
9L. J U

Dimensions

Synonyms
and Macros

The ~orthcard'"
STAND ALONE OPERATION

Evaluation Un~t
STD BUS INTERFACE

$299
Part #STD65F 1 1-05 includes:
ForthCard, Development

EPROMIEEPROM ROM, 8Kbyte RAM, Manuals
PROGRAMMER

RS-232 I/O OEM Version as low as
Part #STD65F11-00 $

PARALLEL I10 does not include
memory or manuals

199
ROCKWELL FORTH CHIP

The Forthcard provides OEMs and end NEW! Options and Application Notes
users with the ability to develop Forth and
assembly language programs on a single Electrically Eraseable PROMS (EEPROMs)
STD bus compatible card.

FREEZE the dictionary in EEPROM (save in
Just add a CRT terminal (or a computer non-volatile memory, to be restored on
with RS-232 port), connect 5 volts and you power up)
have a self contained Forth computer.
The STD bus interface makes it easy to Download Software for your IBM PC or CP/M
expand.

Non-Volatile CMOS RAM with battery 2K,
Download Forth source code using the 8K, optional Clocklcalendar
serial port on your PC. Use the onboard
EPROMIEEPROM programming capability Fast 2MHz clock (4MHz crystal)
to save debugged Forth and assembly
language programs. Standard UV erasable Disk Controller Card (5%")
EPROMs may also be programmed with
an external Vpp supply. Self Test Diagnostics

Parallel printer interface

Ask about our ForthBoxTM
A complete STD bus oriented system including
the ForthCard, Disk Controller, Disk Drive(s),
STD Card Cage, Cabinet and power supply.

CALL TODAY FOR COMPLETE INFORMATION!

M!UGG~ EqaIpm~mQ GarparaGiam
9560 Black Mountain Road

San D~ego, CA 92126
(6 1 9) 566- 1 892

FORTH Dimensions 2 Volume VII, No. 3

Volume VII, Number 3
September/October 1985

Editor I Dimensions
Marlin Ouverson I

Production
Cynthia Lawson Berglund

Forth Dimensions solicits editorial
material, comments and letters. No
responsibility is assumed for accuracy
of material published. Unless noted
otherwise, material published by the
Forth Interest Group (a non-profit
organization) is in the public domain.
Such material may be reproduced
with credit given to the author and to
the Forth Interest Group.

Subscription to Forth Dimensions
is free with membership in the Forth
Interest Group at $20 per year ($33
foreign air). For membership, change
of address and to submit material for
publication, write to: Forth Interest
Group, P.O. Box 8231, San Jose,
California 95 155.
ISSN NO. 0884-0822

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles

P and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

A Advanced; requiring stu-
dy and a thorough under-
standing of Forth.

Code and examples con-
form to Forth-83 stand-
ard.

Code and examples con-
form to Forth-79 stand-
ard.

Code and examples con-
form to fig-FORTH.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

FEATURES
11 Synonyms and Macros, Part I by Victor H. Yngve

i A ROT by any other name - is it the same? Investigation into this seemingly
innocuous subject leads to productive new insights into how Forth works, and
how to make it work for you.

14 Synonyms and Macros, Part I1 by Victor H. Yngve

0 This tool creates high-level macro definitions with the readability of colon
definitions and some increase in execution speed. Installing macro tools is a great
way to learn about the insides of your Forth implementation!

19 Forth Timer Macros by Iram Weinstein

f We asked for readers' uses of Forth macros - what better than tools to improve
the performance of the rest of your code? When the engine is installed and you're
ready to fine tune, look for these in your desk-side toolbox.

28 Improved Forth-83 DO LOOP by Dennis L. Feuchb

A The parsimony of the two-item DO LOOP is possible in Forth-83 at the
expense of slightly more complex compile-time procedures. This im-
plementation requires minimal modification to the machine-dependent,
run-time words of previous Forth-83 DO LOOPS. Metacompiling words
are also provided.

30 A Forth I/O Technique: Pseudo-Interrupts by Ed Schmauch
Using interrupts allows a CPU to do background processing concurrently with
I/O, but requires greater hardware know-how. Here is an intermediate technique
which uses simple polling and allows background processing like interrupts.

34 An Approach to Reading Programs
by Kim Harris & Michael Ham
What increases productivity, reduces development time and contributes to
programmer training? Formal "code inspections" facilitate the difficult task of
truly comprehending a program, and help programmers learn from their
colleagues' techniques and skills.

35 Volume VI Index by Julie Anton
Trying to remember where in Forth Dimensions that article or piece of code was
printed, or if a particular subject was covered? This subject/author/title index
was prepared as a reader service.

37 Number Editing Utility by Ken Takara
Crashproofing an application often means shielding the program from bad
numeric input and providing in-progress editing features to the user. Vectored
execution makes this technique powerful and general enough for many uses.

DEPARTMENTS
5 Letters

1 6 Editorial: "Macronautics"
7 Application 'htorial: "Universal Text File Reader"

by john James
41 Advertisers Index
41 Chapter News by Michael Ghormley
42 FIG Chapters

A AND Research
The aim of the Journal is to provide a reliable source
of state of the art techniques and applications of Forth
to scientific and industrial problems. The Journal's edi-
torial review board is drawn from the foremost workers
in Forth in the U.S., Europe and Canada. Past issues
had in-depth coverage of such topics as Robotics, Data
Structures, Forth Computers, Real-Time Systems, and
Extended Address Computing. The Journal is open to
all new work in Forth as well as the entire range of
threaded interpretive languages and Forth-like systems.

Volume 3
The Journal is beginning its third year of publication.
Published quarterly, the Journal contains applications
and techniques papers, technical notes, review papers,
algorithms, book reviews, and conference abstracts.

Renew your subscription for Volume 3 of the Journal
of Forth Application and Research. Here's what you'll find
in lssue $1:
-Forth-Based Software for Real-Time Control of a

Mechanically-Scanned Ultrasonic Imaging System
-Fast and Flexible Forth Programming in a Femto-

second Laser Lab
-Stack Frames and Local Variables
-Should VARIABLE Be an Immediate State-Sensitive

Word?
-Readable and Efficient Paramet Access via Argument

Records
-Run-Time Error Handling in Forth

Proceedings
Rochester Forth

Conference
1985 Rochester Forth Conference Proceedings
The Proceedings of the 1985 Rochester Forth Confer-
ence will appear as a Special lssue of Volume 3 of the
Journal. The conference had a theme of software
management and engineering and how to improve
software productivity. Invited papers discuss a space
shuttle experiment using Forth, the automation of an
airport with Forth, and Forth in the development of
MAGICIL, and HFORTH: A business applications
language. Proceedings available as a single issue, $20.

Subscription Rates, Vol. 3: Corporatellnstitutional$100,
Individual $40. Outside N. America add $20 for airmail
charges. Prepaid subscriptions only, in US funds on a
US bank, or by international money order, payable to
Journal of Forth Application and Research, Inc.. Back
issues available at $15 each, add $5 for foreign airmail.
Send all orders to: Journal of Forth Application and
Research, PO. Box 27686, Rochester, NY 14627 USA.

Order Form
Subscriptions Volume 3, 1985 Issues 1-4

lnstitutionslCorporate $100 Individuals $40
Subscriptions Volume 4, 1986 Issues 1-4

InstitutionslCorporate $100 Individuals $40
Subscriptions outside N. America please add
$20 per volume for airmail.
Vol. 1 $1 Robotics $15
Vol. 1 #2 Data Structures $15
Vol. 2 $1 Forth Machines $15
Vol. 2 $2 Real-Time Systems $15
Vol. 2 $3 Enhancing Forth $15
Vol. 2 $4 Extended Addressing $15
Back issues outside N. America please add $5
per issue for airmail.
Four or more back issues $12 each issue.
Four or more issues outside N. America $16
each (includes airmail).
Rochester Forth Conference Proceedings $20
Please send further information on the Institute's
publications and activities.

Amount Enclosed $-

VISAIMC Exp.

FORTH Dimensions 4 Volume VII. No. 3

Addressing the Marketplace

Dear Marlin,
"The biggest (and most common)

mistake that can be made in a com-
puter design is that of not providing
enough address bits. . . "I

This deserves to go down as one of
the classic statements of the century.
Although originally referring to com-
puter hardware, I believe that it applies
just as well to the Forth virtual mach-
ine. Elsewhere in the same volume, I
found the startling information that on
the average, for a given price range,
machines increase their (virtual)
memory address by one bit per year,
and their physical memory address by
one bit per two years.

It is already the case that machines
with a 64K memory are becoming
restricted to the very low end of the
marketplace. Increasing numbers of
people are buying machines with much
larger memories, and if they can't
make effective use of this memory with
Forth, they will use something else.

Of course, various thirty-two-bit
Forths are available commercially, but
no provision was made in the Forth-83
Standard for addresses to be other than
sixteen bits. Although the next revision
of the standard will undoubtedly do
something about this, it could well be
too late, and we will have a
proliferation of incompatible solutions
to the problem.

So I think it would be good to have
some discussion about this, here in
Forth Dimensions (which reaches the
widest Forth audience), and maybe get
some concensus. I am going to open
the discussion with a proposal. I don't
mind getting shot down in flames, so
long as we are at least considering the
question.

1. Existing (working) standard pro-
grams should still produce correct
results, as far as possible.

2. A cell on the parameter or return
stack will be large enough to hold an
address. This will be at least sixteen
bits, but the actual size will be
implementation dependent. It will be
available in a constant named WIZE
(with the L standing for "long").

3. @ and ! will still transmit sixteen
bits. This way, sequences such as

will still work.

4. If more than sixteen bits are
available in a stack cell, will sign-
extend. A new operator U@ will fetch
sixteen bits but will supply high-order
zeroes. This is consistent with the
existing set of unsigned operators. On
sixteen-bit Forths, u@ will be an alias
for @.

5. New operators L@ and u will
transmit a full stack cell (i.e., LSIZE
bits).

6. Existing double operators (e.g.,
2SWAP and D +) will still operate on two
stack cells.

7. A compilation address will stay at
sixteen bits.

This last point (at least!) is debat-
able. It would preclude allocating very
large arrays within the dictionary, so
that the dictionary can remain within
64K. An alternative would be to
increase a compilation address to
LSIZE. This, however, would expand
the dictionary considerably in those
implementations where WIZE is greater
than sixteen. A further possibility is to
make the decision implementation
dependent, in which case we would
need yet another fetch-and-store
operation (for compilation addresses)
and another constant giving the length
of a compilation address. I think my
suggestion is the simplest.

Another headache concerns arith-
metic operations on certain well-
known processors, where the designers
have inflicted us with a basically
sixteen-bit design, but kludged to pro-
vide a longer address (the term "seg-
ment" sounds nice but doesn't change
the facts). The most "efficient"
solution would be for +, *, etc. to
remain sixteen-bit operations even
where LSIZE is longer. Thus, high-order
bits of the "result" would be invalid. I
think we should reject this approach,
even at the expense of an execution-
time penalty - the elegance of Forth
would be compromised, and address
arithmetic would be a nightmare! It's a
pity, but that's probably the best we
can do with awkward, underlying
hardware.

Happy Forthing, even to those with
8086/8088s.

Michael Hore
Numbulwar, NT
Australia

Reference:

1. C.G. Bell and J.C. Mudge, "The
Evolution of the PDP-11," in D.P.
Siewiorek, C.G. Bell and A. Newel1
(eds.), Computer Structures: Principles
and Examples (McGraw-Hill, 1982), p.
776.

More Applications, Please!

Dear Mr. Ouverson,
As a newcomer to Forth, I find it

interesting that most of the discussion
in Forth Dimensions is technical (e.g.,
the best CASE or LEAVE construct).
Where are the articles on application
programs in Forth? Possibly it is
because hackers (myself included) en-
joy working on small system utilities
more than writing application pro-
grams.

Thankfully, you have published sev-
eral good application programs. Three
articles were especially interesting:

VolumeVII. No. 3

Macronautics
We had a hunch our readers would

benefit from macros back when we
first published Jeffrey Soreff's article
(Forth Dimensions V/5). Mirabile
dictu! Macros reappear in this issue in
a number of places: one letter from a
reader shares two macros with us to aid
program legibility; an article uses the
technique to obtain benchmarks of
Forth words; and from the University
of Chicago, Professor Victor Yngve
delivers a different method for creating
macros and proposes an innovative use
of them - but be sure to read his
"Synonyms" first. Afterwards, dig out
Soreff's original article and the follow-
up by Don Taylor (VII/l), compare
them, use the techniques, draw some
conclusions and send your written
results to us. And who will be the first
to share his tookit of macros with the
F1G community?

With this issue, a new coordinator
will be reporting on the international
network of FIG chapters. John Hall
has stepped down from the position in

order to spend time planning this
year's FIG convention and to spend
more time with his duties as a member
of the FIG Board of Directors. Michael
Ghormley will be charging ahead with
the chapter work now, and is already
working with the individual chapter
coordinators. Mike brings abundant
energy and creativity to his post, and
we look forward to working with him.

FORML's annual conference at
Asilomar, on California's Monterey
peninsula, is fast approaching. For
those of you haven't yet attended one,
this is an intimate conference for ad-
vanced Forth practitioners. Its size per-
mits close interaction between attend-
ees, many of whom are very experien-
ced Forth programmers with tech-
niques to share and proposals for open
consideration. Presentation of a paper
is no longer required of all attendees,
though most still participate fully. (In
addition to a complete schedule of
meetings, full participation includes
walks through windswept trees over-

looking the Pacific Ocean; conference
grounds filled with deer, racoons and
sand dunes; and tasty meals. A few
non-programmer family members or
spouses are usually present just to en-
joy the locale.) For details about the
November 29 - December 1 event, call
the FIG Hotline at 408-277-0668.

We are experimentally providing an
index to advertisers in this issue. The
table of contents lists its location - we
hope this makes it easier for you to
find the particular vendor or product
that was advertised in here some-
where. . . Finally, this issue is going to
press just before the seventh annual
Forth National Convention, so cover-
age of that event will be delayed until
next issue. I look forward to renewing
old friendships there but if we don't get
the chance, then come to the FORML
conference in November!

-Marlin Ouverson
Editor

(Letters continued from page 5)

"Simple Modem I/O," "Quicksort
a n d Swords" a n d "A F o r t h
Spreadsheet." I hope you can get John
S. James to continue to write on the
modem I/O words. Perhaps he could
develop code words for an interrupt-
driven input buffer, and then go on to
deve lop a c o m p l e t e F o r t h
communications program with file
transfer, modem control, everything!
This is a large project to put in the
public domain. I hope someone is
willing to write the necessary series of

It Would Have Been Grand. . .
Dear FIG,

I always enjoy Henry Laxen's col-
umn. After reading the YACS ["Yet
Another Case Statement," VI/6,
VII/l] tutorials a few times, I tried to
implement the code on my Kaypro
using LMI's 280 FORTH, version 3.
Though this version complies with the
83 Standard,] does not work as
described in Mr. Laxen's column. I
replaced line four with the following
code segment:

VII/l). The article by Jeffrey Soreff
(V/5) is one of my favorite Forth ar-
ticles. 1 have found the following mac-
ros to be helpful in making my code
more readable by eliminating O = IF
and 0 = WHILE.

: IF-NOT COMPILE 0 =
[COMPILE] IF ; IMMEDIATE

: WHILE-NOT COMPILE 0 =
[COMPILE] WHILE ; IMMEDIATE

I would like to thank the staff of the
articles. Forth Interest Group for all its great

Thank Craig A. Lindley for his >MARK !CSP , work and services.
Forth spreadsheet, and please keep ! Sincerely,
publishing the programs. ?D"P WHILE > RESOLVE REPEAT
Thanks for your effort in publishing Ed Petsche
Forth Dimensions. Greenport, New York

Sincerely, and it now works. Editor's note: For more on the "Case
Ramer W. Streed I was also glad to see macros ad- of the Right Bracket, " see the letters
North Mankato, Minnesota dressed again (Forth Dimensions section of our last issue.

FORTH Dimensions 6 Volume VII, No. 3

Application Tutorial

Universal Text File Reader
John S. James

Santa Cruz, California

File incompatibilities still cause seri-
ous problems. For example, files up-
loaded from different operating sys-
tems may have different ways of mark-
ing the end of a Iine, and the software
available may not be able to list them
with legible results. Even files pro-
duced on the same operating system
may contain non-standard codes, inter-
nal to certain word processors, for
such functions as tabs and underline.
And you may occasionally want to
read files not intended as text files; to
see, for example, what operator and
error messages an object program con-
tains.

This tutorial shows you how to write
a simple program to solve most of
these problems - one to read almost
any text file and do the best it can to
give a reasonable result. And it meets
the design goal of not asking the oper-
ator anything about what kind of file is
being listed. (The operator may not
know!)

We use F83 here to show how to get
started with sequential file I/O and
how to turn your programs into DOS
commands which can be useful outside
the Forth environment.

What the Program Does

Here are several common file-com-
patibility problems and ways the pro-
gram handles them:

If the parity bit is set on any char-
acter, the program clears and ig-
nores it.

The program cannot know what
character, if any, indicates end of
file. So it ignores them all and lists
everything, until the file read oper-
ation detects end of file. Usually,
the final block is filled out with
end-of-file characters, or nulls,
blanks, or something else fairly
harmless.

Different end-of-line indicators
must be handled. Common ones
are a carriage return followed by a
linefeed, a carriage return alone,

and a null alone. Word-processor
"document" files sometimes have
no end-of-line indication, except at
the end of paragraph. We will take
carriage return, null and linefeed
as meaning end of line, and we will
then supply a carriage return and
linefeed. However, more than two
carriage returns in a row will not
be supplied - sacrificing triple
spacing - to avoid problems such
as multiple nulls in certain files.
And if a carriage return is followed
in the original file by a linefeed,
that linefeed will be ignored, so
that single-spaced text files will not
come out as double s~aced.

We won't reformat word-pro-
cessor document files without hard
returns. Almost all terminals will
scroll automatically when neces-
sary. Words may be split at end of
line, but they will still be readable.
See note below about a better way
to format text to various line
lengths.

This program ignores backspace,
to avoid loss of information
caused by unintended backspace in
non-text data.

We change formfeed to linefeed, to
avoid waste of paper when printing
object programs or other non-text
files.

We ignore other non-printable
characters. However, you might
want to print them as dots, or as
some other character, to show
where they were.

The Code

This particular implementation is for
the well-known F83 system. It should
run on any PC-compatible machine,
and should not be difficult to convert
to any Forth system on any computer,
providing you know how to open a se-
quential file, read records and detect
end of file. We chose not to go through
Forth I/O - the word BLOCK -
because many Forth systems don't
provide any way to read an incomplete
final block of a file not created for a
Forth environment.

The first screen isolates most of the
code which is specific to F83. If you
aren't using F83, you will need to write
whatever words are necessary for
sequential I/O on your system. Or you
could do it the easy way and use BLOCK
if your system can read partial blocks
which may be at the end of a file.

Notice that we did avoid the work of
opening a file from scratch, by using
an OPEN which this Forth system
already provides for access to files of
screens. Since that OPEN was intended
only for random I/O, we had to
initialize one more field in the file
control block; that's the purpose of the
word FILE-RESET.

Incidentally, the word D~SEMIT in
the first screen is almost identical to the
Forth word EMIT supplied by the
system. But DOSEMIT uses the DOS call
instead of the BIOS call to write a
character to the screen. The practical
difference is that with DOSEMIT you
can have the output printed by turning
on the printer through DOS, by using
whatever key or combination of keys
your system provides for this purpose.

The word ?OUT in the second screen
filters the stream of characters and
changes any which should be ignored
to -1, which is not a possible ASCII
value. Then it prints all except those it
changed to -1. The first line of ?OUT
allows any key to toggle a pause, so
users can stop the display and have
time to read the information before it
scrolls off the screen. Users can end the
listing with control-C.

The variable LINES k e e ~ s count af
multiple new lines in a ro;. After two,
no more new lines are generated. We
suppress additional new lines so that
the program will behave reasonably
even if there are strings of hundreds of
carriage returns or nulls. LINES treats
the linefeed character even more se-
verely, suppressing it if even one new
line has just occurred. The purpose is
to prevent the normal carriage return
and linefeed format from always
generating double spacing.

