
Dimensions

Code Modules
& Data Structures

The Multi-tasking Mac!
Machl is 32-bit FORTH-83 for the Mac.
Machl is a complete development system for
writing multi-tasking applications, but it's so
easy to use that it's being used to teach FORTH
and 68000 assembly language at the university
that spawned the Silicon Valley.
For developers, Machl is a multi-tasking
programming environment with 'call' support
for every Toolbox trap. It's subroutine-
threaded for twice the speed of other Forths:

Sieve:
Assembly 2-3 secs
compiled C 6-7 secs
Mach1 13 secs
other Forths 23 secs
Pascal 1 270 secs

With the true assembler that's included,
developers can use their unchanged MDS
code in Forth. You can save progress on a
project with the word 'workspace'. The new
icon on the desktop will boot with all of your
code as you left it. At the end of the project,
the word 'turnkey' will create a stand-alone
application (with only 16k of overhead for the
multi-tasking operating system). Any application
may be sold without licensing fees.

Machl offers a truly interactive Other features: MacinTalk for words that speak,
environment for experimentation with Forth AppleTalk examples, stack notation and
and the Mac. The standard Motorola summary for every trap, headerless code, macro
assembler is interactive, too, so you can also substitution, vectored 110 and ABORT, unlimited
learn the language for the 68000 multi-tasking, named parameters, 400pg manual
from the keyboard. And since Machl uses a
normal editor (on the Switcher if desired),
with floating-point and local variables available, ~ a c h i is only
you don't have to give up the features that

49 95 w1 Switcher and Edit
Order from:

every other programming language has. With
menu-driven templates, you can create new Palo Alto Shipping
tasks, windows, menu bars, and even controls PO Box 7430
as easily as with a resource editor. The Menlo Park, CA 94026
200-page Forth glossary explains each Forth
word; one per page with examples.

add $4 for S/H (CA Res add 6.5% sales)
call 800144-FORTH to place VISAtMC orders

(versions for the Amiga and Atari available in early 1986)

FORTH Dimensions 2 Volume VII, No. 5

FORTH Dimensions
Published by the

Forth Interest Group

Volume VII, Number 5
January/February 1986

Editor
Marlin Ouverson

Production
Cynthia Lawson Berglund

Forth Dimensions solicits editorial
material, comments and letters. No
responsibility is assumed for accuracy
of material published. Unless noted
otherwise, material published by the
Forth Interest Group (a non-profit
organization) is in the public domain.
Such material may be reproduced
with credit given to the author and to
the Forth Interest Group.

Subscription to ~ o r t h Dimensions
is free with membership in the Forth
Interest Group at $20 per year ($33
foreign air). For membership, change
of address and to submit material for
publication, write to: Forth Interest
Group, P.O. Box 8231, San Jose,
California 95155.
ISSN NO. 0884-0822

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles

P and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

t Advanced; requiring stu-
dy and athorough under-
standing of Forth.

I Dimensions
FEATURES

7 Making Numbers Pretty by Michael Ham

S One difficulty many Forth novices have with number-formatting words is that
they need a double-precision number as input. As part of reviewing the number-
formatting words, the author also explains single- and double-precision, signed
and unsigned numbers.

12 An Application of the Recursive Sort by Dr. Richard H . Turpin
The author of this note presents an application of his earlier sort code with a
slight twist, using the Forth database model designed by Glen Haydon. The recur-
sive stack-sort code allows one to print records in order of selected fields.

Code and examples con-
form to Forth-83 stand-
ard.

35
Code and examples con-
form to Forth-79 stand-
ard.

Quick DP in Forth by Len Zettel
It all started with a community church: the pledge system came under the care of
a Forth programmer who was inspired to write a simple, line-oriented data
processing program. He describes the process of creating this tool in terms most
Forth beginners will understand.

WALK' on Bugs by David Franske
This powerful debugging tool allows one to see what happens on the Forth stack
and what the interpreter executes, to test Forth programs bottom-up and to find
bugs by halting applications in midstream to walk through suspect definitions
with real data while using Forth's full power to examine and change that data.

Code Modules and Data Structures by John S. James
How does one make data structures based on pointers, allowing a program itself
to be ROMable, pure code? Two simple but useful implementations illustrate the
use of CREATE. . .DOES> and ;CODE to define new classes of words in Forth.

A Universal Stack Word by Doneil Hoekman
Sometimes it's difficult to avoid multiple, complex parameter stack operations -
such as when dealing with mixed-mode arithmetic, floating-point, quad-precision
or graphics routines. Welcome the novel word STACK, a new and promising solu-
tion to a dreary problem.

Fast Evaluation of Polynomials by Nathaniel Grossman
A Sixth FORML Conference speaker presented a utility that parses a stack
diagram and an algebraic formula to generate stack operations that realize the
formula. But the shortest possible sequence of stack permutations can be found
without requiring the usual mental acrobatics.

FORML at Asilomar by Marlin Ouverson
At the annual conference of the Forth Modification Laboratory (FORML), Forth
adepts contributed their expertise to the schedule of talks, poster sessions and
working groups. Complete papers will soon be available in the published
proceedings, but the following material sketches some of the highlights.

VolumeVII. NO. 5 3 FORTH Dimensions

Code and examples con-
form to fig-FORTH.

Deals with new propos-
als and modifications
to standard Forth sys-
terns.

DEPARTMENTS
5 Letters

6 Editorial: "Elegant, Clever or Tricky?"

37 Advertisers Index
38 FIG Chapters

Don't Ask How We Did It!
No Visible Support Software

presents

an exclusive offer for Forth Dimensions Readers.

10 MB
for the

20 MB
for the

Paradise Hard Disk
Apple Macintosh:

Paradise Hard Disk
Apple Macintosh:

This offer expires March 31, 1986 so ACT NOW!

Send Check, Money Order, or VISAIMaster Card number (CA Residents
please include sales tax) to:

NO Visible Support Software Fine Print:

PO BOX 1344 The Paradise Mac Disk comes with a 1 year manufacturer's

2000 Center Street warrenty. It includes a print spooler, a volume manager, a

Berkeley, CA 94704 backup utility, a "Disk Doctor", and a nifty Show & Tell program.

- --

FORTH Dimensions 4 Volume Vll, No. 5

Stack Your Locals

Editor:
"Local Definitions" (Forth Dimen-

sions VI/6) seems like a useful utility.
However, the system the code was
written for is quite different from my
Forth 79-83 hodgepodge.

My version uses an extra stack just
below the disk buffers, which doesn't
waste any dictionary space. The only
restrictions are that the number of
buffers cannot be increased and the
last 1K of memory is dedicated once
the screens are loaded.

On my system, FIRST leaves the
header address of the lower buffer in
memory. N> LINK is defined if needed. I
doubt if anyone would need 511 local
words, so the stack can be reduced to
something more appropriate. The
stack words were adapted from Leo
Brodie's Thinking Forth.

Tom Shaw
Philadelphia, Pennsylvania

SCR # 'I!]
/ i 20 LOCAL STACK 12125195

FIRST 1024 - CONSTANT LOCALS (UNDER)

LOCALS 1024 ERASE i 8UFFERSi
LOCALS 1024 + CONSTANT LOCALS,

I : I t4IT.LOCALS
LOCALS LCCALS ! ; INIT.LOCALS I

: PUSH.LOC I N --- I
2 LOCALS t ! LOCALS @ DUP LOCALS> =
?ERR ! ;

: POP.LOC i --- N i
LOCALS @ @ - 2 LOCALS + I LOCALS @
LOCALS ('ERR i

; S

SCR r 21
i i 21 LOCAL WORDS l?i2?:85

VARIABLE L INK. FROH

: LOCAL.START (---) !i o TO EXII
1NIT.LOCALS 0 PUSH.LOC i

: LOCAL (--- ! / I L I S T S FOR DELINKINC
LATEST PUSH.LOC ;

: LOCAL.END (--- i
LATEST N>LINK LINK.FROH ! POP.LOC
PEGIN

L I N K . F R O H @ @ 2 D U P = / i P R E V . N F
I F SWAP N j L I N K @ !! RELIN

LINK.FROH @ !
EROP

ELSE
N>LINK LINK.FROH !
PUSH.LOC !! NOT LOCAL RETURN I

THEN POP.LOC DUP O= !/ CHECK EX1
UNTIL DROP ;

1 S
LINK.FROH HAS LFA U S T GLOBAL WORD

: N)L INK PFA LFA ;

The implementation is quite com-
plete, including a trace/debug function
and a multi-tasker of the I/O-driven
type, as well as the usual editor, as-
sembler, etc. Anyone who would like a
copy of the system, along with com-
plete source code (in Forth) should
send me two 5-inch diskettes with a
reusable mailer and return postage.
Please be sure to indicate which CPU
version is wanted. Readers with access
to CompuServe can also find the 6809

SCR # 22
i : 2 2 TEST LOCAL YORDS 1 2 / 2 9 / 9 5

LOCAL. START I
: 1 WORD . " YOUR " LOCAL
: COW ;
: ?WORD ." NAHE " i LOCkL

1 D E R E ; LOC4L

: NAHE CR !WORD ?WORD 3WORD ; I

Forth Can Flex

Dear Mr. Ouverson:
About a year ago, I wrote an im-

plementation of Forth-83 for 6809
systems with Flex9. I recently convert-
ed the code for 6800 use, and I am
releasing both versions for free dis-
tribution.

object code and limited documentation
in the CLM SIG's DL7.

Yours truly,
Wilson M. Federici
1208 N.W. Grant
Corvallis, Oregon 97330

16-Bit Standard?

Dear Marlin,
Being deep into the process of con-

verting my 280 CP/M Forth to the
Amiga 68000, I found Michael Hore's
letter (Forth Dimensions VII/3) on
extending the Forth-83 Standard to
machines with more than sixteen-bit
addresses timely. I pretty much agree
with his suggestions, but would like to
offer a few remarks.

I agree that the stack cell size should
be implementation dependent. But as I
interpret the standard, that is already
consistent with it. Although the stan-
dard specifies that addresses shall have
a range from zero to 64K in the "stan-
dard address space," there is no re-
striction on the size of the field in
which addresses are placed, except that
it must be at least sixteen bits. Presum-
ably, that is the reason that standard
programs are not allowed to address
directly into the stacks.

Furthermore, for compilation ad-
dresses, there is not even a restriction
to values less than 64K. In the "Defini-
tion of Terms" section, the standard
specifies only that a compilation ad-
dress shall be a "numerical value . . .
which identifies" a definition. There is
certainly no restriction on the size of
the compilation address field in the
dictionary - indeed, there is no detail-
ed specification of the dictionary struc-

(Letters continued on page 6)

Volume VII, No 5 5 FORTH D~mens~ons

Elegant, Clever or Tricky?
Forth is malleable as a ball of wax.

Its expressiveness allows finished code
to reflect the creative thought processes
- and perhaps even emotional charac-
teristics - of the programmer. This is
a more fundamental issue than whether
one uses fixed- or floating-point arith-
metic, which is a topic more easily
understood and argued than the sub-
tlety and elegance with which a truly
"Forth-like" program operates. Why
is it that some Forth programs look less
intelligible than assembly language,
while others are easily comprehended?
How can one piece of Forth code be
reminiscent of Los Angeles freeways at
rush hour while another is as palatable
as a picnic in the countryside?

To delve into lengthy comparisons of
Forth to other languages is to get
sidetracked. To wax philosophical is
usually ineffectual and diffuse. At its
best, good Forth programming seems
to arise after its basics are mastered
and one no longer mentally translates
concepts from Pascal or C or any other
language, and in which the solution is
perceived first in the mind almost as a
hologram that, when set down in Forth
terms, satisfies all the standard criteria

but is characterized by a natural direct-
ness that leads the reader to silently
think, "Of course, that's it!"

Defining what makes a Forth-like
program is as difficult as generalizing
about what makes a solution elegant
instead of just clever or, worse, tricky.
Writing a good example of this -
except for those Zen programmers
among us who are accustomed to quell-
ing the mind and going straight to the
heart of a problem to find the solution
co-resident with it - may require dis-
carding attempts that satisfy perform-
ance criteria but which do not go the
one yard further into elegance. For-
tunately, Forth supports iteration and
modification in the same manner by
which it supercedes, in a way, many of
the differences between compiled and
interpreted languages. If we let it,
Forth allows us to arrive at a workable
solution and then to see through to its
logical underpinnings and express them
in a simple, natural form.

Mimicry is the path chosen by so
many companies in the computer in-
dustry that me-too's and look-alikes
have created fast fortunes, forced pre-
mature discounting and foundered
otherwise well-run businesses. Leaders,
however, especially those with evolu-

tionary tools like Forth, look for sig-
nificantly better solutions to old prob-
lems. They will also be looking at what
Forth alone can do well.

In meeting the requirements of cor-
porations that employ programmers,
we must provide what professionals
need and have come to expect in terms
of tools, utilities, documentation and
services. And if a vendor or consultant
hopes to establish a permanent reputa-
tion, he must contribute to the stream
of innovations that periodically infuse
the marketplace with excitement, new
direction and prosperity. This requires
a two-way dialog with those we intend
to serve, and the willingness to excel.

Those who go beyond just writing
code that runs, who create a body of
work that exemplifies Forth-like pro-
gramming in every way, will be estab-
lishing the same mental climate re-
quired of all leaders and surely will
translate that into material success.
Let's cultivate the qualities of leader-
ship within our businesses as carefully
as a sculptor molds his wax model
before casting it in precious metals.

-Marlin Ouverson
Editor

(Letters continued from page 5)

ture at all. In my 68000 implementa-
tion, the compilation address field has
a variable size, with a lower bound in
practice of four bytes which occurs, for
example, in the special case when it
contains a twenty-four-bit address in a
thirty-two-bit field.

Although the above do not appear to
be violations of the standard, some
violations are inevitable in a more than
64K environment; and I agree with
Michael Hore that Forth is going to be
left behind if it does not accommodate.

I think the simplest solution to the
problem of parameter and address size
is to make it (judiciously) implementa-
tion dependent, with a lower bound of
sixteen bits. In my case, for the 68000 I

simply multiply by two most of the
standard-parameter sizes in arithmetic
and memory transfer operations. Thus,
+, @ and ! will operate on thirty-two-
bit quantities, and D + , 2@ and 2! will
work on sixty-four bit quantities. I
keep the size for words like c@, c! and
CMOVE at eight bits, and I introduce
new words w@, w + , etc. for sixteen-bit
sizes. I expect that most programs
written in a sixteen-bit environment
will still work.

My attitude towards the standard is
that it should be taken very seriously as
a common starting point to be violated
only for good reasons, but then with-
out hesitation or regret. That the fu-
ture of personal computing belongs to

larger address spaces has been clear to
a lot of people for some time. The
cheapness of memory has now con-
fronted us with that reality, and for
Forth it has become a case of grow or
die. In my view, it offers the com-
munity a real opportunity to rethink
and develop the structure of Forth; I
hope we won't be too timid about it.
For example: up with long, dynamic
strings! Down with screens and blocks!
In any case, let's rally to Michael
Hore's call for discussion.

Sincerely,
David N. Williams
Ann Arbor, Michigan

FORTH Dimensions 6 Volume VII, No. 5

Making Numbers Pretty
Michael Ham

Santa Cruz, California

The number-formatting words <#
#S SIGN and #> seemed strange
when I first began to use Forth, and I
approached them gingerly. In this ar-
ticle, I invite you to play with them to
develop a word that will print numbers
in a nice format: the number 12,345.67
will, for example, be printed with the
comma, the decimal point, and flush-
right in a display area of the width you
specify.

One problem with the number-for-
matting words is that they need a
double-precision number on the stack
(as input). Many Forth novices are not
interested in dealing with double-pre-
cision numbers when they are still try-
ing to understand single-precision: how
the same cell contents can be two
different numbers depending on whether
U. or . (dot) is used, but only if the
number is greater than 32,767. So as
part of reviewing the number-format-
ting words we'll also review single- and
double-precision, signed and unsigned
numbers.

A high-order bit of 1 in a single-
precision number signals a minus sign
for the signed operators (like.), but is
treated as just another numeric bit by
the unsigned operators (like u.). The
interpretation depends on your choice
of the operator.

Since the number-formatting words
require a double-precision number,
you must first convert single-precision
numbers to double-precision. In doing
the conversion you decide whether the
number to be converted is signed or
not. If the single-precision number is
signed, the high-order bit - the sign
bit - must be propagated across the
high-order cell of the double-precision
expression of that number, so that the
double-precision number will have the
same sign as the single-precision ver-
sion. If the single-precision number is
not a signed number, the high-order bit
is simply a part of the number and thus
is irrelevant to the bits in the (high-
order) cell added to change the single-
precision number to double-precision.

Most Forths have a word like S>D to
do a signed conversion from single- to
double-precision. But let's write our
own to see what it's doing.

When working with bits (in this case,
the high-order bit), a word that shows
the bit-configuration of the datum (in
this case, a number) is helpful. To see
the bits, let's define the word .BITS as
follows:

:.BITS (n - n)
BASE @ BINARY OVER U.
BASE ! ;

If your Forth does not include
BINARY you can easily define it:

: BINARY 2 BASE ! ;

.BITS will print in base two (binary) a
copy of the number on top of the
stack. Since base two uses only two
digits (the binary digits, abbreviated
"bits"), the display will show the bit
representation of the number: 0 is a bit
that's off, 1 a bit that's on. As a part of
normal programming hygiene, the cur-
rent base is saved (on the stack) and
restored at the end of the word. .BITS
violates the common Forth rule that
every word should consume its argu-
ments (as . and U. do, for example).
The number printed by .BITS remains
on the stack (since what was printed
was the copy made by OVER). But
because .BITS will be used not within a
program but interactively to look at
things on the stack, and because it
would be a nuisance to type DUP .BITS
every time we wanted to look at a
number, this exception seems justified.

.BITS has one drawback: it doesn't
print the high-order bits if they are
zero. This means that we sometimes
don't see all sixteen bits in a cell. It
would be nice to be able to force the
printing of the high-order zero bits.

