
Dimensions

Forth
Spreadsheet

FORTH LOVE IF

CALL THEN
Growth is where we are, at EG&G Princeton Applied Research.,, both
company growth and personal growth for our professional
employees. Join a leading, nondefense oriented, manufacturer of
scientific and electro-chemical instrumentation, highly revered as a
leader by our industrial and research customer set.

We're looking to add a few good software engineers to
spearhead our new product development. We have positions for
people with a BSEE and BS Physics or Chemistry with an understanding
of hardware/sof?ware interface as it pertains to measurement in-
strumentation. Highly successful candidates will have written programs
involving real-time interrupts, and assembly language linked to at least
one high level language. Positions requiring a BSEE also require some
experience in circuit design,

Enjoy the rural living and cultural presence of a true college town,
knowing that in less than one hour you can visit the Jersey shore or ski
the Poconos, see a play on Broadway (NYC) or take in a Phillies game.

Your knowledge of FORTH may be your ticket to success. Forward
resume or call:

Richard W. Hucke, AEP
Director, Human Resources

EG&G Princeton Applied Research Corp.

P.O. BOX 2565 PRINCETON. NJ 08540

(609) 452-2111
Equal Employment Opportunity Employer M/F

FORTH Dimensions
P~lblished hv the - - -- - - - - - - 2 ----

Forth Interest Group

Volume VII, Number 1
May/June 1985

Editor
Marlin Ouverson

Production
Cynthia Lawson

Forth Dimensions solicits editorial
material, comments and letters. No
responsibility is assumed for accuracy
of material submitted. Unless noted
otherwise, material published by the
Forth Interest Group is in the public
domain. Such material may be repro-
duced with credit given to the author
and to the Forth Interest Group.

Subscription to Forth Dimensions is
free with membership in the Forth
Interest Group at $15.00 per year
($27.00 foreign air). For membership,
change of address and to submit
material for publication, the address is:
Forth Interest Group, P.O. Box 8231,
San Jose, California 95 155.

Symbol Table

Simple; introductory tu-
torials and simple appli-
cations of Forth.

Intermediate; articles
and code for more com-
plex applications, and
tutorials on generally dif-
ficult topics.

Advanced; requiring stu-
dy and a thoroughunder-
standing of Forth.

FEATURES

14 A Forth Spreadsheet
by Craig A. Lindley
A spreadsheet program written in high-level Forth! Useful it as is, or expand it to
include features like those of larger, commercial products. A working application
with pseudo-code from which to study and learn. (Source listing comes in the next
issue.)

27 Macro Generation in Forth
by Don Taylor
A cleaner way to code those macros - inspired by Soreff's original work in Forth
Dimensions V/5. Try it!

29 Keywords; Where Used
by Nicholas Pappas
FINDNO tells which words use a given keyword. When you need to make global
changes in a program, relocate it to high memory or - for example - find which
words change base, try out this utility.

32 Not ONLY But ALSO
by Bill Stoddart
The author argues that complete control of vocabulary search order is possible
without departure from the Forth-83 Standard.

36 Another Forth-83 LEAVE

f by John Hayes
Looking for the ideal LEAVE seemed futile at first, but this proposed solution
may be the best so far. After trying it, let us know your opinion.

Code and examples con-
form to Forth-79 stand-
ard.

Code and examples con-
form to ~orth-83 stand-
ard.

6 President's Letter: "International Service Organization"
8 Ask the Doctor: "Evaluation"

10 Application lhtorial: "A Generic Sort"
38 Techniques Tbtorial: "YACS, Part Two"

DEPARTMENTS

5 Letters

Code and examples con- 40 Chapter News
form to fig-FORTH. 42 FIG Chapters

Deals with new propos-
als and modifications
to standard Forth sys-
tems.

Now You Can Add

ARTIFICIAL
INTELLIGENCE

To Your Programs Using a Powerful Combination

By Elllot ~chneydder & Jack Park

Heres Your Chance to Profit by being o n
the Forefront, Write 5th Generation Software

Learn How To:
Create Intelligent Construct

Programs Rule Bases
Build Expert Systems Do Knowledge
Write Stand Alone License Engineering

Free Programs Use Inference Engines

Write Intelligent Programs For:
Home Use Data Analysis
Robotics Business
Medical Diagnosis Real Time

Easy Graphics & Sound Words
Hires Plotting Turtle Graphics
Windows Koala Pad Graphics
Split Screen Integrator
Printer/Plotter Ctrl Hires Circle, Line, Arc
Sprite & Animation Music Editor
Editor Sound Control