Incidentally, most programmers
prefer more white space in their code
than is shown here. This example has

Volume VII. No. 3 7 FORTH Dimensions

FORTH Dimensions 8 Volume VII, No. 3

I 3
PRIME FEATURES

Execute DOS level commands
in HSIFORTH, or execute DOS
and BlOS functions directly.
Execute other programs under
HSIFORTH supervision.
(editors debuggers file managers etc)

Use our editor or your own.
Save environment any time
as .COM or .EXE file.
Eliminate headers, reclaim
space without recompiling.
Trace and decompile.
Deferred definition,
execution vectors, case,
interrupt handlers.

"%RTH
Full 8087 high level support.
Full range transcendentals
(tan sin cos arctan logsexponentials)
Data type conversion and
110 parselformat to 18
digits plus exponent.
Complete Assembler
for 8088,801 86, and 8087.
String functions -
(LEFT RIGHT MID LOC COMP
XC H G JOIN)

Graphics & Music
Includes Forth-79 and Forth-83
File and/or Screen interfaces
Segment Management
Full megabyte - programs or data
Fully Optimized & Tested for:
IBM-PC XT AT and JR
COMPAQ and TANDY 1000 & 2000
(Runs on all true MSDOS
compatibles!)

Compare
BYTESieveBenchmark ~an83
HS/FORTH 47 SecBASlC 2000sec
with AUTO-OPT9 secAssembler5 sec
otherForths(mostly 64k)55-140sec

FASTEST FORTH SYSTEM
AVAl LABLE.

TWICE AS FAST AS OTHER
FULL MEGABYTE FORTHS!

(TEN TIMES FASTER WHEN USING AUTO-OPT!)

HSIFORTH, complete system only: $270.
Visa Mastercard

HARVARD
SOFTWORKS

P.O. BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

\ J

Scr W 3 A:FDOB.BLK
o \ Univerral text-file reader I S A U ~ ~ S J J
1 \ This screen hae words specific to F83.
2 \ Note that we are relying on the F83 word OPEN .
3 \ After you open a file with OPEN <name> , the FCB address
4 \ will be in the F83 variable FILE .
5 : DOS-EMIT (c - -) 2 BDOS DROP : \ DOS function call wz
6 128 CONSTANT RECORD-LENGTH
7 CREATE RECORD RECORD-LENGTH ALLOT \ Buffer for DOS to uee
8 : SET-RECORD \ - - :P Tell DOS to uee RECORD for buffer
9 RECORD 26 BDOS DROP ;
10 : FILE-RESET \ - - ;P Set sequential-record number in FCB
I1 0 F I L E @ 3 2 + C t :
12 : READ-RECORD (-- 7 ;P Read 128 bytest 0 = success)

13 FILE B 20 BDOS 1 <> ; \ '1' means no more data at all
14 : INITIALIZE-DOS \ -- ;P Prepare DOS for sequential 1/0
15 SET-RECORD FILE-RESET ;

Scr Y 4 A:FD08.BLK
0 \ Transform input character, and naybe write it 18Aug85 JJ
1 VARIABLE LINES \ Counter to prevent multiple lines
2 : ?KILL \ cl -- c2 ; P Kill unwanted control characters
3 DUP 0 <> OVER 10 <> AND OVER 12 <> AND OVER 13 <> AND
4 IF (None of theee) DROP -1 THEN ;
5 : ?NEW-LINE \ Start a new line, if not more than 2 in a row
6 LINES 0 2 < IF 13 DOS-EMIT 10 DOS-EMIT 1 LINES + t THEN :
7 : ?OUT \ c -- :P Maybe output the character
8 KEY? (~ 8 3) IF KEY DROP KEY DROP THEN \ Toggle pause
9 127 AND \ Clear parity bit if set
10 DUP 32 < IF ?KILL THEN \ Change unwanted char. to -I
11 DUP 12 = IF DROP 10 THEN \ Change formfeed to linefeed
12 DUP 10 = IF DROP -1 LINES B 0- IF ?NEW-LINE THEN THEN
13 DUP 13 = OVER 0 = OR IF DROP -1 ?NEW-LINE
14 ELSE o LINES t THEN \ New line if cR, or ~ u l l
15 DUP -1 <> IF DOS-EMIT ELSE DROP THEN :

Scr # 5 A:FDOB.BLK
o \ Main loop to read the file la~uges JJ
1 : READ-FILE \ - - :P Liet the OPEN file.
2 INITIALIZE-DOS 0 LINES t
3 BEGIN READ-RECORD WHILE \ There ie more data
4 RECORD RECORD-LENGTH OVER * SWAP
5 DO I C@ ?OUT LOOP REPEAT ;
6
7
8 \ Optional F83 code for saving program to be used from DOS.
9 \ To use the program, from DOS eay LIST <filename> .
10 : BOOTUP (- -) DEFAULT (to open <filename> for input)

11 READ-FILE o o BDOS (Return to DOS) ;
12 BOOTUP IS BOOT
13 : NEW-ERR (n n f --) IF 0 0 BDOS ELSE 2DROP THEN :
14 ' NEW-ERR IS ?ERROR
15 SAVE-SYSTEM L1ST.COM

been packed more tightly to save space
for publication.

Turnkey Operation

The second part of the last screen
has optional code to make this
program usable as a DOS command.
The F83 word BOOT controls action of
the system on startup; here it is set to
open a filename given in the DOS com-
mand line as a default input file, then
to execute READ-FILE to run the
program, then to return to DOS. The
F83 word Is provides a convenient way
to change the meaning of certain other
words in F83 (such as BOOT) which
have been set up to allow this kind of
re-vectoring.

The word ?ERROR should also be re-
vectored, since otherwise an attempt to
list a non-existent file would leave the
user in Forth, not in DOS. The system
call o o BDOS returns control to DOS.
The word NEW-ERR has a confusing
stack effect; when there is no error it
must dispose of three arguments, since
other words in this system expect
?ERROR to use three. But there is no
need to drop these extra arguments in
the case that 0 0 BDOS is executed (when
there is an error), since then the
program is finished anyway.

Notice that this program uses the old
DOS calls (before hierarchical
directories). Therefore, it will work
with old versions of DOS, such as 1.1,
as well as with all later versions. If you
are using a later version of DOS, such
as 2.1, note that the LIST command
which this program creates cannot
accept a pathname. It can list files in a
hierarchical directory, either by having
a copy of LIST.COM in the same
directory as the file to be listed, or by
using the DOS command PATH. And
it can redirect its output into a file -
which can prove useful for cleaning
files before uploading if they have
parity bits set or contain other non-text
characters.

Note on Formatting Text

This tutorial derives from my
computer-conferencing program

"CommuniTree Second Edition,"
which needs to read files transmitted
by phone from different operating
systems, with or without hard returns,
and displays them on terminals of
different 'sizes. The program cannot
ask what kinds of files they are; the
same procedure must work in all cases.

The biggest problem, which we
ignored in this tutorial example, was
determining when carriage returns are
"hard." Tables, poetry, legal text with
numbered lines, character graphics and
other such material must preserve the
existing line structure; all end-of-line
indicators in the file must cause a new
line in the output, so carriage returns
are considered to be hard. But for
listing straight text, which may have
been sent with one line length and now
may be formatted to another, the pro-
gram should recompose the line
endings until the end of paragraph.

The solution chosen was to let the
user set the terminal line length, not
only to a usual range of values
(20-132), but also to zero. Zero means
to respect the existing line structure:
make a new line at every end of line,
and not otherwise (as the program
example presented in this article does).
Any non-zero line-length value will
cause text to be reformatted, unless a
paragraph break is indicated (by an
end of line followed by either a blank
or another end of line).

For poetry, tables, etc., we advise
users to start. every line with at least
one blank, since lines beginning with a
blank will not be reformatted onto
previous lines. But since users won't
always do so, the CommuniTree system
comes up with the line length defaulted
to zero. Since most users these days
have the same terminal line length
(eighty characters), and because those
who don't can specify their line length,
the only remaining problem concerns
internal word-processor document files
which have no end of line until the end
of a paragraph. But most terminals
scroll automatically if more than eighty
characters are sent in a line, so the data
isn't lost and the only problem is that
words will be divided in the middle
(i.e., wrapped incorrectly). Users can

set their terminal line length to its ac-
tual value (not zero) if this lack of
proper word wrap bothers them. But
since most upload programs provide
end-of-line characters, the problem
seldom arises.

One final adjustment. On many
terminals, if you format text to the full
line length, there will be extra blank
lines inserted in the printout after those
lines which happen to go to their full
length. Writing into the last position
on the line causes an automatic scroll,
as it should, but the terminal software
isn't smart enough to suppress a single
linefeed character which arrives
immediately after the terminal has
supplied its own new line. So we set the
line length to one less than the user
requests; eighty-column terminals use
only seventy-nine. Users who notice or
care can ask for eighty-one.

References

1. Microsoft Corporation, Disk
Operating System Technical
Reference, publ. by IBM Corpora-
tion. This manual explains DOS
calls. You can also find this infor- I

I

mation in various books about
MSDOS or programming the IBM I

and compatibles.
I

2. The F83 source code is an excellent
source of information for the in-
termediate or advanced student. I

All of the source is supplied with
this public-domain system. The
command VIEW < name > will show
the screen where a word is defined;
and then you can use the words A L
to get to the "shadow" documen-
tation screen. If you are running
F83 but don't have the source files
handy, the command SEE < name>
provides a convenient decompila-
tion.

Volume VII. No. 3 FORTH Dirnens~ons

I

FORTH MICROPROGRAMMED BIT SLICE .44K Byte ram 200NS
FORTH ENGINE .32K Byte EPROM operating system
.Microcoded forth kernel . I K X 32 microprogram memory 70ns

IS NOW .Microcoded forth primitives
.Multi-level task switching architecture

H4THlIO DESKTOP

for real time applications .Dual 0.8m Byte floppys

mI[PY. FAST! .Optional writable control s tore .H4THIOI processor
.Three user slots

H.FORTH OPERATING SYSTEM .TWO expansion slots
.Sieve 1.3slpass
.Compile 300 screenslminute
.Drop 1.82 us
.Concurrent 110 @ 250K baud

DEVELOP YOUR
APPLICATIONS IN
A TOTAL FORTH
ENVIRONMENT.

.Hierarchical file system

.Monitor level for program debug

.Multi-user multi-tasking

.Target compiler

.I10 management

.Forth 83 Compatible

H4THlOI OEM SINGLE BOARD
.Floppy disk controller
.2 channel SIO to 38.2K baud
.Calendar clock-4HR backup

.Power & cooling

H4THl2O DESKTOP
. I0 m Byte Winchester
.0.8 m Byte floppy
.H4TH IOI processor
.300K byte RAM expandable 2m byte
.Three user slots
.One expansion slot
.Power & cooling

A forth-engine consisting of a state-of-the-art integrated hardwarelsoftware
system giving unsurpassed performance for professionals and their applications
from a company that is totally dedicated to the forth concept and its implementation.

HARTRONIX, Inc. 1201 North Stadem Drive Tempe, Arizona 85281 602.966.7215
FORTH Dimensions 10 Volume VII. No. 3

Synonyms and Macros

Synonyms
Victor H. Yngve
Chicago, Illinois

A startling thing beginners at Forth
learn quite early is that a function can
easily be renamed for convenience. For
example,
: .S .STACK ;
: edit EDIT ;

Or even, to make a point with other
beginners:
: PRINT . ;
: FETCH @ ;

This is fine as far as it goes, and it is
widely used. But the technique will not
always work. Consider this attempt at
defining a fig-FORTH R as R@ in a
Forth-83 system, so as to make it easier
to convert an old program to run on a
new system:
: R R @ ;

This will not work, because the ex-
ecution of R will place a return on the
return stack, covering up the item
wanted.

Then how about
: R COMPiLE R@ ; IMMEDIATE

This will work fine here, but the
technique will only work while compil-
ing; it cannot be used for the .s and
edit examples, which are to be executed
from the console.

Consider the case of
: -DUP COMPILE ?DUP ; IMMEDIATE

This will work when compiling, but
one would want it to work from the
console, too, so try
: -DUP ?DUP ;

But this is less than optimal for a
word that might be compiled into an
inner loop, because it will run slower,
on account of the extra nesting and un-
nesting of the colon definition. In cases
like this, neither method is completely
adequate, since the choice of the best
method of definition will depend on
how the word is to be used.

Note, too, that neither technique can
be used for immediate words. For these
one needs
: ENDlF [COMPILE] THEN ; IMMEDIATE

And if you don't happen to remem-
ber whether the word you want to

Screen # 46
0 (Usage: SYNONYM cnew-name> cold-name, Forth-83 11/28/84 vhy)
1
2 : SYNONYM (- -)
3 CREATE (make header for new word)
4 32 WORD FIND DUP (old word found?)
5 IF SWAP , (yes, compile its cfa)
6 IMMEDIATE (make new word immediate)
7 1 + (was old word immediate?)
8 IF DOES, @ EXECUTE (yes, set new to execute)
9 ELSE DOES, STATE @ (no, set new to check state)
10 IF @ I (and compile if compiling)
1 1 ELSE @ EXECUTE (or execute if executing)
12 THEN
13 THEN
14 ELSE 1 ABORT" not found" t old word not found)
15 THEN ;

Screen # 47
0 (SYNONYM Glossary entry)
1
2
3 SYNONYM - - I
4 A defining word used in the form:
5 SYNONYM cnew-name> cold-name>
6 Create a dictionary entry for <new-name, so that when
7 <new-name, is later used, it will have substantially the same
8 action that cold-name> would have had. If cold-name, was
9 immediate, the action will be immediate, otherwise not.

10 During compilation, the action is to compile the same thing
1 1 that cold-name, would have compiled.
12
13

make a synonym of is immediate or
not, you will have to look it up. Fur-
thermore, for any words that are both
immediate and operate on the return
stack, it may be that none of these
methods will work, and it is not at all
clear how to define synonyms for
them.

One must conclude that the situation
is less than satisfactory. For one and
the same function, namely, simply de-
fining a synonym or alias for a word,
there are three different methods and
they are all hedged by ifs and buts. It
makes the language harder to learn and
harder to use.

The word SYNONYM presented here
provides a single simple way for defin-
ing synonyms. The usage of the word is
SYNONYM < new-name> <old-

name >
A Forth-83-style glossary entry is

provided on screen 47.
A word defined by SYNONYM is func-

tionally identical to the word it is a
synonym of, and it runs just as fast.
The only differences are that the com-
pilation address obtained by tick (3 will

be different, and if this different com-
pilation address is executed, it will run
slower. And the new word will be
marked immediate, even though it will
have the same action - immediate or I

1
nonimmediate - as the original word.
By means of SYNONYM one can make a
synonym for any word in the diction-

I
ary. One can even make synonyms of
synonyms, with no run-time penalty. It
is actually possible to switch the names
of two words (proving that the tech-
nique is completely general): suppose I

two words, A and B, have actions X
and Y. Then, using an intermediate
name C , one can define
SYNONYM C A
SYNONYM A B
SYNONYM B C

Now A has the function Y, and B has
the function X.

When should this method of defin-
ing synonyms be used? One can make a
strong case for including this word in a
system for its general utility and in or-
der to rationalize and clean up one
corner of Forth. Having the word in
the system, it should always be used

Volume VII. No. 3 FORTH Dimensions

I

DASH, FIND
& ASSOCIATES

OUT company, DASH. FIND & ASSOCIATES.

1s in the business of placing FORTH Program-

mers In positions suited to their capabilities.

We deal only with tORTH Programmers

and companies using FORTH. I f you would

like l o have your resumt included in our

dola base, or i f you are looking for a

FORTH Programmer, conlact us or

send your resume to:

DASH. FIND & ASSOCIATES

808 Dalworth. Su~ te B
Grand Pra~r ie TX 75050

12 14) 642-5495 m
Committed t o Excellence

instead of the other methods for defin-
ing synonyms. It produces synonyms
that run faster than colon definitions,
give no problems with the return stack,
have the same immediate or nonim-
mediate action of the original word,
can always be executed from the con-
sole or compiled, just as could the old
word, and take up less space in mem-
ory because their parameter fields con-
tain just one address rather than two or
three.

A synonym facility has obvious
utility for providing abbreviations of
words for use at the console, as
SYNONYM SYN SYNONYM
SYN P PRINTER
SYN D DUMP

But the use of abbreviations on
screens should generally be avoided in
the interest of readability; they could
make a program rather cryptic.

The proper use of synonyms on
screens can enhance the readability of a
program. Normally, the names of the
definitions that are part of an applica-
tion program are carefully chosen to
reflect their function relative to the ap-
plication. But mixed in with these
application-relative words are Forth-
relative words like DUP and BDUP, or @

and c@. Understanding the meaning of
these relative to the application re-
quires not only understanding the logic
of the application program but also the
particular way in which the application
functions are mapped onto Forth.
Thus, readability and understan-
dability suffer. With the judicious use
of synonyms, the logic of the applica-
tion program can be written mainly in
application-specific terminology, with
the translation into Forth-relative
words being given in a preamble con-
taining colon definitions, synonyms
and macros. Macros will be the topic
of the second of these articles.

I wonder, since there is no run-time
penalty for using synonyms, if it would
be possible or desirable to develop
multi-purpose routines? For example,
a routine might operate in single preci-
sion or in double precision depending
on which preamble is used, or on which
vocabulary it is loaded under. Or a
routine might sort bytes, words,
double words, fields or pointers to

strings.
A synonym facility would also make

possible the easy preparation of bilin-
gual Forth systems for other languages,
such as Portuguese, Turkish, French,
Dutch or Finnish1. The synonyms
listed on the translation screens would
resemble the entries in a traveler's
pocket dictionary:
SYNONYM SI IF

This might lead to new national stan-
dards of Forth nomenclature in lan-
guage areas where the political, linguis-
tical and educational realities favor or
even dictate the use of the local lan-
guage. Remember that readability, like
beauty, is in the eye of the beholder.
This alone, independent of the other
obvious merits of Forth as a teaching
language, might give Forth an edge in
the local schools over other languages,
where changing the names of com-
mands is not as easy. The translation
kit screens could be preloaded in the
system. Or, for the occasional applica-
tion that needs the extra memory,
synonyms not used by the application
could simply be commented out before
loading the conversion screens.

The definition of SYNONYM on
screen 46 is programmed entirely in
Forth-83 and should be completely
portable across Forth-83 systems. The
routine provides a good exercise in the
use of the defining-word technique in
Forth. The programming is fairly
straightforward, except that the em-
bedding of DOES> twice in an IF . . .
ELSE . . . THEN construct after a single
CREATE may raise some eyebrows. It is
perfectly legal, however, and works
beautifully. It allows the single defin-
ing word SYNONYM, with a single
CREATE, to make two different families
of words: a family with the behavior of
immediate words for synonyms of im-
mediate words, and a family with non-
immediate behavior for synonyms of
nonimmediate words. This is necessary
because the usage chosen of
SYNONYM < new-name > < old-

name >
puts the new name first, as is done with
colon (:), VARIABLE, CONSTANT and
CREATE, SO it is not known which class
the new word should belong to until
after the new name field has been

FORTH Dimensions 12 Volume VII, No. 3

created and the old word has been
found in the dictionary.

The routine first creates a name field
and link field for the new word. Then,
in the body (parameter field), it com-
piles the compilation address (CFA) of
the old word. Then in the code field it
compiles the address of one of the two
DOES> expressions in the defining
word. Which one is compiled depends
on whether or not the old word was inl-
mediate. There is an error exit in case
the old word could not be found in the
dictionary.

The result is shown in the third
column of Figure One for a synonym
of the nonimmediate word R@, and in
the third column of Figure Two for a
synonym of the immediate word IF.

The new word is made immediate so
that the proper DOES> part of the de-
fining word will always be executed
when the new word is interpreted from
the console or from a screen. If the old
word was immediate, one of the
DOES> expressions (the first one) will
fetch the compilation address of old
word from the body of the the new
word and execute it. If the old word
was not immediate, the other DOES>
expression (the second one) will either
fetch and compile the compilation
address or it will fetch and execute the
compilation address, depending on
whether or not the interpreter is in the
compile state.