If you will tolerate a short leap
forward, we can. Define .BITS using
this word:

: 16BlTS(d -)
.
TYPE ;

Each # forces the printing of a digit.
Since # appears sixteen times, sixteen
digits will be printed. This is how we
force the printing of the high-order
(leading) zeroes. If 16BITS were defined
as <# #S #> TYPE there would be no
leading zeroes. The word #> leaves the
address and count of the ASCII string
version of the number, ready for TYPE.
16BITS is then used to redefine .BITS
like this:

: .BITS (n - n)
BASE @ BINARY OVER
0 1 6BITS BASE ! ;

The zero converts the single-precis-
ion number to a double-precision num-
ber. The double-precision number's
high-order bits (contributed by the zero
we put on the stack) are all zero.

Try playing with the new .BITS for a
while. (Things will be easier for you if
you edit these examples into a disk file
so that they can be easily retrieved and
revised.) You can break up the string of
zeroes and ones by putting the word
SPACE into the definition of 16BlTS
where you want a space. For example,
redefine 16BITS this way (and then
reload the definitions):

: 16BlTS (d -)
< # # # # # S P A C E # # # # 3 S P A C E S
S P A C E # # # # # > TYPE;

The spaces display the sixteen-bit
string in bytes (eight bits) and nibbles
(four bits). Now that we can see the bit
pattern of a number, try looking at
some positive and negative numbers.
You will find -1 and 65535 have the
same bit pattern, for example, as does
-45 and 65491. You will also note that
such "two-way" numbers consist only
of numbers greater than 32767, for it is
only at 32768 that the high bit is turned
on. The high-order 1 bit is what leads
to the two interpretations.

We have just seen how to create an
unsigned extension from a single-pre-
cision number to a double (that is, how
to treat the single-precision's high or-
der bit as part of the number and not as
a sign): we simply put .a zero on the
stack above the number. In the result-

Volume VII, No. 5 7 FORTH Dimensions

1 with LMI FORTHTM

1 For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 Interpreter/Compilers

IE-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-80, 8086, 68000, and 6502
No license fee or royalty for compiled applications

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

* ~ a b o r a t o r ~ Microsystema Incorporated
Post Office Box 70430, Marina del Rey, CA 90295

credit card orders to: (213) 3067412

Overseas Distributors.
Germany: Forth-Systeme Angellka Flesch. D-7820 Titlsee-Neustadt
UK: System Science Ltd., London EClA 9JX
France: Micro-Slgma S.A.R.L., 75008 Pans
Japan: Southern Pacif~c Ltd , Yokohama 220
Australia: Wave-onic Assoc~ates. 6107 Wilson, W.A.

ing double-precision number, the high-
order cell is zero, so the value is deter-
mined solely by the low-order cell, our
original number.

To make the source code easy to
read, US>D can be defined to convert
unsigned single-precision numbers to
double-precision, even though the task
(and the definition) is quite simple:

0 CONSTANT US > D

We now will define the extension
operator S> D for signed numbers. s> D
will assume that the high-order bit is a
sign. If that bit is on, then the number
is assumed to be negative; if it's off,
the number is positive. For positive
numbers, the extension to double-
precision is exactly as before: put a
zero above the number on the stack.

The easiest way to see whether the
high bit is on is to use the operator o< .
o< leaves a false flag (zero, or all bits
off) if the number is positive (high bit
off) and a true flag (-1, or all bits on) if
the number is negative (high bit on). To
extend the number to double-precision,
we replicate its high-order bit across
the.cell placed on the top of the stack:
if the high bit is on, we want the cell on
top of the stack to be all bits on; if the
high bit is off, the cell on top of the
stack should be all bits off. We thus
arrive at this simple definition:

: S > D (n - d) DUPO<;

This definition assumes an 83-Stand-
ard Forth. If your Forth is 79-Stand-
ard, the true flag is 1 instead of -1: one
bit on instead of all bits on. You can
correct the definition by ending it with
-1 * or DUP IF DROP -1 THEN. (Which is
faster on your system?)

We now can extend either signed or
unsigned numbers to double-precision.
And of course we may be dealing with
double-precision numbers t o begin
with. In any case, we can now assume
that we have a double-precision num-
ber to print. Let's assume that the
number may have been scaled - that
is, although it is stored as an integer,
some digits are in fact to the right of

-

8 Volume VII. NO. 5

the decimal point. We'll define a vari- into a problem when the number was
able to keep track of the number of negative: a negative number divided by
decimal places in the number being ten produces a negative quotient,
printed: which will never reach zero, regardless

of the number of divisions (the largest 8
VARIABLE DECIMALS

..
it will get is -1). The ~ D U P OR leaves all 3 ,.< . .

: PLACES (n -) DECIMALS ! ; zero bits (binary 0) on the stack only if :-: ...'
Z. ...' 17..

the double-precision number has no 3 ...' ...'
2 PLACES thus indicates that the one bits - ~ D U P OR is thus the double- . :::: :5: number has two decimal places: two precision equivalent of o = . The loop $.:.:

digits to the right of the decimal point. will thus increment the count of digits 3
:.:. ...' :i .5'

To print the commas, we need to until the quotient is zero. The initial- $..' .,.' A*

know also the number of digits to the ization of DIGITCOUNT with a one takes $ 7.. ...
left of the decimal point. To get this care of the case in which the number is 3
number we might, for example, divide less than ten to begin with and the loop

zero. The number of divisions is the int-remented for the first time.
the number by ten until the quotient is is therefore exited before DlGlTCOUNT is

number of digits. If your Forth has no operator that
The 83-Standard arithmetic operat- produces double-precision quotients,

ors for double-precision numbers are a use some other approach. One way,
mixed bag: D + and D- use double-~re- somewhat heavy-handed but fast, is to
cision ope rands a n d produce compare the number to successive MICRO- double-precision results, while UM' and powen of 10 - 1 (9, 99, 999, 9999,
UMlMOD are mixed operations, with the etc.), and stop as soon as the number is
one giving a double-precision result less. The number of comparisons is the
and the other a single-precision. If You number of digits. (Remember: the
want to to divide a double-precision number is assumed to be double- ::: ...
number and get a double-precision precision.) 2:
result, you must work with the par-

?.. .?.* ticular Forth you are using. :2, (d - I , , ; .-..
?.' Many vendors do provide a larger set CREATE NINES- . . of operators; for example, you might 9. 2, 99. 2, 999. 2, 9999. 2, ::: .'. find an operator like MID for division. 99999.2,999999.2,9999999.2, ::: ...

This operator takes a double-precision 99999999.2,999999999.2,
2 :.a

dividend and a single-precision divisor I;
3. 8

(and thus is a mixed operation), and it : #DIGITS (d - #),. FEATURES ?.. . .
C :f. returns a double-precision result, as DABS 1 DlGlTCOUNT! 8 -FORTH-79 Standard Sub-Set

...' c.:
indicated by the D in its name. Using BEGIN 2DUP DlGlTCOUNT @

...
-Access t o 8031 features '...

MID we can develop this definition: 1- 4 ' NINES + 2@ D> -Supports FORTH and machine 8
w

WHILE 1 DIGITCOUNT +! REPEAT ?.a code interrupt handlers 8
3 --System t~mekeeping rnarntalns 3

VARIABLE DIGITCOUNT 2DROP DIGITCOUNT @ ; ?.* :.- time and date with leap
...a

2::
?.* : #DIGITS (d - #) year correction :-:* c.:

DABS 1 DIGITCOUNT ! With the number of digits and the 3 -Supports ROM-based self-
starting applications ...I BEGIN 10 MID 2DUP OR number of decimal places, it is easy to 3 ,-.,

...'
WHILE 1 DIGITCOUNT + I REPEAT calculate the number of commas. If we $
SDROP DIGITCOUNT @ ; can assume that #DIGITS has been ex- 8 5

,5' :.: i.: ecuted, we can use this definition: C., 3 COST
D~GITCOUNT holds the count as it is 8 130 page manual -S 30.00 f i

accumulated. You can avoid using a : #,S (- # 1 a
::: 8K EPROM w~th rnanual-S100.00 2;

. m i

variable, but the cost in terms of stack DlGlTCOUNT @ DECIMALS @ ..i
::: Postage pad ~n North Arnerlca ...I ..' . m i

swapping operations (and complexity - 3 /MOD SWAP O = + 0 MAX ; $ inquire for ilcense or quantlry pnc~ng .: ... of the definition) isn't worth it. ?.. ... 5:
The definition first takes the ab- The name, succinct as it is, might be 3 .:.w..x.3m.m.3:.>>:.:.:.:.>3:.:.>>33: ::: A

solute value of the double-precision criticized as cryptic. Change it to 3 2
number. The number of digits in the NUMBEROF-COMMAS or #COMMAS if 3 5:

:::
absolute value is the same as in the you wish. The definition also does :% Bryte Computers, Inc. :. .5
signed value, of course. If we didn't arithmetic using the 83-Standard true $ P.0. BOX 46, Augusta. ME 04330 5

(207) 547-32 18 :.. take the absolute value, we would run flag (-1). You can make the code .'. .-.-.
i$.:.:.:.:.:.>:.:.:.:.:.5:.I.:.:.:.:.:.I.:.:.:.:.:.: .~.~.1.1.1.1..-..-.-..5.5.5.5.5.5.5.5.55-.. &?,

VolumeVII, No. 5 9 FORTH Dimensions

PROCESS CONTROL, GRAPHICS
and more, is now available for.. .

PolyFORTH I1 offers IBM PC

Unlimited control tasks
Multi-user capability
8087 mathematics co-
processor support
Reduced application
development time
High speed interrupt

Now included at no extra cost:
Extensive interactive GRAPHICS
SOFTWARE PACKAGE! Reputed
to be the fastest graphic package
and the only one to run in a true
multi-tasking environment , it
offers point and line plotting,
graphics shape primitives and
interactive cursor control.
PolyFORTH II is fully supported
by FORTH, Inc.'s:

Extensive on-line
documentation
Complete set of manuals
Programming courses
The FORTH, Inc. hot line
Expert contract programming
and consulting services

From FORTH, Inc., the inventors
of FORTH, serving professional
programmers for over a decade.
Also available for other popular
mini and micro computers.
For more information contact:

2309 Pacific Coast Hwy.
Herrnosa Beach,

RCA TELEX: 275182
Eastern Sales Office
1300 N . 17th St.
Arlington, VA 22209

standard-independent by replacing +
in this definition with IF 1- THEN. The o
MAX takes care of the situation in
which the number of digits is less than
the number of decimals: for example,
.0023 would be stored (in integer form)
as 23: DIGITCOUNT will be 2 and
DECIMALS will be 4.

We can now print the number with
punctuation. Let's first define the
word for an unsigned double-precision
number:

: UPRT# (ud - adr cnt)
2DUP #DIGITS <# DECIMALS @ ODUP
IF 0 DO # LOOP ASCll. HOLD THEN
#,S PDUP
IF 0 DO # # # ASCll , HOLD THEN
#S #> ;

UPRT# first counts the number of
digits. It then begins converting the
number into a string that can be print-
ed. Since numbers are converted begin-
ning with the low-order (rightmost)
digits, we are first concerned with the
digits to the right of the decimal point.
DECIMALS holds the count of decimals.
If it is zero, then the count (undupli-
cated by ?DUP) serves as a false flag,
and the IF clause is skipped. If the
count is not zero, we loop as many
times as there are digits to the right of
the decimal, executing # in each itera-
tion of the loop, thus formatting the
correct number of digits. ASCII . HOLD
then puts the decimal point into the
string. (If your Forth doesn't include
the word ASCll you can use 46 HOLD,
forty-six being the decimal value of the
period character.)

The same approach is used for the
commas. If no commas are required,
we simply print the (rest of) the num-
ber with #s. If commas are needed, we
loop once for each comma, outputting
three digits and one comma each time
through the loop. (You can substitute
for ASCII , the actual value forty-four.)

#S finishes the number (without
leading zeroes). Because #> puts the
address and count on the stack, UPRT#
leaves the stack ready for TYPE to print
the number.

We must also cover the other pos-
sibility that the number is signed and
thus may be negative. We can put SIGN
into the number wherever we want the
minus sign to appear - before, after
or in the middle. (SIGN prints only the
negative sign; if the number is positive,
no plus is printed.) Let's put the sign in
front of the number.

SlGN uses the sign of the number on
top of the stack. Since in a double-
precision number the sign is carried by
the top cell, we can save a copy of just
this cell. The number-print word re-
quires that the absolute value be used.
So we get a second definition:

: PRT# (d - adr cnt)
DUP > R DABS 2DUP
#DIGITS <# DECIMALS @ ODUP
IF 0 DO # LOOP ASCll . HOLD THEN
#,S ?DUP
IF 0 DO # # # ASCII , HOLD THEN
#S R> SlGN #> ;

SIGN consumes its argument, as is
typical of Forth words. We moved a
copy of the top cell of the number to
the return stack and then took the
number's absolute value. If this is our
only use of #DIGITS we could thus take
the DABS out of the definition. But if
you might use #DIGITS elsewhere,
#DIGITS should retain its own DABS
inside its definition.

If you wanted to force the printing
of a plus for positive numbers as well
as the minus for negative numbers, you
could replace the word SIGN with
+SIGN defined as follows:

: +SIGN (n -)
DUP O < IF SlGN
ELSE IF ASCII + HOLD THEN
THEN ;

To use +SIGN you must do some
extra work in saving the "sign" part on
the return stack. If the double-precis-
ion word is negative (that is, the high-
order cell considered as a single-pre-
cision number is negative), then you
save the high-order cell on the return
stack as before. But if the high-order

10 Volume VII. No. 5

cell is not negative, then you must
determine whether the double-precis-
ion number is zero or not. If it is zero,
put a zero on the return stack; other-
wise, put a positive number on the
return stack. (I leave this activity as an
exercise for you.)

+SIGN uses two IF statements so that
no plus is printed when the number is
zero. The second IF uses the number
from the return stack as the flag: zero
will act as a false flag and thus will not
get the plus sign.

The final enhancement is to print the
number flush-right in a field of speci-
fied width - so that the number-print-
ing word works as .R and U.R. In those,
the number immediately before the
print word specifies the width of the
field, and we mimic that pattern in the
following definitions:

: ~ d . r (u d # -)
> R UPRT# R > OVER -
SPACES TYPE ;

:d.r (d # -)
> R PRT# R> OVER -
SPACES TYPE ;

: . r (n # -)
SWAP S> D ROT d.r ;

:U.r (u # -)
SWAP US> D ROT d.r ;

The names follow the pattern of the
number-printing words already pre-
sent, but the n mes are lower case both t to distinguish hem and to suggest that
these definitions will print the numbers
with a more user-friendly appearance
(the use of lower case being less in-
timidating than shouting at the user IN
UPPER CASE).

In the double-precision print words,
the width of the field (represented by #
in the stack comment) is saved on the
return stack until the number is ready
to print. It is then retrieved, the charac-
ter count of the number to be printed is
subtracted from it, and that many
spaces are printed before the number is
printed. For example, if we are printing
a six-character number string (includ-
ing any sign, commas, or decimal
points) in a ten-character field, the

definitions above print four spaces
before printing the number, thus
making it flush-right.

The two single-precision words con-
vert the single-precision number to
double-precision, return the field width
to the top of the stack, and then call
the double-precision word. Since the
choice of the conversion word deter-
mines the interpretation of the sign bit,
we can use d.r for both words.

Some examples of phrases using
these words:

TOTAL @ 12 .r
SAMPLES @ 12 U.r
CASH 2@ 25 d.r
VOLUMES 2@ 15 Ud.r

In each example, a number is fetched
from a variable. If the number was
fetched from a ZVARIABLE and thus is
double-precision, either d.r or Ud.r is
used depending on whether numbers in
excess of 2,147,483,647 are to be inter-
preted as negative or positive. (If all of
the numbers are going to be less than
2,145,483,648, then it won't make any
difference which of the two you use.) If
the number is single-precision, .r or U.r
is used depending on whether the num-
ber is to be interpreted as signed or
unsigned.

Michael Ham is a freelance pro-
grammer, systems designer and writer
in Santa Cruz, California. This article
is from a book in progress. Copyright
O 1986 by Michael Ham.

Volume VII. No. 5 11 FORTH Dimensions

1986
Rochester

Forth
Conference

June 10-14, 1986
University of Rochester
Rochester, New York

The sixth Rochester Forth
Conference will be held at
the University of Rochester,
and sponsored by the lnstitute
for Applied Forth Research,
Inc. The focus will be on
Real-Time Artificial Intelli-
gence, Systems and Applica-
tions.

Call for Papers

There is a call for papers on
the following topics:

*Real-Time Artificial Intelligence

*Forth Applications, includ-
ing, but not limited to: real-
time, business, medical,
space-based, laboratory and
personal systems; and Forth in
silicon.

*Forth Technology, including
rneta-corn pi lers, finite state
machines, control structures,
data structures, Forth imple-
mentations and hybrid
hardwarelsoftware systems.

Papers may be presented in either plat-
form or poster sessions. Please submit
a 200 word abstract by March 31st, 1986.
Papers must be received by April 30th,
1986, and are limited to a maximum of
four single spaced, camera-ready pages.
Longer papers may be presented at the
Conference but should be submitted to
the refereed lournal of Forth Application
and Research.

Abstracts and papers should be sent to
the conference chairman: Lawrence P.
Forsley, Laboratory for Laser Energetics,
250 East River Road, Rochester, New
York 14623. For more information, call
or write Ms. Maria Cress, Institute for
Applied Forth Research, 478 Thurston
Road, Rochester, New York 14619
(7l6) 235-0168. .

An Application of the Recursive Sort
Dr. Richard H. lkrpin

Stockton, California

In the July/August 1983 issue of
Forth Dimensions, I presented code
which sorts data on the stack. In this
note I present an application of the sort
code with a slight twist.

Using the database model designed
by Glen Haydon and presented in
Forth Dimensions (III/2), I have writ-
ten a gradebook system for use in my
classes at the university. The data for
each student are stored as a record in
the GRADES file. Each record is com-
posed of a number of fields, such as
MTl (mid-term number one), FINAL
(final exam), etc.

