November/December 1986
$4.00

Dimensions

Simple
File Query

A Forth Standard?
Dual-CFA Definitions
Batcher’s Sort

Getting Started with F83

Windows for the Tl 99/4A

A PC DROP-IN BOARD WITH:

Novix Forth engine, 4 MIPS
power, mini computer speed,
parallel PC operation,

/2 Mbyte on board, multi-
tasking capability, software

included. $1,495
YEAH, SURE.
It's finally here! The PC4000. Runs the Sieve in Forth in .09 sec-
Plugs into PC/XT or PC compat- onds—2170 times faster than the
ible. Comes with 4 Mhz clock. Sieve runs on the PC in PC-Basic.
Upgrade to 5 Mhz by adding faster Includes SCForth software package
RAM and Clock. 16K of memory for software development. RAM on
ported to PC bus for PC/PC4000 board can be used to extend host
data transfer. memory space.
Selectable 2K C software
or 8K stacks or available.
multiple stacks g
for multitasking. Contact:
Software Composers
Suite F

210 California Avenue
Palo Alto, CA 94306
PC4000 415-322-8763

e,

SOFTWARE COMPOSERS

FORTH Dimensions 2 volume VIII, No. 4

Forth Dimensions
Published by the
Forth Interest Group
Volume VIII, Number 4
November/December 1986

Editor
Marlin Ouverson

Advertising Manager
Kent Safford

Production
Cynthia Lawson Berglund

Typesetting
LARC Computing

Forth Dimensions solicits editorial
material, comments and letters. No re-
sponsibility is assumed for accuracy of
submissions. Unless noted otherwise,
material published by the Forth Interest
Group is in the public domain. Such
material may be reproduced with credit
given to the author and to the Forth
Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth Inter-
est Group at $30 per year ($43 foreign
air). For membership, change of address
and to submit items for publication, the
address is: Forth Interest Group, P.O.
Box 8231, San Jose, California 95155.
Administrative offices and advertising
sales: 408-277-0668.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

Advanced; requiring stu-
dy and a thorough under-
standing of Forth.

’
!
|

Code and examples con-
form to Forth-83 stand-
ard.

Code and examples con-
form to Forth-79 stand-
ard.

Code and examples con-
form to fig-FORTH.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

Dimensions

FEATURES

13 Dual-CFA Definitions, Part Two
by Mike Elola

The dual-CFA structure provides a new method for decomposing functions into
smaller functions. Its value can be demonstrated in deferred and vectored defini-
tions, and in definitions that dispatch multiple functions. This strategy can be the
basis of a Forth programming philosophy aimed at compactness, brevity and
programming ease.

17 Simple File Query
by Edward Petsche

b
This program allows the user to define and initialize a file, enter data, query on
‘\ any combination of fields, delete records and change field values in records. It is
\ based on data-base elements presented previously in Forth Dimensions and
should work with most versions of Forth-83.

28 A Forth Standard?
by Glen B. Haydon

Forth does not differ from a natural language: it is evolving. And what is a stan-
dard language? Only after a word is used with a specific meaning for some time
do dictionary editors accept it. This essay considers common use as a common-
sense paradigm for Forth standards.

34 Windows for the TI 99/4A
by Blair MacDermid

}‘ This program plots algebraic functions in a choice of five windows on the display.
It computes the coordinates of a plotted function, appropriately scaled to fit
N3 within the selected window. (Members of the Fort Wayne FIG Chapter imple-
mented the ACM SIGGRAPH CORE Standard as a group project, from which

this code was adapted later for publication.)

37 Getting Started with F83
by Greg McCall

Sifting through F83’s source shadow screens can be a bewildering first exposure
to that system. This summary of the file words and file-editing facilities will ease
your introduction. It explains how to open a second, read-only file and load
screens from it without changing the CURRENT file.

39 Batcher’s Sort
by John Konopka

An alternative to the sometimes quirky Quicksort was discovered by K.E. Batcher
— slightly slower, but more robust and with consistent sorting times. If you’d
rather not complicate your Quicksort code to handle special cases, Batcher’s may
be just the sort for you.

DEPARTMENTS

5 Letters
12 Editorial: ‘‘Conventions’’
27 Crossword
31 Advertisers Index
42 FIG Chapters

emmeeeme— - oo eTre————

i it

S G : o 3 B

Volume VIIl, No. 4

3 FORTH Dimensions

Visit the MACH 2 Product Support RoundTable™ on GEnie™ !!

MAGH 2

MULTI-TASKING FORTH 83 DEVELOPMENT SYSTEM

The MACH 2 FORTH 83 Multi-tasking Development System created by Palo Alto Shipping Company
provides a fresh approach to FORTH programming and the FORTH language. The foundation of MACH 2 is
a subroutine threaded FORTH with automatic macro substitution. This state-of-the-art implementation of the
FORTH language allows MACH 2 to take full advantage of the powerful 680X0 microprocessors; therefore
execution times of programs written in MACH 2 are comparable to the execution times of programs written in
the traditional compiled languages.

MACH 2's integrated programming environment consists of a standard (infix), Motorola-format assembler
which supports local labels and forward references, a symbolic debugger/disassembler which allows multiple
task debugging with single-stepping, breakpoints, and more. The Macintosh and Atari ST systems include a
mouse-based, multi-window text editor and all systems support the use of text source files.

The MACH 2 system is a professional development system designed to take the programmer through all
phases of product development -- from initial design/prototyping to the creation of the final, stand-alone
application.

MAGH 2 FOR THE MAGH 2 FOR THE MACH 2 FOR THE 0S—9 | MACH 2 FOR
MACINTOSH™ ATARI ST™ OPERATING SYSTEM™ INDUSTRIAL BOARDS
features full support of the features full GEM and TOS provides position- is 68020 compatible,
Macintosh toolbox, support support, floating point, 1/O independent and re-entrant provides 68881 Floating

of the Macintalk speech refllrectlon and creates double-| code execution, full support P"“_‘t‘ support, and produces
drivers, printing, and floating clickable ST applications. of all OS-9 system calls. position-independent,

point, easy /O redirection Includes 300 page manual. Creates stand-alone OS-9 re}ocatable, ROM-a.ble. code
and creates double-clickable, applications. Link FORTH with no met.a-cgmpllatlpn or
multi-segment Macintosh to C and vice-versa. Includes | target compilation required.
applications. Includes 400 page manual. Inclpdes system manual and
RMaker, and 500 pg manual. porting manual.

$99.95 $99.95 $495.00 $495.00

PALO ALTO SHIPPING COMPANY
P.O. Box 7430
Menlo Park, California 94026
Support. 415/ 854-7994 Sales: 800/ 44FORTH

VISA/MC accepted. CA residents include 6.5% sales tax.
Include shipping/handling with all orders: US $5 S/H; Australia $20 S/H; Canada $7 S/H; Europe $10 S/H.

RoundTable and GEnie are regisiered trademarks of the General Electric Information Services Company.

FORTH Dimensions 4 volume VIIl, No. 4

Fast SEARCH for F83

Dear FIG,

I am happy to finally contribute
something to the Forth community.
For all of the 8086/8088 F83 users out
there, here is a SEARCH function com-
pletely written in low-level code that
executes very quickly. Since the origi-
nal F83 SEARCH function was threaded
code it was tolerably slow, but a pro-
ject I’ve been working on lately needed
a quicker SEARCH, so I bit the bullet
and did it. Here, the function is adap-
ted to the Laxen & Perry system ...
enjoy faster searching!

(In order to maintain the threaded
code ““purity” of the UTILITY.BLK
file, this function should be placed in
either the KERNEL.BLK or the
CPU8086.BLK source files, and the ex-
isting SEARCH function in the
UTILITY.BLK file should be com-
mented out.)

I have been programming exclusively
in Forth for the past three years and,
having written both Z80- and
8086-based systems, I feel qualified to
say that Forth offers the greatest
man/machine interface yet devised in
software. Although it is slightly more
difficult to adapt to Forth’s subtle
programming philosophy, the rewards
are quick in coming. I know of many
things that can be done in Forth but
which are impossible in other program-
ming languages.

As a rather lazy person, I would like
to commend all of the FIG community
for their tireless efforts in promoting
the very best programming language
yet designed. And special thanks to
Chuck Moore, Leo Brodie, Henry
Laxen, Michael Perry, Marlin Ouver-
son, Bill Ragsdale and all of the other
regular contributors to the progress of
Forth Dimensions. 1 hope their example
motivates more people to contribute.

Sincerely,

Bill Zimmerly
St. Charles, Missouri

Natural Word Usage
Dear Mr. Ouverson:

Ting’s computation of static F83
word reference counts! is the first I
have seen. The total number of words
(11,063) is large enough to be interest-
ing. I immediately plotted a graph with
the words ordered by frequency of use.
A log-log plot was the cleanest and
had, for me, a surprising result: refer-
ence count was inversely proportional
to frequency, i.e., the data closely fits a
line of slope -1. I tried several other
populations I had available2:3: one of
spoken English and one of written
English. The results were the same!

While browsing at the library one
day, I came across a volume on Zipf’s

law#. The explanation was at hand: this
is a property of human behavior. Thus,
Forth has some of the properties of
natural languages.

I also investigated various coding
techniques® to determine the amount
of compaction that can be obtained
taking advantage of the frequency-of-
use statistics. The results are somewhat
disappointing. For hardware imple-
mentations, a block encoding is prob-
ably all that can be justified.

Number of different tokens {(words) 555
Total number of occurrences 11,063
Block code size 9.116 bits
Theoretical code size 7.051
Hoffman code size 7.084
4-8-12 repeated comma code 7.821
4-8-12 non-repeated comma code 7.735
8-16 repeated comma code 9.316
8-16 non-repeated comma code 9.316

In the repeated codes, the same
token (word) can be coded in several
sizes which, of course, lowers the
coding efficiency. The relatively small
number of words (compared to 2*¥*16)
accounts for the poor performance for
the 8-16 codes.

1. C.H. Ting. “F83 Word Usage Stat-
istics.”” Forth Dimensions VIl/4,
pgl4, November/December 1985.

2. H.F. Gaines. Cryptanalysis. Dov-
er, 1956.

Zimmerly’s F83 SEARCH

86
i\ String functions...

2 ASSEMBLER LABEL (FIND1}

DX 51 MOV BX DX MOV BF FOP 2PUSH

2

3

4

5 COBE SEARCH (SADR SLEN BADR BLEN -- N F)

b CLD CX POF DI POP BX FOP DX POF BF FUSH DX SI XCHG
7 CS AX MOV AX ES MOV 0 [SI] AL MOY HERE BYTE REF SCAS 0=

] IF CY PUSK 51 FUSH DI PYSH DI DEC BX X MOV (ge* count)
3 BYTE REPI CMPS 0= { compare the strings for equality!)

10 IF BX FGP AX FOF AX POP BX DEC -1 # AX MOV ¢ true flagh)
11 (FIND{} #) JMF THEN DI POP 31 POP CXY POF ELSE AX AX 1DR
12 (FIND1Y 4) JMF THEN) JNF END-CODE

13

14

15

222

WBI 11-09-1985 % String functions...

Y THE EXIT FOINT CODE (FINDE)

\ FIND SUBSTRING
SEARCH

is the exit poirt for the SEARCH furct:on that follows.
At entry, the BX contains the offset address, and the
AY rontains the TRUE or FALSE flag.

is a very high speed fhow could it be faster?) functics
that scans a string trying to locate the qiven substring
within it. The method used 13 to search for the first
tharacter, and when found, compare the characters that
follow it for a compiete match. 14 both faii, the search
for the first character continues from where it left aff
until we’'ve scanned the entire buffer,

WBI 11-09-1985

Volume Vlil, No. 4

FORTH Dimensions

NTEL
8031

MICRO-

b
]
&
R
=
b
=
3
=
53
=
K
K3
%
B
oo
3
ot
e
2
2
3

FEATURES
—FORTH-79 Standard Sub-Set
—Access to 803! features
—Supports FORTH and machine

code interrupt handiers
—Systern timekeeping maintains
time and date with leap
year correction
—Supports ROM-based self-
starting applications

COsT
130 page manual —$ 30.00
8K EPROM with manual—$ 100.00

Postage paid in North America.
Inquire for license or quantity priang.

............................

Bryte Computers, Inc.
(207) 547-3218

" toy
O R R SR Y

CONTROLLER!

3 Leaky Sieve

P.O. Box 46, Augusta, ME 04330 ®

G.D.A. Brown. A frequency count
of 190,000 words in the London-
Lund Corpus of English Conversa-
tion. Behavior Research Methods,
Instruments & Computers, 16
(6):502-532, 1984.

S.R. Ellis and R.J. Hitchcock.
““The Emergence of Zipf’s Law:
Spontaneous Encoding Optimiza-
tion by Users of a Command
Language.”’ IEEE Transactions on
Systems, Man, and Cybernetics,
vol. SMC-16(3):423, May 1986.

5. G.K. Zipf. Human Behavior and
the Principle of Least Effort.
Addison-Wesley Press, 1949.

6. R.W. Hamming. Coding and In-
formation Theory. Prentice-Hall,
1980.

Sincerely,

James C. Brakefield, M.S.E.E.
San Antonio, Texas

Mr. Quverson:

In the process of optimizing the sieve
benchmark, Terry Noyes has unwit-
tingly rejected a superior algorithm
and departed from the de facto bench-
mark standard. The sieves Mr. Noyes
calls ““corrupt’ are not corrupt at all.
They correctly count 1899 primes from
3 to 16383. The FLAGS array represents
only odd integers, and only odd multi-
ples of primes are ‘‘flicked.”” Fortun-
ately, the Noyes version is easily modi-
fied to incorporate the better algo-
rithm, and the resulting version finds
the 1899 primes slightly faster than the
unmodified version finds 1028.

Stephen Brault
Chandler, Arizona

Mr. Ouverson:

1 would like to retract my April letter
to you (Forth Dimensions V111/2) and
live in shame for the rest of my life.

I had thought that the 0 - 8192 loop
in all sieve benchmarks meant they
were calculating the number of primes
from zero to 8192. Not so. A few
weeks after the letter was sent to you,
someone pointed out that these sieves
were actually finding primes in the
range of zero to 16,000+ by looping
through the 8192 odd numbers in that
range.

Oh.

Fortunately, we use identical code to
benchmark other Forth systems, so
they also received the five percent
speed improvement resulting from
using the wrong sieve program. I've
enclosed the proper Forth sieve with
this letter.

Living and Learning,

Terry Noyes
Palo Alto Shipping Company
Menlo Park, California

Seeing is Believing
Dear Marlin:

1 enjoyed Michael Ham’s ‘‘Making
Numbers Pretty”” (VII/5). I had just
written a routine to calculate the neces-
sary number for masking a given bit
(or bits) and Michael’s words .BITS and
16BiTs fit in perfectly, although I
modified them slightly.

Referring to the enclosed listing, the
words BIT-MASK and 2BIT-MASK return
to the console the number necessary to
mask the desired bit, or bits, in the
current base. The words .BITS and
16BITS visually confirm the mask, mak-
ing life a little easier for us doubters!

For example, if you want to mask bit
five, then entering 5 BIT-MASK (in base
ten) will give:

32 In base 10
HI: 0000 0000 0010 0000 :1L.O

while if bits four and six are to be
masked, then 4 6 2BIT-MASK (in base
sixteen) will return:

50 In base 16
HI: 0000 0000 0101 0000 :LO

FORTH Dimensions

Volume VHIi, No. 4

Noyes’ Sieve

decimal
8192 constant size

variable flags size vallot

. primes (- primes) (does the primes once>
flags size @1 (it} ¢ initialize the array)
a (¢ prime counter)
size O ¢ range/2 of numbers to do)
Do
fiogs | + c® (sge if prime already)
IF
3i+it+tdupi +size« (don't go too fard
IF
size flags + over flags + i + (range of nums to tag)
Do
@ i ct dup (tag numbers as non-primes)
+00F
THEN
drop 1+ (drop the i used for +loop, increment prime count?
THEN
LOOP ;
. sieve
COUNTER (start counting ?
12 @ p0 primes LOOFP ¢ perform 10 iterations)
TIMER (stop counting >
CR . ." primes” ¢ print the number of primes >
9 @ DO DROP LOOFP ; ¢ clean-up stack >

CR .¢ Type 'sieve’ to execute this benchmark program > CR

Forth Sieve. Uses pointer arithmetic to calculate the number of primes from
zero through 16383. To save space and time, it only needs to work with the 8192

odd numbers.

Thomas’ Bit-Mask Locator

Listing 1
Screan #5
0. \ masking-number calculator gtAugBs
1. 1 8PC 32 HOLD
2, 1 {6BITS (FD 7/5, M.Ham, modifimd) CR ." HII"
3. <H % % % W (hi nibble) BPC # # # % BPC 8PC
4, NN HEBPC B # W W N (lonibbley TYPE " ILO"
5. t+ BITS (FD 7/5, M.Ham, modified) BASE @ BWAP
& 2 BABE ! 8->D 14BIT8 BASE ! GUIT
7. + BAS= BABE @ DUP DECIMAL ." In bame " . BABE !

9. 1 BEE~-MASK DUP CR U. BASs= .BITE
10. 1 MASK DUP IF 1 BWAP BLA (left shift) ELBE 1 OR THEN)

12, 1 BIT-MABK (n =-- ldisplay number to mask bit nj n=0 thru 135)
13, MABK BEE-MABK }

FORTHKkit
S Mips computer kit
$400

Includes:

Novix NC4000 micro
160x100mm Fk3 board
Press-fit sockets

2 4K PROMs

Instructions:

Easy assembly
¢mMFORTH listing
shadows
Application Notes
Brodie on NC4000

You provide:

6 Static RAMs

4 or 5 MHz oscillator
Misc. parts

250mA @ 5V

Serial line to host

Supports:
8 Pin/socket slots
Eurocard connector
Floppy, printer,
video 1/0
272K on-board memory
Maxim RS-232 chip
Inquire:
Chuck Moore’s

Computer Cowboys

14, 1 2BIT-MASK (ni n2 -- idisplay number to mask bits ni & n2)
15, MABK BWAP MABK + BEE-MABK)
410 Star Hill Road
Woodside, CA 94062
(415) 851-4362
Volume VIII, No. 4 7 FORTH Dimensions

[

TOTALCONTROL
with LM/ FORTH"

For Programming Professionals:

an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:

Interactive Forth-83 Interpreter/Compilers

* 16-bit and 32-bit implementations

¢ Full screen editor and assembler

* Uses standard operating system files

* 400 page manual written in plain English

¢ Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler

* Unique table-driven multi-pass Forth compiler

* Compiles compact ROMable or disk-based applications

* Excellent error handling

* Produces headerless code, compiles from intermediate
states, and performs conditional compilation

e Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303

* No license fee or royalty for compiled applications

For Speed: CForth Application Compiler

¢ Translates “‘high-level” Forth into in-line, optimized
machine code

* Can generate ROMabie code

Support Services for registered users:
e Technical Assistance Hotline

* Periodic newsletters and low-cost updates

¢ Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

i Laboratory Microsystems Incorporated

Post Office Box 10430, Marina del Rey, CA 90295
Phone credit card orders to: (213) 306-7412

Overseas Distributors.

Germany: Forth-Systeme Angelika Flesch, Titisee-Neustadt, 7651-1665
UK: System Science Ltd., London, 01-248 0962

France: Micro-Sigma S.A.R.L., Paris, (1) 42.65.95.16

Japan: Southern Pacific Ltd., Yokohama, 045-314-9514

Australia: Wave-onic Associates, Wilson, W.A,, {09) 451-2046

Conveniently, both the base of the
mask and its binary representation are
displayed. (Remember, the sixteen bits
are numbered zero through fifteen.)

The word SLA in MASK is my
system’s ML shift-left arithmetic word
(nl cnt —— n2). Replace it with your
appropriate instruction. The 1 OR in
MASK takes care of the zero bit
position, as in 0 BIT-MASK.

Forth Dimensions and its contribu-
tors often supply me with either some
finishing touches or an idea to expand
on. Thanks!

Sincerely,

Gene Thomas
Little Rock, Arkansas

Student Roots
Dear Editor,

During this Summer Quarter of
1986, I have been providing the cour-
sework for a student taking ‘‘Forth
Programming’ at Auburn University
at Montgomery. As one of his assign-
ments, this student (Hunter Moseley)
was required to write a square root in
Forth (F83) based upon a Newton’s
method-type algorithm. However,
Hunter went beyond my thought and
wrote code that put mine to shame. My
code is shown in Figure One.

The D*/ used does the same thing as
*/ but with double-precision numbers.
In other words, (d1 d2 d3 -- d4). Also,
the 2NIP is a double-precision NIP. I
hated to use the double-precision
words, but for the accuracy needed,
they were necessary.