Easy Control of all 110.. .
RS232 Functions Interrupt Routines
Access all C-64 Peripherals

Education Process Control
Intelligent CAI Fast Games Utilities

Graphics Interactive Interpreter Interactive Compiler Scientific Analysis
Data Acquisition Financial Decisions Forth Virtual Memory Romable Code Generator

Full Cursor Screen Editor 40K User Memory
Extended Math Functions Full String Handling All Commodore File Types

Fast ML Floating Point & Integer Math Trace & Decompiler Conversational User
Double Precision 2E+38 with Auto. Sci Not. Conditional Macro Defined Commands
nxex Logx Loge Sin Cos Tan SQR 1/X. .. Assembler
Matrix and Multidimensional Lattice Math
Algebraic Expression Evaluator

SUPERFORTH 6 4 + ~ 1 Great Documentation
Easy to Read 350 pg.
Manual with Tutorials

Cn

3 PASCAL Source Screen Provided
Cn
(I B J C Meets all MVP Forth-79
J 2 s ~ 6 4 IX Industrial Standards

FORTRAN

ASSEMBLER Personal User Support

Power of Languages Constructs Prograrnm~ng T~rne A Total
SuperForth 64 IS more SuperForth 64 Saves You Integrated Package

powerful than most other Time and Money for the Commodore 64
computer languages

Ordering Information: Check. Money
Call:

Order (payable to MOUNTAIN VIEW SPECIAL
PRESS. INC) . VISA. Mastercard.

(415) 961-4103
Amer~can Express COD'S $5.00 extra.

INTRODUCTORY OFFER MOUNTAIN VIEW PRESS INC
No b ~ l l ~ n g or unpa~d PO'S Cal~ forn~a PO. Box 4656
res~dents add sales tax S h ~ p p ~ n g costs only $99" Mt. View, CA 94040
In US Included ~n prlce. Fore~gn orders,
pay ~n US funds on US bank. Include

Dealer for
20330 Value

for handl~ng and sh~pp~ng $10. Limited Time Offer
PARSEC RESEARCH

' Parsec Research Drawer 1776. Fremont, CA 94538
Commodore 64 TM of Commodore

Questions Standard Procedure

Dear Sir:

Since publication of my Forth-83
article in BYTE (August 1984), 1 have
received dozens of letters. Most readers
seem to agree with Nicholas Pappas'
letter in Forth Dimensions (VI/5) that
decried the continuing growth of new
"standard" dialects.

I took no overt position in my article
- it was a report, not an editorial -
but I must agree. Forth-83 is marginal-
ly better than fig-FORTH or Forth-79
in some respects, but the changes do
not significantly increase the
language's power. Moreover, the
changes are often just as subtle as they
are radical. I feel sorry for the novice
struggling to learn the differences in
such fundamental items as division and
do loops.

Some of the most interesting corre-
spondence resulting from the BYTE
article has been reprint requests, al-
most all from government or university
officials of Soviet-bloc nations: Po-
land, Cuba, East Germany, U.S.S.R.,
etc. In each case, I have forwarded
copies of the article along with a re-
quest for information on Forth use in
their nation. I am enclosing one inter-
esting response from Warsaw, Poland.

Thanks for your help.

Very truly yours,

C. Kevin McCabe
Chicago, Illinois

Simpler Recursion

Dear Editor:

In the letter on recursion (Forth
Dimensions VI/5), the suggestion can
be made even simpler. Make SMUDGE
immediate (if it isn't already) by [1.
Then, in Forth-83, GCD becomes:

: GCD [SMUDGE]
PDUP IF SWAP OVER MODGCD
[SMUDGE] THEN ;

Peter Oppenheimer
Princeton, New Jersey

friendly" (did I really say that?) to us
beginners.

It will make me unhappy to abandon
this otherwise exciting project.

Enclosed is one more renewal of my
membership in FIG, in hopes that
things will change. I hope it won't be
my last.

Sincerely,

More Grass Roots
J. Grant Viening
Wyoming, Michigan

Dear FIG,

I just read in Forth Dimensions
(VI/5) a letter by Lionel Hewett, which
you entitled "Grass-Roots Forth." I
had to reread the name several times to
make sure that I had not written that
letter. I could have. . . word for word.