For certain course reports, I want to
print out student records in order of
selected score fields. To accomplish
this I make use of the recursive sort on
the stack in the following manner. I
first load onto the stack, in numeric
order, the student record numbers
(e.g., two through twenty-one for a
class of twenty students; record num-
bers zero and one are used for refer-
ence scores and weights). I then call a
modified version of SORT to rearrarige
the record numbers on the stack based
on a comparison of the corresponding
field data (the original version of SORT
compared the original stack data).
Then, to generate the report I need
only read and print the student records
in the order of the record numbers left
on the stack.

Screen 39 gives the resultant code.
LOAPSTACK places record numbers on-
to the stack in numeric order. BUBBLE
is called by SORT a sufficient number of
times to sort the record numbers on the
stack by reading and comparing the
data of each record as specified by
FIELD (lines five and six). Finally,
SORTED puts it all together to provide
the desired function. For example, by
typing FINAL SORTED the student re-
cords will be displayed sorted, based
on the final exam scores.

The code in this application is writ-
ten using F83. #RECORDS returns the

Listing 1

PRINT SUHHARY

Afqhan, Sam 101-26-5289
Crash, 6onna 523-55-1967
Dangerous, I. H. 987-65-4321
Frank, bea 887-14-9146
6 r i e f , 6oode 567-43-8923
Hanners, Hyna Ur 367-98-5123
Ong, Hang Ing 250-35-9766
Ouel i ar , Kinda P. 777-99-0000
l u r p i n , Richard 425-87-5674
V e r s y t l , T r i g h t o B. 908-76-1234

Listing 2

PRINT NT1 SORTED

Sort inn.
l u r p i n , Richard
G r i e f , Goode
V e r s y t l , Tr iphto B.
Dangerous, I. H.
Frank, bea
Q u e l i a r , Kinda P.
Afghan, Sar
Ong, Hang I n u
G a s h , Gonna
Hanners, Hyna Ur

Listing 3

PRINT ZTOTAL SORTED

Sort ing.
Turpi n, Richard 425-87-5674
6r i e f , 6oode 567-43-8923
V e r s y t l , Tr ighto B. 908-76-1234
Frank, Bea 887-14-9146
Rue1 i ar , Einda P. 777-99-0000
Crash, Gonni 523-55-1 967
Ong, Hang Ing 250-35-9766
Dangerous, I. H. 987-65-4321
Afghan, Sam 101-26-5289
Hanners, Hyna Ur 367-98-5123

FORTH Dimensions 12 Volume VII, No. 5

number of student records in the file.
The word READ in lines five and thir-
teen reads and makes active a student
record using the top number on the
stack as the record number. .SUMMARY
outputs student data in a particular
summary format. SET.FIELD takes a
parameter from the stack and stores it
in memory to designate the data field
being referenced for a given applica-
tion. FIELD returns the address of the
selected data field for the active stu-
dent. These words are part of the
gradebook application. All other
words are standard equipment of F83.

To illustrate this application of
SORT, a dummy class roster was gener-
ated. (Note: this is not a class of dum-
mies, although most of the names and
all of the identification numbers are
fictitious.) Column headings are not
included. The first listing shows the
normal, unsorted summary of scores.
The second listing gives the data sorted
on midterm number one (score column
four). Finally, the last listing provides
the same class data sorted on the per-
cent total score (rightmost column). In
each case, the command used to obtain
the summary is shown above the output.

DASH, FIND

.

Our company. DASH. FIND & ASSOCIATES.

IS in the business of placing FORTH Program-

Scr 1 39
0 \ Appl ica t ion of fiecursive Sor t on Stack 1 SJANBSRHT
1 : LOAD.STACK (-- n n n .. n 1 \ pre load stack wi th number
2 \ f o r each record i n f i l e
3 tRECORDS 0 DO I 2t LOOP ;
4 : BUBBLE DEPTH 1) I F ZDUP
5 READ FIELD 3 SWAP READ FIELD 3 \ bet scores t o coapare.
b (I F SWAP THEN \ Swap record numbers i f necessary.
7 >R RECURSE R) THEN ;
8 : SORT (n n . . n - - n n .. n
9 \ Leaves record numbers i n sor ted order.

10 DEPTH 1- 0 DO BUBBLE LOOP ;
11 : SORTED (r -- 1 \ S o r t t d i s p l a y records based on f i e l d r.
12 SET. FIELD L0AD.STACK SORT
13 DEPTH 0 DO CR READ .SUhtlARY LOOP CR ;
14 \ Exaeple: FINAL SORTED
15

mers in positions suited to their capab~lities

We deal only w ~ t h FORTH Programmers

and companies using FORTH. I f you would

like to have your resumi included in our

data base, or if you are looking for a

FORTH Programmer, contact us or

send your resume to.

DASH. FIND & ASSOCIATES

808 Dalworth. Suite B
Grand Pra~rie TX 75050

(214) 642-5495

Committed to Excellence

Volume VII. No. 5 13 FORTH Dimensions

Quick DP in Forth
Len Zettel a printout, each line of which would should keep a double-precision total

Denton, Michigan look something like: and use .R to print the results. Maybe

(139) 470 25700 Smith, Sarah and Some 'paces pretty them UP,
I read somewhere that the two really Harold too. So, for a second try we have:

practical applications for a home com-
puter are to play games and to give 139 was the identifying number that
your kids some idea of what a com- keyed my stub with the pledge card. : +. (d l n l -- d 2)
puter is all about. Certainly, the main 470 would be the amount the Smiths DUP SPACES .R
reason I got mine was to have fun, and pledged and 25700 would be the cumu- S-,D D+ 2DUP
I have. In particular, learning my way lative total pledged from the start of SPACES 6 D.R ;
around Forth has been an absorbing the file.
and enlightening experience. Still,
must confess that I am no longer pure:
I have now used my computer at a task
that was very useful to me, and Forth
had a major part to play.

It all started when I was wrestling
with the canvass records for our church.
Reasonably enough, this was an all-
manual system whose backbone was a
set of about 220 pledge cards with the
relevant information filled out on them.
I would hand the cards to canvassers
and keep a stub so I knew who had
what. The canvassers would visit the
families, return the cards to the church
office and phone the results (or lack
thereof) to me. I would then make
notes on the stubs, sorting them into
two bundles - finished and outstand-
ing.

It didn't take long for me to get tired
of going through the stubs and toting
up results with a pocket calculator
(with bad key bounce). Doggonit! I
was a professional programmer, wasn't
I? I had a computer, didn't I? (Okay,
so it was a VIC 20 with 16K expansion
- that should be plenty for this.) The
only real constraint was that I wanted
something useful that would require no
more effort than this trivial but one-
rous chore.

To tackle this in the best Forth
tradition, did I have anything sitting
around that could be part of the solu-
tion? Well, I had HES FORTH adjust-
ed to run with a disk system, which
gave me a pretty good full-screen edit-
or. If I could keep my records to sixty-
four characters, each record could be a
line on a Forth screen, and I could put
anything I wanted on any line by
simple keyboard entry. I wanted to get

With proper use of the editor, it
would be no problem to add entries as
they came in and keep the whole thing
in alphabetical order. Just doing a LIST
wouldn't get my calculations done,
though, and manually editing the run-
ning total would be a worse pain than
using the calculator. However, if I
surrounded the character string with ."
(dot-quote) at the beginning and s3

(quote) at the end, then WAD would get
me the strings printed out at a very
acceptable overhead of six characters
per record.

Now all we have to figure out is how
to do the arithmetic. How about a
word +. (plus-dot, or add-print)? We
could do something like this:

: +. (total n l -- total)
DUP . + DUP . ;

Then, a record would look like this:

." (139)" 470 +.
.66 Smith, Harold and Sarahvy CR

We could fix it so there would be a
zero on the stack before the first record
was processed, to ensure the running
total would start out correctly. Looks
good, but there are a couple of prob-
lems.

First, a simple . for the print means
that as the numbers get bigger the
running total and the names will print
farther to the right. Second, there will
be problems when the total climbs over
32,767 (and it had better, or the church
would be in real trouble). So maybe we

That met the original specifications
and worked quite well. I keyed my data
into two groups of screens, one for
cards completed and one for cards
outstanding. Following Thinking Forth,
I created a couple of screens to LOAD
the data screens in the correct order.
This made it easy to create new screens
between existing ones as the file ex-
panded. When another card came in, I
could use the editor to move the line
from the cards-outstanding screen to
the cards-completed screen, editing the
pledge amount if it had changed. Then,
with a simple execution I had updated
totals on my next printout. Glorious!

Then came a couple more refine-
ments. I got tired of counting lines to
see how many records were in the file.
How could I get a record number to
print - without much work? Very
simply, and without touching the data
records at all! We just have to get +. to
manipulate another stack quantity,
incrementing it by one and printing it
each time it executes. This brings us to:

: +. (n l d l n2-- n3 d 2)
>R ROT1+ DUP4.R
ROT ROT 2 SPACES
R > DUP 5 .R 2 SPACES
S->D D + 2DUP
6 D.R 2 SPACES ;

Things went swimmingly for a while,
until like the fisherman's wife I found I
had another wish - er, need. Now I
wanted to know how many entries on
the file had zero amounts. Simple: we
define VARIABLE ZERO-AMOUNTS and
rework faithful old +. one more time:

FORTH Dimensions 14 Volume VII. No. 5

FIG-Forth for the Compaq,
IBM-PC, and compatibles. $35

Operates under DOS 2.0 or later,
uses standard DOS files.

Full-screen editor uses 16 x 64
format. Editor Help screen can be
called up using a single keystroke.

Source Included for the editor and
other utilities.

Save capability allows storing Forth
with all currently defined words
onto disk as a .COM file.

Definltions are provided to allow
beginners to use Starting Forth
as an introductory text.

Source code is available as an
option

A Metacompiler on a
host PC, produces a PROM

for a target 630316803
Includes source for 6303

FIG-Forth . Application code
can be Metacompiled with Forth
to produce a target application
PROM. $280

FIG-Forth in a 2764 PROM
for the 6303 as produced by

the above Metacompiler.
lncludes a 6 screen RAM-Disk
for stand-alone operation. $45

An all CMOS processor
board utilizing the 6303.
Size: 3.93 x 6.75 inches.

Uses 1 1-25 volts at 12ma,
plus current required for
options. $240 - $360

Up to 24kb memory: 2kb to 16kb
RAM, 8k PROM contains Forth.
Battery backup of RAM with off
board battery.

Serlal port and up to 40 pins of
parallel 110.

Processor buss available at
optional header to allow expanded
capability via user provlded
Interface board.

Micro Computer
Applications Ltd

8 Newfield Lane
Newtown, CT 06470

203-426-61 64

Foreign orders add 56 shipping and handling.
Connecticut residents add sales tax.

FORTH D~mens~ons

: +. (n l d l n2--n3 d 2)
>R ~ m 1 + DUP4.R
(increment & print record count)
ROT ROT
(put count under total)
R> DUP 2 SPACES 5 .R 2 SPACES
(print the pledge amount)
DUP 0 = IF 1 ZERO.AMOUNTS +! THEN
(increment if amount is zero)
S-> D D + 2DUP 6 D.R 2 SPACES ;
(calculate & print new total)

And that is where we are today. Not
a profound application, but it was fun
to work out. It filled a real need and I
think it neatly illustrates many of the
virtues of Forth. Note the complete
absence of a big, clumsy conventional
program reading in a data file and
trying to decide what to do with it. We
just prepare (easily!) the right kind of
file, and then let the text interpreter do
its thing. I like the idea that the records
themselves contain the directions for
their own processing.

Then there is the natural factoring of
the problem. Three different versions
of +. and we didn't have to touch the
data screens at all. Either Forth is the
neatest Way yet devised to get useful
results out of a von Neumann machine,
or I have become a hopeless crank.
May the Forth stay with us all!

VolurneVIi. NO 5

f \
PRIME FEATURES

Execute DOS level commands
in HSIFORTH, or execute DOS
and BlOS functions directly.
Execute other programs under
HSIFORTH supervision.
(editors debuggers file managers etc)
Use our editor or your own.
Save environment any time
as .COM or .EXE file.
Eliminate headers, reclaim
space without recompiling.
Trace and decompile.
Deferred definition,
execution vectors, case,
interrupt handlers.

"%RT" Full 8087 high level support.
Full range transcendentals
(tan sln cos arctan logs exponent~als)

' Data type and
I10 parselformat to 18
digits plus exponent.
Complete Assembler
for 8088,801 86, and 8087.
String functions -
(LEFT RIGHT MID LOC COMP
XCHG JOIN) . G ~ ~ ~ ~ , ~ ~ & Music
Includes ~ ~ r t h - 7 9 and ~ ~ r t h - 8 3
File and/or Screen interfaces
Segment Management
Full megabyte - programs or data
Fully Optimized & Tested for:
IBM-PC XT AT and JR
COMPAQ and TANDY 1000 & 2000
(Runs on all true MSDOS
compat~biesl)
Compare
BYTE Steve Benchmark Jan 83
HSIFORTH 47 sec BASIC 2000 sec
w~th AUTO-OPT 9 sec Assembler 5 sec
other Forths (mostly 64k) 55-1 40 sec

FASTEST FORTH SYSTEM
AVAILABLE.

TWICE AS FAST AS OTHER
FULL MEGABYTE FORTHS!

(TEN TIMES FASTER WHEN USING AUTO-OPT!)

HSIFORTH, complete system only: $270.

V~sa Mastercard

HARVARD
SOFMlORKS

P.O. BOX 69
SPRINGBORO, OH 45066

(5 13) 748-0390

\ J
15

WALK' on Bugs
David Franske

Vancouver, British Columbia
Canada

This is a powerful Forth debugging
tool which enables you (1) to see what
happens on the Forth stack and what
the interpreter executes, by walking
through word definitions (lots of help
to novices), (2) to test Forth programs
bottom-up by verifying each word defi-
nition, and (3) to find bugs in large
application programs that are doing
strange things, by halting them in mid-
stream to walk through suspect defini-
tions with real data while using Forth's
full power to examine and/or change
that data.

The new word WALK' encapsulates all
these functions. The apostrophe, anal-
ogous to the Forth word ' (tick) sig-
nifies that the next item in the input

Sample walk' of flushj items
in square brackets were typed in.

X * V I * * L * + * X f L f t k * * + + 1 (~ . f . * + I * * t) t t I ? V =..t

C WilL I ' F I UCil 1 I WAL t 11\11, 1 L I l S l i
2t.lHL 0, > L 11*11 r
:!clBE r 11 1.1 LJ<.I I- 1 I?!-;l
, > - -.f.lCCl 1.1- L:f-cll, LIF ,?<I

"OL:! c., 1 1 I I 1 7.1 tl, t l lJ t
L'nlC4 I , . - : l ~ l l c , f l 4 j , (i) (;1.1 I
21.1C7 ,.I : 1c.11 l I 0.141.1r.1 r I,!, I 4 +
2 0 L 9).I> I>.I~SI r.14>14 i
'2l:li::E< , j 1 m.l,.I~:l:+ 1 F

2vc:Li j., 1 ,><I,.!:; r ,

2G.lL:F 1.1:~ <.IC.I<.~~ ~.I(:I(.I~.I i IJIJ 3

::l.lD 1 ,:!I 1 I. 1 1
2[.1L!!5 0 1 ;I-F t- hIJt f Ef.:
2~:lD 1 1.1 1 L::lh DI::lIF'
2 c . l ~) ~ I.,<\ i 1.013F')

2 0 D l tl1.l I. 1 1
X l D 5 1.11 7FF 1: tlLIF F Ef-:
C DOWN I HlJF FLb:
2 1 1 8 111 7 F k F LJSE
2 1 1 4 (-12 7 F F F 21:15F I+

Z 1 l C 0 2 7FFF C 7 7 0 DIIF'
2 1 1 E 1.1; i F F F 137713 L 7 i 8 F:
21'21.1 0" l F F F C 7 7 8 +1311F
2 1 22 *<.I; 7FF F C:H 713 C1808 '.IHRANCti
2126 <)': 7 F P F CB7C USE
2 1 2 8 (17 i F F F CEl?i: L'I:l5F 4

2 1 2 4 (11 I F F F R
,-, 1 .-a1. <-)2 - 6.. 7F f--F Ci '78 C
2 1 2 E <.I2 7FFF 7FFfZ I ~ r

C GO I HOC.
3'ID 7 1.1 1 13774 UHUF' kC1t
;'OD9 0 1 1 (L13UF')
2lclD 1 CICI L 13
"OD5 0 1 ? F F F BUFFER
2 0 D 7 01 l3t l7E DFtClP
2 0 D 9 90 (LOOP)
2 0 D 1 1:,0 L I l
?;!OD5 0 1 7FF-F HLJFFEH
2OD7 i:11 B F 7 2 DROP
2 0 D 9 01.1 ! LOCIF' I
2 O D I 00 L I 1
2ClD5 1:) 1 7FF-F HUFF-ER
2(3D7 0 1 C:7b DHLJF'
2 0 D 9 <l[l (LOUP)
=ODD 1:lC) : S

(I&'

stream is the parameter. WALK' may be
executed directly or edited into a defi-
nition just before a suspect word.

If you have not yet had a look at my
sample WALK' of FLUSH, take a look. If
you try to walk a primitive, you get the
stack dumped out both before and
after the primitive executes; but when a
secondary is walked, the system goes
into break mode at the first word in the
secondary's definition. When the sys-
tem breaks, (1) the current value of the
interpretive pointer (IP) is printed;
then, (2) the depth of the stack is
printed, (3) the contents of the stack
and the word about to execute are
printed using a format similar to the
way you would type them in (i.e., with
the top item on the stack farthest to the
right), and (4) the system waits for
your response.

As a response, you may enter any
normal Forth commands or a blank
line. If you enter Forth commands,
they will be executed and "BOK" will
be printed to remind you that the
system is in this break mode. If you
enter a blank line, the system will
execute the presently pending instruc-
tion and break before the next instruc-
tion. If the pending instruction is a
secondary, the program will not nest
down a level unless you use the special,
added command DOWN. This keeps you
from being inundated with a lot of
useless information. If you wish to
resume the definition being stepped
through at full speed, type GO and
press the return key twice. When you
want to terminate the application, just
type ABORT.

The initial ideas for this program
came from Leo Brodie's article "Add a
Break Point Tool" (Forth Dimensions,
V/1) and from my experience with fig-
FORTH's 6502 implementation, which
has a trace feature that does not give a
readable printout and which nests
down into every secondary it finds.

