$2.50

Number 1

May/June 1985

Forth

Spreadsheet

Volume 7

Saval
i

<

i

%

Dimensions

o @.»/w e
i %% -
S8

u

FORTH LOVE IF
(609) 452-2111

CALL THEN

Growth is where we are, at EG&G Princeton Applied Research... both
company growth and personal growth for our professional
employees. Join a leading, non-defense oriented, manufacturer of
scientific and electro-chemical instrumentation, highly revered as a
leader by our industrial and research customer set.

We're looking to add a few good software engineers to
spearhead our new product development, We have positions for
people with a BSEE and BS Physics or Chemistry with an understanding
of hardware/software interface as it pertains to measurement in-
strumentation. Highly successful candidates will have written programs I
involving real-time interrupts, and assembly language linked to at least
one high level language. Positions requiring a BSEE also require some
experience in circuit design.

Enjoy the rural living and cultural presence of a true college town,
knowing that in less than one hour you can visit the Jersey shore or ski
the Poconos, see a play on Broadway (NYC) or take in a Phillies game. N

Your knowledge of FORTH may be your ticket to success. Forward
resume or call:

Richard W. Hucke, AEP l
Director, Human Resources
EG&G Princeton Applied Research Corp.

n

P.O.BOX 2565 » PRINCETON, NJ 08540

(609) 452-2111

Equal Employment Opportunity Employer M/F

FORTH Dimensions
Published by the
Forth Interest Group

Volume VII, Number 1
May/June 1985

Editor
Marlin Ouverson

Production
Cynthia Lawson

Forth Dimensions solicits editorial
material, comments and letters. No
responsibility is assumed for accuracy
of material submitted. Unless noted
otherwise, material published by the
Forth Interest Group is in the public
domain. Such material may be repro-
duced with credit given to the author
and to the Forth Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth
Interest Group at $15.00 per year
($27.00 foreign air). For membership,
change of address and to submit
material for publication, the address is:
Forth Interest Group, P.O. Box 8231,
San Jose, California 95155.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

Advanced; requiring stu-
dy and athorough under-
standing of Forth.

'
!
|

Code and examples con-
form to Forth-83 stand-
ard.

Code and examples con-
form to Forth-79 stand-
ard.

Code and examples con-
form to fig-FORTH.

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

Dimensions

FEATURES

14

36

A Forth Spreadsheet
by Craig A. Lindley
A spreadsheet program written in high-level Forth! Useful it as is, or expand it to
include features like those of larger, commercial products. A working application

with pseudo-code from which to study and learn. (Source listing comes in the next
issue.)

Macro Generation in Forth
by Don Taylor

A cleaner way to code those macros — inspired by Soreff’s original work in Forth
Dimensions V/5. Try it!

Keywords; Where Used
by Nicholas Pappas

FINDNO tells which words use a given keyword. When you need to make global
changes in a program, relocate it to high memory or — for example — find which
words change base, try out this utility.

Not ONLY But ALSO
by Bill Stoddart

The author argues that complete control of vocabulary search order is possible
without departure from the Forth-83 Standard.

Another Forth-83 LEAVE
by John Hayes

Looking for the ideal LEAVE seemed futile at first, but this proposed solution
may be the best so far. After trying it, let us know your opinion.

DEPARTMENTS

[P
ggmcwa«m

Letters

President’s Letter: ‘‘International Service Organization’’
Ask the Doctor: ‘‘Evaluation”

Application Tutorial: ‘‘A Generic Sort”’

Techniques Tutorial: ‘“YACS, Part Two”’

Chapter News

FIG Chapters

New

Now You Can Add

ARTIFICIAL
INTELLIGENCE

To Your Programs Using a Powerful Combination

By Efliot Schneider & Jack Park

Heres Your Chance to Profit by being on
the Forefront, Write 5th Generation Software

Learn How To:
® Create Intelligent

® Construct

Easy Graphics & Sound Words

¢ Hires Plotting

Programs Rule Bases ¢ Windows
® Build Expert Systems ® Do Knowledge ® Split Screen
¢ Write Stand Alone License Engineering ® Printer/Plotter Ctrl

Free Programs

Write Intelligent Programs For:
® Data Analysis
o Business
® Real Time
Process Control
® Fast Games
® Graphics
e Financial Decisions

® Home Use

® Robotics

® Medical Diagnosis
® Education

® [ntelligent CAIl

e Scientific Analysis
® Data Acquisition

Extended Math Functions

® Fast ML Floating Point & Integer Math
® Double Precision 2E+38 with Auto. Sci Not.
® nxe* Logx Loge Sin Cos Tan SQR I/X...

® Use Inference Engines

® Sprite & Animation
Editor

o RS232 Functions

Utilities

® Interactive Interpreter

¢ Forth Virtual Memory

® Full Cursor Screen Editor

¢ Full String Handling

® Trace & Decompiler

¢ Conditional Macro
Assembler

¢ Matrix and Multidimensional Lattice Math

® Algebraic Expression Evaluator

Great Documentation

¢ Easy to Read 350 pg.
Manual with Tutorials

Languages

SUPERFORTH 64+Al
LISP
LOGO °
c 2
PASCAL =)
BASIC g
FORTRAN
ASSEMBLER

Power of Languages Constructs
SuperForth 64 is more
powerful than most other
computer languages

Ordering Information: Check, Money
Order (payable to MOUNTAIN VIEW
PRESS, INC.), VISA, MasterCard,

American Express. COD's $5.00 extra.

No billing or unpaid PQ's. California

residents add sales tax. Shipping costs
in US included in price. Foreign orders,

pay in US funds on US bank, include
for handling and shipping $10.

" Parsec Research
Commodore 64 TM of Commodore

Programming Time
SuperForth 64 Saves You
Time and Money

® Source Screen Provided

¢ Meets all MVP Forth-79
Industrial Standards

¢ Personal User Support

A Total
Integrated Package
for the Commodore 64

SPECIAL
INTRODUCTORY OFFER

only $9900

203% Value
Limited Time Offer

® Turtle Graphics

® Koala Pad Graphics
Integrator

¢ Hires Circle, Line, Arc

® Music Editor

e Sound Control

Easy Control of all I/O...

® [nterrupt Routines

® Access all C-64 Peripherals

® [nteractive Compiler

¢ Romable Code Generator

® 40K User Memory

¢ All Commodore File Types

® Conversational User
Defined Commands

Call:
(415) 961-4103

MOUNTAIN VIEW PRESS INC

PO. Box 4656
Mt. View, CA 94040

Dealer for
PARSEC RESEARCH

Drawer 1776, Fremont, CA 94538

Questions Standard Procedure

Dear Sir:

Since publication of my Forth-83
article in BYTE (August 1984), 1 have
received dozens of letters. Most readers
séem to agree with Nicholas Pappas’
letter in Forth Dimensions (V1/5) that
decried the continuing growth of new
“standard”’ dialects.

1 took no overt position in my article
— it was a report, not an editorial —
but I must agree. Forth-83 is marginal-
ly better than fig-FORTH or Forth-79
in some respects, but the changes do
not significantly increase the
language’s power. Moreover, the
changes are often just as subtle as they
are radical. 1 feel sorry for the novice
struggling to learn the differences in
such fundamental items as division and
do loops.

Some of the most interesting corre-
spondence resulting from the BYTE
article has been reprint requests, al-
most all from government or university
officials of Soviet-bloc nations: Po-
land, Cuba, East Germany, U.S.S.R.,
etc. In each case, 1 have forwarded
copies of the article along with a re-
quest for information on Forth use in
their nation. I am enclosing one inter-
esting response from Warsaw, Poland.

Thanks for your help.

Very truly yours,

C. Kevin McCabe
Chicago, Illinois

Simpler Recursion
Dear Editor:

In the letter on recursion (Forth
Dimensions V1/5), the suggestion can
be made even simpler. Make SMUDGE
immediate (if it isn’t already) by [1.
Then, in Forth-83, GCD becomes:

Votume ViI, No. 1

GCD [SMUDGE]
?DUP IF SWAP OVER
[SMUDGE] THEN ;

MOD GCD

Peter Oppenheimer
Princeton, New Jersey

More Grass Roots

Dear FIG,

I just read in Forth Dimensions
(V1/5) a letter by Lionel Hewett, which
you entitled ‘‘Grass-Roots Forth.”” [
had to reread the name several times to
make sure that 7 had not written that
letter. I could have. .. word for word.

The article “How to Learn Forth”
was the first article I have read in the
five issues I have received of Forth
Dimensions that was useful to me, a
beginner in Forth. It informed me
through the evaluation that both of the
Forth implementations I have bought
(at over $30 apiece) are doing my at-
tempts at learning Forth more harm
than good.

Other purchases and investigations
that have been useless in my attempts
at learning Forth are the 6502 Source
Listing and fig-FORTH Installation
Manual. Both at $15 and both from
you.

Not counting the three books that
were poor at best, I have over $100 in
Forth material I can’t use. (I have both
of Brodie’s books and they are good.)

My point is: I am very interested in
learning Forth, but everywhere I turn,
I’m putting out cash and getting no
where. Lionel said it best in his letter.
Why can’t I get a good, cheap imple-
mentation of Forth for my specific
machine?

Soon, I will be upgrading my

VIC-20 to a Commodaore 64. [have no
plans to attempt Forth on my new
machine unless I see some changes in
the Forth community to be more ‘‘user

friendly’’ (did I really say that?) to us
beginners.

It will make me unhappy to abandon
this otherwise exciting project.

Enclosed is one more renewal of my
membership in FIG, in hopes that
things will change. I hope it won’t be
my last.

Sincerely,

J. Grant Viening
Wyoming, Michigan

Thanks, it’s the noisy disk drive that
gets the most attention, so please tell us
how we are and aren’t serving your
needs, as this reader has done. While
we can’t require vendors to adhere to
the Forth standards or to publish more
complete tutorials and documentation,
we can try to help you over the largest
obstacles, if you let us know about
your problem spots. Write to ““Ask the
Doctor’’ with specific questions!

—Editor

Capital Idea
Dear Marlin,

I thoroughly agree with the com-

ments by Jeffrey Lotspiech and
Thomas Ruehle (‘‘Automatic
Capitalization in Forth,”” Forth

Dimensions V1/1) regarding the supe-
rior readability of lower-case Forth
words. (Under their scheme, lower case
may be used if desired for newly-
defined words, while upper case is
retained for the standard Forth words.
All text may be typed in lower case,
and is automatically capitalized where
necessary.)

I would like to continue discussion in
this area and question why we need to
keep using exclusively upper case for
the standard Forth words. Many
Forths already allow case to be ignored

(cont. onp.7)

FORTH Dimensions

Forth Interest Group:
An International Service Organization

Forth Dimensions begins Volume
VII this month, initiating another year
of outstanding international service
and activities by the Forth Interest
Group. Let’s take a moment to look at
the past year and at some of the plans
for this year.

Growth continued, and many new
FIG Chapters were added to the roster.
Forth Interest Group members have
organized Chapters world wide, which
demonstrates the international interest
in Forth. One of the largest and most
active Chapters is the Republic of
China’s Association of ROC Forth
Language. This group hosted a three-
day international FORML conference
at Taiwan’s Tam-Kang University in
September. Attendance exceeded 100,
with several U.S.A. Forth Interest
Group members attending and present-
ing papers. One paper presented Forth
programmed in Chinese, to demon-
strate the versatility of Forth.

Our first trip to China to participate
in FORML conference programs was
completed. It included a two-day
conference at Shanghai’s Jiao Tong
University and additional university
programs in Peking and Xian. We
learned that China is eager to use Forth
and has instituted programs in the
universities so that students may learn
and practice Forth. We also learned
that China welcomes visitors and will
keep one busy from morning till night
visiting cultural centers, historical
sites, factories, shopping centers,
restaurants, etc.

In the U.S.A., the Forth Interest
Group’s annual two-day convention
was held in October in Palo Alto, Cali-
fornia. Vendors exhibited an impres-
sive array of Forth products. Technical
sessions were excellent and included
hands-on training for anyone interest-
ed in learning Forth.

The FORML. Asilomar Conference
in November had nearly 100 partici-
pants, with a wide range of papers
presented. Here was an opportunity to
meet with top-flight Forth practition-
ers. Charles Moore, inventor of Forth,
listed the remarkable capabilities of
his Forth ‘‘chip,”” then in the final
stages of development. Today, work-
ing chips are available and the prom-
ises of November are a reality.

New books about Forth were pub-
lished in the past year, including
Thinking Forth, Mastering Forth and
Forth Tools. These are excellent books
and are available along with others
from the Forth Interest Group. Each
issue of Forth Dimensions has a publi-
cation order form.

This year, the Forth Interest Group
has already presented continuous one-
hour training sessions over three days
of the West Coast Computer Faire in
San Francisco. Apple and IBM com-
puters were available for individual
use. This was a very popular event.

In September of 1985, the annual

FIG convention is scheduled in Palo

Alto, California. A complete con-
ference program is planned to include
the latest software and hardware devel-
opments. Look forward to hardware
developments based on the new Forth
chip. Training will continue to be an
important part of the technical pro-
gram.

A European conference is planned
in October in Germany. It is called
euroFORML and will be held in Stet-
tenfels Castle near Heilbronn. This
continues the international conference
programs which have always been a
part of the Forth Interest Group’s
activities.

You will continue to find new publi-
cations listed in the publications order
form. The publications committee
reviews and recommends publications
regularly for this list. The Forth Inter-
est Group believes that the publication

service is very important in making
publications available for world-wide
distribution.

Forth Dimensions articles are a con-
stant source of new and educational
material about Forth. You are en-
couraged to recommend it to everyone
interested in learning more about Forth
and about the benefits of its use.

These are activities the Forth Interest
Group supports in meeting its goals
and objectives of service to members
and promotion of Forth. Your support
is necessary to keep these services avail-
able. Participate in Forth Interest
Group events and tell others about
them.

—Robert Reiling
President, Forth Interest Group

Votume VI, No. 1

(cont. letters)

in dictionary searches, and this would
permit all-lower-case Forth or, perhaps
more usefully, Forth in which upper
case may be used selectively to high-
light whatever we want. For some time
now, I have been writing code in which
upper case is used for each word as it is
defined, and otherwise everything is in
lower case. The result looks unconven-
tional, but it is very readable once you
get used to it. (I challenge readers to try
it!)

Why, then, do we persist with upper-
case Forth? The only reason I can
think of is tradition. Early keypunches,
printers, etc. had only one case
(upper), so languages such as Fortran
and COBOL used upper case only.
Those of us old enough to remember
that Pascal had a forerunner called

Algol will realize that it was an excep-
tion; but one of its intended purposes,
perhaps the primary one, was the pub-
lication of algorithms, not simply the
programming of computers. That is, it
was intended for people to read. I
think the point is obvious.

One possible objection that support-
ers of upper case might raise is that
upper-case code stands out clearly
from lower-case comments. I believe,
however, that comments can be sepa-
rated out just as well by moving them
over to the right, onto separate lines
or, even better, to shadow screens.

Most programmers today are used to
the ‘‘lower-case look’’ of Pascal and
C, both of which followed the Algol
style of appearance. Writing Forth in
upper case makes our program code

more reminiscent of Fortran, COBOL
or even (gasp, horror) BASIC! We are
entering an era of bit-mapped displays
and smart printers capable of handling
all kinds of esoteric scripts. Should we
persist with program text that looks
like something out of the 1950s? 1
know nostalgia has its place, but surely
this isn’t it. Programs need to be read
by people as well as by machines, If I’d
written this letter in all upper case,
everyone would have thought I was
being ridiculous!

Yours sincerely,

Michael Hore
Numbulwar, NT, Australia

Volume ViI, No. 1

FORTH Dimensions

Evaluation

William F. Ragsdale
Hayward, California

““Ask the Doctor” is Forth Dimen-
sions’ health maintenance organization
devoted to your aid in understanding
and using Forth. Questions of a prob-
lem-solving nature, on locating refer-
ences, or just regarding contemporary
techniques are most appropriate.
When needed, your good doctor will
call in specialists. Published letters will
receive a preprint of the column as a
direct reply.

In his last two columns, the doctor
addressed two approaches to learning
Forth. First (Forth Dimensions V1/5)
was a study-guide approach to learning
from Leo Brodie’s Starting Forth. Next
we made rounds within the clinic
(V1/6) to review Margaret Armstrong’s
Learning Forth. In this issue, we
conclude by summarizing the evalua-
tions, contributed by readers of Forth
Dimensions, of commercial Forth
systems.

" Your report from the clinic for this
issue has been built upon the contribu-
tions of eleven readers. Appreciation
is in order for the efforts of Jim Hen-
derson (Thomson, Georgia), Chris Mc-
Cormack (Huber Heights, Ohio), Guy
Kelly (La Jolla, California), Terry Jaco
(North Hollywood, California) and
J.C. Halbrook (Sterling, Connecticut).
Several others supplied evaluations but
did not identify themselves.

Summary

Previously in Forth Dimensions, sev-
eral reader’s questions regarding learn-
ing Forth were summarized by the
good doctor:

- How can I get started? - Which
Forth? - Whom do I ask?

The *“Which Forth’’ question will be
addressed by reporting upon the results
of the questionnaire that concluded
that column. The scoring method
favored use of a standardized dialect,
consistency with Starting Forth, docu-
mentation and support. It was suggest-
ed that a point total of seven or greater
would indicate a system offering supe-

FORTH Dimensions

rior value to anyone learning Forth.
The implication: a score of six or less
indicates a system which will impede
your learning effort.

The curtain is about to be raised.
The audience is waiting with hushed
expectation. The evaluations are in!
May 1 have the sealed envelope,
please?

Summary

We see from table one that the point
total ranges from three to twelve. The
maximum possible was thirteen. As
mentioned, the scoring favors systems
matching an established standard
(Forth-79 or Forth-83) and the book
Starting Forth. Both of these elements
are supportive of self study.

Our mail continues to confirm that
systems weak on documentation and
standardization are most associated
with plaintive calls for aid. These are
mostly fig-FORTH systems in public-
domain libraries. Our conclusion is
that the $50 to $150 saved over a com-
mercial product will be quickly offset
in the added frustration and extra ef-
fort of learning Forth and the specifics
of the implementation.

Three readers evaluated SuperForth
64 for the Commodore 64. All three
emphatically praised the support and
helpful attitude of Parsec Research.
The 250-page manual, access to host
files, decompiler/trace option and
floating point are all given high marks.
One quote: “‘I've dealt with Parsec
for almost a year and have had very
great success with their product and
with their personnel. As a learning
tool, I would find it hard to match the
price/performance of a C-64 running
SuperForth.”

Two readers evaluated C64 Forth
from Performance Micro Products.
With a score of 10, it only lost points
for the editor, which is tailored to
match the Commodore conventions
rather than the usual Forth keys. The
dialect is Forth-79 enhanced by a file
interface, 167 pages of documentation,
graphics and trace.