The article "How to Learn Forth"
was the first article I have read in the
five issues I have received of Forth
Dimensions that was useful to me, a
beginner in Forth. It informed me
through the evaluation that both of the
Forth implementations I have bought
(at over $30 apiece) are doing my at-
tempts at learning Forth more harm
than good.

Other purchases and investigations
that have been useless in my attempts
at learning Forth are the 6502 Source
Listing and fig-FORTH Installation
Manual. Both at $15 and both from
you.

Not counting the three books that
were poor at best, I have over $100 in
Forth material I can't use. (I have both
of Brodie's books and they are good.)

My point is: I am very interested in
learning Forth, but everywhere I turn,
I'm putting out cash and getting no
where. Lionel said it best in his letter.
Why can't I get a good, cheap imple-
mentation of Forth for my specific
machine?

Soon, I will be upgrading my
VIC-20 to a Commodore 64. I have no
plans to attempt Forth on my new
machine unless I see some changes in
the Forth community to be more "user

Thanks; it's the noisy disk drive that
gets the most attention, soplease tell us
how we are and aren't serving your
needs, as this reader has done. While
we can't require vendors to adhere to
the Forth standards or to publish more
complete tutorials and documentation,
we can try to help you over the largest
obstacles, i f you let us know about
your problem spots. Write to "Ask the
Doctor" with specific questions!

-Editor

Capital Idea

Dear Marlin,

I thoroughly agree with the com-
ments by Jeffrey Lotspiech and
Thomas Ruehle ("Automat ic
Capitalization in Forth," Forth
Dimensions VI/l) regarding the supe-
rior readability of lower-case Forth
words. (Under their scheme, lower case
may be used if desired for newly-
defined words, while upper case is
retained for the standard Forth words.
All text may be typed in lower case,
and is automatically capitalized where
necessary .)

I would like to continue discussion in
this area and question why we need to
keep using exclusively upper case for
the standard Forth words. Many
Forths already allow case to be ignored

(cont. on p. 7)

Volume VII , NO 1 5 FORTH Dlmens~ons

Forth Interest Group: The FORML Asilomar Conference service is very important in making
An International Service Organization in November had nearly 100 partici- publications available for world-wide

pants, with a wide range of papers distribution.

Forth Dimensions begins Volume
VII this month, initiating another year
of outstanding international service
and activities by the Forth Interest
Group. Let's take a moment to look at
the past year and at some of the plans
for this year.

Growth continued, and many new
FIG Chapters were added to the roster.
Forth Interest Group members have
organized Chapters world wide, which
demonstrates the international interest
in Forth. One of the largest and most
active Chapters is the Republic of
China's Association of ROC Forth
Language. This group hosted a three-
day international FORML conference
at Taiwan's Tam-Kang University in
September. Attendance exceeded 100,
with several U.S.A. Forth Interest
Group members attending and present-
ing papers. One paper presented Forth
programmed in Chinese, to demon-
strate the versatility of Forth.

Our first trip to China to participate
in FORML conference programs was
completed. It included a two-day
conference at Shanghai's Jiao Tong
University and additional university
programs in Peking and Xian. We
learned that China is eager to use Forth
and has instituted programs in the
universities so that students may learn
and practice Forth. We also learned
that China welcomes visitors and will
keep one busy from morning till night
visiting cultural centers, historical
sites, factories, shopping centers,
restaurants, etc.

In the U.S.A., the Forth Interest
Group's annual two-day convention
was held in October in Palo Alto, Cali-
fornia. Vendors exhibited an impres-
sive array of Forth products. Technical
sessions were excellent and included
hands-on training for anyone interest-
ed in learning Forth.

presented. Here was an opportunity to
meet with top-flight Forth practition-
ers. Charles Moore, inventor of Forth,
listed the remarkable capabilities of
his Forth "chip," then in the final
stages of development. Today, work-
ing chips are available and the prom-
ises of November are a reality.

New books about Forth were pub-
lished in the past year, including
Thinking Forth, Mastering Forth and
Forth Tools. These are excellent books
and are available along with others
from the Forth Interest Group. Each
issue of Forth Dimensions has a publi-
cation order form.

This year, the Forth Interest Group
has already presented continuous one-
hour training sessions over three days
of the West Coast Computer Faire in
San Francisco. Apple and IBM com-
puters were available for individual
use. This was a very popular event.

In September of 1985, the annual
FIG convention is scheduled in Palo
Alto, California. A complete con-
ference program is planned to include
the latest software and hardware devel-
opments. Look forward to hardware
developments based on the new Forth
chip. Training will continue to be an
important part of the technical pro-
gram.