You must have a good understanding
of threaded interpreters to comprehend
how this program operates. WALK',
when invoked, changes a couple of the
final jumps in the regular Forth
interpreter to point to its extra
routines. At their ends, each of the

added routines jump to where the
routine they are tacked onto would
have gone if there wasn't the detour.
M e n - t o - ~ R ~ b i ~ decisions center around
the value in NEST#. The three routines
MORECOLON, MOREDOES and MORENEXT
manipulate the value of NEST#. M e n
the value in NEST# is zero, the MORENEXr
machine language routine calls the
high-level Forth routine BREAK. The
routine MOREEXIT removes the added
routine with VECTORSOUT when the
return stack has become higher than
the value stored in SPSAVE. This is why
just doing an ABORT cleans up the
whole thing.
1 r r * r + v t u . ~ h t t t r t ~ * t ~ + c t ~ t ~ + + x ~ ~ t + t i ~)

WA1.t ')

I 11 i Lid, 11) I I ~ k l q L t E I

' L m 5 l I J l L J A l k J U L r 1 5 / 8 4
I f V r+X V f t t t b X 1 E X t f * + f + * X t X f + * * X + * t X i + J

t UF rH IJkF I P J I I IfJNt5 DEC l M l i l
I .f. * t * * * X t * ~ + * * s t ~ * + I I * f t E * * * * * * * + ~ *)

I t 1 1 F t G t IIUDLILAt+ Ff,l36F GMMIFIG i
I Wl If. DC3 1
? 'f, &*+I'* *+**+I X *C+L'.****** f*X*++X f * *)

I I f * * + t * * * * * f * + * * * * * * * + * * t * * I , HEY FOFIIA T k RS)

' f * + + * * + + t * * t * X * * * * * * * X * * * * * * * * * * f t t *)

.:ti ! DCITA - - I
EIASt: IS - f i L CONPII-E I HEX
Cl ..# # # #: TYPE
F:. LlASE ' ;

: . 4 t i (DATA - - -)

ElASE Id -1i L C i J N P l L t I HEX
Cl < # # # # # # TYPE
13 LIiASE :

1 1 \ ? A H I A 8 L t IF.'SHVE
,:I L'AF:IAIJL.E. WBAL'E
!I '~.!iiF:IABLE SF'SAVE
1 I L'Af.:I;$L<l. E. kJE::, I #

OCIRIAHLL. lNDEIU I~#

FORTH Dimensions 16 Volume Vl l , No. 5

The Forthcard
STAND ALONE OPERATION

STD BUS INTERFACE

EPROMIEEPROM
PROGRAMMER

PARALLEL I10

ROCKWELL FORTH CHIP

The Forthcard provides OEMs and end
users with the ability to develop Forth and
assembly language programs on a single
STD bus compatible card.

Just add a CRT terminal (or a computer
with RS-232 port), connect 5 volts and you
have a self contained Forth computer.
The STD bus interface makes it easy to
expand.

Download Forth source code using the
serial port on your PC. Use the onboard
EPROMIEEPROM programming capability
to save debugged Forth and assembly
language programs. Standard UV erasable
EPROMs may also be programmed with
an external Vpp supply.

Evaluation Unit $299
Part #STD65F11-05 includes:
ForthCard, Development
ROM, 8Kbyte RAM, Manuals

OEM Version as low as
Part #STD65Fll-00 $
does not include 4 99
memory or manuals

NEW! Options and Application Notes

Electrically Eraseable PROMS (EEPROMs)

FREEZE the dictionary in EEPROM (save in
non-volatile memory, to be restored on
power up)

Download Software for your IBM PC or CP/M

Non-Volatile CMOS RAM with battery 2K,
8K, optional Clocklcalendar

Fast 2MHz clock (4MHz crystal)

Disk Controller Card (5%")

Self Test Diagnostics

Parallel printer interface

Ask about our ForthBoxTM
A complete STD bus oriented system including
the ForthCard, Disk Controller, Disk Drive(s),
STD Card Cage, Cabinet and power supply.

CALL TODAY FOR COMPLETE INFORMATION!

9560 Black Mountain Road
San Diego, CA 92 126
(6 1 9) 566- 1 892

Volume VII, NO. s 17 FORTH Dimensions

This program has a few weaknesses:
the self-modifying code is very dan-
gerous and a bad practice, and it is not
completely transparent to other pro-
grams. Generally, the program will
mess up with I/O and routines that use
data at HERE and PAD. A lot can be
done to make this program more trans-
parent if you want to go to the trouble
of saving and restoring data areas. One
other nice improvement, if you have a
bigger screen, is to modify the proce-
dure .STACK to print more stack values.

: . L4[it.:l' 1 1.f (. - - ,
- + r l f . ~ 111. :

: .:;l;iL>t - - ,
111~ I ' I t l . '.'I{ :;f,;ll.:r
I , .
LII I

ULt I I i 1
I t -

5 :,k'biLF.!:i
t LLSt

I t ' l CI . 411 !it'hL,E.
1 Hf.t.1

- 1 +L l I l J f ' :

: .SIN1115 ! -- - I
1F'Sii'Vl M .!- . 41 1 !St-'AIIL
. S l AL k
I I4 I IENl # P IIIJF' I F Sf- 'Act !; T t i t N
WSAOt Cd . WLIRD :

NLXT :r.) t 130NSI AN-T lUE X T J
::; 7 + 1:II)NSTANI E X 1 I J
BECONDAfiY Ct A $ 1 7 + CUN6 1 CAN I LClL13NJ
I)(IES 58 t CLIIUS 1 AN-I DLIE S,I

! *t****** **+**** t** t***+*t*+*+*~*****l

i ASSEMHL. V LAblGIICI[;E SLIElH1ILI~I I NES)

< f+*t** t I** t ***I * *t************+* FXC*!

1:t;:EATE) L L)
t.1 # ILUA. 1 . X ! j l A .
NLTXT JI1P.

L : l i tA l t) I l l
I . X L.DA. 1 1 . X 5 1 6 .
. ILL1 .IMP.

CF:€A1 E VEC7 OFtS -OLJ I
NkXT) L I J # LUA. t X l 1 , J S I A ,

COLONJ S I A .
I'IEi:l) H 1 # L.LlA. EXl-1. l i t L-ilr3.

C.I.ILUNJ 1 + S T A.
W 1 -- I I.IJ # LI!h. NE X I .J S l A .
w L -)HI # L.I)A. NEXT,] l t 5 r ~ .
F-'ll!di) 1.C) # L.I>A. l)iIE:S,I S ~ I i, .
lz'u:itl !I11 # L.l>A. DLlt.5~3 1 + !ire;.
b:l s.

! F h I t N!i I I ltxl I I 1 I..CIL.I.IN 1

Another good extension to the pro-
gram would be to integrate it with a
Forth decompiler. This requires only
the redefinition of .WORD.

Sorry, but this program will only
work on systems where the Forth ker-
nel is resident in RAM. If you are
going to implement this, be super-
careful to find the correct jump vec-
tors. To find the right vector location
for NEXTJ on 6502 systems, type in:

I ,HtATE MlJti'LEX I T
IdFk;-l # I!C.l:.
XtjAVk 5 1 1 . 16%.
::;F'!%A'Vt; l.:f ' ' z . I.:!>
I F .

8 , # I I!&. IN l l f . b I l # ::>ll?.
VEC ILIRS -CJLJ I JCJH. (t-:k'JUI'IE: !

I +if-N,
XSAVE I Li:? .
I4tX I . J M F ' .

C:I<ti> 1 C IICl6:ENtXl i CiLlLlk: - I

l\lt.L,I# LLDA, (.I=

I t .
~lt-r:TI:lF:S- I.lU1 JSH.
1 f:, LUA. 1I 'SAVE 51-A.
I t - ' I t L l i A . I t ' S A V t I + !S l i i .
w LUA. WSAVE s ria.
W 1 + LUA. WCil4VE 14 :-i-lA.
i JMt:' IrJ HIUH--LEVEL. FUETt4 I

H t H E 1 1 +
I) I J F ' l L . C I t (L L ~ A . 11-' E;!A.

) H I # L.DA. I F ' I+ STf i ,
NEXT ,311F'.
J . S I A l I I S CH Bfitiit
L t i L f iE 4 - . I iERE I"+ .
lF'Sli ' /E LDA. IF ' STA.
11'SAIlF 1 + LLiA. I F ' I t S1A.
WSAVE L.DA. W S I A .
L.IEIAVE 1 + LDA. W I t S I A .
I ' JSl i . i FUKWARG k:E.F VL[:I OF.:S--IN !

IIiEIU.
W 1 - JMI '.

S I C i .
t i ik.
<.; I . .
5161.
!ii l ii .
S I & .
151H.
S I A .

If your version of Forth corresponds
to the fig-FORTH model, you will get
a true flag. Otherwise, if you get a false
flag, adjust the offset 23 until you get a
true flag. In non-6502 systems, it may
be necessary to modify the actual op-
code of the last instruction in the NEXT
routines to perform a jump to the
MORENEXT instead of an indirect jump
on w . The other vectors may be found
in a similar way: the EXlTJ and COWNJ
vectors will each equal NEXT and the
DOESJ will equal PUSH.

CCIL)E WtXEC.UIE (CFA -- - 1
XSAVE S TX.
15X. SF'SAVE STX.
XSAVE LLDX,
VLIC 11-)RS-1N JSF:.
IFF # LDA. NEST# STA.
DO1 LDA. W ST&.
8OT 1 + LDA. W I + STA,
IIUX. I N X . W 1.- JMF'.

END -CODE

: WAL.k.AHLE-' ! CFA F L A G)
d L.IT SECONDARY P = :

< **********+*******************E***+*)

EXTERNAL
(*+**************C******+*********~**j

: GO ! --)

1 2 8 NEST# ! O SPSAVE ' i

: DOWN ! --i
WSAVE I@ WALkAXLE':'
I F

SF'SAVE d :.R
NEST# B 1-R
INDENT* 12 DUP . H 1+ INDENT# !
I P S A V E @ .>I%
WSAVE B DUP .WORD OR WEXECUTE
H Z DUP 2+ I P S A V E ' P WSAVE '
H i INDENT# '
H , NEST# !
K > SPSAVE !
.STATUS

E L S E
. " F ' K l M I 1TIVE"

THEM ;

: WALk (C:FA --)

DUP WALhAHLE?
I F

. " WALKING" DLIF' . WOK11 CR
WEXECUTE

E L S E
.fi' CK .STACV H d .WORD CK

HREAk: R . EXECUTE
.STACk Cfi HKEAL,

THEM :

: WALt ' I -- NAME)

[CUMF I L E 3 ' CFA
STATE P
I F

COMI- ILE L 1 1 .
COMF I L E WALC

t L S t
WALk

T H t N ; 1 M M E D l A l E

FORTH Dimensions 18 Volume VII. No. 5

FORTH INTEREST GROUP MAIL ORDER FORM
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

I IN THE FORTH INTEREST GROUP I
107 - MEMBERSHIP in the FORTH INTEREST GROUP & Volume 7

of FORTH DIMENSIONS. No sales tax, handling fee or
discount on membership. See the back page of this order
form.

all other countries may select surface ($27.00) or air ($33.00) delivery. I
The annual membership dues are based on the membership year, which
runs from May 1 to April 30.

HOW TO USE THIS FORM
1. E a c h i t e m y o u w i s h t o o r d e r l i s t s t h r e e d i f f e ren t P r i ce ca tego r i es :

The Forth Interest Group is a worldwide non-profit member-supported
organization with over 5,000 members and 80 chapters. FIG membersh~p
includes a subscription to the bi-monthly publication. FORTH Dimensions.
FIG also offers its members publication discounts, group health and life
insurance, an on-line data base, a large selection of Forth literature, and

C o l u m n 1 - U S A , Canada , M e x i c o
C o l u m n 2 - F o r e i g n Su r face M a i l
C o l u m n 3 - F o r e i g n A i r M a i l

When you join, you will receive issues that have already been circulated
for the current volume of Forth Dimensions and subsequent issues will be
mailed to you as they are published.

You will also receive a membership card and number which entitles you to
a 1O0I0 discount on publications from FIG. Your member number wil l be

2. Se lec t t h e i t e m a n d n o t e y o u r p r i c e in t h e s p a c e p rov ided .

many other services. Cost is $20.00 per year for USA, Canada & Mexico; required to receive the discount, so keep it handy.

3. A f t e r c o m p l e t i n g y o u r se lec t i ons e n t e r y o u r o r d e r on t h e f o u r t h p a g e o f t h i s f o r m .

4. D e t a c h t h e f o r m a n d r e t u r n i t w i t h y o u r p a y m e n t t o The Forth Interest Group.

FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May - April)

101 - Volume 1 FORTH Dimensions (1979180) $15116118 - -

102 - Volume 2 FORTH Dimensions (1980181) $15116118 --

103 - Volume 3 FORTH Dimensions (1981182) $15116118

104 - Volume 4 FORTH Dimensions (1982183) $15116118

105 - Volume 5 FORTH Dimensions (1983184) $15116118

106 - Volume 6 FORTH Dimensions (1984185) $15116118

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source Listings of fig-Forth for specific CPUs and
machines with compiler security and variable length names.

514 - 65021SEPT 80 . $15116118 ___

515 - 6800lMAY 7 9 . . . $15116118

516 - 6809lJUNE 80 . $15116118 -

517 - 8080lSEPT 79 . $15116118 ___

518 - 8086188lMARCH 81 $15116118

519 - 9900lMARCH 81 . $15116118 ___

520 - ALPHA MICROISEPT 80. $15116118 -

521 - APPLE IIIAUG 81.. $15116118

522 - ECLIPSEIOCT 8 2 $15116118 -

523 - IBM-PCIMARCH 84. $15116118

524 - NOVAIMAY 81 . $15116118 -

525 - PACEIMAY 79 . $15116118 ___

526 - PDP-11lJAN 80 . $15116118 -

527 - VAXIOCT 82. . . $15116118 ___

528 - Z801SEPT 82 . $15116118 ___

Volume VII, No. 5 19 FORTH D~menstons

B O O K S A B O U T F O R T H
. 200 - ALL ABOUT FORTH $25126135 -

Glen B. Haydon
An annotated glossary for MVP Forth; a 79-Standard
Forth.

. 205 - BEGINNING FORTH $17118121 -
Paul Chirlian
Introductory text for 79-Standard.

. 215 - COMPLETE FORTH $16117120 -
Alan Winfield
A comprehensive introduction including problems with
answers. (Forth 79)

. 220 - FORTH ENCYCLOPEDIA $25126135 -
Mitch Derick & Linda Baker
A detailed look at each FIG-Forth instruction.

225 - FORTH FUNDAMENTALS, V. 1 $161 171 20 -
Kevin McCabe
A textbook approach to 79-Standard Forth.

. 230 - FORTH FUNDAMENTALS, V. 2 $13114116 --
Kevin McCabe
A glossary.

. 232 - FORTH NOTEBOOK $25126135 -
Dr. C. H. Ting
Good examples and applications. Great learning aid.
PolyFORTH is the dialect used. Some conversion advice
is included. Code is well documented.

. 233 - FORTH TOOLS $19121 123 --
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

. 235 - INSIDE F 83 $25126135
Dr. C. H. Ting
Invaluable for those using F-83.

237 - LEARNING FORTH.. $17118121 --
Margaret A. Armstrong
Interactive text, introduction to the basic concepts of
Forth. Includes section on how to teach children Forth.

240 - MASTERING FORTH $18119122
Anita Anderson & Martin Tracy (MicroMotion)
A step-by-step tutorial including each of the commands
of the Forth-83 International Standard; with utilities,
extensions and numerous examples.

245 - STARTING FORTH (soft cover). $20121124 --
Leo Brodie (FORTH, Inc.)
A lively and highly readable introduction with
exercises.

246 - STARTING FORTH (hard cover) $24125129 --
Leo Brodie (FORTH, Inc.)

255 - THINKING FORTH (soft cover) $161 17/20 -__
Leo Brodie
The sequel to "Starting Forth". An intermediate text on
style and form.

265 - THREADED INTERPRETIVE LANGUAGES $23125128 --
R.G. Loeliger
Step-by-step development of a nonstandard 2-80 Forth.

270 - UNDERSTANDING FORTH $3.501516 -
Joseph Reymann
A brief introduction to Forth and overview of its
structure.

FORML PROCEEDINGS - FORML (the Forth Modification Laboratory) is an
informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORML is part of the Forth
Interest Group

310 - FORML PROCEEDINGS 1980 $30133140 -
Technical papers on the Forth language and extensions.

...... . 311 FORML PROCEEDINGS 1981 (2V) $45148150 -
Nucleus layer, interactive layer, extensible layer,
metacompilation, system development, file systems,
other languages, other operating systems, applications
and abstracts without papers.

. 312 FORML PROCEEDINGS 1982 $30133140 -
Forth machine topics, implementation topics, vectored
execution, system development, file systems and
languages, applications.

313 - FORML PROCEEDINGS 1983 $30133140 -
Forth in hardware, Forth implementations, future
strategy, programming techniques, arithmetic & floating
point, file systems, coding conventions, functional
programming, applications.

. 314 FORML PROCEEDINGS 1984 $30133140 -
Expert systems in Forth, using Forth, philosophy,
implementing Forth systems, new directions for Forth,
interfacing Forth to operating systems, Forth systems
techniques, adding local variables to Forth.

ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Inc. is anon-profit organization
which supports and promotes the application of Forth. It sponsors the
annual Rochester Forth Conference.

321 - ROCHESTER 1981 (Standards Conference) $25128135 ___.__

79-Standard, implementing Forth, data structures,
vocabularies, applications and working group reports.

322 - ROCHESTER 1982
(Data bases & Process Control). $25128135 _ _ - _ _ _
Machine independence, project management, data
structures, mathematics and working group reports.

323 - ROCHESTER 1983 (Forth Applications) . $25128135 _ _ - _ _ _
Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like
languages, new techniques for implementing Forth and
working group reports.

324 - ROCHESTER 1984 (Forth Applications) . $25128135 _ _ _ _ _ _
Forth in image analysis, operating systems, Forth chips,
functional programming, real-time applications, cross-
compilation, multi-tasking, new techniques and working
group reports.