One reader extended the rating scale
to favor his choice, MMS Forth from

Miller Microcomputer Services. This
evaluator bumped MMS Forth to 31
points, since raves were given to the
editor, flexible use of RAM, and
options. That survey form’s point for
support was inflated to three due to
the excellent phone help. In fairness to
all, on the uniform scale, this system
was a twelve on the scale of thirteen
possible points.

NGS Forth, 8086 Forth (LMI) and
83 Standard PC-Forth (Kelly) are all
available for the IBM PC. They all
scored twelve, and any should be well
received by the student.

F83 is a public-domain system devel-
oped by Mike Perry and Henry Laxen
for the IBM PC, CP/M and 68000
systems. While technically outstand-
ing, it only lost points for no support
and lack of printed documentation.
Addition of Dr. Ting’s Inside F83 (280
pages, published by Offete Enterprises)
raises this system to twelve points.

The only problem case reported was
VIC Forth for the Commodore
VIC-20. This fig-FORTH based
system only got points for object size
and editor. The dialect, mass storage,
support and options received no
points. The manufacturer has gone out
of business, but the product is still in
distribution. This style system is being
displaced in the market and illustrates
the difficulty a newcomer may
inadvertently face.

If you perform your own evaluation
or select a product based on this eval-
uation, please remember that its pur-
pose has been to indicate suitability
for learning, and that seven or better
is recommended. Other ratings would
be appropriate for purposes such as
product implementation or specific
applications.

Other Systems

Several popular systems are notice-
able by their absence. Evaluations
of such systems as MVP FORTH,
polyFORTH II, MasterFORTH and
MacForth would be appreciated. Your
faithful practitioner will also welcome
further comments and evaluations that

Volume VIi, No. 1

PRODUCT VENDOR RUNSON PRICE POINTS
8086 Forth Laboratory Microsystems CP/M-86 $100 12
MMS Forth Miller Microcomputer TRS-80 130 12
IBM PC 250
NGS Forth Next Generation Software 1BM PC 70 12
83 PC-Forth G. M. Kelly IBM PC 25 12
F83 No Visible Support IBM PC 25 11
CP/M, 68000 '
‘SuperForth 64 Parsec Research Comm.-64 96 10
C64 Forth Performance Microproducts Comm -64 70 10
VIC Forth HES VIC 20 40 3

Table One

may be summarized in a final tabula-
tion for Forth Dimensions.

When next we summarize reader
evaluations, you will find the good
doctor trading his white lab coat for
formal dinner attire. We will never be
as glamorous as the Academy Awards,
but the appreciation of readers will be
more sincere.

Vendor Addresses

Laboratory Microsystems, Inc., P.O.
Box 10430, Marina del Rey, CA 90295,
(213) 306-7412.

G. M. Kelly, 2507 Caminito La Paz, La
Jolla, CA, 92037.

HES (out of business), product dist. by
Mountain View Press, P.O. Box 4656,
Mt. View, CA, 94040, (415) 961-4103.

Miller Microcomputer Services, 61
Lake Shore Road, Natick, MA, 01760,
(617) 653-6136.

Next Generation Systems, P.O. Box
2987, Santa Cruz, CA 95055.

No Visible Support Software, Box
1344, 2000 Center Street, Berkeley,
CA 94074.

Parsec Research, Drawer 1776, Fre-
mont, CA 94538.

Performance MicroProducts, P.O. Box
370, Canton, MA, 02120, (617)
828-1209.

About the author

Bill Ragsdale has been using Forth
since 1977 for personal and business
projects. He is married to Anne, who
did the production work on early Forth
Dimensions. They have two children:
Mary, age three and Michael, age one.
For those of you who have been fol-
lowing Mary’s development, she now
knows the alphabet and enjoys “‘Kiri’s
Hodge-Podge”’ on the Apple 11 (which
she calls E-I-Oh, as in Old McDonald)
and “My ABCs’’ on the PC. Michael’s
computer involvement is limited to
chewing on its mouse-control wire.

MasterFORTH

Portable programming environment

Whether you program on
the Macintosh, the IBM PC,
an Apple Il series, a CP/M sys-
i} tem, or the Commodore 64,
your program will run un-
changed on all the rest. ==
If you write for yourself, S = ===
MasterFORTH will protect ===T=.

your investment. If you write for
‘ others, itwill expand your market-
™

place.
MasterFORTH is a state-of-
the art implementation of the
Forth computer language.
Forth is interactive — you have
immediate feedback as you
program, every step of the way. Forth is
fast, too,and you can use its built-in macro
assemblerto make it even
CP/ M taster. MasterFORTH's
relocatable utilities,
transient definitions,and headerless code
let you pack a lot more program into your
memory. The resident debugger lets you
decompile, breakpoint, and trace your
way through most programming prob-
lems. A string package, file interface, and
tull screen editor are all standard features.
MasterFORTH exactly matches the
Forth-83 Standard dialect described in
Mastering Forth by Anderson and Tracy
(Brady, 1984). The standard package in-
ctudes the book and over 100 pages of
supplementary documentation.

: MaaterFORTK standard package
Maamtesh e e A L $128
IBM PC and PCUr (MSDOS 2,13 125

- Aople il i+ e e (DOS 3.3)
. CP/M 2 tn several tmmats
| Commiodore 64

:',iixtensms .
Fmating Point {1984 FVG stanaard; $40
. Graphics (Appleltseries).. ... o 40
- Module relucator (with mimy sources) B0
. Printed saurce listing {eachy.. . iy 35
. Wﬂimm -
. Mastemg Forth {additianai cbpies} L

. «ng Forth by Leo Brodie

| Forth-83 international Smdan;i .
“Rochester Bivliography, 2nd ed. .

©' 1984 Rochester Confarence ..

1984 1 of Forth Appt & Res. 2(3} e

C1883 FORML Goaterenae.,.....,.,..... Ciees RS

Volume VI, No. 1

12077 Wilshire Bivd., #506
Las Angeles, CA 00025

Application Tutorial

Generic Sort

John S. James
Santa Cruz, California

Application Tutorials focus on using
Forth to get results, not on experimen-
tal developments. This article advo-
cates a design approach which employs
the strengths of Forth to help write
generic library routines, which can be
used with no change at all in different
applications.

As an example, we present a simple
routine to sort any kind of randomly-
accessible data, in memory or on disk:
numbers, records of any length, re-
cords with one or more key fields and
with ascending, descending or mixed
sequences, variable-length records, ar-
rays or other data structures, or mathe-
matical entities with any ‘‘order”’
relationship, not necessarily alphabeti-
cal or numerical. You can sort any of
this data with no change at all to the
sort routine. So you don’t need to read
or understand the sort in order to use
it!

The essence of what we call
“‘generic’’ design is the radical separa-
tion between an algorithm and its data.
We use the well-known technique of
vectored execution — allowing one
routine to accept a pointer to another
routine, and then executing it when
appropriate. By generic design we
mean not only vectored execution, but
also a logical factoring of the job to be
done so that the algorithm being writ-
ten can be blind to the data on which it
operates. Developers can then use these
routines on great varieties of data
types, formats and structures, even
those never considered by the writers
of the routines.

Overview

What does Forth need most, in order
to become more widely useful and ac-
cepted in the computer industry? One
of the most critical advances would be
the widespread use of standard lib-
raries of routines. We need the system
software, documentation and shared
conventions to support developers who
can then take large modules of code —
designed and programmed at various
installations with different data for-

mats and programming conventions —
and re-use these modules in new con-
texts.

The modules should remain
identical, usable with no changes at all,
so that their users do not need to learn
their internals, and do not risk
introducing errors into software which
may have been well tested through
prior use at dozens or hundreds of
installations.

One contribution to the development
of standard libraries would be wider
use of generic routines, when possible.
For example, a formula evaluation
might be defined first for single-
precision arithmetic operations — add,
subtract, multiply and divide — and
then used unchanged for double-
precision or complex numbers, or for
other data entities. This flexibility
requires (1) that the procedure make
sense in its new domain and (2) that
only the operators to be changed (the
arithmetic, in the above example)
know about their data; nothing else
within the algorithm being program-
med can know the length or format of
the data items.

This article shows another example:
sorting. Some sort algorithms can be
defined in terms of only two operations
(compare and exchange) which know
about the data being sorted. Both
operations take two arguments, indices
or other pointers to the two items to be
compared or exchanged. Comparison
returns one result, a truth value; each
operation may also return an error-test
flag. The sort routine itself needs three
arguments: pointers to the two rou-
tines, and the number of items to sort.
It need know nothing about the format
of the data.

Whoever uses the sort is responsible
for defining the comparison and ex-
change operations for the particular
data to be sorted. These definitions
know the length and location of key
fields, whether the sort is ascending or
descending, etc. They must handle any
resource management required, such as
use of Forth buffers if the data is on
disk, or memory management if
variable-length records were being
sorted.

Design Details

To simplify this article, we have il-
lustrated it with an easy, exchange-sort
algorithm, not an optimal method.
Performance falls off sharply when
many items must be sorted. (For a
faster program, note Wil Baden’s
““Quicksort and Swords,” Forth
Dimensions V1/5. That program uses a
generic design like the one presented
here, although the user interface is
different.)

Let’s call the routine we are defining
SORT and the operations it uses
COMPARE and EXCHANGE. SORT will
call these operations repeatedly, and
must be able to tell them which items to
compare or exchange; COMPARE and
EXCHANGE must be able to find each
item, given its position in the current
sequence. We will use zero-origin in-
dexing, requiring that COMPARE and
EXCHANGE accept arguments zero
through n-1, where n is the number of
items to be sorted. COMPARE should
return a true flag if the items must be
exchanged, false otherwise. Therefore,
it should return false for the equal
case, to avoid an unnecessary ex-
change.

For simplicity, we wrote this example
program to allow up to 32K items. It
could easily be expanded to use unsign-
ed or double-precision arguments,

Optimization

The key challenge here is that we
know nothing about the items being
sorted. Still, some optimization can be
planned.

Since exchanges might be expensive
(for very long records, for example),
we should avoid doing them unneces-
sarily. In this example, instead of
doing a bubble sort, we find the mini-
mum (or maximum) item, and then
exchange it, once, into its final place.

The data may be in memory or qn
disk. If on disk, in most cases each
item will fit within a single Forth buff-
er, instead of spanning buffers. Then
we need at least two buffers for reason-
able performance — one holding the
minimum (or maximum) found so far,
the other for the item with which it will

FORTH Dimensions

10

Volume VII, No. 1

next be compared. Note that SORT can-
not keep the minimum item in memory
in order to optimize, as it has no idea
of the size of the object being sorted,
or how to move it; or the size, location
or structure of its key; or whether the
object is on disk in the first place.

Error Control

SORT and also the COMPARE and
EXCHANGE defined by the user, could
each return an error flag to the stack;
non-zero could indicate error. For ex-
ample, COMPARE and EXCHANGE might
flag an error if a data item were incor-
rect or unreadable due to disk failure.
SORT might abort and return an error

flag in that case. For this tutorial ex-
ample, we have omitted error flags.

Examples of Use

Note that the sort is in screens two
and three. The rest of the code shows
examples.

Screens six, seven and eight each
have one example: sorting fifty binary
numbers in RAM in ascending se-
quence; sorting fifty 64-character
records on disk (major key: columns
1-3, ASCII, ascending; minor Kkey:
columns 11-15, ASCII, descending);
and sorting fifty entire Forth screens
(key: columns 1-64, ASCII,
ascending). Incidentally, the timings

\ Generic sort: setup
VARIABLE A-COMPARE?
VARIABLE A-EXCHANGE

VARIABLE N

A-COMPARE? @ EXECUTE ;
: DO-EXCHANGE \ nl n2 --
OVER OVER <>

o]

1

2

3

4

S : DO-COMPARE? \ N1 N2 -- 7?2
=3

7

8

9 ELSE DROP DROP THEN ;

Scr # 3 A:FD.BLK

Q \ Generic sort

1 : FIND-MIN \ nl -- n2
2 N @ OVER DO
3 DUP I DO-COMPARE? IF
4 LOOP ;

S : NSORT N -

6 N @ 1- 0 DO
7 ¢ SORT

8 N ' A-EXCHANGE !
9 N @1 > IF NSORT

X FIND~-MIN

04Marss JJ

\ This program will sort any randomly-accessible data,

\ To use it, you muat write twe
\ routines: one to compesre two of your data items, and the
\

\ To aimplify this tutorial, we have uaed an exchange
\ sort, which is inefficient for large numbera of itemsa.
\ Quicksort could be aubatituted for a production veraion.

7, and 8

Scr # 1 A:FD.BLK
O \ Generic sort routine, Forth-83
1
2
3 either in RAM or on disk.
4
S other to exchange two of thenm.
6
7
8
-]
10
11 2 LOAD 3 LOAD 1\ The sort
12
13 \ Three examplea are in screena 6§,
14
1S
Scr # 2 A:FD.BLK

17Mar85 JJ

\ Address of Compare routine
\ Address of Exchange routine
\ Number of items to be sorted

;P Coipare two "items™

:P Exchange two '"items'
IF A-EXCHANGE @ EXECUTE
\ Don’t exchange item with itself

17Mar8S JJ

3P Find min (max) from nl on
\ Look at all items from nl on
DROP 1

THEN \ Replace if new min

3P Ordinary case of asort, 3 or more items
I DO-EXCHANGE LOOP ;

\ acompare aexchange n --
A-COMPARE? !
THEN ;

;P Save argumenta, test

\ If less than 2, we’re done

are 2, 17 and 625 seconds, respectively,
using the F83 version of Forth-83 on
an IBM PC with floppies. These poor
showings resulf from the inefficient
sort algorithm and the time to move
data on the disk.

Note that in Forth-83, the ‘‘tick’’
operation (the single quote) must be
replaced with] if used inside a colon
definition.

When you write COMPARE or
EXCHANGE for items on disk, be careful
to use the buffers properly. An ab-
solute address within a Forth block

- buffer becomes unreliable after any

other 1/0 is done, because the same
block may then be assigned to a dif-
ferent buffer. Do not store such an
address for later use. Instead, either go
through BLOCK again to re-access the
data later, or move the data out of the
buffer into other memory and use it
from there.

Future Improvements

The best way to improve this routine
would be to use a more efficient sort
algorithm. For tutorial purposes, the
one given here is adequate.

This example SORT is not re-entrant;
it uses ordinary variables to store its
arguments. We suggest that developers
of transportable library modules use
local variables, rather than elaborate
stack manipulation, to get re-entrant
code. Local variables have not yet been
standardized in Forth; see the
Proceedings of the 1984 Forml
Conference for some excellent papers
on the subject.

Incidentally, we could make SORT
run a little faster by eliminating the
mechanism of sending addresses which
then require use of EXECUTE. Instead,
COMPARE and EXCHANGE could be
defined and used by SORT like any
other words in the dictionary. But
some generality would be lost — for
example, the ability to sort different
kinds of data structures with the same
object code.

Examples two and three show that
EXCHANGE could easily be paramet-
erized and made available as a utility.
EXCHANGE might even be put inside the
sort, which could then have a tem-

Volume Vi, No. 1

1

FORTH Dimensions

porary memory area, perhaps a few
hundred bytes or so, for efficiently
exchanging long data items piece by
piece. SORT would have to be given the
record length in that case.

Not only EXCHANGE but COMPARE
also could be moved inside the sort.
But then all of the information about
the keys would have to be passed to
SORT — not only the record length. In
this extreme case, our routine would
have become an ordinary sort package.
It would have lost its versatility, be-
cause it would have to embody as-
sumptions about the data, instead of
letting its users manage their own data
by programming.

Importance

The simple sort routine given here
may not convey the practical impor-
tance of generic design, because this
program could easily be rewritten every
time. But the sort could be much more
elaborate; for example, it could scan
the data and select the best of several
algorithms. Either the sort and/or the
routines passed to it could be partly or
entirely in code, with no problem of
compatibility between code and high-
level.

The speed penalty for transferring
control to outside routines appears to
be insignificant, even if an all-code
generic program is compared with a
special-purpose sort written entirely in
code. The significant cost of using the
generic design approach is that not all
algorithms can be written in terms of
COMPARE and EXCHANGE, or any other
predefined set of operations. In many
cases this cost will be worth paying.

Note that Forth gives us the flex-
ibility to design modular program ele-
ments within the continuum between
finished application packages and
special-purpose programs written from
scratch. Few higher-level languages
encourage users to pass a subroutine to
a module, which then executes that
subroutine without knowing anything
about its data.

Other Similar Aproaches

Many programming languages use
systems of data abstraction or hiding

Scr # 6 A:FD.BLK
O \ Example 1: Sort 50O binary numbers in RAM O4Mars8sS JJ
1 CREATE DATA 100 ALLOT
2: X \'n -- a ;P Get addresa of nth element in DATA array
3 2 = DATA + ;
4 ¢ COMPARE \ nl n2 -- ?2 ;P Compare two itema, given item #a
S SWAP X @ SWAP X @8 > ; \ Ascending, so exch if lst is >
6 ! EXCHANGE \ nl n2 -- ;P Exchange two itemsa
7 DUP X @ ROT ROT \ Save a copy of one value, 3rd on stack
8 OVER X @ SWAP X ' \ Move the other value into place
s Xt ; \ Move the copy into place
10 : SORT-TEST1 \ -- ;P Sort the array
11 {1 COMPARE [(’] EXCHANGE 50O SORT ;
12 \ Note: if teast from keyboard, use ’ » not 1
13
14
15
Scr # 7 A:FD.BLK
O \ Example 2: Sort 64-character records O4Mar8s JJ
1 \ Note:!: uses F83 string compare, COMP al a2 n -- -1101+1
2 10 CONSTANT START-BLOCK \ First block taken as 64-char records
3 : X \'n -- a ;P Get address of nth data element
4 64 = 1024 /MOD START-BLOCK + BLOCK + ;
S ¢ COMPARE \ nl n2 -- 1?2 ;P Compare two items, given item #a
5 X PAD 15 CMOVE \ Get one key out of block buffer
7 X DUP PAD 3 COMP (Major keys) ?DUP 0= IF \ Need minor
8 DUP 10 +«+ PAD 10 + S COMP NEGATE THEN
9 SWAP DROP (Arg) 1 =; \ If +1, from either key, exch
10 : EXCHANGE \ nl n2 -- ;P Exchange two items, given item #s
11 DUP X PAD 64 CMGOVE OVER X PAD 64 + 64 CMOVE
12 X UPDATE PAD 64 + SWAP 64 CMOVE \ Can’t move buf to buf
13 X UPDATE PAD SWAP 64 CMOVE ;
14 : SORT-TEST2 N - ;P Sort 50 64-byte records on diak
15 [’] COMPARE (‘] EXCHANGE SO SORT FLUSH ;
Scr # 8 A:FD.BLK
O \ Example 3: Sort entire Forth acreens O4Mar8S JJ
1 \ Note: uses F83 string compare, COMP al a2 n -- ~-110i+1
2 10 CONSTANT START-BLOCK \ First of the blocks to be sorted
3 : X \n-- a ;P Get address (in buffer) of nth block
4 10 + BLOCK ;
5 : COMPARE \ nl n2 -- 2 ;P Compare two blocks, first 64 char
6 X PAD 64 CMOVE \ Get one out of the buffer
7 X PAD 64 COMP 1 =3
8 ! EXCHANGE \ nl n2 -- ;P Exchange two blocks
9 DUP X PAD 1024 CMOVE OVER X PAD 1024 + 1024 CMOVE
10 X UPDATE PAD 1024 + SWAP 1024 CMOVE
11 X UPDATE PAD SWAP 1024 CMOVE ; \ Note need 2K bytes at PAD
12 : SORT-TEST3 N -- 3P Sort S50 screens
13 [7) COMPARE (’) EXCHANGE 50 SORT FLUSH ;
14
15

to separate modules, reducing com-
plexity and the chances of error by
preventing side effects. In most of
these systems, the subroutine knows
about the data, but the calling program
does not. Here, the roles are changed.
The calling program knows about the
data, and it passes a module which also
knows about the data into a sub-
routine, which does not know about
that data but executes the module at
appropriate times. The module com-
municates with the subroutine by its
normal input and output, and it com-
municates with the calling program by
directly affecting its data, as-it was
designed to do. Other language con-

structs relevant to this approach in-
clude the ¢‘generic procedures’” of
ADA (which are templates resolved at
compile time) and the ‘‘operators’’ of
APL (which accept routines as argu-
ments for example, the inner-
product operator accepts + and * to
perform matrix multiplication).