Thus, when the new word is inter-
preted from the console or from a
screen, the appropriate DOES> part
will either compile or execute the old
word, just as if the old word had been
interpreted. And since what is
compiled is the same as what would
have been compiled had the old word
been used, as shown in the figures. the

OBRANCH I c = compilation address of I
I Operation of a synonym of a nonimmediate word. The expression

SYNONYM R R@

compiles into the dictionary the nonimmediate synonym definition of R in the third
column. When R is encountered during compiling, the second DOES, expression in
SYNONYM (first column) is executed, which obtains the compilation address of R@
from the body of R and compiles it into the program (fourth column). This is the same
result as when R@ is encountered while compiling. When R is encountered in the
noncompiling state, the DOES, expression obtains the compilation address of R@ from
the body of R and executes it, just as if R@ had been encountered.

Figure One

run-time behavior will be identical to
that of the old word.

If the compilation address of the
new word is obtained by tick and then
either executed, or compiled and ex-
ecuted later, one or the other of the
DOES> expressions will fetch the com-
pilation address of the old word from
the body of the new word and execute
it, just as if the compilation address of
the old word had instead been obtained
directly by tick; but because of the ex-
ecution of the DOES> expression, it
will run slower.

I
SYNONYM

call to
DOES >
machine

words for

immediate
action of
synonyms

in compiled I
intb

[i l R I program
link

*

, link-

machine
I code I I
(for R@

i = immediate
c = compilation address of

I Operation of a synonym of an immediate word. The expression
I

SYNONYM SI IF
compiles into the dictionary the immediate synonym definition of SI in the third
column. When SI is encountered during compilation, the first DOES, expression in
SYNONYM (first column) is executed, which obtains the compilation address of IF from
the body of SI and executes it. This provides the immediate action of executing IF. The
execution of IF compiles the compilation address of OBRANCH into the program (fourth
column) and arranges for compiling a branch offset after it, the same as when IF is
encountered while compiling.

Figure Two

References
1. Huang, Timothy. "First Chinese proach." Dr. Dobb's Journal Vol.

Forth: A Double-Headed Ap- 9, No. 6 (June 1984).

Volume VII, No. 3 13 FORTH D~mensions

Synonyms and Macros

Macros
Victor H. Yngve
Chicago, Illinois

One of the many advantages of
Forth is the ease with which new fea-
tures can be added to the language.
Described here is a facility that pro-
vides Forth with high-level macro
definitions1 in addition to the colon
definitions and code definitions al-
ready available. This offers some addi-
tional possibilities and tradeoffs.

A high-level macro definition has the
readability of a colon definition but,
like a code definition, it provides some
increase in execution speed (though not
as much). It does not place a return on
the return stack like a colon definition
does, and this can sometimes be an ad-
vantage.

Except for this, a macro definition
can be used like a colon definition. It is
written in the same way, except the
word MACRO is substituted for the
colon, and ENDMACRO is substituted
for the semicolon.

The expression

MACRO <name> . . . ENDMACRO

compiles a macro definition into the
dictionary. When the word so defined
is later interpreted from the console or
from a screen, it will either be executed
like a colon definition or, when com-
piling, the compiled words of the mac-
ro definition will be moved in-line into
the body of the word being compiled.

To take an example, some Forths
include as a code definition primitive
the word -ROT, which is the opposite of
ROT in that when it rotates the top three
elements on the stack, it leaves the top
one the deepest. For Forths that do not
have this word, the textbook way of
defining it uses a colon definition:

An alternative way would be to
define it as a macro:

MACRO -ROT ROT ROT ENDMACRO

When executed from the console, the
three definitions of -ROT all have the

in compiled
MACRO

program

acros or 3 ?DUP
i = immediate
c = compilation address of

Operation of a macro definition. The expression
MACRO ?DUP DUP IF DUP THEN END-MACRO

compiles into the dictionary the macro definition for ?DUP in the third column. When
?DUP is encountered during compilation, the words in the DOES, expression in MACRO
(first column) move the compiled code for

DUP IF DUP THEN
from the body of the macro definition into the program (column four), which is the
same result as if

DUP IF DUP THEN
had been encountered during compilation instead of ?DUP.

Figure One

Screen # 51
0 (MACRO 1 MACRO LMI Z-80 FORTH 3.01 2/23/85 vhy)
1 (Usage: MACRO <name> ... END-MACRO) (Like : <name> ... ;)
2 : MACRO (start compiling a macro)
3 ?EXEC (-error if not executing)
4 (! C S P) (*moved to line 13 after HERE)
5 CURRENT @ (-current vocabulary)
6 CONTEXT @ (-)
7 ?CLR-HASH (- 1
8 CONTEXT ! (-becomes context)
9 BUILD (-create heading for macro)

10 SMUDGE (-make macro unavailable)
1 1 1 ALLOT (space for byte count in macro)
12 HERE (-- addr) (for use by END-MACRO)
13 ! CSP (-save stack position for check)
14 COMPILER (-start compiling words into macro)
15 (;CODE ...) - - > (*replaced by does> ... as follows)

Screen # 52
0 (MACRO 2 MACRO cont.)
1 DOES> (pfa --) (move words of macro into place)
2 STATE @ (is macro being used while)
3 IF (compiling?)
4 COUNT HERE (-- pfa+l n here)
5 OVER ALLOT (space for macro words in program)
6 SWAP CMOVE (move macro words into program)
7 ELSE (interpreting?)
8 [' I CR @ HERE ! (set colon definition cfa at HERE)
9 COUNT SWAP OVER (-- n pfa+l n)
10 HERE 2+ (address for macro words)
1 1 SWAP CMOVE (move macro words into definition)
12 HERE 2+ + (address for ;S in definition)
13 [' I ;S SWAP ! (set ;S into definition)
14 HERE EXECUTE (now execute this colon definition)
15 THEN ; -- >

FORTH Dimensions 14 Volume VII, No. 3

Screen # 53
0 (MACRO 3 END-MACRO)
1
2 : END-MACRO (addr --) (stop compiling a macro)
3 ?COMP (-error if not compiling)
4 ?CSP (-error if stack position not same)
5 (COMPILE ;S) (*replaced by the following)
6 HERE (-- start-addr end-addr)
7 OVER - (calculate byte count)
8 SWAP 1 - C! (install count in new definition)
9 IMMEDIATE (make new definition immediate)

1 0 UNSMUDGE (-make new definition available)
1 1 R > DROP (-prepare to exit from COMPILER)
12 STATE OFF (-stop compiling macro words)
13 ; (-exit from COMPILER)
14 IMMEDIATE (-make END-MACRO immediate)
15

same effect on the stack. The differen-
ces come when they are compiled into a
program to be run later,

In the case of the code definition for
-ROT, the compilation address of -ROT
is compiled into the program. (We as-
sume here the usual fig-FORTH type
of implementation.) Then, when the
program is run, the address interpreter
transfers control to the machine code
of the definition, which is run. This is
the fastest.

In the case of the colon definition
for -ROT, the compilation address of
the word is again compiled into the
program. But this time when it is run,
the address interpreter must first nest
down by placing a return on the return
stack, corresponding to the colon.
Then it must execute the body of the
colon definition, which means execut-
ing the primitive ROT twice. Then it
must retrieve the return off the return
stack, nesting back up, corresponding
to the semicolon. This is the slowest.

In the case of the macro definition of
-ROT, the compilation address of -ROT
is not compiled into the program. In-
stead, the compilation addresses of ROT
ROT from the body of the macro are
compiled. This takes up more room in
the program, but when it is run, the
nesting down and up are eliminated.
The speed of this is intermediate be-
tween the code definition and the colon
definition.

The macro facility has few restric-
tions. Anything that can be program-
med as a colon definition that results in
position-independent code in the body
of the definition can be programmed as
a macro. That means that even such
constructs as

IF . . . ELSE . . . THEN
and
DO ... LOOP

can be included in a macro if the Forth
implementation uses relative branch
addresses (offsets). Not all Forths do.
To find out whether your implementa-
tion compiles position-independent
code, compile

:TRIAL IF DROPTHEN ;
:TRIAL IF DROPTHEN ;

If the code is position independent, a
memory dump will show that the two
compiled definitions are identical ex-
cept for their link fields. In particular,
the branch addresses will be offsets,
and will be the same, probably 0004.

Macros can be embedded in macros
to any level desired. For example, one
Forth has primitives for DNEGATE, D+,
OR and o = , while D-, DO = and D = are
defined as colon definitions. These lat-
ter could be defined instead as macros:

MACRO D- DNEGATE D + END-MACRO
MACRO DO= OR O = ENDMACRO
MACRO D = D- DO= ENDMACRO

When D = is used in a program, it
would compile not the compilation ad-
dress of D = , but the compilation ad-
dresses of

DNEGATE D + OR O =

So we see that macros compile in-
line code, even when nested, and with
that comes a speed advantage. But, like
colon definitions, they also bring the
same advantages of structured pro-

@ FOR TRS-80 MODELS 1,3,4,4P
IBM PC/XT, AT&T 6300, ETC.

WHICH ONE?
Which microcomputer word pro-
cessor lets you create and edit
without retyping, but won7 slow
down your creative process?
Knows when to capitalize the first
letter while replacing one phrase
with another? Can outdent as well
as indent? Will do typesetting at
your command, even with propor-
tional characters, right justifica-
tion and tabbed columns? Lets
you use the same (extra-capacity)
data disks on IBM PC andTRS-80?
And eases your learning with
common-sense keystrokes, Help
menus, good examples and a pro-
fessionally authored manual?

Hint: it can integrate to communi-
cate from home to office, and will
interface with a database for form
letters, data tables, and more!

It's the professional's word pro-
cessor for your IBM PC, Compaq,
or TRS-80 Model l , 3 or 4:

Volume VII, No. 3 15 FORTH Dimensions

A macro facility can play a part in a
kit to allow programs written in one
dialect of Forth to run in a system im-
plementing another dialect. Here,
speed considerations and noninterfer-
ence with the return stack would pro-
vide important advantages. In one
program of this sort, an overall speed
penalty of roughly 50% has been
reported2. A recoding using macros
and synonyms should reduce the penal-
ty substantially.

A macro definition, like a colon
definition, can contain one or more
words, or even none. That means a
one-word macro could be used in place
of a synonym. That is not normally ad-
visable, however. As a rule of thumb,
always use a synonym to replace a
colon definition with one word in it,
and a macro to replace a colon defini-
tion with two or more words in it.

It is instructive to compare the dif-
ference between macros and syno-
nyms. The action of a synonym with
regard to the immediatehonimmed-
iate distinction is deferred, where the
action of a macro is not. Suppose we
define SI as a synonym of IF:

SYNONYM Sl IF

As we saw in Figure Two of the
previous article, the compilation ad-
dress of IF is compiled into the parame-
ter field of sl even though IF is an
immediate word. Then, when SI is used
in a program, it has the same effect
that using IF would have had. Namely,
it executes as an immediate word and
compiles a conditional branch into the
program and arranges for a branch
offset. This conditional branch will be
executed at a still later time, when the
program is run.

But when IF is compiled into a macro
for ?DUP

MACRO ?DUP DUP IF DUP THEN END-
MACRO

the IF will have its (immediate) action
now, and a conditional branch with its
branch address will be compiled into
the macro definition in exactly the
same way that it would be compiled
into a colon definition. (See Figure
One of this article.) Then, when the

macro ODUP is used in a program, the
body of the macro definition compiled
for ?DUP, including the conditional
branch and its branch offset, is moved
(copied) bodily into the program, so
that the words of the macro definition
can then be executed in line at a still
later time when the program is run.
Since the code is copied in this way to a
different location to be run, it must not
contain any absolute branch addresses,
but only relative branch addresses (off-
sets) if the implementation provides
them, or else no branches at all.

Although synonyms may be defined
for immediate words as well as for
nonimmediate words, there would be
no advantage in using a macro defini-
tion to replace a colon definition that is
marked immediate, and this possibility
is not provided for.

The definitions shown in screens
51-53 are fairly straightforward. First,
MACRO compiles a name and link field
for the heading of the macro defini-
tion. It then allots space in the body of
the definition (parameter field) for a
count byte. Then the compiler is called,
which starts compilation, and the
words of the definition are com~iled
into the macro in the same way in
which they would be compiled into a
colon definition.

Compilation is stopped by END-
MACRO, which calculates the number of
bytes of dictionary space used for com-
piling the words of the macro, and
places a length byte in the space pre-
viously allotted for it. The length byte
and the words of the definition then
constitute a string that can be moved
out of the definition as needed.

The macro definition is then made
immediate, so that the DOES> part of
MACRO will be executed when the mac-
ro is later interpreted from the console
or a screen, and the words of the
definition will then be moved out ap-
propriately. END-MACRO then drops its
own return off the return stack so that
control will return to MACRO when END-
MACRO is finished. Then compilation is
stopped. When control returns from
ENDMACRO, the word DOES> alters the
code field of the macro being defined,
so that the DOES> part of MACRO will
be executed later when the macro
definition is used.

L ~ r n ~ t e d lets

between eith

Each version basic FORTH

computer system - SOTA is the
running CP/M - - - -@ FORTH of
(vers~on 2 x) 2 k- iii choice for both
or CP/M Plus &"=:: the novice and
(vers~on 3 x) exper~enced
Whats more TRS-60 programmer
SOTA doesn t Make it your

6%Er:YI-k ap]H '2Z ;",":I
any awkward copy today

When you order f rom SOTA, both the f ig
model and 79 standard come complete
with the following extra features a t no

additional charge.
full featured string handling assembler

screen editor floating po~nt double word
entenslon set relocating loader beginner's
tutorial comprehenslue programmer's gu~de

enhaustiue reference manual unparalleled
technical support . source listings

unbeatable price

10 Enclosed rs mv 0 check 0 monev-order
Plesse bill my q VISA MaslerCwd

for $89 95
Pleere send me q 79 Standard FORTH 0
Fnr the . -. . . . -

IBM PC q XT OAT (and compat~Dles)
TRS-80 Model 1 q Model 111 q Model 4 q Model 4P

q CP/M Version 2 x 0 CP/M Plus (Version 3 X)
Tor CP/M wrslons pleare note 5 114 formats only and
pleere specify computer type

I I
L I

nRmE:
STREET:
CITY/TOWn:
STRTE: ZIP:
CRRD TYPE: EXPIRY:
CRRD no:

Volume VII, No. 3 17 FORTH Dimensions

Nothing is compiled at the end of the Thus, to get the definitions to work
macro definition that would corres- on a different system, obtain a listing
pond to the ;S or other word that is of the definitions of colon and semi-
compiled at the end of a colon defini- colon in your implementation, or at
tion by the semicolon. least obtain the compiled code using a

When the macro definition is later decompiler or memory dump. Then
interpreted from the console or screen identify the various functional parts of
in compile state, the DOES> Part of these definitions as implemented in
MACRO moves the words of the macro your system, referring to the fig-
definition as a block into the Program FORTH m0de13?~, or other sources if
being compiled, to be later executed in needed for help in understanding them.
line rather than being called by nesting Then make the modifications indicat-
to a lower level as with a colon ed. This process should not be diffi-

cult, and will be a learning experience
In execute State, it moves the words if you don't yet know much about the

a Unlimited control tasks of the macro definition into a tem- Forth compiler.
• Multi-user capability porary colon definition constructed at On sixteen-bit machines where it is
• 8087 mathematics co- HERE and executes it. To this end, the advantageous or required to have ad-

processor support address of the run-time code for colon dresses start at sixteen-bit word boun-
• Reduced application O) is obtained by ['I CR and set in place daries, change the 1 ALLOT on screen 51

development time at HERE. Then the compiled micro to 2 ALLOT and add l+ after the DOES>
words are moved into the following on screen 52. (It is an interesting aspect
 location^. Finally, the address of ;S is of the ~ o r t h - 8 3 Standard that
set in place at the end. Then this tem- SYNONYM could be written entirely Now included at no extra cost: porary colon definition is executed. within the standard, but MACRO and Extensive interactive GRAPHICS These definitions of MACRO and END END-MACRO could not.)

ve been checked out under
Laboratory Microsystems Z-80 Forth

multi-tasking environment , it 3.01, a Forth-83 implementation.
offers point and line plotting, These words are, of necessity, imple-
graphics shape primitives and mentation specific, since they make
interactive cursor control. assumptions about the return stack,
PolyFORTH I I is fully supported and they address into the parameter
by FORTH, Inc.'s: field of the word being compiled. The

Extensive on-line assumptions they make, however, are
documentation not at all unusual.

a Complete set of manuals It was initially thought that MACRO References
Programming courses and ENDMACRO should be patterned

after an array definition with CREATE
[to start and stop compila- 1. Soreff, Jeffrey. "Macro Expan-

tion. But it soon developed that one sion in Forth," Forth Dimensions
t more of the features of V/5.

colon and semicolon in the definitions,
so it seemed better to pattern them af- 2. Berkey, Robert. "Forth-83 Pro-

Also available for other popular ter the definitions of colon and semi- gram to Run Forth-79 Code,"
mini and micro computers. colon found in the implementation, Forth Dimensions VI/4.
For more information contact: making the appropriate modifications.

The lines on the screens with com- 3. Ragsdale, William F. fig-FORTH
ments beginning with a single hyphen Installation Manual: Glossary,

2309 Pacific Coast ~ w y . are copied (with LMI's permission) Model, Editor. San Carlos, CA:
intact from the definitions of colon Forth Interest Group, 1980.
and semicolon. The lines with com-
ments beginning with an asterisk show 4. Derick, Mitch and Linda Baker.
modifications. The rest of the lines FORTH Encyclopedia: The Corn-
have been added to implement the spe- plete Forth Programmer's Manual,
cia1 features of MACRO and END 2nd ed. Mountain View, CA:

Mountain View Press, 1982.

FORTH Dimensions 18 Volume VII, No. 3

Forth Timer
Zram Weinstein

McLean, Virginia

There comes a time in the develop-
ment of many applications when every-
thing works and attention turns to
speeding up the run time. The first step
in this phase of development is to
determine which words contribute
most to the running time of the ap-
plication. A typical scheme for this
might involve temporarily changing the
definition of each word to be tested, as
in Figure One, where NOW is a word
that puts the current clock time on the
stack.

After recompiling and running the
application with this augmented defini-
tion of WORD, T will contain the ac-
cumulated time used by WORD. Each
word in the application can be tested in
turn. The inconvenience of having to
insert temporary modifications into
colon definitions, combined with the
desire to count the number of uses of
each word in the application, led to
screens 52-55 shown here. These
screens define a set of Forth macros
(Forth Dimensions V/5) that redefine
the defining words : and ; to automati-
cally insert the timing actions into any
words subsequently compiled. The
technique is similar to that used in the
article "Tracer for Colon Definitions"
(Forth Dimensions V/2).

Screen 52 contains some words used
to measure time. These will be system
dependent. The words shown here are
for the Commodore-64, which has an
interrupt-driven, three-byte, "jiffy"
counter at locations 160-162. Location
162 is incremented once each interrupt
cycle, approximately sixty per second.
Only the lower two bytes of this count-
er are used here, giving a timing range
of over 1000 seconds.