Hunter’s code was simply that
shown in Figure Two.

In a time test on a Zenith-151 with
10,000 iterations, dropping the result
each time, Hunter’s code guaranteed
119 seconds with any input from zero
to 32,766. Mine, however, with an
equivalent range of inputs, does the
square root of one in seventy-five
seconds, the square root of two in 280
seconds, and gets even worse after
that.

As can be seen, the two approaches
are based on the same idea, but
Hunter’s does no bound checking. His

FORTH Dimensions

Volume VIII, No. 4

Davies’ Square Roots

: SeRT (d1 d2 -- d3)
RECURSIVE
20VER 20VER 20VER 10000 O 2ROT D%/ 2SWAP
20VER 10000 O 2SWAP D#/ 20VER D- DABS
5 0 D< IF 2NIP 2NIP EXIT
ELSE D+ D2/
THEN
S@RT
¢ SER (t nl ~-- n2)
10000 ¥D 10000 O SGRT 10000 UM/MOD NIP §
Figure One
T SEeR { nl -- n2)
1 100 DO 2DUP / 2/ LOCOP NIP j
Figure Two
CODE SBR t n1 -- n2)
DX POP SI PUSH DX SI MOV 1 # BX MOV
10 DO
DX DX XOR SI AX MOV BX DIV AX BX ADD BX SAR
LooP
S1 POP BX PUSH NEXT END-CODE
Figure Three
: DSeR ¢ d1 -- d2)

1. 19 0O DO 20VER 20VER D/ D+
LOOP 2SWAP 2DROP

Figure Four

D2/

simpler application of the algorithm is
much slicker — beauty in Forth.

Additionally, as an experiment with
F83’s assembler, I translated Hunter’s
algorithm into assembly. The code is
listed in Figure Three. A time test on
the Zenith-151 with 10,000 iterations,
dropping the result each time, guaran-
teed five seconds! Yes, that’s right —
2,000 iterations per second! Perhaps
this amazes no one else, but 1 was
somewhat shocked.

For those interested, Hunter also has
the signed, double-precision version of
the square root. The code is in Figure

Four. The b/ is a double-precision
divide. If anyone is interested in the
code for these operators and their
double-precision primitives, I will glad-
ly share them.

In any case, I present these attempts
as examples of how traditional mathe-
matical thought sometimes must give
way to the more efficient patterns used
by our friends — the computers — and
Forth.

Sincerely yours,

R.L. Davies
Montgomery, Alabama

Second Take:
Multiple LEAVEs by Relay

Dear Mr. Ouverson:

Please discard my previous letter to
you (Forth Dimensions VII1/3), as it
was completely erroneous. My intend-
ed verification test wound up with
confusion between the fig-FORTH
words in my system and the new
words, due to my carelessness! Here is
the new manuscript:

John Hayes’ ‘‘Another Forth-83
LEAVE”’ (VII/1) stimulated me to try
to find an even simpler way to handle
multiple Forth-83 LEAVEs. 1 decided
that a straight-forward approach invol-
ved having each LEAVE simply branch
to the next LEAVE, with the last one
removing the index values from the
return stack and branching to the word
following LOOP.

I ““grafted’’ such a construction onto
fig-FORTH with the definitions below;
words with a * prefix are used to
identify changes from fig-FORTH.
Unstarred words such as (p0) and
(Loop) are unchanged. Whenever a
*LEAVE is compiled, the variable PLACE
is used to hold the location of its
branch value for later adjustment. This
variable also serves as a flag to show
that there is a leave branch to be
resolved. *LOOP calls a >RESOLVE to
install the jump value of the preceding
(if any) *LEAVE; also, if there is a
*LEAVE in the word, a special
OUTLEAVE is compiled immediately fol-
lowing the (LOOP) closure. OUTLEAVE
removes the (two) loop parameters
from the return stack and proceeds to
the next word, i.e., the word that was
entered after *LOOP. If the *LEAVE
command is not invoked at run time,
the normal loop operation removes
these parameters from the return stack,
SO OUTLEAVE must be skipped over.
*LooP compiles this bypass with a
BRANCH 4 which is encountered in nor-
mal loop completion. Alternatively,
(Loopr) could be modified to use
OUTLEAVE in normal loop completion.

Note that OUTLEAVE can be a
primitive which removes two words
from the return stack by using PLA four
times. If OUTLEAVE is defined as a

Volume VIil, No. 4

FORTH Dimensions

Page’s LEAVE by Relay

0 UYARIAEBLE FLACE

: FRESOULVE HERE WER — SiaP !0 g

: ‘FESOLVWE HERE - , 3

: QUTLEAVE R> R: DROFP R> DROF R

: 00 0 PLACE ¢ COMPILE B0y HERE 3 3 IMMEDIATE

< Same axs FIG DO with inserticn of O PLACE

: *LQ0OF 2 ?PRIRT COMFRILE (LOOP» <REZOLVE o oususl, plus fallowing
PL&CE o #DUFP IF COMFILE BRAMCH 4 | ™~ for =kipping OGUTLEAVE
CREZOLVE COMPILE OUTLEAVE THEM 0 PL&CE ' 5 IMMEDRIATE

colon word, its first operation is to call
the generic colon-word procedure
which pushes the compilation address
of the following word (the desired one
at the end of the loop) onto the return
stack, above the parameter values to be
removed. In this case, the top value

: *LESE FLACE @ ZDUPR IF :RESOLUVE THEM resclue any preceding LEAVE must be saved and restored by
COMPILE BRAMCH HERE PLACE ' 0, ; IMMEDIATE defining:
L TEST ¢ nil ni-—-» »00 1 S = IF I . sLEAVE THEN : OUTLEAVE
I 10 = IF 1 . »LEAUE THEM *L0OOF " EMD "
: TESTL S 0 00 = ¢ +DO 1 S = IF I . *LEAVE THENW »L0OOP ." END " sLOOP ; R> R> DROP
: TESTZ S 0 *D0 5 1 #DD *L0OCF 1 2 = IF 1 . #LERUE THEW *LOOP ," ERD "
: TESTR ¢ nl nZ---: »00 7 0 ¥p3 1 3 = R> DROP >R ;
1F 1 . =LEAVE THEM *LOOP ." INMER *
1 5= 1F 1 . *LEAVE THEM »LOOF ." END *

The test words use this *LEAVE in
multiple occurrence in a single loop; in
single occurrence in both inner and
outer of two nested loops; and in both
inner and outer loops. In nested loops,
any *LEAVE in an outer loop must
occur subsequent to the end of the
inner loop. Starting a new loop before

Borenstein’s Fixed-Point Trig

SCR =1

0 (SIN SCALED BY 3784)

1 {0<X¢5944 <==> 0 <X <90 DEG)

2 (O<SINX <3784 <==> O<SINX<1)
3 O VARIABLE XS

4 - DEG 6604 100 */ - the forward resolution of the *LEAVE

S - KTIMES 17321 M* SW/’\P OROP - jump wquld cancel the record of the

6 :TERMI XS @ U* DROP U* SWAP DROP MINUS ; LEAVE (in PLACE).

7 ‘Chester H. Page

8 : SINI Silver Spring, Maryland

9 DUP 256 > IF (Check on small X)

10 DUP { Leave one copy of X on stack) | MMS Upgrade Offer

1R DUP U* SWAP DROP DUP XSt (XS=7%7/2"16) Dear Editor:

12 4 U* DROP MINUS (2°16 - 4%%S) ear Editor:

IS 7 TERMI 15 TERMI 50 TERMI Any licensed MMSFORTH user who

14 U* SWAP DROP had not received a gold-colored v2.4

15 THEN ; discount letter by the end of September
1986 — please notify MMS of your

SCR *2 current address so we can send it along,

0 (COS! TANI SIN COS TAN) or call us for further information.

' Sincerely,

2 : "7MIRROR DUP 5944 > IF 11888 SWAP - THEN ;

3 A. Richard Miller
4 :REDUCE 23776 MODDUP O¢IF 23776 + THEN DUP 11888 < IF Miller Microcomputer Services

5 7MIRROR ELSE 11888 - ?MIRROR MINUS THEN | 61 Lake Shore Road

6 Natick, Massachusetts 01760-2099

7 - SIN REDUCE DUP ABS SIN! SWAP O<IF MINUS THEN ;

8 Fixed-Point Trig

9 .COS! 5944 SWAP - SIN?

10 - COS 5944 SWAP - SiN ; In the May/June 1986 issue of Forth

K Dimensions, we carried an article titled
“Fast Fixed-Point Trig”’ by Johann

12 : TANI DUP SINT 3784 U* ROT COS1 461 MAX U/MOD SWAP DROP ; Borenstein. Due to space limitations,

13 we were unable to print the companion

14 : TAN 11888 MODDUP O < IF 11888 + THEN DUP 5944 > {F screens to the article in that issue. You
15 11888 SWAP - TANT MINUS ELSE TAN! THEN ; will find them herewith.

—FEditor

FORTH Dimensions 10 volume VIiI, No. 4

An invitation to attend the eighth annual

FORML CONFERENCE

The original technical conference
for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving
November 28 - 30, 1986

Asilomar Conference Center

Monterey Peninsula overlooking the Pacific Ocean
Pacific Grove, California

Theme: Extending Forth towards the 87-Standard

FORML isn't part of the Standards Team, but the conference is an opportunity to present
your ideas for additions to the Forth standard. Papers are also welcome on other Forth
topics. Meet other Forth professionals and learn about the state of the art in Forth
applications, techniques, and directions.

To get your registration packet call the FIG Business Office (408) 277-0668
or write to: FORML Registration, Forth Interest Group, P. O. Box 8231,
San Jose, CA 95155.

Registration: $275 Double Room
$325 Single Room (Limited availability)
$ 150 Non-conference guest (Share a double room)

Registration includes room, meals, conference materials, and social events.

Space is limited,
advance registration
is required.

g

Volume VHI, No. 4 11 FORTH Dimensions

Conventions

We’ve talked about this before, but
someone — one of our authors, yet —
recently confused F83 with Forth-83.
Big mistake! F83 is an ultra-superset of
Forth-83, nearly an order of magni-
tude larger. Forth-83 and 83-Standard
are common shorthand for the phrase,
““Forth-83 Standard.”” The name F83
is not an even shorterhand, it is the
name of an implementation of Forth.
Does everyone understand the differ-
ence between a language implementa-
tion and a standard?

As we send this issue to press, last
minute preparations are underway for
the imminent 1986 Forth National
Convention. A major component of
this year’s convention is a six-part
seminar on Forth engines. Those ses-
sions will focus on the new multiple-
stack WISC (writeable instruction set
computer) machine; applications of the
Novix 4000 and the design of the Novix
6000 chip; Forth engines developed by
Hartronix, Lockheed and Johns Hop-
kins; ROM-based Forth engines (i.e.,

the Super-8, R65F11 and F68HCl11
microprocessors); Forth engine soft-
ware; and the future of Forth engines.

Numerous additional events and con-
current sessions are planned to serve the
particular interests of all attendees. Ex-
hibitors will include major vendors of
commercial Forth hardware and soft-
ware. Special groups will gather to dis-
cuss F83, MacForth/MultiForth, MVP-
FORTH, NC4000, polyFORTH and
68000 machines (e.g., Macintosh, Atari,
Amiga). There will be tutorials about
control structure extensions, files and
string /0, multi-tasking in polyFORTH,
oblique flying wings, target compila-
tion in F83 and vectored execution of
I/0 words.

A FIGGRAPH session will feature
the latest in computer-generated graph-
ics of significance to the Forth com-
munity. FIG chapters’ representatives
will convene, and there will be a na-
tional meeting of Forth Interest Group
members. As in past years, the conven-
tion will also feature a banquet with

keynote speaker (separate registration
required to reserve a seat), a report
from FORML including this year’s trip
to important Forth sites in China, and
a ‘“fireside chat’’ with Mr. Charles
Moore, original developer of Forth.
There you have it in a nutshell, or
perhaps in a kernel. It seems that as
Forth has matured, it has gathered a
potency which can propel it into new
areas. This integral vitality can lead
Forth in unexpected, surprising direc-
tions. Keep abreast by joining us in
California on November 21-22 at the
Santa Clara Trade & Convention Cen-
ter, near the new Doubletree Hotel.
And for an intensive immersion in
Forth methodology and experimental
proposals, stay for the following week-
end’s FORML conference at the Asilo-
mar conference grounds in Pacific
Grove, adjacent to Monterey. Infor-
mation for either event can be obtained
by calling 408/277-0668, the FIG hot-
line.
—Marlin Ouverson
Editor

FORTH Dimensions

12

Volume VIlI, No. 4

Part Two: New Solutions to Old Problems

Dual-CFA Definitions

Mike Elola
San Jose, California

The introduction of a dual-CFA
definition structure provides a new
building block for Forth programming.
It also provides a new method for
decomposing larger functions into
smaller functions.

Because of the new possibilities af-
forded by dual-CFA decomposition,
worthwhile changes to many imple-
mentations of Forth can be formu-
lated. By contrasting these new defin-
itions with the alternatives currently
available, the value of this new metho-
dology can be demonstrated.

Changes are suggested within each
of three different areas common to
most implementations of Forth. The
areas to be covered are (1) deferred
definitions, (2) vectored definitions
and (3) definitions that dispatch multi-
ple functions. This roughly parallels
the organization of topics in my orig-
inal paper describing dual-CFA de-
composition!. It showed that dual-
CFA definitions help maintain a con-
sistent strategy for decomposition and
that this strategy can be the basis of a
Forth programming philosophy aimed
at memory compactness, brevity of
expression and ease of programming.

Deferred Definitions

Deferred definitions are used to al-
low a lower-level word to dispatch a
function that is defined in terms of
many high-level support words. When
definitions that require the undefined
function are compiled, a superficial,
“stand-in”’ definition is compiled in
lieu of the actual, desired function.
Later, the stand-in definition’s body is
modified to reference the correct, high-
level definition.

Dual-CFA definitions can be used to
implement deferred definitions. The
dual-CFA word functions as the stand-
in definition that is modified later
when the dictionary contains the sup-
port needed for compiling the “‘real”’
definition.

In this implementation, the dual-CFA
definition performs a self-modification

function (aided by the dual-CFA defin-
er). The child transforms itself into a
parentless, single-CFA definition when
executed. After execution, it contains a
reference to a headerless definition at
the top of the dictionary (see Figure
One).

The definition for the parent definer
is:

: DEFER: <word> (-—)
CREATE DOCOL , COMPILE-DEF
DOES > (cfa2 —-)

DUP @ OVER 2- ! (normalizing cfal)
DUP @ , (compiles docol)
HERE 2- OVER! (overwriting cfa2)
NFA . COMPILING BODY OF ” ID. CR
COMPILE-DEF ;

Dictionary entry before execution:

CHILD'S DOES> DOCOL CALLTO
NAME CFA CFA EXIT
CHILD’'S DOCOL UPSTREAM CALL TO
NAME CFA CALL EXIT

Dictionary entry after execution:

Self-transformation of a dual-CFA
word created with DEFER

Figure One

GE string-add cfaz -~ d i
R DUF i+ C@ 43 = DUF
IR

REPEAT DROFP
R» R> DROF 1F DNEGATE THEN

Figure Two

The advantages of this technique are
the unavailability of the definition-
modifying function except to the unin-
itialized children of DEFER:, the use of
only one name field (as compared
usually to two) and the decreased
chance of crashing (since the
definition-modifying action can’t be
applied to just any word).

Note that the first advantage is ac-
tually a limitation that may not appear
advantageous to some. In F83, defer-

red definitions are initialized with 1s,
which patches the specified word. 18
can be used more than once and can be
used with any word, not just those
words that are created with DEFER.

A new disadvantage regarding the
dual-CFA implementation is that the
deferred function must be specified in
a non-standard way: the name of the
deferred definition replaces the colon
and name string at the start of the
definition. Because of this, it is more
difficult to separately recompile the
high-level definition again. For ex-
ample, DEFER: may be used to create
?ERROR, which is defined at a later
time in the following manner:

?ERROR (flag ——)
IF .“ERROR” ABORT THEN ;

To separately recompile ?ERROR
again, a colon must be provided. How-
ever, the first body of ?ERROR still
points at the original, headerless defin-
ition.

One solution is to provide another
support word:

: REDEFER: < old deferred word>
[cOMPILE] * (PFA)
DEFERRED-CFA SWAP CFA!

(-

Now you need not change the source
code by adding a colon. Instead, you
enter REDEFER: 7?ERROR as a
preparative step. Then you can load
the source code as-is.

In the preceding definition, DEFER-
RED-CFA is a constant. It points to the
DOES> phrase in the parent defining
word. Its derivation was not shown.
One way to derive it is to use:

DEFER: JUNK
LATEST PFACFA @
FORGET JUNK
CONSTANT DEFERRED-CFA

(cfa-value ——)

Note that REDEFER: increases the
chance for crashes, since its definition-
modifying function is not restricted to
deferred words. To remedy this, extra
code can be added to the definition to
ensure that it contains an upstream
reference:

Volume VI, No. 4

13

FORTH Dimensions

FORTH-83 STANDARD
e o 6809 Systems available for
FLEX disk sustems $150
0S9/6809 $150
o ¢ 680x0 Systems available for
MACINTOSH $125
CP/M-68K $150
e o {FORTH/20 for 68020
Single Board Computer

Disk based development system
under 0S9/68K . . . $290

EpROM set for complete stand-
aloneSBC........ $390
@ o Forth Model Library - List
handler , spreadsheet, Automatic
structure charts . .. each . $40

* Target compilers : 6809,6801,
6303, 680x0, 8088, 280, 6502

i Talbot Microsystems
§ 1927 Curtis Ave
Redondo Beach

CA 90278

(213) 376-9941

68020 SBC, S 174" floppy size
board with 2MB RAM, 4 x 64K
EpROM sockets, 4 RS232 ports,
Centronics parallel port, timer,
battery backed date/time,
interface t0 25 1 /4" floppies
and a SAS! interface to 2
winchester disks $2750
68881 fit pt option $500
059 multitask&user 0S. . $350
E A 5]" int. benchmarks
speeds are
2 x aVAX780, 10 x an IBM PC

Listing One
Processing of counted strings (i.e., already-parsed words)

Target Stack Effecti cadd ~-)

: FAILING-iL00KUP: (<error-processing-function’>)
CREATE DOCOL , COWPILE-DEF
DOES? (cfaZ) >R { cadd i pfa ien 7 flag --)
DUP CONTEXAT @ @ (FIND) i cadd { pfa ien 1 fiag }
U= IF R> { cadd ctaz -~) EXECUTE ELSE R’ DROP THEN ;

FAILING-LOOKUP: PINTERPRET-NUFMBER; (cadd -- 7 1}
NUFBER-VALUE? 7STACK { overflow?)
UPL. @ O< IF DROP THEN R> R>» ZDROP ;

FAILING~-LOOKUP: 7COMPILE-NURBER; (cadd -- 7)
NUFMBER-VALUE? DFL @ i+ IF
[COMPILE] DLITERAL ELSE I[COWFPILE] LITERAL THEN R> R» ZDROF ;
; INTERPRET-WORD (cadd --)
ZINTERFRET -NUMBER{
{ cadd pfa ien --) ROT ZDROP
{ pfa) CFA EAECUTE 75

: IN
7

TERFRET-WORD (cadd -~)
COrP ILE-NUMBER;

{ cadd pfa ien -~)
{ pfa ien } i¥Z2 7 1IF

Word Parsers
Target Stack E+tecti{ -- fiag)

{ stream~-add -- fiag
e

ce ;

Al
m o~

a
H

: TiB-WORD (c -- fiag)
TIiB @ (WORD) ;5

. BLK-WORD 1 c -- flag)
BLK @ BiL.OCK (WORD) 3

Null-delimited input stream
parsers/processors

Target Stack Effecti{ --)

VARIABLE PROCESS-WORD’

{ {parsing-function-jeaving-counted-string-at-dp’j
CREATE DOCOL , COMNPILE-DEF
UOES? (cfaz -- 1 7R
BEGIN K& EAETCUTE WHILE
HERE PROCESS-wWORD® @& EXECUTE REFEAT

k> DROP 3

STREAM-PROCESSOR: TIB-FPROCESS (-- 1}
\

STREAF-PROCESSOR: BLK-PROCESS (=-- 1}
3Z BLK-WORD ;

FORTH Dimensions

14 volume VI, No. 4

Listing Two

{ fiag -- }
OUNT TTPE
{ Dik# -- 1}

i

: REDEFER: < old deferred word> (——)
[cOMPILE] * (PFA)
DUP @ U< O=1IF
CR .“ - MUST BE A DEFERRED WORD”’
ABORT THEN
DEFERRED-CFA SWAPCFA ! ;

Vectored Definitions

Vectored definitions can often be
replaced by fixed-behavior, dual-CFA
words. Such words can directly invoke
the desired function. For flexible pro-
cessing, a variety of these words can be
defined. Each one would be suited to
use in a particular context.