Forth is more extensible than these
languages, and it offers a key advant-
age of very low expense for experimen-
tation. We can quickly put program-
ming concepts to the test. Practical
program modularization presents un-
solved problems. Useful results, not
fixed rules known in advance, serve as
the guides in this effort.

FORTH Dimensions

12

Volume VII, No. 1

me FOrthCar dw

STAND ALONE OPERATION

Evaluation Unit s299

Part #STD65F11-05 includes:
ForthCard, Development
ROM, 8Kbyte RAM, Manuals

STD BUS INTERFACE

EPROM/EEPROM
PROGRAMMER

RS-232 11O OEM Version as low as

Part #STD65F11-00
does not include $1 99
memory or manuals

PARALLEL l/O

ROCKWELL FORTH CHIP

The Forthcard provides OEMs and end NEW! Options and Application Notes
users with the ability to develop Forth and
assembly language programs on a single Electrically Eraseable PROMs (EEPROMS)

STD bus compatible card.
FREEZE the dictionary in EEPROM (save in

Just add a CRT terminal (or a computer non-volatile memory, to be restored on
with RS-232 port), connect 5 volts and you power up)
have a self contained Forth computer.
The STD bus interface makes it easy to Download Software for your IBM PC or CP/M
expand.

Non-Volatile CMOS RAM with battery 2K,
Download Forth source code using the 8K, optional Clock/calendar
serial port on your PC. Use the onboard
EPROM/EEPROM programming capability Fast 2MHz clock (4MHz crystal)

to save debugged Forth and assembly

language programs. Standard UV erasable Disk Controller Card (5%")
EPROMs may also be programmed with

an external Vpp supply. Self Test Diagnostics

Parallel printer interface

Ask about our ForthBox™
A complete STD bus oriented system including
the ForthCard, Disk Controller, Disk Drive(s),
STD Card Cage, Cabinet and power supply.

CALL TODAY FOR COMPLETE INFORMATION!

HiTech Equipment Corporation

9560 Black Mountain Road

San Diego, CA 92126 B
(é1<?|) g5066-’!8(?2

A Forth Spreadsheet

Craig A. Lindley
Manitou Springs, Colorado

Spreadehest Commands

This article presents the COMMAND DESCRIFTION
implementation of a spreadsheet
program written entirely in high-level
Forth. It is based on the Laxen and

™ Allows anpwt of column names., Mode terminated by
erntering 2 “CR> to the program prompt.

sohs £ Replicate cell dats, This will copy datas from the
Perry F83 quel. People W}Shlng to currently selected cell 2) for the specified
implement this program in other number of columns .

. . v . .
d1alect§ of Forth will have to mOdlfy it N Trput cell data, If suto-calewlate mode in effect,
accordmgly. spreasdetieet will be recaleouwlated asutomatically.
The spreadsheet presented here does o

not claim to contain all the fancy E Irput cell eauation, Input terminsted by <CR:,
features provided by the majority of ¥ Change nunber entry/display format. Normal or
spreadsheet programs in the dollars and cents format.
CommerClal market. It was developed G Go to the specified row column. Selected cell is
as an example program to illustrate made current.

structured programming techniques. It
does, however, support the following
features: N Ne ¢ Clesrs sieting spreadsheat., ALY MBMES

eantat dong are deletead,

M Change spreadsheet mode, Muto-caslculate or normal.

e 26 columns by 26 rows

3 0 Change calouwlation order. Either rows then columns
[-
auto ca}cqlatlon mode . or columns thern rows.
e algebraic input of cell equations
o full-screen editing t spreadsheet calouvlations. Farces
o s . culation.
e unlimited expansion Hlation
* data replication @ Quit spresdsheat.,
(SCC table one for dCSCTiptiOHS of [Trput Mode terminsted by entering a <COR>
supported commands_) to the proaram prompt.

It is important to understand that
the basic spreadsheet presented here

Move curvent cell one position left.

could be expanded to have all of the e Move current cell one posiltion vight,
featur €S of the more CXOtiC spreadsheet AN Move current cell one positton upwards,
programs on the market. A very N o

important result Of structured program w7 Mave current cell one position downwasrds.
design is the ease of modification to cort ol e Move to last column andg dieplay.

and maintenance of the program. Once
the structure of this program is
understood, modification should be an Fe Up Move Tour coluMne left,
almost trivial task. To help with the
understanding of this program, the
pseudo-code design from which it was Frome fic to Tirst row and display.
coded is included herein. [Due to the
length of this article, the forty-five
screens of source code were deferred to
the following issue. —Ed.]

conteol - Move to fivst column and dieplay.

P Dy s Toor columns riaht,

el Go o Last row and display.

COMManis are proc
1 athers are proce

oy the Forth word
ect by control Jin.

Program Operation
Table One

We will concentrate our attention at
this time on the operation of the
program. To compile the program
under Laxen and Perry’s F83 after you
have entered it, simply type:

open spread.blk <cr>
1 load <cr>

FORTH Dimensions 14 Volume VII, No. 1

A, Spreadsheet

Title

Title

income

loan principle
loan interest
loan insurance

car padment,

car gas

car misc maint.,
utilities

cost of life
" money left

savinas account

display heTore

Ee Typical spreadsheet after

See text Tor details.

data entry

Forth Spreasdsheet

e e s 1 e o s it i ot e o o)] s e s o e e e [e e
0] 01 ¢
1] 0 0
21 (U] 0
31 0 0
41 0 | 0
53] 0 | 0
& 0 | 0
74 0| 4
81 0 0
29 (L} 0

109 (L] 0
111 (1] 0
121 0 i 0
131 (1| 0
14] 0| 0

data entrw

e o v e s ([t s

|
t
I
|
|
|
|
1
|
|
|
|
I
l

Forth Spreadsheet

Jan feb mar
.“_.._A.....................,.‘,___....._.....A__.,._....._.........4.......,...__.E'........_._._.__._.,....‘...._.A..C,...__.......A.A
01 $27%0,00 § $27%50,00 |+ $2750,00
11 $0.00 | $0.,00 | $0.,00
21 63,45 | $463.45 | $63 445
31 $757.83 | $7G7 .83 | 757 .83
41 $37.50 | $37.50 | $37 .50
S %0.00 | $0.00 | 4€0.00
61 $200.61 | $200.61 | $200.61
71 $120.34 | $200.21 360,32
g1 $0.00 1§ $20.,00 | $0.00
?1 0,00 | 0,00 | $0.00
104 $230.%54 | $230,%4 | 230,54
11 $300.00 | ®500.00 | $500.00
124 %#0.,00 | $0.,00 | $6.00
134 $1910.,27 | $2010.14 | 210,25
14 $839.73 | $739.86 | 599,
Figure One

$63.45
$707.83
37450
000
$200.61
$10%5.63
45 .60
%0.00
$230.54
$500.00
0,00
1741 .16

R TR | PP

which will start the process. At this
time, the screen will clear and the
message

Spreadsheet Compiling

will appear. The F83 system prompt
‘“ok’’ will reappear when the
compilation is completed. To execute
the spreadsheet program, type:
spreadsheet <cr>
and you will see the display shown in
figure one-a. Notice that at any one
time, the display shows four columns
and fifteen rows of the 26 x 26
spreadsheet. Every row/column
intersection is referred to as a cell of
the spreadsheet. Further, the cell
surrounded by the greater-than/less-
than symbols is called the “‘current
cell.’”” Data and/or equations can only
be entered at the current cell.

Positioning of the current cell is
controlled by the cursor arrow keys
and the G (or Go-To) command. If the
current cell position tries to leave the
display wiridow, the window will scroll
to keep the current cell position on the
display. See table one for a list of all
commands used for display
positioning.

As an example of how this

_spreadsheet is used, let’s construct a

simple home budget sheet. Figure one-
b shows how this might look when we
are finished. The first step in building a
new spreadsheet is to give the various
rows and columns names. The column
names shown in the figure correspond
to the months of a year. The various
row names are shown on the left of the
figure.

Column names are input to the
spreadsheet program by selecting ‘‘C”’
from the command menu. This
command will prompt for the column
letter at which to begin the naming,
and then for each of the desired names.
For our example, enter (starting at
column A) the three-letter
abbreviations for the twelve months of
the year, each followed by a <cr>.
After inputting ‘‘dec’’ for December,
hit <cr> twice to exit the column-
name entry mode.

Row names are entered in exactly the
same manner. The row-name entry
mode is selected via the ‘‘R”
command. If you wish to leave a blank

Volume V1, No. 1

15

FORTH Dimensions

line for a particular row, enter a space
followed by a <cr>. Entering just a
<cr> will terminate this mode of
operation.

Because our budget spreadsheet will
be used for monetary quantities, we
must select the dollars/cents format
for our display. This is accomplished
by selecting the ‘“‘F’’ — for Format —
command and then selecting the
dollars/cents mode. You will notice the
display now shows ‘“$0.00> for each
entry, instead of just ‘0”’.

To place data into our spreadsheet,
use the cursor positioning keys to place
the current cell at row 0, column A, if
it is not there already. Select the ¢“D”’
command to enter data at this location.
Enter ‘2750 <cr>’’ (the trailing
decimal is implied). In this example,
our income is assumed to be constant
from month to. month. Use the “A”
command to enter this data again for
the eleven subsequent columns of this
spreadsheet. If you use the cursor
positioning keys to move the display
window around on the spreadsheet,
you’ll notice $2750.00 is entered as the
first entry in each month.

Loan principle, interest, insurance,
car payment, utilities and saving
deposit are also the same amount for
each month, so enter them in the same
manner. Quantities that change from
month to month, like car maintenance

.and gasoline, must be entered
separately, using the ‘‘D’’ command
described above.

The final two rows on the
spreadsheet — money left and cost of
life — are calculated items. By this, I
mean they are dependent on other
amounts already entered in the
spreadsheet, and will require equations
to be entered for these quantities.
Using the cursor positioning keys,
position the current cell at 13A in
preparation for equation input. Now
select the “E” — or Equation —
command to input the following
equation: .

2A+3A+4A+6A+T7A+10A
+ 11 A <cr>

Note: The spaces between the
characters are very important for

Fsuedo-code for Forth Spreadsheet

FROCEDURE SFREADSHEET (spreadsheet.)
output initial screen display (dis_screen)
do forever
aet operator input (IEM_key)
if conmtrol then
process control input (comtrol_im)

else

process command input (command_in)
endif
display current status (dis_status)

enddo

FROCEDURE FROCESS CONTROL INFUT (control_in)
do case of control imstruction

home keyt do top row (top_row)
wp arrowd do up arrow (up_arrow)

Fg Up? do left 4 columns (left _4_cols)
left arrow?: do left arrow (left_arrow)
right arrow! do right arrow (right_arrow)

ernd! do bottom row (bottom_row)
down arrow! do down arrow {(down_arrow)
Fa Dnt do right 4 columns (right_4_cols)
A left arrowt! do first column (first_col)
A raht arrow! do last column (last_col)

elee

error condition (bheep)
endcase
return

FROCEDURE COMMAND INFUT (command_in)
do case of operator command

A% replicate cell data (again_repl)
C! input column names (input_col_names)
D irput cell data (input_cell _data)
=4 input cell equations (input_equ)
$ input number display format (format)
>t qgoto specified cell (qo_to)
! set calculste mode (mode)
! clear spreadsheet (riew)
¢ set calcocuwlation order (order)
' perform calcuwlations (perform_calc)
@A quit spreadsheet (quit_cale)
Ri input row names (input_row_names)
else
error condition (beep)
endcase
return

FROCEDURE GO TO (go_to)
prompt for row number

if within proper range then
prompt for column letter
if within proper range then
make the specified row/col the current one
set row/col displacement to zero
display the data on display (dis_data)
endif
endif
return

FORTH Dimensions

16 Votume Vil, No. 1

proper operation of the equations. If a
mistake is made entering an equation,
hit <cr> and then select ““E’’ again
and re-input the equation.

Next, use the down-arrow cursor
positioning key to move the current cell
down one position. Input the equation:

0A-13A <cr>

This equation subtracts income from
our expenses to give us the amount left
over. This amount will always be
displayed in cell 14A. Use this same
technique for each of the twelve
monthly columns.

After all data entry is completed, the
spreadsheet can be calculated by
executing the “P” or Perform
calculation — command. Before your
eyes, you will see the totals for each
month displayed. Scroll the
spreadsheet to see each month’s totals.
To perform ‘‘what if”” types of
analysis, select the auto-calculate mode
via the “M”’ — or Mode — command.
This will force recalculation of the
complete spreadsheet every time new
data is entered. For example, decrease
your February income (using the *“D”’
command) and watch the result in cell
14B. Even this simplistic example
program demonstrates the power of
this program for real-world situations.

All commands supported by this
spreadsheet program, as mentioned
previously, are shown in table one. You
might notice the absence of a
command to print the spreadsheet on a
printer. This feature could easily be
added, or you can use the screen-print
utility provided by many operating
systems to make hard copy when
necessary.

To save a spreadsheet for further
use, type the following:

> spreadsheet is boot <cr>
save-system filename.com <cr>

This will create a stand-alone
program called filename.com (or any
other name you would like to give a
.com file) that will execute immediately
upon typing
filename <cr>

This spreadsheet program now has
become a part of the F83 system and
will execute (with all data and

FPROCEDURE REPLICATE CELL DATA (again_repl)
qget data of currently marked cell
prompt operator for number of columns to copy data into (#in)
if rnumber of columns is qgreater than 0
do for the specified number of columns
move cell marker right one cell (right_arrow)
copy data into cell
enddo
display data on screen (dis_datsa)
endif
return

FROCEDURE FORMAT (format)
output format prompt to operator
qet response
it = 1 then

set format flaqg true
else

set format flag false
endif
return

FROCEDURE FERFORM CALCULATIONS (perform_calc)
calculate cells (calc_cells)

display the data on the display (dis_data)
return

FROCEDURE MODE (mode)
output mode command prompt
et response
if = 1 then

set mode flag true
else

set mode flaa false
endif
return

FROCEDURE NEW (riew)
ask again (4/m)
if answer is yes then
clear cells array
clear row name array
clear col name array
erase all equations from dictionary
set row/col displsascement to zero
display the dats on the display (dis_datla)
endif
return

FROCEDURE QUIT (quit_calce)
ask s8gain (4/r)
if answer is yes then

abhort program (short)
endif
return

Volume Vi, No. 1

17 FORTH Dimensions

equations intact) immediately upon
loading.

Modifications for Your Computer

If you have an IBM-compatible
computer, this program will run
without modification. Most other
computers will need the key codes
changed, however, to accommodate
those returned by your system.
Specifically, the spreadsheet words
IBM__key (defined in screen seven),
control__in (defined in screen forty-
four) and, finally, spreadsheet (defined
in screen forty-five), will need to be
modified.

IBM_key is an IBM-specific word
that allows access to all 256 of the key
codes returned by the IBM keyboard
driver. It maps the ‘‘extended key
codes’’ produced by the PC into the
range 128 ~ 256 decimal to allow easy
access by the programmer. The
control__in word case statement is
based upon these key codes. In your
system, first determine what key codes
you wish to use to access the functions
selected with control__in and then edit
them into screen 44. Also, screen 45
will have to be changed to select either
control_Iin oOr command_in in
accordance with the range of key codes
you have chosen. After the appropriate
changes to the key codes are made, the
program should compile and run
without difficulty.

The coding of this spreadsheet
program is a relatively straightforward
process, given the finished design in
pseudo-code. Two aspects of this
implementation need to be discussed to
make clear the operation of the
program. These are (1) data structures
utilitized and (2) algebraic equation
usage.

Data Structures

Arrays are used for the data
structures in this spreadsheet program.
Two types — two dimensional and
string arrays — are used to satisfy the
data storage requirements of this
program. A two-dimensional array
called “‘cells’ is used to hold all
information about a particular cell of
the spreadsheet. As defined in screen 6

FROCEDURE
prompt for equatiorn input
let
Move
store total definition
think it a8ll came from
interpret equation definmition
using algebra vocasbhulary
reselect forth vocsbhulary
return

FROCEDURE

prompt for

et input dats (qetd)

store into marked cell

aet mode flag

if suto caleuwlation mode
calewlate 211 cells

operator input equation

lenath

INFUT

encif

display data on display

return

FROCEDURE GET INFUT DATA

aet format flag

if dollars
do case of

make it the current column

if entry =
undo
endif
if 4 mames have been input
endif
display column
enddo
return

INFUT EQUATION (imput _eaquw)

move definition preambile Lo terminasl
following preamble
definition post-ambhle to tib

i #tib to mske forth
the operator

into dictionary

CELL DATA (input_cell_dasta)
data to be entered at

selected
(caleo_ cells)

(dis_data)
(aet¥)
input 8 number from the operator

and cents format selected then
decimal point position

no decimall multiply number imput by 100
1 decimalt? multiply number input by 10
2 decimalt! multiply number input by 1
3 decimal! divide mumber input by 10
endcase
endif
return

FROCEDURE INFUT COLUMN NAMES (inmput_col_names)
prompt operator for starting column
(one displayged in uwpper left)
do from the current column till final column

aoutput column identification letter

input column rname from operator into column name array
CR (no name input)
(exit procedure)

acroll display right to show them (dis_col_change)

names (dis_col naves)

input puffer (tib) ares

currently marked cell

then

letter (A-Z)

of the listing, each entry in the cells
array (row,col) is six bytes in depth.
The six-byte data sub-structure is
organized as follows:

0 - 1 Equation CFA storage
2 - 5 Double Integer Value storage

Bytes 0 and 1 contain the code field
address (CFA) of an equation, if one
has been assigned to this cell. Zeros are
stored in these locations if no equation
exists. Bytes 2, 3, 4 and 5 contain
storage for a double-length integer that

is the current value of this particular
cell. Specifying a particular row and
column can, therefore, pinpoint in the
cells array not only a cell’s value, but
also its defining equation.