FREEZE and UNFREEZE prevent the
overhead time consumed by the timing
macros themselves from accumulating
into the measured time. FREEZE moves
the current time value into the variable
VNOW, while UNFREEZE resets the jiffy
clock back to its value when FREEZE
was executed. In some systems, these
words might be written to actually stop

Macros
SCR # 72

Ic) I W(LifiL) 1 T MER MC\T;FIOS..-. 1)
1
2 1.&1 i ;CiNSli\Nl ' J I F F Y
1': 'JAR I CiF<LLE VNOW
4 : INI - [NOW 0 J I F F Y ! :
5 : FlrEE.ZF ,J : IFFY I::! VNC3W ! :
b : lJb1F:'REEZE VNOW @ J I F F Y ! :
7 : PJOW VNOW CUP C:@ 256 * SWAP 1+ C@ + :
H
9 : i'll7\((l'i (:F;EASF ?* AL..LOT DOES':. SWAPlP 2, +. :

18 .,.!8 TiRRAY #lISE.S
1 1 21.r AF:F:A'f TClJM
1 2 '/f;R:I ABL-L. WORD#
11: : I N T I PI IJORD# ! VI #l.JSE:.S 40 kHASF. 0 TCCIM 4P1 ERASE :
1. 4 5: I. O A L '34 \ .(ll+ii 55 LOAD I N IT I N ITNOW
1 5

?I ,H # 5 5
C.) i b J (:) f i l S 1 I MER MAC;ROC. -. 2)
1
'..' 1 0l?OI i,PI :iT:ONSTfiN7' CON',' ? CCINVERT 1.0 M I L L 1 -SEES)
-.:
4 r I r o'i (r~---. -D) TC;I IM Q P) CONV LI+/ ;
5 : 1-A'Ai i 1'4-.---I.)) L)I.!t3 r rU'T HOT #\JSE.S @ DUP (il= .+ 1000 SWAP IJ*/ ;
t:.,

/ : . t.iE.:Cil.)F-.li . " WrJFrD" 13 SFJA(3ES . " #USES AVG. MSECS" :
El
,.+ - " . FYMT ::# # # # 4b t4OL.L) #C: #::. :

1. P)

1 1 : I'v F'E. h i AIJDF;: tJ(:tiAR NW I DS'H j CiLJER .- SPACES TYPE :
1;'
1 7 : . 1) 6 > , ~ \ 6 i (I'd---.-) DlJF' #USES S I .R TAVCi FMT 13 "1'YF'F.R CR :
:I 4
1 :,

SCR # 54
0 (WiIF<D T I M E R MACROS-.3)
1
Z F I N D : @ CONSTUNT DOCOLON
:3 : CHECC.: (NFA--.-NFA)
4 (EXFIMINES WORD FOR DOCOL-ON I N CFA. I F FOUND, RETURNS N F A)
5 i E L S E . SCANS L. INKAGE lJNT I L DOCOLON I S FOUND)
6 B E G I N F3FA DUP CFA @ DOCOLON = NOT
7 I F L F A @ 0 E L S E NFA 1 E N D I F U N T I L ;
8 : SUMMARY i ---) CR CH .HEADER CFt
9 [COMPILE '] FORTH CONTEXT @ @ 0 WORD# @ DO

10 CHECK DUP I D .
1 1 1 4 OVER C@ 127 AND - SPACES
12 I 1- .DATA
13 F'FA 1-FA @
14. .--I +LOOP DROP
15 IN ITNOW :

(Continued on page 25)

volume VIi, No. 3 19 FORTH Dimensions

Mulituser/Multitasking
for 8080. 280. 8086

Portable programming environment

Whether you program on
the Macintosh, the IBM PC,

an Apple II series, a CP/M sys- <?> tem, or the Commodore 64.
your program will run un-

changed on all the rest. FF-ZS
If you wrlte for yourself, E F- e-
MasterFORTH will ~ ro tec t -- - ' ' TM

your investment. If you write for

3. others, it will expand your market-
place.

MasterFORTH is a state-of-
the art implementation of the
Forth computer language.
Forth is interactive - you have
immediate feedback as you
program, every step of the way. Forth is
fast, too, and you can use its built-in macro

assemblerto make it even CP/M T~ faster. MasterFORTH's
relocatable utilities,

transientdefinitions,and headerless code
let you pack a lot more program into your
memory. The resident debugger lets you
decompile, breakpoint, and trace your
way through most programming prob-
lems. A string package, file interface, and
full screen editor are all standard features.

MasterFORTH exactly matches the
Forth-83 Standard dialect described in
Mastering Forth by Anderson and Tracy
(Brady, 1984). The standard package in-
cludes the book and over 100 pages of
supplementary documentation.

NGS FORTH
A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMFCPER AND
MS-DOS COMPATIBLES.

INCLUDE:

079 STAND?iRD

.DIRECT 1/0 ACCESS

.FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS I
oENVIRONMENT SAVE

& IAAD I
.MULTI-SEGMENTED FOR
LARGE APPLICATIONS I

.EXTENDED ADDRESSING I

.MEMORY ALIOCATION
CONFIGJRABLE ON-LINE I

oAUTO LDAD SCREEN BOOT I
.LINE & SCREEN EDITORS I
ODECOMPILER AND
DEBUGGING AIDS

08088 ASSEMBLER

.GRAPHICS & SOUND I
eNGS ENHANCEMENTS

.DETAILED MANUAL

.INEXPENSIVE UPGRADES

oNGS USER NEWSLETTER

A COMPLETE FOKTH
DEVELOPMENT SYSTEM.

NEW-HP-150 & EP-110
VERSIONS AVAILABLE

NEXT GENERATION SYSTEM8
PoOoBOX 2987
6ANI'A CLARA, CA. 95055
(108) 211-5909

(Industrial @ 4 1
Strength

(TaskFORTH,. The First

Professional Quality
Full Feature FORTH

System at a micro price*

LOADS OF TIME SAVING

+ Unlimited number of tasks
+ Multiple thread dictionary,

superfast compilation
* Novice Programmer

Protection Package TM

+ Diagnostic Tools, quick and
simple debugging

+ Starting FORTH, FORTH- 79,
FORTH-83 compatible

+ Screen and serial editor,
easy program generation

* Hierarchical file system with
data base management

' Starter package $250 Full package $395
S~ngle user and cornmerc~al llcenses available

If you are an experienced
FORTH programmer, this is the
one you have been waiting for!
If you are a beginning FORTH
programmer, this will get you
started right, and quickly too!

Available on 8" or 5% " disk
in various formats under
CP/M 2.2 or greater and

5 % " MS-DOS

FULLY WARRANTIED,
DOCUMENTED AND

SUPPORTED

DEALER
INQUIRIES

Shaw Laboratories, Ltd
24301 Southland Drive, # 216

Hayward, California 94545 ~ (4 15) 276-5953

FORTH Dimensions 20 Volume VII. No. 3

FORTH INTEREST GROUP MAIL ORDER FORM
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

I IN THE FORTH INTEREST GROUP

107 - MEMBERSHIP in the FORTH INTEREST GROUP & Volume 7
of FORTH DIMENSIONS. No sales tax, handling fee or
discount on membership. See the back page of this order
form.

The Forth Interest Group is a worldwide non-profit member-supported
organization with over 5,000members and 80chapters. FIGmembership
includes a subscription to the bimonthly publication, FORTH Dimensions.
FIG also offers its members publication discounts, group health and life
insurance, an on-line data base, a job registry, a large selection of Forth
literature, and many other services. Cost is $20.00 per year for USA,
Canada & Mexico; all other countries may select surface ($27.00) or air
($33.00) delivery.

The annual membership dues are based on the membership year, which
runs from May 1 to April 30.

When you join, you will receive issues that have already been circulated
for the current volume of Forth Dimensions and subsequent issues will be
mailed to you as they are published.

You will also receive a membership card and numberwhichentitles you to
a 10% discount on publications from FIG. Your member number will be
required to receive the discount, so keep i t handy.

HOW TO USE THIS FORM
1. Each i t e m y o u w i s h t o o r d e r l i s t s t h r e e d i f f e ren t P r i ce ca tego r i es :

C o l u m n 1 - U S A , Canada , M e x i c o
C o l u m n 2 - F o r e i g n S u r f a c e M a i l
C o l u m n 3 - F o r e i g n A i r M a i l

2. Se lec t t h e i t e m a n d n o t e y o u r p r i c e in t h e s p a c e p rov ided .

3. A f t e r c o m p l e t i n g y o u r se lec t i ons e n t e r y o u r o r d e r o n t h e f o u r t h p a g e o f t h i s f o r m .

4. D e t a c h t h e f o r m a n d r e t u r n i t w i t h y o u r p a y m e n t t o The Forth lnterest Group

FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May -Apri l)

101 - Volume 1 FORTH Dimensions (1979180) $15116118

102 - Volume 2 FORTH Dimensions (1980181) $15116118

103 - Volume 3 FORTH Dimensions (1981182) $15116118

104 - Volume 4 FORTH Dimensions (1982183) $15116118

105 - Volume 5 FORTH Dimensions (1983184) $15116118

106 - Volume 6 FORTH Dimensions (1984185) $15116118

ASSEMBLY LANGUAGE SOURCE CODE LISTINGS
Assembly Language Source Listings of fig-Forth for specific CPUs and
machines with compiler security and variable length names.

513 - 1802lMARCH 81 . $15116118 -

514 - 6502lSEPT 80 . $15116118 -

515 - 68001MAY 79. . . $15116118 -

516 - 6809lJUNE 80 . $15116118 -

517 - 8080lSEPT 79 . $15116118 -

518 - 8086188lMARCH 81 $15116118 -

519 - 99001MARCH 81 . $15116118 -

520 - ALPHA MICROISEPT 80. $15116118

521 - APPLE IIIAUG 81. $15116118 -

522 - ECLIPSEIOCT 8 2 $15116118 -

523 - IRM-PCIMARCH 84. $15116118 -

524 - NOVAIMAY 81 . $15116118

525 - PACEIMAY 79 . $15116118 -

526 - PDP-111JAN 80 . $15116118 -

527 - VAXIOCT 82.. . $15116118

528 - Z80lSEPT 82 . $15116118 -

BOOKS ABOUT FORTH

200 - ALL ABOUT FORTH $25126135 -
Glen B. Haydon
An annotated glossary for MVP Forth; a 79-Standard
Forth.

. 205 - BEGINNING FORTH $17118121 -
Paul Chirlian
Introductory text for 79-Standard.

215 - COMPLETE FORTH $16117120 -
Alan Winfield
A comprehensive introduction including problems with
answers. (Forth 79)

220 - FORTH ENCYCLOPEDIA $25126135 -
Mitch Derick & Linda Baker
A detailed look at each FIG-Forth instruction.

225 - FORTH FUNDAMENTALS, V. 1 $16117120 -
Kevin McCabe
A textbook approach to 79 Standard Forth.

230 - FORTH FUNDAMENTALS, V. 2 $13114116 -
Kevin McCabe
A glossary.

233 - FORTH TOOLS . $19121123 -
Gary Feierbach & Paul Thomas
The standard tools required to create and debug Forth-
based applications.

237 - LEARNING FORTH.. $17118121 -
Margaret A. Armstrong
Interactive text, introduction to the basic concepts of
Forth. Includes section on how to teach children Forth.

240 - MASTERING FORTH $18119122 -
Anita Anderson & Martin Tracy (MicroMotion)
A step-by-step tutorial including each of the commands
of the Forth-83 International Standard; with utilities,
extensions and numerous examples.

245 - STARTING FORTH (soft cover). $20121122 -
Leo Brodie (FORTH, Inc.)
A lively and highly readable introduction with
exercises.

246 - STARTING FORTH (hard cover) $24125129
Leo Brodie (FORTH, Inc.)

255 - THINKING FORTH (soft cover) $16117120 -
Leo Brodie
The sequel to "Starting Forth". An intermediate text on
style and form.

265 - THREADED INTERPRETIVE LANGUAGES$23125128 -
R.G. Loeliger
Step-by-step development of a non-standard 2-80 Forth.

270 - UNDERSTANDING FORTH $3.501516 -
Joseph Reymann
A brief introduction to Forth and overview of its
structure.

FORML CONFERENCE PROCEEDINGS
FORML PROCEEDINGS - FORML(the Forth Modification Laboratory) i san
informal forum for sharing and discussing new or unproven proposals
intended to benefit Forth. Proceedings are a compilation of papers and
abstracts presented at the annual conference. FORML is part of the Forth
Interest Group

310 - FORML PROCEEDINGS 1980 $25128135
Technical papers on the Forth language and extensions.

31 1 - FORML PROCEEDINGS 1981 (2V) $40143145 -
Nucleus layer, interactive layer, extensible layer,
metacompilation, system development, file systems,
other languages, other operating systems, applications
and abstracts without papers.

312 - FORML PROCEEDINGS 1982 $25128135 -
Forth machine topics, implementation topics, vectored
execution, system development, file systems and
languages, applications.

313 - FORML PROCEEDINGS 1983 $25128135 -
Forth in hardware, Forth implementations, future
strategy, programming techniques, arithmetic & floating
point, file systems, coding conventions, functional
programming, applications.

314 - FORML PROCEEDINGS 1984 $25128135
Expert systems in Forth, using Forth, philosophy,
implementing Forth systems, new directions for Forth,
interfacing Forth to operating systems, Forth systems
techniques, adding local variables to Forth.

ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Inc. is a non-profit organization
which supports and promotes the application of Forth. It sponsors the
annual Rochester Forth Conference.

321 - ROCHESTER 1981 (Standards Conference) $25128135 -
79-Standard, implementing Forth, data structures.
vocabularies, applications and working group reports.

322 - ROCHESTER 1982
(Data bases & Process Control). $25128135-
Machine independence, project management, data
structures, mathematics and working group reports.

323 - ROCHESTER 1983 (Forth Applications) . $25128135 -
Forth in robotics, graphics, high-speed data acquisition,
real-time problems, file management, Forth-like
languages, new techniques for implementing Forth and
working group reports.

324 - ROCHESTER 1984 (Forth Applications) . $25128135 -
Forth in image analysis, operating systems, Forth chips.
functional programming, real-time applications, cross-
compilation, multi-tasking, new techniques and working
group reports.

FORTH Dimensions 22 Volume VII, NO. 3

THE JOURNAL OF FORTH APPLICATION & RESEARCH
A refereed technical journal published by the Institute for Applied Forth
Research, Inc.

401 - JOURNAL OF FORTH RESEARCH V.l #1 $15116118 -
Robotics.

402 - JOURNAL OF FORTH RESEARCH V.l #2 $15116118 -
Data Structures.

403 - JOURNAL OF FORTH RESEARCH V.2 # I $15116118 -
Forth Machines.

404 - JOURNAL OF FORTH RESEARCH V.2 #2 $15116118 -
Real-Time Systems.

405 - JOURNAL OF FORTH RESEARCH V.2 #3 $15116118 -
Enhancing Forth.

406 - JOURNAL OF FORTH RESEARCH V.2 #4 $15116118 -
Extended Addressing.

REPRINTS
420 - BYTE REPRINTS . $51617 -

Eleven Forth articles and letters to the editor that have
appeared in Byte magazine.

421 - POPULAR COMPUTING 9183 $51617 -
Special issue on various computer languages, with an
in-depth article on Forth's history and evolution.

DR. DOBB'S
This magazine produces an annual special Forth issue which includes
source-code listings for various Forth applications.

422 - DR. DOBB'S 9182. $51617 -
423 - DR. DOBB'S 9183. $51617 -

424 - DR. DOBB'S 9184. $51617 -

HISTORICAL DOCUMENTS
501 - KlTT PEAK PRIMER.. $25127135 -

One of the first institutional books on Forth. Of his-
torical interest.

502 - FIG-FORTH INSTALLATION MANUAL . . $15116118 -
Glossary model editor - We recommend you purchase
this manual when purchasing the source-code listings.

REFERENCE
305 - FORTH 83 STANDARD $15116118 -

The authoritative description of 83-Standard Forth. For
reference, not instruction.

300 - FORTH 79 STANDARD $15116118 -
The authoritative description of 79-Standard Forth. Of
historical interest.

316 - BIBLIOGRAPHY OF FORTH REFERENCES
2nd edition, Sept. 1984 $15116118 -
An excellent source of references to articles about
Forth throughout microcomputer literature. Over 1300
references.

I MISCELLANEOUS

602 - POSTER (BYTE Cover) $15116118 -

616 - HANDY REFERENCE CARD FREE -

683 - FORTH-83 HANDY REFERENCE CARD FREE -

FALL SPECIAL

Dimensions

BACK VOLUMES 1-6
containing the six Issues of each volume year (May -April)frorn 1979180
through 1985185.

$50/59/90 -
Available until November 29, 1985

PUBLICATIONS SURVEY
If you would like to suggest any other publication for review by
the FIG Publications committee for inclusion in the Forth Interest
Group Order Form, please complete the information below and
return to FIG.

Title:

Author:

Publisher:

Comments:

Your comments on any of the publications wecurrentlycarry are
most welcome, please complete information below.

Title:

Comments:

Volume VII. No. 3 23 FORTH Dimensions

FORTH INTEREST GROUP
P.O. BOX 8231 SAN JOSE, CALIFORNIA 95155 408/277-0668 I

Name

Company

Address

City

StateIProv. ZIP

Country

Phone

UNIT
PRICE

)

AUTHOR ITEM

107

TOTAL

SEE BELOW

TITLE

MEMBERSHIP

$2.00

Check enclosed (payable to: FORTH INTEREST GROUP)

VISA MASTERCARD

Card #

Expiration Date

Signature

SUBTOTAL

10°/o M E M B E R D I S C O U N T

MEMBER #

CA RESIDENTS SALES TAX

HANDLING FEE

M E M B E R S H I P FEE $20 /27 /33
N E W 0 R E N E W A L

TOTAL

PAYMENT MUST ACCOMPANY ALL ORDERS
SALES TAX
Calltornla deliver~es
add 6% SanFranc~sco
Bay Area add 7%

9/85

SHIPPING TIME
Books ln stockare shlpped
w ~ t h ~ n flve days of receipt
of the order Please allow
4 6 weeks for out of-stock
books (dellvery in most
cases w ~ l l be much sooner)

MRlL ORDERS
Send l o
Forth Interest Group
P 0 Box 8231
San Jose CA 95155

PRICES
All orders must be prepa~d Pr~ces are
subject to change without not~ce Cred~t
card orders w ~ l l be sent and b~ l l ed at
current prices $15 mlnlmum on charge
orders Checks must be ~n US$ drawn
on a US Bank A $10 charge wlll be
added for returned checks

PHONE ORDERS
Call 4081277 0668 lo place
cred~t card orders or for
customer servlce Hours
Monday-Fr~day 9am-5pm
PST

POSTAGE & HANDLING
Pr~ces Include s h ~ p p ~ n g A
52 W handllng fee IS

requ~red with all orders

(Continued from page 19)
and restart a real-time clock. NOW sim-
ply places the frozen time value on the
stack. INITNOW resets the jiffy timer.

Screen 52 also contains the nonstan-
dard word ARRAY. Other familiar but
nonstandard words are D/S and u * l
(Forth Dimensions V/1). All other
words are in Forth-79. Screen 52 fin-
ishes by setting up two arrays to store
the number of uses and accumulated
time for up to twenty words, and defin-
ing the variable WORD# used to count
the number of words being timed. All
these are initialized to zero by INIT.

Screens 53-54 define a display of the
measured timings. We will come back
to these screens later.

Screen 55 does all the work. The ob-
ject is to modify the definition of each
new word compiled, as shown in
Figure Two. Since NEXTNO is an
IMMEDIATE word, it executes at the
compile time of WORDn with the result
that the current value of WORD# is com-
piled by LITERAL as an in-line literal.
During later execution of WORDn this
value is placed on the stack as input to

VARIABLE T

: WORD NOW NEGATE T + !

< . . .original body of word. . . >

N O W T + ! ;

Figure One

: WORDn [NEXTNO]

LITERAL MARKSTART > R

< . . .original body of word. . . >

R> MARKEND ;

Figure Two

Word #Uses Avg. Msecs

T2 1 5416.000

TWO' 1000 1.516

DUP + loo0 0.733

2' 1000 0.650

TASK 0 0.000

Summary

Figure Three

C;CR tt 55
(h (WUfiI:) 1-TMER MACROS-4)
1
2 : IN[: (ADDR) 1 SWAP + ! ;
1I. : NEXTNO (N) WORD# DI.JF' I SWAP IN(:: : TMPlEDI(-%TE
4
5 : MAF?KSTART (N .------N) F R E E Z E Dl-IF' DUF' #USE&; I N C
6 NOW NEGATE SWAP T C ~ J M + ! UNFREEZE :
7
8 : MAFiKEND (N F R E E Z E NOW SWAP 'SCUM -I-! I.INF'RCFl7E :
Y

10 : : : CCOMF'IL.E.1 : : 1MMET)IATE
1 I.
12 : : CCOMPIL-El : CCOMF'IL.E:I NEXTNU SCOMF'II E l L.IIEROL.
1 p COMP 11-E MAFlt:::Sl'AWr COMP I I..E ..:.R : I III'1E.D I A I E

1 4
15 : : : COMFL'IL.E R::- C O M P I L E MARt:::E.ND I. COMPTL E 7 : : IMMED 1 ClrE

q,,h' # " , .., t.
R (T1MF:'R MACR("I -1ESTING)

J
-8 . -l-Ast!' :
.,L .
:: : .:.> u 2 + ;
4 : IiI IFZ+ [)I IF' + :
7 : I WO* ...' * :
rs -..
/ : -r2* y . 4 . 1 B 0 B Q IIIl
8 DUP '.?.* DROP
0 I)(!F' I.)L!F'+ I?HOF:'

I. B D l l P I W C I * DROP
11 L.OClP L?ROP :
I '.:
1 ::
1 4 T Y ;'r. S!)MPIAFi';'
15

Volume VII, NO. 3 25 FORTH Dimensions

1 with LMI FORTHTM I

1 For Programming Professionals: 1
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterICompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, 2-80, 8086, 68000, and 6502
No license fee or royalty for compiled applications

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by speclal arrangement.

