to not really be necessary: the modifica- build a new functional system.
tions will have evolved into the com-
mon base of the functional Forth Keep the FORML work active in
language. The standard will be estab- the background. Encourage regional
lished by common usage. FORML workshops. As modern micro-

FORTH Dimens~ons 30 VolumeVIII. No. 4

computers are becoming more power-
ful, something more than sixteen-bit
address space is needed. How to incor-
porate this new hardware into the lan-
guage presents several alternatives.
None of the existing public-domain im-
plementations address this problem.
The existing standards are simply not

~mpatible with thirty-two-bit stacks.

Don't let the existing standards be an
albatross to the language.

We have an urgent need for a stable
language for beginners, for the man-
agement team entering new projects
and for administrators new to the lan-
guage. Let common usage provide a
dynamic standard to meet the evolving
needs. Let everyone participate.

Index to Advertisers

Bryte - 6
Computer Cowboys - 7
Dash, Find & Associates - 29
Forth, Inc. - 19
Forth Interest Group - 11, 21-24, 44
Harvard Softworks - 35
Insite Computing - 38
Institute for Applied Forth Research - 12
Laboratory Microsystems - 8
MCA - 30

MicroMotion - 36
Miller Microcomputer Services - 33
Mountain View Press - 31
New Micros - 16
Next Generation Systems - 27
Palo Alto Shipping Company - 4
Software Composers - 2
SOTA - 15
Talbot Microsystems - 14
UBZ Software - 32

FORTH
The computer

language for
increased. . .

EFFICIENCY
reduced.. . . .

MEMORY
higher.

SPEED
MVP-FORTH
SOFTWARE

Stable.. .Transportable.. .
Public Domain.. .Tools

MVP-FORTH
PROGRAMMER'S KIT

for IBM, Apple, CP/M,
MS/DOS, Amiga, Macintosh
and others. Specify computer.

$1 75
MVP-FORTH PADS,

a Professional Application
Development System. Specify

computer.
$500

MVP-FORTH EXPERT-2
SYSTEM

for learning and developing
knowledge based programs.

$100

Word/Kalc,
a word processor and

calculator system for IBM.
$1 50

Largest selection of FORTH
books: manuals, source listings,
software, development systems

and expert systems.

Credit Card Order Number:
800-321 -41 03

(In California 800-468-41 03)

Send for your
FREE

FORTH
CATALOG

MOUNTAIN VIEW
PRESS

PO BOX 4656
Mountain View, CA 94040

Volume VIII, No. 4 31 FORTH D~mens~ons

UBZ FORTH"
&4%&A*"

L I

* FORTH-83
com pati ble

*32 bit stack
* Multi-tasking
*Separate headers
*Full screen editor
*Assembler
*Amiga DOS support
*Intuition support
*ROM kernel support
*Graphics and sound

support
*Complete

documentation
*Assembler source

code included
*Monthly newsletter

1

$85
Shipping included
in continental U.S.
(Ga. residents add sales tax)

UBB&zz
(404)-948-4654

(call anytime)
or send check or money order to:

uez s*
395 St. Albans Court
Mableton, Ga. 30059

1

'Amiga is a trademark for
Commodore Computer. UBZ FORTH
is a trademark for UBZ Software.

(Continued from page 16.)
properly. STREAM-PROCESSOR: could
also be used to implement the function
of character translation by defining a
character-parsing child. Other possibil-
ities include a string search function
for source screens. Implementing all
these functions is made simpler and
clearer through the added functionality
afforded by a well-decomposed Forth
kernel.

I (- - I
192 STATE !

' COMPILE-WORD

CFA PROCESSWORD' 1 ;

: I (- - I
0 STATE !

' INTERPRET-WORD

CFA PROCESSWORD' 1 ; IMMEDIATE
Finally, the Forth functions normal-

ly performed by QUIT and INTERPRET
can be easily constructed as a single The dictionary look-up words shown definition:

in Listing One also make effective use : INTERPRET
of dual-CFA decomposition: the fail- ICoMPILEl
ure-mode processing is factored into a
child definition. which inherits a dic- RP!

tionary look-up function from the
parent. So one word, the child defini-
tion, integrates and binds two related
behaviors. While the child represents
efficient factoring, the parent suggests
a related family of words.

As shown in Listing One, the child-
ren of FAILING-WOKUP: are ?COMPILE-
NUMBER; and ?INTERPRET-NUMBER;.
Both of these words represent incre-
mental progress toward their parent
functions, COMPILE-WORD and INTER-
PRET-WORD. Note also that these string-
handling functions need not be ex-
panded any further to produce a work-
able system (as will be shown). To
expand them any further would pro-
duce undesirable crossover into the
domains of other families of words.

As defined in Listing One, STREAM-
PROCESSOR: actually combines three
behaviors into each of its children. The
parsing loop is inherited by the child-
ren, but it also contains a vectored
execution that specifies the processing
after each word is parsed. The child
merely specifies the version of WORD to
be used within the shared word-parsing
loop. (See TIB-PROCESS, BLK-PROCESS,
TlB-WORD and BWCK-WORD.)

The flexibility needed to switch from
compiling a word to interpreting a
word at run time (and vice versa) re-
quires the use of a vector. The left and
right bracket definitions must reinit-
ialize the vector. Since the brackets
may occur amidst an input stream, the
action of the children of STREAM-PRO
CESSOR: is also variable midstream. To
expand Listing One to include bracket
definitions, you could use:

CR QUERY TIB-PROCESS

STATE @ O = IF

." OK" THEN

AGAIN ;

Early Impressions
The relative newness of dual-CFA

decomposition has not prevented me
from forming opinions regarding its
most suitable use.

I have some reservations about the
implementation of deferred definitions
(DEFER:). I prefer to see a closer rela-
tionship between the two functions
bound together through dual-CFA de-
composition. In DEFER:, the parent
definition provides a compiler-extend-
ing behavior and the child definition
forward references to an arbitrary
function.

1 favor FAILING-NUMBER: and
FAILING-LOOKUP: as examples of how
dual-CFA decomposition techniques
should be applied. I appreciate how
closely united the parent and child
definitions are: the parent look-up
function is made more specific by the
failure mode processing provided by
the child. In actual use, the child refers
to both functions as if they were a
single, undecomposed function. Yet
because they are decomposed, you are
free to define new children without
restating the parent function.

The demystification of Forth would
be a welcome by-product of a more
clearly and more fully decomposed
kernel, if one should ever find its way
into widespread use. Some evidence of
this can already be seen in Listing One:
(1) The end-of-input-stream detection
function is within the parent stream-

FORTH Dimensions 32 Volume VIII, NO. 4

processing function, not hidden in a
definition of NULL. (2) The STATE
variable is less central to one's com-
prehension of Forth - the interpret
and compile functions are explicitly
separate, even though they still share a
common word-parsing loop. (3) Words
that manipulate input streams are more
easily distinguished from words that
perform interpreting or compiling ac-
tions.

On the other hand, programming
became more difficult than before. The
program code in Listing One required
subtle but definite changes in my pro-
gramming style. Many times, I had to
abandon a particular approach in
search of something more intuitively
obvious. However, the development
process did fine tune my perception of
the problem along functional lines.