Dual-CFA words offer flexibility in
a fundamental Forth form: compile-
time selection of the desired behavior
by a reference to the correct word from
the dictionary. This practice retains the
ease-of-use that characterizes normal,
fixed-behavior words!.

For example, NUMBER often employs
a vector to provide a means for flexible
processing. Because the behavior you
desire is usually known at compile
time, you do not really need run-time
flexibility — just a wider selection of
compilable behaviors. This makes
NUMBER a good candidate for dual-
CFA decomposition.

The function of NUMBER is to con-
vert an input string into a number.
When the conversion process fails,
program execution is immediately
aborted in many Forth implementa-
tions. Such an outcome is fine during
the interpret or compile phase, but
often is undesirable in a finished ap-
plication.

Several versions of NUMBER are
needed. Each would have a different
failure outcome. This can be achieved
by creating a definer word that incor-
porates NUMBER (see Figure Two).

Volume VIIl, No. 4

To define a number-conversion
routine suitable for internal use when
interpreting or compiling, one child
definition might be:

FAILING-NUMBER:
NUMBER-VALUE?
CR COUNT TYPE
. -~ NOT RECOGNIZED” ABORT ;

To define a version of NUMBER more

suitable to an application, another
child definition could be:

FAILING-NUMBER:
INPUT-NUMBER (string-addr —- d?)
C@ BACKSPACES
TIB 12 EXPECT 0 >IN !
32 WORD HERE RECURSE ;

(string-addr —- d?)

The advantages of the dual-CFA
definitions over vectored definitions
are the memory compactness of the
compiled words, the absence of inter-
mediary variables, the absence of re-
quired initializations and greater im-
munity to crashes.

Normally, decomposition of the
error-handling code within NUMBER
would not be possible, unless such code
is moved outside of the BEGIN WHILE
REPEAT loop. This would allow the
error instructions to be separately
specified within any number of parent
definitions.

This is similar to the approach taken
in F83. This Forth implementation
includes a primitive version of NUMBER
that does not abort on error. Instead, it
leaves a flag on the stack that can be
used by parent words to trigger any
kind of error processing desired. Since
parent words must process the flag left
on the stack, a conditional phrase is
normally required in all the parent
words where (NUMBER) is used.

15

PREEDOM
OF GEOTCH
—,

SOTA or expen-
Computing sive royalty
Systems or licensing
Limited lets arrange-
you choose ments As
between either long as your
the versatile applications

11gFORTH model

programs do
or the A%

not offer the

XA
79 Standard STAL(L@&L&J) access to
Each version 1s v the basic FORTH

available for a
number of pop-
ular computer

system, you are
free to make as
many copies

systems of the com-
including piled FORTH
the IBM PC, system as
XT and AT you please
(or compa- and
tibles); the distribute
TRS-80 them as
Model 1, I11 you wish
and 4/4P; FORTH
or any from
computer system SOTA 1s the
running CP/M —_==" FORTH of

choice for both

(version 2 x) § = ===
or CP/M Plus — = the novice and
(version 3 x) experienced

What's more, THS—BO programmer

SOTA doesn't Make it your
require you choice now!
to enter into Order your
any awkward Copy today

When you order from SOTA, both the fig
model and 79 standard come complete
with the following extra features at mno
additional charge:
® full featured string handling » assembler ¢
screen editor ¢ floating point » double word
extension set ¢ relocating loader ¢ beginner's
tutorial « comprehensive programmer's guide
¢ exhaustive reference I » unparalleled
¢ technical support » source listings
e unbeatahle price

Gmu. FORM

D Enclosed is wy: Ocheck [money-order US funds
D Please b1l my: D VISA 0 MasterCard
for $89 .95
Please send me: O 79 Standard FORTH O figFORTH model
for the:
OIBMPC DXT DAT <(andcompatibles)
O TRS-80 Model 1 [Model 111 O Model ¢ (0O Model 4P
OCP/M VersionZzx DOCP/M Plus (Version 3.x)
For CP/M versions please note: 5 1 /4" formats only and
please specily computer type:

NAME:
STREET:
CITY/TOWN:
STATE:
CRRD TYPE:
CHRD no:

SIGNATURE:
fo):=15 ;)2 3-1080 Broughton Street]

Vancouver, British Columbia
W2 LA Canada - VGG 288

Grder by Mail or Phone
* (604) 688-5009 °
State of -theArt since 198¢
= 2

Computing Systems Limited

ZIP:
EXPIRY:

IBI1, TRS-30 snd CP/IM are registered trademarks of internationsl

Business Machine Corporation Radio Shack and Digital Resesrch
regpectively

FORTH Dimensions

All the parts needed to make the

SMALLEST
PROGRAMMABLE
FORTH SYSTEM:

&
+5V (3 mA, typical @ 2 MH2)
TTL Serial In
TTL Serial Out
Ground

$50 covers price of parts and manual
in singles, $20 covers cost of chip alone
in 10,000 quantity. $20 gold piece (not
included) shown covering chip to illus-
trate actual size.

The F68HC11 features: 2 Serial Chan-
nels, 5 Ports, 8 Channel 8-bit A/D, major
timer counter subsystem, Pulse
Accumulator, Watchdog Timer, Com-
puter Operating Properly (COP) Moni-
tor, 512 bytes EEPROM, 256 bytes
RAM, 8K byte ROM with FORTH-83
Standard implementation.

Availability: F68HC11 Production units
with Max-FORTH™ in internal ROM avail-
able 4Q/86. Volume quantity available
1Q/87. X68HC11 emulator with Max-
FORTH™ in external ROM available
now. NMIX-0022 68HC11 Development
System boards available now: $290.00.

New Micros, Inc.
808 Dalworth
Grand Prairie, TX 75050
(214) 642-5494

GRAND PRARE,
214/642-5494

To avoid having to repeat that
failure processing with each use of the
F83 NUMBER primitive, enlarged func-
tions could be created. If desired, ver-
sions equivalent to INPUT-NUMBER and
NUMBER-VALUE could be created. Such
versions would exhibit the same ease-
of-use as the dual-CFA versions.

The dual-CFA versions would retain
a very slight advantage over their F83
equivalents: they should compile in less
memory and should execute slightly
faster due to a decreased number of
conditionals.

Definitions That Dispatch
Multiple Functions

When implementing function-dis-
patching words, dual-CFA definitions
can also be advantageous. Listing One
includes several examples that help
illustrate those advantages.

In most Forth implementations, the
main function-dispatching routine is
INTERPRET. Both the compiling and
interpreting functions are often per-
formed within INTERPRET. Since there
is so much commonality between these
two distinct functions, it is easy to
think of them as children of the same
parent process. But what exactly
should this parent process be? The
answer can be found by more clearly
discerning what functional areas are to
be combined.

The common ground between the
compiler and the interpreter is the
input parser. The input parsing func-
tion is the same, whether compiling or
interpreting. It remains a static func-
tion even if there are mid-line transi-
tions between the compiling and inter-
preting functions.

But because of input redirection, the
input-parsing function is not always
static. When loading a block, the input
source must be the block buffer, not
the text input buffer (TIB). Normally,
this flexibility is achieved as a run-time
function of wWORD. So WORD normally
has a variable behavior dispatched
through a conditional phrase. A ma-
jority of the time, this conditionally-
variable behavior can be eliminated.
Input redirection is rarely exercised
during run time. For those exceptions,
a variable-behavior version of WORD
can be defined by referencing the fixed-
behavior versions. By defining LOAD

with a fixed-behavior version of WORD
that only parses blocks, the input
redirection required by LOAD is enabled
using only fixed-behavior words at
compile time.

The implementation shown in List-
ing One factors the function of input-
streamn parsing to a parent definer.
Each of the two dual-CFA children
dispatch a different version of WORD.
The correct one can then be selected at
compile time to suit a given context.
Refer to STREAM-PROCESS, TIB-PROCESS
and BLK-PROCESS in Listing One (as
well as PRINTING-LOAD in Listing Two).

To provide additional, run-time flex-
ibility, WORD can be defined in terms of
the new primitives:

:WORD (C--)
BLK @ IF BLOCK-WCRD
ELSE TIB-WORD THEN DROP ;

To make a nicer, error-detecting
version, the flag returned by the primi-
tive versions of WORD could be proces-
sed as follows:

:WORD (C--)
BLK @ IF BLOCK-WORD
ELSE TIB-WORD
THEN 0= IF
CR .* UNEXPECTED END-OF-INPUT.”
ABORT THEN ;

The variable-behavior version of
WORD is needed for single-word parsers
such as ’ (tick) and CREATE. Having all
three versions (WORD, TIB-WORD and
BLOCK-WORD) provides the program-
mer with more choices. Why use the
variable-behavior version of WORD,
with its extra overhead, when input-
redirection flexibility is not necessary
at run time?

As an extensible programming lan-
guage, Forth can exhibit a wide range
of functionality that broadens with
each new word added. For every pro-
gramming problem confronted, Forth
can be extended in ways that make the
solution easy to program. Not only is
the original problem more easily sol-
ved, but also many related problems
become easier to solve.

See Listing Two for a printing ver-
sion of LOAD that is defined very sim-
ply. 1t could be useful on those few
occasions when a screen will not load

(Continued on page 32.)

FORTH Dimensions

16

Volume ViII, No. 4

Simple File Query

Edward Petsche
Greenport, New York

This article describes an implementa-
tion of a simple file query based on the
data-base elements presented in Forth
Dimensions (see volumes three and
four). The parameter fields of words
defined by FILE and FIELD have been
extended to include some new parame-
ters necessary for the query. The DOER
and MAKE vectored execution words
described in Thinking Forth are also
used in this program. Implementations
of these words for various versions of
Forth are given in that book’s appen-
dix. If you don’t have access to that
book, the implementation in screen 8
should work for all versions of
Forth-83. If you prefer the DEFER and
IS vectored execution words, the neces-
sary modifications, aside from replac-
ing DOER with DEFER (screen 16), in-
volve only screen 23.

This program allows the user to
define and initialize a file, enter data,
query a file on any combination of
fields, delete records and change field
values of records.

FILE is the defining word for files.
The PFA of a word defined by FILE
contains the following parameters:
byte
offset

0 starting block of file

2 maximum number of records for
file
bytes/block
record length in bytes
current record number
10 address of list of fields for this

file
FIELD is the defining word for fields.
The PFA of a word defined by FIELD
contains the following parameters:

byte
offset

0 field width

2 byte offset from start of record
4 field type

The first record of each file (0
RECORD) is used for information re-

garding the length of the file (LASTREC)
and the number of active records in the

o N b

file (#ACTIVE). These items occupy the
first four bytes of this record.

Screen 24 shows the file and field
definitions for a sample application.
Three parameters must be specified
when defining a file: the starting block,
maximum number of records and the
record length. In the EMPLOYEES file
definition, sixty-four is the record
length, 100 is the maximum and thirty
is the starting block.

When a field is defined, three pa-
rameters must be specified: field type,
offset and field width. A width is
specified even for numeric types for
display formatting.

FIELDS compiles a list of CFAs of
field words. The address of the start of
this list is stored in FIELD-LIST. The
syntax for FIELDS is: <file name> n
FIELDS. The file name executes and
becomes the current file. The number
of fields is then left on the stack to
control the loop that compiles the list.

After the program has been loaded
along with the sample file application
(screen 24), type NEWFILE EMPLOYEES.
We are now ready to enter data into the
EMPLOYEES file. Figure One shows a
sample data entry session. Actually,
the field entry prompts appear one at a
time on the screen. When a field entry
is terminated with a carriage return,
the next field entry prompt will appear
on the next line. After all the fields in
FIELD-LIST have been entered, the user
is asked if there is more data to be
entered. The word NEXTREC in the
ENTRY routine reclaims space occupied
by deleted records.

Before querying a file, a display
mode should be chosen by entering
either the STEP or SELECT commands.
STEP is the default mode. Figure Two
shows a display using the STEP mode.
It displays all the fields of each record
found by the query. Records are dis-
played one at a time and the user is
presented with the following options
with each displayed record: modify a
record, continue the query or quit.
STEP does not require any arguments.

The SELECT display mode allows the
user to choose which fields will be
displayed. This mode prints a heading
with the names of the selected fields.

The field values for each record found
are displayed under the corresponding
field name in the heading. The syntax
for SELECT is:

SELECT < file name> <fieldl>
<field2> ... <fieldn>

The maximum number of selections
(EXCERPTS) is five. This is arbitrary.
More fields could be selected depend-
ing on the total number of characters
of the selections. They should all fit on
one display line. An example of a
SELECT display is given in Figure Three.

FIND is the end-user query word. It
will search any combination of fields
for each record in a file. The condi-
tions are GR.THAN, LS.THAN, 1S and
ISNT. The logical operators AND and OR
are also used by the query. The maxi-
mum number of conditions (Q#) for the
query is set for four. This could be
increased, but since T8 will only accept
eighty characters, I felt this was a
reasonable maximum. A query requir-
ing more than eighty characters could
be input from a block using LOAD. If
#ARGS is modified to use a command-
line delimiter, a number of query com-
mands could be included on a block
and loaded.

After the query command line has
been entered, the program executes the
next word in TIB which is a file name, It
is now the current file. Next, the num-
ber of words that follow the file name
in TIB is counted (#ARGS). This number
is incremented by one. If dividing this
number by four leaves a zero remaind-
er, the number of arguments is valid.
The quotient is the number of condi-
tions for this query. This value is left
on the stack to be used by FOUND? and
Q-ARRAYS. Now the query arguments
are stored. The search arguments (the
values that are to be compared with the
specified fields) are stored in TARGETS.
The maximum number of search argu-
ments is thirty. Strings for numeric
search arguments are converted by
NUMBER before they are moved to
TARGETS by the word BRING.

The file is searched, checking each
record to see if it is active (not re-
moved). If it is active, the query argu-
ments are executed by FOUND?, which

Volume VIlI, No. 4

17

FORTH Dimensions

Ay e Y AN Y

AR

Flgure One

processes the query arguments for each
condition to see if the current record
satisfies the conditions. After all the
conditions have been tested, a flag is
left on the stack. If it is true, then the
query conditions have been matched by
the current record and it will be dis-
played.

A word to list the entire file has not
been included in this program. The
entire file can be listed by entering a
query with conditions that will be satis-
fied for all records (e.g., FIND EMPLOY-
EES NAME ISNT XxXxX). The program
includes very little error checking. If
the user enters field names or condi-
tions that have not been defined, the
program aborts displaying the usual
Forth system error message.

Query Glossary

'OPEN Contains parameter field ad-
dress of current file.

'FIELD Contains parameter field ad-
dress of current field.

FIELD-LIST Address within parameter
field of current file that contains ad-
dress of list of fields for that file.

Les ot

SIS R EENE=]

oL o

ariw e Lo

cpad b

oot i e

ane oy Ak

FLOYEES HOURS GR.

<ESC>

< space bar>

Figure Two

THER I

Coto modify
< space bar>

o modi v

oot f oy

oo ol ey

<CR>

LASTREC First byte of record number
zero. It contains record number of last
record in current file.

#ACTIVE Third byte of record number
zero. It contains the number of active
records (not removed) in current file.

FILE File-defining word. When a word
defined by FILE is executed, it places its
parameter field address in *OPEN.

FIELD Field-defining word. When a
word defined by FIELD is executed, it
places its parameter field address in
'FIELD and leaves the address of the
field on the stack.

FLD-WIDTH Contains the width of the
current field. A field width is required
for all field types. For numbers, the
field width is required for display for-
matting.

FLD-TYPE Field types are 0, 2, 4 and 6,
for text, single numbers, double numbers
and dollar amounts.

TABLE Defining word for execution
tables of type-dependent functions.
When executing, words defined by
TABLE use the current field width to
select a function to be executed.

FORTH Dimensions

18

Volume VHI, No. 4

ok

15

FIRTH ABOCT

GMITH ACCT PR
ALLLER Me TR 5 G
BHERNSON DF

FOGE RS At

GILTH AT ISR

Figure Three

(ENTER) An execution table contain-
ing entry words for all field types. The
words in this table all expect a field
address on the stack at execution time.

DISPLAY An execution table contain-
ing display words for all field types. A
field address is expected on the stack at
execution time.

COMPARE An ¢xecution table contain-
ing words for comparing fields to
search arguments. Words in this table
expect two addresses on the stack and
return -1, O or 1, for less than, equal or
greater than.

DASHES Used for prompting input
for record entry.

ENTER Prompts the user for a field
entry. Accepts the input and stores the
entry in the file.

REMOVED? True if record has been
marked as deleted.

#ARGS Counts the number of argu-
ments remaining in TIB. Should be
modified if block input is to be used
for commands.

a# Maximum number of conditions
searched for by query.

#HITS Number of records found. In
this application, #HITS is only used as a
flag, but it is easy to imagine other uses
for it.

LOGICALS Array of logical operations
(AND and OR) to be performed by
query.

OPERANDS Array of field operands to
be compared by query.

CONDITIONS Array of query condi-
tions (GR.THAN, LS.THAN, IS Or ISNT).

TARGETS Address of start of storage
area for search arguments.

+TARGET Uses index on stack to off-
set into TARGETS.

BRING Execution table for words that
bring the search arguments to TARGETS.

GET-TARGET Brings next word in TIB
to TARGETS using index on stack to
offset.

polyFORTH GETS

YOUR PROGRAM
FROM CONCEPT
TO REALITY

4 T0 10 TIMES

THE ONLY INTEGRATED SOFTWARE
DEVELOPMENT PACKAGE DESIGNED
FOR REALTIME APPLICATIONS

It you're g real-time soffware developer,
polyFORTH can be your best ally in
getting your program up and running
on time. in fact, on the averoge, you
will develop o program 4 to 10 times
faster than with traditional program-
ming languages.

polyFORTH shortens development
time by making the best use of your
fime. There are no long waits while you
load editors, compilers, assemblers, and
other tools, no fong waits while they
run—because everything you need is
in a single, easy-to-use, 100% resident
system. Using polyFORTH, you take ¢
raw idea to fast, compiled code in
seconds—aond then fest it interactively.

polyFORTH has everything you need
to develop real-fime applications: fast
muiti-tasking, multi-user 0S; FORTH
compiler, interpreters, and assemblers;
editor and utilities; and over 400 primi-
tives and debugging aids. With its unique
modular structure, polyFORTH even
helps you test and debug custom hard-
ware interactively, and it is available for
most 8, 16, and 32-bit computers.

FORTH, Inc. also provides its customers
with such professionat support services
as custom application programming,
polyFORTH programming courses, and
the FORTH, Inc. “Hotline”

For more information and a free
brachure, contact FORTH, inc. today.
FORTH, Inc., Y N. Sepulveda Bivd.,
Manhattan Beach, CA 90266. Phone
(213) 372-8493.

FORTH.Inc.

Volume VIII, No. 4

19

FORTH Dimensions

.HEADER A quick and dirty format-
ting word for the SELECT display mode.

SPREAD A quick and dirty formatting
word which attempts to keep the dis-
played field values lined up under the
field names in the display header.

SELECT End-user word for choosing
fields to be displayed. Maximum num-
ber is five in this application. Can be
changed, but the total number of
characters of the fields selected should
be less than eighty.

FIELDS Includes fields in the field list
for a file after they have been defined.
Expects the number of fields on the
stack (< file name> n FIELDS).

STEP An end-user word to control
display. All fields for a record will be
displayed, one record at a time.

NEWFILE Initializes file by setting
LASTREC and #ACTIVE to zero.

Q-ARRAYS Uses the number on stack
— which is the number of conditions

for a particular query — as a loop
index to load query arrays with argu-
ments from TIB. First entry in LOGICALS
is a no-op word.

FOUND? Compares fields with search
arguments to determine if query condi-
tions are satisfied.

FROM Executes the next word in TIB
which is a file name.