Two string arrays — col__names and
row__names — are defined for storage
of the user-specified column and row
names. As with all arrays used in this
program, an index value on the
parameter stack followed by the array
name will result in the array element’s
address being returned to the top of the
stack. For example:

FORTH Dimensions

18

Velume VII, No. 1

FROCEDURE INFUT ROW NAMES (inmput_row_names)
prompt operator for starting row number
make that row the current row
do from specified row to maximum row
display row prompt
get row name from operator
store nmame in row name array
if onmly CR entered
urido (exit procedure)
endif
if % row names have been entered
seroll screen vertically (dis_row_change)
else
display tow names
endif
enddo
return

FROCEDURE START ALGEEBRAIC DEFINITION (as0)
set operastor stack to empty

select alqebrs vocabulary

return

FROCEDURE RIGHT FARENTHESIS ())
o while items on operator stack

pop operator stack

compile operator into forth dictionmary (op)
enddo

if left parenthesis found then
tackup operator stack pointer by 4 to remove it

else
display '"Missing (' error message
ahort proqaram

endif

return

FROCEDURE LEFT FARENTHESIS (()

place CFA of Jdmissing rowvtine on top of operator stack
place a precedance of 1 on the top of operator stack
push both onto the stack (rop)

return

FROCEDURE INFIX (infix)

HIGH LEVEL DEFINITION -~ compile

get CFA of double integer math routine
place precedence ornn top of parameter stack
store both into high level definition

HIGH LEVEL DEFINITION — runtime a3t equation compile time

else

compile operator into definition
endif
return

FROCEDURE END ALGEERAIC DEFINITION (1a)
pop remaining items off operator stack ardd compile (op>)
select forth vocabulary

aet CFA and precedence from high level definition to parameter
stack if higher precedence than aperator on top of operator
stack thén place CFA and precedence on top of operator stack

3 col__name

will return the address of column name
four (remember, array elements are
numbered from zero) to the top of the
stack. Also:

34cells2+ 2@

will return the double integer value of
the cell at the intersection of row 3 and
column 4 to the top of the stack. The
CFA of this cell’s equation, if one
exists, can be accessed by

34 cells @

If a value other than zero is
returned, the cell has been assigned an
equation. The equation can be
executed, with the final result being
placed in the same cell, as follows:

3 4 cells calculate

See the listing for the definition of
calculate. The spreadsheet words
calc__r/c and calc__c/r use this technique
for stepping through the spreadsheet
and calculating each cell’s value.

Algebraic Equations
To make the spreadsheet easier to

understand and use, it was decided
during the design phase to make all

equations input by the operator in

algebraic — as opposed to reverse
Polish (RPN) — form. Suppose the
current cell on the display (the one
surrounded with the < > characters)
is 3A, and you want it to contain the
sum of cells OA, 1A and 2A. By
selecting the input equation command
“E”” from the menu, you could enter:

O0A+1A+2A<cr>

From this time forward, the displayed
value of cell 3A will reflect the sum of
cells OA, 1A and 2A after each time the
spreadsheet is recalculated. The
algebraic operators currently
supported are +, -, *, / and mod,
although other operators could be
added easily by use of the technique
shown in screens 30 and 31.

The words involved in algebraic
equation processing are contained in
screens 27 - 32 and 37 of the listing.
Their operation is described somewhat

return in the program’s design. The method
utilized here was conceived by Michael
Stolowitz (Forth Dimensions 1V/6).

Volume Vi, No. 1 19

FORTH Dimensions

Basically, the program word input__equ
builds an equation in the terminal
input buffer (TIB) area in the form:

: FORMULA g ——-———~- Ja
[cell_ptr

2+] literal 2! ;

last @ name> cell_ptr!

where the area denoted by hyphens is
the algebraic equation input by the
operator. When the operator enters a
carriage return, the entire equation is
compiled into the Forth dictionary with
the name FORMULA. The symbol af
informs the compiler that an algebraic
equation follows which will be
terminated by Ja. The next portion of
the equation, up to and including the
semicolon, stores the double-integer
result left on the stack by the algebraic
equation into the storage area of the
cell corresponding to the equation just
entered. The final portion of the
equation returns the CFA of the
equation just entered for storage into
the CFA storage area for this cell. The
end result of this process is that
whenever the CFA is executed, the
compiled equation will be executed,
with the result being stored back into
the corresponding cell. (You will note
that each equation stored in the Forth
dictionary is given the name FORMULA.
This does not matter, as each is
executed via its CFA and not by its
name,) For additional information on
parsing of algebraic equations, see the
article mentioned above.

FROCEDURE RIGHT FOUR COLUMNS (right_4_cols)
do from 0 to 4
right arrow (right_srrow)
enddo
return

FROCEDURE LEFT FOUR COLUMNS (left_4_cols)
do from 0 to 4
left arrow (left_arrow)
enddo
return

FROCEDURE BOTTOM ROW (bottom_row)

current row = 11 (max row - 19%)
scroll display verticelly (dis_row_change)
return

PROCEDURE TOP ROW (top_row)

current row = 0 {(top row)
scroll display vertically (dis_row_change)
return

PROCEDURE LAST COLUMN (last_col)

current column = R (max col-4)

scroll display horizontally (dis_col_change)
return

FROCEDURE FIRST COLUMN (first_col)

current column = 0 (first column)

scroll display horizontally (dis_col_change)
return

PROCEDURE DOWN ARROW (down_arrow)
get current marked cell position
if at bottom of display then
if not at last row possible then
increment current row number
scroll display vertically (dis_row_change)

endif
else
erase cell marker (erase_cell_marker)
increment row displacement from current row
endif

place cell marker on display (place_cell_marker)
return

PROCEDURE UF ARRDW (up_arrow)
qet current marked cell position
if cell is at top of display then
if not 3t top of spreadsheet then
decrement current row number
scroll display vertically (dis_row_change)

endif
else
erase cell marker (erase_cell_marker)
decrement row displacement from current row
endif
place cell marker (place_cell_marker)
return

FORTH Dimensions

20 Volume VI, No. 1

FROCEDURE LEFT ARROW (left_arrow)
aet current marked cell position
if at left end of display then
if not at first column of spreadsheet then
decrement current column number
scroll display horizontally (dis_col_chanae)

endif
else
erase cell marker (erase_cell_marker)
decrement column displacement from current column
endif
place cell marker (place_cell_marker)
return

FROCEDURE ORDER (order)
output operastor prompt
qet response
if = 1 then

set order flaq true
else

set order flag false
erdif
raturn

FROCEDURE CALCULATE ALL CELLS (calce_cells)
get order flaq

if set

caleuwlate columns and then rows (cale_co/v)
else

calculate rows and then columns (cale_r/c)
endif
return

FROCEDURE CALCULATE COLUMNS AND THEN ROWS (calc_c/r)
do from the first to the last row
do from the first to the last column
qet cell formula address (CFA)
calculate formula (caslculazte)
enddo
enddo
return

FROCEDURE CALCULATE ROWS AND THEN COLUMNS (calcoc_r/)
do from the first to the last column
o from the first to the last row
get cell formulz address (CFA)
calculate formula (calculate)
enddo
enddo
return

FROCEDURE CALCULATE CELL FORMULA (calculate)
qet data at cell formula address

if pot eaqual to 0 (i.e. formula assigned for this cell)
execute formula
endif

return

Support for major FORTHs
and our own products

VAX FORTH 32

Complete VMS support
Command line qualifiers
DEC compatible full
screen editor

On line HELP facilities
Start-up files
Switchable log-files
System files with
precompiled modules
Cross compilers
available for most
microprocessors

* %

* % % %

FORTH-83 CROSS-
COMPILERS

B-tree symbol table of
unlimited size
Compiles FORTH-83
nucleus

Compiles 16 or 32 bit
code

Two passes allow
automatic pruning of
nucleus for ROM
applications
Automatic handling of
defining words

* Targets include 1802,
Z8, 8070, 8080,
6801/3, 6502, 6511Q,
6809, 99xxx, 8086/8,
68000, 280

* % % %

%

MicroProcessor Engineering, 21
Hanley Road, Shirley, Southampton,
SO1 5AP, England, Tel: 6703 780084

FORTH-Systeme Angelika Flesch,
Scheutzenstrasse 3, 7820 Titisee-
Newstadt, West Germany, Tel: 07651

1665 —
~ -

Volume Vii, No. 1 21

Multiuser/Multitasking
for 8080, 280, 8086

Industrial /
Strength

FORTH

TaskFORTH..

The First
Professional Quality
Full Feature FORTH

System at a micro price*

- LOADS OF TIME SAVING
PROFESSIONAL FEATURES:

% Unlimited rumber of tasks

% Multiple thread dictionary,
supertast compilation

v Novice Programmer
Protection Packagemm

¥ Diagnostic tools, quick and
simple debugging

% Starting FORTH, FORTH-79,
FORTH-83 compatible

¥ Screen and serial editor,
easy program generation

¥ Hierarchical file system with
data base management

* Starter package $250. Full package $395, Single
user and commercial licenses available.

If you are an experienced
FORTH programmer, this is the
one you have been waiting for!
If you are a beginning FORTH
programmer, this will get you
started right, and quickly too!

Available on 8 inch disk
under CP/M 2.2 or greater
also
various 5%’ formats
and other operating systems

FULLY WARRANTIED,
DOCUMENTED AND
SUPPORTED

DEALER INEERE
INQUIRES V/ISA®
INVITED ’

master charge

Shaw Laboratories, Ltd.
24301 Southland Drive, #216
Hayward, California 94545
(415) 276-5953

FROCEDURE DISFLAY SCREEN (dis_screen)
clear display

place cursor on CRT

display spreadsheet title

display boarder (dis_boarder)
display menw (dis_merw)
display column labels (dis_col _lasbels)
display column names (dis_col_names)
display row labels (dis_row_lsbels)
display row names (dis_row_riames)
display data on display (dis_data)

set row/col displacement to zero
display status (dis_status)
return

FROCEDURE SCROLL DISFLAY HORIZONTALLY (dis_col_change)
display column names (dis_col_namnes)

display column labels (dis_col_labels)

display data on display (dis_data)

return

FROCEDURE SCROLL DISFLAY VERTICALLY (dis_row_change)
display row names (dis_row_names)
display row labels (dis_row_labels)
display data on display (dis_data)
return
FROCEDURE DISFLAY CURRENT STATUS (dis_status)
place cursor on CRT
display current row number
place cursor orn CRT
display current column letter
place cursor orn CRT
aet mode flagq
if set then
display "AUTO" i.,e. auto calculate mode selected
else
display "NORMAL"
endif
place cursor on CRT
get order flaaq
if set then
display "C/R" i.e, calculate columns then rows mode
else
display "R/C"
endif
place cursor on CRT arnd display command prompt
place cell marker on display i.e. place < + around
currently selected cell
return

(Cont. on page 25)

22 Volume VII, No. 1

October 23, 1985 — November 3, 1985

FORML

Forth Modification Laboratory
presents

EuroFORML Conference

Stettenfels Castle

Heilbronn, Federal Republic of Germany
Followed by

SYSTEMS Trade Fair, Munich

Computers and Communications 9th International
Trade Fair and International User’s Congress
and
Selected sightseeing tours and entertainment in Germany
International technical conference October 25-27, 1985 Stettenfels Castle

Software Metrics — Programs and methods to measure program performance, complexity,
structure, programmer productivity, development methods, models, tools, program verification
aids, and procedures. Individual participation is encouraged and attendees are requested to submit
a conference paper. Conference proceedings will be published.

SYSTEMS Trade Fair October 28 — November 1, 1985 Munich Fair Grounds

Computers and Communications — This is a major international event covering computers and
communications. The trade fair is scheduled October 28 through November 1, 1985.

Guest and Tour Program — A complete program will be available for guests not attending the
technical conference sessions. Sightseeing escorted tours are planned for the group.

Reservations, authors' instructions, itinerary, special group rate — Write to EuroFORML, Forth
Interest Group, Post Office Box 8231, San Jose, CA 95155 or telephone the FIG Hotline (408)
277-0668. East and West Coast departures are planned. Advance reservations are required.

CALL FOR PAPERS

Volume VII, No. 1 23 FORTH Dimensions

FORTH INTEREST GROUP MAIL ORDER FORM

P.O. Box 8231

Please Print

Name

Company

Address

City

State/Prov. 1P

Country

Phone

Membership in the FORTH Interest Group
& Volume 7 of FORTH Dimensions

No sales tax, handling fee or discount

on membership. See col. 3 D
BACK VOLUMES

Volume 1 FORTH Dimensions *$15/16/18

Volume 2 FORTH Dimensions 15/16/18
Volume 3 FORTH Dimensions 15/16/18
Volume 4 FORTH Dimensions 15/16/18
Volume 5 FORTH Dimensions 15/16/18

Volume 6 of FORTH Dimensions....$15/16/18

REFERENCE
FORTH 83 Standard............... $15/16/18
FORTH 79 Standard............... 15/16/18
Bibliography of Forth References,
2nd Ed..oovvvvniiiiiie 15/16/18
OFFICE USE ONLY

By Date Type

Shipped by Date

UPS Wt. Amt.

USPS Wt. Amt.

BO Wt. Amt.

San Jose, CA 95155

BOOKS ABOUT FORTH

All About FORTH *$25/26/35
Beginning FORTH................. 17/18/21
Complete FORTH 16/17/20 —
FORTH Encyclopedia.............. 25/26/35
FORTH Fundamentals, V. 1 16/17/20 — _
FORTH Fundamentals, V. 2 13/14/16
FORTH TOOIS e cccvvvvienvnnnnnenns 19/21/23
Learning FORTH.................. 17/18/21
Mastering FORTH................. 18/19/22
Starting FORTH (Soft Cover)....... 20/21/22
Thinking FORTH (Soft Cover) 16/17/20
Thinking FORTH (Hard Cover) 23/25/28
Threaded Interpretive Languages..... 23/25/28
Understanding FORTH............. 3.50/5/6 —
CONFERENCE PROCEEDINGS

FORML Proceedings 1980 $25/28/35

FORML Proceedings 1981 (2 V.) 40/43/45_____

FORML Proceedings 1982 25/28/35
FORML Proceedings 1983 25/28/35
FORML Proceedings 1984 25/28/35
Rochester Proceedings 1981 25/28/35
Rochester Proceedings 1982 25/28/35 —
Rochester Proceedings 1983 25/28/35
Rochester Proceedings 1984 25/28/35

JOURNAL OF FORTH APPLICATIONS
AND RESEARCH
Journal of FORTH Research V. 1 #1.315/16/18 ____

Journal of FORTH Research V. 1 #2. 15/16/18 _____
Journal of FORTH Research V. 2 #1. 15/16/18
Journal of FORTH Research V. 2 #2. 15/16/18 ___
Journal of FORTH Research V.2 #3. 15/16/18 ____
REPRINTS

Byte Reprintscceovevinunnenn $5/6/7
Popular Computing 9/83 5/6/7 —
Dr. Dobb's 9/82.....ccvvviiiiiiinnnn, 5/6/7 —
Dr.Dobb's9/83coiiiiiiit. 5/6/7 ——
Dr.Dobb's9/84......ccvvviiiininnnn, 5/6/7 —
HISTORICAL DOCUMENTS

Kitt Peak Primer $25/27/35
fig-FORTH Installation Manual 15/16/18

Column 1 - US, Canada, Mexico
Column 2 - Foreign Surface Mail
Column 3 - Foreign Air Mail

Prices Are Subject To Change.

*PRICING

(408) 277-0668

ASSEMBLY LANGUAGE SOURCE LISTINGS

on

. J—

2.00

$___

1802 . . ettt i iiie i *$15/16/18
6502 it it 15/16/18
6800 ...ttt i 15/16/18
6809 ..ttt 15/16/18 —
8080 ...vviiiiii it 15/16/18
B0B6/88 ...oiiiiiiiiiiiiiiiiie 15/16/18
9900 ...viriii it 15/16/18
ALPHAMICROc...... 15/16/18
Apple Iloveiiiiiiies 15/16/18
ECLIPSE......ccviiiiiiiiiniinnnnn 15/16/18
IBM/PC.. .ottt iiiiinn 15/16/18 —
NOVA . it iiiiiiiiiteiiancnnnns 15/16/18
| -0 15/16/18 —
PDP-1l .. eeiieiiiriinnnnnnnnnns 15/16/18 —
VAX ittt ittt rernnaannsnaaaas 15/16/18
Z80 ot e 15/16/18
MISCELLANEOUS
T-Shirt Size: — $10/11/12
Poster (BYTE Cover)............... 15/16/18 —
Handy Reference Card FREE
Subtotal
109% Member Discount
Member No. Required
Subtotal
CA Residents Add Sales Tax
Handling Fee
Membership (*20/27/33)
TOTAL

O VISA [0 Mastercard #

Expiration Date
$15 Minimum on VISA/Mastercard Orders.

Make check or money order payable in
US funds drawn on a US Bank to: FIG.

PAYMENT MUST ACCOMPANY
ALL ORDERS
(Including Purchase Orders).
All Prices Include Shipping.

5/85

PROCEDURE DISFPLAY COLUMNS NAMES (dis_col_names)
place cursor on CRT
do from current column four times
if current column = max column
undo (exit procedure)
endif
place cursor on CRT
get column name from column name array
display at proper position
enddo
return

PROCEDURE DISFLAY COLUMN LABELS (dis_col_labels)
do from current column four times

if current column = max column

undo (exit procedure)

engif

place cursor on CRT

generate alphabetic label

digplay at proper position
enddo
return

FROCEDURE DISFLAY ROW NAMES (dis_row_names)
do from current row 15 times
if current row = max row
undo (exit procedure)
endif
place cursor on CRT
get row name from row name array
display at proper position
enddo
return

FROCEDURE DISFLAY ROW LABELS (dis_row_labels)
do from current row 15 times

if current-row = max row

undo {(exit procedure)

endif

place cursor on CRT

qgenerate row number

display at proper position
enddo
return

PROCEDURE DISFLAY DATA ON'DISFLAY (dis_data)
do for all 4 possible screen display columns

if column displaged = final column rnumber

undo
endif
do for 15 possible screen display rows

Volume VII, No. 1 25

S-80MODELS 1,384

,IBH PC XT, AND COMPAQ |

WHICH FORTH‘
‘has all the

POWERFUL

{i}}APPLICATIONS? i

& DATAHANDLER
.« database

e FORTHWRITE
. word processor

FORTHCOM
. communications

_» GENERAL LEDGER
_accounting

GAMES
for fun‘and technique

. EXPERT-2
_expert system

 TRADESHOW ,
commodities terminal

» GRAPHICS, 8087 sup-
_port, many other utilities
You've Been
‘hinking About It.
“Isn’t It Time to
Put It to Work?