The functional areas of concern
required clearer identification at the
outset. Next. each of these functional
areas had to be well decomposed.
Finally, refinements were made so that
the stack effects of all functionally
related subsets of words belonging to a
particular family remained consistent.
The comment header shown in Listing
One also helped.

creasing the ease with which Forth
source code can be read and under-
stood.

(2) Increased emphasis on more
complete decomposition, resulting in a
richer programming environment and
increased productivity.

(3) Decreased likelihood of program-
ming error and system crashes, through
elimination of many environmentally
dependent behaviors.

(4) Decreased need for passing flag
parameters on the stack, as well as a
corresponding decrease in the number
of condit ional-behavior words
(control-flow constructs such as IF
THEN now are factorable and need
appear only once per function - even
if the function is decomposed).

Throughout development, a contin-
ual effort was necessary to prevent
subsets of words from wandering into
the domain bf another family of
words. I cannot overemphasize the
point that this kind of programming
demands a clearer delineation of defin-
itions along functional lines. Hybrid
words must be acknowledged before
useful dual-CFA decompositions can
be found (such as the effort surround-
ing WORD).

Conclusions

The examples shown of dual-CFA
decomposition have helped illustrate
some of the advantages possible with
this methodology (see ITERATOR:' as
well). A summary of the advantages
includes:

(5) Increased memory compactness
for compiled applications.

Also, modern innovations associated
with new programming languages or
operating systems may be more easily
implemented. Examples might include
object-oriented modules, relocatable
modules and "piping" capabilities for
stream-processing modules. These
areas are generating more and more
interest lately. Dual-CFA decomposi-
tions can bring each of these areas of
programming interest within closer
reach.

Someday, perhaps, the Forth dic-
tionary will be mostly a library of
forms2 or general algorithms, from
which a programmer compiles more
specific instances of each algorithm to
accomplish a particular task. If this
happens, each issue of Forth Dimen-
sions may include many practical ap-
plications. Each would be derived
easily using provisions already includ-
ed in the Forth dictionary.

References

1. Elola, Mike. "Dual-CFA Defini-
tions," part one, Forth Dimensions
VIII/2.

(1) Better organized definitions, par- 2. Luoto, Kurt. "Procedural Argu-
ticularly along functional lines, in- ments," Forth Dimensions V1/2.

FORTH Dimens~ons Volume VIII, NO. 4 33

Windows for the TI 9914A
Blair MacDermid

Fort Wayne, Indiana

The Forth routines described here
provide plotting of algebraic functions
in a choice of five windows located in
different positions of the display screen.
These windows can be displayed simul-
taneously. Four of the windows can be
located in the four quadrants of the
display screen. The fifth window oc-
cupies most of the full screen. The
program computes the coordinates of
the plotted function, appropriately
scaled to fit within the selected window.

These routines are a by-product of
the group project undertaken as a
learning exercise by members of the
Fort Wayne FIG Chapter. The primary
objective of the exercise was to allow
the group members to participate in
development of a useful Forth pro-
gram, with efforts partitioned among
members according to their skills. The
simpler elements of the program were
assigned to beginners. We also hoped
to learn how well Forth would serve in
a multiple-programmer task.

Ed Harmon, the chapter's guru,
selected the ACM SIGGRAPH CORE
Standard as a useful tool. He urovided
us with a model written in thk UCSD
p-System Pascal (see the Journal of
Pascal, Ada, Modula-2, May/June
1984, page 19). Ron Bishop, president
of the local TI 99/4A Users Group,
completed the program using thirty
screens and integer arithmetic. That
implementation provides the freedom
to locate and define the size of a
number of viewports (i.e., windows) to
be displayed simultaneously. The size
and locat ion a r e continuously
adjustable.

Here 1 have defined a simpler ver-
sion of the program, using only six
screens. It does not provide the degree
of freedom intended to be part of the
ACM standard. However, it provides a
useful choice of window locations and
sizes. The program exploits the excel-
lent graphics capabilities of the TI
99/4A using the SPLIT2 mode and the
TI-FORTH words DOT and LINE, as
well as the TI 99/4A's floating-point
routines (which I used to plot functions

that contain the transcendental func-
tions, e.g., sine, tangent, logarithm).

It will be useful to refer to the Forth
screens 30-35 in the discussion that
follows. These screens provide a useful
utility but can readily be modified and
expanded to include different elements
of the Pascal model of the full ACM
SIGGRAPH CORE Standard.

Screen 30

Lines 1-9 define the required vari-
ables. The variables associated with the
horizontal axis use X, as is common
practice. XMlN and XMAX represent the
minimum and maximum values of the
real-world function to be plotted. VL
and VR represent the left- and right-
hand viewport coordinates in pixels,
referenced to the TI screen display.
Similarly, V B ~ T and ~ O P represent the
bottom and top coordinates of the
viewport.

The function Y = f(X) is computed
using X as the independent variable in
the world coordinates. XD is the cor-
responding variable referenced to the
display screen coordinates. Similarly,
YDB represents the display screen coor-
dinate corresponding to Y of the world
coordinates.

The variable YDB warrants further
explanation. The TI 99/4A screen dis-
play uses coordinates that reference the
upper left-hand corner of the screen as
the 0,O point. 1 found this confusing,
since it is normal to use the lower left-
hand corner as the origin when plotting
functions. So I invented YDB to allow
me to readily handle the necessary
mathematics. Subsequently, when spec-
ifying the coordinates to be plotted on
the screen, I use the constant r r ~ o equal
to 191 (see screen 3 1, line 2 and screen
35, line 5) to make the necessary cor-
rections for the TI 99/4A screen coor-
dinates. This is justified by the follow-
ing relation:

(TI'S Y)+YDB = r r lo = 191
Therefore,
(TI'S Y) = Y T I O - YDB

The variables KX and KY are scaling
factors modifying the world coordinate

variables to fit the selected viewport
dimensions.

The variable YDBARA is an array to
store 200 computed values of YDB. The
TI 99/4A shares some of its display
facilities with the floating-point rou-
tines; to avoid any difficulty in this
regard, I chose to compute the values
of the plotted function (see screen 34)
before using the screen to display the
function (see screen 35).

All of the variables discussed above
represent integer values. This assumes
that the selected minimum and maxi-
mum world coordinate variables will
be integer values, the normal thing to
do. Certain of these variables will
require floating-point representatives
in the computation routine of screen
34. These variables have been prefixed
with an F as in FX, FKX and FKY.

The words KXCALC and KYcALC
specify the computation of the scaling
factors KX and KY, as well as the
floating-point equivalents FKX and FKY.
It may be helpful to display the mathe-
matical definitions of these variables:

TI-FORTH uses the word s->F to
convert integer values to floating point.

Screen 31

This screen contains the definition of
the viewport size and location. The
word PICKPORT selects the viewport
corresponding to the number (one
through five) placed on the stack
before executing the word. The num-
bers one through four select a view-
port, size 100x50 pixels high, at loca-
tions in any of the four quadrants of
the display screen. A value of five
selects the largest viewport, 200x100,
occupying most of the available screen
display. There is sufficient space to
allow a height of 190 pixels; however,
it is easier to interpolate values of Y
with the height of 100 pixels. Of
course, other viewport dimensions and
locations can readily be specified by
substituting different numbers. (I find

FORTH Dlmens~ons 34 Volume VIII. No. 4

Full screen
256x192

Port 5
with C3

sinr/x

ort 2

'

WORKING!!!