(FIND) Examines every record in the
current file, checking first to see if the

Screen # 8
\ DOER/MAKE
: NOTHING
: DOER CREATE ['] NDOTHING
VARIABLE MARKER

*BODY

Screen # 11

RECH & RECORD ;
¢ FIELD-LIST (-- a) 'OPEN &
+ REC-LEN ‘OPEN B b+ B

10 +

DOES> @ R -1

Screen # 10

\ Systen extension words

0 CONSTANT FALSE
CONSTANT TRUE
: BLANK-PAD

: (MAKE} R> DUP 2+ DUP 2+ GWAP @ DBODY ! @ 7DUP : TEXT (¢ --) BLANK-PAD WORD COUNT PAD SWAP CMOVE: ;
IF R THEN ; : -TEXT (adr n adr -- n) ZDUP + SWAP DD DROF 1+ DUF -
: RAKE STATE @ IF COMPILE (MAKE) HERE MARKER ! 0 , L& 1C& - DUP IF DUP ABS / LEAVE THEN LOOF SWAF DROP ;
ELSE HERE C(COMPILEI * »BODY ' 1 STATE ' INTERPRET : -ROT ROT ROT ;
THEN ; IMMEDIATE : -DOUBLE { al a2 --)\ works like ~TEXT for double #s
¢ jAND COMFILE EXIT HERE MARKER & ' ; IMMEDIATE 2¢ ROT 28 7SHAF D- 2DUP DO=
+ UNDO [°]1 NOTHING »BODY [COMPILE] © >BODY !; IF 0 ELSE 2DUP .0 B> IF 1 ELSE -1 THEN THEN
sR20ROP R} ;
: ARRAY CREATE 2% ALLOT DOES> SWAP 2% + ;
: IF-NDT COMPILE 0= [COMPILE] IF ; IMMEDIATE
t WHILE-NOT COMPILE 0= [COMPILEI WHILE ; IMMEDIATE

Screen # 12

\ FILE words from FORTH Dimensions Vaol. IV # 5 \ FILE words
VARIABLE "OFEN \ points to current file block : LASTREC 0 RECORD
: REC¥ 'OPEN @ B + ; \ holds current record nuaber ¢ RACTIVE

+ LAYOUT \ leave bytes/record-2, bytes/block-1 : FILE
‘OPEN @ 4 + 28 CREATE ,

: MAXRECS (--n) 'OPEN B 2+ @ {+,

: READ ! n-th rec, on stack, is sade current } DUP B/BUF OVER / % ,
0 MAX DUF MAXRECS ¢ TF-NOT . file error * QUIT THEN y O, 0,
RECE !

: RECORD (n -- a} \ leave address of n-th record DOES: "OPEN ! ;
LAYOUT #/MOD 'OPEN @ @ + BLOCK + ;

: ADDRESS (-- a} \ leave address of current record VARIABLE 'FIELD

: FIELD
CREATE

: FLD-WIDTH

PAD B0 BL FILL 4

0 RECORD 2+ 3\ # of records not marked by REMOVE

YV starting block in file
\ maximus number of records in file

\ points te current tield

s (length }
DOES> DUP °FIELD !
(--nl

elp 03sep83

elp 03sep83
v\ length of file

\ ¥ bytes / black
bvtes / record , current rec #, and
adr ot field-list

usage: ALPHA O 20 FIELD NANE
; {affset) , (type)

2+ @ nADDRESS + ;

'FIELD & & ;

FORTH Dimensions

20

Volume VIII, No. 4

* % SEE OUR HOLIDAY SPECIALS * »*
FORTH INTEREST GROUP MAIL ORDER FORM

P.0. Box 8231

108 - MEMBERSHIP inthe FORTH INTEREST GROUP & Volume 8
of FORTH DIMENSIONS. No sales tax, handling fee or
discount on membership. See the back page of this order
form.

The Forth Interest Group is a worldwide non-profit member-supported
organization with over 4,000 members and 90 chapters. FIG membership
includes a subscription to the bi-monthly publication, FORTH Dimensions.
FIG also offers its members publication discounts, group health and life
insurance, an on-line data base, a large selection of Forth literature, and
many other services. Cost is $30.00 per year for USA, Canada & Mexico; all

San Jose, CA 95155

MEMBERSHIP

IN THE FORTH INTEREST GROUP

(408) 277-0668

other countries may select surface ($37.00) or air ($43.00) delivery.

The annual membership dues are based on the membership year, which
runs from May 1 to April 30.

When you join, you will receive issues that have already been circulated for
the current volume of Forth Dimensions and subsequent issues will be
mailed to you as they are published.

You will also receive amembership card and number which entitles youto a
10% discount on publications from FIG. Your member number will be
required to receive the discount, so keep it handy.

HOW TO USE THIS FORM

1. Each item you wish to order lists three different Price categories:

Column 1 - USA, Canada, Mexico
Column 2 - Foreign Surface Mail
Column 3 - Foreign Air Mail

2. Select the item and note your price in the space provided.
3. After completing your selections enter your order on the fourth page of this form.

4. Detach the form and return it with your payment to the Forth Interest Group.

FORTH DIMENSIONS BACK VOLUMES

The six issues of the volume year (May — April)

101 - Volume 1 FORTH Dimensions (1979/80)$15/16/18
102 - Volume 2 FORTH Dimensions (1980/81)$15/16/18
103 - Volume 3 FORTH Dimensions (1981/82)$15/16/18
104 - Volume 4 FORTH Dimensions (1982/83)$15/16/18
105 - Volume 5 FORTH Dimensions (1984/85)$15/16/18
106 - Volume 6 FORTH Dimensions (1983/84)315/16/18
107 - Volume 7 FORTH Dimensions (1985/86)$20/21/24

ALL 7 VOLUMES $75.00 SAVE $35.00

FORML CONFERENCE PROCEEDINGS

FORML PROCEEDINGS — FORML (the Forth Modification Laboratory) is
an informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORML is part of the Forth
Interest Group.
310 -FORML PROCEEDINGS 1980 $30/33/40

Technical papers on the Forth language and extensions.

SPECIALS ARE

GOOD THROUGH
JANUARY 31, 1987

311 -FORML PROCEEDINGS 1981 $45/48/55
Nucleus layer, interactive layer, extensible layer, metacom-
pilation, system development, file systems, other languag-
es, other operating systems, applications and abstracts
without papers.

312 -FORML PROCEEDINGS 1982 $30/33/40
Forth machine topics, implementation topics, vectored
execution, system development, file systems and lan-
guages, applications.

313 -FORML PROCEEDINGS 1983 $30/33/40
Forth in hardware, Forth implementations, future strategy,
programming techniques, arithmetic & floating point, file
systems, coding conventions, functional programming
applications.

314 -FORML PROCEEDINGS 1984 . . . $30/33/40
Expert systems in Forth, using Forth, philosophy, im-
plementing Forth systems, new directions for Forth, inter-
facing Forth to operating systems, Forth systems tech-
nigues, adding local variables to Forth.

315 -FORML PROCEEDINGS 1985 $35/38/45
Also includes papers from the 1985 euroFORML Con-
ference. Applications: expert systems, data collection,
networks. Languages: LISP, LOGO, Prolog, BNF. Style:
coding conventions, phrasing. Software Tools: decom-
pilers, structure charts. Forth internals: Forth computers,
floating point, interrupts, mulitasking, error handling.

* FORML SPECIAL $150 FOR ALL 6 . ..

SAVE $50.00 »

Volume VIH, No. 4

21

FORTH Dimensions

BOOKS ABOUT FORTH

200 -ALL ABOUT FORTH
Glen B. Haydon
An annotated glossary for MVP Forth; a 79-Standard Forth.
216 -DESIGNING & PROGRAMMING
N PERSONAL EXPERT SYSTEMS .
E Carl Townsend & Dennis Feucht
W Introductory explanation of Al-Expert System Concepts.
Create your own expert system in Forth. Written in
83-Standard.
217 -F83 SOURCE $25/26/35
N Henry Laxen & Michael Perry
E A complete listing of F83 including source and shadow
W screens. Includes introduction on getting started.
218 ~-FOOTSTEPS IN AN EMPTY VALLEY
N (NC4000 Single Chip Forth Engine) $25/26/35
E Dr.C.H Ting
W A thorough examination and explanation of the NC4000
Forth chip including the complete source to cmForth from
Charles Moore.)
219 -FORTH: A TEXT AND REFERENCE $22/23/33
N Mahlon G. Kelly & Nicholas Spies
E A text book approach to Forth with comprehensive referen-
W ces to MMS Forth and the 79 and 83 Forth Standards.
220 -FORTH ENCYCLOPEDIA $25/26/35
Mitch Derick & Linda Baker
A detailed look at each fig-Forth instruction.
225 -FORTH FUNDAMENTALS, V.1 . . $16/17/20
Kevin McCabe
A textbook approach to 79-Standard Forth

........... $25/26/35

$19/20/29

230 -FORTH FUNDAMENTALS, V.2 . $13/14/18
Kevin McCabe
A glossary.

232 -FORTH NOTEBOOK $25/26/35
Dr. C. H. Ting

Good examples and applications. Great learning aid.
PolyFORTH is the dialect used. Some conversion advice is
included. Code is well documented.

233 -FORTHTOOLS $22/23/32
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

235 -INSIDEF-83 $25/26/35
Dr. C. H. Ting
Invaluable for those using F-83.

237 —-LEARNING FORTH $17/18/27

Margaret A. Armstrong
Interactive text, introduction to the basic concepts of Forth.
Includes section on how to teach children Forth.
240 ~-MASTERING FORTH $18/19/22
Anita Anderson & Martin Tracy
A step-by-step tutorial including each of the commands of
the Forth-83 International Standard; with utilities, exten-
sions and numerous examples.
245 -STARTING FORTH (soft cover) . .
Leo Brodie
A lively and highly readable introduction with exercises.

$22/23/32

246 -STARTING FORTH (hard cover) .. $20/21/30
Leo prodie

255 - THINKING FORTH (soft cover) . .. $16/17/20
Leo Brodie

The sequel to “Starting Forth”. An intermediate text on
style and form.

265 - THREADED INTERPRETIVE LANGUAGES .. = $25/26/35
R. G. Loelinger -
Step-by-step development of a non-standard Z-80 Forth.

270 - UNDERSTANDING FORTH $3.50/5/6
Joseph Reymann
A brief introduction to Forth and overview of its structure.

ROCHESTER PROCEEDINGS

The Institute for Applied Forth Research, Inc. is a non-profit organization

which supports and promotes the application of Forth_ It sponsors the

annual Rochester Forth Conference.

321 -ROCHESTER 1981
(Standards Conference) $25/28/35
79-Standard, implementing Forth, data structures, vocabu-
laries, applications and working group reports.

322 -ROCHESTER 1982
(Data bases & Process Control) . . . $25/28/35
Machine independence, project management, data struc-
tures, mathematics and working group reports.

323 -ROCHESTER 1983
(Forth Applications) $25/28/35
Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like languages,
new technigues for implementing Forth and working group
reports.

324 -ROCHESTER 1984
(Forth Applications) $25/28/35
Forth in image analysis, operating systems, Forth chips,
functional programming, real-time applications, cross-
compilation, multi-tasking, new techniques and working
group reports.

325 -ROCHESTER 1985
(Software Management & Engineering) $20/21/30
improving software productivity, using Forth in a space
shuttle experiment, automation of an airport, development
of MAGIC/L, and a Forth-based business applications
Janguage; includes working group reports.

THE JOURNAL OF FORTH APPLICATION & RESEARCH

A refereed technical journal published by the Institute for Applied Forth
Research, Inc.
401 - JOURNAL OF FORTH RESEARCH V.1

Robotics/Data Structures $30/33/38

403 - JOURNAL OF FORTH RESEARCH V.2 #1
Forth Machines. $15/16/18
404 - JOURNAL OF FORTH RESEARCH V.2 #2
Real-Time Systems. $1516/18
405 - JOURNAL OF FORTH RESEARCH V.2 #3
Enhancing Forth. $15/16/18
406 - JOURNAL OF FORTH RESEARCH V.2 #4
Extended Addressing. $15/16/18
407 - JOURNAL OF FORTH RESEARCH V.3 #1
Forth-based laboratory systems and data structures.
......... $15/16/18

409 - JOURNAL OF FORTH RESEARCH V.3 #3

______ $15116/18

410 -JOURNAL OF FORTH RESEARCH V.3 #4
o o . $15/16/18

L

REPRINTS

420 -BYTEREPRINTS $5/6/7

Eleven Forth articles and letters to the editor that have
appeared in Byte Magazine.

FORTH Dimensions

22

Volume VI, No. 4

e —————

DR. DOBB’S JOURNAL

This magazine produces an annual special Forth issue which includes
source-code listing for various Forth applications.

422 -DR.DOBB'S9/82 $5/6/7
423 -DR.DOBB'S9/83 $5/6/7
424 -DR.DOBB'S9/84 $5/6/7
425 ~-DR. DOBB'S10/85 $5/6/7
426 -DR.DOBB'S7/86 $5/6/7

ALL 5 VOLUMES $15.00 ... SAVE $10.00

A

HISTORICAL DOCUMENTS

501 -KITT PEAK PRIMER $25/27/35

One of the first institutional books on Forth. Of historical

interest.

502 -Fig-FORTH INSTALLATION MANUAL $15/16/18
Glossary model editor — We recommend you purchase
this manual when purchasing the source-code listing.

503 -USING FORTH $20/21/22
FORTH, Inc.

. ——

REFERENCE

305 -FORTH 83-STANDARD $15/116/18

The autoritative description of 83-Standard Forth. For
reference, not instruction.
300 -FORTH 79-STANDARD $15/16/18

The authoritative description of 79-Standard Forth. Of
historical interest.

BOTH FOR $25.00

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS

Assembly Language Source Listings of fig-Forth for Specific CPUs and
machines with compiler security and variable length names.

514 -6502/SEPT80 $15/16/18
515 -6800/MAY 79 $15/16/18
516 -6809/JUNE 8O $15/16/18
517 -8080/SEPT 79 $15/16/18
518 -8086/88/MARCH 81 . S\Q,Q“ . $15/16/18
519 -9900/MARCH 81 ‘,_p&\\, ... $15116/18
521 - APPLE IVAUG 81 $15/16/18
523 -IBM-PC/MARCHS84 $15/16/18
526 ~-PDP-11/JAN 8O $15/16/18
527 -VAX/OCT82 $15/16/18
528 -Z80/SEPT 82 $15/16/18

MISCELLANEOUS

601 -T-SHIRT SIZE
Small, Medium, Large and Extra-Large.
White design on a dark blue shirt. . $10/11/12

602 -POSTER (BYTE Cover) $5/68/7
616 ~HANDY REFERENCE CARD FREE
683 ~FORTH-83 HANDY REFERENCE CARD . FREE

FORTH MODEL LIBRARY

The modet applications disks described below are new additions to the
Forth Interest Group’s library. These disks are the first releases of new
professionally developed Forth applications disks. Prepared on 5 1/4”
disks, they are IBM MSDOS 2.0 and up compatible. The disks are
compatible with Forth-83 systems currently available from several Forth
vendors. Macintosh 3 1/2” disks are available for MasterFORTH systems
only.

Forth-83 Compatibility IBM MSDOS

Laxen/Perry F83 LMI PC/FORTH 3.0
MasterFORTH 1.0 TaskFORTH 1.0
PolyFORTH® ||

Forth-83 Compatibility Macintosh
MasterFORTH

ORDERING INFORMATION

701 - A FORTH LIST HANDLER V.1
by Martin J. Tracy
Forth is extended with list primitives to provide a flexible
high-speed environment for artificial intelligence. ELISA
and Winston & Horn's micro-LISP are included as ex-
amples. Documentation is included on the disk.

702 - A FORTH SPREADSHEET V.2 $40/43/45
by Craig A. Lindley
This model spreadsheet first appeared in Forth Dimensions
Volume 7, Issue 1 and 2. These issues contain the
documentation for this disk.

703 - AUTOMATIC STRUCTURE CHARTS V.3 $40/43/45
by Kim R. Harris
These tools for the analysis of large Forth programs were first
presented at the 1985 FORML conference. Program docu-
mentation is contained in the 1985 FORML Proceedings.

$40/43/45

Please specify disk size when ordering

701 -AFORTHLIST HANDLER VA $35.00
702 - A FORTH SPREADSHEET V.2 . $25.00
703 - AUTOMATIC STRUCTURE CHARTS V.3 $25.00

HOLIDAY SPECIALS !

Votume VIii, No. 4

23

FORTH Dimensions

Name

Member Number

Company

Address
City

State/Prov. ZIP

FORTH INTEREST GROUP

P.O. BOX 8231 SAN JOSE, CALIFORNIA 95155

408/277-0668

Country

Phone

ITEM TITLE AUTHOR

UNIT
QTy PRICE

TOTAL

108 | MEMBERSHIP

SEE BELOW

* HOLIDAY SPECIALS ARE GOOD ON ORDERS FOR CANADA, MEXICO & USA ONLY. EUROPE ADD 40%
AUSTRALIA AND ASIA ADD 60%. SORRY — MEMBER DISCOUNTS ARE NOT APPLICABLE WITH HOLIDAY SPECIALS.

O Check enclosed (payable to: FORTH INTEREST GROUP)
0 VISA O MASTERCARD
Card #

Expiration Date

Signature

($15.00 minimum on charge orders)

PAYMENT MUST ACCOMPANY ALL ORDERS

SUBTOTAL

10% MEMBER DISCOUNT

SUBTOTAL

CA. RESIDENTS SALES TAX

HANDLING FEE

$2.00

MEMBERSHIP FEE
O NEW DO RENEWAL $30/37/43

on a US Bank. A $10 charge will be
added for returned checks.

MAIL ORDERS PHONE ORDERS PRICES) POSTAGE & HANDL.ING SH"’NNG TIME) SALES TAX

Send to- Call 408/277-0668 to place | Al orders must be prepaid. Prices are Prices include shipping. A Books in stock are shipped [Deliveries to Alameda,

Forth Interest Group credit card orders or for subject to change without notice. Credit SZ.OQ handling fee is within five days of receipt Contra Costa. San Mz(x;eo‘

P.0. Box 8231 customer service. Hours: card orders will be sent and billed at required with all orders. of the order. Please allow ﬁﬁ?ﬁémsgﬂézm:

San Jose, CA 95155 Monday-Friday, 9am-5pm [current prices. $15 minimum on charge 4-6 weeks for out-of-stock add 8V:%. Santa Clara
’ PST. orders. Checks must be in USS, drawn books {delivery in most ;

cases will be much sooner).

County, add 7%:. other
California counties, add 6%.

11-15-86

FORTH Dimensions 24

Volume ViII, No. 4

Screen # 13

\ Tables of type dependent functions
G CONSTANT ALPHA \
2 CONSTANT SINGLE \
4 CONSTANT DOUBLE
& CONSTANT $3
: FLD-TYPE { --n} 'FIELD & 4 + @& ;

: TABLE DOES> FLD-TYPE + & EXECUTE ;

: PADINUM { -~ d} PAD t- FLD-WIDTH OVER C!
: -1 {adr --} PAD SWAP FLD-WIDTH CMOVE ;

: 51 (adr --} PADXNUM DROP SWAP ! ;

D=0 {adr --) FADSNUM ROT 2!