A European conference is planned
in October in Germany. It is called
euroFORML and will be held in Stet-
tenfels Castle near Heilbronn. This
continues the international conference
programs which have always been a
part of the Forth Interest Group's
activities.

You will continue to find new publi-
cations listed in the publications order
form. The publications committee
reviews and recommends publications
regularly for this list. The Forth Inter-
est Group believes that the publication

Forth Dimensions articles are a con-
stant source of new and educational
material about Forth. You are en-
couraged to recommend it to everyone
interested in learning more about Forth
and about the benefits of its use.

These are activities the Forth Interest
Group supports in meeting its goals
and objectives of service to members
and promotion of Forth. Your support
is necessary to keep these services avail-
able. Participate in Forth Interest
Group events and tell others about
them.

-Robert Reiling
President, Forth Interest Group

FORTH Dimensions 6 Volume VII, No. 1

(cont. letters)

in dictionary searches, and this would
permit all-lower-case Forth or, perhaps
more usefully, Forth in which upper
case may be used selectively to high-
light whatever we want. For some time
now, I have been writing code in which
upper case is used for each word as it is
defined, and otherwise everything is in
lower case. The result looks unconven-
tional, but it is very readable once you
get used to it. (I challenge readers to try
it!)

Why, then, do we persist with upper-
case Forth? The only reason I can
think of is tradition. Early keypunches,
printers, etc. had only one case
(upper), so languages such as Fortran
and COBOL used upper case only.
Those of us old enough to remember
that Pascal had a forerunner called

Algol will realize that it was an excep-
tion; but one of its intended purposes,
perhaps the primary one, was the pub-
lication of algorithms, not simply the
programming of computers. That is, it
was intended for people to read. I
think the point is obvious.

One possible objection that support-
ers of upper case might raise is that
upper-case code stands out clearly
from lower-case comments. I believe,
however, that comments can be sepa-
rated out just as well by moving them
over to the right, onto separate lines
or, even better, to shadow screens.

Most programmers today are used to
the "lower-case look" of Pascal and
C, both of which followed the Algol
style of appearance. Writing Forth in
upper case makes our program code

more reminiscent of Fortran, COBOL
or even (gasp, horror) BASIC! We are
entering an era of bit-mapped displays
and smart printers capable of handling
all kinds of esoteric scripts. Should we
persist with program text that looks
like something out of the 1950s? I
know nostalgia has its place, but surely
this isn't it. Programs need to be read
by people as well as by machines. If I'd
written this letter in all upper case,
everyone would have thought I was
being ridiculous!

Yours sincerely,

Michael Hore
Numbulwar, NT, Australia

VolumeVII, No. 1 7 FORTH Dimensions

Evaluation
William E Ragsdale

Hayward, California

"Ask the Doctor" is Forth Dimen-
sions' health maintenance organization
devoted to your aid in understanding
and using Forth. Questions of a prob-
lem-solving nature, on locating refer-
ences, or just regarding contemporary
techniques are most appropriate.
When needed, your good doctor will
call in specialists. Published letters will
receive a preprint of the column as a
direct reply.

In his last two columns, the doctor
addressed two approaches to learning
Forth. First (Forth Dimensions VI/5)
was a study-guide approach to learning
from Leo Brodie's Starting Forth. Next
we made rounds within the clinic
(VI/6) to review Margaret Armstrong's
Learning Forth. In this issue, we
conclude by summarizing the evalua-
tions, contributed by readers of Forth
Dimensions, of commercial Forth
systems.

Your report from the clihic for this
issue has been built upon the contribu-
tions of eleven readers. Appreciation
is in order for the efforts of Jim Hen-
derson (Thomson, Georgia), Chris Mc-
Cormack (Huber Heights, Ohio), Guy
Kelly (La Jolla, California), Terry Jaco
(North Hollywood, California) and
J .C. Halbrook (Sterling, Connecticut).
Several others supplied evaluations but
did not identify themselves.

Summary

Previously in Forth Dimensions, sev-
eral reader's questions regarding learn-
ing Forth were summarized by the
good doctor:
- How can I get started? - Which
Forth? - Whom do I ask?

The "Which Forth" question will be
addressed by reporting upon the results
of the questionnaire that concluded
that column. The scoring method
favored use of a standardized dialect,
consistency with Starting Forth, docu-
mentation and support. It was suggest-
ed that a point total of seven or greater
would indicate a system offering supe-

rior value to anyone learning Forth.
The implication: a score of six or less
indicates a system which will impede
your learning effort.