- The total software environment for
" 1BM PC, TRS-80 Model 1, 3, 4and
close friends.

*Personal License (required):
MMSFORTH System Disk [IBMPC) $240.95
- MMSFORTH System Disk (1RS-801, Sord) 12096

| @ Personal License (optional modules)
. FOMHCOM communications module. . . §

" DATAHANDLER-PLUS (PG only, 128K req) - 99 ns‘
- FORTHWRITE word processor

. _#Corporate Site License

Extensions

. *Some recommended Forth books:

UNDERSTANDING FORTH (overview) . © .
STARTING FORTH (programming}

5. THINKING FORTH (techniqus)

BEGINNING FORTH (re MMSFORTH) . . .

: SMppmg/hmﬁimg & tax oxtra. No faturng on Software.

‘Ask your dealer 1o show you the world of

MMSFORTH, or request our free brochure.

- MILLER MICROCOMPUTER SERVICES

61 Lake Shore Road, Natick, MA 01760

{617).653-6136

if row displayed = fimal row rumber
urido
ercdif
position cursor on CRT
get cell content at cellslrow,columnl
format cell data (format$)
enddo
endro
return

FROCEDURE FORMAT CELL DATA (format¥)
aet format flaaq
if set

format as dollars/cents (fd.or)

format as rnumber (d.r)

rv1nrr

FROCEDURE ERASE CELL MAORKER (erase_cell_marker)
caleulate cell display location (eBl_cell_disp_loe)
wnmark cell (unmark_cell)

return

FROCEDURE FLACE CELL MARKER (place_.cell_marker)
caleculate cell display location (eal_cell_disp_loc)
mark cell (mark_cell)

return

FROCEDURE ASK AGAIN (Y/N)
place cursor on CRT
display "Are wou sure” message
get response
convert to upper case character
if wyes then

set result truoe
else

st result false
endif
return

NOTES

a. The words shown in parentheses are the Forth words that
were coded from the pseudo code designe. Refer to listing
one for the actual code generated from this desian.

R TS L R Y

Free Power!

bAd POWER-UP YOUR APPLE lie/11IC AND GET ONE BOOK FREE FROM = #
wkdwwR®R @ e THIS AD WITH EVERY $20.00 PURCHASE s ddaswhw

The Cusom APPLE & Other Mysteries
by Ekkehard Floagel

The Custom Apple and Other Mystesies
contains hardware modification instruc
tions as well as software for data
acquusition and control applications;
sound and noise generation using the
AY-38912 systems. and the interfacing
of other microprocessors to the 6502
Includes instructions for programming
the 6522 internal timer programming
a visual display ngicator: programming
the G soundehip and much more
Order-No. 680 (Book! $19.80
BAREBOARDS for Apple Illle at
super low prices.

KIT contaime barsbosrd and softwars!

Siot repester

Order-No. 606 $19.95
Prototyping Card

Order o 604 3995
6622 1/0 Experimentercard

Qrdar-No. 605 $19.95
2716 EPROM Burner

Order-No. 607 $19.95
RAM/ROM board

Order-No. 609 2995

Learn-FOATH for APPLE lle + lic
A subset of FIgFORTH for the beginner

Y
POWER-FORTH — Extended FigFORTH
incl, editor, 1/0 package, decompiler,
sector copy, turtle graphics and sound.
Order-No. 6155 $1995

The APPLE in your Hand, by E Floegel

The APPLE in your
Hand provides

statements for
tinked lists, plotting
tunctions, finear
functions, Fourier
analysis, and com.
uter graphics
Other advancsd
topics include three
dimensianal func
tions and the presemtation of statistical
data A section on machine language
ntroduces branches, comparisans,
indexed addrestigs subroutines, and
6522/0.

Order-No. 178 (Book! 21295

6502/66C02 Macroassembler far
APPLE 1) and compatibles

Very fast, easy to use, full anthmerical
expressions, shift operators, practically
unlimited macro nesting, inci. disassembler

ELCOMP PUBLISHING, INC.

2174 West Foothill Bivd., Unit E
Uplend, CA 51786

Phone: (714} 6238314, TIx.. 29 81 91

Order-Nr. 6153 $9.95 Order-No. 699 1Disk} $29.95
Dusler and distributor inquiries are PAYMENT: Check, VISA, MC
invited. CA sesidents add 6 % sales tax.

Add $ 2.00 for shipping.

Outside USA: add 15% for shipping
I Semgupore contact 22 456
In Gormany comtact: 526973

CP/M — MBASIC Application

Business Applications, complete listings
of maiting list, data block, inventory con-
trol, invoicing and more

Order-No. 177 $1.00
Astrology — A Look into the Future
using your ATAm computer.

Order-No. 1 £1.00
zx-8% / TIMEX — Programming in
BASIC and Machine

This book is packed with programs which
range from games 10 dats management
and machine code.

Order-No. 174 $1.00
9502 Expansion Hendbook

Lots of scrematics, tricks and tips.

Order-No. 152 $1.00
BASIC Reference Manual
Ordar o 159 21.00
Core andd Fesdimg of the Commodors
PET, Ovder-Ne. 1 $1.00
VIP Book (Very Important Programs) in
SARIC, Oreer-No. 180 $1.00

FORTH on the ATAR) - Leerning by

Uning

FORTH on the ATAR| discusser the e
of FORTH for ganerating sound. plotting
graphics, and handling text and strings.
Included are 14mple progrems illustrating
input and output, math, use of the game
port, and & sample mailing kist.

Order-No. 170 $1.00

OneDollar
SALE =

Each book from this ad is ons DoMer ! Buy alt 15 books for only $ 11.95
Incredible sevings — Mail your order today !

Program Descriptions — PD Book

This book contains the descriptions for

all software-products and hardware add-

on products for ATAR) from Hofacker.

Order-No. 173 $1.00

Programming in 6502 Machine Langusge

on your PET + CBM

2 complete Editor/Assemblers+ a power-

tul machine hw monitor lhuxdump).

Order-No. 1 st

The Thied Book of OHIO

How to expand your personal computer.

Very useful schematics. Ideal for every

hardware buff.

Ovder-No. 158 $1.00

The Second Book of OHIO

Introduction to 0S-65D operating system

Order-No. 158 $1.00

Intet Application Notes

Reprint of Intel literature (8085, 8255).

Order-No. 153 21.00

Complex Sound Generatio:

Application manual tor mg T) 76477

complex sound genersor

Order-No. 154 $1.00

Sme)l Business

Programs in BASIC for the business

Inventory, check book, payroll. maiting

Jist et
-No. 158 $1.00

ELCOMP PUBLISHING, INC.

2174 Wast Foothill Bivd., Unit E
Uplend, CA 91788

Phone: (714) 6238314.TIx.: 29 81 91

PAYMENT: Check, VISA, MC
cA.-.a.nuausx-u-ux
Add § 2.00 for shi

Outsd USA; 28 15% for shipping

The Mirth Dimension...

HEN-SCRATCH (n--- ?)
RANDOM O DO
PICK PICK PICK PICK PICK

DROP DROP EMIT EMIT
LoopP

FUNCTIONAL -SPEC
1000 *
0 DO
I HEN-SCRATCH

(pages --- ??7)

LOOP

--Scott Heiner & Charles knowlton

FORTH Applicstioms on the (BM PC
Apphication programs in FigFORTH for
your PC Screeny show programs from
nput/output, binary trees, astiticial i
telligence, decompiler. breakpoint
foutine, keyword wndex. a little game,
msiling st with nvoice writing and a
complete busoess peckage combining
invoice writing, mailing hist and inven.
tory control. protessional programs for
the advanced FORTM programmer

Order-No_61 (Book} 31295

POWER FORTH for APPLE lis. ATAR)
800X 1L, Com:

Extended Fig FORTH incl. editor and
many usetul utilitws. Very powertul
FigFORTH tor Apple Il ¢

Order-No_ 8155 51995

FigFORTH for Commodors64

Order-No. 4960 $39.00
r..mnm for AYARI BOOXL
Orsier-No $39.00

FREE
FORTH

= GET ONE FORTH OR BOOK FREE WITH EVERY 8 20.00 ORDER »

P e R T 2 2]

Loarn-FORTH — 2 subert for the e

ginner

Leern-FORTH f.Atari 600/800XL (Ot
or camatte]

Order-No. 7053 s1098
Learn-FORTH for APPLE lic

Order-No. 6153 s98

FORTH on the ATARI — Lesrmimp
by using

FORTH application examples for the
novice and expert programmer. 118 peges
This book discusses the use of FORTH
for generating sound, plotting graphics,
and handling text and strings. Included
are sample programs illustrating input and
output, math, use of the game port
and 2 samphe mailing fist

Order-No. 170 (Book! $7.96
FORTH introduction on your APPLE Ik '
(The Appie in your Hand)

A complete introduction 1o FORTH o
your APPLE. Includes many FORTH
application programs and machine
1anguage course

Order-No. 178 {Baok} 21296

FORTH Dimensions 26

Dasler and Distributor inquires are
invited

ELCOMP PUBLISHING, INC.

2174 West Foothill Bivd . Unn E

Upland, CA 91798

Phone: (714} 8238314.TIa: 29 $) N1

PAYMENT: Check, VISA, MC
CA residonts add 6 % anbes tax.

Macro Generation

Don Taylor
Sydney, Australia

In a past issue of Forth Dimensions
(V/5), Jeffrey Soreff presented a
method of writing macros in Forth.
The idea was to put COMPILE before
each non-immediate word, [COMPILE]
before each immediate word, and
make the whole thing IMMEDIATE. This
certainly does the job but, of course, it
leads to definitions in which every
second word is COMPILE or [COMPILE].
Inspired by Soreff’s article, I set myself
the task of writing a defining word that
would create a macro from any
segment of legal Forth code. A solution
is presented in figure one.

Typing:
MACRO: <name >
creates a dictionary entry for <name>

and copies all the text following
<name> up to the next semi-colon into
the parameter field. The dictionary
entry is completed by inserting | (offset
by blanks) after the text.

When <name> is encountered
within a colon definition, it redirects
the input stream to the text within its
parameter field. Then, INTERPRET
compiles the words that it finds
there as though they were part of the
colon definition. The input stream
is restored to its original state by
the word | that occurs at the end of
each macro.

It is possible to nest the macros
created by this approach, and it is not
necessary to have defined any of the
words within the macro at the time of
its creation. Of course, these words do
need to be defined before the macro is
used.

This solution to the problem has an
obvious drawback. Namely, it con-
sumes a large amount of dictionary
space. On the other hand, it does allow
a great deal of freedom and, since the
macros are not needed after they have
been used, space could be saved by
loading them as TRANSIENT definitions
(see the note by Phillip Wasson, Forth
Dimensions 111/6) and removing them
after compilation of the words that use
them.

If compilation crashes within a mac-
ro, TIB will be left pointing somewhere
inside the dictionary. To restore
normal input, use TIB! from figure one
and FORGET the corrupted macro
definition.

The macros DO’ and LOOP’ given in
figure two correspond in function to
the macros with the same names
provided by Jeffrey Soreff.

|
2

: TIB!

MACRO: DO'

MACRO: LOOP®

: EXAMPLE

: EXAMPLE

: ASCII BL WORD 1+ C@ STATE @ IF [COMPILE] LITERAL THEN ; IMMEDIATE
: MACRO: CREATE ASCII ; WORD C@ BL C, ALLOT ASCII | C, BL C,
IMMEDIATE
DOES> R> BLK @ >R >IN @ >R TIB @ >R >R TIB !

OBLK ! O >IN ! ;

R> R> TIB ! R> >IN ! R> BIK ! >R ; IMMEDIATE
TIB @ CONSTANT TIB@

TIB@ TIB ! ;

Figure One

2DUP - O> IF DO ;

LOOP ELSE 2DROP THEN ;

CR DO' I . CR LOOP' ;
CR 2DUP - O>
IF DO I . CR LOOP ELSE 2DROP THEN ;

Figure Two

(Macro example)

(Equivalent code)

(cont.)

Volume Vi, No. 1

27

FORTH Dimensions

3 LIST
Screen # 3
CR ." The MACRO generator "

: MACRO: CREATE ASCII ; WORD C@ BL C, ALLOT ASCII { c, BL C,

IMMEDIATE
DOES> R> BIK @ >R >IN @ >R TIB @ >R >R TIB !
O BIK ! O >IN ! ;
: R> R> TIB ! R> >IN ! R> BLK ! >R ; IMMEDIATE

TIB @ CONSTANT TIB@
: TIB! TIB @ TIB ! ;

(Example. c¢f. Forth Dimensions V/5)

MACRO: DO' 2DUP - O> IF DO ;

MACRO: LOOP' LOOP ELSE 2DROP THEN ;
: EXAMPLE CR DO' I . CR LOOP' ;
Ok

3 LOAD

The MACRO generator Ok
EXPAND EXAMPLE
CR
2DUP
0>
OBRANCH 18
<D0O>
I
CR
<LOOP> -8
BRANCH 4
2DROP
H)'S
3 4 EXAMPLE
Ok
4 3 EXAMPLE

3
Ok

Figure Three

PolyFORTH'll

the powerful multitasking/

multi-user operating system
is now available for most

micro-computers running—

CP/M-80
and

CP/M-86

Offers CP/M users:
® An ability to run multiple
terminals
¢ Unlimited control tasks

e Concurrent printer
operation

These advanced features combine
with FORTH, Inc.’s powerful ver-
sion of the FORTH programming
language to offer CP/M users the
ideal environment for all interactive
and real-time applications.

Featuring speed of operation, shor-

tened development time, ease of

implementation and overall cost-

effective performance, this system

is fully supported by FORTH, inc.’s:

e Extensive on-line documen-
tation

e Complete set of manuals

e Programming courses

¢ The FORTH, Inc. hot line

¢ Expert contract programming
and consulting services

From FORTH, Inc., the inventors
of FORTH, serving professional
programmers for over a decade.

Also available for other popular
mini and micro computers.

For more information contact:

FORTH Inc.

2309 Pacific Coast Hwy.
Hermosa Beach,

CA 90254
213/372-8493

RCA TELEX: 275182
Eastern Sales Office
1300 N. 17th St. #1306,
Arlington, VA 22209
703/525-7778

*CPI/M is a registered trademark of Digital Research

FORTH Dimensions 28

FORTH Dimensions

Keywords — Where Used

Nicholas L. Pappas
Oakland, California

We have created a number of tools
to facilitate our work: FINDNO is one
such tool. FINDNO tells which keywords
use a given keyword. For example,
when one wants to load Forth above
8000h in memory, you quickly discover
the need to replace < with U< so that
addresses, which are unsigned
numbers, are compared correctly. Or,
when base changes are annoying, you
may want to ask, ‘“Which keywords
change base, and where are those
keywords used?’’ Suddenly, you need
to know which keywords use <, BASE,
HEX and DECIMAL.

The basis for FINDNO is this: when
keyword A uses keyword B, A’s code
body includes B’s code field address
(cfa). So we need to search memory for
the two-byte cfa number starting at
some address for some number of
bytes. Consistent with Forth memory-
reference keywords, the prefaces

addr, number-of-bytes, cfa

give FINDNO the data it needs to do its
task. FINDNO starts searching at aeddr
for number-of-bytes, looking for cfa
(keyword B) in order to reveal
keywords A using B.

Proceeding in a simple way, we read
each byte pair (addr @) while
incrementing addr by one, not two.
This means we search through memory
from Forth’s start address to the dp
value. Since we read through name
bytes and link field address bytes, as
well as the code bytes, we take the risk
of getting false reports. Incrementing
addr by one avoids the complicating
questions, ‘“Where are the code cells,
and does this Forth use byte cells
(naughty, naughty) as well as word
cells?”

How does FINDNO work? With the
cfa on top of the stack, the initial code
fragment shown in Figure One leaves
the stack values alone as it prints a
friendly message telling us what is
about to happen (e.g., ‘“Looking for
1624 Compile.”’

(x = stack bottom)
CR CR ." LOOKING FOR " cfa n addr x
pup 0 4 D.R
SPACE
DUP 2+ NFA 1ID.
Figure One
CR cfa n addr x
ROT ROT n addr cfa x
OVER + addr+n addr cfa x
SWAP addr addr+n cfa " x
Figure Two
addr addr+n cfa x
DO cfa x
Dup I @ ni cfa «cfa x
= f cfa x
IF I 0 4 D.R SPACE cfa x
I FINDID. cfa x
THEN
LOOP cfa x
Figure Three
BEGIN addr x
DUP XLIT = fl1 addr x
SWAP 1 -~ addr-1 fl1 x
Figure Four
DUP 1+ @ ni addr-1 f1 «x
DOCOL = f2 addr-1 f1 x
Figure Five
DUP f2 f2 addr-1 fl1 x
IF@ f2 addr-1 f1 x
OVER 1+ addr f2 addr-1 fl1 x
0 4 D.R
SPACE
THEN £f2 addr-1 f1 x
Figure Six

Then we start a new line and
manipulate the stack wvalues to
calculate a loop index and limit as
shown in Figure Two. We have a
known number of bytes to search, so a

do loop that increments by unity is
what we use. The loop index I is an
address because the loop limits are
addresses. Note the consequent
simplicity in Figure Three.

Volume VII, No. 1

29

FORTH Dimensions

ROT
OR
UNTIIL

NFA 1ID.
CR :

o~
b

!

TMOoOOWMDOODNOEWU DR -

f1 £f2 addr-1 x
f3 addr-1 x
addr-1 x

Figure Seven -

‘addr+2 x
X

Figure Eight

NLF FORTH EDITOR

" ¢ CFA 9 CONSTANT DOCOL
> LIT LFA CONSTANT XLIT

: FINDID. { addr --—-)
BEGIN
DUF XLIT =
SWAF 1 -
DUF 1+ 9
DOCOL = DUF

IF OVER 1+ O 4 D.R SFACE
THEN

ROT

OR

UNTIL

-
a—t

+

NFA 1D,

CR

.
x

: FINDNG (addr nl n2 -—-
CR CR ." LOOKING FOR "
DUF O 4 D.R
SFACE DUF 2+ NFA 1ID.

CR ROT ROT OVER + SWAF
DO DUFP I @ =
IF 1 0 4 D.R SFACE
I FINDID.
THEN
LOOF
DROF ; 1S

COFYRIGHT (L) 1983
by Nicholas L. Fappas, FhD

(forward to pfa)

| @ is addr @ that leaves ni, which is
compared to c¢fa so that flag f is non-
zero if equal and zero if not equal. The
if-then statement is skipped on false
flags, LOOP increments the index by
one and branches back to DupP for a
look at the next byte pair. On true
flags, the if-then statement executes to
print the address holding a number
equal to the cfa of B, leaves the address
on the stack and executes FINDID..
FINDID. assumes the number is indeed a
cfa being used by a code body as it
proceeds to print the cfa and <name>
of the using keyword (keyword A).
More later on FINDID..

Our useful friend cfa is still on the
stack, so we end with DROP ;.