TABLE {(ENTER) 1-' S§-' D-! D-!';

elp 03sep8l
offset into tables of type dependent
functions

NUMBER :

\ store tield entry

Screen # 15

\ TABLES cont'd
: T-COMPARE { at a2
: G-CDMPARE (al a2 --n) GSWAP @ SHWAP @ - ;

: D-COMPARE (al a2 -- n} -DOUBLE ;

TRBLE COMPARE T-COMPARE S-COWPARE D-COMPARE D-COMPARE ;

elp 03sepB3

-- n) FLD-WIDTH SWAP -TEXT ;

: GR.THANM
: L5 THAN

COMFARE 0>

COMPARE 04

I COMPARE 0= ;

t IGNT COMPARE ;

\ Record display words

+ JFIELD-NAME "FIELD & BODY>

v JFIELD DISPLAY

: LLINE CR .FIELD-NAME SPACE DISPLAY ;

: (RECORD FIELD-LIST & BEGIN DUP @ ?DUP WHILE EXECUTE
LLINE 2+ REPEAT DROP ;

ONAME .NAME ASCII : EMIT

Screen # 17
\ File modification words
: SIGNAL 7 EMIT CR COUNT TYPE .°
: CHANGE
BEGIN CR ." Enter name of field to be changed® CR BUERY
BL WORD FIND WHILE-NOT SIGNAL REPEAT EXECUTE ENTER ;
: REMOVE
ASCIT # ADDRESS C!

is not a valid field" ;

UFDATE -1 SACTIVE +' UPDATE ;
i MODIFY
CR ." Enter C to change or R to reaove recard °
DUF ASCII € = IF DROF CHANBE ELSE ASCII R =

IF REMOVE THEN THEN DELAY ;

KEY

Screen # 14

\ TABLES of type dependent functions elp 03sepl3

v $FORMAT { d -- adr u) DUP R DABS <% 4 # ASCII . HOLD ¥S

R SIGN # 3

¢ T-TYPE (adr --} FLD-WIDTH TYPE 4

¢ 5-TYPE (adr --} @ FLD-WIDTH .k ;

: D-TYPE (adr --) 28 FLD-WIDTH D.R ;

t $-TYPE (adr --) 28 $FDRMAT FLD-WIDTH DUP ROT -

SPACES TYPE ;

TARLE DISPLAY T-TYFE S-TYPE D-TYPE $-TYPE ;

Screen # 16

\ FILE input words elp 03sepB3

: DASHES (n --) SPACE DUF 4 DO 93 EMIT LOOF O DO 8 EMIT
LODP 3 % use for input prompt

: INPUT BUERY BL TEXT ;

: .FROMPT CR .FIELD-NAME SPACE FLD-WIDTH DASHES ;

: ENTER \ prompts, accepts and stores field entries
.PROMPT INPUT (ERTER} UFDATE ;

\ Buery words

+ REMOVED? { reck -- 7) RECORD C@ ASCIT * = ;

: $ARGS { --m) \ count arguaents in coamand line
»IN@ 0 BEGIN BL WORD Cé WHILE 1+ REPEAT GSWAP
SINY

DDER .DISPLAY

DOER DELAY

DOER HEADING

Screen # 18

\ Buery set-up wards

4 CONSTANT o4 \ w@ax¥ guery conditions
VARIABLE BHITS %\ % of records found by query
2% ARRAY LOBICALS

O% ARRAY OPERANDS

0% ARRAY CONDITIONS

: TARBETS HERE 200 +

: +TARBET (i --) 30 * TARBETS + ;

: T-BRING { a --)} TEXT PAD SWAP FLD-WIDTH CMOVE ;
¢ 1-BRING (a --) WORD NUMBER DROF SWAP ! ;

: 2-BRING { a --) WORD NUMBER ROT 2! ;

TABLE BRING T-BRINE 1-BRING 2-BRING 2-BRING ;

: GET-TARBET { i --) +TARBET BL BRING ;

Volume Vill, No. 4

25

FORTH Dimensions

Screen # 1?7
\ QUERY wards
1 B-ARRAYS { n --) ['] NOTHINE O LDBICALS'
0 D0 IIF I LOGICALS ! THEN
DUP 1 OPERANDS ¢ BODY ‘FIELD !
1 CONDITIONS ' 1 BET-TARGET LDOP ;

elp 03sep83

: LOGIC (i --) LOGICALS @ EXECUTE ;

: OPERAND (i --) OPERANDS & EXECUTE ;

: CONDITION (i --) CONDITIONS & EXECUTE ;

: TARGET +TARGET ;

: FOUND? (n--f) O DO I OPERAND 1 TARGET I CONDITION

I LOBIC LOOP ;
+ FROM { filename} EXECUTE ;
: (FIND) (n -~} O ®HITS ! LASTREC @ 1+
DO 1 REMOVED? 1F-NOT I REC# ! (n) DUP FOUND?
IF 1 BHITS +' CR .DISPLAY CR DELAY THEN THEN
LODP DROP #HITS @ IF-NOT CR ." search failed * THEN ;

1

Screen # 21
\ FILE entry words
: NEWFILE FROM O SACTIVE ! 0 LASTREC ! ;
1 FREE { -~ recd) LASTREC @ 1+ { DD T REMOVED?
IF 1 LEAVE THEN LOOF j
: NEXTREC (-- rec#) LAGTREC & HACTIVE @ >
IF FREE REC# ' ADDRESS REC-LEN BL FILL
ELSE LASTREC DUP & 1+ DUP READ 5SWAP !
: WRITE
FIELD-LIST & BEGIN DUP & 7DUP WHILE EXECUTE ENTER 2+
REFEAT DROP

elp 03sepBS

UPDATE
UPDATE THEN ;

: 300N LR CR CR ;
1 ENTRY $ARES 1 {) ABORT® needs filename * FROM
BEGIN CLEARSCREEN 3IDOWN NEXTREC WRITE 1 BACTIVE +

UPDATE 3DOWN DDNE?
SAVE-BUFFERS

UNTIL

Screen # 23
v file display words elp 12sep85
: .EXCERPTS EXCERPTS BEGIN DUF & 7DUP WHILE EXECUTE

.FIELD SPREAD 2+ REPEAT UDROP ;

: SELECT \ usage: SELECT {filename {fieldl’
FROM EXCERPTS #ARGS DUP 5
00 OVER ' 2+ LDOF O SWAP ' MAKE DELAY NDOP ;AND
MAKE ,DISPLAY .EXCERPTS ;AND MAKE HEADING .HEADER ;

+ FIELDS \ usage: filename n FIELDS fieldl field2 fieldd
HERE SWAP © DO , LOOF @, FIELD-LIST ! ;

: MSS6 CR ." RETURN to quit ESC to amodify" CR

." any key to continue" CR

: STEP MAKE DELAY .MSS6 KEY DUP 27 = IF DROP MODIFY
ELSE 13 = IF CR ." query aborted " ABORT THEN THEN
JAND MAKE .DISFLAY .RECORD ;AND MAKE HEADING NOTHING ;

STEF \ default display mode

.o{fieldn
ABORT" too many " §

Screen #

Screen # 20
\ QUERY words
: FIND

FRONM
$ARGS 1+ 4 /MOD SWAP ABORT" incorrect ¥ of arguaents”
DUF Q% > ABORT® incorrect ¥ of arguaents®
CR HEADING DUP R-ARRAYS (FIND) ;
\ usage: FIND EMPLOYEE DEPT IS PARTS AND HOURS GR.THAN 40

\ Other words

: DONE? (-- t=no-more=entries)
R any more? Y/N * KEY DUP EMIT ASCII N =

elp 03seplds
\ end user guery warg

L3
.

3
22

v Display header

VARIABLE EXCERPTS 12 ALLOT © points to field to be displayed

: DASH-LINE CR 72 © DO ASCIT - EMIT LOOP CR

: JHERDER EXCERPTS BEGIN DUP & 7DUP WHILE DUP >BODY
‘FIELD ! BODY: GNAME DUPF .NAME C& 31 AND FLD-WIDTH
SWAF - ABS 1+ SPACES 2+ REPEAT DROF DASH-LINE CR;

: SPREAD FLD-TYPE IF 'FIELD @ BGDY: :NAME C& 31 AND

FLD-WIDTH SWAF - ABS FLD-WIDTH + SPACES ELSE 2 SPACES
THEN ;

Screen # 24
% Application file and field definitions

&4 100 30 FILE EMPLOYEES

ALFHR 1 20 FIELD NAME

$% 71 6 FIELD HOURLY-RATE
SINBLE 2 FIELD HOURS
ALPHA 4 FIELD DEFT

ne
L2y

27

EMPLOYEES 4 FIELDS NAME HOURLY-RATE HOURS DEPT

FORTH Dimensions

26

Volume VI, No. 4

record has been deleted. If it hasn’t, it
is checked to see if it matches the
conditions specified in the query com-
mand line.

FIND End-user query word. Checks to
see if an incorrect number of
arguments has been entered in the
query command line.

NEXTREC If the number of active
records is less than LASTREC, the first
deleted record (found by FREE) is used
for the next entry. If there are no
deleted records, the file is extended one
more record.

WRITE Goes through the list of fields
for the current file, prompting and
accepting entries.

ENTRY A generic entry word for all
files defined by FILE. The fields must be
included in the field list (FIELDS).

EXCERPTS Address of start of the list
of fields chosen by SELECT to be dis-
played.

—Rick Watson

Across
1. A process control language
5. What a computer does
8. Pertaining to metal men
10. Changes in the flow of a program

Down

2. What a bad program should do:
abbr.

Liked by squirrels
Remove solid H,O
Programmers in a frenzy
Type of transistor
Measure of resistance

A A el

Across

5. Exchange

6. Average

8. Make bigger

9. Indicates an address
11. Not odd
12. A computer noise

i Down

1. Creates machine code

2. What a programmer never
wants to do

3. Give out

4. What stops the processor

7. Character _ __

9

0

Look at memory location
Layer

(Answers on page 31.)

[

NGS FORTH

A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

SBTANDARD FEATURES
INCLUDE:

@79 STANDARD
oDIRECT I/O ACCESS

oFULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

eENVIRONMENT SAVE
& LOAD

eMULTI-SEGMENTED FOR
LARGE APPLICATIONS

OEXTENDED ADDRESSING

eMEMORY ALIOCATION
CONFIGURABLE ON-LINE

eAUTO IOAD SCREEN BOOT
OLINE & SCREEN EDITORS

®DECOMPITER AND
DEBUGGING AIDS

8088 ASSEMBLER
OGRAPHICS & SOUND
oNGS ENHANCEMENTS
ODETAILED MANUAL
®INEXPENSIVE UPGRADES
ONGS USER NEWSLETTER

A COMPLETE FORTH
DEVEILOPMENT SYSTEM.

PRICES START AT $§70

NEWeHP-150 & HP-110
VERSIONS AVAILABLE

\‘\
=)

NEXT GENERATION SYSTEMS
P.0.BOX 2987

BANTA CLARA, CA. 95055
(408) 241-5909

Volume VI, No. 4

27

FORTH Dimensions

A Forth Standard?

Glen B. Haydon
La Honda, California

What is a standard language? Natu-
ral languages evolve. Only after a word
is used with a specific meaning for a
period of time do dictionary editors
consider including it. Many words have
multiple meanings. Many definitions
include examples of their use. Some
words become obsolete or archaic.
Languages are dynamic. They cannot
be set in concrete. There is no such
thing as ‘‘standard language.”” Dic-
tionaries only record current usage.

Forth does not differ from any other
language. It is evolving. That is the
way Charles Moore designed it. He
changed his kernel and application
utilities almost daily. Many of you are
aware that he includes a meta-compiler
with most of his applications so he can
easily recompile his kernel. It will be
interesting to see what direction he
takes now that he has cast his kernel in
the Novix 4000 chip.

Before going any further, I would
like to make a distinction between a
kernel and a functional language. The
Forth kernel is, in essence, the emula-
tion of a hardware processor. The
Novix 4000 is the implementation of a
kernel in hardware. On the other hand,
Forth as a functional language is built
upon a kernel. It utilizes its exten-
sibility to develop an operating system,
compiler directives and utilities to solve
problems. The functional language is
a bridge between application require-
ments and the kernel. The beauty of
Forth is the ease with which the neces-
sary and sufficient functions can be
added to a kernel.

The kernel usually includes between
sixty and seventy hardware-related
functions. There is little problem iden-
tifying these, but in actual hardware it
has becomes obvious that some of the
emulated functions are not optimal.
Some of the problems were not an-
ticipated by anyone,

The best example of a problem is the
DO LOOP structure. The original fig-
FORTH implementation requires a
range in reverse order. What did the
emulation do when a range crossed the

boundary of a signed number? Con-
siderable error checking was added to
the LOOP function in the 79-Standard
definition. This proved to be a real
boat anchor for speed nuts. This prob-
lem was addressed again in the
83-Standard and was improved. In the
Novix 4000 the function was replaced
by FOR NEXT. This function takes a
count and decrements it to zero. The
hardware requirements for speed dic-
tated that a count-down register would
work better and faster. Now the
higher-level DO LOOP function becomes
a part of the functional language, if it
is going to be used. So the language
changes.

With any Forth kernel, in hardware
or emulated, it is an easy job to imple-
ment any desired dialect of functional
Forth. Each vendor has his own idea of
what should be included and what
should be excluded. Each vendor pro-
vides a slightly different dialect of
Forth. Most vendors make their kernel
and the basic part of their functional
Forth proprietary.

Let us review the public-domain ver-
sions of the primitive Forth functions.
I started with the first public-domain
version readily available — the fig-
FORTH Model. The installation man-
ual provided a verbal definition, and
the several implementations clarified
any possible misunderstandings. The
system worked well. I did a moderate
amount of programming with it.

Then came the 79-Standard. This
was the result of about twenty Forth
programmers who addressed some of
the ‘‘problems’’ of the fig-FORTH
Model. They did several things.

First, they changed the functional
definitions for forty words previously
defined in the fig-FORTH Model.
Some of the changes were simply the
use of an alias for the same function.
Other changes were of a minor nature.
The improvement to the compiler dir-
ective CREATE DOES> was perhaps the
most significant. The ability to write
special compiler directives as part of an
application program is unique to Forth
among computer languages.

Second, the 79-Standard went be-
yond these functional changes. It in-

cluded a list of additional ‘‘Require-
ments’’ for any program adhering to
the 79-Standard. In the Standard pub-
lication under Section 8, ‘‘Use’’:

““A Forth Standard program may
reference only the definitions of the
Required Word Set, and definitions
which are subsequently defined in
terms of these words ..."’

This is patently ridiculous. At the
November 1981 FORML Conference, 1
had an implementation of Forth which
contained only the 148 words in the
required word set. None of the mem-
bers of the Standards Team who were
there could do anything with the pro-
gram. No vendor [know of has built a
product in complete conformity with
the restrictions imposed by the
79-Standard document.

About this same time, Robert L.
Smith released and copyrighted a
Forth-79 Standard Conversion. This
publication consisted of a series of
screens which could be loaded on a fig-
FORTH Model. They would redefine
the necessary forty words in the re-
quired word set. He admonishes the
user to meet the other requirements of
the 79-Standard.

Instead of conversion screens, I
modified the compiler source code for
the fig-FORTH Model to conform
with the 79-Standard Required Word
Set and made the additional functions
required for a headerless operating
system. This was a simple matter of
changing a flag for the cross-compiler.
I must acknowledge the efforts of Jerry
Boutelle, who adapted his cross-com-
piler for the job and added many of the
features. In a period of months two
revisions were made. The resulting
MVP-FORTH has remained stable for
four years! The glossary Al About
Forth provides a reference to the com-
mon functions in public-domain im-
plementations of FORTH up to that
time.

Added to the MVP-FORTH kernel
are a number of utilitiess and some
supplemental definitions that will make
this functional Forth almost completely
compatible with Leo Brodie’s Srarting
Forth. The differences are related to his
use of a proprietary product (poly-

FORTH Dimensions

28

Volume Vill, No. 4

FORTH) which was supposed to be
79-Standard. Alan Winfield’s The
Complete Forth provides an excellent
alternative tutorial.

Copyright protection of software is a
continuing problem. The spirit of fig-
FORTH was to put all of the source
code and documentation in the public
domain, asking only for appropriate
acknowledgment. MVP-FORTH adop-
ted the same spirit and placed all of the
basic source code and documentation
in the public domain. The contents of
Volume 1 in the MVP-FORTH Series,
All About Forth, are released without
restrictions. Each entry includes a
functional definition, indicates the
source, an implementation, the usage
in the MVP-FORTH kernel, an ex-
ample with a note and a general com-
ment, The general comment includes
known differences in function among
dialects.

As an interesting aside concerning
the significance of copyrights, we had
some correspondence with the publish-
er of Starting Forth. They claimed they
had a copyright on all of the functional
definitions included in their book.
They claimed we could not include any
of their functional definitions in A//
About Forth. 1 made an exhaustive
study of prior functional definitions of
the same words and was able to cite at
least one prior definition for each
word. Some of those prior definitions
were also copyrighted and the publish-
er had failed to secure a proper release.
So much for copyrights.

Other vendors approached the
79-Standard in various ways.
Generally, their documentation has
been excellent. I have always felt that
the more implementations of Forth
there are available, the more Forth will
be used. By the time these products
were on the market, the Standards
Team was at it again and came out with
the 83-Standard. In my opinion, this
was a great disservice to the
advancement of Forth.

When the 83-Standard was first
available, I made a very careful com-
parison of the new functional defini-
tions of the Required Word Set with
those in the 79-Standard. The number
of required words was reduced from
148 to 132. All but five had some

change in the functional definitions.
No implementations were included as
in the original fig-FORTH Model. In
fact, some of the adopted functions
had never been tested by the team.

In fairness to the members of the
Standards Team, they are a dedicated
group whose sole objective has been to
improve and advance Forth. Many of
the changes I found were simply at-
tempts to clarify the wording of the
previous standard.

However, they saw fit to change the
functional definition of some words
without changing the names. PICK and
ROLL are examples. They required that
the value on the stack be decreased by
one from the value according to the
79-Standard. Thus:

: ROT 3 ROLL ; (79-Standard)
: ROT 2 ROLL ; (83-Standard)

When you know of this incompat-
ibility, it is easy to go through your
code and change all the values to make
it function. But I can see no improve-
ment. Once a convention is adopted,
stay with it,

I have no inclination to go through
such a careful comparison again. Most
of the changes made little difference.
However, as has been observed by
members of the Standards Team, most
people don’t do floored division. Forth
has enough problems as it is. Why add
to them with obscure changes? Forth
needs stability.

In addition to the changes in the
Required Word Set, similiar require-
ments to those cited above in the
79-Standard are included in the 1983
document. There is no way to verify
the compliance of the many systems
purporting now to be 83-Standard.

In the best spirit of Forth, Laxen and
Perry have done an implementation of
Forth which has become known as F83.
It is unfortunate that this has been
assumed to be the 83-Standard. It goes
far beyond the 83-Standard. It in-
cludes nearly 1200 words, and contains
many excellent examples of problem
solving with Forth. They provide full
source code and shadow screens to
assist the user. Unfortunately, there is

DASH, FIND
& ASSOCIATES

Our company, DASH, FIND & ASSOCIATES,
is in the business of placing FORTH Program-
mers in positions suited 1o their capabilities.
We deal only with FORTH Programmers
and companies using FORTH. If you would
like to have your resumé included in our
data base, or if you are looking for a
FORTH Programmer, contact us or
send your resumé to:

DASH, FIND & ASSOCIATES
808 Dalworth, Suite B
Grand Prairie TX 75050

(214) 642-5495

Committed to Excellence

Voiume VIII, No. 4

29

FORTH Dimensions

FIG-FORTH for the Compaq,
IBM-PC, and compatibles. $35
Operates under DOS 2.0 or later,
uses standard DOS files.
Full-screen editor uses 16 x 64
format.

Editor Help screen can be called
up using a single keystroke.
Source included for the editor
and other utilities.
Save capability allows storing
Forth with all currently defined
words onto disk as a .COM file.
Definitions are provided to allow
beginners to use Starting Forth
as an introductory text.
Source code is available as an
option, add $20.
Async Line Monitor
Use Compagq to capture,
display, search, print, and
save async data at 75-19.2k
baud. Menu driven with
extensive Help. Requires two
async ports. $300

A Metacompiler on a
host PC, produces a PROM
for a target 6303/6803
Includes source for 6303
FIG-Forth. Application code
can be Metacompiled with
Forth to produce a target
application PROM $280

FIG-Forth in a 2764 PROM
for the 6303 as produced by
the above Metacompiler.
Includes a 6 screen RAM-Disk
for stand-alone operation. $45

An ali CMOS processor
board utilizing the 6303.
Size: 3.93 x 6.75 inches.
Uses 11-25 volts at 12ma,
plus current required for

options. $210 - $280
Up to 24kb memory: 2 kb to
16kb RAM, 8k PROM contains
Forth. Battery backup of RAM
with off board battery.

Serial port and up to 40 pins of
paraliet /O.

Processor buss available at
optional header to allow expanded
capability via user provided
interface board.

Micro Computer
Applications Ltd
8 Newfield Lane
Newtown, CT 06470
203-426-6164

Foreign orders add $5 shipping and handiing.
Connecticut residents add sales tax.

no tutorial such as Starting Forth to go
along with it. Every Forth programmer
should be familiar with the many tech-
niques these master Forth program-
mers have used.

Among the vendors, Laboratory Mic-
rosystems, Inc. has a version which is
supposed to comply with the 83-Stand-
ard. After finishing his implementation,
Ray Duncan wrote a most interesting
commentary on the 83-Standard which
was published in Dr. Dobb’s Journal.
Other vendors have also implemented
what they call 83-Standard Forth.
Each of the vendors has excellent
documentation for its particular im-
plementation. A variety of other books
on Forth are gradually appearing. Each
is based on a specific Forth dialect,
many of which are proprietary and
copyrighted. However, many of the
examples and ideas are portable to
other Forth dialects with minimal ef-
fort. These books are a great help to
the intermediate Forth programmer.

Already, some members of the Stan-
dards Team are soliciting suggestions
for an 87-Standard. It is hoped that
the FORML Conference this year will
be able to address some of these recom-
mendations.

I would humbly urge those interested
in promoting the careful evolution of
Forth to take a lesson from the phar-
maceutical industry. Only after years
in the chemical laboratory and more
years of animal testing, are new drugs
released for clinical trials. Only after
all of the testing and trials have proven
satisfactory are drugs finally released
for general clinical use.