The curtain is about to be raised.
The audience is waiting with hushed
expectation. The evaluations are in!
May I have the sealed envelope,
please?

Summary

We see from table one that the point
total ranges from three to twelve. The
maximum possible was thirteen. As
mentioned, the scoring favors systems
matching an established standard
(Forth-79 or Forth-83) and the book
Starting Forth. Both of these elements
are supportive of self study.

Our mail continues to confirm that
systems weak on documentation and
standardization are most associated
with plaintive calls for aid. These are
mostly fig-FORTH systems in public
domain libraries. Our conclusion is
that the $50 to $150 saved over a com-
mercial product will be quickly offset
in the added frustration and extra ef-
fort of learning Forth and the specifics
of the implementation.

Three readers evaluated SuperForth
64 for the Commodore 64. All three
emphatically praised the support and
helpful attitude of Parsec Research.
The 250-page manual, access to host
files, decompiler/trace option and
floating point are all given high marks.
One quote: "I've dealt with Parsec
for almost a year and have had very
great success with their' product and
with their personnel. As a learning
tool, I would find it hard to match the
price/performance of a C-64 running
SuperForth."

Two readers evaluated C64 Forth
from Performance Micro Products.
With a score of 10, it only lost points
for the editor, which is tailored to
match the Commodore conventions
rather than the usual Forth keys. The
dialect is Forth-79 enhanced by a file
interface, 167 pages of documentation,
graphics and trace.

One reader extended the rating scale
to favor his choice, MMS Forth from

Miller Microcomputer Services. This
evaluator bumped MMS Forth to 31
points, since raves were given to the
editor, flexible use of RAM, and
options. That survey form's point for
support was inflated to three due to
the excellent phone help. In fairness to
all, on the uniform scale, this system
w q a twelve on the scale of thirteen
possible points.

NGS Forth, 8086 Forth (LMI) and
83 Standard PC-Forth (Kelly) are all
available for the IBM PC. They all
scored twelve, and any should be well
received by the student.

F83 is a public-domain system devel-
oped by Mike Perry and Henry Laxen
for the IBM PC, CP/M and 68000
systems. While technically outstand-
ing, it only lost points for no support
and lack of printed documentation.
Addition of Dr. Ting's Inside F83 (280
pages, published by Offete Enterprises)
raises this system to twelve points.

The only problem case reported was
VIC Forth for the Commodore
VIC-20. This fig-FORTH based
system only got points for object size
and editor. The dialect, mass storage,
support and options received no
points. The manufacturer has gone out
of business, but the product is still in
distribution. This style system is being
displaced in the market and illustrates
the difficulty a newcomer may
inadvertently face.

If you perform your own evaluation
or select a product based on this eval-
uation, please remember that its pur-
pose has been to indicate suitability
for learning, and that seven or better
is recommended. Other ratings would
be appropriate for purposes such as
product implementation or specific
applications.

Other Systems

Several popular systems are notice-
able by their absence. Evaluations
of such systems as MVP FORTH,
polyFORTH 11, MasterFORTH and
MacForth would be appreciated. Your
faithful practitioner will also welcome
further comments and evaluations that

FORTH Dimens~ons 8 Volume VII, NO. 1

PRODUCT VENDOR RUNS ON PRICE POINTS

8086 Forth
MMS Forth

&GS Forth
53 PC-Fort h
F8 3

SuperForth 64
C64 Forth 1 VICForth

Laboratory Microsystems CP/M-86 S 100 12
Miller Microcomputer TRS-80 -1 30 12

IBM PC 250
Next Generation Software 1BM PC 70 12
G. M. Kelly IBM PC 2 S 12
No Visible Support IBM PC 25 11

CP/M, 68000
Parsec Research Comm.-64 96 10
Performance Microproducts Comm.-64 70 10
HES VIC 20 40 3

Table One

may be summarized in a final tabula- Parsec Research, Drawer 1776, Fre-
tion for Forth Dimensions. mont, CA 94538.