325 - ROCHESTER 1985
(Software Management and Engineering)$20121124 -
Improving software productivity, using Forth in a space
shuttle experiment, automation of an airport.
development of MAGICIL, and a Forth-based business
applications language, includes working group reports.

FORTH Dimensions
-- --

20 Volume VII, No 5

THE JOURNAL OF FORTH APPLICATION & RESEARCH
A refereed technical journal published by the Institute for Applied Forth
Research. Inc.

401 - JOURNAL OF FORTH RESEARCH V. l #1 $15/16/18
Robotics.

402 - JOURNAL OF FORTH RESEARCH V. l #2 $15/16/18 -
Data Structures.

403 - JOURNAL OF FORTH RESEARCH V.2 # I $151 161 18
Forth Machines.

404 - JOURNAL OF FORTH RESEARCH V.2 #2 $151 161 18 --
Real-Time Systems.

405 - JOURNAL OF FORTH RESEARCH V.2 #3 $15116118
Enhancing Forth.

406 - JOURNAL OF FORTH RESEARCH V.2 #4 $15116118 ---_
Extended Addressing.

407 - JOURNAL OF FORTH RESEARCH V.3 #1 $15/16/18 ------
Forth-based laboratory systems and data structures.

REPRINTS
420 - BYTE REPRINTS . $51617

Eleven Forth articles and letters to the editor that have
appeared in Byte magazine.

421 - POPULAR COMPUTING 9 / 8 3 $51617 -----_

Special issue on various computer languages, with an
in-depth article on Forth's history and evolution.

DR. DOBB'S JOURNAL
This magazine produces an annual special Forth issue which includes
source-code l ist ings for various Forth applications.

422 - DR. DOBB'S 9/82. . . $51617

423 - DR. DOBB'S 9/83. $51617

424 - DR. DOBB'S 9/84. . . $51617
425 - DR. DOBB'S 10185 . $51617 -

HISTORICAL DOCUMENTS
501 - KlTT PEAK PRIMER.. $25127135

One of the f i rst institutional books on Forth. Of his-
torical interest.

502 - FIG-FORTH INSTALLATION MANUAL . . $151 161 18
Glossary model editor - We recommend you purchase
this manual when purchasing the source-code listings.

503 - USING FORTH . $20121123 --
FORTH, Inc. -

REFERENCE
305 - FORTH 83 STANDARD $15116118

The authoritative description of 83-Standard Forth. For
reference, not instruction.

300 - FORTH 79 STANDARD $15116118 -
The authoritative description of 79-Standard Forth. Of
historical interest.

316 - BIBLIOGRAPHY OF FORTH REFERENCES
2nd edition, Sept. 1984 $15116118 -
An excellent source of references to articles about
Forth throughout microcomputer literature. Over 1300
references.

MISCELLANEOUS
601 - T-SHIRT SIZE

Small, Medium, Large and Extra-Large.
White design on a dark blue shirt. $10111112 -

602 - POSTER (BYTE Cover) $15116118 -
616 - HANDY REFERENCE CARD FREE -
683 - FORTH-83 HANDY REFERENCE CARD FREE -

FORTH INTEREST GROUP
WINTER SPECIAL 3 FOR
Dr. Dobb's Journal Annual Forth Issues
3 for $10.00 9182,9183,9184
USA-Canada only $10112114

$1 ooO
(9182, 9183, 9/84)

NEW SERVICE FROM
THE FORTH INTEREST GROUP
The Forth lnterest Group is now providing a free telephone job referral
service for members and potential employers or contractors. The purpose is
to provide contact between Forth programmers and persons or companies
seeking their services.

Members of the Forth lnterest Group may register with the Referral Service by
completing the form below and returning it to:

FIG
P.O. Box 8231
San Jose, CA 951 55

Prospective employers or clients may contact the FIG office by calling (408)
277-0668. We will be happy to provide contact ~nformat~on for FIG members
who are registered w~th the referral servlce.

FIG JOB REFERRAL FORM

Member Number Date

Name

Address

Are you seeking:

Full-Time Employment - Consulting Contracts -

How many years programming in Forth professionally?-

Total Years of Forth programming? -

Familiar with:

Computer(s) - (Limit to 30 characters)

Version@) of Forth - (Limit to 30 characters)

Volume VII, No. 5 21 FORTH Dirnens~ons

FORTH INTEREST GROUP
P.O. BOX 8231 SAN JOSE, CALIFORNIA 95155 408/277-0668

Name

Company

Address

City

State/Prov. ZIP

Country

Phone

Check enclosed (payable to: FORTH INTEREST GROUP)

VISA MASTERCARD

ITEM

107

I

10% M E M B E R D I S C O U N T

M E M B E R #

I

I SUBTOTAL (

TITLE

MEMBERSHIP

(C A . R E S I D E N T S S A L E S T A X I I

AUTHOR

Expiration Date
I

M E M B E R s H l P FEE c m / w / ~ q I I
Card #

QTY

HANDLING FEE $2.00 1 1

TOTAL I I
y L u i r r i v U

Signature
N E W R E N E W A L

I

I PAYMENT MUST ACCOMPANY ALL ORDERS

UNIT
PRICE

I

MAIL OROERS
Send to.
Forth Interest Group
P 0 Box 8231
San Jose, CA 95155

TOTAL

SEE BELOW

PHONE ORDERS
Call 4081277-0668 to place
cred~t card orders or for
customer servlce Hours
Monday-Fr~day. 9am-5pm
PST

PRICES
All orders must be prepa~d Pr~ces are
subject to change w~thout notice Credlt
card orders w ~ l l be sent and b~ l l ed at
current prlces $15 mlnlmum on charge
orders Checks must be in US$ drawn
on a US Bank A S10 charge w ~ l l be
added for returned checks

POSTAGE & HANDLING
Pr~ces Include shlpp~ng A
S2 W handllng fee IS

requlred w ~ t h al l orders

SHIPPING TIME
Books In stock are sh~pped
w ~ t h ~ n f ~ v e days of recelpt
of the order Please allow
4-6 weeks for out-of-stock
books (dellvery In most
cases will be much sooner)

SALES TAX
Cal~fornia del~verces
add 6 ' " San Franc~sco
Bay Area add 700

FORTH Dimensions 22 Volume V l l . No. 5

Code Modules and Data Structures
John S. James

Santa Cruz, California

This tutorial grew out of work on a
memory management problem of the
Forth component-library project (see
"Forth Component Libraries," Forth
Dimensions VII/4). This project has
the goal of allowing easy exchange of
Forth modules - large components of
programs - among different develop-
ment environments and different in-
stallations. In other words, the library
system must support a market for off-
the-shelf packaged modules, such as
sorts, B-tree database access and net-
work interfaces.

Several factors complicated the ques-
tion of how these modules would ac-
cess data memory:

(1) A reliable library system requires
completely automatic loading of mod-
ules, with no tinkering at all by dif-
ferent developers, groups, or institu-
tions - not even patching of constants
to tell the module what memory is
available. Otherwise, whoever made
the modifications would risk introduc-
ing errors, and would need to under-
stand internals of the modules in order
to minimize this risk. In short, Forth
would be where it is now, without
effective off-the-shelf components,
with most programs written from
scratch and with large projects risking
excessive complexity when there are
thousands of words in the dictionary
and few reliable boundaries between
program components.

(2) For many reasons (including
ROMability, multi-tasking and recurs-
ion), library modules should compile
into pure code; they should not put
variables into the dictionary.

(3) Often, the module's author and
even the programmer who uses the
module in an application won't know
how much memory will be needed at
run time.

Many programming languages face
these requirements and provide memo-

ry management facilities to meet them.
But Forth is weak in memory manage-
ment. Programmers can implement
anything they want, of course, but the
Forth language has little built in. So
programmers cannot rely on a stan-
dard way, available in all systems, to
get and release memory as needed.

Memory for Modules

One possible approach would be to
implement memory management as
part of the library support system, and
make all authors of modules use the
calls provided. But it would be difficult
or impossible to impose a single system
without causing intolerable problems
for a language and a community which
highly value flexibility. Perhaps we
should standardize memory manage-
ment in Forth; but that issue should be
handled separately from the question
of whether to have a component
library.

So instead of providing memory
management, we implemented a simple
facility to separate memory manage-
ment from everything else in the library
support system. A defining word,
BVARIABLE (the B stands for "based"),
allows modules to access memory
through data structures which are rela-
tive to pointer values. These data struc-
tures, or "activation records," usually
correspond to a current invocation of a
module or to one instance of a data
object.

With this approach, the library sup-
port system does not need to deal with
memory management. Programmers
calling the modules can kludge any
memory management they want, using
ALLOT, PAD, address constants, or
whatever - outside of the modules. Or
they can be more elegant and use a
library module written just for memory
management; we expect that various
modules will become available to suit
different requirements and tastes. The
library system can provide memory
management; but it isn't hardwired to
any particular implementation.

Using BVARIABLE

BVARIABLE is a defining word which,
when executed, takes two arguments
from the stack: the address of a pointer
and an offset value. BVARIABLE adds to
the dictionary a word which, when
executed, takes nothing from the stack
and returns an address which is the
sum of the contents of the pointer and
the offset.

BVARIABLE is much like the common
Forth word USER, which creates "user
variables" for multi-tasking. Unlike
ordinary variables, each task has its
own copy of the user variables. USER
takes one argument, the variable's off-
set into the "user area" (activation
record) of the task. The multi-tasking
system itself maintains the pointer
value (usually in a register) to which
this offset is added to access the vari-
able. The programmer does not control
this value; and each task may have only
one user area.

BVARIABLE differs from USER in that
the application programmer does con-
trol the pointer value, and can change
it at any time. Therefore, many dif-
ferent instances of a data structure may
be active simultaneously, even in the
same task. Before using a word which
applies to that data structure, the pro-
grammer makes sure the pointer con-
tains the correct value to select the
particular instance to be accessed.

The word BVARIABLE is defined in
the library support system, so it is
always available. A programmer who
writes a library module uses BVARIABLE
to set up the various variables and any
other data areas in the activation re-
cord. Later, the application program-
mer who wants to use the module must
first define a word which returns the
address of a pointer, before compiling
the module. The module's documenta-
tion gives the name to be used for this
word. Usually this pointer will be
defined as an ordinary variable or as a
user variable, or as a constant pointing
to some available RAM.

Before executing any words in the
module, the application programmer

Volume VII. NO. 5 23 FORTH Dimensions

Portable programming environment

Whether you program on
the Macintosh, the IBM PC,

an Apple II serles, a CP/M sys-
tem, or the Commodore 64,

your program wlll run un-
changed on all the rest e = ~ s
If you wr~te for yourself, E F- =-
MasterFORTH will protect -- - ' - TM

your Investment If you wrlte for
others, ~t will expand your market-

place
MasterFORTH IS a state-of-

the art lmplementat~on of the
Forth computer language
Forth-IS ~nteractlve - you have
~mmedlate feedback as you
program, every step of the way Forth IS

fast, too, and you can use ~ t s bullt-ln macro
assembler to make it even CP/M iu faster. MasterFORTH2s

relocatable utilities,
transient definitions,and headerless code
let you pack a lot more program into your
memory. The resident debugger lets you
decompile, breakpoint, and trace your
way through most programming prob-
lems. A string package, file interface, and
full screen editor are all standard features.
And the optional target compiler lets you
optlmize your application for virtually any
programming environment.

MasterFORTH exactly matches the
Forth-83 Standard dialect described in
Mastering Forth by Anderson and Tracy
(Brady, 1984). The standard package in-
cludes the book and over 100 pages of
supplementary documentation.

MasterFORTH standard package
Macintosh.. $1 25
IBM PC 8 PC Jr. (MS DOS 2.1). 125 I

. Apple II, II+, Ile, Ilc (DOS 3.3). 125
CP/M 2.x (IBM 3740 8") 125

. Commodore 64 (with graphics). 100
Extensions
Software Floating Point $60

. Hardware (8087) Floating Point 60
... Graphics (selected systems) 60

. Relocator (with utility sources) 60
Target compiler (RAM and ROM) ,350
Target Application Generation
System (TAGS) - MasterFORTH,

Target compiler 8 relocator ,495
Publications
Printed source listings (each). $1 5

. Forth-83 International Standard 15

- NEW PRODUCTS
MODEL List Processor.. $40
(with ELlZA and micro-LISP)

must set this pointer to the address of A ;CODE version of BVARIABLE, only
some available memory which will be for the 8086/8088 and only for F83
used for the activation record. This (not necessarily for other Forth-83
activation record must be initialized, systems for the 8086/8088), is:
and usually the module contains a
convenient initialization word.

Note that the application program-
mer, not the library system, is respon-
sible for memory management.

How BVARIABLE Works

First we will illustrate the definition
in higher-level Forth, using CREATE ...
DOES>. But for practical use, BVAR-
IABLE must be optimized by using
;CODE instead of CREATE ... DOES>.
Speed is very important, because the
library modules will use the words
created by BVARIABLE for all their ac-
cess to data.

: BVARIABLE \name ; aptr noffset --
\;P Creates a based
\variable
\Child: -- address

CREATE,,
;CODE W INC W INC 0 [w
AX MOV (Offset)
W INC W INC
O [w W MOV
0 [w AX ADD
1 PUSH ENPCODE

A full explanation of this definition
would divert us into the internals of
this particular Forth system. But we
might mention that w is the name of a
register used by the system to point to

The higher-level definition, which the word being executed; it's okay to

should run on any Forth-83 system, is: destroy its value within a code routine,
as we have done here by using w as a
scratch register which does not need to

: BvARIABLE\name ; aptr noffset -- be saved and restored. ';' Creates a based Here is a sample session which il- \Child: -- address
CREATE,,

lustrates the use of BVARIABLE (either

;CODE W INC W INC 0 [Wj
version, as they

AX MOV (Offset)
W INC W INC 0 [w
W MOV 0 [T AX ADD
1 PUSH ENPCODE

VARIABLE PTR
PTR 0 BVARIABLE X
PTR 15 BVARIABLE Y
20000 PTR !

When this word is executed, it cre- 25000 PTR !

ates the new word in the dictionary X .25000

(with CREATE), and compiles the offset ' 25015

and pointer address into the dictionary : 30000 0 DO X DROP LOOP ;

also, in the parameter field of the
created word (the two commas do
this). Then it changes the definition of
the created word so that it will execute
the code after the DOES>.

When the created (or "child") word
is executed, the address of its parame-
ter field is left on the stack before
control is given to the code following
DOES>. DUP a puts the offset value on
the stack. SWAP 2 + @ puts the address
of the pointer on top of it, deleting the
original address of the parameter field
in the process. + adds the two to get
the final address.

The crude benchmark in the last line
shows the speed improvement with the
;CODE version. An ordinary variable, a
BVARIABLE with the ;CODE definition,

... and a BVARIABLE with the CREATE
DOES> definition, were used as the x in
the loop. The times were 2.5, 3.0 and
9.5 seconds; actual ratios are some-
what larger because of the constant
time taken to execute the DROP and to
loop back. Clearly, the ;CODE version
would be recommended for practical
use.

24 volume MI, No. 5

A Universal Stack Word
Doneil Hoekrnan

Santa Clara, California

Normally, good Forth code is charac-
terized by an uncomplicated parameter
stack. Sometimes, though, it's difficult
to avoid - such as when dealing with
mixed-mode arithmetic, floating-point,
quad-precision or graphics routines.
Presented here is a single function
called STACK which, by itself, can re-
place any stack manipulation word or
any consecutive sequence of stack
manipulation words. Basically, it al-
lows you to do a lot of messy things on
the stack all in one breath, without
worrying about how things got where
you wanted them to go.

This trick is accomplished by provid-
ing the STACK word with a before-and-
after representation of the stack. Here
are some examples of how STACK
would be used to implement some
common Forth stack manipulation
operators:

:DROP STACK A1 ;

: DUP STACK AlAA ;

: SWAP STACK ABlBA ;

: ROT STACK ABCI BCA ;

: 2SWAP STACK ABCDICDAB ;

The characters to the left of I repre-
sent the input stack picture, and to the
right is the output stack picture. The
following limitations apply to STACK as
it is implemented here:

(I) If the input stack consists of n
items, the input stack picture must
contain n consecutive ASCII charac-
ters, starting with A. This will normal-
ly limit the input stack depth to twenty-
six.

(2) The output stack picture must
contain only those characters found in
the input stack picture. The output
stack is limited to a depth of 127
characters.

Screen 2 contains the compile-time
behavior of STACK. Screen 1 contains
two versions of the run-time code.

Volume VII, No. 5 25 FORTH Dimensions

S c r r e e n # 1
0 i t - u n - - t . i m e s t a c l : . w o r d s 05/06/85)

1
2 : (STACt..) (R u n - t i m e STACC:. i n f o r t h - 8 : ;)

R@ CC I:)

4 DO I Z x HERE + LOOP R@ 1+ DUP L C + 1 + R@ 2+
5 7 D 0 I OQ HERE + @ LOOP R:: I+ COUNT + .::-R ;
b
7 CODE. (STACt::) (R u n - t i me STACC.: i n 8086 a s s e m b l e r)

8 C L , C S I J MDV CH, CH XOR
9 D l , DP MOV HX, D I MOV

10 1:B: AX POP WORD STOS 1 s LOOP
11 S I I NC C L , C S I 3 MO'V
12 AH, AH XOR S I I NC 3s J C X Z
1 S 2%: B Y T E LODS D I , AX MOV
14 DX, C H X + D I l MOV DX PUSH 2s LOOP
15 2%: NE:XT

S c r e e n # 2
O (c h a r : > s t a c l : 0 5 / 0 6 i E 1 5)

1
2 : CHAR, (in::. { G e t n e x t a s c i i c h a r a c t e r f r o m i n p u t s t r e a m))

3 :::.IN Q 1 ::.IN + ! HLC: C ?DUP I F BLLOCC: E L S E T I H THEN + CQ :
4
5 : STACt:; (-- a b c d : a b c d . :Per f o r m s t a c k t - e a r r - a n g e m e n t : .)