The Forth Modification Laboratory,
FORML, is a fitting place for the
laboratory development of modifica-
tions. The modifications should first
be tried in the laboratory. Favorable
results from such work should be sub-
mitted to clinical trial in the hands of
vendors. Only by acceptance on the
part of vendors should changes to a
standard be adopted. But then it will
not really be necessary: the modifica-
tions will have evolved into the com-
mon base of the functional Forth
language. The standard will be estab-
lished by common usage.

There is a recurring question of stan-
dard libraries. If people would publish
their techniques, they could be adapted
into most Forth dialects. But there is a
reservation on the part of many auth-
ors. They want to have some return
from all of their efforts. It is only
reasonable that they be rewarded for
their efforts.

Mountain View Press has found a
partial answer to the problem. Namely,
though some of their nine volumes are
copyrighted, the contents are released
for non-commercial use. At least the
user can learn from the examples. It is
highly likely that he will want to redo
any algorithm in his dialect for his own
application. Certainly it is not reason-
able to let others reprint a book for
profit as has been done with Volume 1
of the MVP-FORTH Series.

The current edition of Volume 3 in
the MVP-FORTH Series is an example
of the evolution of such thinking. The
original text was written more than
four years ago, and has been actively
used since then. In 1985, author Phil
Koopman agreed to a restricted copy-
right releasing it for non-commercial
use. Each entry is modeled on All
About Forth and includes a functional
definition, a high-level Forth imple-
mentation, an example with a note and
a comment.

The local fig-FORTH community
still objected: they could not use it
because of the copyright, as open as it
was. Some in the community have
copyrighted their work and made no
concessions to non-commercial use.
This year, Phil Koopman released his
work from copyright, with no restric-
tions. I hope more Forth authors will
see fit to follow his example.

To argue about Forth standards is
for those who have nothing better to
do. Let Forth evolve like any natural
language. Unlike other programming
languages, it is easy to start over and
meta-compile a new kernel. It is easy to
build a new functional system.

Keep the FORML work active in
the background. Encourage regional
FORML workshops. As modern micro-

FORTH Dimensions

30

Volume VIII, No. 4

computers are becoming more power-
ful, something more than sixteen-bit
address space is needed. How to incor-
porate this new hardware into the lan-
guage presents several alternatives.
None of the existing public-domain im-
plementations address this problem.
The existing standards are simply not

»mpatible with thirty-two-bit stacks.

Don’t let the existing standards be an
albatross to the language.

We have an urgent need for a stable
language for beginners, for the man-
agement team entering new projects
and for administrators new to the lan-
guage. Let common usage provide a
dynamic standard to meet the evolving
needs. Let everyone participate.

Index to Advertisers

Bryte - 6

Computer Cowboys - 7

Dash, Find & Associates - 29

Forth, Inc. - 19

Forth Interest Group - 11, 21-24, 44
Harvard Softworks ~ 35

Insite Computing - 38

Institute for Applied Forth Research - 12
Laboratory Microsystems — 8

MCA - 30

MicroMotion - 36

Miller Microcomputer Services - 33
Mountain View Press - 31

New Micros - 16

Next Generation Systems - 27

Palo Alto Shipping Company - 4
Software Composers - 2

SOTA - 15

Talbot Microsystems - 14

UBZ Software - 32

FORTH

The computer
language for

increased. ..
EFFICIENCY

reduced.. ...

MEMORY

MVP-FORTH
SOFTWARE
Stable...Transportable...
Public Domain...Tools

MVP-FORTH
PROGRAMMER’S KIT
for IBM, Apple, CP/M,
MS/DOS, Amiga, Macintosh
and others. Specify computer.

$175
MVP-FORTH PADS,

a Professional Application
Development System. Specify
computer.

$500

MVP-FORTH EXPERT-2
SYSTEM

for learning and developing
knowledge based programs.

$100
Word/Kalc,

a word processor and
calculator system for IBM.

$150

Largest selection of FORTH
books: manuals, source listings,
software, development systems

and expert systems.

Credit Card Order Number:

800-321-4103
(In California 800-468-4103)

Send for your
FREE
FORTH
CATALOG

MOUNTAIN VIEW
PRESS

PO BOX 4656
Mountain View, CA 94040

Volume VItl, No. 4

31

FORTH Dimensions

G

UBZ FORTH"
for the Amiga™

*FORTH-83
compatible
*32 bit stack
*Multi-tasking
*Separate headers
*Full screen editor
*Assembler
*Amiga DOS support
*Intuition support
*ROM kernel support
*Graphics and sound
support
*Complete
documentation
*Assembler source
code included
*Monthly newsletter

$85

Shipping included
in continental U.S.
(Ga. residents add sales tax)

UBZsoteae

(404)-948-4654

(call anytime)
or send check or money order to:

UBZ Sepuare
395 St. Albans Court
Mableton, Ga. 30059

*Amiga is a trademark for

Commodore Computer. UBZ FORTH
is a trademark for UBZ Software.

FORTH Dimensions

(Continued from page 16.)

properly. STREAM-PROCESSOR: could
also be used to implement the function
of character translation by defining a
character-parsing child. Other possibil-
ities include a string search function
for source screens. Implementing all
these functions is made simpler and
clearer through the added functionality
afforded by a well-decomposed Forth
kernel.

The dictionary look-up words shown
in Listing One also make effective use
of dual-CFA decomposition: the fail-
ure-mode processing is factored into a
child definition, which inherits a dic-
tionary look-up function from the
parent. So one word, the child defini-
tion, integrates and binds two related
behaviors. While the child represents
efficient factoring, the parent suggests
a related family of words.

As shown in Listing One, the child-
ren of FAILING-LOOKUP: are ?COMPILE-
NUMBER; and ?INTERPRET-NUMBER;.
Both of these words represent incre-
mental progress toward their parent
functions, COMPILE-WORD and INTER-
PRET-WORD. Note also that these string-
handling functions need not be ex-
panded any further to produce a work-
able system (as will be shown). To
expand them any further would pro-
duce undesirable crossover into the
domains of other families of words.

As defined in Listing One, STREAM-
PROCESSOR: actually combines three
behaviors into each of its children. The
parsing loop is inherited by the child-
ren, but it also contains a vectored
execution that specifies the processing
after each word is parsed. The child
merely specifies the version of WORD to
be used within the shared word-parsing
loop. (See TIB-PROCESS, BLK-PROCESS,
TIB-WORD and BLOCK-WORD.)

The flexibility needed to switch from
compiling a word to interpreting a
word at run time (and vice versa) re-
quires the use of a vector. The left and
right bracket definitions must reinit-
ialize the vector. Since the brackets
may occur amidst an input stream, the
action of the children of STREAM-PRO-
CESSOR: is also variable midstream. To
expand Listing One to include bracket
definitions, you could use:

32

1 (—)

192 STATE !

* COMPILE-WORD

CFA PROCESS-WORD’ 1 ;
[()

0 STATE !

' INTERPRET-WORD

CFA PROCESS-WORD’ 1 ; IMMEDIATE

Finally, the Forth functions normal-
ly performed by QUIT and INTERPRET
can be easily constructed as a single
definition:
: INTERPRET

[COMPILE] [

RP! BEGIN

CR QUERY TIB-PROCESS

STATE @ 0= |IF

. OK” THEN

AGAIN ;

Early Impressions

The relative newness of dual-CFA
decomposition has not prevented me
from forming opinions regarding its
most suitable use.

I have some reservations about the
implementation of deferred definitions
(DEFER:). I prefer to see a closer rela-
tionship between the two functions
bound together through dual-CFA de-
composition. In DEFER:, the parent
definition provides a compiler-extend-
ing behavior and the child definition
forward references to an arbitrary
function.

I favor FAILING-NUMBER: and
FAILING-LOOKUP: as examples of how
dual-CFA decomposition techniques
should be applied. I appreciate how
closely united the parent and child
definitions are: the parent look-up
function is made more specific by the
failure mode processing provided by
the child. In actual use, the child refers
to both functions as if they were a
single, undecomposed function. Yet
because they are decomposed, you are
free to define new children without
restating the parent function.

The demystification of Forth would
be a welcome by-product of a more
clearly and more fully decomposed
kernel, if one should ever find its way
into widespread use. Some evidence of
this can already be seen in Listing One:
(1) The end-of-input-stream detection
function is within the parent stream-

Volume VI, No. 4

processing function, not hidden in a
definition of NuLL. (2) The STATE
variable is less central to one’s com-
prehension of Forth — the interpret
and compile functions are explicitly
separate, even though they still share a
common word-parsing loop. (3) Words
that manipulate input streams are more
easily distinguished from words that
perform interpreting or compiling ac-
tions.

On the other hand, programming
became more difficult than before. The
program code in Listing One required
subtle but definite changes in my pro-
gramming style. Many times, I had to
abandon a particular approach in
search of something more intuitively
obvious. However, the development
process did fine tune my perception of
the problem along functional lines.

The functional areas of concern
required clearer identification at the
outset. Next, each of these functional
areas had to be well decomposed.
Finally, refinements were made so that
the stack effects of all functionally
related subsets of words belonging to a
particular family remained consistent.
The comment header shown in Listing
One also helped.

Throughout development, a contin-
ual effort was necessary to prevent
subsets of words from wandering into
the domain of another family of
words.] cannot overemphasize the
point that this kind of programming
demands a clearer delineation of defin-
itions along functional lines. Hybrid
words must be acknowledged before
useful dual-CFA decompositions can
be found (such as the effort surround-
ing WORD).

Conclusions

The examples shown of dual-CFA
decomposition have helped illustrate
some of the advantages possible with
this methodology (see ITERATOR:! as
well). A summary of the advantages
includes:

(1) Better organized definitions, par-
ticularly along functional lines, in-

Volume VIII, No. 4

creasing the ease with which Forth
source code can be read and under-
stood.

(2) Increased emphasis on more
complete decomposition, resulting in a
richer programming environment and
increased productivity.

(3) Decreased likelihood of program-
ming error and system crashes, through
elimination of many environmentally
dependent behaviors.

(4) Decreased need for passing flag
parameters on the stack, as well as a
corresponding decrease in the number
of conditional-behavior words
(control-flow constructs such as IF
THEN now are factorable and need
appear only once per function — even
if the function is decomposed).

(5) Increased memory compactness
for compiled applications.

Also, modern innovations associated
with new programming languages or
operating systems may be more easily
implemented. Examples might include
object-oriented modules, relocatable
modules and ‘“piping’’ capabilities for
stream-processing modules. These
areas are generating more and more
interest lately. Dual-CFA decomposi-
tions can bring each of these areas of
programming interest within closer
reach.

Someday, perhaps, the Forth dic-
tionary will be mostly a library of
forms? or general algorithms, from
which a programmer compiles more
specific instances of each algorithm to
accomplish a particular task. If this
happens, each issue of Forth Dimen-
sions may include many practical ap-
plications. Each would be derived
easily using provisions already includ-
ed in the Forth dictionary.

References

1. Elola, Mike. ‘‘Dual-CFA Defini-
tions,”’ part one, Forth Dimensions
VIII/2.

2. Luoto, Kurt. ‘““Procedural Argu-
ments,”’ Forth Dimensions V1/2.

33

' FOR TRS-80 MODELS 1,3,4, 4P
 1BM PC/XT, ATAT 6300, ETC.

COMMERCIAL
. _SOFTWARE
DE; ELOPERS
. _and
lNDIVlDUAL
PROGRAMMERS

? appreoxate M OR ,Hfor its:
‘ e Power
Flexlbimy
Compactness -
Development speed
‘Execution speed
Malntaimbﬂﬁy

When you want to create the

| ultimate:

o Computer Language

- o Application

. Operatlnq System
e Utity,

BUILD IT in

'QOOO.

- (Unless we: héiie it ready for yo‘u' now!)

- Bulk Bustnbutmn Ltcensing @$500
| for 50 units, or as little as pennies
| _each in large quantities.

- (Corporate Sete License requured)

- Thetotal software environmentfor
. 1BM PC/XT, TRS-80 Modei 1,3, 4
_and close friends. ‘

- i'Persona! License (required):
~ . MMSFORTH V2.4 System Disk
: mmtmmmtmm)

*Personal License (addltlvonal modu!es)
cCoM module § 40

"La':?' ’mmmpm, :
- sCorporate Site License

*Bulk Distribution . ..

_ -eSome recommended Forth books:
| FORTI:ATEXT 8 REF. (bestiext) ., . s 18.95
. THINKING FORTH (best on technique) .
: STARTING FORTH (populer text)
. Shipping/handiing & tax extra. No returns on software.
Ask your dealer to show you the world of
"MMSFORTH, or request our free brochure.

MILLER MICROCOMPUTER SERVICES
_ 81 Lake.Shore Road, Natick, MA 01760
(617) 853:81 36

FORTH Dimensions

Windows for the Tl 99/4A

Blair MacDermid
Fort Wayne, Indiana

The Forth routines described here
provide plotting of algebraic functions
in a choice of five windows located in
different positions of the display screen.
These windows can be displayed simul-
taneously. Four of the windows can be
located in the four quadrants of the
display screen. The fifth window oc-
cupies most of the full screen. The
program computes the coordinates of
the plotted function, appropriately
scaled to fit within the selected window.

These routines are a by-product of
the group project undertaken as a
learning exercise by members of the
Fort Wayne FIG Chapter. The primary
objective of the exercise was to allow
the group members to participate in
development of a useful Forth pro-
gram, with efforts partitioned among
members according to their skills. The
simpler elements of the program were
assigned to beginners. We also hoped
to learn how well Forth would serve in
a multiple-programmer task.

Ed Harmon, the chapter’s guru,
selected the ACM SIGGRAPH CORE
Standard as a useful tool. He provided
us with a model written in the UCSD
p-System Pascal (see the Journal of
Pascal, Ada, Modula-2, May/June
1984, page 19). Ron Bishop, president
of the local TI 99/4A Users Group,
completed the program using thirty
screens and integer arithmetic. That
implementation provides the freedom
to locate and define the size of a
number of viewports (i.e., windows) to
be displayed simultaneously. The size
and location are continuously
adjustable.

Here 1 have defined a simpler ver-
sion of the program, using only six
screens. It does not provide the degree
of freedom intended to be part of the
ACM standard. However, it provides a
useful choice of window locations and
sizes. The program exploits the excel-
lent graphics capabilities of the TI
99/4A using the SPLIT2 mode and the
TI-FORTH words DOT and LINE, as
well as the TI 99/4A’s floating-point
routines (which I used to plot functions

that contain the transcendental func-
tions, e.g., sine, tangent, logarithm).
It will be useful to refer to the Forth
screens 30-35 in the discussion that
follows. These screens provide a useful
utility but can readily be modified and
expanded to include different elements
of the Pascal model of the full ACM
SIGGRAPH CORE Standard.

Screen 30

Lines 1-9 define the required vari-
ables. The variables associated with the
horizontal axis use X, as is common
practice. XMIN and XMAX represent the
minimum and maximum values of the
real-world function to be plotted. vL
and VR represent the left- and right-
hand viewport coordinates in pixels,
referenced to the TI screen display.
Similarly, vBOT and VTOP represent the
bottom and top coordinates of the
viewport,

The function Y =f(X) is computed
using X as the independent variable in
the world coordinates. XD is the cor-
responding variable referenced to the
display screen coordinates. Similarly,
YDB represents the display screen coor-
dinate corresponding to Y of the world
coordinates.

The variable YDB warrants further
explanation. The TI 99/4A screen dis-
play uses coordinates that reference the
upper left-hand corner of the screen as
the 0,0 point. 1 found this confusing,
since it is normal to use the lower left-
hand corner as the origin when plotting
functions. So I invented YDB to allow
me to readily handle the necessary
mathematics. Subsequently, when spec-
ifying the coordinates to be plotted on
the screen, I use the constant YTI0 equal
to 191 (see screen 31, line 2 and screen
35, line 5) to make the necessary cor-
rections for the TI 99/4A screen coor-
dinates. This is justified by the follow-
ing relation:

(T’'sY)+vpB = yTI0 = 191
Therefore,
(TI’'s Y) = YTI0 - YDB

The variables KX and KY are scaling
factors modifying the world coordinate

variables to fit the selected viewport
dimensions.

The variable YDBARA is an array to
store 200 computed values of YDB. The
T1 99/4A shares some of its display
facilities with the floating-point rou-
tines; to avoid any difficulty in this
regard, I chose to compute the values
of the plotted function (see screen 34)
before using the screen to display the
function (see screen 35).

All of the variables discussed above
represent integer values. This assumes
that the selected minimum and maxi-
mum world coordinate variables will
be integer values, the normal thing to
do. Certain of these variables will
require floating-point representatives
in the computation routine of screen
34. These variables have been prefixed
with an F as in FX, FKX and FKY.

The words KXCALC and KYCALC
specify the computation of the scaling
factors KX and Ky, as well as the
floating-point equivalents FKX and FKY.
It may be helpful to display the mathe-
matical definitions of these variables:

KX = (VR-VL)/(XMAX-XMIN)
KY = (VTOP-VBOT)/(YMAX-YMIN)

TI-FORTH uses the word s->F to
convert integer values to floating point.

Screen 31

This screen contains the definition of
the viewport size and location. The
word PICKPORT selects the viewport
corresponding to the number (one
through five) placed on the stack
before executing the word. The num-
bers one through four select a view-
port, size 100x50 pixels high, at loca-
tions in any of the four quadrants of
the display screen. A value of five
selects the largest viewport, 200x100,
occupying most of the available screen
display. There is sufficient space to
allow a height of 190 pixels; however,
it is easier to interpolate values of Y
with the height of 100 pixels. Of
course, other viewport dimensions and
locations can readily be specified by
substituting different numbers. (I find

FORTH Dimensions

34

Volume VI, No. 4

WORKING!!!

in SPLIT2 mode

Full SCreen e
256x192

T 32-pixel region for
four lines of text

~—1— Port 2
with X0 and YO for et

sinx/x

Port 5
with €3

-6sx<6

Scale: 16 pixels

—~ -

sinx/x

O0=x=<I12
with GRID

the word PP useful in exercising the
program, since it relieves me of the
need to type PICKPORT, whose length is
dictated by the desire to write readable
code.)

Screen 32

The words YLINES and XLINES use
TI-FORTH’s LINE to draw vertical and
horizontal lines at useful increments.
The word GRID uses these words to
superimpose on the viewport a grid to
expedite interpolation of values of the
displayed function. The words x0 and
Yo are abbreviated versions of the words
locating 0 axes for both X and Y.

Screen 33

The words €1, €2 and €3 specify
different parameters for the world
coordinates of the function to be plot-
ted. The word FUNCTION specifies the
function to be plotted, in this case
sinx/x, defining the Fourier spectrum
of the rectangular pulse waveform.
Sufficient space is available on this
screen to substitute another definition
of the word FUNCTION. Notice, how-
ever, that the definition must use
floating-point representation.

Screen 34

The word ARAYDB specifies the com-
putation of the values stored by YDB in
the array YDBARA. It also causes the
word WORKING!H! to be displayed on the
screen so that the user will not assume
his computer has contracted amnesia
while executing the calculations. Note
that lines 2-5 perform calculations in
integer arithmetic, and the results are
converted to floating point by line 6.
Line 8 contains the word FUNCTION,
and the resulting computation is con-

verted to integer by the word F->8 (a
single-precision integer value in two
bytes). The word €Y is my convenient
macro for ARAYDB.

The DO LOOP increments the current
value of XD by one pixel from vL to VR.
Lines 3-4 compute the corresponding
value of the world coordinates. This
value is converted to floating point and
is divided by the floating-point repre-
sentative of the scaling factor FKX. The
result is placed on the stack, and a copy
is stored in FX where it can be used in
more complicated functions requiring
different powers and functions of X.

The computed value of FUNCTION is
multiplied by the scaling factor FKY to
define the corresponding value YDB for
the display screen. The resulting com-
putation for each increment in XD
produced by the DO LOOP is stored in
the array YDBARA.

Screen 35

The word PLOTY uses another loop to
increment XD in one-pixel increments
and selects the appropriate element of
the array YOBARA to plot the function
on the screen using the TI-FORTH
word DOT. (PY is my macro for initiat-
ing the plotting routine.)

Final Notes

The definitions used assume the
SPLIT2 graphics mode if the TI 99/4A
is used. TI-FORTH 1is a fig-FORTH
extension, but the words DOT and LINE
are probably machine dependent. How-
ever, it is reasonable to assume the
screens could be modified to work on a
different Forth implementation. Both
the Apple II and the IBM-PC have
graphics capabilities providing pixel
resolution.