D~aboratory Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295

credit card orders to: (213) 3067412

Overseas Distributors.
Germany' Forth-Systeme Angellka Flesch, D-7820 Titlsee-Neustadt
UK: System Sclence Ltd . London EClA 9JX
France: Micro-S~grna S.A.R.L., 75008 Paris
Japan: Southern Pacif~c Ltd., Yokohama 220
Australfa: Wave-onic Associates, 6107 Wilson. W A.

MARKSTART, which increments the ap-
propriate element of #USES and sub-
tracts the current time from the total
time accumulated for WORDn. The
word number is pushed onto the return
stack and we are ready for execution of
the main body of WORDn. Afterwards,
the word number is recovered from the
return stack and MARKEND adds the
current time to the accumulated time.

All that remains is to put together
these timer words into macros that
replace : and ;. Before redefining : the
macro :: is defined. This is just a
synonym for : and is needed so that the
definition of ; will not include all the :
timer words.

Creating the macros is simple. Just
follow the rules developed in Forth
Dimensions V/5: precede each
IMMEDIATE word by [COMPILE], precede
all other words by COMPILE and declare
the macro IMMEDIATE.

After loading these screens, load and
run the application you want to time,
and then execute SUMMARY to produce
a display of all the colon-defined words
in your application, with the number
of uses and average time per use for
each word. Screens 53-54 contain the
definitions of SUMMARY and support-
ing words. Everything here is straight-
forward except CHECK, perhaps, which
scans the dictionary linkage, skipping
over constants, variables and other
word types until a colon-defined word
is found. CHECK returns the NFA of
this word.

Screen 56 contains an example ap-
plication of these macros. Three words
that multiply by two are defined. The
first, 2*, makes use of a built-in CODE
definition. The other two are self-
explanatory. The word T2" exercises
each of the "multiply-by-two" words
1000 times on the same problem.
SUMMARY prints the results, as shown
in Figure Three.

When using the timer macros, you
may want to define additional applica-
tion words. These will be automatically
assigned word numbers as they are
compiled, and will be added to the
summary. However, if you go back
and redefine one of your words, it is
necessary to execute INIT and then
recompile your entire application.

FORTH Dimensions 26 VolumeVII, No. 3

Now You Can Add

ARTIFICIAL
INTELLIGENCE

To Your Programs Using a Powerful Combination

- - -
By Elllot Schneider & Jack Park

Heres Your Chance to Profit by being on
the Forefront, Write 5th Generation Software

Learn How To:
Create Intelligent Construct

Programs Rule Bases
Build Expert Systems Do Knowledge
Write Stand Alone License Engineering

Free Programs Use Inference Engines

Write Intelligent Programs For:
Home Use Data Analysis
Robotics Business
Medical Diagnosis Real Time
Education Process Control
Intelligent CAI Fast Games
Scientific Analysis Graphics
Data Acquisition Financial Decisions

Extended Math Functions
Fast ML Floating Point & Integer Math
Double Precision 2E+38 with Auto. Sci Not.
nxex Logx Loge Sin Cos Tan SQR l /X. . .
Matrix and Multidimensional Lattice Math
Algebraic Expression Evaluator

SUPERFORTH 64+A1
I I<P

PASCAL
B E C

FORTRAN
ASSEMBLER

Power of Languages Constructs

SuperForth 64 is more SuperForth 64 Saves You
powerful than most other Time and Money

computer languages

Easy Graphics & Sound Words
Hires Plotting Turtle Graphics
Windows Koala Pad Graphics
Split Screen Integrator
Printer/Plotter Ctrl Hires Circle, Line, Arc
Sprite & Animation Music Editor
Editor Sound Control

Easy Control of all 110.. .
RS232 Functions Interrupt Routines
Access all C-64 Peripherals

Utilities
Interactive Interpreter Interactive Compiler
Forth Virtual Memory Romable Code Generator
Full Cursor Screen Editor 40K User Memory
Full String Handling All Commodore File Types
Trace & Decompiler Conversational User
Conditional Macro Defined Commands
Assembler

Great Documentation
Easy to Read 350 pg.
Manual with Tutorials

Source Screen Provided
Meets all MVP Forth-79
Industrial Standards

Personal User Support

A Total
Integrated Package

for the Commodore 64

Ordering Information: Check, Money
Order (payable to MOUNTAIN VlEW SPECIAL

Call:
(415) 961-4103

PRESS. INC) VISA, Mastercard
Amerlcan Express COD s $5 00 extra

INTRODUCTORY OFFER MOUNTAIN VIEW PRESS INC
No bllllng or unpald PO s Cal~fornla PO. Box 4656
residents add sales tax Shlpp~ng costs only $990° Mt. View, CA 94040
In US Included In prlce Fore~gn orders
pay In US funds on US bank, Include

Dealer for
2030° Value

for handl~ng and sh~pplng $10 Lim~ted T ~ m e Offer
PARSEC RESEARCH

' Parsec Research Drawer 1776. Fremont. CA 94538
Commodore 64 TM of Commodore

Volume VII, No. 3 27 FORTH Dimensions

Improved Forth-83 DO LOOP
Dennis L. Feucht

Beaverton, Oregon
When the Forth-83 Standard was

released, it was accompanied by a well-
written, public-domain model which
could run on CP/M systems. Another
model was provided by Laxen, Perry,
Tracy, et al. for the Apple I1 and other
650X-based computers. Both imple-
mentations of Forth handle DO LOOP
constructs in the same way. The
Forth-83 definition for LEAVE differs
from that of Forth-79 or fig-FORTH,
necessitating a different approach to
DO LOOP implementation.
Structured vs. Unstructured
Constructs

In pre-83 Forths, LEAVE would cause
a DO LOOP to be exited when the pro-
gram flow reached LOOP. In Forth-83,
the loop is left immediately. Although
the Forth-83 LEAVE is more versatile
than the previous one, it also has the
effect of unstructuring the DO LOOP
construct. Other Forth control con-
structs, Such as IF ELSE THEN or BEGlN
UNTIL, are structured in that they have
one entry and one exit. No branches
into or out of a control construct are
otherwise allowed. When compiling
structured constructs, all forward
referencing can be handled on the
stack, since multiple constructs within
a word will be nested rather than over-
lapping. For example, when compiling,
a BEGIN will invoke HERE, leaving the
address of the next word to be com-
piled. Later, UNTIL compiles a ?BRANCH
followed by the address left on the
stack by BEGIN; it is where ?BRANCH
will (conditionally) branch to. If
another BEGlN is encountered before
UNTIL, it too will leave the address of its
forward reference on the stack. Since
the forward-reference address on the
top of the stack goes with the second
BEGIN, the first UNTIL encountered
must terminate the second BEGlN UNTIL
construct, causing it to be nested inside
the first one. Similar reasoning applies
to the other Forth control constructs -
except LEAVE.

Since multiple LEAVES can occur
within a DO LOOP along with other con-
structs, and since DO LOOPS can also be
nested, the simple structured scheme

UARIABLE LOOP-LINK

: DO-EHITTRUE LOOP-LINK @ HERE LOOP-LINK ! 0 , ;

: ?DO COMPILE (?DO) DO-EHIT ; IMMEDIATE

Figure One

LEAUE n o w compi les (LEAVE) a n d l inks in the f o l l o w i n g address:

: LEAUE COMPILE (LEAUE) HERE LOOP-LINK @ ,
LOOP-LINK !

; IMMEDIATE

Figure 'Ik.0
- ----

: LOOP-EHIT SWAP ?CONDITION LOOP-LINK @

BEGlN DUP @ >R HERE 2 + OUER ! R@ ?DUP

I F N I P THEN R> O=

UNTIL 2 + , LOOP-LINK !

9

: LOOP COMPILE (LOOP) LOOP-EHIT ; IMMEDIATE

: +LOOP COMPILE (+LOOP) LOOP-EHIT ; IMMEDIATE
Figure Three

: (DO) R> 2+ -ROT SWAP DUP >R - >R >R ;

: (?DO) 2DUP =

ELSE R> 2+ -ROT PUlAP DUP >R - >R >R

THEN

Figure Four

: DO-EHIT LOOP-LINK-T 9 HERE LOOP-LINK-T I 0 , ;

: LOOP-EHIT LOOP-LINK-1 @

BEGlN DUP @ >R HERE THERE 2+ OVER ! R@ ?DUP

IF N I P THEN R> O=

UNTIL THERE 2 + , LOOP-LINK-1 !

Figure Five

FORTH Dimensions 28 VolurneVIl, No. 3

1: LOOP C O M P I L E [TARGET] (LOOP) LOOP-EHITT;

T: +LOOP C O M P I L E [TARGET] (+LOOP) LOOP-EHIT T;

T: LEAVE C O M P I L E [TARGET] ILEAUE) HERE L O O P - L I N K - T ,
LOOP-L INK-T !

T;

T: 00 C O M P I L E [TARGET] (0 0 1 DO-EHIT T;

T: ?OO C O M P I L E [TARGET] ('?DOI DO-EHIT T;

Figure Six

no longer applies. For example, con-
sider this word:

: WORD DO . . . BEGIN . . . LEAVE
. . . UNTIL . . . LOOP ;

To implement LEAVE, have it compile
(LEAVE) which, at run time, pops the DO
LOOP items off the return stack and
branches to the forward address just
after LOOP. This address is contained in
the memory location following (LEAVE).
An obvious (but unsuccessful) way to
then resolve the forward reference
created after (LEAVE) is to put the
address after (LEAVE) on the stack so
that LOOP can put the address after
(LOOP) into the address after (LEAVE)
(that is, resolve the forward reference).
But UNTlL would use the address left by
LEAVE to resolve the forward reference
of BEGIN instead! This control flow is
unstructured due to LEAVE.

DO LOOP Implementations

To solve this compile-time problem,
the Forth-83 implementations have
(DO) push an extra item on the return
stack, which it gets from the location
following (DO) in the threaded code.
This item is the address used by
(LEAVE). Thus, the forward reference
for (LEAVE) is compiled by LOOP, which
puts it in the address following (DO).
Any LEAVES within the D o LOOP com-
pile (LEAVE), but no forward reference
following (LEAVE). It is at run time that
(LEAVE) gets its forward reference from
the return stack and branches to it. At
compile time, LEAVES do not leave
forward-reference addresses on the
stack, and the DO LOOP remains struc-
tured.

The implementation of DO LOOP
given here avoids having to place the
forward reference for (LEAVE) on the
return stack, resulting in a two-item
use of this stack, as did pre-83 Forths.
The tradeoff is a somewhat more com-
plex compile-time activity. This im-
plementation should be easy to adapt
to the current DO LOOP constructs,
since the run-time words (LOOP),
(+LOOP), (LEAVE), I and J (which are
CODE words and, thus, machine de-
pendent) require very little modifica-
tion. The loop index word I remains
unchanged. For J, reduce the indexing
into the stack by 2 (since the LEAVE ad-
dress is no longer there). For (LOOP)
and (+LOOP), the change is simple. At
the end of each of these words, the
items used by the DO LOOP are pulled
off the return stack. For 8080 imple-
mentations, the 6 D LXI in LOOP-EXIT
should be changed to 4 D LXI. For the
650X, LOOP-EXIT contains six PLAs.
Remove two of them. Similarly, for
(LEAVE), two fewer return stack pulls
are needed.

The problem of unstructured for-
ward references left on the parameter
stack by LEAVE is eliminated by build-
ing a linked list of these references.
When LOOP (or +LOOP) is encountered,
it follows the pointers of this list
backward, resolving references. The
first reference is always created by DO
or ?DO. ?DO requires a forward
reference, but DO does not. However,
to keep LOOP simple, a spurious
reference is compiled for (DO) also,
though it never uses it. To handle nest-
ed D o LOOPS, multiple lists of forward
references are created. The variable
LOOP-LINK is used to point to the head
of the current list. When DO is encount-

ered, LOOP-LINK is pushed on the para-
meter stack and is initialized to HERE,
the address following (DO). LOOP uses
the pointer in LOOP-LINK to resolve ad-
dresses, then pops the stack into LOOP-
LINK. LOOP-LINK then points to the last
unresolved forward reference location
of the next DO LOOP out. DO and ?DO
compile a zero after (DO) (a zero ter-
minates the linked list). Their defini-
tions are shown in Figure One.

LEAVE now compiles (LEAVE) and
links in the address shown in Figure
Two. As described, LOOP or +LOOP
compiles its run-time word, resolves
the list of forward references (with the
BEGIN UNTIL loop in LOOP-EXIT), then
restores LOOP-LINK from the stack (see
Figure Three). DO and ?DO place a true
flag on the stack for error checking,
which is absorbed by ?CONDITIONAL.

Finally, the run-time words for DO
and ?DO are shown in Figure Four.
Notice that the ELSE part of (?DO) is
just (DO). It might be tempting to
substitute (Do) instead, but the top of
the return stack would then contain the
return pointer into the threaded code in
(?DO). Since the arguments used by (DO)
are on the return stack, it would not be
properly set up.

Metacompiler Considerations

To metacompile this DO LOOP con-
struct, transition words similar to DO,
?DO, LEAVE, LOOP and +LOOP are need-
ed. Error checking has been omitted
from the implementation given, and
the variable LOOP-LINK-T has been ad-
ded. The words given in Figure Five go
into the vocabulary of the metacom-
piler. The word THERE takes a compile-
time, target-code address and offsets it
to the corresponding run-time address.
The following words go into the
TRANSITION vocabulary, which con-
tains defining and compiling words
found in the target source code. The T:
and T; words indicate this (see Figure
Six). All T: definitions are made im-
mediate by T; and [T A R G ~ does a
[COMPILE] from the TARGET vocabulary,
which acts as the symbol table for
target words.

Volume VII, No. 3 FORTH Dimensions

A Forth 110 Technique

Pseudo-Interrupts
Ed Schmauch

Ponca City, Oklahoma

Traditionally, there are two methods
of computer input/output (I/O): poll-
ing and interrupts. polling is easier to
implement but has the disadvantage of
completely tying up the CPU during
I/O. The use of interrupts allows the
CPU to do background processing
concurrently with the I/O but requires
a more detailed understanding of the
hardware. Using Forth, I have devel-
oped an intermediate technique which
requires no more understanding of the
hardware than polling, but allows
background processing like interrupts.
I have dubbed the technique "pseudo-
interrupts."

The technique takes advantage of
Forth's threaded nature. The inner in-
terpreter routine NEXT is patched to
execute a code word with every execu-
tion of NEXT. Because Forth code is
threaded, execution is constantly pass-
ing through NEXT. The code word that
is patched in will therefore execute with
great frequency. This pseudo-interrupt
service routine can poll I/O port regis-
ters a single time and take any neces-
sary action. This gives a form of
polling which is neatly interleaved with
Forth execution. This technique does
not match the rapid response and CPU
efficiency of hardware interrupts, but
offers an improvement over traditional
polling techniques by allowing high-
speed I/O with background processing
occurring simultaneously.

Screens 21-23 show the basic
pseudo-interrupt words. I am using the
Forth-79 Standard (MVP-FORTH
version 1.01.03) on a Kaypro I1
portable computer. PATCH (screen 2 1)
expects the parameter field address
(PFA) of the pseudo-interrupt service
routine on the top of the stack and
patches a jump to this location over the
three one-byte instructions at the
beginning of NEXT. For example, if the
pseudo-interrupt service routine is
named PlsR one should enter PlsR
PATCH to enable the pseudo-interrupt.
Make sure the pseudo-interrupt service
routine preserves the values in any
registers which are used by the Forth
inner interpreter. With MVP-FORTH
on a 2-80 machine, I must preserve the
value in the BC register pair, since this
is the Forth instruction pointer. The
pseudo-interrupt service routine must
end with the macro BACK (screen 22),
which assembles the three patched-
over, one-byte instructions and a jump
to location NEXT+3. UNPATCH (screen
21) returns NEXT to its normal form, ef-
fectively disabling the pseudo-
interrupt. (Note that this technique
applies only to those Forth systems
which use a call to a central NEXT, not
to those which compile that code with
each word.)

In my CP/M version of Forth, KEY-
110 (screen 23) can be necessary, since
<KEY> uses CP/M to get a character
from the console. If no character is
present, CP/M waits until one is input.
During this time, NEXT is not being ex-

ecuted, rendering the pseudo-interrupt
inactive. KEY-I10 waits in Forth until a
character is present and then executes
<KEY > , ensuring that execution is con-
stantly passing through NEXT. KEY is
vectored through the variable 'KEY,
allowing easy definition of KEY-PATCH
and KEY-UNPATCH to vector execution
to KEY-I10 and back to <KEY > , respec-
tively.

Both to demonstrate the use of
pseudo-interrupts and to evaluate their
performance, I have written code to
run the prime number sieve benchmark
(BYTE, January 1983) concurrently
with pseudo-interrupt-driven serial
output. This code is shown in screens
24-27. The message "I AM RUN-
NING THE PRIME NUMBER
BENCHMARK," followed by a car-
riage return and line feed, is placed in
an output buffer by screen 24. The
pseudo-interrupt service routine
(screen 25) continuously outputs this
message. When the last character of
the message (the line feed) is transmit-
ted, the buffer pointer is reset to zero
so the message will be restarted from
the beginning. PISR also counts the
number of characters output, so
character-output efficiency can be
evaluated.

Screen 26 has the code to initialize
and set the baud rate on the serial port.
This code and parts of PISR are hard-
ware dependent. Be sure to modify
them to suit your hardware before you
a t t e m p t t o implement them.
INIT-SERIAL only needs to be executed

Baud Time Percen t Charac te r s Output
R a t e (Seconds) Full-Speed Output Eff ic iency (%I

No output 132.9 100.0 - -
1,200 183.5 72.4 21,792 99.0
2,400 185.0 71.8 43,852 98.8
4,800 187.5 70.9 88,860 98.7
9,600 192.6 69.0 182,632 98.8

19,200 204.5 65.0 400,252 101.9

Summary of Benchmark
Performance

Table One

FORTH Dimensions 30 Volume VII, No. 3

once after the computer is booted.
BAUD-SET is used whenever you want
to change the baud rate. Screen 27 con-
tains the BYTE benchmark. Line 4
zeroes the buffer pointer, zeroes the
character counter and enables the
pseudo-interrupt . Line 15 disables the
pseudo-interrupt and prints the num-
ber of characters transmitted. The rest
of the code is from BYTE, except that
the sieve is executed ten times to add to
the precision of the timings. Besides
enabling and disabling the pseudo-
interrupt, the benchmark code makes
no reference to the serial output
process. As with true interrupt-driven
110, pseudo-interrupts operate with-
out requiring the attention of the main
line code. Note that KEY-PATCH was not
necessary, since the benchmark never
gets input from the keyboard. To run
the benchmark without pseudo-
interrupts, "comment out" lines 4 and
15, except the semi-colon.