6 ?COMP C O M P I L E (S T A C K) \ compile r u n - t i m e w o r d
7 B E G l N CHAR:':. B L ':::::. U N T I L \ f i n d s t a c k p i c t u r e
8 I:, \ c o c t n t e r f o r - # i n p u t
9 B E G I N 1+ C H A R , A S C I I I = U N T I L i c o m p i l e # i n p u t i t e m s

1 0 DUP :>R C , :::.IN Q -1 \ r e m e m b e r w h e r e w e a r e
11 H E G I N 1+ CHAR:- H L = U N T I L C, \ c o m p i l e # o u t p u t i t e m s
12 :;. I N ! \ b a c k . t o o ~ t t p ~ ~ t i t e m s
1.3 BEG I N CHAR ::. D U p H L .:: ::- W H I L E \ w h i l e v a l i d o ~ t t p ~ l t
1 4 6 4 - R@ SWAP - - 2+ C, REPEAT \ c o m p i l e t h e m
15 R:;. 2DROP ; I M M E D I A T E \ c l r s t a c k s

S c r e e n # 3:
c'l (b o x 1 bo::Z s t a r 1 s t a r2 C r 5 / 0 6 / 8 5)

1
2 : B O X 1 (>:1 y l w2 y2 -- d r a w b o x) (4 3 b y t e s I 20.9 s e c o n d s)

3 2 0 V E R J P I C K OVER 2DUP 2ROT L I N E 2 0 V E R L I N E
4 3 P I C K OVER 2DUP 2ROT L I N E L I N E ;
5
b : B O X 2 (::I y l ~2 y2 d r a w b o x) (35 b y t e s I 20. 1 s e c o n d s)
-7 STACC.: AHCD:AHCBCHCDADCDAHAD 4 L I N E S ;
a
9 : S T A R 1 (p t l . . . p t 5 -- d r a w s t a r) (88 b y t e s I 4 3 . 6 s e c o n d s)

1 0 9 PIC)::. 9 PICC:: 7 PICC:: 7 FICC:. 7DUP 2ROT L I N E =OVER L I N E
11 7 P I C K 7 F'ICt:': ZDUP ZROT L I N E 2 0 V E R L I N E 7 P I C } : 7 PICK:
1 2 L I N E 2DROP 2DRC3P 2DROP ;
13
1 4 : S T R R 2 (p t l . . . p t ; -- d r a w s t a r) (4 2 by tes I 4 1 . 8 s e c o n d s)

1 5 STACt:: AHCDEFGHIJIAHEFEFIJIJCDCDGHGHAH 5 L I N E S ;

I

Most applications of STACK would re-
ATTENTION FIG MEMBERS! quire an assembly language implemen-

WE NEED YOUR HELP tation, but for experimentation a Forth
im~lementation is also shown. How-

At the FORTH Interest Group we know Forth is being used in many
sophisticated and complicated projects. Unfortunately, the Forth community has
never compiled a complete reference document summarizing how and where
Forth is being used. We believe this type of document would be very helpful to
both the novice considering learning Forth and the professional experiencing
corporate resistance to using it.

Would you please help us put one together? All you need to do is complete the
questionaire below and return it directly to us by March 15! All completed
questionaires should be mailed to: Forth Interest Group, P.O. Box 8231, San
Jose, CA 95155.

1. Company name and address:

2. Name of the programmer
(Note: for internal use only. Will not be published.)

3. Project or product name

4. Date project or product completed

5. Was the project: For sale to an end user? yes no
For in-house use? yes no
For OEMs? yes - no

6. Indicate approximate number of users: 1 - 5 0 3 0 1-400
50- 100 40 1-600
100-200 ?

2 0 0 - 3 0 0

7 . Is Forth hidden from the user? yes no

8. Briefly describe the project (30 words)

9. Briefly describe the benefits of using this project or product.

Thank you for your participation. If you would like a copy of the results please
complete the following.

Name

Company

Address

City, State, Zip

ever, the assembly implementation
runs about ten times faster on an
8088-based system.

The assembly implementation of
STACK compiles into about 200 bytes of
code, while the Forth-83 version takes
about 240 bytes. The assembly code for
(STACK) should run on most 8088/8086
Forth systems, and the Forth (STACK)
word should work on any standard
Forth-83 svstem.

~t compile time, STACK first lays
down the run-time address of (STACK).
It then counts the number of input and
output items and compiles a single byte
for each of these values. STACK then
compiles one byte for each of the
characters in the output stack picture.
At run time, (STACK) moves each input
stack item into temporary storage at
HERE. (STACK) then runs through the
output stack picture and recalls each
item from the HERE buffer and pushes
it onto the stack. To simplify the run-
time code, the output stack items are
stored in a special format. If there are
n items on the input stack, then item m
will be stored as (n-m)*2. This value
then represents the offset address from
HERE required to pick up the next
output stack item. The total compile
size of any STACK word will always be
four bytes plus a byte for each item on
the output stack.

Screen 3 shows some examples of
using STACK versus doing it the "hard"
way. The box words draw a box when
provided with upper-left and lower-
right coordinates. The star words draw
a star when given five vertices. In each
case, the STACK implementation requir-
ed less object code, less source code,
ran slightly faster on a repetitive bench-
mark and took much less time to get
running.

To summarize, STACK should be used
primarily to simplify the handling of
complex stack pictures. For relatively
simple manipulations, STACK will
extract a performance penalty. How-
ever, when a programmer feels he has
painted himself into a corner, STACK
may be a good way to spell relief.

F O R ~ H Dimensions 26 Volume VII, No. 5

Fast Evaluation of Polynomials
Nathaniel Grossman

Los Angeles, California

One of the speakers at the Sixth
FORML Conference7 presented a clev-
er utility that automatically parses a
stack diagram and an algebraic for-
mula, and generates explicit stack op-
erations that realize the formula with
the given stack parameters as ordered.
~ h u s , the utility responds to the stack
diagram C A B X and the algebraic
formula AX2 + BX + C by producing
the sequence of Forth words ROT OVER
D U P * * R O T R O T * R O T + +. Whenthe
stack diagram is changed to B C A X,
say, the same formula is realized by a
different sequence of Forth words. It is
possible that one of the sequences
produced by the permutations on the
stack will be shorter than the others,
and will be so found without requiring
the programmer to go through the
usual mental acrobatics or paper-and-
pencil calisthenics.

Nevertheless, I was surprised to note
that none of the other FORML par-
ticipants seemed to see or care that no
one of these permutations can produce
a realization of the shortest possible
evaluation of a quadratic polynomial:

AX2 + BX + C = (AX +B)X + C

While direct evaluation of the quad-
ratic polynomial by the Forth word
sequence given above requires three
multiplications, the last expression
gives the value with only two multi-
plications:

:QUADRATIC (c b a x - - a x 2 + bx + c)
SWAPOVER ROT + + ;

Because the two versions each use
just two additions, the second version
requires only about two-thirds the run-
ning time of the first version. One of
the major themes running through the
conference presentations was the striv-
ing for savings of one or two micro-
seconds by painstaking reworking of
code. Why be penny-wise and pound-
foolish?

The rearrangement of the quadratic
polynomial is the simplest case of a
general scheme devised by the English
mathematician W.G. Horner and pub-

lished in 18195. Horner's scheme used
to be taught in the second year of high
school algebra, along with a simple
algorithm for digit-by-digit extraction
of roots of polynomials. The appear-
ance of electronic arithmetic engines
made the use of digit-by-digit methods
less a necessity, and Horner's method
seems now to be in eclipse, at least to
the extent that few high school students
carry knowledge of-the method for-
ward into college studies. Of course,
Horner's scheme has not been lost.
Practitioners of numerical analysis
prize Horner's scheme because it is the
fastest of all ways to evaluate poly-
nomials generically: if the polynomial
has no special features, no algorithm
for evaluating the polynomial can use
fewer multiplications than Horner's
scheme9. If the polynomial does have
special features, there may very well be
an algorithm faster than Horner's
scheme for that particular polynomial.
For example, the simple polynomial xn
needs n-1 multiplications for evalua-
tion by Horner's scheme, but there are
methods that evaluate xn in about
log2n multiplications. (The direct eval-
uation of a generic nth degree poly-
nomial by working out all products will
require 1 + 2 + . . . + n = n(n +
1)/2 multiplications.)

We will present Forth code to imple-
ment Horner's scheme both in the
form already described and in an ex-
tended form that evaluates the deriva-
tive polynomial simultaneously. With
these two values available, we easily
can employ the famous Newton's meth-
od for finding roots of polynomials.
Horner's Scheme

Horner's scheme is contained in the
algebraic identity

The expression on the right side is
evaluated from the inside out. The
calculation can be set out in algorith-
mic form2? 9. Let b, = a, and compute
b,-,, bn-2, . . . , bl , bo by the recur-
rence bk = ak + bk +] * XO. Then bo =
p(xo). In addition, set

q(x) = b,xn-I + bn-lxn-2 + . . . + b2x
+ bl

Then p(x) = (x - xo)q(x) + bo and
the derivative pl(x 10) = q(xo). The
value of q(xo) can be found by applying
Horner's scheme to q(x). Thus, the
data is degree n; coefficients aor a l , . . .
, a,; xo. Put y, = an and z, = a,.
Compute successively the quantities

yk = x0 * y k + l + ak and zk = xo *
z ~ + ~ + y k f o r k = n-1,n-2, . . . , 1,
and also yo. Then p(xo) = yo and
p1(x0) = Zl.

The Forth screens that accompany
this text hold words HORNELSCHEME
and FHORNERSCHEME to realize the
Horner polynomial evaluation schemes
in integer and floating-point arith-
metic, respectively, and a word
NEWTON-CYCLE including evaluation
of a polynomial and its derivative sim-
ultaneously in floating-point arithmetic.

Newton's Method for Polynomials

There are times when one wants a
root of the polynomial p(x), a real
number r such that p(r) = 0. Indeed,
the finding of roots of polynomials is
the fundamental problem of classical
algebra, and it is nowhere near being
solved in the form of a "sure-fire"
algorithm. However, numerical anal-
ysts can call upon an arsenal of tech-
niques for locating roots and calculating
them to a desired precision. Newton's
method is one of the most powerful of
such techniques. If a root is located
approximately, Newton's method gen-
erates successive approximations that
converge very rapidly to the root in
most cases.

Newton's method is expressed in a
very simple form. Suppose that f(x) is a
differentiable function in a "suitable"
interval containing the root r of f(x) =
0. Choose a first guess xo for the root r.
(This is the hard part, because no turn-
the-crank techniques are known for
this step that are both "sure-fire" and
rapid.) Then generate a sequence of
improved approximations xl, x2, . . .
by the iteration scheme

VolumeVII. No. 5 27 FORTH Dimensions

FORTH
The computer
language for

increased.. .
EFFICIENCY

reduced.. . . .
MEMORY

higher.
SPEED

Largest selection
of FORTH*
Books
Manuals
Source Listings
Software
Development

Systems
Expert Systems

MVP-FORTH Programmer's
Kit for IBM, Apple, CP/M,

MS DOS, Amiga, Macintosh
and others. Includes source,
disks, books and manual.

Specify computer.
$175.

Phone Order Numbers:
800-32 1 -4 1 03

In California:
800-468-4 1 03
Send for your

FREE
FORTH

CATALOG

MOUNTAIN VIEW
PRESS

PO BOX 4656
Mountain View, CA 94040

SCR X 1
0 \ Loader FORTH-83 03DEC84NG
1
2 : HORNER-NARKER (null) :
3
4
5 2 11 THRU
6
7

J

: DEFER

\ create a deferred definition

CREATE (---)

2 ALLOT

DOES> (?)

@ EXECUTE ;

: (IS) (value---)

\ the run-time action of IS

R@ @ >BODY ! (retrieve target address)

R > 2 + > R ;

: IS (value - - -)

\ sets the body of the following word to value.

\ If compiling, the word set is the one which follows in the

\ definition.

STATE @ (compiling?)

IF COMPILE (IS) (run-time action)

ELSE ' :.BODY ! (interpretive action)

THEN ; IMMEDIATE

Figure One

If certain technical conditions2 are
met, the sequence x, will converge
rapidly to the root r, and the conver-
gence is quadratic: eventually, the
number of correct decimal places in the
approximation to the root r will essen-
tially double with each step.

Of course, a polynomial is a func-
tion differentiable everywhere and so
Newton's method can be used to ap-
proximate roots of polynomials. There

b

are some pitfalls, naturally, so poten-
tial users should glance at a numerical
analysis textbook such as that written
by Burden to become aware of them.
Forth devotees will be sensitive to the
question of calculation in fixed-point
arithmetic. They will find a possibly
useful discussion of Newton's method
and fixed-point calculations in an ear-
lier paper6. The implementation pre-
sented here will be in floating-point

28 Volume VII. NO. 5

SCR # 2
0 \ Poly-array FORTH-83 02DEC84NG
1
2 : POLY-ARRAY
3 CREATE , I n ---
4 \ The degree n w i l l be f o l l owed by t he n + l i n t ege r c o e f f i c i e n t s
5 DOES> (n --- n t h coe f f i f n \= 0, degree i f n (0)

b SWAP DUP 8(
7 I F DROP @ (degree 1
8 ELSE 2, 2 t + @ (n t h c o e f f i c i e n t)

9 THEN ;
10
11 DEFER COEFFICIENT
12

SCR # 3
0 \ Horner-scheme FORTH-03 02DEC84NG
1
2 : HORNER-SCHEHE I n --- n l = p [n l 1
3 -1 COEFFICIENT I degree) DUP COEFFICIENT I lead ing coef f 1
4 SWAP 1- 8 SWAP DO
5 OVER r I COEFFICIENT +
b -1 +LOOP ;
7

SCR t 4
B \ Examples FORTH-83 02DECB4N6
1
2 3 POLY-ARRAY PQ
3 - b , l l , - b , l .
4
5 : PQO (n --- n l = pq [n l 1
b [' IPQ ISCOEFF IC IENT
7 HORNER-SCHEHE :
8
9 b POLY-ARRAY RS

10 l , l , l , l , l , l , l ,
11
12 : RSO (n --- n l = r s [n l 1
13 [' I R S ISCOEFFICIENT
14 HORNER-SCHENE ;

I NGS FORTH I
A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

I STANDARD FEATURES I
INCLUDE:

a79 STANDARD

I aDIRECT 1/0 ACCESS
I aFULL ACCESS TO MS-DOS FILES AND FUNCTIONS

aENVIRONMENT SAVE I &LOAD
aMULTI-SEGMENTED FOR
LARGE APPLICATIONS

*EXTENDED ADDRESSING

I .MEMORY ALLOCATION CONFIGURABLE ON-LINE

.AUTO IDAD SCREEN BOOT

.LINE 61 SCREEN EDITORS

I .DECOMPILER AND
DEBUGGING AIDS

a8088 ASSEMBLER

.GRAPHICS & SOUND

aDfiAILED MANUAL

aINEXPENSIVE UPGRADES

A COMPLETE FORTH
DEVEU)PM.ENT SYSTEM.

I PRICES START AT $70

NEW-HP-150 & HP-110
VERSIONS AVAILABLE

NEXT GENERATION SYSTEM
P.O.BOX 2987
BANTA CLARA, CA. 9 5 0 5 5
(4 0 8) 241-5909

Volume V I I , NO. 5 29 FORTH Dimensions

4 FORTH I
from

compbter sys tem - SOTA i s the
running CP/M -- -- - -@ FORTH of
(version 2 x) = = === choice lor both
or CP/M Plus e"z=E the n o n c e a n d
(version 3 x) experienced
What s more, TRs-80 programmer
SOTA doesn t Make 1t your

E % 6 r E k cEEz
a n y awkward copy today

When you order from SOTA, both tho fig
model and 79 standard come complete
with the following extra features at no

additional charge:
full featured string handling assembler

screen editor floating point double word
entension set relocating loader beginner's
tutorlal comprehenslue programmer's guide

enhaustiue reference manual unparalleled
technical support source listings - unbeatable price

I Pleese bill my 0 VISA Mastercard I I
for S 89 95 l Pleese Send me 79 Standard FORTH heFORT% -
for the

IBM PC 0 XT AT (end compatibles)
TRS-80 Model I Model Ill 0 Model 4 0 Model 4P
CP/M Version 2 x CP/M Plus (Version 3 x)
For CP/M wrslons pleare note 5 1 /4 formals only end
pleese specily computer type

1 1

n R m E :
S T R E E T :
C I T Y / T o w n :
S T R T E : Z IP :
C A R D T Y P E : E X P I R Y : -
CRRD no:

SCR # 5
0 \ P o l y - f a r r a y FORTH-83 02DEC84N6
1
2 : F, (r --- \ s t o r e s r i n f i r s t a v a i l a b l e d i c t i o n a r y s l o t
3 HERE FlBYTES ALLOT F ! ;
4
5 : POLY-FARRAY
b CREATE , (n ---)

7 \ t h e degree n w i l l be f o l l o n e d by t h e n t l r e a l c o e f f i c i e n t s
8 DOES> (n --- n t h c o e f f i f n >= 0, degree i f n (0
9 SWAP DUP B!

10 I F DROP @
11 ELSE FYBYTES * 2 t t F@
12 THEN ;
1s
14 OEFER FCOEFFICIENT
15

SCR Y b
0 \ F l o a t i n g Horner scheme FORTH-83 O2DEC84NG
1
2 : FHORNER-SCHEME r --- r l = p [r l)
7 -1 FCOEFFICIENT (degree

4 DUP>RFCOEFFICIENT i l e a d i n g c o e f f i c i e n t)
5 R> 1- 0 SWAP (r l e a d i n g - c o e f f 0 deg-1)

b DO
7 FOVER F* I FCOEFFICIENT F+
8 -1 +LOOP
9 FSWAP FDROP i

10
11

arithmetic. When the function f(x) is a
polynomial, the Horner scheme is very
convenient for organizing the calcula-
tions in the Newton iteration.

The Forth Screens

The accompanying Forth screens
implement the algorithms just laid out.
They are written in Forth-83 and I
have checked them with MicroMotion
MasterForth, including the floating-
point extension, for which a proposed
standard can be obtained4. Screen 0 is
merely descriptive and cannot be
meed. Screen 1 is the loader screen.