COMBINE THE
RAW POWER OF FORTH
WITH THE CONVENIENCE
OF CONVENTIONAL LANGUAGES

HS
FORTH

Why HS/FORTH? Not for speed
alone, although it is twice as fast as
other full memory Forths, with near
assembly language performance
when optimized. Not even because
it gives MANY more functions per
byte than any other Forth. Not be-
cause you can run all DOS com-
mands plus COM and EXE programs
from within HS/FORTH. Not be-
cause you can single step, trace, de-
compile & dissassemble. Not for the
complete syntax checking 8086/
8087/80186 assembler & optimizer.
Nor for the fast 9 digit software float-
ing point or lightning 18 digit 8087
math pack. Not for the half mega-
byte LINEAR address space for
quick access arrays. Not for com-
plete music, sound effects & graph-
ics support. Nor the efficient string
functions. Not for unrivaled disk flex-
ibility — including traditional Forth
screens (sectored or in files) or free
format files, all with full screen edi-
tors. Not even because I/O is as
easy, but far more powerful, than
even Basic. Just redirect the charac-
ter input and/ or output stream any-
where — display, keyboard, printer
or com port, file, or even a memory
buffer. You could even transfer con-
trol of your entire computer to a
terminal thousands of miles away
with a simple >COM <COM pair.
Even though a few of these reasons
might be sufficient, the real reason
is that we don’t avoid the objections
to Forth — WE ELIMINATE THEM!
Public domain products may be
cheap; but your time isn’t. Don't
shortchange yourself. Use the best.
Use it now!

HS/FORTH, complete system: $395.
with “FORTH: A Text & Reference”
by Kelly and Spies, Prentice-Hall
and “The HS/FORTH Supplement”
by Kelly and Callahan

@ Visa Mastercard

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

L (513) 748-0390

Volume VIiI, No. 4

35

FORTH Dimensions

PORTABLE
POWER

WITH
MasterFORTH
Whether you program

“ gl on the Macintosh, the

'—-_;_qi) IBM PC, an Apple Il ser-

™ jes, a CP/M system, or the

Commodore 64, YOUI cmoman o =

program will run un- £ = 555

changed on all therest. ===

If you write for yourself,

MasterFORTH will protect

your investment. If you write

™ forothers, it will expand your
marketplace.

Forth is interactive -
you have immediate feed-
back as you program, every
step of the way. Forth is

fast, too, and you can
CP/M use its built-in as-
™~ sembler to make it
even faster. Master-
FORTH's relocatable utilities and
headerless code let you pack a lot
more program into your memory. The
resident debugger lets you decom-
pile, breakpoint and trace your way
through most programming prob-
lems. A string package, file interface
and full screen editor are all standard
features. And the optionaltarget com-
piler lets you optimize your applica-
tion for virtually any programming
environment.

The package exactly matches Mas-
tering Forth (Brady, 1984) and meets
all provisions of the Forth-83 Standard.

L™

MasterFORTH standard package. $125
(Commodore 64 with graphics)...... $100
Extensions
Floating Point......................... $60
Graphics (selected systems).......... 360

Module relocator (with utility sources). . $60
TAGS (Target Applic. Generation System) -
MasterFORTH, target compiler and

relocator..............l $495
Publications & Application Models

Printed source listings (each) $35

Forth-83 International Standard. $15

Model Library, Volumes 1-3 (each}.... $40

(213) 821-4340

8726 S. Sepulveda Bl., #A171
Los Angeles, CA 90045

SCR

=

LS ENOUL WK

SCR

by

I v BRI S

SCR

VONOCADUN-E

by

(Screens continued on page 40.)

#30
CR ." SCR#3Z@" (TI-FORTH PLOTTING ROUTINES 7/7/85)
@ VARIABLE XMIN ¥ VARIABLE YMIN (WORLD COORDINATES)
@ VARIABLE XMAX @ VARIABLE YMAX
o VARIABLE WL @ VARIABLE VBOT (VIEWFORT COORDINATES)
@ VARIABLE VR @ VARIARLE VTOP
% VARIABLE X @ VARIABRLE FX 6 ALLOT
@ VARIABLE XD @ VARIABLE YDB
I VARIABLE kX @ VARIABLE KY (X % Y SCALE FACTORS)
% VARIABLE FKX & ALLOT @ VARIABLE FEKY & ALLOT
@ VARIARLE YDBARA 43¢ ALLOT
I KXCALC VR @ VL @ ~ XMAX @ XMIN @ ~ / DUP kX ! S-3>F FEX F! 3
: KYCALC VEOT @ VTOFP & - YMAX @ YMIN @ -~ / DUP
KY ! §-3F FRY F! 3
: Z2DUF DUF DUF § —-x
#31
CR .” SCR#Z1" (FICKFPORT BWM 7/7/85)
@ VARIARLE VEOTB SVYBOTE 191 VBOT & - VBOTE ! 3§
B VARIABLE YIND 2@ CONSTANT XINC 191 CONSTANT YTI®
! FICKPORT (n ~-—) 2DUF 2ZDUP
1 = IF 96 VRBOT ! 46 VTOF ! 12 VL ! 112 VR ' 1@ YINC !
SVEOTE ENDIF (TOP LEFT VIEWFPORT)
2 = IF 94 VBOT ! 46 VTOP ¢ 144 VL ! 244 VR ! 1@ YINC !
SVEOTR ENDIF ¢ TOF RIGHT)
I o= IF 178 VBOT ! 128 VTOF ¢ 144 VL ¢ 244 VR ' 18 YINC !
SVEOTE ENDIF ¢ BOTTOM RIGHT VIEWPORT)
4 = IF 178 VBOT ! 128 VTOFP ! 12 VL ! 112 VR ! 14 YINC !
SVBOTE ENDIF ¢ BOTTOM LEFT)
S = IF 182 vBOT ! @42 VTOR ¢ 25 VL ! 225 VR ! 1% YINC !
SVEOTE ENDIF GFP! ¢ (FULL SCREEN VIEWFORT)
¢ PP PICKFORT 5 (n ——=) —=3
#IZ
CR ." SCR#3IZ " (BWM FLOTTING UTILITES 7/7/83)
@ VARIABLE YD @ VARIABLE XNN
¢ YLINES VBOT B § + VTOF @ DO I YD !
VL ® YD @ VR @ YD @ LINE YINC @ +LOOP 3
T XLINES VR &8 5 + VL @ DO I XNN !
XNN @ VEOT @ XNN @ VTOP @ LINE
XINC +LOOF 3
: GRID YLINES XLINES 3
PYTIFG YTIL@ VBOTB @ - YMIN @ S->F FKY F@ F*® F-3S +
VL @ SWAP VR @ OVER LINE 3 { DRAWS LINE Y = @)
DoYd YTIFG 3
SOXTIdE VL @ XMIN @ S-xF FKX F@ F* F-3>8 -~ VTOP @
OVER VBOT @& LINE 3 (DRAWS LINE X = @)
DX XTIO &
#33
CR ." SCR#33 " (CANNED EXAMPLES WORLD COORDINATES BWM 7/8/85)
C1 —~6 XMIN ! 6 XMAX ' ~1 YMIN ! 1 YMAX ! KXCALC KYCALC 3
C2 @ XMIN ! 24 XMAX ! -1 YMIN ! 1 YMAX ! KXCALC KYCALC
C3 @ XMIN ! 12 XMAX ! -1 YMIN ' 1 YMAX ! KXCALC KYCALC 3
: FUNCTION SIN FX Fig F/ 3 ¢ % ——— ainxk/x in fltg pt)

FORTH Dimensions

36

Volume VIII, No. 4

Getting Started with F83

Greg McCall
Werrington, NSW, Australia

The documentation with F83 is in
F83.COM and in the shadow screens
that are part of the source files that
come with F83. At first glance, the
thought of sifting through hundreds of
kilobytes of shadow screens is bewild-
ering, to say the least. Just to get you
started, I have put together a summary
of how to use the file words and how to
edit these files. This relates to the
CP/M-80 version of F83, but as far as
I know it should be similar to other
versions of Laxen and Perry’s F83.

This Forth can have two files open at
once. One file is called the CURRENT
file. This is the file used by all normal
reads and writes. You would normally
edit or load from the CURRENT file. The
other file is called the FROM file. This is
a second file you may have open for
reading only. For example, if you cur-
rently are working on a file (i.e., load-
ing and editing), and you wish to load
some screens from another file, then
you may open a FROM file and load
screens from it without changing the
CURRENT file. Following is a descrip-
tion of some useful file words:

CREATE-FILE (S n--)

Creates a new file containing n blocks.
10 CREATE-FILE TEST.BLK

opens a file called test.blk and writes

ten blank screens to this file. The file is

then closed.

FILE? Prints the name of the

CURRENT file.

DIR Prints the directory of

the current drive.

OPEN Open the following file

name and make it the

current file, e.g., OPEN

TEST.BLK

FROM Make the next word in

the input stream the

FROM file and OPEN it.

It then sets the current

vocabulary to FILES.

LOAD In the FORTH vocabulary,
LoAD will load screens
from the CURRENT file.
In the FILES vocabulary,
LoAD will load screens
from the FROM file. So
while we have a file as
the CURRENT file, we
can still open another
file by making this sec-
ond file the FROM file
and loading from it,
€.g2., FROM TEST.BLK

10 LOAD

CA Copy a screen to its
shadow.

COPY (S from to —-)

In the FORTH vocabulary, copies a
screen in the CURRENT file. In the FILES
vocabulary, copies a screen from the
FROM file to the CURRENT file. In the
SHADOW vocabulary, copies a screen
and its shadow in the CURRENT file.

CONVEY (S from to —-)

In the FORTH vocabulary, copies a set
of screens in the CURRENT file. In the
FILES vocabulary, copies a set of screens
from the FROM file to the CURRENT file.
In the SHADOW vocabulary, copies a set
of screens and their shadows in the
CURRENT file.
HOPPED A variable containing
the number of screens
to skip when copying
with CONVEY.

umD A variable containing the
direction of the screen
move using CONVEY. + 1
is a forward screen
move and -1 is a back-
ward screen move.

TO Sets up the variables
HOPPED and u/D. Used as
first-source last-source TO
Sfirst-destination CONVEY

The F83 editor uses the same words as
the editor in Starting Forth by Leo
Brodie, with some additions such as the
word NEw which allows replacement of

multiple lines. To get the editor going
correctly, you should look at screens 28 -
30 and 88 of UTILITY.BLK which hold
the terminal-dependent routines. You can
select your terminal — or see if any of the
routines are the same as those of your
terminal — or write your own routines.
The terminal words patch the words AT,
DARK, BLOT and -LINE to suit your
terminal. While we are looking at patch-
ing the editor, you could remove the
backslash in line 14 of screen 24 so that
(WHERE) is patched into WHERE and, if
you have a real-time clock, then you
could change GET4D in screen 23 so as to
have the ID supplied when the editor is
first invoked. These screen numbers refer
to the CP/M-80 version of F83. To find
where the source screens are for the editor
in your Forth, type VIEW AT which should
give you the second source screen of your
editor. Now just look through the editor’s
screens for the required words.

A summary of the editor commands
follows:

TOP Go to the top of the
screen.
c (Sn--)

Move n characters, right or left.

T (Sn--)
Go to beginning of line n.

.BUFS Displays the contents of
the insert and find
buffers.

KEEP Places the current line in
the insert buffer.

K Exchanges the contents
of the insert and find
buffers.

w Write all changes to disk.

N Move to next screen,

B Move back a screen.

A Alternate between a

screen and its shadow.

Volume VIH, No. 4

37

FORTH Dimensions

FortnTalk!

Fast object based programming!
Improves on SmallTalk concepts!

§ 0
D el i

O

DA A A AN A A A A

=<

FEATURES:

Builds on MacFORTH level 1
Multiple Inheritance
Unshadowed Mixins
Method Combination
Flavor Variables
Instance Variables
SELF Pseudo-Variable
Debug Tools:
Formatted Traceback
Message Tracing
Formatted Object Dumps
and Descriptions

$35

Available soon on
Atari ST and Amiga

Created by:

InSite Computing

P.O. Box 2949, Ann Arbor, Ml 48106
313/994-3660

Also available from:
MacForth Users Group
3081 Westville Station
New Haven, CT 06515
203/777-5618

MacFORTH is a registered trademark
of Creative Solutions, Inc.

<text> Represents the text fol-
lowing the command. If
<text> is just a carriage
return, the contents of
the insert buffer is used
in place of the missing
<text>.

I <text> Inserts <text> on the

current line at the cursor.
Overwrites <text> onto
the current line.

0O <text>

P <text> Replaces the current line

with <text> and blanks.

Inserts a line under the
current line.

Finds the <text> and
leaves the cursor just past
it.

S <text> (Sn--)

Searches for <text> through all screens
from the current one up to screen n.
Each time a match is found, n remains
on the stack until screen n is reached.
To continue the search, just type S
until screen n is reached.

U <text>

F <text>

R <text> Replaces the text just
found with <text>.
D <text> Finds and deletes the

text.

Deletes all text on the
line from the cursor up
to and including
<text>.

TILL <text>

JUST <text> Deletes up to, but not

including, <text>.

KT <text> Puts all text between
the cursor and <text>
inclusive into the insert
buffer (‘‘keep-till’’).

E Erases the text just
found by For s.

X Deletes the current line.

SPLIT Breaks the current line
in two at the cursor.

JOIN Puts a copy of the next
line after the cursor.

WIPE Clears the screen to
blanks.

G (S screen line —-)

Gets a line from another screen and

inserts it in front of the current line. In
the SHADOW vocabulary, G gets a line
and its shadow. In the FILES vocabu-
lary, G gets the line from the FROM file.

BRING (S screen first last —-)
Brings several lines from another
screen and inserts them in front of the
current line. In the SHADOW vocabu-
lary, BRING gets a range of lines and
their shadows. In the FILES vocabulary,
BRING gets the lines from the FROM file.
NEW (Sn-—-)

Moves the terminal’s cursor to the start
of line n and overwrites until the line
has a null input, i.e., just a carriage
return.

QUIT Exits the editor without

updating or flushing.

DONE Exits the editor, updates
the ID stamp, tells you
if the screen was modi-
fied, flushes it to disk
and removes automatic

redisplay.

ED Re-enters the editor. It
clears and reinitializes
the display, and begins
automatic redisplay of
the screen.

EDIT (Sn--)

Sets SCR to n, then uses ED to start
editing.

This should enable you to copy and
edit screens with Laxen and Perry’s
F83. The best way to get the entire
documentation on this Forth is by
printing out all the source files. If your
printer can print at least 132 characters
per line, then look in your printer’s
manual for the characters needed to
put your printer in this mode. My
FAX-80 needs a control-O to set the
condensed mode. 1 define a word
FAX-80 to send this code and then
patch it into the DEFERed word INIT-PR,
ie.:

: FAX-80 CONTROLO EMIT ;
* FAX-80 IS INIT-PR

To print the entire file, you use the
word LISTING. For example, to list
METAS80.BLK, [would type:

OPEN METAS80.BLK LISTING

FORTH Dimensions

38

Volume Vill, No. 4

Batcher’s Sort

John Konopka
Mitaka Shi, Japan

.Sample portions of link map data.

QuLy SeG SIZE
R . i 1 IR EIET L TEFTITTTERLTTLLTNE T TTET T TS
QUICkSOI‘t is often suggested as a 1 2 L1300 NN N I KT N
sorting algorithm because of its speed. 1 3 19TE AR T I I I IR NI TN
. . 1 4 224T REXFRNRNKI TSRS IR N NN R
The rep‘natl.on for speed is well deser- 1 S 1696 I U N I RIS
ved but Quicksort has other features 1 6 AT RIS IS AT I I I I I3 IR
which may make it difficult to use. An 1 7 2AD2 RT3 2606 3699960
1 10 14T NI I I I

alternative sorting method discovered
by K.E. Batcher in 19641.2 is a little
slower than Quicksort but is more

Before sorting

: : ’ OVLY SEG SIZE
r(?bUSt and avoids most of Qu1CkSOl’t § 1 21 2ES1 WK RN KKK I I I NIEIE I K I I I3 U3 0N
pltfalls. 27 2618 AR K I NI NI I I IE I I I I T2
One problem with Quicksort is its 25 25@9 RN NI NI NI KK ICIE I I I I I I I

6 49T R WA N NI I IE T K IEIE I I I I I IEIE NN IR

variable performance. It is usually

. : 13 24BS FHEHERIIIN IR I KKK KT II I 2N IR K
stated that Quicksort requires about 17 2H6T HHRHRHIINIEN NI III KKK I H NI KKK NN
NlogN Operations to sort N items (base 14 2443 RN I B 2 I KK I J K I N

O T T o

T S4QL2 NIRRT A WA NI AT I I I I I IR R KK

2 logarithm). This is an average result
gar) ! ge After sorting

which depends on the input data being
random. In other cases where the data
is already ordered in some way, then
Quicksort may require as many as N2
operations to sort N items. This is as
slow as a Bubble sort. Thus you don’t

Figure One

100 random numbers before and after sorting.

14820 -10904 29081 -30212 3226 -16975 -6865 -31694 28585 29040
know from one execution to the next -22503 25399 24896 -27251 21804 29720 -10403 11702 -3684 -13959
. . 1293 -17882 11160 16792 -28685 21788 364 3362 -14444 -32176
just how long a sort will take. Extra | _,4543 37148 -1267 -17090 28362 -16741 249 12214 -32405 1678
code can be added — complicating the 31832 -7663 9461 30700 -7458 -12676 -7101 9277 -6936 -8360
leori —t -15913 -13499 -27433 14612 -8610 -26152 -9637 -19365 6962 6143
agorlthm. 0 handlfa some, but not -31048 -19079 711 13083 -16616 -14840 15938 -19628 -19793 20656
all, of the time-consuming cases. Quick- 22997 32032 18638 -9148 1954 968 9551 -17276 11578 -16357
sort also varies in its use of space. 17601 5905 -3600 -20587 -14952 -5764 26437 -28174 -474 -22334
Every branch in Quicksort creates one -32679 6053 32007 -1349 30393 -14024 -26301 4785 28746 -22250
stack entry (the number of words per 32032 32007 31832 30700 30393 29720 29081 29040 28746 28585
t v is i ntati ifi 28362 27148 26437 25399 24896 22997 21804 21788 20656 18638
sacl;l entry 1s mp“"?‘e tation specific) 17601 16792 15938 14820 14612 13083 12214 11702 11578 11160
on the return stack (if, as usual, recur- 9551 9461 9277 6962 6143 6053 5905 4785 3362 3226
sion is used). Normally, a maximum of 1954 1678 1293 968 711 364 249 -474 -1267 -1349
: -3600 -3684 -5764 -6865 -6936 -7101 -7458 -7663 -8360 -8610

about logN stack entries are created. -9148 -9637 -10403 -10904 -12676 -13499 -13959 -14024 -14444 -14840
However, in degenerate cases this num- -14952 -15913 -16357 -16616 -16741 -16975 -17090 -17276 -17882 -19079
ber may approach N. When sorting ill- -19365 -19628 -19793 -20587 -22250 -22334 -22503 -24843 -26152 -26301
¥y app g -27251 -27433 -28174 -28685 -30212 -31048 -31694 -32176 -32405 -32679

ordered data you may find your pro-
gram running out of room with unan-
ticipated consequences.

A second source of trouble with
Quicksort is that it is difficult to imple-
ment. Quicksort is generally presented
in a recursive form. If recursion is not
available you must implement this
yourself. You can, at the expense of
more complicated code, implement a
non-recursive version3. To limit, but
not eliminate, the number of cases
requiring much time or much stack
space more code can be added, again
increasing the complexity of the algo-
rithm. The final implementation prob-
lem is how to test it. Because the
operation of the algorithm is data

Figure Two

dependent you may have sleeping bugs
which only awaken when presented
with rightly ordered data. See the
Sedgewick and Knuth references for
more information about Quicksort.
Batcher’s sort suffers none of these
problems. It iterates the same way
every time, calculating the same pairs
of indices regardless of the data pre-
sented for sorting. It sorts in place,
requiring no buffer space, and it places
no unusual demands on either the
return or data stacks. Furthermore, it
is easy to implement, requiring only
one screen of Forth code. Recursion is

not required. Finally, because it is
simpler there are fewer things to go
wrong. It is thus easier to test and
easier to trust. Once you have it work-
ing for one set of data it is likely to
work well afterwards.

The cost for this robustness is time.
Quicksort requires, on average, about
NlogN operations. Batcher’s sort re-
quires less than (N/4)logN[(logN) + 1]
iterations. The difference is less than
(logN +1)/4. As an example of what
this means in terms of normal array sizes
Quicksort should be, on average, about
two times faster when sorting 1024 items.

Volume VIII, No. 4

39

FORTH Dimensions

This does not take into account any time
difference for one iteration between
Quicksort and Batcher’s sort. The
clincher is the phrase ‘‘on average.”’
Depending on the input data, in some
cases Batcher’s sort may in fact be
quicker than Quicksort. In any event
The absolute difference in time will
probably not be large. For example,
using no code words I can sort 512
names on a DEC LSI 11/23 in twelve
seconds. In this case the cost for using
Batcher’s sort is certainly tolerable.