I Scale: 16 pixels

I f 32-pixel reglon for
four lines of text
in SPLIT2 mode

0 5 x 5 I2
wlth GRlD

the word PP useful in exercising the verted to integer by the word F->S (a
program, since it relieves me of the single-precision integer value in two
need to type PICKPORT, whose length is bytes). The word CY is my convenient
dictated by the desire to write readable macro for ARAYDB.
code.) The DO LOOP increments the current
Screen 32 value of XD by one pixel from VL to VR.

The words YLINES and XLlNEs use
TI-FORTH's LlNE to draw vertical and
horizontal lines at useful increments.
The word GRID uses these words to
superimpose on the viewport a grid to
expedite interpolation of values of the
displayed function. The words xo and
YO are abbreviated versions of the words
locating 0 axes for both X and Y.

Screen 33
The words Cl , c 2 and c 3 specify

different parameters for the world
coordinates of the function to be plot-
ted. The word FUNCTION specifies the
function to be plotted, in this case
sinx/x, defining the Fourier spectrum
of the rectangular pulse waveform.
Sufficient space is available on this
screen to substitute another definition
of the word FUNCTION. Notice, how-
ever, that the definition must use
floating-point representation.

Screen 34
The word ARAYDB specifies the com-

putation of the values stored by YDB in
the array YDBARA. It also causes the
word WORKING!!! to be displayed on thc
screen so that the user will not assume
his computer has contracted amnesia
while executing the calculations. Note
that lines 2-5 perform calculations in
integer arithmetic, and the results are
converted to floating point by line 6 .
Line 8 contains the word FUNCTION,
and the resulting computation is con-

Lines 3-4 compute the corresponding
value of the world coordinates. This
value is converted to floating point and
is divided by the floating-point repre-
sentative of the scaling factor FKX. The
result is placed on the stack, and a copy
is stored in FX where it can be used in
more complicated functions requiring
different powers and functions of X.

The computed value of FUNCTION is
multiplied by the scaling factor FKY to
define the corresponding value YDB for
the display screen. The resulting com-
putation for each increment in XD
produced by the DO LOOP is stored in
the array YDBARA.

Screen 35
The word P L o n uses another loop to

increment XD in one-pixel increments
and selects the appropriate element of
the array YDBARA to plot the function
on the screen using the TI-FORTH
word DOT. (PY is my macro for initiat-
ing the plotting routine.)

Final Notes
The definitions used assume the

SPLIT2 graphics mode if the TI 99/4A
is used. TI-FORTH is a fig-FORTH
extension, but the words DOT and LlNE
are probably machine dependent. How-
ever, it is reasonable to assume the
screens could be modified to work on a
different Forth implementation. Both
the Apple 11 and the IBM-PC have
graphics capabilities providing pixel
resolution.

f 3
COMBINE THE

RAW POWER OF FORTH
WITH THE CONVENIENCE

OF CONVENTIONAL LANGUAGES

"%oRTH
Why HS/FORTH? Not for speed
alone, although it is twice as fast as
other full memory Forths, with near
assembly language performance
when optimized. Not even because
it gives MANY more functions per
byte than any other Forth. Not be-
cause you can run all DOS com-
mands plus COM and EXE programs
from within HS/FORTH. Not be-
cause you can singlestep, trace, de-
compile & dissassemble. Not forthe
complete syntax checking 8086/
8087/80186 assembler & optimizer.
Nor forthe fast 9 digit softwarefloat-
ing point or lightning 18 digit 8087
math pack. Not for the half mega-
byte LINEAR address space for
quick access arrays. Not for com-
plete music, sound effects &graph-
ics support. Nor the efficient string
functions. Not for unrivaled disk flex-
ibility - including traditional Forth
screens (sectored or in files) or free
format files, all with full screen edi-
tors. Not even because I/O is as
easy, but far more powerful, than
even Basic. Just redirect the charac-
ter input and/ or output stream any-
where - display, keyboard, printer
or com port, file, or even a memory
buffer. You could even transfer con-
trol of your entire computer to a
terminal thousands of miles away
with a simple >COM <COM pair.
Even though a few of these reasons
might be sufficient, the real reason
is that we don't avoid the objections
to Forth - WE ELIMINATE THEM!
Public domain products may be
cheap; but your time isn't. Don't
shortchange yourself. Use the best.
Use it now!

HS/FORTH, completesystem: $395.
with "FORTH: A Text & Reference"
by Kelly and Spies, Prentice-Hall
and "The HS/FORTH Supplement"
by Kelly and Callahan

Visa Mastercard

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390
\ J

Volume VIII. No. 4 35 FORTH Dimens~ons

PORTABLE
POWER
WITH

Dl Whether you program
on the Macintosh, the
IBM PC, an Apple II ser- k- ies, a CP/M system, or the

Commodore 64, your ,, - -
program will run un- , -
changed on all the rest. ===" T~

(0
If you write for yourself,
MasterFORTH will protect
your investment. If you write

TM for others, it will expand your
marketplace.

Forth IS ~nteractive -
you have immediate feed-
back as you program, every
step of the way. Forth is

C!
fast, too, and you can CP/M use ~ t s built-~n as-

TM sembler to make it
even faster. Master-

FORTH's relocatable utilities and
headerless code let you pack a lot
more program into your memory. The
resident debugger lets you decom-
pile, breakpoint and trace your way
through most programming prob-
lems. A string package, file interface
and full screen editor are all standard
features. And the optional target com-
piler lets you optimize your applica-
tion for v~rtually any programming
environment.

The package exactly matches Mas
tering Forth (Brady, 1984) and meets
all provisions of the Forth-83 Standard.

MasterFORTH standard package.. $1 25
..... (Commodore 64 with graphics). $100

Extens~ons

Floating Po~nt.. $60
Graphics (selected systems) $60
Module relocator(with utility sources). . $60
TAGS (Target Applic,. Generatton System) -
MasterFORTH, target compiler and
relocator.. $495

Publications 8 Appl~cation Models
Printed source listings (each) $35
Forth-83 International Standard.. $15
Model Library, Volumes 1-3 (each). ... $40

8726 S. Sepulveda El., #A1 71
Los Angeles, CA 90045

SCR # 3 0
O CR ." SCR#30" (T I -FORTH PLOTTING ROUTINES 7 / 7 / 8 5)

1 0 VARIABLE XMIN W V A R I A B L E Y M I N (WORLD COORDINATES)

2 W V A R I A B L E XMAX 0 V A R I A B L E YMAX
3 0 VARIABLE V L 0 V A R I A B L E VBOT (VIEWPORT COORDINATES)

4 0 VARIABLE VR W V A R I A B L E VTOP
5 0 VARIABLE X W V A R I Q B L E FX 6 ALLOT
6 O VARIABLE XD 0 VARIABLE YDB
7 0 VARIGBLE KX O V A R I A B L E K Y (X 8 Y SCALE FACTORS)

U W VARIABLE FEX 6 ALLOT W VARIABLE FEY 6 ALLOT
9 W VQRIABLE YDBARA 40W ALLOT

1 Cl
1 1 : KXCALC VR @ V L @ - XMAX B XMIN 13 - / DUP KX ! S->F FKX F ! ;
12 : KYCALC VBOT @ VTOP @ - YMAX @ Y M I N @ - / DUP
1 3 K Y ! S-.>F FKY F ! ;
1 4
1 5 : 2DUP DUP DUP ; -->