I decided to write a generic program.
Therefore, I have to defer entry of the

coefficient arrays and I use for that
purpose the two vectoring words DEFER
and IS whose definitions, taken from
Mastering ~ o r t h 3 , are shown in Figure
One.

The coefficients of the polynomial to
be evaluated are saved in an array of
floating-point numbers. We may want
to deal with more than one polynomial
at once and, therefore, are led to two
new data types. The POLYJRRAY
prefaces the list of integer coefficients
by a sixteen-bit integer that is the
degree of the polynomial. This integer
must be at hand for indexing certain DO
LOOPS. The POLY-FARRAY is similar,
except that the coefficients stored are
floating-point numbers.

VolumeVII. No. 5

,

SCR 1 7
0 \ Exarp les FORTH-83 82DEC04NG
1
2 3 POLY-FARRAY FPR
3 -bE F, 11E F, -6E F, 1E F,
4
5 : FPQO (r - - - r l = f p q t r l 1
6 t ' I F P R I S F C O E F F l C l E N 1
7 FHORNER-SCHENE ;
8
9 4 POLY-FARRAY EXP4 I exponent ia l s e r i e s through 4 t h power 1

10 1E F, 1E F, .5E F, 1.66666667E-1 F, 4,16666667E-2 F,
11
12 : EXP40 (r --- r l = e x p 4 t r l 1
13 t 'I EXP4 I S FCOEFFICIENT
14 FHORNER-SCHEHE :
15

SCR 1 8
0 \ Newton's method f o r r o o t s o f p o i y n q r i a l s FORTH-03 03DEC84N6
1
2 : NEWTON-.CYCLE (x --- x l = x - p [x l / p ' t x l)
3 -1 FCOEFFICIENT
4 DUP >R FCOEFFICIENT FDUP (x an an
5 R> 1- 1 SWAP
b DO (f rom n-1 down t o 1)

7 FRO1 FRO1 FOVER F* I FCOEFFICIENT F+ (z I + 1 x y1
0 FRO1 FRO1 FSWAP FOVER F t FRO1 FDUP FRO1 F+ ! x y I z1)

9 -1 +LOOP (x y l 21
10 FROT FRO1 FOVER F* 0 FCOEFFICIENT F+ FRO1 (x p t x l p ' t x l)

11 F I F - ; (x - p t x l / p ' [x l
12
13

Screen 2 Here is the first of the new
data types. As illustrated on screen 4,
the defining word is used in the form

<degree > POLYARRN c name >

to create an array that enters the dic-
tionary as the string of cells

holding the degree followed by the
coefficients of the polynomial
< name > .
Screen 3 The deferred word
COEFFICIENT in screen 2 will be the

target for the vectored arrays of coeffi-
cients. Its immediate use is to allow
writing the word HORNELSCHEME
that carries out efficient evaluation of
integer-coefficient polynomials for in-
teger values of the variable.

Screen 4 These examples show how
evaluation of any polynomial can be
vectored through the word HORNEL
SCHEME. The first is the polynomial

I Mas terFORTH I
FORTH-83 ST ANDARD

I 6809 Systems available for
. FLEX disk sustems f 150

. OS9 /6809 $1 50

1 680x0 Systems available for
MACINTOSH $123
CP/M-68K $1 SO

tFORTH/2O for 68020
Single Board Computer

Disk based devekpme nt sy stew
under OS9/68K . . . $290

EpROM set for complete stand -
. alone SBC. $390

I . Forth Model Library - List
handler, spreadsheet , Automatic

. . . . structure charts each $40

Tar get compilers : 6809,680 1
6303,680x0,8088,280,650~

Talbot Hicrosyst ems
1927 Curtis Ave
Redondo Beach

CA 90278
(2 13) 376-9941

68020 SBC, 5 1 /4" floppy size

board with 2MB RAM, 4 x 64K

EpROM sockets, 4 RS232 ports,

Centronics parallel port, timer,

battery backed date/time,

interface to 2 5 1 /4 " floppks

and a SASI interface to 2

winchester disks$2750

68881 flt pt option. $500

OS9 multitask&user 0s. . $350

F A ST! id. benchmarks

speeds are

Volume VII, NO. 5 31

* FORTH-83
com pati ble

*32 bit stack
* Multi-tasking
*Separate headers
*Full screen editor
*Assembler
*Amiga DOS support
*Intuition support
*ROM kernel support
*Graphics and sound

support
*Complete

documentation
*Assembler source

code included
*Monthly newsletter

Shipping included
in continental U.S.
(Ga. residents add sales tax)

(call anytime)
or send check or money order to:

UBZ s-
395 St. Albans Court
Mableton, Ga. 30059

i
'Amiga is a trademark for
Commodore Computer. UBZ FORTH
is a trademark for UBZ Software.

f

SCR t 9
Q \ Newton 's scheme f o r r o o t s o f p o l y n o m i a l s FORiH-83 03DEC84NG
I
2 FVARIABLE TOLERANCE VARIABLE #CYCLES
3
4 : NEWTON'S-SCHEME (s t a r t i n g guess --- r o o t ; b o t h f l o a t i n g
5 iE-7 TOLERANCE F ! 10 #CYCLES !
6 BEGIN (t h e Newton i t e r a t i o n s
7 - l # C Y C L E S + !
8 FDUP NEWTON-CYCLE (i t e r a t e 1
9 FSWAP FOVER F- FABS

10 TOLERANCE F@ F< #CYCLES @ 0= OR
11 UNTIL ; (c l o s e enough? c v c l e d o u t ? 1
12
13

SCH # 10
0 \ Newton 's method -- examples FORTH-83 03DEC84NG
I
2 2 POLY -FARRAY X ~ X - 2
3 - 2 E F , 0 E F , I E F ,
4
5 : FIND"SQRT(2)
b [' I l*X-2 I S FCOEFFICIENT
7 NEWTON'S-SCHENE ;
8
9 : SOLVE-FPQ

10 [' I FPQ I S FCOEFFICIENT
11 NEWTON'S-SCHEME :
12
13

The second is

Screen 5 This screen and the next two
are parallel to screens 2 - 4. The
floating-point words are taken from
the proposed floating-point standard
published by Duncan and lTac9. The
word F, is analogous to the integer
word , and is not included in the
proposed standard. The words ~ L Y -
FARRAY and FCOEFFICIENT are complet-

ely analogous to the earlier words
POLYARRAY and COEFFICIENT.

Screen 6 Because the stack contains
numbers of mixed types, generalization
of HORNELSCHEME to the analogous
FHORNELSCHEME has a little hitch: a
simple SWAP on a stack holding sixteen-
bit integers requires a temporary stor-
age on the return stack when the data
stack holds numbers of mixed types.
(This avoids appeal to the particular
implementation of the floating-point
numbers.)

32 Volume VII, NO. 5

-

SCH I 11
0 \ Newton's method -- more examples FORTH-83 03DEC84NG
1
2 10 POLY -FARRAY COSl0
3 \ p o l y approx imat ion t o cos ine , e r r o r (?E-9 f o r 0 (= x (= p i 1 2
4 1E F , 0E F, -,5000B000E F, 0E F, ,041666642E F, 0E F.
5 -.0013888397E F , BE F, .0000247609E F, 0E F, -2.605E-7 F ,
6
7 : SOLVE-COSl0
8 [' I COSl0 I S FCOEFFICIENT
9 NEWTON'S-SCHEHE :

10
11
12
13
14
15

-
Screen 7 These polynomials are hand-
led in complete analogy to those in
screen 4.

Screen 8 The word NEWTON-CYCLE
carries out a single Newton iteration
step. Lines 4 and 5 contain the little
fudge that is necessary because the
stack contains mixed number types.
The evaluations of p(x) and pf(x) are
carried out in parallel on the stack, and
the definition is left unfactored to ease
the following of stack manipulations.
Yes, I know there is a movement to-
ward the introduction of more local
variables with the consequent shorter
stacks, but I could not resist the chal-
lenge of manipulating four-deep stacks
without the aid of the phantom words
FPlCK and FROLL. Just after the Do, the
stack holds x y, z,.

Screen 9 To ensure that the iterations
do not run for infinitely many cycles,
two stoppers are set. Each iterate is
compared with the preceding and the
iterations are stopped if they differ in
absolute value by less than the preset
TOLERANCE. Because Newton's method
soon begins to double the number of
correct decimal places at each itera-
tion, the preset tolerance should soon

stop the process. Just in case the initial
guess is terrifically far from a root,
necessitating many iterations, the pro-
cess is set to stop after a certain
#CYCLES. The values of TOLERANCE
and #CYCLES should be inserted into
the word NEWTON'S-SCHEME before it
is used. Choose a starting value xo, a
floating-point number, and execute
NEWTON'S-SCHEME. If the pitfalls men-
tioned earlier have been avoided, the
root will soon appear on the stack,
from which it can be pulled by F.

Screen 10 The square root of two is
the positive root of the polynomial x2 -
2. The words FIND-SQRT(2) F. will dis-
play 2lI2 when applied to initial values
such as 1E and 2E. When used on -1E,
they print out -2lI2. The polynomial
pq (or fpq, its floating-point incarna-
tion) has the obvious roots 1, 2 and 3,
so serves as a good testing ground.
Enter various initial guesses and use
SOLVLFPQ to see which root is the
limit of the iterates.

Screen 11 This example shows a poly-
nomial optimized to represent the co-
sine function on a fixed interval. The
cosine function is often defined through

its power series, of which the terms up
to and including the tenth power are

If 0 = < x = < pi/2, the error in the
optimized polynomial COSIO is no big-
ger in absolute value than 2E-9. Many
such optimized polynomials can be
found1, from which I took this one.
The smallest positive root of the equa-
tion cos x = 0 is the number pi/2. It
might be guessed that the smallest
positive root of the approximate poly-
nomial should approximate pi/2. Use
1.5E SOLVECOSlO F. to test the strength
of this conjecture. (Notice that the
polynomial coslO is not generic: it is in
fact a polynomial of degree five in the
variable x2 and therefore it has an
evaluation in fewer multiplications
than the generic algorithm.)

Steven Ruzinsky described a system-
atic way to generate optimized poly-
nomial approximations and gave a
Forth implementation of his method in
a recent article8.

Example

To show how these words can be
used interactively from the keyboard,
we solve an equation treated by Vieta
in the year 1600. Vieta had an iterative
method, used and simplified by several
mathematicians afterward until it was
taken up and again refined by Newton
in 1664~. The equation is the cubic

Vieta started by guessing for the root
the value xo = 200. We type in the
following words:

3 POLY-FARRAY VlETA
-14356197E Fl 30E Fl OE F, 1E F,
' VIETA IS FCOEFFICIENT

We want both the root and a look at
the number of iterations used, so we
continue with

200E NEWTON'S-SCHEME F.
10 #CYCLES @ - .

Volume VII. No 5

- -

FORTH Dimensions

SOFTWARE COMPOSERS
The display reads

243.000~00000 5

We have found the root 243 also
IT'S H E R E !

found by Vieta. and the process con-
sumed five iterations. incidentally,
there is no other real number root for T h e E L TA a 0 A R D
this eauation. as easily can be shown
with aAlittle bit of differential calculus.

References

1. Abramowitz, Milton and Irene A.
Stegun, Handbook of Mathemati-
cal Functions, National Bureau of
Standards Applied Mathematics
Series 55, Washington, 1955.

2. Burden, Richard L., J. Douglas
Faires and Albert C. Reynolds,
Numerical Analysis, 2nd ed.,
Prindle, Weber and Schmidt, Bos-
ton, 1981.

3. Anderson, Anita, and Martin
Tracy, Mastering Forth, Brady,
Bowie, MD, 1984.

4. Duncan, Ray and Martin Tracy,
"The FVG Standard Floating-Point
Extension," Dr. Dobb's Journal,
September 1984.

5. Goldstine, Herman H., A History
of Numerical Analysis from the
16th Century Through the 19th
Century, Springer-Verlag, New
York, 1977.

6 . Grossman, Nathaniel, "Newton's
Method: Fixed-Point Square Roots
in Forth," Forth Dimensions,
March/April 1984.

7. La Quey, Robert, "Reverse Polish
Translation," 1984 FORML Con-
ference Proceedings, Forth Interest
Group, San Jose, CA, 1984.

8. Ruzinsky, Steven A., "A Simple
Minimax Algorithm," Dr. Dobb's
Journal, July 1984.

9. Sedgewick, Robert, Algorithms,
Addison-Wesley, Reading, MA,
1983.

"I'm delighted to see Software Composers' board on
the market. It provides incredible capability and
versatility with minimal parts, size, and price.
An excellent introduction to the new generation of
hardware and software."

Chuck Moore
November, 1985

--------------- --------------- SC-1000C DELTA BOARD ==============
The SC-1000C Delta Board is the first low cost cpu
board available using the super-fast Novix chip.
The Delta Board comes fully assembled, tested, and
ready to use with a 30 day warranty. The Delta
Board comes with a manual, a 9600 baud serial port
on board, a terminal connector and cable, a 5 volt
power supply, and a mounting board. Orders filled
on a first come, first served basis.

Ready to use--turn it on and atart development!!

------------- ------------- DELTA BOARD INFORMATION =============
* NOVIX NC4000P chip on board. (4 Mhz operation). * cmFORTH interpreter and compiler in EPROM. * 4K 16 bit words of static RAM, 4K words of EPROM. * 21 independently controllable 1/0 ports on bus.
t U p to eight 256 word data stacks and 256 word

return stacks can be selected for multi-tasking. * Delta Board measures 4 1/2" x 6 1/2" with a 7 2
pin edge connector bus with a11 major Novix
signals.

---------------- ---------------- PRICE INFORMATION ================
SC-1000C DELTA BOARD: $895
FIG MEMBER DISCOUNT: -45 ------

$850
LOT ORDER DISCOUNT: -75 (ORDERED IN LOTS OF ------ FOUR OR MORE)

$775

If you would like additional information on how to
order, send your name and address to:

SOFTWARE COMPOSERS
210 California St., Suite F,

Palo Alto, CA 94306

FORTH Dimensions 34 Volume VII, No. 5

7th Annual Conference

FORML at A silomar
The annual conference of the Forth

Modification Laboratory (FORML)
was held in Asilomar's Chapel this
year, a lofty structure of raftered ceil-
ings, wooden beams and comfortable
seating. It is perched on a hill over-
looking cloudbanks as they beach
themselves on the Pacific shoreline.
Most of the eighty or more participants
were Forth experts who contributed
their expertise to the schedule of talks,
poster sessions and working groups.
Complete papers will soon be available
in the published proceedings, but the
following material sketches some of
the highlights in brief.

Dana Redington spoke on his work
with knowledge representation. Some
of his earlier techniques were revised
recently when Dave Boulton, one of
the founding members of FIG, helped
Dana to reconsider what a "fact" is,
enabling Dana to further refine his
expert programs. His fact structure
consists of a subject, verb, object and
"certainty" (which provides a measure
of the likelihood of correctness). Dana
demonstrated his rule compiler with
simple examples and shared with the
audience his insight into expert systems
and knowledge representation in Forth.

Jack Park next discussed his method
of parsing natural languages. His ex-
planation began with semantic and
syntactic parsing, and with the way his
"expectation parser" uses a Forth dic-
tionary as a kind of smart vocabulary
to discern between multiple possible
word meanings. Jack's talk made it
clear that the techniques used and the
choice of language enable one to easily
create or customize rules for how
words in the dictionary are related.

Forth Inc.'s Jon Waterman reported
a use of mailboxes to facilitate inter-task
communication in a complex multi-
tasking situation. Shared memory pro-
vides a place for access to data by both
master (68000) and slave (803 1) proces-
sors communicating at 375 kilobaud.
The mailbox provides parameters for
each of the communication channels.
As with most discussions of multi-
tasking, emphasis was given to com-
munication and control protocols.

An entire session of this year's con-
ference was devoted to languages.
Beginning the late afternoon session
was Martin Tracy, of MicroMotion,
who discussed adding LISP operators
to Forth. The paper on which the talk
was based includes much source code
and pertinent information about list
handlers. To demonstrate the effective-
ness of the resulting Forth/LISP list
handler, Martin has used it to imple-
ment Winston and Horn's "micro-
LISP" (LISP, 2nd ed.). Martin con-
cluded that LISP is a good idea, but
takes its own premises too far when it
insists that everything in it must take
the form of a list.

Lance Collins travelled from Victor-
ia, Australia to describe implementing
a LOGO compiler in Forth. Of par-
ticular interest was his use of stack
frames and frame pointers to resolve
the problem of local variables in recur-
sive definitions. His paper explains one
company's approach to providing local
variables, forward referencing and caus-
ing any redefined word to affect all
previous references to it. A critical goal
of the project was to allow standard
LOGO programs to run unchanged on
this system. Lance points out that
LOGO is much more complex than it
needs to be, when one considers the
prevalent current uses of the language.

Included in the conference proceed-
ings is a paper by Dr. C.H. Ting, who
has implemented Prolog in Forth. He
shows that since Prolog only requires a
pointer to the query string and another
into the data base, implementing it
does not require new data structures in
Forth. (George Levy was another speak-
er who shared with attendees his good

and analyzing it effectively with his
BNF parser written in Forth. This
parser can handle serial, parallel and
repetitive structures, or a combination
of the three. The method makes it
fairly simple to quickly write a parser
called for by a given situation. The
presentation left open many intriguing
ideas for future exploration; many who
attended will be looking forward to
hearing about further development of
this tool.

Wil Baden next presented his under-
standing of interpretive logic. One of
his wishes was to use IF ELSE THEN for
conditional compiling. Conditional
interpretation and conditional compila-
tion provide a number of benefits in
one's normal work with Forth, espe-
cially by extending the power of the
Forth editor and by using interpretive
tests to interact with the compiling
process. His ideas are fertile ground
for the imagination!

David Harralson spoke on extending
Forth's control structures to meet the
programming requirements of the 1990s.
His goal was to define a most general
control structure with a minimum of
new words, and to incorporate in it the
current and proposed features of
Forth's control structures. The scope
of the task: that the new structure will
run existing code with no speed penal-
ty, while providing significant new
capabilities and remaining flexible.