Batcher’s sort has one more inter-
esting feature which someday may let it
far outpace Quicksort or any other
sorting method, in terms of speed.
Looking at the code you can see three
nested loops. At every iteration of the
innermost loop INNER-LOOP the pairs of
keys which are compared are complete-
ly independent. Thus a parallel com-
puter could implement the inner loop
in one step for really fast sorting. The
number of iterations in this case is just
(1/2)logN[(logN)+1]. This is just
fifty-five iterations when processing an
array of 1024 items.

Implementation

The Forth code for the sort is dis-
played in screen 2. While the code is
not particularly complex, the operation
of the algorithm is not obvious. See
Knuth for further details. The program
uses seven constants: TT, PP, DD, NN,
RR, @@ and KC. These names were
chosen to be consistent with the des-
cription of the algorithm given by
Knuth. @Q can easily be carried only on
the stack but I made it explicit for
easier reading. Constants are used
rather than variables, as the data is
accessed much more often than it is set.
TT stores a parameter which determines
the sizes of the outer loops. It is calcu-
lated in SELECT-T. PP drives the
outermost loop, @@ drives the next
nested loop. These loops are driven by
dividing the loop counter by two rather
than by incrementation as in DO LOOP.
RR, NN and DD are used to calculate
indices to keys. When sorting N items,
this routine generates indices in the
range from zero to N-1. The actual
output of the program is this sequence
of number pairs. Implementation-

Screen #2

1\ BSORT K. E. Batcher's sort. From Knuth, vol 3.

2 0 CONSTANT TT 0 CONSTANT RR 0 CONSTANT DD 0 CONSTANT PP

3 0 CONSTANT NN 0 CONSTANT QQ 0 CONSTANT KC

4 : KEY _COMPARE KC EXECUTE ;

5 : SELECT-T NN 15 0 DO DUP I 2**N <= IF DROP I LEAVE THEN LOOP
6 1- 14 MIN ' TT ! ;

7 ¢ INNER-LOOP NN DD - 0 DO I PP AND RR =

8 IF I DUP DD + KEY_COMPARE THEN LOOP ;

9 : Q-TEST QQ PP <> IF QQ PP - ' DD ! QQ 2/ ' QQ !

10 PP ' RR ! O THEN ;

11 : ORD-SET TT 2**N ' QQ ! 0 " RR ! PP ' DD ! ;

12\ n --- n is number of items to sort. n must be positive.
13 : BSORT ' NN ! SELECT-T TT 2**N ' PP !

14 BEGIN QRD-SET QQ

15 BEGIN INNER-~-LOOP Q-TEST UNTIL

16 PP 2/ DUP ' PP ! 0= UNTIL ;

Screen #6
1\ BSORT example. Sort array of integers.
2 0 CONSTANT X1 0 CONSTANT X2 CREATE DATA 200 ALLOT

3

4 -—- Load array DATA with random numbers.

5 : INIT-DATA 100 0 DO RANDOM DROP I 2* DATA + ! LOOP ;

6

7\ —— Exchange entries pointed to by X1 and X2.

8 : SWAP-DATA X1 DATA + @ X2 DATA + @ X1 DATA + ! X2 DATA + ! ;
9

T0ONNM --- Compare and maybe exchange Nth and Mth entries.
11 : COMPARE-AND-SWAP 2* ' X1 ! 2* ' X2 ! \ Save pointers

12 X1 DATA + @ X2 DATA + @ > \ Compare values

13 IF SWAP-DATA THEN ; \ Exchange if misordered
14 \ --- .R is defined in 79-Standard Reference Word Set.

15 : LIST-DATA 100 0 DO I 2* DATA + @ 7 .R I 1+ 10 MOD 0=

16 I¥ CR THEN LOOP ;

(Screens continued from page 36.)

SCR #34
@ CR ." SCR#34 " (ARRAY YDE CALC FLTG FPOINT BWM 7/7/85)
1 i ARAYDH cLs . WORKING ''' " (~—-—- YDBLil)
2 VR @ VL @ DO I XD !
= I Vi @ -
4 XMIN @ KX @ %
5 + (diff prod ——— kx#*¥x)
) S~ >F FEX FR F/ (fLhkx#x] —— fx)
7 FDUP FX F! (stores current fx)
8 FUNCTION FKY FE F#* (f3 e fydflky)
? F->8 (fhy*fy ——— ky#*y)
1 YMIN 8 kY @ % — VBOTB @ +
11 YDBARA I VL @ — 2 % + ! (store ydb in array ydbara)
12 LOOP 3

13 ¢ COMPUTES VIEWFORT REPRESENTATIVE OF WORLD Y)

15 :

CY ARAYDE § ~—3

SCR #39
@ CR ." SCR#3S “ (BWM PLOTTING UTILITES 7/7/83)
1 ¢ PLOTY
2 VR 8 VL@ DO I XD !
z I VL @ - 2 %
4 YDEBARA + @
b YTI@ SWAP - XD @ SWAF DOT (PLOTS NEXT PT)
& LOOF 3
7
g : PY CLS FLOTY 3
9

FORTH Dimensions

40 Volume VIil, No. 4

specific code uses these pairs of num-
bers to point to the items to be sorted,
then does the compare and possible
exchange. If, for example, you were
sorting a list of names and the output
was 1 and 5, then your implementation-
specific word would compare the first
and fifth names in the list and exchange
their positions if they were misordered.
The execution address of this code is
stored in constant Kc. The word
KEY__COMPARE accesses that constant
and executes the word whose address is
stored there. By this vectoring, the sort
routine is separated from the data
being sorted so you can use the same
sort routine for all applications. To use
the routine, put the execution address
of your compare code in constant KC,
put N (the number of items to be
sorted) on the stack, then invoke
BSORT.

Application Examples

Screen 6 shows an application which
sorts an array of random data. The
array is initialized with a random num-
ber generator’ by invoking INIT-DATA.
If a random number generator of some
kind is not available you can load the
array with an editor, using , (comma)
to enter integers picked from your
imagination. LIST-DATA will type the
data on a terminal. To sort the data put
the execution address of COMPARE-AND-
SWAP in constant K€, then put 100 on
the stack and invoke BSORT:

FIND COMPARE-AND-SWAP
100 BSORT

'KC!

Now you can use LIST-DATA to see the
effect of sorting. This simple example
is useful for verifying the operation of
BSORT.

As another example application, I
use this routine to sort the vocabulary
names in the Forth dictionary. Code
specific to my system first scans the
dictionary and builds an array of ad-
dresses. Each entry points to the name
field of a Forth word. The length of the
array is the number of words in the

dictionary. The comparison word de-
posited in KC takes two indices from
BSORT and using these pointers com-
pares two names in the dictionary, then
exchanges the addresses stored in the
array if the names are not in alphabeti-
cal order. This comparison word must
not only know how to compare strings
alphabetically but it must be able to
strip out special bits such as the
IMMEDIATE flag, and it must be able to
determine the length of the name. Af-
ter sorting, I write the names to a text
file and then use an editor to make
glossaries for documenting applica-
tions. See the paper by Baden* for
another exampile of sorting vocabulary
names in the Forth dictionary.

In another case [use this routine to
sort information about a large Fortran
program. When the program is com-
piled and linked, a map is generated
giving, among other information, the
size of each of the program overlays.
The size of the program in memory is
determined by the largest segments;
thus, to reduce the memory require-
ments one needs to know which are the
largest segments and how they differ
from the second or third largest seg-
ments. I wrote one routine to scan the
map and extract the size information.
For sorting, the word deposited in K¢
compares these sizes numerically and
exchanges them if they were out of
order. Figure One graphically shows
the results before and after sorting.

In the near future, I have two more
sorting applications in mind. One is in
an application I wrote called ‘‘Card
File.”” This is a software version of a
box of 3x5 cards. In this case I will first
create an array of pointers in memory
indicating which cards I want to list on
the printer. Then I will sort this list
using BSORT. The most natural order
would be to alphabetize the cards ac-
cording to the first word on a given
row of the card. The application-spec-
ific word which would be deposited in
K¢ would have to know how to extract
this information from the cards, then
do the compare and swap pointers if
needed. The second application I have
in mind is in x-ray spectroscopy. I now
have Forth words which create direc-
tories of file names of stored x-ray

spectra. It would be helpful to sort
these directories in various ways. Just
by changing the compare word deposit-
ed in constant KC I will be able to sort
the directory according to file name,
date, number of elements in the spectra
or even according to the atomic num-
bers of the elements which generated
the spectra.

From these few examples you can see
that almost anything can be sorted. All
you need is a word which knows how
to compare two items in a list and
exchange them if they are misordered.
If the items are small and easy to move,
then you can exchange the positions of
the items themselves. If it is costly to_
move the items, as in the case of disk-
based data, it is better to keep a list of
pointers and just exchange the pointers.

References

1. Batcher, K.E., Proceedings AFIPS
Spring Joint Computer Conference.
32(1968), 307-314.

2. Knuth, Donald E., Art of Com-
puter Programming, Vol. 3, pp
111-122, Addison-Wesley, 1973.

3. Sedgewick, Robert, Algorithms, pp
107-111, Addison-Wesley, 1983.

4. Baden, Wil, ‘‘Quicksort and
Swords’’, Forth Dimensions V1/5,
1985.

5. Doyle, William T., ‘“A Portable
Forth Random Number
Generator’’, Journal of Forth
Applications and Research, vol. 1,
no. 2, 1983.

Volume Vill, No. 4

41

FORTH Dimensions

G Claypters

U.S.

* ALABAMA

Huntsville FIG Chapter
Call Tom Konantz
205/881-6483

* ALASKA

Kodiak Area Chapter
Call Horace Simmons
907/486-5049

¢ ARIZONA

Phoenix Chapter
Call Dennis L. Wilson
602/956-7678

Tucson Chapter

Twice Monthly,

2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

* ARKANSAS

Central Arkansas Chapter

Twice Monthly, 2nd Sat., 2p.m. &
4th Wed., 7 p.m.

Call Gary Smith

501/227-7817

¢ CALIFORNIA

Los Angeles Chapter
Monthly, 4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Call Phillip Wasson
213/649-1428

Monterey/Salinas Chapter
Call Bud Devins
408/633-3253

Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings

Talbert & Brookhurst

Fountain Valley

Monthly, 1st Wed., 7 p.m.
Mercury Savings

Beach Blvd. & Eddington
Huntington Beach

Call Noshir Jesung
714/842-3032

San Diego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784

Sacramento Chapter
Monthly, 4th Wed., 7 p.m.
1798-59th St., Room A
Call Tom Ghormley
916/444-7775

Bay Area Chapter

Silicon Valley Chapter
Monthly, 4th Sat.

FORML 10 a.m., Fig 1 p.m.
H-P Auditorium

Wolfe Rd. & Pruneridge,
Cupertino

Call John Hall 415/532-1115
or call the FIG Hotline:
408/277-0668

Stockton Chapter
Call Doug Dillon
209/931-2448

¢ COLORADO

Denver Chapter

Monthly, 1st Mon., 7 p.m.
Cliff King
303/693-3413

* CONNECTICUT
Central Connecticut Chapter
Call Charles Krajewski
203/344-9996

* FLORIDA

Orlando Chapter

Every two weeks, Wed., 8 p.m.
Call Herman B. Gibson
305/855-4790

Southeast Florida Chapter
Monthly, Thurs., p.m.
Coconut Grove area

Call John Forsberg
305/252-0108

Tampa Bay Chapter
Monthly, 1st. Wed., p.m.
Call Terry McNay
813/725-1245

* GEORGIA

Atlanta Chapter

Monthly, 3rd Tues., 6:30 p.m.
Computone Cotilion Road
Call Nick Hennenfent
404/393-3010

« ILLINOIS

Cache Forth Chapter

Cali Clyde W. Phillips, Jr.
Qak Park

312/386-3147

Central Illinois Chapter
Urbana

Call Sidney Bowhill
217/333-4150

Fox Valley Chapter
Call Samuel J. Cook
312/879-3242

Rockwell Chicago Chapter
Call Gerard Kusiolek
312/885-8092

¢ INDIANA

Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
317/353-3929

Fort Wayne Chapter
Monthly, 2nd Tues., 7 p.m.
IPFW Campus

Rm. 138, Neff Hall

Call Blair MacDermid
219/749-2042

* IOWA

Iowa City Chapter

Monthly, 4th Tues.
Engineering Bldg., Rm. 2128
University of Towa

Call Robert Benedict
319/337-7853

Central Iowa FIG Chapter
Call Rodrick A. Eldridge
515/294-5659

Fairfield FIG Chapter
Monthly, 4th day, 8:15 p.m.
Call Gurdy Leete
515/472-7077

e KANSAS

Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.

532 Market

Wichita, KS

Call Arne Flones
316/267-8852

* LOUISIANA

New Orleans Chapter
Call Darryl C. Olivier
504/899-8922

* MASSACHUSETTS

Boston Chapter

Monthly, 1st Wed.

Mitre Corp. Cafeteria
Bedford, MA

Call Bob Demrow
617/688~5661 after 7 p.m.

e MICHIGAN

Detroit/Ann Arbor area
Monthly, 4th Thurs.

Call Tom Chrapkiewicz
313/322-7862 or 313/562-8506

* MINNESOTA
MNFIG Chapter

Even Month, 1st Mon., 7:30 p.m.

Odd Month, Ist Sat., 9:30 a.m.
Vincent Hall Univ, of MN
Minneapolis, MN

Call Fred Olson

612/588-9532

* MISSOURI

Kansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Call Linus Orth
913/236-9189

St. Louis Chapter
Monthly, 1st Tues., 7 p.m.
Thornhill Branch Library
Contact Robert Washam
91 Weis Dr.

Ellisville, MO 63011

e NEVADA

Southern Nevada Chapter
Call Gerald Hasty
702/452-3368

* NEW HAMPSHIRE
New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Armtec Industries

Shepard Dr., Grenier Field
Manchester

Call M. Peschke
603/774-7762

* NEW MEXICO
Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p.m,
Physics & Astronomy Bldg.
Univ. of New Mexico

Jon Bryan

Call 505/298-3292

* NEW YORK

FIG, New York

Monthly, 2nd Wed., 7:45 p.m.
Manbhattan

Call Ron Martinez
212-749-9468

Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall

Univ. of Rochester

Call Thea Martin
716/235-0168

Syracuse Chapter
Monthly, 3rd Wed., 7 p.m.
Call Henry J. Fay
315/446-4600

* OHIO

Akron Chapter
Call Thomas Franks
216/336-3167

Athens Chapter
Call Isreal Urieli
614/594-3731

Cleveland Chapter
Call Gary Bergstrom
216/247-2492

Cincinatti Chapter
Call Douglas Bennett
513/831-0142

Dayton Chapter

Twice monthly, 2nd Tues., &
4th Wed., 6:30 p.m.

CFC 11 W. Monument Ave.
Suite 612

FORTH Dimensions

42

Volume VIII, No. 4

Dayton, OH
Call Gary M. Granger
513/849-1483

* OKLAHOMA

Central Oklahoma Chapter
Monthly, 3rd Wed., 7:30 p.m.
Health Tech. Bldg., OSU Tech.
Call Larry Somers

2410 N.W. 49th

Oklahoma City, OK 73112

¢« OREGON

Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Tektronix Industrial Park
Bldg. 50, Beaverton

Call Tom Almy
503/692-2811

* PENNSYLVANIA

Philadelphia Chapter
Monthly, 4th Sat., 10 a.m.
Drexel University, Stratton Hall

Call Melanie Hoag or Simon Edkins

215/895-2628

*« TENNESSEE

East Tennessee Chapter
Monthly, 2nd Tue., 7:30 p.m.
Sci. Appl. Int’l. Corp., 8th FI.

800 Oak Ridge Turnpike, Oak Ridge

Call Richard Secrist
615/483-7242

* TEXAS

Austin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120

Periman Basin Chapter
Call Carl Bryson
Odessa

915/337-8994

* UTAH

North Orem FIG Chapter
Contact Ron Tanner

748 N. 1340 W.

Orem, UT 84057

* YERMONT

Vermont Chapter

Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rm. 210, Monkton Rd.

* VIRGINIA

First Forth of Hampton Roads
Call William Edmonds
804/898-4099

Potomac Chapter

Monthly, 2nd Tues., 7 p.m.
Lee Center

Lee Highway at Lexington St.
Arlington, VA

Call Joel Shprentz
703/860-9260

Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
154 Business School

Univ. of Richmond

Call Donald A. Full
804/739-3623

* WISCONSIN

Lake Superior FIG Chapter
Monthly, 2nd Fri., 7:30 p.m.
University of Wisconsin
Superior

Call Allen Anway
715/394-8360

Milwaukee Area Chapter
Call Donald H. Kimes
414/377-0708

MAD Apple Chapter
Contact Bill Horzon
129 S. Yellowstone
Madison, WI 53705

FOREIGN
* AUSTRALIA

Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact Lance Collins
65 Martin Road

Glen Iris, Victoria 3146
03/29-2600

Sydney Chapter

Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.

Rm. LG19

Univ. of New South Wales
Sydney

Contact Peter Tregeagle

10 Binda Rd., Yowie Bay
02/524-7490

* BELGIUM

Belgium Chapter

Monthly, 4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20

2120 Schoten

03/658-6343

Southern Belgium FIG Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2

e CANADA

Alberta Chapter
Call Tony Van Muyden
403/962-2203

Nova Scotia Chapter

Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2ES
902/477-3665

Southern Ontario Chapter
Quarterly, Ist Sat., 2 p.m.
General Sciences Bldg., Rm. 312
McMaster University

Contact Dr. N. Solntseff

Unit for Computer Science
McMaster University

Hamilton, Ontario L8S4K 1
416/525-9140 ext. 3443

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C5]J2

* COLOMBIA

Colombia Chapter

Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota

214-0345

* ENGLAND

Forth Interest Group — U.K.
Monthly, Ist Thurs.,

7p.m., Rm. 408

Polytechnic of South Bank
Borough Rd., London

D.J. Neale

58 Woodland Way

Morden, Surry SM4 4DS

* FRANCE

French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire

31100 Toulouse
(16-61)44.03.06

¢ GERMANY

Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27

2000 Hamburg 6

* HOLLAND
Holland Chapter

Contact: Adriaan van Roosmalen

FIG des Alpes Chapter
Contact: Georges Seibel
19 Rue des Hirondelles
74000Annely

50 57 0280

* IRELAND

Irish Chapter

Contact Hugh Doggs
Newton School
Waterford

051/75757 or 051/74124

* ITALY

FIG Italia

Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

e JAPAN

Japan Chapter

Contact Toshi Inoue

Dept. of Mineral Dev. Eng.
University of Tokyo

7-3-1 Hongo, Bunkyo 113
812-2111 ext. 7073

* NORWAY
Bergen Chapter
Kjell Birger Faeraas
Hallskaret 28

Ulset
+47-5-187784

* REPUBLIC OF CHINA
R.O.C.

Contact Ching-Tang Tzeng
P.O. Box 28

Lung-Tan, Taiwan 325

* SWEDEN
Swedish Chapter
Hans Lindstrom

Gothenburg
+46-31-166794

* SWITZERLAND

Swiss Chapter

Contact Max Hugelshofer
ERNI & Co., Elektro-Industrie
Stationsstrasse

8306 Bruttisellen

01/833-3333

SPECIAL GROUPS

Apple Corps Forth Users
Chapter

Twice Monthly, Ist &

3rd Tues., 7:30 p.m.

1515 Sloat Boulevard, #2

San Francisco, CA

Call Robert Dudley Ackerman
415/626-6295

Baton Rouge Atari Chapter
Call Chris Zielewski
504/292-1910

Vergennes, VT B-6290 Nalinnes Heusden Houtsestraat 134 FIGGRAPH

Call Don VanSyckel Belgium 4817 We Breda Call Howard Pearlmutter
802/388-6698 071/213858 31 76 713104 408/425-8700

Valume VHI, No. 4 43

FORTH Dimensions

"7 HOLIDAY SPECIALS !

See Our Order Form Inside for Details

FORTH DIMENSIONS
BACK VOLUMES

FORTH MODEL
LIBRARY

FORML
CONFERENCE
PROCEEDINGS

FORTH & FORTH
83 79
STANDARDS

|

FORTH
INTEREST
GROUP

Jig

DR. DOBB’S
JOURNAL

FROM THE FORTH INTEREST GROUP

FORTH INTEREST GROUP

P. O. Box 8231
San Jose, CA 95155

Address Correction Requested

BULK RATE
U.S. POSTAGE
PAID
Permit No. 3107
San Jose, CA