When next we ~ ~ m m a r i z e reader Performance MicroProducts, P.O. Box
evaluations, you will find the good 370, Canton, MA, 02120, (617)
doctor trading his white lab coat for 828-1209.
formal dinner attire. We will never be
as glamorous as the Academy Awards,
but the appreciation of readers will be
more sincere. About the author

Vendor Addresses

Laboratory Microsystems, Inc., P.O.
Box 10430, Marina del Rey, CA 90295,
(213) 306-7412.
G. M. Kelly, 2507 Caminito La Paz, La
Jolla, CA, 92037.
HES (out of business), product dist. by
Mountain View Press, P.O. Box 4656,
Mt. View, CA, 94040, (415) 961-4103.
Miller Microcomputer Services, 61
Lake Shore Road, Natick, MA, 01760,
(617) 653-6136.
Next Generation Systems, P.O. Box
2987, Santa Cruz, CA 95055.
No Visible Support Software, Box
1344, 2000 Center Street, Berkeley,
CA 94074.

Bill Ragsdale has been using Forth
since 1977 for personal and business
projects. He is married to Anne, who
did the production work on early Forth
Dimensions. They have two children:
Mary, age three and Michael, age one.
For those of you who have been fol-
lowing Mary's development, she now
knows the alphabet and enjoys "Kiri's
Hodge-Podge" on the Apple I1 (which
she calls E-I-Oh, as in Old McDonald)
and "My ABCs" on the PC. Michael's
computer involvement is limited to
chewing on its mouse-control wire.

Portable programming environment

Whether you program on
the Macintosh, the IBM PC,
Apple II series, a CP/M sys-

tem. or the Commodore 84.
your program w~ l l run un- . -

changed on all ihe rest. =--=__=
If you write for yourself, F- s-
MasterFORTH will protect -- - ' ' ' M

your investment. If you write for
others, itwill expand your market-

place.
MasterFORTH is a state-of-

the art implementation of the
Forth computer language.
Forth is interactive - you have
immediate feedback as you c5
program, every step of the way. Forth is
fast, too,and you can use its built-in macro

assembler to make it even CP/M ,* faster MasterFORTH's
relocatable utilities,

transientdefinitions,and headerless code
let you pack a lot more program into your
memory. The resident debugger lets you
decompile, breakpoint, and trace your
way through most programming prob-
lems. A string package, file interface, and
full screen editor are all standard features.

MasterFORTH exactly matches the
Forth-83 Standard dialect described in
Mastering Forth by Anderson and Tracy
(Brady, 1984). The standard package in-
cludes the book and over 100 pages of
supplementary documentation.

Volume VII. No. 1 9
I

Application Tutorial

G-eneric Sort
John S. James mats and programming conventions - Design Details

Santa Cruz, California
Application Tutorials focus on using

Forth to get results, not on experimen-
tal developments. This article advo-
cates a design approach which employs
the strengths of Forth to help write
generic library routines, which can be
used with no change at all in different
applications.

As an example, we present a simple
routine to sort any kind of randomly-
accessible data, in memory or on disk:
numbers, records of any length, re-
cords with one or more key fields and
with ascending, descending or mixed
sequences, variable-length records, ar-
rays or other data structures, or mathe-
matical entities with any "order"
relationship, not necessarily alphabeti-
cal or numerical. You can sort any of
this data with no change at all to the
sort routine. So you don't need to read
or understand the sort in order to use
it!

The essence of what we call
"generic" design is the radical separa-
tion between an algorithm and its data.
We use the well-known techniaue of
vectored execution - allowing one
routine to accept a pointer to another
routine, and then executing it when
appropriate. By generic design we
mean not only vectored execution, but
also a logical factoring of the job to be
done so that the algorithm being writ-
ten can be blind to the data on which it
operates. Developers can then use these
routines on great varieties of data
types, formats and structures, even
those never considered by the writers
of the routines.

Overview

What does Forth need most, in order
to become more widely useful and ac-
cepted in the computer industry? One
of the most critical advances would be
the widespread use of standard lib-
raries of routines. We need the system
software, documentation and shared
conventions to support developers who
can then take large modules of code -
designed and programmed at various
installations with different data for-

and re-use these modules in new con-
texts.

The modules should remain
identical, usable with no changes at all,
so that their users do not need to learn
their internals, and do not risk
introducing errors into software which
may have been well tested through
prior use at dozens or hundreds of
installations.

One contribution to the development
of standard libraries would be wider
use of generic routines, when possible.
For example, a formula evaluation
might be defined first for single-
precision arithmetic operations - add,
subtract, multiply and divide - and
then used unchanged for double-
precision or complex numbers, or for
other data entities. This flexibility
requires (1) that the procedure make
sense in its new domain and (2) that
only the operators to be changed (the
arithmetic, in the above example)
know about their data; nothing else
within the algorithm being program-
med can know the length or format of
the data items.