SCR # J 1
(3 CR ." S C R # 3 l U (PICKPORT BWM 7 / 7 / 8 5)

1 0 VARIABLE VBOTB : SVBOTB 191 VBOT @ - VBOTB ! ;
2 V A R I A B L E Y I N C 20 CONSTANT X I N C 1 9 1 CONSTANT YTIW
.-7 .
.J . PICKPORT (n ---) 2DUP 2DUP
4 l = I F 9 6 V B O T ! 4 6 V T O P ! 1 2 V L ! l l Z V R ! l W Y I N C !
5 SVBOTB E N D I F (TOP L E F T VIEWPORT)

5 2 = I F 96 VBOT ! 4 6 V T O P ! 1 4 4 V L ! 2 4 4 V R ! 1 W Y I N C '
7 SVEOTR E N D I F (TOP R I G H T)

fl 3 = I F 1 7 8 VBOT ! 128 VTOP ! 1 4 4 V L ! 2 4 4 VR ! 18 Y I N C !
7 SVEDTB E N D I F (BOTTOM R I G H T VIEWPORT)

1i?J 4 = I F 1 7 S V N O T ! 1 2 8 V T O P ! 1 2 V L ! 1 1 2 V R ! l 0 Y I N C !
1 1 SVBOTB E N D I F (BOTTOM L E F T)

1 2 5 = I F 1 8 2 V B O T ! 8 2 V T O P ! 2 5 V L ! 2 2 5 V R ! 1 f l Y I N C !
13 SVBOTB E N D I F SP ! : (F U L L SCREEN VIEWPORT)

1 4
1 5 : P P PICKPORT : (n)

SCR #.32
O CR . " SCR#32 ' (BWM PLOTTING U T I L I T E S 7 / 7 / 8 5)

1 0 VGRIABLE YD 0 V A R I A B L E XNN
2 : YLIIVES VBOT I 5 + VTOP I3 DO I YD !
5 V L 13 YD @ VR @ YD 13 L I N E Y I N C @ +LOOP ;
4 : X L I N E S VR 13 5 + V L 13 DO I XNN !
c XNN 13 VBOT @ XNN 8 VTOP @ L I N E
6 X l N C +LOOP ;
7 : G R I D Y L I N E S X L I N E S ;
3 : YTIFCf Y T I f l VBOTB B - Y M I N 13 S->F FKY F@ F + F->S +
7 V L 13 SWAP OR @ OVER L I N E ; (DRAWS L I N E Y = 0)

It?! : YCl YTIFCI ;
11 : X T I s VL B XMIN @ S-3.F FKX F @ F + F->S - VTOP @
12 OVER VBOT B L I N E ; (DKAWS L I N E X = 0)

1.Z : XIlJ XTItB ;
14
1 5 --'>

SCR t33
0 CR ." SCR#33 " (CANNED EXAMPLES WORLD COORDINATES BUM 7/8/85)

1
2 : C l -6 XMIN ! 6 XMAX ! -1 Y M I N ! 1 YMAX ! KXCALC KYCALC i
9
4 : C 2 m XMIN ! 2 4 XMAX ! -1 Y M I N ! 1 YMAX ! KXCALC KYCALC ;
=
6 : C 3 O XMIN ! 12 XMAX ! -1 Y M I N ! 1 YMAX ! KXCALC KYCALC ;
7
8 : FUNCTION S I N FX F B F/ ; (:< --- s i n x / x i n f l t g p t)

9
10
1 1
12
1 3
1 4
15 --'.

, (Screens continued on page 40.)

FORTH Dimensions 36 Volume VIII, No. 4

Getting Started with F83
Greg McCaN

Werrington, NS W, Australia

The documentation with F83 is in
F83.COM and in the shadow screens
that are part of the source files that
come with F83. At first glance, the
thought of sifting through hundreds of
kilobytes of shadow screens is bewild-
ering, to say the least. Just to get you
started, I have put together a summary
of how to use the file words and how to
edit these files. This relates to the
CP/M-80 version of F83, but as far as
I know it should be similar to other
versions of Laxen and Perry's F83.

This Forth can have two files open at
once. One file is called the CURRENT
file. This is the file used by all normal
reads and writes. You would normally
edit or load from the CURRENT file. The
other file is called the FROM file. This is
a second file you may have open for
reading only. For example, if you cur-
rently are working on a file (i.e., load-
ing and editing), and you wish to load
some screens from another file, then
you may open a FROM file and load
screens from it without changing the
CURRENT file. Following is a descrip-
tion of some useful file words:

CREATE-FILE (S n --)
Creates a new file containing n blocks.

10 CREATE-FILE TEST.BLK

opens a file called test.blk and writes
ten blank screens to this file. The file is
then closed.

FILE? Prints the name of the
CURRENT file.

DIR Prints the directory of
the current drive.

OPEN Open the following file
name and make it the
current file, e.g., OPEN
TEST.BLK

FROM Make the next word in
the input stream the
FROM file and OPEN it.
It then sets the current
vocabulary to FILES.

LOAD In the FORTH vocabulary,
LOAD will load screens
from the CURRENT file.
In the FILES vocabulary,
LOAD will load screens
from the FROM file. S o
while we have a file as
the CURRENT file, we
can still open another
file by making this sec-
ond file the FROM file
and loading from it,
e.g., FROM TEST.BLK
10 LOAD

C A Copy a screen to its
shadow.

COPY (S from to --)
In the FORTH vocabulary, copies a
screen in the CURRENT file. In the FILES
vocabulary, copies a screen from the
FROM file to the CURRENT file. In the
SHADOW vocabulary, copies a screen
and its shadow in the CURRENT file.

CONVEY (S from to --)
In the FORTH vocabulary, copies a set
of screens in the CURRENT file. In the
FILES vocabulary, copies a set of screens
from the FROM file to the CURRENT file.
In the SHADOW vocabulary, copies a set
of screens and their shadows in the
CURRENT file.

HOPPED A variable containing
the number of screens
to skip when copying
with CONVEY.

UID A variable containing the
direction of the screen
move using convn. + 1
is a forward screen
move and -1 is a back-
ward screen move.

TO Sets up the variables
HOPPED and UID. Used as
first-source last-source TO
first-destination CONVEY

The F83 editor uses the same words as
the editor in Starting Forth by Leo
Brodie, with some additions such as the
word NEW which allows replacement of

multiple lines. T o get the editor going
correctly, you should look at screens 28 -
30 and 88 of UTILITY.BLK which hold
the terminal-dependent routines. You can
select your terminal - or see if any of the
routines are the same as those of your
terminal - or write your own routines.
The terminal words patch the words AT,
DARK, BLOT and -LINE to suit your
terminal. While we are looking at patch-
ing the editor, you could remove the
backslash in line 14 of screen 24 so that
(WHERE) is patched into WHERE and, if
you have a real-time clock, then you
could change GET-ID in screen 23 so as to
have the ID supplied when the editor is
first invoked. These screen numbers refer
to the CP/M-80 version of F83. T o find
where the source screens are for the editor
in your Forth, type VIEW AT which should
give you the second source screen of your
editor. Now just look through the editor's
screens for the required words.

A summary of the editor commands
follows:

TOP G o to the top of the
screen.

C (S n --)
Move n characters, right or left.