Table One shows pseudo-interrupt
performance for serial output baud
rates ranging from 1,200 to 19,200.
Also shown is the time for the bench-
mark with no concurrent pseudo-
interrupt-driven output. The bench-
mark was run twice at each baud rate
to lessen the possibility of an error.
The serial output was observed on a
Lear Siegler ADM 5 terminal. The per-
cent of full speed is calculated by divid-
ing the time for the benchmark without
pseudo-interrupt-driven output by the
time for a particular run and multiply-
ing by 100. (One might expect to divide
the time for a run by the time without
pseudo-interrupt-driven output, but we
are interested in speed, which is the
reciprocal of time.) The character out-
put efficiency is the number of charac-
ters output divided by the maximum
number of characters that could be
output at the given baud rate in the
time required for the benchmark to
run, multiplied by 100. As can be seen
from the table, the benchmark runs at
approximately two-thirds of full speed,
with the speed gradually decreasing
with increasing baud rate. Worded
another way, the pseudo-interrupt-
driven serial output slows the
benchmark by only one third. The
character output efficiency for baud

r
!3CR # 2 1

!:I (PSEUDO -- I Nl-EF;F;U['1- -- P A 1 CH. UNl',,AT [;H - E:t{S z(?(;UC;:-IT-: I:-OF;l-I-{-- 7 7)

1 (C R C = 1 0 7 9 2)

2 B A S E .3 I-iEX
3
4 CODE PATCH (F'Fe)

5 C 3 (JMP) A MV1 NEXT CiTG t i l:'OF' I-. ii PlCIL'
A NEXT I + !!iTA H i; MOV NEXT 2-1- ! ! i l i ' ~ N E X l ,'IMP
7 EN[)-CODE
9
9 CODE UNPATCH i i

1 N E X T C d A M 8 V T l N E h T ! ; l i 4 NEX1 1 + i 3 . 3 A M L ' 1 IUf:Xl' 1 1 E;-I,i
1 1 NEXT 2-t C.3 A MVI: N k X T 2"- $;TLi N[f X l ,!PIT'
1 2 END-CODE
1 ;
1 4 BASE '
1 5 .-. ;

E;CR #=:
(PSEUDO- lN'I'EKI?IJF'l' -.- I'?ACI<O URrIl:: .. k.f-15 '5J,>(JG3;: 1 01(1 11 -7,;' j

1 (CHC= 7 9 4 2)

.2 (HACK A!;CiEMRl-ES TI-iE: 'TIiFrE'E ONE- PY'T'E ! Nt i 1 IIIJi: 1- 1 OI'J::; 1-1 i[Yl (>RE:)

1: ! PATCtiET) OVER I N NEXT AND A JCJIIP ' I C J I'.IEJ:-I 1-1.
4
5 B A S E 3 C!)NTE:X-I 3 (L'URF;ENT :3 L,Ci:lIIAI- f>YSliIIDI.EFI D C I I N 1 1.1131'15
6
7 : Ei&>Ct:. (!

€3 I: NE: X T C :.a :I 1.- I: TER&L [:. ,
9 I: NEXT 1-1- C.il I I - ITEl i r i l - L:',

10 C NEXT 2+ C.3 2 L I TERCaL C.
1 1 IUEXT Z: t. JMF' :
1 ::
1:; CI.lF:REr~J'l- ' CONTIEX-I- ' IilArjl.1 '
1 4
1 ; . :.

SCR #2;
1:) (F'SEUDU.. lNl-EKlZ:Ul.-'l- -. 1 'E 'y.] /c], :,JF.(I:l CIF< 1 P,1[: - l-Lti$j -''7;;(.IG::I;: I-I-JF: 1 I I--;'':)

1 ([: R c - : ~ c) ~ I ~ J ?)

2 i D O N ' T WGIT F i I R CHAR I N Ct.';M WI-iCI?E. NI::!T LJOI'J'T l'!E- t.-XfEI'!Jl l PIC; !

-.
4 : y - - 1 , ()

5 R E G I N
6 TTERMlI 'JAL
7 U N T I L .
a .. t:EY . :
=?

1Cr : t::.EY--PATCH ()

11 ' KEY- - I /O CF/; ')..E:Y ' :
12
1 3 : I.:,E\{-UNpATCH ()

1 4 ' :::t.Ef r. [:FA 't:.E'{ 1 ;
1 5 --:

SCR # 2 4
1:) ! F'SEIJDO lNTERRUI'"1' - EIUF:FER, ETC. - EHS 2 5 M H Y 3 4 FORTH-79)

1 (CIi'C.=;SL111)
2
4 : Milt.: E BlJFFER !)

4 CREATE 3.4 WOND C 3 1 + A L L O T 1 T C. 10 C. :
5
t5 IIAk:.E _BLJF'FEFi P I S R -RUFFER I AM RIJNNING THE P R I M E NUMBER BENCHMAHI-'"
7 (COUNT B Y T E WILL B E USED A S BUFFER P O I N T E R)

t3
9 0 C:ONSTANT PAlJD
I(') 4 CONSTANT DATA
1 1 b CONS1 ANT CSR
1 2 4 CILit49Ti>NT REA1)Y"
15 1!:1 C:ONSTANl LF
1 4 DVAR I ABL-E CHARS
1 5

Volume VII. NO. 3 31 FORTH Dimensions

rates 1,000 to 9,600 is around ninety-
nine percent. I am puzzled by the
character output efficiency over 100
percent for 19,200 baud. If the ef-
ficiency is really 100 percent, the time
would have to be in error by almost
four seconds. I have confidence that
the precision of my timings was greater
than this. The only other possibility I
can think of is that when the Kaypro
serial port is set for 19,200 baud, it ac-
tually outputs characters slightly faster
than that. I admit this explanation is
not very satisfying and invite readers to
offer other suggestions.

In conclusion, the pseudo-interrupt-
driven serial output slows the bench-
mark by only one third while delivering
an output efficiency of ninety-nine per-
cent. This demonstrates that the tech-
nique is a viable alternative to
traditional I/O methods.

R o final notes will help those plan-
ning to implement this in MVP-
FORTH. I had to increase the memory
available to Forth with the following:

LIMIT 16384 + ' LIMIT ! CHANGE

Also, my version of MVP-FORTH
did not contain --> in the kernel. It is
easily defined as follows:

: --> ?LOADING 0 >IN ! 1 BLK +! ;
IMMEDIATE

SCl3 #r'5
O (IZ'SEIJDO--INTERRUPT - SISRV1 CE R O U T I N E .- E H S ?&MAYS4 FORTH- -79)

I (CR(:=34.'702)

.L

3 CODE P 1 !;R (... -.)

4 CSR I N READY? A N 1 O# I F (S E R I A L PORT R E A D Y 7)

J F ' I S R _ B U F F E R H L X I M E MOV E I N R E M MOV (I N C PTR)

h o D MVI: D DAD M A MCIV UATA OUT (OLJTF'UT' CHAR)

7 l..F CF ' I 0.1 I F (END OF L - INE?)

$3 A S[JB PI!;R_HUFFER STA THEN (ZERO BIKFEYR P O I N T E R)

C? CI-IARS 2 t . L t - i LD H JNX CHARS 2 + SHLD (INCREMENT CHARS)

1 0 L A MOV H URA (:)= I F (I;ARF;:Y TO H I G H WORD?)

1 1 Ct iARS LH1.D ti I N X CHAlTS S t i L D THEN
1.2 1-HEN
1 ;i BAOI.:
1 4 END-CODE

Si311 # 2 6
(:I (I=~!jEUD[3--IN1-E~RUt7,T . - S E R I A L PORl- -- EHS 0 5 S E P 8 3 FORTH- -79

1 (C R C - 2 9 2 7 4
2 B A S E .3 HEX
?

4 CREATE INIT..ARRGY ! OUTI~'UI- TO CSI; TO INI.TIALIZE zsir SIO)

5 18 C. 0 4 C. 4 4 C:. i . r l C, C)O C, CIZ C, C 1 C. Cr5 C. E A C.
h HERE 1 N I T -ARRAY - CONSTANT TIU I T -A l iRAY-LENGTH
7
8 : I N I T - S E R I A L ()

9 I N I T .ARRAY _ L E N G T H i) DO
1 0 IN IT . ,AF :RAY I + C 3 CSR P (N BAUD)

1 1 L-OOF' : (7 1 2 0 0)
1 2 (10 2 4 0 0)

13 : B A U D - S E T (N ! BAUD F.'! ; ! 12 4801:))

1 4 B A S E ' (1 4 96Clt:)
I 5 ... (1 5 1920il)

I SCR # 2 7
(P S E ~ ~ (3 - ~ p ~ ~ ~ ~ ~ ~ p ? - - By']-E BEp,iCHMAf:it:. .. [rki!$ >'<.>llc~~<;.!q ~ ' ~ ! ~ ~ ~ ~ ; I 1 ~ i ~ ~ ' ' " ' ~ , , i i

1 (C R C = 4 2 1 0 0) (TO RLJN LJITHOLJT I'SEIJDO-- I N T , I:Ol"Il"ll.fl'~IT 01.11- 4 ?, 1
2 819CI CONSTANT S I Z E VAl3IABL.E IZLAI3S :I-;]. ;I< .2--. ;3I..L..CIT
3 : DO-PRIME ()

4 (:I P I S R BUFFER (3 ' CI ('1 CI-IARS I?' " Pl:Ii l? l-'H-rC!-i

h F L A G S S I Z E 1 IFI 'LL I !;El* fiRt;:GY) 0 ! ~.El?i:l 1-'lriIPIE?" C1Jl.Jl'Jl '
S I Z E 0 DO FLAGS I +. C:3

I F I DUP + 5 + DUP I 1-

B E G I N DLJP S I Z E -::
W H I L E (1) OVER IFLAI3S t 13' i:IVl!:F< .i- Rli:F"t:i-il
DROP DROP 1 +

THEN
1-OUF' CFi . . " FRIMEC; "

LOOF'
UNPATCH L+ SPACES ICHARS U.3 D. . " I:HAfiS L)II1I'IJ-l " :

FORTH D~rnensions 32 Volume VII, No. 3

Attend the Seventh Annual

FORML CONFERENCE
The original technical conference for professional Forth

programmers, managers, vendors, and users.

November 29 - December 1, 1985

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California

This year's theme: SOFTWARE TOOLS, a Forth natural.
Present your favorite Forth tool and publish it in the conference proceedings, or
present a paper on another Forth topic. You will meet other Forth professionals
and learn about the latest in Forth applications, techniques, and directions.

To get your registration packet call the FIG Hot Line (408) 277-0668
or write to: FORML Registration, Forth Interest Group, P. 0. Box 8231,
San Jose, CA 95155.

Registration: $265 Double ROOIII

$3 1 5 Single Room (Limited availability)

$200 Non-conference guest (Share a double room)

Registration includes room, meals, conference materials, and social events.

.
Registration and abstracts are due

October 15, and final papers are due
November 1,1985. Make your

reservation now and get your
registration packet.

Space is limited,
advance registration

is required.

Volume VII. No. 3 33 FORTH Dimensions

An Approach to Reading Programs
Kim Harris

Palo Alto, California
Michael Ham

Santa Cruz, California
Programmers frequently need to un-

derstand in detail a program that was
written by someone else. Understand-
ing other people's programs is essential
in program maintenance and revision,
and it also plays a valuable role in
programmer education by allowing
programmers to learn from the tech-
niques and skills embodied in their
colleagues' creations, as well as from
their mistakes and oversights.

Formal "code inspections" efficient-
ly facilitate the difficult task of truly
comprehending a program. This
technique has the added advantage that
the use of an inspection team means
several people learn the program at one
time. The team approach also ensures
that the program is inspected from
various viewpoints; thus, inefficiencies
and errors are more likely to be detec-
ted.

Code inspection provides an excel-
lent way for members of a FIG chapter
to work together through the examples
of Forth code published in Forth
Dimensions and other journals. This
technique helps the chapter members
learn from the code and from each
other.

A code inspection team consists of
four to six members; more or fewer
hinder the process. Larger FIG chap-
ters can form several inspection teams.
In a company environment, it is impor-
tant that supervisory or management
personnel not be on the team, since
their presence has a chilling effect on
the frankness of the criticism and on
the open give-and-take of the process.

Specific roles are assigned in ad-
vance to individual team members:

Author One team member takes
the role of author of the code. Ideally,
of course, the actual author will play
this role, but in the absence of the true
author, a stand-in will suffice. The
purpose of the author is to be the
expert who answers questions about
the code: why a given approach was
taken, what considerations led to the
development of a particular word. The

author's ultimate responsibility is to
make the appropriate changes to the
code.

Moderator The moderator's role is
to keep things moving and to keep the
inspection session on track. The idea of
the code inspection is to understand the
code and to point out ways in which it
falls short: errors, inefficiencies and
the like. This meeting, though, is not
the place to write new code or to
develop alternate solutions. The mod-
erator is a facilitator who keeps the
meeting focused on its purpose. Also,
every suggestion and correction must
be recorded during the meeting so that
it will not be forgotten. The moderator
is responsible for the minutes of the
meeting.

Reader One team member reads
the code aloud, paraphrasing it in
terms of its purpose, rather than
merely echoing the actual definitions.
Instead of, "Next is SUM-COUNTS.
ONE RECORD-COUNT STORE
BEGIN FETCH-RECORD . . . ," the
reader says something like, "The next
word begins with the first record; for
each record, it reads the total and in-
crements the count box." By para-
phrasing the code, the reader focuses
the group's attention on the meaning
of the code; by paraphrasing it aloud,
the group stays together and actually
examines each word. Without such a
reading, code inspections quickly
degenerate into, "Next is screen 10;
any comments? No? Screen 1 l? Screen
12?" The process goes faster, but the
code is not really examined or under-
stood.

Inspectors The remaining team
members are "inspectors." They fol-
low the code as the reader reads it, they
ask questions of the "author" and
point out what they question or don't
understand. Some inspectors may be
asked to pay special attention to pro-
gram functions in their area of exper-
tise (e.g., drivers, data-base design,
quality assurance, integration, testing).

All members of the team check the
code for style: Are the names well
chosen? Are stack diagrams present
and accurate? Are comments present
and helpful?

To prepare for a code inspection,
each person should spend two hours
carefully reviewing the code, to get
familiar with it and to get some grasp
of how it does what it does. The
reader, of course, may have to prepare
in greater detail, since to paraphrase
the code requires a good understanding
of its intentions. Preparation is vitally
important to the success of the code
inspection.

The meeting should be limited to two
hours; people cannot focus with any
intensity for a longer period of time.
Experience shows that a line of Forth
code requires (on the average) about
thirty seconds in this kind of review;
this means a screen can be covered in
about seven minutes. The result is that
a review of Forth code cannot normally
cover more than about seventeen
screens in any session; twenty is prob-
ably the maximum.

After the code inspection, the author
revises the code to take into account
the comments and criticisms offered by
the inspection team. Compared to un-
inspected code, the code resulting from
this process of review and revision
shows a number of improvements: The
style and factoring are better and more
understandable, which makes subse-
quent maintenance and revision much
easier. Reviewing the code with other
programmers catches problems that
would normally show up only later,
when the various separate modules
would be integrated - problems like
the use of the same name for different
functions, redundancy with other mod-
ules (as when a programmer redevelops
a routine that another programmer has
already written and tested), inconsis-
tency in data values, and mismatches
of context or side effects. Experience
has shown that formal code inspections
increase productivity, reduce develop-
ment time and cost, and contribute to
programmer training and education.

The literature on code "walk
throughs" and team programming is
extensive. A good starting place for
the interested reader is The Psychol-
ogy of Computer Programming by
Gerald Weinberg.

FORTH Dimensions 34 Volume VII, No. 3

Volume VI Index
This reference guide to Volume VI was prepared as a service to our readers and to all members of the Forth Interest Group. Items are
referenced by issue number and page number.

79-Standard
An Augmented TRACE 5/ 18
Automatic Capitalization in Forth 1/20
Forth-83 Program to Run Forth-79 1/20
Forth List Handling 1/36
Forth Semaphores 4/23
In-Word Parameter Words 6/9
Mathquiz 6/13
Re-Defining a Colon Word 3/20
Think Like a User, Write Like

a Fox 3/23
Upgrading Programs to Forth-83 3/26

83-Standard
Enhanced DO LOOP 6/ 18
Forth-83 Program to Run

Forth-79 Code 4/28
Forth Control Structures 2/20
Long Divisors and Short Fractions 3/10
Pollard's Monte Carlo Factorizer 6/25
Quicksort and Swords 5/25
A Simple Data Transfer Protocol 2/32
Simple Modem I/O Words 5/13
Upgrading Forth-79 Programs to

Forth-83 3/26

ANDIF and ANDWHILE 4/33
Anonymous Variables 1/33
Anway, A. 1/22
Apple IIe, Screens for 1/22
Applications

Mathquiz 6/13
Tutorial: Simple Modem I/O

Words 5/13
Ask the Doctor

Astronomical Problems 3/30
Forth and the AIM-65 2/37
How to Learn Forth 5/9
Learning Forth 6/7
Moving to ROM 1/10

An Augmented TRACE 5/18
Automatic Capitalization in Forth 1/20

Baden, W. 5/25
Berkey, R. 3/26, 4/28

Capitalization 1/20
CASE Statement, "YACS" 6/38
Chen, S. S. 6/9
China Tour 1984, FORML 5/38, 6/33
CODE, Mixing With High-Level

Forth 4/37
Colon Word 3/20
Control Structures 2/20

Data Transfer 2/32
Debugging

An Augmented TRACE 5/18
Techniques 2/38

DO LOOP, Enhanced 6/ 18

Enhanced DO LOOP 6/ 18
Ericson, K. 2/32

The Far Right Stuff 6/21
Feucht, D. 2/32
fig-FORTH

fig-FORTH Interpreters 1/12
Forth P-Code Interpreter 4/9
Local Definitions 6/16
More Screens for the Apple 1/22
Quicksort and Swords 5/25
TI 99/4A Screen Dump 6/ 1 1

Forchheimer, R. 5/32
FORML

1984 Asilomar Conference 5/34
China Tour 1984 5/38, 6/33

Forth-79 Standard see 79-Standard
Forth-83 Program to Run Forth-79

Code 4/28
Forth-83 Standard see 83-Standard
Forth Control Structures 2/20
Forth in Rehabilitation Applications 2/28
Forth List Handling 1/36
Forth P-Code Interpreter 4/9
Forth Semaphores 4/23

Gates, W. C. 1/24, 4/33
Goppold, A. 5/18
Grossman, N. 3/10, 6/25

Hall, J. D. 1/39, 3/35, 4/40, 5/41, 6/40
Ham, M. 3/23, 4/19
Harralson, D. W. 2/20
High-Level Packet Communication 5/32
Hore, M. 6/18

In-Word Parameter Words 6/9
Interactive Editing 1/24
Interpreters

fig-FORTH 1/12
Forth P-Code 4/9

Jaffe, D. L. 2/28
James. J. S. 5/13

Laxen, H. 2/38, 3/32, 4/37, 6/38
List Handling 1/36
Local Definitions 6/ 16
Long Divisors and Short Fractions 3/10
Lotspiech, J . B. 1/20
Luoto, K. W. 1/26, 2/10

Mathematics
Long Divisors and Short Fractions 3/10
Pollard's Monte Carlo Factorizer 6/25

Mathquiz 6/13
Monroe, A. J . 4/9
More Screens for the Apple 1/20
Morgenstern, L. 1/33
Morton, L. D. 6/13

Olofsson, B. 1/36

P-Code Interpreter 4/9
Parameters, In-Word 6/9
Parnas' it. . .ti Structures 1/26
Pascal 4/9
Perkel, M. 2/18
Perry, M. 6/21
Pollard's Monte Carlo Factorizer 6/25
Procedural Arguments 2/10
Pruitt. C. 6/16

Quicksort and Swords 5/25

Ragsdale, W. F. 1/8, 1/10, 2/37,
3/30, 5/9, 6/7

Recursion 4/ 19
Re-Defining a Colon Word 3/20
Reiling, R. R. 2/9, 3/9
Rogers, H. H. 6/11
Ruehl, T. M. 1/20

Schmauch, E. 3/20
Screen Dump, TI 99/4A 6/11
Semaphores ~4/23
SOFTNET: High-Level Packet

Communication 5/32
Sorts, Quicksort and Swords 5/25
Standards, Forth

see also 79-Standard. 83-Standard,
fig-FORTH

Forth-83 Program to Run Forth
79 Code 4/28

Upgrading Forth-79 Programs to
Forth-83

Tan, L. 6/9
Techniques Tutorials

Debugging Techniques 2/38, 3/32
Mixing CODE With High-Level

Forth 4/37
"YACS" 6/38

Telecommunications
Simple Modem I/O Words 5/13
SOFTNET: High-Level Packet

Communication 5/32
Tevet, A. 5/30
Texas Instruments see TI 99/4A
Think Like a User, Write Like a Fox 3/23
TI 99/4A Screen Dump 6/11
Ting, C. H. 1/12
TRACE, Augmented 5/9