This article shows another example:
sorting. Some sort algorithms can be
defined in terms of only two operations
(compare and exchange) which know
about the data being sorted. Both
operations take two arguments, indices
or other pointers to the two items to be
compared or exchanged. Comparison
returns one result, a truth value; each
operation may also return an error-test
flag. The sort routine itself needs three
arguments: pointers to the two rou-
tines, and the number of items to sort.
It need know nothing about the format
of the data.

Whoever uses the sort is responsible
for defining the comparison and ex-
change operations for the particular
data to be sorted. These definitions
know the length and location of key
fields, whether the sort is ascending or
descending, etc. They must handle any
resource management required, such as
use of Forth buffers if the data is on
disk, or memory management if
variable-length records were being
sorted.

To simplify this article, we have il-
lustrated it with an easy, exchange-sort
algorithm, not an optimal method.
Performance falls off sharply when
many items must be sorted. (For a
faster program, note Wil Baden's
"Quicksort and Swords," Forth
Dimensions VI/5. That program uses a
generic design like the one presented
here, although the user interface is
different .)

Let's call the routine we are defining
SORT and the operations it uses
COMPARE and EXCHANGE. SORT will
call these operations repeatedly, and
must be able to tell them which items to
compare or exchange; COMPARE and
EXCHANGE must be able to find each
item, given its position in the current
sequence. We will use zero-origin in-
dexing, requiring that COMPARE and
EXCHANGE accept arguments zero
through n-1, where n is the number of
items to be sorted. COMPARE should
return a true flag if the items must be
exchanged, false otherwise. Therefore,
it should return false for the equal
case, to avoid an unnecessary ex-
change.

For simplicity, we wrote this example
program to allow up to 32K items. It
could easily be expanded to use unsign-
ed or double-precision arguments.

Optimization

The key challenge here is that we
know nothing about the items being
sorted. Still, some optimization can be
planned.

Since exchanges might be expensive
(for very long records, for example),
we should avoid doing them unneces-
sarily. In this example, instead of
doing a bubble sort, we find the mini-
mum (or maximum) item, and then
exchange it, once, into its final place.

The data may be in memory or an
disk. If on disk, in most cases each
item will fit within a single Forth buff-
er, instead of spanning buffers. Then
we need at least two buffers for reason-
able performance - one holding the
minimum (or maximum) found so far,
the other for the item with which it will

FORTH Dimensions 10 VolurneVII, No. 1

next be compared. Note that SORT can-
not keep the minimum item in memory
in order to optimize, as it has no idea
of the size of the object being sorted,
or how to move it; or the size, location
or structure of its key; or whether the
object is on disk in the first place.

Error Control
SORT and also the COMPARE and

EXCHANGE defined by the user, could
each return an error flag to the stack;
non-zero could indicate error. For ex-
ample, COMPnRE and EXCHANGE might
flag an error if a data item were incor-
rect or unreadable due to disk failure.
SORT might abort and return an error

flag in that case. For this tutorial ex-
ample, we have omitted error flags.

Examples of Use

Note that the sort is in screens two
and three. The rest of the code shows
examples.

Screens six, seven and eight each
have one example: sorting fifty binary
numbers in RAM in ascending se-
quence; sorting fifty 64-character
records on disk (major key: columns
1-3, ASCII, ascending; minor key:
columns 11 -15, ASCII, descending);
and sorting fifty entire Forth screens
(key: columns 1-64, A S C I I ,
ascending). Incidentally, the timings

Scr # 1 A:FD.BLK
0 \ Generic sort routine, Forth-83 04Mar85 JJ
1
2 \ This program will sort any randomly-accessible data,
3 \ either in RAM or on disk. To use it, you must write two
4 \ routines: one to compare two of your data items, and the
5 \ other to exchange two of then.
6
7 \ To simplify this tutorial, we have used an exchange
8 \ sort, which is inefficient for large numbers of items.
9 \ Quicksort could be substituted for a production veraion.
10
11 2 LOAD 3 LOAD \ The sort
12
13 \ Three examples are in screens 6, 7, and 8
14
15