T (S n --)
Go to beginning of line n.

.BUFS Displays the contents of
the insert and find
buffers.

KEEP Places the current line in
the insert buffer.

K Exchanges the contents
of the insert and find
buffers.

w Write all changes to disk.

N Move to next screen.

B Move back a screen.

A Alternate between a
screen and its shadow.

VolurnevIII, NO. 4 37 FORTH Dimensions

Fast object based programming!
Improves on SmallTalk concepts!

F ~ ~ R E S :
Builds on MacFORTH level 1
Multiple Inheritance
Unshadowed Mixins
Method Combination
Flavor Variables
Instance Variables
SELF Pseudo-Variable
Debug Tools:
Formatted Traceback
Message Tracing
Formatted Object Dumps

and Descriptions

Available soon on
Atari ST and Amiga

Created by:
Insite Computing
P.O. Box 2949, Ann Arbor, MI 481 06
31 31994-3660

Also available from:
MacForth Users Group
3081 Westville Station
New Haven, CT 0651 5
2031777-561 8

MacFORTH is a registered trademark
of Creative Solutions, Inc.

<text> Represents the text fol-
lowing the command. If
<text> is just a carriage
return, the contents of
the insert buffer is used
in place of the missing
<text>.

I <text> Inserts <text> on the
current line at the cursor.

0 <text> Overwrites <text> Onto
the current line.

P <text> Replaces the current line
with <text> and blanks.

u <text> Inserts a line under the
current line.

F <text> Finds the <text> and
leaves the cursor just past
it.

S <text> (S n --)
Searches for <text> through all screens
from the current one up to screen n.
Each time a match is found, n remains
on the stack until screen n is reached.
T o continue the search, just type S
until screen n is reached.
R <text> Replaces the text just

found with <text>.

D <text> Finds and deletes the
text.

TILL <text> Deletes all text on the
line from the cursor up
t o a n d i n c l u d i n g
<text>.

JUST <text> Deletes up to, but not
including, <text z .

KT <text> Puts all text between
the cursor and <text>
inclusive into the insert
buffer ("keep-till").

E Erases the text just
found by F or s.

X Deletes the current line.

SPLIT Breaks the current line
in two at the cursor.

JOIN Puts a copy of the next
line after the cursor.

WIPE Clears the screen to
blanks.

G (S screen line --)
Gets a line from another screen and

inserts it in front of the current line. In
the SHADOW vocabulary, G gets a line
and its shadow. In the FILES vocabu-
lary, G gets the line from the FROM file.

BRING (S screen first last --)
Brings several lines from another
screen and inserts them in front of the
current line. In the SHADOW vocabu-
lary, BRING gets a range of lines and
their shadows. In the FILES vocabulary,
BRING gets the lines from the FROM file.

NEW (S n --)
Moves the terminal's cursor to the start
of line n and overwrites until the line
has a null input, i.e., just a carriage
return.

QUIT Exits the editor without
updating or flushing.

DONE Exits the editor, updates
the ID stamp, tells you
if the screen was modi-
fied, flushes it to disk
and removes automatic
redisplay.

ED Re-enters the editor. It
clears and reinitializes
the display, and begins
automatic redisplay of
the screen.

EDIT (S n --)
Sets SCR to n , then uses ED to start
editing.

This should enable you to copy and
edit screens with Laxen and Perry's
F83. The best way to get the entire
documentation on this Forth is by
printing out all the source files. If your
printer can print at least 132 characters
per line, then look in your printer's
manual for the characters needed to
put your printer in this mode. My
FAX-80 needs a control-0 to set the
condensed mode. I define a word
FAX-80 to send this code and then
patch it into the DEFER^^ word INIT-PR,
i.e.:

: FAX-80 CONTROL 0 EMIT ;

' FAX-80 IS INIT-PR

T o print the entire file, you use the
word LISTING. For example, to list
META80.BLK, I would type:
OPEN META8O.BLK LISTING

FORTH Dimensions 38 Volume VIII. No. 4

Batcher's Sort
John Konopka

Mitaka Shi, Japan

Quicksort is often suggested as a
sorting algorithm because of its speed.
The reputation for speed is well deser-
ved but Quicksort has other features
which may make it difficult to use. An
alternative sorting method discovered
by K.E. Batcher in 19641y2 is a little
slower than Quicksort but is more
robust and avoids most of Quicksort's
pitfalls.

One problem with Quicksort is its
variable performance. It is usually
stated that Quicksort requires about
NlogN operations to sort N items (base
2 logarithm). This is an average result
which depends on the input data being
random. In other cases where the data
is already ordered in some way, then
Quicksort may require as many as N~
operations to sort N items. This is as
slow as a Bubble sort. Thus you don't
know from one execution t o the next
just how long a sort will take. Extra
code can be added - complicating the
algorithm - to handle some, but not
all, of the time-consuming cases. Quick-
sort also varies in its use of space.
Every branch in Quicksort creates one
stack entry (the number of words per
stack entry is implementation specific)
on the return stack (if, as usual, recur-
sion is used). Normally, a maximum of
about logN stack entries are created.
However, in degenerate cases this num-
ber may approach N. When sorting ill-
ordered data you may find your pro-
gram running out of room with unan-
ticipated consequences.

A second source of trouble with
Quicksort is that it is difficult to imple-
ment. Quicksort is generally presented
in a recursive form. If recursion is not
available you must implement this
yourself. You can, at the expense of
more complicated code, implement a
non-recursive version3. To limit, but
not eliminate, the number of cases
requiring much time or much stack
space more code can be added, again
increasing the complexity of the algo-
rithm. The final implementation prob-
lem is how to test it. Because the
operation of the algorithm is data

Sample portions of link map data.
OVLY SEG S I Z E

i 1 1833 r+r++rr++*xir+c++r+**********c*x***c**
1 2 1130 *++*+++*+++**+*++++++ar
1 3 1972 *++i+***++*++++++*+****************ii****

1 4 2245 +r+*++*+rr+rr***+**t**~i***c*t****c*i*:*********
1 5 1696 **+*++*+****i+ii++**i**ii**********

1 6 2495 *+++r+++r++++*+*+++ii*~*i*********~************~****
1 7 2402 ..
1 10 1499 ++*++*++++*+**+*+**************

Before sorting

O V L Y SEG S I Z E
1 21 2621 * r x + * x * u w + ~ + + r + x x + x x * x ~ * * * * r * ~ ~ * c * * * * i * * * * * * ~ * * * * * ~ ~ * * *
1 27 2618 +r++*+r+*xx+*+r**rxx*t*******ct**xtt******u*~*****~****
1 25 2509 + r + x + * + x + + + + + + + x * + + ~ ~ ~ # * * ~ ~ * ~ % ~ i * * ~ * * * * * * * * * ~ * * * * * * *
1 6 2495 *++*+++*++++r*+++r+*i*x**tx**ix***x*****x***********
1 13 2485 ++++++*++++r+r*x+rr**********~t*xx**xx*******x******
1 17 2469 * * + + + + ~ + + + + * ~ + + + + + + * * * * ~ * X * * * X X * * * C ~ X - X ~ X ~ * * * ~ * * * * * * *
1 14 2443 +++wx*+i*+*+++r++++~*******~***xxx***xx*~****#~~**r
1 7 2482 +*+r+*a+***+c+**r+*****:******it*i~~~~*~x*~~*****uu

After sorting

Figure One

100 random numbers before and after sorting.