Upgrading Forth-79 Programs to
Forth-83 3/26

Why Forth Isn't Slow 5/30

Zander, J. 4/23, 5/32

Volume VII, No. 3 35 FORTH Dimensions

THE FORTH SOURCETM

MVP-FORTH FORTH DISKS
Stable - Transporlable . Publ~c Oomatn - 1001s D APPLE by MM 5125 0 Timer by HW czssetle
YOU need Iwo prlmary lealures ~n a soltware development package a stable operallng L7 APPLE by MM F 8 % 1245 0 TiS tOOO/ZX-81 525
system and the ab~lily lo move programs eas~ly and aulckly lo a variety o l compulcrs [Li ATARln \.alFORTH $60 0 2068 530
MVP-FORTH gives you bolh lhese lealures and many exlras Th~s publtc domaln product 0 ATARl by PNS F G 6 X. $90 q 280 by Lhl S100
includes an editor. FORTH assembler. lools, ulil~lies and the vocabulary lor the besl selllng 0 C64 by HES Commodore 0 8086188 by LM SlOO
book "Starting FORTH" The Programmer's KII provldes a complete FORTH lor a varlety 01 64 carlrldge 540 0 68000 by LM 5250
computers Other MVP-FORTH producls will slmpllly the development ot your appl~cal~ons " w 0 C64 wtlh EXPERT-2 by PS 0 VIC FORTH by HES. VIC20

MVP G.F 6 X 599 Carlridge S20
M V P Books - A Ser~es 0 CP/M by MM 1125 q Extensions lor LM. Specily IBM 280
0 Val. 1. Allabout FORTH by Haydon MVP-FORTH glossary wllh cross reterences l o 0 CP/M bY MM. F $185 or 8086

lip-FORTH. Starting FORTH and FORTH-79 Standard 2nd Ed. 525 q HP-75 by Cassady S 150 0 Software Floating Point 5100
0 Vol. 2. MVP-FORTH Assembly Sowce Code Includes IBM-PCe. 0 HP-85 by Lange $90 0 8087 Support (IBM-PC or 8086) SlOO

CP/M0 and APPLEe listing lor kernel $20 q IBM-PC by LM $100 q 9511 Supporl(Z8O or 8086) SlOO
0 NEw~o l . 3. Floating Point with source code by Koopman $25 " w 0 IBM-PC by MM 5125 q Color Graphics (280 or 0086) $100
q Vol. 4. Expert System wtth source code by Park $15 ' ' ~0 Maclnlosh by MM 5125 0 Data Base Management 5200

Vol. 5. File Management System wlth interrupt securily by Morelon 525
0 Voi. 6, Expert Tutorial lor Volume 4 by M 6 L Oerick 515
0 N E ~ ~ ~ ~ . 7. FORTH GUIDE to MVP-FORTH by Haydon 120

Key lo Vendors:
MVP-FORTH So t twa re - A transporlable FORTH HW Hawg Wild Soltware Codes:
0 MVP-FORTH Programmer's Kit lncludlng disk, documentallon Volumes 1 2 6 7 of LM Laboratory M~crosyslems F - Floattng Polnl

MVP Ser~es, and Start~ng FORTH. OCPIM, OCPiM 86. 02100 . OApple MM M~croMot~on G - Graphics
OSTM PC. O l B M PC. XTlAT 6 compat~bles. OPCIMS-OOS, nosbo rne PNS Pink NO IS^ Studlo T - Tulor~al
OKaypro. OM~croOec~s~ons. OOEC Ralnbow, ONEC 8201. OTRS-801100 PS Par Sec X . Other Exlras

N E w ~ ~ ~ 1 5 0 . 0 H P 1 10. OMactntosh. 0 Atart 600180011200, 0 ADAM $ 175
0 MVP-FORTH Enhancement Package lor IBM-PCIKIIAT Programmer's KII

Includes lull screen edtlor MS-DOS file ~nlerlace, dlsk, display and
assembler operalors $110 FORTH MANUALS, GUIDES 6 DOCUMENTS

0 MVP-FORTH Floating Point and Malrix Math lor IBM PCIXTIAT with 8087 ' t w o Thinking FORTH by Leo Brodie, aulhor 0 68000 Ilg-Forth with assembler 125
or Apple with Applesoll $85 01 besl selling "Slarttng FORTH" 516 0 FORML Proceedinps

0 MVP-FORTH Graphics Exlension lor IBM PCIXTIAT or Apple 565 r_l ALL ABOUT FORTH by Haydon. q 1980 0 1981 Vol 1
0 MVP.FORTH Programming Aids lor CP/M. IBM or APPLE Programmer's MVP Glossary $25 0 1981 V012 q 1982

K I ~ Extremely uselul loo1 lor decomp~llng, calltlndlng. Iranslallng, and o FORTH Encyclopedia " ' ~ 0 1983 0 1984 each S25
debuggtng 5200 by Oerck 6 Baker $25 O 1981 Rochesler Procesdinps

f l MVP-FORTH Crass Compiler lor CPIM Pfogrammer's KII Generales Nrwl l FYS FORTH from the Netherlands 0 1981 0 1982 0 1983
headerless code tor HOM or large1 CPU $300 0 User Manual 125 q 1984 each 525

0 MVP-FORTH Meta Compiler lor CP/M Programmer's kt1 Use lor 0 SourceLtsling 525 8lbliograph.l 01 FORTH St7
applications on CP/M based compuler " w C I FORTH Tools and Applic. 0 The Journal 01 FORTH
Includes publlc doma~n source $150 by Feierbach 119 Application 6 Research

0 The Complele FORTH by WinlieM S16 q V d 111 q V d 112
0 MVP-FORTH PAOS (Prolessional Applicalion Oevelopmenl Syslem) lor IBM "WO Learning FORTH by Armstrong 117 0 Vo1211 q Vo1212

PCIXTIAT or PClr or Apple Il. llB or Ile An ~ntegraled system lor cuslornlzlng your q Underslandinp FORTH by Reymann 53 "WO V d 213 each S15
FORTH programs and applications The editor Includes a bl-d~reclional slring 0 FORTH. An Applications Approach METAFORTH by Cassady 530
search and is a word processor specially des~pned lor last development. PADS has by Toppen 520 0 Threaded inlerprellve Languages 525
almost triple the complle speed o l mosl FORTH's and provldes last debugptng 0 FORTH Applicalions by Roberls 113 Systems Gulds lo 110-FORTH
techniques. Minimum size target systems are easy with or withoul heads. V~rtual * ' w 0 Maslerlnp FORTH by Ting S25
overlays can be compiled in object code PADS is a true proless~onat development by Anderson 6 Tracy $18* 'w0 lnslde F83 Manual by Ting 525
system. Specify Computer. 5500 q Beginning FORTH by Chirlian $17 q FORTH Notebook by l i ng 525
0 MVP-FORTH MS-DOS tile interface lor IBM PC PADS $80 q FORTH Encycl. Pockel Guide $7 q Invitalion lo FORTH 520
0 MVP-FORTH Floating Point 6 Matrix Math see above $85 q And So FORTH by Huang 0 POP-11 User Man. $20
0 MVP-FORTH Graphics Extension see above $65 A college level text 525 q 6502 User's Manual by

0 MVP-FORTH EXPERT-2 System lor learnlng and developtng knowledge based 0 FORTH Propramminp by Scanlon $17 Rockwell Intl. 510
programs. Both IF-THEN procedures and analyllcat subroutines are ava~lable 0 STARTING FORTH by Brod~e Besl 0 FORTH-83 Slrndard 115
Source code IS provtded Spec~ly OApple, OIBM, or OCPiM Includes MVP ~nslrucl~onal manual available 0 FORTH-79 Slandard 515
Books. VOI 4 6 6 $100 (sol1 cover) 520

0 NE~W.*YKP(C A Word Processor tor the IBM PC/XT/AT w ~ l h 256K MVP-FORTH
compatible kernel wlth Flies Ed11 and Print syslems Includes D~sk and Calculalor 0 lnslallation Manual lor lip-FORTH S15
systems and abillly l o comptle addtt~onal FORTH words $150 0 Source Listings o l tip-FORTH. Spec~ly CPU or Cornpuler S15

Orderlnp Inlormalion' Check. Money Ordcr (payable to MOUNTAIN VIEW PRESS. INC) lor each Item uder $25 $10 lor each tlem between $25 and $99 and $20 lor each llem
VISA. Mastercard Amerncan Express COD'S 15 crtra M~n~mum order $ 1 5 No Dllltnq or over SlOO All prlces arid producls s~~btect I0 change or wilhdrawal wllhoul nollce Slngle
unpa~d PO'S Catllorn~a resodcnls add salcs lax Sh~pplnq costs In US ~nchrded in prlcc syslcrn andlor slnqlc uscr lhccnsr agrccmcnl required on Some plOduC1S
Fore~gn orders, pay an US htnds on US hank Include lor handllng and chlpp~np by AIR $ 5

MOUNTAIN VIEW PRESS, INC.
) PO BOX 4656 MOUNTAIN VIEW, CA 94040

Number Editing Utility
Ken Takara

San Jose, California

When writing interactive applica-
tions, one often needs numeric data to
be entered by a user at the keyboard.
Unfortunately, most built-in input
routines do not provide the kind of
data checking and display formatting
usually wanted.

In BASIC, for example, you might
code

10 INPUT X

The user then types "HI, I'M KEN"
and the program blows up. In Forth,
you would say something like

PAD 80 EXPECT PAD NUMBER

which has the sole advantage of not
crashing when the user enters some
other, arbitrary sequence of key
strokes.

In this little article, I describe a
simple data-entry utility written just to
handle certain numeric entry problems.
Naturally, it is written in Fortran. I call
the utility NUMED.

How To Use It

< esc > Delete Last Digit

Accept Sign

STATE

<cr>

I Restore Initial Value

" X

Reiect

+or- S2 (Max Digits Reached) S3
FULL ACCEPT ,L sign STATE

b - <cr>
NUMED State Diagram

Figure One

: NUMEDIT -5 .2 (r o w c o l -- : D i s p l a y f o r m a t 5.2)
CH CV (P o s i t i o n the c u r s o r)
0. NUMED.EDL INE 1- (P o i n t t o the e d i t i n g b u f f e r)
CONVERT DROP (C o n v e r t t o a b i n a r y v a l u e)
< # # # "." HOLD # # # N U W E D - S I G N @ S I G N # Z T Y P E ;

: NUMBER-EDITOR--5.2 (r o w c o l d v a l l -- d v a l 2 : E d i t o r c a l l ,
f o r m a t 5 . 2)

' NUMED-5.2 CFA NUMED+DISPLAY ! (S e t d i s p l a y v e c t o r)
5 NUMED.MAXDIGITS ! (S e t the d i g i t c o u n t)
NUMBER-EDITOR ; (C a l l t he e d i t o r)

Create a display word for the 5.2
format: Now create a word to set

the display vector, set the digit
count and call the number editor

Figure Two
............................... lo(:)l
0. (D a t a e n t r y : I N S T R I N G)
1.
2. : I N S T R I N G (s t r i n g c h a r -- p o s i t i o n or -1)
9 . (1) 4 R O L L 4 R O L L (D u p l i c a t e s t r i n g)
4. OVER + SWAP (S t a r t / s t o p a d d r e s s i n s t r i n g)
5. DO (F o r e a c h en t ry i n s t r i n g ...)
6. OVER I C@ = I F (F o u n d i t . . .)
7. SWAP DROP O L E A V E (R e t u r n i t s o f f s e t and qu i t f l a g)
8. E L S E (N o t f o u n d y e t . . .)
9. 1 + (I n c r e m e n t o f f s e t p o i n t e r)

THEN You call NUMED, passing it the row
(K e e p 1ool:ing)

and column position on the display at I, _I -,HE, (F a i l u r e f l a g , re turn f a i l u r e)

which it should appear, and a double- 1.3. ; -- ,.
length initial value. NUMED displays the 14.

15. initial value in inverse video. You can ...
then edit it, replace it or accept it as it ==-=l=====:-;==.-=~.=.--.--...-==~:=i=i=i li:,,-)2

stands. 0. (D a t a e n t r y : S E L E C T)
1.
2. : SELECT (s t r i ng -- o f f se t : R e t u r n p o s i t i o n i n s t r i n g of c h a r)
3. B E G I N
4. OVER OVER KEY (D u p s t r i n g ; g e t k e y)
5. I N S T R I N G (S e e i f i t . s i n t h e s t r i n g)
6. DUP -1 = (N o t found y e t ...)
7. W H I L E
8. DROP (D r o p k e y a n d k e e p t r y i n g)
9 . REPEAT

10. ':.R DROP DROP R:'. (k e e p on ly p o s i t i o n o f f s e t)
1 1 . ;

Volume VII, NO. 3 37
-

FORTH Dimensions

Valid keys are defined as follows:

Keys 0 - 9 Numeric digit
<cr> Accept current value
< esc > Get initial value

X Delete last digit
+ Change sign to

positive
- Change sign to

negative

The actions of the keys are best
described by referring to the state
diagrams (Figure One). Note that if the
first key pressed is a digit, the initial
value is cleared and replaced by
whatever the user enters.

Notes on the Display
The default display word is set to

show a thirteen-character field: ten
digits and a decimal point, a dollar sign
and either a plus or a minus. Obvious-
ly, this was developed for business ap-
plications! The format is 10.2 (ten
digits, with two to the right of the
decimal point).

The display is vectored, so you
aren't stuck with only a 10.2 dollar for-
mat. You can write your own display
word based on the default word, then
tell NUMED to use it instead. I'll talk
about that in the "Configuration" sec-
tion.

Implementation Dependencies

This utility was developed under
MicroMotion Forth-79 on the Apple
I1 + . Certain implementation-specific
words were used, which should be
mentioned.

Cursor positioning and video at-
tributes are used by NUMED. Specifical-
ly, the four words CV, CH, INVERSE and
NORMAL are present. Most versions of
Forth have some sort of equivalent.
Glossary entries are:

cv (row ---) Put cursor on
given row.

CM (col ---) Put cursor on
given column.

INVERSE (---) Use inverse video.
NORMAL (---) Use normal video.

- - -. .- .- -------_-- - - 1 ()<);7 ==
0. (NUMBER ED I TOR--st a r t : P r i m i t i v e a)
1.
2. CREATE NUMED-SAVESTR 1 6 ALLOT (I n l t i a l s t r i n g)
3 . CREATE NUMED. EDL I N E 1 6 ALLOT (E d i t s t r i n g)
4. VARIGHLE NUMED.MAXDIGITS 1 2 NUMED.MAXDIGITS !
5 . VARIABLE NUMED. SAVESIGN (I n i t i a 1 s i g n)
6. VARIABLE NUMED.SIGN (C u r r e n t s i g n)
7. VARIAHLE NUMED.GDDPT (Gdd p o i n t e r)
8. VARIABLE NUMED+DISPLAY (D l s p l a y w o r d v e c t o r)
9. 4 6 CONSTANT " . " (D e c i m a l p o i n t a s c i i)

10. 1 6 STRING SIGNED. SLCT " ,: yz+-(:)123456789" SIGNED. SLCT S !
11. 27 SIGNED.SL.CT DROP C ! (rest:> = c h a r 0)
12. 24 SIGNED.SLCT DROP 1+ C ! (O X = c h a r l)
1;. 1 3 SIGNED. SL.CT DROP 2+ C ! (< c r > = c h a r 2)
14 . - -
15.

............................. 1 0 0 4

0. (NUMBER EDITOR: NUMED-CLRBUF NUMED-RESET)

1.
2 . : NUMED-CLRBUF (-- : C l e a r e d i t i n g b u f f e r s)
3. NUMED-EDLINE 1 6 9 2 F I L L (B l a n k o u t e d i t l i n e)
4. 0 NUMED. ADDPT ! ; (Add p o i n t a t b e g i n i n g)
5.
6. : NUMED-RESET (-- : R e s e t t o i n i t i a l v a l u e)
7. NUMED-CLRBUF (C l e a r e d i t b u f f e r)
8. 1 6 NUMED. ADDPT ! (P o i n t e r t o e n d o f s t r i n g)
9. NUMED.SAVEGTR NUMED.EDLINE 1 6 CMOVE (R e s t o r e i n i t i a l s t r)

10. NUMED. SAVESIGN @ NUMED. S IGN ! ; (R e s t o r e i n i t i a l s i g n)
11.
12. -->
13.
14.
15.
..

=16------------E--------------- _--___----__--- 1005

0. (NUMBER EDITOR: NUMED-INITIAL NUMED-ACCEPT
1.
2. : NUMED-INITIAL (d v a l -- . . S e t i n i t i a l v a l u e)
3. NUMED.SAVESTR 1 6 3 2 F I L L (C l e a r h o l d i n g b u f f e r)
4. NUMED-CLRBUF (C l e a r e d i t b u f f e r)
5. 2DUP 0. D< I F - 1 ELSE O THEN NUMED. SAVESIQN !
6. < # #S #> DUP >R (d v a l -> s t r i n g)
7. NUMED.SAVESTR SWAP CMOVE (S a v e i n i t i a l v a l u e s t r i n g)
8. NUMED-RESET R>NUMED.ADDPT ! 1 (I n i t i a l a d d p o i n t)
9.

10. : NUMED-ACCEPT (-- d v a l : A c c e p t t h e e d i t e d v a l u e)
11. 0. NUMED.EDLINE 1- CONVERT DROP (s t r i n g - > d v a l)
12. NUMED. S IGN @ I F DNEGATE THEN ; (G e t s i g n)
13.
14. -- >
15.
..
===ll======----I---E====I====== lOi)&, =---- -------- ---------------- ---- D -------- I

0. (NUMBER EDITOR: ?NUMED-FULL NUMED+)

1.
2. : ?NUMED-FULL (-- f l a g : T r u e i f b u f f e r i s f u l l)
3. NUMED. ADDPT @ NUMED. MAXDIGITS @ < NOT ;
4.
5. : NUMED+ (c h a r -- : Add d i g i t t o s t r i n g)
6. NUMED. EDL I NE (E d i t l i n e . . .)
7. NUMED.ADDPT B + C ! (Append t o a d d p o i n t)
8. 1 NUMED.ADDPT + ! ; (I n c r e m e n t a d d p o i n t)
9.

10. -- >.
11.
12.
13.
14.
15.
...

FORTH Dimens~ons 38 Volume VII, No. 3

MicroMotion Forth also has a set of
string-handling words. I've used s! and
STRING to create a single-dimension
array of characters for my own word,
SELECT.

STRING is a defining word that makes
space for a character string. For ex-
ample,

10 STRING MUSH

creates a dictionary entry called MUSH
with space for ten characters. When
you type MUSH it leaves the address of
the first character and the length of the
string on the stack. You could ap-
proximate it with

CREATE MUSH 10 C, 10 ALLOT

and then, when calling MUSH, type

MUSH COUNT

to get the string pointer and length.
The word s! moves a character string
into the array part of the string vari-
able. Some versions of Forth have the
word ,!I to compile a string into the
dictionary.

You will note that I have to patch
some characters into the selection
string. This is because it is difficult to
include things like <esc> , <cr>
and * X as character literals in Forth.

SELECT

SELECT is a small utility with uses
outside the NUMED package. Given a
string of characters, SELECT accepts
only those keystrokes whose characters
are included in the string. It returns the
index of the character within the string.
This is permits the routine using
SELECT to CASE on the keystroke,
frequently done in menu-driven pro-
grams.

Implementation Notes

NUMED has been implemented as a
state machine where each state consists
of an action part (within the CASE) and
a transition part. Some action words
within a state require the keystroke
index as input, while some do not.
Digits, for example, must be passed to

100/ ====--------------------------- -------------------------------
0 . ! NIJMBER ED ITOR: NUMED-XD I G I T NUMED-SI GN "NUMED-CMD)

1.
2. : NUMED-XDIGIT (-- : D e l e t e l a s t d i q i t)
2 . NUMED.ADDP1 d (:I..:. I F - 1 NUMED-ADDPT + ! THEN (D e l e t e l a s t c h a r)
4. 32 NUMED.EDL1NE NUMED.ADDPT @ + C ! ; (S e t t o b l a n k)
5.
6. : NUMED-SIGN (s i g n -- : S e t sign)
7. WUMED.SIGN ! :
8.
9 . : :'NUIYED-CMD (-- ~..commandl lst:.. : G e t a command)

lu. ! tj=<..esc.;- : l = - ' . ~ : a.;.:-cr::. : sign 3 = s e t s l g n : c h a r 4 = a d d - d i g i t)

11. 5 1 GNkD. SLC l SELECT (G e t v a l i d k e y s t r o k e)
1 . DLIP :5 %'. I F E X I T THEN (R e t u r n a c o n t r o l k e y)
1.3. DUP 4 .:. I F SlGNED.SLC1- DROP + CCd 4 E X I T THEN (R e t u r n a d i g i t)

. - I F 1:) ELSE - 1 THEN 13 ; 14. :1 - L R e t u r n a s i g n)
15. -- .
..