The basis for FINDID. is that docol —
run-time code for : — 1is stored in
keyword A’s cfa. (Only colon
definitions have cfa’s in their code
bodies, so this is real.) If the number ni
is not really a cfa, then it is in an Ifa or
part of a <name >. FINDID. still moves
down memory through the next code
body, looking for docol, and performs
its tasks — producing a false report.
(More later on false reports.) In the
unlikely, yet possible, event there are
no docols down memory, FINDID. does
nothing and exits gracefully when LIT’s
Ifa is reached. If LIT is not your first
keyword, redefine XLIT accordingly.

Here is how FINDID. works. Not
knowing a priori where docol is, we use
a begin-until loop for our search. We
do last things first in order to avoid
some stack manipulation and to be
easier to read (‘‘think-about
until’’). First, test an exit possibility by
checking for end-of-search and
backing up one byte to the code in
Figure Four.

In case our cfa is also docol we just
left it, so the code in Figure Five
follows. If f2 is true, we execute the if-
then statement, printing the cfa of user
A with Figure Six. Checking for an
exit, we get both flags on top and do a
logical-or operation, as in Figure
Seven, to exit if /3 is true (non-zero) or
to loop if it is false. When we exit, note
that addr-1-1 is the Ifa (Ifa = addr-2
if addr is the cfa of the keyword). We
want to print the <name> of our user
A via ID. so we need its nfa (see Figure
Eight).

FORTH Dimensions

30

Volume VIi, No. 1

In the examples, COMPILE’s ‘‘where-

6EQ 20 DUMF used list’’ includes colon. This is a false

Q4EC Z& 00 8T 42 AC CE D7 046 17 06 16 00 82 42 DI EX report, because the value 1606h
0LFQ 06 17 06 36 00 87 44 49 53 S0 43 4F CC EC 06 17 (COMPILE’s cfa) happened to be within
%

a user variable. So FINDID. backed up
past douser (no docol in a user

0100 1F00 * EMIT CFA FINDNG variable) and k(?pt going until it four}d
* COMFILE CFA . 1606 OK a docol — this happened to be in
0100 1F00 1606 FINDND ngf}INEQZUEXPZg’T‘ EMIT colon. The clue is the large difference,
LOOKING FOR 1606 COMFILE 034 €m0 SFACE _ for a keyword, between the two printed
SE2 52§ 3 CAC C98 TYFE addresses 668 and 6E9 (see the memory
&ES & : 1945 191K INDEX . o .
167/ 1676 3;CODE 19D0 199C TRIAD dump in Figure Nine). .
16DD 16D3 LITERAL oK Note that the simple test DOCOL = in
1R&0 1BSA AGAIN Ok [e] t
1BB1 1R7F DO 0100 {FQO ° KEY CFA FINDNO FINDNO can be replaced by an or tes
1BET 1EAD ELSE for docol, dovar, docon, douser or
iggg iggc IEUF' ngn‘.mg Fogxpggi KEY dodoes; we let it go, in the interests of
L) A& . .« s
IEFF 1EF9 +LOOF 1EES 1EAT7 kX simplicity. Also note that the
1C15 1COF UNTIL ok immediate word [COMPILE] does not
1DED 1DDF ." Ok
D 0100 1FO0 * TTERMINAL CFA FINDND shoyv up as expected. And, perhaps a
oK review of where EMIT., KEY and
* [COMFILE] CFA . 1624 DK LDOKING FOR 96A TTERMINAL TERMINAL are used is of interest.
0100 1F0D 1624 FINDND 17AA 1762 VLIST B ll l h d
1975 191E INDEX Finally, please note that a screen editor
LOOKING FOR 1624 [COMFILE] 19B6 199C TRIAD can be written which has a
ok Ox i i
FCRT PCRT reformattable display complete with

window roll-up and roll-down.
Figure Nine

introducing
AxFORTH™ for the Atari 520ST

ICONS
Windows
Pull Down Menus
Bit Mapped Graphics
32 bit Forth Based on '83 Standard
The "Only Concept”
The Colburn Sieve at 1.35 seconds/pass
The Forth Accelerator yielding 0.465 seconds/pass
Compile from 150 to 600 blocks/second

Incrediable Software and Hardware at Fantastic Prices

Introductory Prices

4xFORTH with Assembler $99 .95+
4xFORTH Accelerator™ $75.00
4xFORTH with GEM Interface $14995

The Dragon Group, lnc.

148 Poca Fork Road, Elkview, WY 25071
304/965-5517

* All prices FOB Elkview, WV, USA. Copyright ® 1985 by The DRAGON Group, inc.

Simple Control of Search Order:

Not ONLY But ALSO

Bill Stoddart
Middlesbrough, England

The story so far:

““The evolution of Forth continues,
particularly in the area of vocabularies.
The latest step is a recognition of the
importance of controlling the search
order.” Bill Ragsdale, 1982 FORML
Conference

“The ONLY Concept for Vocab-
ularies’’ was submitted by Bill as an
experimental proposal in the Forth-83
Standard.!.2 It departs somewhat from
the standard and from other systems
(including fig-FORTH and
polyFORTH), in that executing a voc-
abulary name places that vocabulary at
the start of the search order list, rather
than actually specifying a search order.
This paper argues that such a departure
is not necessary. On the contrary, the
standard forms a good basis for a set
of simple and powerful words that give
the Forth user complete control of the
search order.

Vocabulary handling in my
83-Standard system is extended with
four simple words: SEARCHES, ALSO,
END-SEARCH and SEAL. These are all
one-line definitions. They give
complete control over the specification
of search order.

Consider the creation of a new
vocabulary with the phrase:

VOCABULARY APPLICATION

When APPLICATION is subsequently
executed, it specifies a search order of
APPLICATION followed by FORTH.

Suppose we want APPLICATION to
specify a search order of APPLICATION
followed by MENU followed by EDITOR
followed by FORTH. This is achieved by
the phrase:

APPLICATION SEARCHES MENU ALSO
EDITOR ALSO FORTH END-SEARCH

The specified search order becomes
operational when APPLICATION is sub-
sequently executed.

As this sequence of words is inter-
preted, the system CONTEXT is changing
at a furious rate. Indeed, the fact that
the vocabularies are actually executing
their run-time behavior makes the
definition of the search order setup
words so simple. The still point in this
storm is the FORTH vocabulary. New
vocabularies are defined within the
FORTH vocabulary, and since
SEARCHES and ALSO both set CONTEXT
to FORTH, the following vocabulary
name is always ‘‘in context’” (i.e.,
within the search order specified by
CONTEXT).

Finally, the word SEAL is used to
limit the search order specified by a
vocabulary to that vocabulary’s defini-
tions, as in:

MENU SEAL

Subsequent execution of MENU sets
up a search order containing a single
vocabulary, which is MENU itself.

A problem arises when a sealed
vocabulary is to be included in a search
order setup sequence. Just consider the
above setup sequence with MENU as the
sealed vocabulary. After MENU ex-
ecutes, ALSO will be “‘out of context.”’
There are ways around this, of which
the most obvious is to compile the
setup sequence before executing it, as
in:

SETUP
APPLICATION SEARCHES MENU
ALSO EDITOR
ALSO FORTH

END-SEARCH ; SETUP

I leave the reader to think of a slight-
ly less flexible alternative which
requires no compilation!

DEFINITIONS is present with its usual
usage, and FORGET can work across
multiple vocabularies. ROMmable
code is easily supported, though the
definitions given here operate from
RAM.

Example Application
Some of the most demanding control

of search order occurs during
metacompilation, but that is another
story. The following example is a
simple but realistic one involving the
Forth assembler.

One of the best uses of vocabulary
switching in Forth occurs in CODE
definitions. CODE switches the context
vocabulary to ASSEMBLER, and the
words IF, ELSE, THEN, etc. take on
meanings appropriate to code assemb-
ly. The default search order specified
by a standard definition of ASSEMBLER
would be ASSEMBLER then FORTH, but
it can be useful to modify this. Suppose
we have an application that interfaces
to a network with portions of as-
sembler code that need direct access to
constants and data structures in a
NETWORK vocabulary. Part of the ap-
plication might be organized like this:

VOCABULARY NETWORK

ASSEMBLER SEARCHES NETWORK
ALSO FORTH END-SEARCH

NETWORK DEFINITIONS
CREATE BUFFER 256 ALLOT (space
for buffer) HEX

E000 CONSTANT PORT-ADDRESS ctc. ...

The search order specified by
ASSEMBLER (and therefore implicitly
specified by CODE) has been set to
ASSEMBLER, then NETWORK, then
FORTH. We could now enter CODE
definitions which contain references to
words in the NETWORK vocabulary; for
example:

CODE SEND (
PORT #
DI MOV BUFFER # SI

send packet)

MOV etc. ...

(This example is from an 8086 as-
sembler. An I/0 port is being moved
into the DI register and a buffer ad-
dress into the SI register.)

When the NETWORK DEFINITIONS
are all loaded, we can restore

FORTH Dimensions

32

Volume VII, No. 1

NEW BOOKS - "FORTH GUIDE" by Haydon. An exploration of the intricacies of MVP-FORTH $20.00

"FORTH Applications”" by Weber

$13.00

THE FORTH SOURCE"

MVP-FORTH

Stable - Transportable - Public Domain - Tools

You need two primary features in a software development package ... a
stable operating system and the ability to move programs easily and quickly
to a variety of computers. MVP-FORTH gives you both these features and
many extras. This public domain product includes an editor, FORTH assem-
bler, tools, utilities and the vocabulary for the best selling book “Starting
FORTH". The Programmer's Kit provides a complete FORTH for a variety of
computers. Other MVP-FORTH products will simplify the development of
your applications.

MVP Books - A Series

O Vol. 1, All about FORTH by Haydon. MVP-FORTH glossary with cross
references to fig-FORTH, Starting FORTH, and FORTH-79 Standgrd.
2nd Ed. 25

Vol.2, MVP-FORTH Assembly Source Code. Includes IBM-PC® ,
CP/M® | and APPLE® listing for kernel $20

Vol. 3, Fioating Point Glossary by Springer $10
Vol. 4, Expert System with source code by Park $15
Vol. 5, File Management System with interrupt security by Moreton $25
Vol. 6, Expert Tutorial for Volume 4 by M & L Derick $15

MVP-FORTH Software - A Transportable FORTH

O MVP-FORTH Programmer’s Kit including disk, documentation, Vol-
umes 1 & 2 of MVP-FORTH Series (A/f About FORTH, 2nd £d, & Assem-
bly Source Code), and Starting FORTH. [J CP/M, OO CP/M 86, [J Z100,
O APPLE, O STM PC, I IBM PC/XT/AT, O PC/MS-DOS, O Osborne,
O Kaypro, [0 MicroDecisions, [J DEC Rainbow, [TI-PC,
3 NEC 8201, (1 TRS-80/100 $150

0O MVP-FORTH Enhancement Package for IBM-PC/XT/AT Program-
mer's Kit. Includes tull screen editor, MS-DOS file interface, disk,
display and assembler operators. $110

OO0 MVP-FORTH Floating Point & Matrix Math for IBM PC/XT/AT with
8087 or Apple with Applesoft $85

MVP-FORTH Graphics Extension for IBM PC/XT/AT or Apple $65

MVP-FORTH Programming Aids for CP/M, IBM or APPLE Program-
mer’s Kit. Extremely useful tool for decomp#ing, callfinding, translat-
ing, and debugging. $200
0O MVP-FORTH Cross Compiler for CP/M Programmer’s Kit. Gener-
ates headerless code for ROM or target CPU $300

0O MVP-FORTH Meta Compiler for CP/M Programmer’s kit. Use for

applications on CP/M based computer. Includes public domain
source,

MVP-FORTH PADS (Professional Application Development System)
for IBM PC/XT/AT or PCjr or Apple I, I+ or lle. An integrated system for
customizing your FORTH programs and applications. The editor in-
cludes a bi-directional string search and is a word processor specially
designed for fast development. PADS has almost triple the compile
speed of most FORTH's and provides fast debugging techniques.
Minimum size target systems are easy with or without heads. Virtual
overlays can be compiled in object code. PADS is a true professional
development system. Specify Computer. $500

O MVP-FORTH MS-DOS file interface for IBM PC PADS $80
O MVP-FORTH Floating Point & Matrix Math see above $85
[0 MVP-FORTH Graphics Extension see above $65

0O MVP-FORTH EXPERT-2 System for learning and developing
.« knowledge based programs. Both IF-THEN procedures and analytical
¢ subroutines are available. Source code is provided. Specify O Apple,
D IBM, or O CP/M. Includes MVP Books, Vol. 4 & 6 $100

D FORTH-Writer, A Word Processor for the IBM PC/XT/AT with 256K.
d\MVP-FORTH compatible kernel with Files, Edit and Print systems.
Includes Disk and Calculator systems and ability to compile additional
FORTH words. $150

{1 MVP-FORTH Fast Floating Point includes 9511 math chip on board
with disks, documentation and enhanced virtual MVP-FORTH for Apple
i, i1+, and Ve, $450

Ordering Information: Check, Money Order (payable to MOUNTAIN VIEW PRESS,
INC.), VISA, MasterCard, American Express. COD's $5 extra. Minimum order $15. No
billing or unpaid PO's. California residents add sales tax. Shipping costs in US included
in price. Foreign orders, pay in US funds on US bank, include for handling and shipping

-«

]
]

<

S

$150 ™

FORTH DISKS

FORTH with editor, assembler, and manual.

O APPLE by MM, 83
Maclntosh by MM, 83
ATARI® valFORTH
CPIM by MM, 83
HP-85 by Lange
HP-75 by Cassady
IBM-PC by LM, 83
IBM-PC by MM, 83
Z80 by LM, 83

$100
$125

$60
$100

$90
$150
$100
$125
$100

[0 8086/88 by LM, 83

{J 68000 by LM, 83

O VIC FORTH by HES,
VIC20 cartridge

O €64 by HES Commodore
64 cartridge

O Timex by HW, cassette
0 T/8 1000/ZX-81
0 2068

$100
$250

$20
$40

$25
$30

Enhanced FORTH with: F-Floating Point, G-Graphics, T-Tutorial,
S-Stand Alone, M-Math Chip Support, MT-Multi-Tasking, X-Other
Extras, 79-FORTH-79, 83-FORTH-83.

O APPLE by MM,

F G, &83 $180
] ATARI by PNS, FG, & X. $90
O CPIMby MM, F 883 $140

O TRS-~80/1 or Il by MMS
F.X &79

J C64 by PS MVP, F, G & X $96

Key to vendors:
HW Hawg Wild Software
LM Laboratory Microsystems
MM MicroMotion
MMS Miller Microcomputer Services
PNS Pink Noise Studio
PS ParSec

[C64 with EXPERT-2 by
PS $99

[0 Extensions for LM Specify

IBM, Z80, or 8086

[J Software Floating
Point $100

[8087 Support
(IBM-PC or 8086)

1 9511 Support
(Z80 or 8086)

[Color Graphics
(IBM-PC)

{1 Data Base
Management

$100
$100
$100
$200

FORTH MANUALS, GUIDES & DOCUMENTS

exx[] Thinking FORTH by Leo
Brodle author of best selling
"Starting FORTH” $16
O ALL ABOUT FORTH by
Haydon. MVP Glossary
[0 FORTH Encyclopedia by
Derick & Baker $25
FYS FORTH from the
Netherlands
O User Manual $25
0 Source Listing $25
FORTH Tools and Applic. by
Feierbach $19
O The Complete FORTH
by Winfield
Learning FORTH by
Armstrong
Understanding FORTH
by Reymann
FORTH Fundamentals,
O Vol. | by McCabe
O Vol. Il Glossary
Mastering FORTH by
Anderson & Tracy
Beginning FORTH by
Chirlian
FORTH Encycl. Pocket
Gulde $7
And So FORTH by Huang. A
college level text. $25
FORTH Programming by
Scanlon $17

$25

et

$16

$17

$16
$14

$18

$17

O Instaliation Manual for fig-FORTH
O Source Listings of tig-FORTH, Specify CPU

O Starting FORTH by Brodie.
Best instructional manuat
a\{ailable. (soft cover)

0O 68000 fig-Forth with
assembler

] FORML Proceedings
01980 O 1981 Vol 1

Q‘D 1981 Vol 2 [0 1982

01983 11984 each $25

[J 1981 Rochester Proceedings
01981 O1982 (11983
01984 each $25

[0 Bibliography of FORTH $17

O The Journal of FORTH
Application & Research
O Vol. 1/1 OVol. 1/2
O vol.2/1 O Vol. 272

" O vol. 213 each $17

(0 METAFORTH by Cassady $30

[Threaded Interpretive
Languages

O Systems Guide to fig-FORTH
by Ting $25

0O, Inside F83 Manual by

¥ Ting $25

0 FORTH Notebook by Ting $25

O tnvitation to FORTH $20

0 PDP-11 User Man. $20

0O 6502 User’s Manual by
Rockwell Int). $10

0 FORTH-83 Standard $15

0 FORTH-79 Standard $15

$20

$25

$15
$15

by Air: $5 for each item under $25, $10 for each item between $25 and $99 and $20 for
each item over $100. All prices and products subject to change of withdrawat without
notice. Single system and/or single user license agreement required on some

products.

MOUNTAIN VIEW PRESS, INC.

PO BOX 4656

MOUNTAIN VIEW, CA 94040

(415) 961-4103

Volume Vi, No. 1 33

FORTH Dimensions

SCR 70

0 (vVocabularies)

1

2 : VOCABULARY

3 CREATE VOC @ HERE VOC ! DUP , (compile VLINK)
4 2+ Ce 1+ C, (next voc) 1C, (FORTH) 0 C,

5 0 , DOES> 2+ CONTEXT t ;

6

7 : SEARCHES (-- addrl addr2) CONTEXT @ 1+ FORTH ;

8

9 : ALSO (addr -- addr+l) CONTEXT @ C& OVER C! 1+ FORTH ;
10
11 : END-SEARCH (addrl addr2 --) ALSO O SWAP C! FORTH ;
12
13 : SEAL 0 CONTEXT @ 1+ C! FORTH ;

14
15 : DEFINITIONS CONTEXT @ CURRENT ! ;
ASSEMBLER to its original meaning VLINK 2 1 0 0 0

with:
ASSEMBLER SEARCHES FORTH
END-SEARCH

Implementation

The parameter field of each
vocabulary is a data structure which
contains information to specify the
search order. The words SEARCHES,
ALSO, END-SEARCH and SEAL operate
on these data structures. Another ele-
ment in a vocabulary’s parameter field
is the VLINK field, which contains a
pointer to the previously defined
vocabulary. This information is used
when creating the parameter field of a
new vocabulary, and when FORGET
operates across multiple vocabularies.
The user variable voc contains the ad-

~dress of the VLINK field of the most
recently created vocabulary.

The following details and the source
screens are particular to my own sys-
tem, but the underlying ideas, as well
as the glossary entries, are quite
general.