I Figure Two I
I

dependent you may have sleeping bugs
which only awaken when presented
with rightly ordered data. See the
Sedgewick and Knuth references for
more information about Quicksort.

Batcher's sort suffers none of these
problems. It iterates the same way
every time, calculating the same pairs
of indices regardless of the data pre-
sented for sorting. It sorts in place,
requiring no buffer space, and it places
no unusual demands on either the
return or data stacks. Furthermore, it
is easy to implement, requiring only
one screen of Forth code. Recursion is

I

not required. Finally, because it is
simpler there are fewer things to go
wrong. It is thus easier to test and
easier to trust. Once you have it work-
ing for one set of data it is likely to
work well afterwards.

The cost for this robustness is time.
Quicksort requires, on average, about
NlogN operations. Batcher's sort re-
quires less than (NM)logN[(logN) + 11
iterations. The difference is less than
(logN + 1)/4. As an example of what
this means in terms of normal array sizes
Quicksort should be, on average, about
two times faster when sorting 1024 items.

VolumeVIII, No. 4 39 FORTH Dimens~ons

This does not take into account any time
difference for one iteration between
Quicksort and Batcher's sort. The
clincher is the phrase "on average."
Depending on the input data, in some
cases Batcher's sort may in fact be
quicker than Quicksort. In any event
'the absolute difference in time will
probably not be large. For example,
using no code words I can sort 512
names on a DEC LSI 11/23 in twelve
seconds. In this case the cost for using
Batcher's sort is certainly tolerable.

Batcher's sort has one more inter-
esting feature which someday may let it
far outpace Quicksort or any other
sorting method, in terms of speed.
Looking at the code you can see three
nested loops. At every iteration of the
innermost loop INNER-LOOP the pairs of
keys which are compared are complete-
ly independent. Thus a parallel com-
puter could implement the inner loop
in one step for really fast sorting. The
number of iterations in this case is just
(1/2)logN[(logN) + I] . This is just
fifty-five iterations when processing an
array of 1024 items.

Implementation

The Forth code for the sort is dis-
played in screen 2. While the code is
not particularly complex, the operation
of the algorithm is not obvious. See
Knuth for further details. The program
uses seven constants: rr, PP, DD, NN,
RR, QQ and Kc. These names were
chosen to be consistent with the des-
cription of the algorithm given by
Knuth. QQ can easily be carried only on
the stack but I made it explicit for
easier reading. Constants are used
rather than variables, as the data is
accessed much more often than it is set.
rr stores a parameter which determines
the sizes of the outer loops. It is calcu-
lated in SELECT-T. PP drives the
outermost loop, QQ drives the next
nested loop. These loops are driven by
dividing the loop counter by two rather
than by incrementation as in DO LOOP.
RR, N N and DD are used to calculate
indices to keys. When sorting N items,
this routine generates indices in the
range from zero to N-1. The actual
output of the program is this sequence
of number pairs. Implementation-

I

Screen #2
1 \ BSORT K. E. Batcher's sort. From Knuth, vol 3.
2 0 CONSTANT TT 0 CONSTANT RR 0 CONSTANT DD 0 CONSTANT PP
3 0 CONSTANT NN 0 CONSTANT QQ 0 CONSTANT KC
4 : KEY-COMPARE KC EXECUTE ;
5 : SELECT-T NN 15 0 DO DUP I 2**N < = IF DROP I LEAVE THEN LOOP
6 1 - 14 MIN ' T T ! ;
7 : INNER-LOOP NN DD - 0 DO I PP AND RR =
8 IF I DUP DD + KEY-COMPARE THEN LOOP ;
9 : Q-TEST QQ PP < > IF QQ PP - ' DD ! QQ 2/ ' QQ !
10 PP ' RR ! 0 THEN ;
1 1 : QRD-SETTT 2**N ' QQ ! 0 ' RR ! PP ' DD ! ;
12\ n --- n is number of items to sort. n must be positive.
13 : BSORT ' NN ! SELECT-T TT 2**N ' PP !
14 BEGIN QRD-SET QQ
15 BEGIN INNER-LOOP Q-TEST UNTIL
16 PP 2/ DUP ' PP ! O= UNTIL ;

Screen #6
1 \ BSORT example. Sort array of integers.
2 0 CONSTANT XI 0 CONSTANT X2 CREATE DATA 200 ALLOT
3
4 --- Load array DATA with random numbers.
5 : INIT-DATA 100 0 DO RANDOM DROP I 2* DATA + ! LOOP ;
6

--- Exchange entries pointed to by XI and X2. > SWAP-DATA XI DATA + @ X 2 DATA + @ XI DATA + ! X2 DATA + ! ;
9
10 \ N M --- Compare and maybe exchange Nth and Mth entries.
1 1 : COMPARE-AND-SWAP 2* ' XI ! 2" ' X2 ! \ Save pointers
12 X1 DATA + @ X2 DATA + @ > \ Compare values
13 IF SWAP-DATA THEN ; \ Exchange if misordered
14 \ --- .R is defined in 79-Standard Reference Word Set.
15 : LIST-DATA 100 0 DO I 2* DATA + @ 7 .R I 1+ 10 MOD O=
16 IF CR THEN LOOP ;

(Screens continued from page 36.)
SCR # 3 4

%I CR . " SCR#34 " (ARRAY YDB CALC F L T D P O I N T BWM 7 / 7 / 8 5)

1 : ARGYDB CLS ." WORKING ! ! ! " (--- YDBCi I)
2 VR @ V L @ DO I XD ! - I V L @ -
4 XMIN @ KX @ *
c + (d i f f p r o d --- k x * x)

6 S- >F FKX F @ F/ (f C k x * x I --- f x)

7 FDUP FX F ! (s t o r e s c u r r e n t f x)

8 FUNCTION FKY F @ F * (f:: --- f y * f k y)

9 F- >S (f k y * f y --- k y * y)

1 (3 Y M I N @ E Y @ * - VBOTB @ +
1 1 YDBARA I V L @ - 2 * + ! (s t o r e y d b in a r r a y y d b a r a)

12 LOOP ;
15 (COMPUTES VIEWPORT REPRESENTATIVE OF WORLD Y)

1 4
15 : CY ARAYDB ; -->

SCH #35
0 CR ." SCR#35 " (BWH PLOTTING U T I L I T E S 7 / 7 / 8 5)

1 : PLOTY
2 VR @ V L @ DO I XD !

> I V L I ? ! - Z *
4 YDBARA + @
5 Y T I @ SWAP - XD @ SWAP DOT (PLOTS NEXT P T)

6 LOOP ;
'7
U : PY CLS PLOTY ;
5,

I ra
1 1
12
1 ri
1 4
15 -

FORTH Dimensions 40 Volume VIII. No. 4

specific code uses these pairs of num-
bers to point to the items to be sorted,
then does the compare and possible
exchange. If, for example, you were
sorting a list of names and the output
was 1 and 5, then your implementation-
specific word would compare the first
and fifth names in the list and exchange
their positions if they were misordered.
The execution address of this code is
stored in constant KC. The word
KEY-COMPARE accesses that constant
and executes the word whose address is
stored there. By this vectoring, the sort
routine is separated from the data
being sorted so you can use the same
sort routine for all applications. To use
the routine, put the execution address
of your compare code in constant KC,
put N (the number of items to be
sorted) on the stack, then invoke
BSORT.