1 ol-,e ======--------------=---------- - .- - - - - -. - - .- - - .. - - - - - -. - .- - - - - - - - - -. . .
,.I. (NUlvlbEti ED1 TOR: NUMED--1STDIGI 1-)

1.
2. : NUMEU-1STDIGIl (c h a r -- : Add 1 s t d i g i t)
3. NUMED-CLRBUF (C l e a r e d i t b u f f e r)
4. NUWED+ : (Add t h e d i g i t)
a.

6. : NUMED-tiEJEOT (c h a r -- : R e ~ e c t ; + u l l b u f + e r)
I . UW3P BELL ; (Say ' a l l f u l l ')
8.
9. : NUI'IED-NUTHING (-- : Do nothing) :

1 (:I .
11. -- .
12.
1:.
14.
15.
- .- -. ,- - -. - - - - - - - - - - - - - - -. -
.- - - - -. -. - - - - - - - - - - - - - - - - - - .- - - - - - - ------------------- 1009

0 . (NUMBER EDITOR: NUMED-St:))

1. : NUMED-50 (-- n : : t s t a t e : S t a t e O c o n t r o l)
2 . "'I\IUMED-CPID DUP :..H (S a v e c o p y o + cmd c o d e)
2 . . CASk ! L -ega l actions)

4. O OF NUMED-RESET ENDOF
e J. 1 OF NUMED-XDIGIT ENDOF
6. 2 OF NUMED-NOTHING ENDOF
/ . 5 OF NUMED-SIGN ENDOF
0. 4 OF NUMED-JSTDIGIT ENDOF
9. ENI?(SASE

1 i,. t i :.
11. DUP 2 = I F DkOP 5 E X I T THEN (A c c e p t v a l u e)
12. TNUMED-FULL I F DROP 2 k X I T THEN (M a x d l g i t s r e a c h e d)
15. UUP (-I= OVER :3 = OH I F UROP 1:) EX11 THEN (e s c / s i g n)
14. DUF' 1 = OVER 4 = O R I F DROP 1 E X I T T H E N : (. " . X / d i g i t)
15. .

............................... 1 0 1 0
0. (NUMBER EDITOR: NUMED-S1)

1. : NUMED-S1 (-- n e t s t a t e : S t a t e 1 c o n t r o l)
2. 7NUMED-CMD DUP >H
3. CASE
4. O OF NUMED-RESET ENDOF
5 . 1 OF NUMED-XDIGIT ENDOF
6. 2 OF NUMED-NOTHING ENDOF
7. 3 OF NUMED-SIGN ENDOF
8. 4 OF NUMED+ ENDOF
9. ENDCASE

1 (5 . R 1:.
11. 7NUMED-FULL I F DROP 2 E X I T THEN (M a x d i g i t s r e a c h e d)
12. DUP O= I F DROP O E X I T THEN (esc=Undo)
13. DUP 1 = O V E R 2 .: OR I F DROP 1 E X I T THEN (" . X / d i g i t)
14. D R O P S ; (CR=Accep t)
15. - - ,:.
..

VolumeVII. No. 3 39 FORTH Dimensions

the append-digit word, while other ac-
tion words take no parameters at all.
The resulting code is not as elegant as it
might be, but I saw no overriding
reason to change it.

Configuring NUMED

NUMED is normally configured to
accept a ten-digit value, displayed in
the $10.2 format mentioned earlier.
This may not always be desirable, of
course. You may wish to reconfigure
the editor before editing a field. To do
this, you need to create a new display
word, then change the display vector to
point to it, and change the acceptable
number of digits. NUMED-10.2 is the
default display word, and NUMED'
DISPLAY is the vector. NUMED.
MAXDIGITS is a variable containing the
maximum number of digits accepted
for a value.

For example, to edit a field in the
form xxx.xx with all five digits dis-
played, see Figure Two.

Glossary

SELECT (s-addr len --- index)

Given a string, accept a keystroke
represented within the string and
return its index within the string.

NUMBER-EDITOR (row c01 dvall
--- dvall)

Call the number editor. The field
will be displayed on the video screen at
row,col in inverse video. Digits will
enter the display in calculator format.
On exit, the double-value result is
returned.

-------------================== .- - - - - - - - - - - - - 1<)11

0. (NUMBER EDITOR: NUMED-S2
1. : NUMED-S2 (-- n x t s t a t e : S t a t e 2 c o n t r o l)
2 . ?NUMED-CMD DUP ::.R
3. CASE
4. O OF NUMED-RESET ENDOF
5. 1 OF NUMED-XDIGIT ENDOF
6. 2 OF NUMED-NOTHING ENDOF
7. 3 OF NUMED-SIGN ENDOF
8. 4 OF NUMED-REJECT ENDOF
9. ENDCASE

1 i). R ::.
11. DUP O= I F DROP O E X I T THEN (esc=Undo)
12. DUP 1 = I F DROP 1 E X I T THEN (- ,X=De le te)
13. DUP 2 = I F DROP 3 E X I T THEN (CR=Accep t)
14. D R O F ' 2 ; (S i g n / d i g i t)
15. - - ":.
..

-------------------------== 1[:)12

0. (NUMBER EDITOR: NUMED-10.2)

1.
2 . : NUMED-10.2 (r o w c o l -- : D i s p l a y v a l u e)
3. C H C V
4. 0. NUMED-EDLINE 1-
5. CONVERT DROP DABS
6. <: # # # " . " HOLD #S 56 HOLD NUMED. S IGN Q S I EN # 1:.
7. 1 3 OVER - SPACES TYPE ;
8.
9. NUMED-10.2 CFA NUMED*DISPLAY !

10.
11. -- 1.
12.
13.
14.
15.
..

----------==---- ------- _----=--_--___-- ---- 1 0 1 3

0. (NUMBER EDITOR: NUMED-STATES)

1.
2. : NUMED-STATES (s t a t e -- n x t s t a t e : F u l l s t a t e c o n t r o l)
3. CASE
4. i) OF NUMED-SO ENDOF
5. 1 OF NUMED-S1 ENDOF
6. 2 OF NUMED-S2 ENDOF
7. ENDCASE ;
8.
9.

1 0 . -- >

11.
12.
13.

14.
15.
..

............................... 1 i)14
0. (NUMBER EDITOR: NUMBER-EDITOR)

1.
2. : NUMBER-EDITOR (r o w c o l d v a l l -- d v a l 2 : F u l l e d i t)
3. NUMED-INITIAL (P r e p a r e t o e d i t)
4. OVER OVER INVERSE NUMED*DISPLAY Q EXECUTE (D i s p l a y d v a l l)
5. O BEGIN (I n i t i a l s t a t e is SO)
6. NUMED-STATES (E x e c u t e s t a t e)
7. 3 P ICK 3 P ICK NUMED*DISPLAY Q EXECUTE (D i s p l a y r e s u l t)
8. DUP 3 = U N T I L (Go u n t i l s t a t e 3 r e a c h e d)
9. DROP (D r o p e a t r a s t a t e v a l u e)

10. NORMAL NUMED*DISPLAY Q EXECUTE (D i s p l a y f i n a l d v a l 2)
11. NUMED-ACCEPT ; (A c c e p t t h e r e s u l t)
12.
13.
14.
15.
..

FORTH Dimensions 40 Volume VII, No. 3

Michael Ghormley
San Jose, California

With this issue, we say goodbye to
John Hall as the International FIG
Chapter Coordinator. John has served
in this capacity for more than two
years, and has done a sterling job. For
the entire FIG membership, I wish to
thank you, John, for your enormous
contribution of time and energy. I
hope that in the future I can do as well.

We wish to welcome two new FIG
chapters:

Holland FIG Chapter, Breda, Holland

FIG des Alpes, Annely, France

Atlanta FIG Chapter

Ron Skelton reports that Rick Nixon
has developed a Forth-83 for the Com-
modore 64 which follows Mastering
Forth, except for an improved editor.
The price is $20, which includes ongo-
ing support. Rick's home phone is
404-377-3509. Brian Walsh provided a
comparison of fig-FORTH, Forth-79,
Forth-83 and HP-71B Forth.

East Tennessee FIG Chapter

Norman E. Smith writes that
Richard Spille talked on the operation
of the Forth inner interpreter. Paul
Satterlee presented a high-level
floating-point package, and Dick
Tracey demonstrated Forth on a TI
99/4A.

Boston FIG Chapter

The report from Bob Demrow is that
their group is developing a controller
project for the Plymouth-Carver Plan-
etarium as a public-service project. It is
being coordinated by Russell Blake.
Also, A1 Grant spoke on the Rockwell
R65Fll chip set.

Richmond FIG Chapter

Donald Full reports that John C.
Lundin, Jr. is giving a tutorial on data
structures. Donald Full presented new
words called "conditional comments"
which may be passed over or compiled,
depending on a value on the stack. Phil
Smith brough t a Rockwell
R65F11-based, single-board computer
for inspection.

Advertiser's Index Bryte Computers 16

Dash, Find & Associates 12
Forth Interest Group 2 1-24
Forth Dimensions 44
FORML Conference 3 3
FORTH, Inc. 18
Forth Institute 4
Hartronix 10
Harvard Softworks 8
HiTech Equipment 2
Laboratory Microsystems 26
MCA 41
MicroMotion 20
Miller Microcomputer Services 15
Mountain View Press 36
Next Generation Systems 20
Parsec Research 27
Shaw Laboratories 20
Sota 17

Volurne.VII, No. 3

FIG-Forth for the Compaq,
IBM-PC, and compatibles. $35
Operates under DOS 2.0 or later,
uses standard DOS files.

Full-screen editor uses 16 x 64
format. Editor Help screen can be
called up using a single keystroke.

Source included for the editor and
other utilities.

Save capability allows storing Forth
with all currently defined words
onto disk as a .COM file.

Definitions are provided to allow
beglnners to use Starting Forth
as an introductory text.

Source code is available as an
option

A Metacompiler on a
host PC, produces a PROM

for a target 630316803
Includes source for 6303

FIG-Forth. Application code
can be Metacompiled with Forth
to produce a target application
PROM. $280

FIG-Forth in a 2764 PROM
for the 6303 as produced by

the above Metacompiler.
Includes a 6 screen RAM-Disk
for stand-alone operation. $45

An all CMOS processor
board utilizing the 6303.

Size: 3.93 x 6.75 inches.
Uses 1 1-25 volts at 12ma,

plus current required for
options. $240 - $360

Up to 24kb memory: 2kb to 16kb
RAM, Bk PROM contalns Forth.
Battery backup of RAM with off
board battery.

Serial port and up to 40 pins of
parallel 110.

Processor buss available at
optional header to allow expanded
capability via user provided
interface board.

Micro Computer
Applications Ltd

8 Newfield Lane
Newtown, CT 06470

203-426-61 64

Foreign orders add $6 shlppimg and handling.
Connecticut residents add sales tax.

INDIANA
Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
317/353-3929

MISSOURI ALABAMA Bay Area Chapter
Silicon Valley Chapter

Huntsville FIG Chapter Monthly, 4th Sat.,
Call Tom Konantz FORML 10 a.m., FIG 1 p.m.
205/881-6483 ABC Christian School Aud.

Dartmouth & San Carlos Ave.

Kansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Inst.
Mag Conference Center
Call Linus Orth
816/444-6655

ALASKA
San Carlos
Call John Hall 415/532-1115
or call the FIG Hotline:
408/277-0668

Fort Wayne Chapter
Monthly, 2nd Wed., 7 p.m.
lndiana/Purdue Univ. Campus
Rm. B71, Neff Hall
Call Blair MacDermid
219/749-2042

St. Louis Chapter
Monthly, 1st Tues., 7 p.m.
Thornhill Branch Library
Contact Robert Washam
91 Weis Dr.
Ellisville, MO 6301 1

Kodiak Area Chapter
Call Horace Simmons
907/486-5049 Stockton Chapter

Call Doug Dillon
209/931-2448 IOWA

ARIZONA
Phoenix Chapter
Call Dennis L. Wilson
602/956-7678

NEVADA Iowa City Chapter
Monthly, 4th Tues.
Engineering Bldg., Rm. 2128
University of lowa
Call Robert Benedict
319/337-7853

COLORADO
Southern Nevada Chapter
Call Gerald Hasty
702/452-3368 Denver Chapter

Monthly, 1st Mon., 7 p.m.
Call Steven Sarns
303/477-5955

Tucson Chapter
Twice Monthly,

NEW HAMPSHIRE
New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Armtec Industries
Snepard Dr., Grenier Field
Manchester
Call M. Peschke
603/774-7762

2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems CONNECTICUT

2030 E. Broadway #206
Call John C. Mead' Central Connecticut Chapter
602/323-9763 Call Charles Krajewski

203/344-9996

ARKANSAS FLORIDA

Central Iowa FIG Chapter
Call Rodrick A. Eldridge
5 151'294-5659

Fairfield FIG Chapter
Monthly, 4th day, 8:15 p.m.
Call Gurdy Leete
515/472-7077 NEW MEXICO

Central Arkansas Chapter
Tivice Monthly: 2nd Sat., 2 p.m. & Orlando Chapter
4th Wed., 7 p.m. Every two weeks, Wed., 8 p.m.
Call Gary Smith Call Herman B. Gibson
501/227-7817 305/855-4790

Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Call Rick Granfield
505/296-865 1

NEW YORK

KANSAS
Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.
532 Market
Wichita, KS
Call Arne Flones
3 16/267-8852

CALIFORNIA Southeast Florida Chapter
Monthly, Thurs., p.m.

Los Angeles Chapter Coconut Grove area FIG, New York
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Ron Martinez
212/517-9429

Monthly, 4th Sat., 10 a.m. Call John Forsberg
Hawthorne Public Library 305/252-0108
12700 S. Grevillea Ave.
Call Phillip Wasson Tampa Bay Chapter
213/649-1428 Monthly, 1st Wed., p.m.

Call Terry McNay
Monterey/Salinas Chapter 813/725-1245
Call Bud Devins
408/633-3253 GEORGIA

LOUISIANA

New Orleans Chapter
Call Darryl C. Olivier
504/899-8922

MASSACHUSETTS

Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall
Univ. of Rochester

Boston Chapter
Monthly, 1st Wed.
Mitre Corp. Cafeteria
Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m.

MICHIGAN

Call Thea Martin
716/235-0168
Rockland County Chapter
Call Elizabeth Gormley
Pearl River
914/735-8967

Orange County Chapter
Monthly, 4th Wed., 7 p.m. Atlanta Chapter
Fullerton Savings Call Ron Skelton
Talbert & Brookhurst 404/393-8764

Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung
7 141'842-3032

San Diego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784

Sacramento Chapter
Monthly, 4th Wed., 7 p.m.
1798-59th St., Rm. A
Call Tom Ghormley
916/444-7775

ILLINOIS

Cache Forth Chapter
Call Clyde W. Phillips, Jr.
Oak Park
312/386-3147

Central Illinois Chapter
Urbana
Call Sidney Bowhill
217/333-4150
Fox Valley Chapter
Call Samuel J. Cook
3 12/879-3242
Rockwell Chicago Chapter
Call Gerard Kusiolek
312/885-8092

Syracuse Chapter
Monthly, 3rd Wed., 7 p.m.

Detroit Chapter
Monthly, 4th Wed.

Call Henry J. Fay
3 15/446-4600

Call Tom Chrapkiewicz
3 13/562-8506

OHIO
Athens Chaoter - -

MINNESOTA Call lsreal crieli
614/594-373 1

MNFlG Chapter
Even Month, 1st Mon., 7:30 p.m. Chapter
Odd Month, 1st Sat., 9:30 a.m. Call Gary Bergstr0m
Vincent Hall Univ. of MN 21 6/247-2492
Minneapolis, MN
Call Fred Olson
612/588-9532

Cincinatti Chapter
Call Douglas Bennett
513/831-0142

Dayton Chapter
Twice monthly, 2nd Tues., &
4th Wed., 6:30 p.m.
CFC 11 W. Monument Ave.
Suite 612
Dayton, OH
Call Gary M. Granger
513/849-1483

OKLAHOMA

Central Oklahoma Chapter
Monthly, 3rd Wed., 7:30 p.m.
Health Tech. Bldg., OSU Tech.
Call Larry Somers
2410 N.W. 49th
Oklahoma City, OK 73112

OREGON

Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Tektronix Industrial Park
Bldg. 50, Beaverton
Call Tom Almy
503/692-2811

PENNSYLVANIA

Philadelphia Chapter
Monthly, 4th Sat., 10 a.m.
Drexel University, Stratton Hall
Call Melonie Hoag
215/895-2628

TENNESSEE

East Tennessee Chapter
Monthly, 2nd Tue., 7:30 p.m.
Sci. Appl. Int'l. Corp., 8th Fl.
800 Oak Ridge Turnpike, Oak Ridge
Call Richard Secrist
615/693-7380

TEXAS

Austin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718

Dallas/Ft. Worth
Metroplex Chapter
Monthly, 4th Thurs., 7 p.m.
Call Chuck Durrett
214/245-1064

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120
Permian Basin Chapter
Call Carl Bryson
Odessa
915/337-8994

UTAH
North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem, UT 84057

VERMONT
Vermont Chapter
Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rm. 210, Monkton Rd.
Vergennes, VT
Call Don VanSyckel
802/388-6698

VIRGINIA

First Forth of Hampton Roads
Call William Edmonds
804/898-4099

Potomac Chapter
Monthly, 2nd Tues., 7 p.m.
Lee Center
Lee Highway at Lexington St.
Arlington, VA
Call Joel Shprentz
703/860-9260

Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Call Donald A. Full
804/739-3623

WISCONSIN
Lake Superior FIG Chapter
Call Allen Anway
7 15/394-8360
MAD Apple Chapter
Contact Bill Horzon
129 S. Yellowstone
Madison, WI 53705

FOREIGN

AUSTRALIA

Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.
Rrn. LC19
Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Y,owie Bay
02/524-7490

BELGIUM
Belgium Chapter
Monthly, 4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343

Southern Belgium FIG Chapter
Contact Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
Belgium
071/213858

CANADA

Nova Scotia Chapter
Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2E5
902/477-3665

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg.
Rm. 312
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4K1
416/525-9140 ext. 3443

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C5J2

COLOMBIA

Colombia Chapter
Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota
214-0345

ENGLAND

Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m., Rm. 408
Polytechnic of South Bank
Borough Rd., London
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FRANCE

French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
3 1 100 Toulouse
(16-61) 44.03.06

GERMANY
Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27
2000 Hamburg 6

HOLLAND
Holland Chapter
Contact: Adriaan van Roosmalen
Heusden Houtsestraat 134
4817 We Breda
31 76 713104
FIG des Alpes Chapter
Contact: Georges Seibel
19 Rue des Hirondelles
74000 Annely
50 57 0280

IRELAND
Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or051/74124

ITALY

FIG Italia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

JAPAN
Japan Chapter
Contact Toshio Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 ext. 7073

REPUBLIC OF CHINA
R.O.C.
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

SWITZERLAND

Swiss Chapter
Contact Max Hugelshofer
ERN1 & Co., Elektro-Industrie
Stationsstrasse
8306 Bruttisellen
01/833-3333

SPECIAL GROUPS
Apple Corps Forth Users
Chapter
Twice Monthly, 1st &
3rd Tues., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
41 51'626-6295

Baton Rouge Atari Chapter
Call Chris Zielewski
504/292- 1910

FIGGRAPH
Call Howard Pearlmutter
408/425-8700

Volume VII. No. 3 FORTH Dimensions

FORTH INTEREST GROUP
F f i L Special

1-m:a u
Dimensions

BACI. VOLUMES 1 - 6

$50m $5900 FOREIGN SURFACE MAIL
$9000 FOREIGN AIR MAIL

USA AND CANADA

Containing the six issues of each volume year
(May-April) from I979/80 through 1984/85.

AVAILABLE UNTIL NOVEMBER 29, 1985

FORTH INTEREST GROUP
BULK RATE

U S POSTAGE

P. O. BOX 8231 Perm~t NO 3107

Sari Jose, CA 95155 San Jose CA

Address Correction Requested