Each vocabulary is identified by a
number between one and sixteen. (A
sixteen-thread hashing algorithm is
used to organize the dictionary.4) A
vocabulary’s parameter field contains
a list of up to four bytes which specify
the search order. The value zero is used
as a terminator. The number one iden-
tifies the FORTH vocabulary, and two
the ASSEMBLER vocabulary. The seven-
byte parameter field of ASSEMBLER
looks like this:

The two-byte field VLINK contains
the address of the corresponding field
in the dictionary entry for FORTH. A
user variable vOC contains the address
of the link in the most recently created
vocabulary. This information is used
to assign a number to the next
vocabulary created.

If FORTH and ASSEMBLER are the
only vocabularies in the system, and we
now define:

VOCABULARY APPLICATION
its parameter field will contain:

VLINK 3 1 0 0 O

VOCABULARY uses VOC to locate the
last vocabulary created, which was
ASSEMBLER, and from this works out
the new vocabulary’s VLINK and num-
ber, which is three. vocC is updated to
point to the VLINK field in the new
vocabulary.

When APPLICATION becomes the
CONTEXT vocabulary, CONTEXT holds
the address of the third byte in the
parameter field of APPLICATION. FIND
scans this and the following bytes, and
will search in turn vocabularies three
and one.

Now we can walk through a typical
search order setup:

ASSEMBLER Leaves CONTEXT pointing

to the 2 in the parameter field of
ASSEMBLER.

SEARCHES (--- addr) Leaves the ad-
dress of the following byte in the pa-
rameter field of ASSEMBLER.

APPLICATION Now CONTEXT points to 3
in the parameter field of APPLICATION.

ALSO (addr -— addr + 1) Copies the 3
from the APPLICATION vocabulary’s
parameter field into addr in the param-
eter field of ASSEMBLER.

FORTH Points CONTEXT to the FORTH
vocabulary.

END-SEARCH Copies 1 (identifying
FORTH) from the FORTH vocabulary’s
parameter field to the parameter field
of ASSEMBLER, then writes 0 to the
following address to mark the end of
the search order list.

The parameter field of ASSEMBLER
now contains:

LINK 2 3 1 0 O

APPLICATION becomes the CURRENT
vocabulary in the usual way, by execut-
ing APPLICATION DEFINITIONS. CURRENT
then holds the address of the third byte
in the parameter field of APPLICATION.
The contents of this location are used
by CREATE to decide in which
vocabulary new dictionary entries
should be placed.

Suppose we want a search order con-
taining more than four vocabularies?
This is no problem. The additional
bytes of the parameter field may be
allotted when the vocabulary is
created. Thus, if we wanted
APPLICATION to eventually specify a
search order of seven vocabularies, this
would be set up with:

VOCABULARY APPLICATION 3 ALLOT

On the other hand, where memory is
in short supply, we can recover unused
bytes in a similar way.

Final Word

Four simple words have been added
to an 83-Standard system to provide
powerful facilities for the control of
search order. These definitions will be
easily adapted to systems in which the

FORTH Dimensions

34

Volume VII, No. 1

parameter field of a vocabulary entry
contains information which directly
specifies a search order. They provide
facilities which are not available when
search order is specified by the order in
which vocabularies are created (as in
the FIG model) and they provide a
more readable source than systems
such as polyFORTH which require the
user to specify a search order in
numeric format.

Glossary

ALSO (sysl -—— sys2) Set the
CONTEXT vocabulary as the next
vocabulary in the search order list iden-
tified by sysl. Leave sys2, which iden-

tifies the position of the following
element in this list, for subsequent use
by ALSO Or END-SEARCH.

END-SEARCH (sys ---) Set the
CONTEXT vocabulary as the next and
final vocabulary in the search order list
identified by sys.

SEAL Set the search order specified
by the present CONTEXT vocabulary to
contain only the present CONTEXT
vocabulary, and make FORTH the new
CONTEXT vocabulary.

SEARCHES (—-—— sys) Leave the
system-dependent information sys
which identifies the position of the first
element in the CONTEXT vocabulary’s
search order list. Make FORTH the new
CONTEXT vocabulary.

References

1. W.F. Ragsdale. ““The ONLY Con-
cept for Vocabularies.”” 1982 FORML
Proceedings.

2. W.F. Ragsdale. ‘‘Search Order
Specification and Control.”” Ex-
perimental Proposal, Forth-83
Standard.

3. Evan Rosen.
Tutorial,’”” Part
Dimensions, V/4.

‘““Vocabulary
two. Forth

4. M. McNeil. “Hashed Dictionary
Searches.”’ 1981 FORML Proceedings,
Vol. One.

Chuck Moore’s Forth Chip.
Now Available.

‘F'or Complete
information Contact:

Novix
10590 N. Tantau Ave.
Cupertino, CA 95014

408 [996-9363

Volume Vil, No. 1

35

FORTH Dimensions

Another Forth-83 LEAVE

John Hayes
Laurel, Maryland

I would like to propose yet another
solution to the Forth-83 LEAVE prob-
lem. The ideal implementation of
LEAVE should compile a (LEAVE) code
primitive followed by a pointer to the
first word after LOOP (or +LOOP), as in
figure one. Since multiple LEAVEs are
allowed per LOOP level, LOOP must
somehow resolve all these forward
references. Also, in nested DO LOOPs,
LEAVE must exit only the innermost
loop surrounding it. These require-
ments, combined with the fact that
LEAVE will usually occur inside IF THEN
control structures, suggest that the
compile-time actions of DO, LEAVE and
LooP need to be quite complicated.
However, the situation is not as bad as
it seems.

My implementation is a modifica-
tion of one used by Bill Stoddart (Forth
Dimensions V/4). His solution avoids
the problem of resolving multiple
forward branches by having each of
the LEAVEs point back to DO, where
there is a pointer to the end of the
LooP. This is less efficient than the
ideal implementation pictured in figure
one. It turns out that coding the ideal
solution is not difficult. I have written
a general-purpose word > >RESOLVE
that resolves multiple forward
branches. 1 will explain how
>>RESOLVE works in the context of
the LEAVE problem. Then, to
demonstrate the word’s generality,
will show its application in a set of case
structure compiling words.

In my implementation, a linked list
of unresolved forward references is
maintained. A VARIABLE named CLUE
points to the most recent entry added
to the chain. Each time the IMMEDIATE
word LEAVE is executed, a code primi-
tive (LEAVE) is compiled followed by a
pointer back to the previous LEAVE
link. If there are no previous LEAVESs, a
null pointer is compiled. Then CLUE is
updated to point to the new head of the
list. It is LOOP’s job to convert this list
into a set of pointers to the first word

(CODE FOR RESOLVING FORWARD AND BACKWARD BRANCHES)

¢+ (MARK (--- ADDR) (USED AS DESTINATION)
(OF BACKWARD BRANCH.)
HERE ;
: (RESOLVE (ADDR ---) (RESOLVE BACKWARD)
(BRANCH.)
: YMARK (--- ADDR) (SOURCE OF FORWARD)
(BRANCH.)
HERE 2 ALLOT ;
: JRESOLVE (ADDR ---) (RESOLVE FORWARD)
(BRANCH. }
HERE SWAP ! ;
:)>RESOLVE (OLDLINK ---) (RESOLVE A CHAIN)
(OF FORWARD BRANCHES.)
BEGIN
DUP WHILE

DUP @ HERE ROT !
REPEAT DROP ;

(THE CODE WORDS [DOJ), LLOOP], AND [+LOOP3 IMPLEMENT FORTH-83 DO..LOOPS.)
LEMENT LEAVE.

(CLEAVE] IS A FORTH-83 LEAVE. CLUE IS USED TO IMP

VARIABLE CLUE { --- ADDR)

(CLUE POINTS TO)

(LAST WORD IN LEAVE CHAIN.)

: DO (--- CLUE HERE
COMPILE (DO) CLUE @ 0 CLUE | ¢MARK ; IMMEDIATE

: LOOP (CLUE HERE ---
COMPILE (LOOP) (RESOLVE

CLUE @ >>RESOLVE

CLUE ! ; IMMEDIATE

:+ +LOOP { CLUE HERE ---
COMPILE (+LOOP) (RESOLVE

CLUE @ >>RESOLVE

CLUE ! ; IMMEDIATE

: LEAVE « ——-)
COMPILE (LEAVE) HERE CLUE @ , CLUE | ; IMMEDIATE

(Listing One

)

)

)

(CASE -SELECT COMPILING WORDS.

(: NUMCHECK

(SEL

(¢<{ 0 ==> ZEROSTUFF MORESTUFF)>>
((< 1 ==> ONESTUFF MORESTUFF)>>
((¢ 10 ==) TENSTUFF MORESTUFF)»>
((< OTHERWISE ==) OTHERSTUFF »
(ENDSEL ;

EL
0 ; IMMEDIATE

THE SYNTAX OF THE STRUCTURE IS:

N R

: <« (OLDLINK --- OLDLINK)
COMPILE DUP ; IMMEDIATE

: =) (~-- IFADDR)

COMPILE ?BRANCH >MARK

COMPILE DROP ; IMMEDIATE

2 ==) (--- IFADDR)

COMPILE =

COMPILE 7BRANCH >MARK

COMPILE DROP ; IMMEDIATE

s) (
COMPILE BRANCH SWAP ,

YRESOLVE
HERE 2- ; IMMEDIATE
: OTHERWISE (===
(AN OTHERWISE
COMPILE DUP ; IMMEDIATE
: ENDSEL (OLDLINK ---)
COMPILE DROP >>RESOLVE ; IMMEDIATE
¢ Listing Two

OLDLINK IFADD!

~=~= NEWLINK)

(COPTIONALLY] CREATE)

CASE.)

FORTH Dimensions

36

Volume Vil, No. 1

after LOOP. This is where > >RESOLVE
comes in. > >RESOLVE’s argument is a
pointer to the start of a linked list.
>>RESOLVE threads down the list,
changing each pointer to HERE instead
of the next link. Figure two-a shows a
DO LOOP with two LEAVES inside before
LOOP is executed. Figure two-b shows
the completed DO LEAVE LOOP struc-
ture.

The address of the LEAVE list has to
be kept in a VARIABLE instead of on the
stack. Since LEAVE can occur inside
other control structures, a list address
kept on the stack could be covered by
an arbitrary number of words, making
it impossible for LEAVE to find the
address. But keeping the address in the
VARIABLE CLUE introduces another
problem. Each loop in a nested po
LOOP structure needs a separate LEAVE
list. Therefore, at times there can be
more than one unresolved LEAVE list.
The solution is to have DO stack the old
value of CLUE and store a new null
pointer in CLUE. LOOP, after
> >RESOLVEing the current LEAVE list,
will restore CLUE to its old value. This
idea is due to Bill Stoddart.

Another instance where it is neces-
sary to resolve multiple forward
branches is in the case structure. The
syntax of the structure is shown at the
top of listing two. Each >> should
compile a branch to the word following
ENDSEL. The method of implementa-
tion is similar to the LEAVE list. Each
time >> executes, it compiles a
BRANCH primitive followed by a link to
the previous >>. ENDSEL converts this
linked list into pointers to HERE using
>>RESOLVE.

Note that my Forth system used
sixteen-bit absolute branches. If your
system uses eight-bit relative branches,
> >RESOLVE will be harder to code, but
not impossible. Happy Forthing!

{DO)| | (LEAYE)| p (LOOP) | p

l T

Figure One
Ideal DO...LEAVE...LOOP

(Do) | {(LEAYE)| O

(LEAYE) p{ .

T |

Figure Two a
DO...LEAVE.. .LEAVE. . .LOOP before
Loop is executed

(D0)

(LEAYE) | p (LEAYE)| p (LooP)

TT

Figure Two b
DO...LEAVE...LEAVE...LOOP after
LOOP is executed

Volume VII, No. 1

37

FORTH Dimensions

YACS* Part Two

*Yet Another Case Statement

Henry Laxen
Berkeley, California

Last time, we traced the history of
the CASE statement in Forth and took a
look at three different implementations
of ‘‘indexed’’ CASE statements, namely
CASE statements that were basically
arrays of executable procedures. At
run time, the index on the parameter
stack was used to compute an index
into this array, and the corresponding
element of the array was executed.
While this approach is often exactly
what is required and is very efficient at
run time, I pointed out that sometimes
a more flexible CASE structure would
be handy. I left you with a challenge,
namely to come up with a CASE state-
ment that adds the minimum number
of new words to Forth and allows ar-
bitrary Forth expressions to be used
both as matching clauses and con-
sequent clauses. My solution to this
problem is presented in figure one,
with examples of use in figure two.
Let’s take a look and see if we can
figure out how it works.

First, let’s look at the word RUN
which, as the name implies, runs some-
thing. All it does is push the address
that is on the parameter stack onto the
return stack. This seems a bit susp-
icious, since we all remember from our
early Forth training that we never push
anything onto the return stack without
later removing it in the same word;
otherwise, disaster may result. Well, as
in life, every rule was made to be
broken. In this case, we use RUN to run
a high-level code fragment. What hap-
pens is that the address we provide is
pushed onto the return stack. Next, the
UNNEST word compiled by ; executes,
and pops the return stack into the IP.
The net result is that interpretation
proceeds at the address we provided on
the parameter stack. When the UNNEST
word at the end of the high-level code
fragment is encountered, it will return
to the word following the RUN in the
high-level definition containing it. RUN
would be a useful word to have in all
Forth systems, since its virtue is that —
unlike EXECUTE — it does not require a
code field.

Now let’s examine the word CASE. It
works in conjunction with END-CASE as
follows: CASE will compile high-level
Forth phrases while the number on the

FORTH Dimensions

top of the parameter stack is non-zero.
Normally, the number on the parame-
ter stack is the address of the beginning
of the current code phrase, which
should get resolved; however, when the
word END-CASE executes, we notice
that the first thing it does is a DROP
FALSE, which will throw away the ad-
dress and replace it with a zero. This
will terminate the compilation loop.
Notice also that END-CASE is an
IMMEDIATE word, and hence executes
even while compiling. The compile-
time portion of CASE generates a linked
list of code phrases. A picture illustrat-
ing this is in figure three, and
represents the structure built in
memory by the code in figure two. For
those of you unfamiliar with the

Forth-83 words >MARK and
>RESOLVE, their definitions are as
follows:

: >MARK HERE 0, ;
: >RESOLVE HERE SWAP!;

Their function is to leave a pointer to
a cell on the parameter stack and in-
itialize the cell to zero, and to then
resolve the contents of the cell whose
address is on the stack to the current
dictionary location. They are used ex-
tensively in the definitions of IF ELSE
THEN and the looping words. They are
also exactly what is called for here, to
create a linked list in memory. The 1CSP
word is required for the compile-time
error checking that is usually imple-
mented inside ;.

Now then, let’s analyze what is going
on. At the beginning of the loop, we
lay down a link address and call the
Forth compiler with]. The Forth com-
piler compiles the following words in
the input stream until it encounters a ;.
The ; compiles an UNNEST for us and
exits from the compiler. At this point,
the address left by >MARK should still
be on the stack; if it is, execution con-
tinues through the WHILE. The
>RESOLVE word resolves the link left
by the previous >MARK and branches
back to the BEGIN to repeat the process.
Thus, we are creating a linked list of
code phrases, until the address that was
placed on the stack by >MARK is
replaced by a zero. This is done by END-
CASE.

The run-time portion of CASE simply
uses the information compiled by CASE

38

to evaluate the first, third, fifth, etc.
phrases and to compare them to the
top of the parameter stack. If the value
returned by the phrase equals the value
on the stack, then the next phrase — an
even-numbered one — is executed. If
the values are not equal, the even
phrase is skipped and the next odd
phrase is executed. Notice that it is the
user’s responsibility to make sure that
the phrases come in pairs, since CASE
does no compile-time or run-time error
checking. If we march all the way
through the linked list and never find a
phrase that generates a matching value,
we will eventually encounter the zero
link that was compiled last. This will
cause us to exit the BEGIN WHILE REPEAT
loop and 2DROP throws away the initial
value that was passed to us, and the
zero that was fetched to terminate the
list.

One interesting feature of this CASE
statement is that in order to implement
an OTHERWISE clause, which will al-
ways be executed if none of the
previous clauses matched, we simply
pUP the top of the stack. This will
guarantee that the two values are
equal, and the corresponding con-
sequent clause will be executed.

Votume VI, No. 1

\ ORAND CASE

RN Soddr—) >R

: CRSE

CRERTE (§ —

BEGIN *MARK ICSP 1 DUP WHILE »>RESOLVE REPEAT
DOES» S n-—-)

BEGIN DUP @ WHILE
200P 2+ RUN = IF NIP ® 2+ RUN EXIT THEN
€ @ (no match, link to next condition »
REPERT 2DROP

NS ODLORRWN O

. END-CRSE (S n — 0)
DROP FALSE [COMPILE]) I ; IMEDIATE
: OTHERNISE (S n-—-nn)> DP ;

Figure One

0 \ EXAMPLE OF A GRAND CRSE
1 CASE REMARK ‘
2 2; ." Tha only even prime” ;
3 6; ." Tha first perfect number” ;
4 OTHERHISE ; ." Nothing remarkable about it™
5 END~-CRSES
6 1 REMARK [CR] Nothing remarkable about it 0K
7?7 2 REMARK [CR) The only even prime 0K
8 0 REMARK [CR] The first perfact nusber 0K
Figure Two

[N/
Pointer to 15t | List of Code Fields | Pointer to 2nd | List of Code Fields
Eval Code for 1st Condition | Condition Code | for 1st Eval Code

|

Pointer to 2nd| List of Code Fields | Pointer to 3rd | List of Code Fields
Eval Code for 2nd Condition | Condition Code | for 2nd Eval Code

T
| N4

Pointer to Ird] List of Gode Fields | 0 -- End of list
7 Eval Code for Ird Condition

List of Code Fields
for 3rd Eval Code

Figure Three

0 \ PROPDSED ORANDER CASE

1 EQURL [']=;

2 : RANGE ['] BETHEEN ;

3 HEX RANGE CASE CLASSIFY

4 0 IF ; ." Control Choracter”™ ;

S 202F ; ." Punctuation™ ;

6 3039 ; .° Digit "~ ;

7 3R 40 ; ." Punctuation™ ;

8 4158 ; ." Upper Case Letters”
9 3B60; " Punctuation”

10 61 M ;, " Lowar Case Latters” ;
11 "7 ; ." Punctuation”™ ;

12 7% % ; . Contro! Chorocter”
13 END~CARSES

Figure Four

Volume Vi, No. 1 39

w

WRaIe eI eIeIaTeIII N eLeIN e e R e e s 0 6 e e e b e . LI Ao S)
o T e e e e e e e e e S e R T S e e e e e e e e aie

.

<4

FEATURES
—FORTH-79 Standard Sub-Set
—Access to 8031 features)
—Supports FORTH and machine @

code interrupt handlers =
—System timekeeping maintains
time and date with leap
year correction
—Supports ROM-based self-
starting applications

COST
130 page manual -$ 30.00
8K EPROM with manuai—$ 100.00

Postage paid in North America.
inquire for license or quantity pricing.

...
..