Application Examples

Screen 6 shows an application which
sorts an array of random data. The
array is initialized with a random num-
ber generator5 by invoking INIT-DATA.
If a random number generator of some
kind is not available you can load the
array with an editor, using , (comma)
to eoter integers picked from your
imagination. LIST-DATA will type the
data on a terminal. To sort the data put
the execution address of COMPARE-AND-
SWAP in constant KC. then ~ u t 100 on
the stack and invoke.^^^^^

FIND COMPARE-ANDSWAP ' KC !

100 BSORT

Now you can use LIST-DATA to see the
effect of sorting. This simple example
is useful for verifying the operation of
BSORT.

As another example application, I
use this routine to sort the vocabulary
names in the Forth dictionary. Code
specific to my system first scans the
dictionary and builds an array of ad-
dresses. Each entry points to the name
field of a Forth word. The length of the
array is the number of words in the

dictionary. The comparison word de-
posited in KC takes two indices from
BSORT and using these pointers com-
pares two names in the dictionary, then
exchanges the addresses stored in the
array if the names are not in alphabeti-
cal order. This comparison word must
not only know how to compare strings
alphabetically but it must be able to
strip out special bits such as the
IMMEDIATE flag, and it must be able to
determine the length of the name. Af-
ter sorting, I write the names to a text
file and then use an editor to make
glossaries for documenting applica-
tions. See the paper by ad en^ for
another example of sorting vocabulary
names in the Forth dictionary.

In another case I use this routine to
sort information about a large Fortran
program. When the program is com-
piled and linked, a map is generated
giving, among other information, the
size of each of the program overlays.
The size of the program in memory is
determined by the largest segments;
thus, to reduce the memory require-
ments one needs to know which are the
largest segments and how they differ
from the second or third largest seg-
ments. I wrote one routine to scan the
map and extract the size information.
For sorting, the word deposited in KC
compares these sizes numerically and
exchanges them if they were out of
order. Figure One graphically shows
the results before and after sorting.

In the near future, I have two more
sorting applications in mind. One is in
an application I wrote called "Card
File." This is a software version of a
box of 3x5 cards. In this case I will first
create an array of pointers in memory
indicating which cards I want to list on
the printer. Then I will sort this list
using BSORT. The most natural order
would be to alphabetize the cards ac-
cording to the first word on a given
row of the card. The application-spec-
ific word which would be deposited in
KC would have to know how to extract
this information from the cards, then
do the compare and swap pointers if
needed. The second application I have
in mind is in x-ray spectroscopy. I now
have Forth words which create direc-
tories of file names of stored x-ray

spectra. It would be helpful to sort
these directories in various ways. Just
by changing the compare word deposit-
ed in constant KC I will be able to sort
the directory according to file name,
date, number of elements in the spectra
or even according to the atomic num-
bers of the elements which generated
the spectra.

From these few examples you can see
that almost anything can be sorted. All
you need is a word which knows how
to compare two items in a list and
exchange them if they are misordered.
If the items are small and easy to move,
then you can exchange the positions of
the items themselves. If it is costly toL
move the items, as in the case of disk-
based data, it is better to keep a list of
pointers and just exchange the pointers.

References

1. Batcher, K.E., Proceedings AFIPS
Spring Joint Computer Conference.
32(1968), 307-314.

2. Knuth, Donald E., Art of Com-
puter Programming, Vol. 3 , pp
1 1 1-122, Addison-Wesley, 1973.

3. Sedgewick, Robert, Algorithms, pp
107-1 11, Addison-Wesley, 1983.

4. Baden, Wil, "Quicksort and
Swords", Forth Dimensions VI/5,
1985.

5. Doyle, William T., "A Portable
F o r t h R a n d o m N u m b e r
Generator", Journal of Forth
Applications and Research, vol. 1,
no. 2, 1983.

Volume VIII, No. 4 4 1 FORTH Dimens~ons

U.S. Bay Area Chapter Fort Wayne Chapter St. Louis Chapter
Silicon Valley Chapter Monthly, 2nd Tues., 7 p.m. Monthly, 1st Tues., 7 p.m.
Monthly, 4th Sat. IPFW Campus Thornhill Branch Library

ALABAMA FORML 10 a.m., Fig 1 p.m. Rm. 138, Neff Hall Contact Robert Washam

Huntsville FIG Chapter H-P Auditorium Call Blair MacDermid
Wolfe Rd. & Pruneridge, 2191'749-2042

91 Weis Dr.
Call Tom Konantz

Cupertino
Ellisville, M O 6301 1

205/881-6483
Call John Hall 415/532-1115

IOWA NEVADA

ALASKA or call the FIG Hotline: kowa City Chapter Southern Nevada Chapter
408/277-0668 Monthly, 4th n e s . Call Gerald Hasty

Kodiak Area Chapter Stockton Chapter Engineering Bldg., Rm. 2128 702/452-3368
Call Horace Simmons Call Doug Dillon University of Iowa

Call Robert Benedict
NEW HAMPSHIRE

907/486-5049 209/93 1-2448
319/337-7853

New Hampshire Chapter
COLORADO Monthly, 1st Mon., 6 p.m.

ARIZONA Central Iowa FIG Chapter Armtec Industries Denver Chapter Call Rodrick A. Eldridge Shepard Dr., Grenier Field
Phoenix Chapter Monthly, 1st Mon., 7 p.m. 5 15/294-5659 Manchester
Call Dennis L. Wilson Cliff King Fairfield FIG Chapter Call M. Peschke
602/956-7678 303/693-3413

Monthly, 4th day, 8:15 p.m. 603/774-7762
Theson Chapter CONNECTICUT Call Gurdy Leete
Twice Monthly, NEW MEXICO

Central Connecticut Chapter 51 5/472-7077
2nd & 4th Sun., 2 p.m. Albuquerque Chapter

Call Charles Krajewski
Flexible Hybrid Systems KANSAS Monthly, 1st Thurs., 7:30 p.m.

203/34-99%
2030 E. Broadway #206 Physics & Astronomy Bldg.

Call John C. Mead FLORIDA Wichita Chapter (FIGPAC) Univ. of New Mexico

602/323-9763 Orlando Chapter Monthly, 3rd Wed., 7 p.m. Jon Bryan

Every two weeks, Wed., 8 p.m. Wilbur E. Walker CO. Call 505/298-3292

Call Herman B. Gibson 532 Market
ARKANSAS 305/855-4790 Wichita, KS NEW YORK

Central Arkansas Chapter Call Arne Flones
Southeast Florida Chapter FIG, New York

Twice Monthly, 2nd Sat., 2p.m. & Monthly, Thurs., p.m.
316/267-8852 Monthly, 2nd Wed., 7:45 p.m.

4th Wed., 7 p.m. Coconut Grove area Manhattan

Call Gary Smith Call John Forsberg
LOUISIANA Call Ron Martinez

501 /227-7817 305/252-0108 New Orleans Chapter 212-749-9468

Tampa Bay Chapter Call Darryl C. Olivier
504/899-8922

Rochester Chapter
CALIFORNIA Monthly, 1st. Wed., p.m. Bi-Monthly, 4th Sat., 2 p.m.