Martin Worrell of Hull, England
needed a metacompiler to compile code
for the MetaForth machine's develop-
ment. The team wanted an "open
metacompiler" which would allow one
to test the metacornpilation process
interactively while it happens, permit-
ting revision and replacement of in-

work implementing Prolog in Forth.)
Dr. Ting used his speaking time to
describe his work (called "Footsteps in
an Empty Valley") putting together a
low-cost board based on the NC-4000
Forth processor. He spoke of the No-
vix chip as a milestone, and suggested
that work is now needed on writing the
systems utilities and controllers needed
to harness its power.

Leonard Morgenstern has explored a
method of accepting complex input

dividual pieces of code. The concepts
of resolution and relocation become
critical to this technique, which does
not apply to cross-compilation. For
most systems, the sophistication would
come at a hefty cost in speed, but
because this metacompiler was design-
ed for the 10 mips MetaForth machine,
the cost is very affordable.

Larry Forsley, of the Institute for
Forth Application and Research and
the University of Rochester, started off

VolumeVII. No. 5 35 FORTH Dimensions

the first evening with his observations
gained from teaching people about
Forth. He has given Forth seminars for
the ACM, IEEE and other organiza-
tions. Larry perceives that different
groups in need of instruction will re-
quire different approaches, and that
the most successful Forth instructor
will be the one who is most sensitive to
the best approach for a given situation.
One needs to motivate class members,
understand one's own purpose and,
above all, the instructor must convey a
unifying paradigm for the hardware,
software and real world.

The better part of this evening ses-
sion was devoted to coding style and
conventions. Wil Baden reviewed his
method for formatting phrases, and
described his decompiler that generates
formatted code. Kim Harris, a found-
ing member and Secretary of FIG, then
revealed the results of an informal
survey conducted last year about Forth
programmers' preferences for coding
conventions. On many of the points
there was a concensus of opinion, but
on other issues (such as a standard date
format, what constitutes a "phrase" of
Forth words, and indentation) the vari-
ety of opinion would suggest that a
common conclusion remains elusive.
Anyone who has managed or partici-
pated in large-scale development with a
group of programmers can appreciate
the need for common conventions to
ease code sharing and maintenance.
Kim also presented his automatic struc-
ture chart used for analysis of Forth
programs. This important tool was
very well received by the FORML
group and will be receiving more atten-
tion as awareness of it spreads.

The theme of this year's FORML
conference was "Software Tools," and
the sessions devoted to it were of great
interest. Loring Craymer began with
his portability wordset. The objective
was to write a wordset which would
permit the easy transport of code be-
tween sixteen-bit and thirty-two-bit
implementations. His tool deals with
the problems of cell and token sizes,
return stack access and virtual memory
addressing.

"Self-Understanding Programs"
were described by Mitch Bradley. He

provided words that can unravel com-
piled colon definitions, regardless of
the format in which the implementor
has chosen to store the bodies of the
words. This technique makes possible
the creation of largely portable decom-
pi ler~, for example, that can also deal
sensibly with user-defined compiling
words and their progeny.

Working groups comprised a popu-
lar part of this FORML conference.
People gathered for several hours to
work on issues related to robotics,
education, floating point, control struc-
tures, files, thirty-two-bit implementa-
tions, software tools and the NC-4000
chip. As can be expected, some of the
groups reported concensus or useful
conclusions, while others provided an
opportunity to further explore individ-
ual viewpoints and diverse proposals.
Each group's moderator reported orally
to an enthusiastic reconvened audience.

The topic of education was explored
primarily by attendees who are invol-
ved in academic settings, including
instructors who teach Forth at Stan-
ford University and at UCLA. Larry
Forsley related that the lack of a good,
academically oriented textbook was
seen as a major problem in reaching
universities and colleges. Another de-
sirable educational tool is a book of
Forth solutions or case studiedalgo-
rithms to which students can refer
when working on their own projects.
An opportunity for Forth instruction
was perceived at community colleges
and at elementary and high schools,
which often welcome outside contribu-
tions to the curriculum and to students'
extended studies.

Robert Smith reported on the delib-
erations about floating point. It was
generally agreed that floating point
should be included as an extension to
the standard, since vendors will supply
it anyway. Standard numeric 1 / 0
should be required, it was felt, and a
double-number format should be met-
ified. Among potentially useful tools, a
primitive that can divide by a double
number was found desirable. It was
undecided whether a separate floating-
point stack should be implemented or
whether the return stack should be
used. Finally, participants recommend-

ed that a Forth Standards Team sub-
committee be established to consider
proposals for a common floating-point
word set.

Control structures were discussed by
a group moderated by David Harral-
son. The lively discussion was divided
as to the adequacy of present control
structures. The debate then turned to
whether new proposals should be con-
strained to those which are completely
compatible with Forth's existing struc-
tures. Future work is planned along
divergent lines of thought, which
should result in some interesting new
proposals in coming months.

Mitch Bradley led a group discussion
about files. Several of those present
had been using file-based systems and
could agree on a standard set of word
names for the interface. One solution
was to write code that will both read
and write MS-DOS files from Forth
(because MS-DOS tends to be nearly
omnipresent, despite informed opin-
ions as to the inefficiency of its file
system), something that has been com-
mercially implemented by at least one
company.

The thirty-two bit discussions were
reported by John Hart. One attendee
argued that perfect backward compati-
bility with sixteen-bit code would not
be achievable with available effort in a
realistic period of time, considering the
speed at which prevailing technology is
evolving. "Gray matter conversion"
was seen as the only practical solution
to this aspect of the transportability
dilemma. Considering the amount of
memory typically available in today's
machines, the question is not seen as
how to better use 64K, but how to get
control of all available memory. The
market is nearly demanding a solution
to this problem.

Software tools were debated by a
group led by Kim Harris. The types of
needed tools fell into broad categories
(e.g., design, management and proto-
typing) to which particularly useful
tools can be ascribed; stack and
control-flow analyzers, pretty printers,
factoring analysis, on-line documenta-
tion, coding conventions and version
control were notable examples.

FORTH Dimensions
- -

Volume VII, No. 5

Howard Johnson reported that the lows one to get an error message from
NC-4000 round table concentrated on the system, which then continues running.
the formation of a users group for that George Levy interested attendees
processor. The group is interested in with his simple expert system that
bringing people together to share infor- learns through use (via interaction with
mation about current projects using the user) or by compiling a data base.
that Forth chip. The need to provide an The classic "Animals" game was George's
environment for the chip was again example, demonstrating the ease with
brought up, and a number of people which a rule compiler can be imple-
will need to get involved in creating mented in Forth. He was one of several
one. A related meeting was scheduled presentors who emphasized Forth's
for January 1986 in northern California. practicality for artificial intelligence.

On Saturday evening, a perennially Jack Park, author of Expert 11, noted
popular session was held, consisting of that Levy's technique is very clean,
five-minute impromptu talks. Martin easily expanded with relatively trivial
Tracy spoke briefly about a Forth effort into non-trivial dimensions.
model library he is developing, which An ad hoc committee met to select
consists of large, substantial and well- two speakers whose work was worthy
documented programs that work. The of special mention. Kim Harris' auto-
library is intended to work on a wide matic structure chart and Jack Park's
variety of Forths under MS-DOS, and paper on parsing received awards, and
disks sell for $40 each. Wil Baden and Leonard Morgenstern

A Forth system written in C was received honorable mentions, both for
described by Mitch Bradley. His sys- their work with parsers.
tem is quite compatible with a Forth
written in assembler. An interesting -Marlin Ouverson
outcome is that this Forth can now be
- and has been - ported to some of
the powerful minicomputers for which
there is not likely to be a specific Forth
implementation but which do run C. Advertiser's Index
Mitch concluded by offering to share
his code with others.

Ray Gardner of Victoria, Australia
presented some suggestions for work Bryte 9

that would be well received in the Dash, Find & 13
machine vision industry. He explained Forth Inc. 10
some of the industry needs in physics, Forth Institute 11
statistics, artificial intelligence and Forth Interest Group 19-22, 26, 40
mathematics. Current machines tend ~~~~~~d soft Works 15
to be quite costly in terms of the deliv- HiTech Equipment
ered results, revealing a market oppor-

17

tunity for those who are working, for Laboratory Microsystems 8

example, with Forth hardware. MCA 15
Many other impromptu speakers MicroMotion 24

shared their insight - and wit - Miller Microcomputer Services 37
throughout the evening, which was Mountain View Press 28
capped by wine and cheese for all and Next Generation Systems 29
informal chats through the late night Palo Alto Shipping Co. 2
hours. Speakers resumed their oral Paradise Systems presentation of formal papers on the

4

last morning of the conference. Software Composers 34

Loring Craymer discussed improved SOTA 30
error handling. He uses a stack frame Talbot Microsystems 3 1
to store a copy of stack items that can UBZ Software 32
be restored after an error condition,
rather than simply aborting. This al-

Volume VII, No. 5 37 FORTH Dimensions

U.S. Bay Area Chapter Fort Wayne Chapter St. Louis Chapter
Silicon Valley Chapter Monthly, 2nd Wed., 7 p.m. Monthly, 1st Tues., 7 p.m.
Monthly, 4th Sat. lndiana/Purdue Univ. Campus Thornhill Branch Library

ALABAMA FORML 10 a.m., Fig 1 p.m. Rm. B71, Neff Hall Contact Robert Washam
Huntsville FIG Chapter ABC Christian School Aud. Call Blair MacDermid 91 Weis Dr.
Call Tom Konantz Dartmouth & San Carlos Ave. 219/749-2042

San Carlos Ellisville, M O 6301 1
205/881-6483

Call John Hall 415/532-1115
IOWA

NEVADA
ALASKA

mbKodiak Area Chapter
Call Horace Simmons
907/486-5049

ARIZONA
Phoenix Chapter
Call Dennis L. Wilson
602/956-7678

lbcson Chapter
Twice Monthly,
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

ARKANSAS
Central Arkansas Chapter
%ice Monthly, 2nd Sat., 2p
4th Wed., 7 p.m.
Call Gary Smith
501/227-78 17

CALIFORNIA
Los Angeles Chapter
Monthly, 4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Call Phillip Wasson
213/649-1428

Monterey/Salinas Chapter
Call Bud Devins
408/633-3253

Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings
Thlbert & Brookhurst

or call the FIG Hotline:
408/277-0668

Stockton Chapter
Call Doug Dillon
209/931-2448

COLORADO
Denver Chapter
Monthly, 1st Mon., 7 p.m.
Call Steven Sarns
303/477-5955

CONNECTICUT
Central Connecticut Chapter
Call Charles Krajewski
203/344-99%

FLORIDA
Orlando Chapter
Every two weeks, Wed., 8 p.m.
Call Herman B. Gibson
305/855-4790

Southeast Florida Chapter
Monthly, Thurs., p.m.
Coconut Grove area
Call John Forsberg
305/252-0108

Tampa Bay Chapter
Monthly, 1st. Wed., p.m.
Call Terry McNay
813/725-1245

GEORGIA
Atlanta Chapter
3rd Tuesday each month, 6:30 p
Computone Cottilion Road
Call Ron Skelton
404/393-8764

ILLINOIS
Cache Forth Chapter
Call Clyde W. Phillips, Jr.
Oak Park
312/386-3147

Iowa City Chapter
Monthly, 4th Tues.
Engineering Bldg., Rm. 2128
University of Iowa
Call Robert Benedict
319/337-7853

Central Iowa FIG Chapter
Call Rodrick A. Eldridge
515/294-5659

Fairfield FIG Chapter
Monthly, 4th day, 8:15 p.m.
Call Gurdy Leete
515/472-7077

KANSAS
Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.
532 Market
Wichita, KS
Call Arne Flones
316/267-8852

LOUISIANA
New Orleans Chapter
Call Darryl C. Olivier
504/899-8922

MASSACHUSETTS
Boston Chapter
Monthly, 1st Wed.
Mitre Corp. Cafeteria
Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m.

MICHIGAN
Detroit Chapter
Monthly, 4th Wed.
Call Tom Chrapkiewicz
3 13/562-8506

Southern Nevada Chapter
Call Gerald Hasty
702/452-3368

NEW HAMPSHIRE
New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Armtec Industries
Shepard Dr., Grenier Field
Manchester
Call M. Peschke
603/774-7762

NEW MEXICO
Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p
Physics & Astronomy Bldg.
Univ. of New Mexico
Call Rick Granfield
505/296-865 1

NEW YORK
FIG, New York
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Ron Martinez
212/517-9429

Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m
Hutchinson Hall
Univ. of Rochester
Call Thea Martin
716/235-0168

Rockland County Chapter
Call Elizabeth Gormley
Pearl River
914/735-8967

Syracuse Chapter
Monthly, 3rd Wed., 7 p.m.
Call Henry J . Fay
3 15/46-4600

OHIO
Athens Chapter .-.. -

Fountain Valley Central Illinois Chapter MINNESOTA Call Isreal ~ r i e l i
Monthly, 1st Wed., 7 p.m. Urbana 614/594-3731 MNFlG Chapter
Mercury Savings Call Sidney Bowhill
Beach Blvd. & Eddington

Even Month, 1st Mon., 7:30 p.m. Chapter
217/333-4150

Huntington Beach
Odd Month, 1st Sat., 9:30 a.m. Gary Bergstr0m

Fox Valley Chapter Vincent Hall Univ. of MN 216/247-2492 Call Noshir Jesung
Call Samuel J. Cook Minneapolis, MN Cincinatti Chapter 714/842-3032
312/879-3242 Call Fred Olson Call Douglas Bennett

San Diego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784

Sacramento Chapter
Monthly, 4th Wed., 7 p.m.
1798-59th St., Room A
Call Tom Ghormley
916/444-7775

- - - . -

Rockwell Chicago Chapter 612/588-9532 513/831-0142

Call Gerard Kusiolek MISSOURI
Dayton Chapter

3 12/885-8092 m i c e monthly, 2nd Tues., &

INDIANA Kansas City Chapter 4th Wed., 6:30 p.m.
Monthlv, 4th Tues.. 7 v.m. CFC 11 W. Monument Ave.

Central Indiana Chapter ~ i d w e s i Research Institute Suite 612
Monthly, 3rd Sat., 10 a.m. MAG Conference Center Dayton, OH
Call John Oglesby Call Linus Orth Call Gary M. Granger
317/353-3929 913/236-9189 513/849-1483

FORTH Dimensions 38 Volume VII, NO. 5

OKLAHOMA VIRGINIA C A N A D A FIG des Alpes Chapter
Contact: Georges Seibel

Central Oklahoma Chapter First Forth of Hampton Roads Nova Scotia Chapter 19 Rue des Hirondelles
Monthly, 3rd Wed., 7:30 p.m. Call William Edmonds Contact Howard Harawitz 74000Annely
Health Tech. Bldg., OSU Tech. 804/898-4099 227 Ridge Valley Rd. 50 57 0280
Call Larry Somers Halifax, Nova Scotia B3P2E5
2410 N.W. 49th Potomac Chapter 902/477-3665
Oklahoma City, OK 73112 Monthly, 2nd mes., 7 p.m. IRELAND

OREGON

Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Tektronix Industrial Park
Bldg. 50, Beaverton
Call Tom Almy
503/692-28 1 1

PENNSYLVANIA

Lee Center
Lee Highway at Lexington St.
Arlington, VA
Call Joel Shprentz
703/860-9260
Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Call Donald A. Full

Philadelphia Chapter 804/739-3623
Monthly, 4th Sat., 10 a.m.
Drexel University, Stratton Hall . WISCONSIN
Call Melanie Hoag or Simon Edkins
215/895-2628 Lake Superior FIG Chapter

Call Allen Anway

TENNESSEE 715/394-8360

East Tennessee Chapter
MAD Apple Chapter
Contact Bill Horzon

Monthly, 2nd me., 7:30 p.m. 129 S. Yellowstone
Sci. Appl. Int'l. Corp., 8th F1.
800 Oak Ridge Tbrnpike, Oak Ridge

Madison, WI 53705

Call ~ichard-Secrist
615/693-7380

FOREIGN
TEXAS

mbAustin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718

Dallas/Ft. Worth
Metroplex Chapter
Monthly, 4th Thurs., 7 p.m.
Call Chuck Durrett
214/245-1064

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120

Periman Basin Chapter
Call Carl Bryson
Odessa
91 5/337-8994

UTAH

North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem. UT 84057

VERMONT

AUSTRALIA

Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.
Rm. LC19
Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
02/524-7490

BELGIUM

Belgium Chapter
Monthly, 4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20
21 20 Schoten
03/658-6343

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg., Rm. 312
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4K1
416/525-9140 ext. 3443

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C5J2

COLOMBIA

Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
214-0345

ENGLAND

Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m., Rm. 408
Polytechnic of South Bank
Borough Rd., London
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FRANCE

French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1 100 Toulouse
(16-61)44.03.06

GERMANY

Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or 051/74124

ITALY

FIG Italia
Contact Marco Thusel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

JAPAN

Japan Chapter
Contact Toshi lnoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 ext. 7073

REPUBLIC O F CHINA

R.O.C.
Contact Ching-Thng Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

SWITZERLAND

Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-Industrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

SPECIAL GROUPS

Apple Corps Forth Users
Chapter
m i c e Monthly, 1st &
3rd Tbes., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
41 5/626-6295

Vermont Chapter
Monthly, 3rd Mon., 7:30 p.m. Southern Belgium FIG Chapter Baton Rouge Atari Chapter

Vergennes Union High School Contact Jean-Marc Bertinchamps Holland Chapter Call Chris Zielewski

Rm. 210, Monkton Rd. Rue N. Monnom, 2 Contact: Adriaan van Roosmalen 504/292-1910

Vergennes, VT B-6290 Nalinnes Heusden Houtsestraat 134 FIGGRAPH
Call Don VanSyckel Belgium 4817 We Breda Call Howard Pearlmutter
802/388-6698 071/213858 31 76 713104 408/425-8700

VolumeVII. No. 5 39 FORTH Dimensions

PRESENTS
TWO NEW PUBLICATIONS

BY DR. C.H. TING

FORTH INSIDE
NOTEBOOK

FORTH INTEREST GROUP

$260° FOREIGN SURFACE MAIL
$350° FOREIGN AIR MAIL

FORTH INTEREST GROUP
BULK RATE

U S POSTAGE

P. 0. Box 8231 Perm~t No 3107

Sari Jose, CA 95155 San Jose CA

Address Correction Requested