Bryte Computers, Inc.
P.O. Box 46, Augusta, ME 04330
(207) 547-3218

=
5
LD SR AKH SR

John D. Hall
Oakland, California

We want to welcome five
chapters:

new

Huntsville FIG Chapter,
Huntsville, Alabama

Central Iowa FIG Chapter,
Ames, Iowa

Fairfield FIG Chapter,
Fairfield, Iowa

North Orem FIG Chapter,
Orem, Utah

Lake Superior FIG Chapter,
Superior, Wisconsin

Central Connecticut FIG Chapter

Feb 6: On Wednesday, we met at the
Meriden Public Library. Upon the sug-
gestion of John Moran, work was
begun on a test suite for fig-FORTH.
As discussion continued on the subject,
we realized we were taking on a non-
trivial project. The purpose of this pro-
ject is to give individuals who have
versions of Forth a means of validating
their instruction set. We are calling on
the entire Forth community to help us!
Although we intend to produce a pro-
gram to validate the entire set of fig-
FORTH words, we are aware that
some versions of fig-FORTH, both
commercial and public-domain ver-
sions, contain bugs. We would like to
trap as many of these as we can. If any
users out there can identify the bugs
their versions contain, we would appre-
ciate as much information as possible
about these peculiarities so we can be
sure these most common bugs are iden-
tified by the test suite. If you write us
about an existing bug, please try to in-
clude: 1) the source of your Forth,
2) the date of release or version num-
ber, 3) the word(s) that don’t work,
4) under what conditions this bug can
be simulated, and 5) if known, the

FORTH Dimensions

cause or a cure. Also, any references to
prior work on this subject, or any other
type of help at all, would be appreciat-
ed. Upon its completion, the test suite
will be released — with much criticism,
I’m sure — to the Forth community.
This is a very ambitious group pro-
ject, and any Forth users in Connec-
ticut who can help with suggestions or
coding would be very welcome at our
meetings! Please contact Charles
Krajewski, 205 Blue Rd., Middletown,
CT 06457, (203) 344-9996.
—Charles Krajewski

Atlanta FIG Chapter

Mar 19: Our meeting proved to be in
our familiar mold — unstructured and
with much exciting debate on various
topics. Nathan Vaughn continued his
explanations of ideas for an intelligent
interest-matching system which will
one day relieve him of much routine
work. Anyone with knowledge of a
method for counting word usage and
managing a huge vocabulary, with
elimination of infrequently used
words, should contact Nathan. David
Penz described his need for low-cost,
PC-based productivity tools in a multi-
tasking environment. Chuck Albert
wants to apply Forth to the math used
to predict the effect of complicated
modulation on a carrier. Anyone with
experience in using Forth on Bessel
functions? To gain an overall impres-
sion of what the Forth community in
Atlanta is doing, here are some of the
topics I jotted down that came up in
our conversations: 1) controller read-
ing codes off of moulds, 2) epidemiol-
ogy, 3) ultrasonics, 4) robotics, 5) color
graphics, 6) fuzzy logic, and 7) bit-slice
processors.

—Ron Skelton

Detroit FIG Chapter

Jan 22: Burce Bordt gave an
interesting presentation of his
interrupt-driven system. The system is

40

operating on his homebrew 6809-based
system. Except for two dependent
machine-code words, the entire
software system was written in high-
level Forth. The system is written so
that by changing a particular vector,
execution of any word could be
invoked by depressing a switch,
triggered by a system timer, etc.

Feb 26: Randy White presented a
short graphics ‘‘windowing’’ demo
from the Val-Forth package on an
Atari Computer. A continuing
discussion of a graphics standard in
Forth followed. A discussion also
followed of the Bulletin Board System
we have been trying to establish. The
system would be used for message
exchange, program exchange and
announcements. Due to financial
limitations at this time, it was decided
to use an existing bulletin board or
Compuserve for this purpose.

—Tom Chrapkiewicz

Hamburg FIG Chapter

Feb: The Hamburg chapter meets on
the fourth Saturday of the month, and
usually about twenty people show up.
There are chapters forming in Berlin,
Wuppertal, Kiel, Bremen, Paderborn
and Karlsruhe. We are organizing
““euroFORML 85, a multi-faceted
conference on October 25-27 in a
castle in southern Germany. Please
plan to attend. See a call for papers
elsewhere in this or the previous issue.

Orange County FIG Chapter

Jan 2: Wil Baden presented a
calendar which easily calculates any
day of the year. Roland Koluvek
presented some work he had done over
the holidays which, on a PC, allows
you to leave Forth resident and return
to DOS, then an ALT-Shift from DOS

i
Volume Vil, No. 1

returns you to Forth. This is something
like Sidekick. Allen Hansen had added
some features to Leo Brodie’s Quick
Text Formatter.

Feb 6: Wil Baden presented a map of
the United States done Forth style. Ken
Clark presented a paper called ““A Set
of Formal Rules for Phrasing.”” These
rules are regular and it is possible to
pass raw code through a formatter and
have it ‘‘phrased.”” Wil presented
:DOES> which is his solution to the
need in Forth for ‘‘self-defining
words.”’

—Roland Koluvek

All the chapter hand-outs mentioned
in these chapter reports that are sent to
John Hall, are reproduced and
redistributed to the chapters on a

monthly basis.
chapter for copies.

Check with your

Silicon Valley FIG Chapter

Feb 23: We had about sixty people
show up at the new meeting place in
San Carlos. FORML used the library
in the morning, and the afternoon FIG
meeting used the gymnasium at the
ABC School. The acoustics in the gym
were bad, so we will try to use the
library until we overflow. For the
morning FORML session, Kim Harris
suggested we organize some small
working groups doing favorite projects
that can be developed and presented as
team efforts. We will select them next

month. John James and Mike Ham
discussed FIG’s plan to distribute
Forth material on the Delphi or
Compuserve nets. Many FIG members
already subscribe, and there are
already Forth activities on these nets.
FIG may be able to make these nets the
focus of the exchange of Forth code
and information, with the chapters as
nodes to the members. A quick poll
was conducted to see if members would
discuss their projects and activities at
work. Much work in Forth gets done
on projects where Forth is not the main
purpose of the project and is not
visible. We would like to focus
attention on these projects. Thirty
people agreed, and each will be given
time at the next meeting.

—John Hall

TOTAL CONTROL:

FORTH: FOR Z-80®, 8086, 68000, and IBM® PC

Complies with the New 83-Standard

GRAPHICS « GAMES « COMMUNICATIONS « ROBOTICS
DATA ACQUISITION « PROCESS CONTROL

® FORTH programs are instantly
portable across the four most popular
MICroprocessors.

® FORTH is interactive and conver-
sational, but 20 times faster than
BASIC.

® FORTH programs are highly struc-
tured, modular, easy to maintain.

® FORTH affords direct control over
all interrupts, memory locations, and
ilo ports.

® FORTH allows full access to DOS
files and functions.

® FORTH application programs can
be compiled into turnkey COM files
and distributed with no license fee.

® FORTH Cross Compilers are
available for ROM'ed or disk based ap-
plications on most microprocessors.

Trademarks: {BM. International Business Machines
Corp.. CPIM, Digutal Research Inc . PCiForth 4+ and
PC/GEN. Laboratory Microsystems. Inc

FORTH Application Development Systems
include interpreter/compiler with virtual memory
management and mult-tasking, assembler. full
screen editor, decompiler. utilities and 200 page
manual. Standard random access files used for
screen storage. extensions provided for access (o
all operating system functions

2-86 FORTH for CP/M* 2.2 or MP/M I}, $100 00
8080 FORTH for CP/M 2.2 or MP/M {1, $100.00:
8086 FORTH for CP/M-86 or MS-DOS. $100.00;
PCIFORTH tor PC-DOS, CPIM-86, or CCPM,
$100.00; 68000 FORTH for CP/M-68K. $250.00

FORTH + Systems are 32 bit implementations
that allow creation of programs as large as 1
megabyte. The entire memory address space of
the 68000 or 8086/88 is supported directly

PC FORTH + $250.00
8086 FORTH + for CP/M-86 or MS-DOS $250 .00
68000 FORTH + for CP/M-68K $400.00

Extension Packages available include: soft-
ware floating point, cross compilers, INTEL
8087 support, AMD 9511 support, advanced col-
or graphics, custom character sets, symbalic
debugger. telecommunications, cross reference
utility, B-tree file manager. Write for brochure.

«

~ .
Laboratory Microsystems Incorporated
E I Post Office Box 10430, Marina del Rey, CA 90295
Phone credit card orders to (213) 306-7412

Volume Vil, No. 1 41

FORTH Dimensions

¢ ALABAMA

Huntsville FIG Chapter
Call Tom Konantz
205/881-6483

* ALASKA

Kodiak Area Chapter
Call Norman C. McIntosh
907/486-4843

¢ ARIZONA

Phoenix Chapter
Call Dennis L. Wilson
602/956-7678

Tucson Chapter

Twice Monthly,

2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

* ARKANSAS

Central Arkansas Chapter

Twice Monthly: 2nd Sat., 2 p.m. &
4th Wed., 7 p.m.

Call Gary Smith

501/227-7817

¢ CALIFORNIA

Los Angeles Chapter

Monthly, 4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.

Call Phillip Wasson
213/649-1428

Monterey/Salinas Chapter
Call Bud Devins
408/633-3253

Orange County Chapter
Monthly, 4th Wed., 7 p.m.
Fullerton Savings

Talbert & Brookhurst

Fountain Valley

Monthly, Ist Wed., 7 p.m.
Mercury Savings

Beach Blvd. & Eddington
Huntington Beach

Call Noshir Jesung
714/842-3032

San Diego Chapter
Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784

Sacramento Chapter
Monthly, 4th Wed., 7 p.m.
1798-59th St., Rm. A

Call Tom Ghormley
916/444-7775

Bay Area Chapter

Monthly, 4th Sat.

FORML: 10 a.m.

General: 1 p.m.

ABC Christian School Aud.
Dartmouth & San Carlos Ave.

San Carlos

Call: FIG Hotline — 415/962-8653

Stockton Chapter
Call Doug Dillon
209/931-2448

e COLORADO

Denver Chapter

Monthly, Ist Mon., 7 p.m.
Call Steven Sarns
303/477-5955

¢« CONNECTICUT

Central Connecticut Chapter
Call Charles Krajewski
203/344-9996

¢ FLORIDA

Orlando Chapter

Every two weeks, Wed., 8 p.m.
Call Herman B. Gibson
305/855-4790

Miami

Monthly, Thurs., p.m.
Coconut Grove area
Call John Forsberg
305/252-0108

Tampa Bay Chapter
Monthly, 1st Wed., p.m.
Call Terry McNay
813/725-1245

¢ GEORGIA

Atlanta Chapter
Call Ron Skelton
404/393-8764

¢ ILLINOIS

Central Illinois Chapter
Urbanea

Call Sidney Bowhill
217/333-4150

Fox Valley Chapter
Call Samuel J. Cook
312/879-3242

Rockwell Chicago Chapter
Call Gerard Kusiolek
312/885-8092

« INDIANA

Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
317/353-3929

w

Fort Wayne Chapter

Monthly, 2nd Wed., 7 p.m.
Indiana/Purdue Univ. Campus
Rm. B71, Neff Hall

Call Blair MacDermid
219/749-2042

* IOWA

Iowa City Chapter

Monthly, 4th Tues.
Engineering Bldg., Rm. 2128
University of lowa

Call Robert Benedict
319/337-7853

Central Iowa FIG Chapter
Call Rodrick A. Eldridge
515/294-5659

Fairfield FIG Chapter
Monthly, 4th day, 8:15 p.m.
Call Gurdy Leete
515/472-7077

* KANSAS

Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.

532 Market

Wichita, KS

Call Arne Flones
316/267-8852

* LOUISIANA

New Orleans Chapter
Call Darryl C. Olivier
504/899-8933

* MASSACHUSETTS

Boston Chapter

Monthly, 1st Wed.

Mitre Corp. Cafeteria
Bedford, MA

Call Bob Demrow
617/688-5661 after 7 p.m.

s MICHIGAN

Detroit Chapter
Monthly, 4th Wed.
Call Tom Chrapkiewicz
313/562-8506

* MINNESOTA

MNFIG Chapter

Even Month, 1st Mon., 7:30 p.m.
Odd Month, Ist Sat., 9:30 a.m.
Vincent Hall Univ. of MN
Minneapolis, MN

Call Fred Olson

612/588-9532

e MISSOURI

Kansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Inst.
Mag Conference Center
Call Linus Orth
816/444-6655

St. Louis Chapter
Monthly, 3rd Tues., 7 p.m.
Thornhill Branch of

St. Louis County Library
Call David Doudna
314/867-4482

* NEVADA

Southern Nevada Chapter
Call Gerald Hasty
702/452~-3368

* NEW HAMPSHIRE
New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Armtec Industries

Shepard Dr., Grenier Field
Manchester

Call M. Peschke
603/774-7762

* NEW MEXICO

Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico

Call Rick Granfield
505/296-8651

* NEW YORK

FIG, New York

Monthly, 2nd Wed., 8 p.m.
Queens College

Call Ron Martinez
212/517-9429

Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall

Univ. of Rochester

Call Thea Martin
716/235-0168

Syracuse Chapter

Monthly, 3rd Wed., 7 p.m.
Call Henry J. Fay
315/446-4600

* OHIO

Athens Chapter
Call Isreal Urieli
614/594-3731

Cleveland Chapter
Call Gary Bergstrom
216/247-2492

Cincinatti Chapter
Call Douglas Bennett
513/831-0142

Dayton Chapter

Twice monthly, 2nd Tues., &
4th Wed., 6:30 p.m.

CFC 11 W. Monument Ave.
Suite 612

Dayton, OH

Call Gary M. Granger
513/849-1483

* OKLAHOMA

Central Oklahoma Chapter
Monthly, 3rd Wed., 7:30 p.m.
Health Tech. Bldg., OSU Tech.
Call Larry Somers

2410 N.W. 49th

Oklahoma City, OK 73112

* OREGON

Greater Oregon Chapter
Monthly, 2nd Sat., I p.m.
Tektronix Industrial Park
Bidg. 50, Beaverton

Call Tom Almy
503/692-2811

¢« PENNSYLVANIA

Philadelphia Chapter

Monthly, 4th Sat., 10 a.m.
Drexel University, Stratton Hall
Call Melonie Hoag
215/895-2628

* TENNESSEE

East Tennessee Chapter
Monthly, 2nd Tue., 7:30 p.m.
Sci. Appl. Int’l. Corp., 8th Fl.

800 Oak Ridge Turnpike, Oak Ridge

Call Richard Secrist
615/693-7380

* TEXAS

Austin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718

Dallas/Ft. Worth

Metroplex Chapter
Monthly, 4th Thurs., 7 p.m.
Call Chuck Durrett
214/245-1064

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120

* UTAH

North Orem FIG Chapter
Contact Ron Tanner

748 N. 1340 W.

Orem, UT 84057

* VERMONT

Vermont Chapter

Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Rm. 210, Monkton Rd.
Vergennes, VT

Call Don VanSyckel
802/388-6698

* VIRGINIA

First Forth of Hampton Roads
Call William Edmonds
804/898-4099

Potomac Chapter

Monthly, 2nd Tues., 7 p.m.
Lee Center

Lee Highway at Lexington St,
Arlington, VA

Call Joel Shprentz
703/860-9260

Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
154 Business School

Univ. of Richmond

Call Donald A. Full
804/739-3623

* WISCONSIN

Lake Superior FIG Chapter
Call Allen Anway
715/394-8360

FOREIGN

* AUSTRALIA

Melbourne Chapter
Monthly, 1st Fri., 8 p.m.
Contact Lance Collins
65 Martin Road

Glen Iris, Victoria 3146
03/29-2600

Sydney Chapter

Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.

Rm. LGI19

Univ. of New South Wales
Sydney

Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
02/524-7490

* BELGIUM

Belgium Chapter

Monthly, 4th Wed., 20:00h
Contact Luk Van Loock
Lariksdreff 20

2120 Schoten

03/658-6343

Southern Belgium FIG Chapter

Contact Jean-Marc Bertinchamps

Rue N. Monnom, 2
B-6290 Nalinnes
Belgium
071/213858

e CANADA

Nova Scotia Chapter

Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2E5
902/477-3665

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg.
Rm. 312

McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4K1
416/525-9140 ext. 3443

Toronto F1G Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C512

¢ COLOMBIA

Colombia Chapter

Contact Luis Javier Parra B.
Aptdo. Aereo 100394
Bogota

214-0345

* ENGLAND

Forth Interest Group — U.K.
Monthly, 1st Thurs.,

7p.m., Rm. 408

Polytechnic of South Bank
Borough Rd., London

Contact Keith Goldie-Morrison
Bradden Old Rectory
Towchester, Northamptonshire
NN12 8ED

* FRANCE

¥French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire

31100 Toulouse
(16-61)44-03

* GERMANY

Hamburg FIG Chapter
Monthly, 4th Sat., 1500h
Contact Horst-Gunter Lynsche
Common Interface Alpha
Schanzenstrasse 27

2000 Hamburg 6

* IRELAND

Irish Chapter

Contact Hugh Doggs
Newton School
Waterford

051/75757 or 051/74124

* ITALY

FIG Italia

Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

* REPUBLIC OF CHINA

R.O.C.

Contact Ching-Tang Tzeng
P.O. Box 28

Lung-Tan, Taiwan 325

* SWITZERLAND

Swiss Chapter

Contact Max Hugelshofer
ERNI & Co., Elektro-Industrie
Stationsstrasse

8306 Bruttisellen

01/833-3333

SPECIAL GROUPS

Apple Corps Forth Users
Chapter

Twice Monthly, 1st &

3rd Tues., 7:30 p.m.

1515 Sloat Boulevard, #2

San Francisco, CA

Call Robert Dudley Ackerman
415/626-6295

Baton Rouge Atari Chapter
Call Chris Zielewski
504/292-1910

FIGGRAPH
Call Howard Pearlmutter
408/425-8700

Volume VI, No. 1

FORTH Dimensions

Forth National Convention
September 20 - 21, 1985

Complete conference program, educational seminars,
and commercial exhibits.

Hyatt Rickeys in Palo Alto, California USA

euroFORML Conference
October 23, 1985 - November 3, 1985

International Technical conference at Stettenfels Castle
SYSTEMS Trade Fair in Munich
Guest and Tour Program in Germany

Complete group travel arrangements from USA to Germany
and return. Air travel on Lufthansa Air Lines.

Forth Modification Laboratory
November 29, 1985 - December 1, 1985

A technical conference for advanced Forth practitioners.

Asilomar Conference Center

Monterey Peninsula overlooking the Pacific Ocean
Pacific Grove, California USA

Complete information available from the Forth Interest Group.

FORTH INTEREST GROUP PRESENTS

FORTH INTEREST GROUP
P. O. Box 8231
San Jose, CA 95155

BULK RATE
U.S. POSTAGE
PAID
Permit No. 3107
San Jose, CA

Address Correction Requested