Los Angeles Chapter Call Terry McNay MASSACHUSETTS Hutchinson Hall

Monthly, 4th Sat., 10 a.m. 813/725-1245 Univ. of Rochester

Hawthorne Public Library GEORGIA Boston Chapter Call Thea Martin

12700 S. Grevillea Ave. Monthly, 1st Wed. 716/235-0168

Call Phillip Wasson
Atlanta Chapter Mitre Corp. Cafeteria

213/649-1428
Monthly, 3rd Tues., 6:30 p.m. Bedford, MA Syracuse Chapter
Cornputone Cotilion Road Call Bob Demrow Monthly, 3rd Wed., 7 p.m.

Monterey/Salinas Chapter Call Nick Hennenfent 617/688-5661 after 7 p.m. Call Henry J. Fay
Call Bud Devins 404/393-3010 MICHIGAN 3 15/46-4600 408/633-3253 ILLINOIS
Orange County Chapter Cache Forth Chapter Detroit/Ann Arbor area OHIO
Monthly, 4th Wed., 7 p.m. Call Clyde W. Phillips, Jr. Monthly, 4th Thurs. Akron Chapter
Fullerton Savings Oak Park Call Tom Chrapkiewicz Call Thomas Franks
Thlbert & Brookhurst 312/386-3147 313/322-7862 or 3131562-8506 216/336-3 167

Fountain Valley Central Illinois Chapter MINNESOTA Athens Chapter
Monthly, 1st Wed., 7 p.m. Urbana MNFIG Chapter Call Isreal Urieli
Mercury Savings Call Sidney Bowhill Even Month, 1st Mon., 7:30 p.m. 6141594-3731
Beach Blvd. & Eddington 217/333-4150 Odd Month, 1st Sat., 9:30 a.m.
Huntington Beach Fox Valley Chapter Vincent Hall Univ. of MN Cleveland Chapter
Call Noshir Jesung Call Samuel J. Cook Minneapolis, MN Call Gary Bergstrom
7 14/842-3032 312/879-3242 Call Fred Olson 21 6/247-2492

San Diego Chapter Rockwell Chicago Chapter 612/588-9532
Weekly, Thurs., 12 noon Cincinatti Chapter

Call Gerard Kusiolek
Call Guy Kelly MISSOURI Call Douglas Bennett

312/885-8092
619/268-3100 ext. 4784 513/831-0142

INDIANA Kansas City Chapter
Sacramento Chapter Monthly, 4th Tues., 7 p.m. Dayton Chapter
Monthly, 4th Wed., 7 p.m. Central Indiana Chapter Midwest Research Institute Tivice monthly, 2nd Tbes., &
1798-59th St., Room A Monthly, 3rd Sat., 10 a.m. MAG Conference Center 4th Wed., 6:30 p.m.
Call Tom Ghormley Call John Oglesby Call Linus Orth CFC 11 W. Monument Ave.
916/444-7775 317/353-3929 913/236-9189 Suite 612

FORTH Dimensions 42 volume VIII.

Dayton, OH
Call Gary M. Granger
513/849-1483

m VIRGINIA

First Forth of Hampton Roads
Call William Edmonds
804/898-4099

OKLAHOMA

Central Oklahoma Chapter Potomac Chapter

Monthly, 3rd Wed., 7:30 p.m. Monthly, 2nd Tues., 7 p.m.

Health Tech. Bldg., OSU Tech. kz g $ ~ ~ ~ at Lexington st. Call Larry Somers
2410 N.W. 49th Arlington, VA

Oklahoma City, OK 731 12 Call Joel Shprentz
703/86C-9260

Richmond Forth Group
OREGON Monthly, 2nd Wed., 7 p.m.

Greater Oregon Chapter 154 Business School
Monthly, 2nd Sat., 1 p.m. Univ. of Richmond
Tektronix Industrial Park Call Donald A. Full
Bldg. 50, Beaverton 804/739-3623
Call Tom Almy
503/692-2811 WISCONSIN

PENNSYLVANIA
Lake Superior FIG Chapter
Monthly, 2nd Fri., 7:30 p.m.

Philadelphia Chapter University of Wisconsin
Monihly, 4th Sat., 10 a.m. Superior
Drexel University, Stratton Hall Call Allen Anway
Call Melanie Hoar or Simon Edkins 715/394-8360
215/895-2628

TENNESSEE

Milwaukee Area Chapter
Call Donald H. Kimes
414/377-0708

East Tennessee Chapter MAD Apple Chapter
Monthly, 2nd Tue., 7:30 p.m. Contact Bill Horzon
Sci. Appl. Int'l. Corp., 8th F1. 129 S. Yellowstone
800 Oak Ridge Thrnpike, Oak Ridge Madison, WI 53705
Call Richard Secrist
61 5/483-7242 FOREIGN

TEXAS

Austin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120

Periman Basin Chapter
Call Carl Bryson
Odessa
915/337-8994

UTAH

North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem, UT 84057

VERMONT

Vermont Chapter
Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rm. 210, Monkton Rd.
Vergennes, VT
Call Don VanSyckel
802/388-6698

AUSTRALIA

Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.
Rm. LC19
Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
02/524-7490

BELGIUM

Belgium Chapter
Monthly, 4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343

Southern Belgium FIG Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
Belgium
071/213858

CANADA

Alberta Chapter
Call Tony Van Muyden
403/962-2203

Nova Scotia Chapter
Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2E5
902/477-3665

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg., Rm. 3 12
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4K1
416/525-9140 ext. 3443

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto. ON M4C5J2

COLOMBIA

Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
2 14-0345

ENGLAND

Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m.. Rm. 408
Polytechnic of South Bank
Borough Rd., London
D. J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FRANCE

French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1 100 Toulouse
(16-61)44.03.06

GERMANY

Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

HOLLAND

Holland Chapter
Contact: Adriaan van Roosmalen
Heusden Houtsestraat 134
48 17 We Breda
31 76 713104

FIG des Alpes Chapter
Contact: Georges Seibel
19 Rue des Hirondelles
74000Annely
50 57 0280

IRELAND

Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or 051/74124

ITALY

FIG Italia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

JAPAN
Japan Chapter
Contact Toshi lnoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 ext. 7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas
Hallskaret 28
Ulset
+47-5-187784

REPUBLIC OF CHINA
R.O.C.
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

SWEDEN

Swedish Chapter
Hans Lindstrom
Gothenburg
+46-31-166794

SWITZERLAND

Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-Industrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

SPECIAL GROUPS
Apple Corps Forth Users
Chapter
%ice Monthly, 1st &
3rd Tues., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
415/626-6295

Baton Rouge Atari Chapter
Call Chris Zielewski
504/292-1910

FIGGRAPH
Call Howard Pearlmutter
408/425-8700

VolumeVlll No 4 43 FORTH D ~ m e n s ~ o n s

r HOLIDAY SPECIALS !!
I See Our Order Form Inside for Details

FORTH MODEL

FORTH DIMENSIONS
BACK VOLUMES

FORTH & FORTH
83 79
STANDARDS

FORML
CONFERENCE
PROCEEDINGS

FROM THE FORTH INTEREST GROUP

FORTH INTEREST GROUP
P. 0. Box 8231
San Jose, CA 95155

BULK RATE
U S. POSTAGE

PA1 D
Permit No. 3107
San Jose. CA

- -

Address Correction Requested