Scr # 2 A : FD. BLK
0 \ Generic sort: setup 17Mar85 JJ
1 VARIABLE A-COMPARE? \ Address of Compare routine
2 VARIABLE A-EXCHANGE \ Address of Exchange routine
3 VARIABLE N \ Number of items to be sorted
4
5 : DO-COMPARE? \ N1 N2 -- ? ;P Compare two "items"
6 A-COMPARE? Q EXECUTE :
7 : DO-EXCHANGE \ nl n2 -- :P Exchange two "items"
8 OVER OVER <> IF A-EXCHANGE Q EXECUTE
9 ELSE DROP DROP THEN : \ Don't exchange item with itself
10
11
12
13
14
15

Scr # 3 A:FD.BLK
0 \ Generic sort 17Mar85 JJ
1 : FIND-MIN \ nl -- n2 ;P Find min (max) from nl on
2 N Q OVER DO \ Look at all items from nl on
3 DUP I DO-COMPARE? IF DROP I THEN \ Replace if new rin
4 LOOP ;
5 : NSORT \ - - :P Ordinary case of aort, 3 or more items
6 N 0 1- 0 DO I FIND-MIN I DO-EXCHANGE LOOP ;
7 : SORT \ scompsre sexchange n - - :P Save arguments, test
8 N ! A-EXCHANGE ! A-COMPARE? !
9 N B 1 > IF NSORT THEN : \ If less than 2, we're done

10
11
12
13
14
15

are 2, 17 and 625 seconds, respectively,
using the F83 version of Forth-83 on
an IBM PC with floppies. These poor
showings result from the inefficient
sort algorithm and the time to move
data on the disk.

Note that in Forth-83, the "tick"
operation (the single quote) must be
replaced with ['I if used inside a colon
definition.

When you write COMPARE or
EXCHANGE for items on disk, be careful
to use the buffers properly. An ab-
solute address within a Forth block
buffer becomes unreliable after any
other I/O is done, because the same
block may then be assigned to a dif-
ferent buffer. Do not store such an
address for later use. Instead, either go
through BLOCK again to re-access the
data later, or move the data out of the
buffer into other memory and use it
from there.

Future Improvements

The best way to improve this routine
would be to use a more efficient sort
algorithm. For tutorial purposes, the
one given here is adequate.

This example SORT is not re-entrant;
it uses ordinary variables to store its
arguments. We suggest that developers
of transportable library modules use
local variables, rather than elaborate
stack manipulation, to get re-entrant
code. Local variables have not yet been
standardized in Forth; see the
Proceedings of the 1984 Form1
Conference for some excellent papers
on the subject.

Incidentally, we could make SORT
run a little faster by eliminating the
mechanism of sending addresses which
then require use of EXECUTE. Instead,
COMPARE and EXCHANGE could be
defined and used by SORT like any
other words in the dictionary. But
some generality would be lost - for
example, the ability to sort different
kinds of data structures with the same
object code.

Examples two and three show that
EXCHANGE could easily be paramet-
erized and made available as a utility.
EXCHANGE might even be put inside the
sort, which could then have a tem-

VolumeVII. No. 1 11 FORTH Dimensions

porary memory area, perhaps a few
hundred bytes or so, for efficiently
exchanging long data items piece by
piece. SORT would have to be given the
record length in that case.

Not only EXCHANGE but COMPARE
also could be moved inside the sort.
But then all of the information about
the keys would have to be passed to
SORT - not only the record length. In
this extreme case, our routine would
have become an ordinary sort package.
It would have lost its versatility, be-
cause it would have to embody as-
sumptions about the data, instead of
letting its users manage their own data
by programming.

Importance

The simple sort routine given here
may not convey the practical impor-
tance of generic design, because this
program could easily be rewritten every
time. But the sort could be much more
elaborate; for example, it could scan
the data and select the best of several
algorithms. Either the sort and/or the
routines passed to it could be partly or
entirely in code, with no problem of
compatibility between code and high-
level.

The speed penalty for transferring
control to outside routines appears to
be insignificant, even if an all-code
generic program is compared with a
special-purpose sort written entirely in
code. The significant cost of using the
generic design approach is that not all
algorithms can be written in terms of
COMPARE and EXCHANGE, or any other
predefined sqt of operations. In many
cases this cost will be worth paying.

Note that Forth gives us the flex-
ibility to design modular program ele-
ments within the continuum between
finished application packages and
special-purpose programs written from
scratch. Few higher-level languages
encourage users to pass a subroutine to
a module, which then executes that
subroutine without knowing anything
about its data.

Other Similar Aproaches

Many programming languages use
systems of data abstraction or hiding

Scr # 6 A:FD.BLK
0 \ Example 1: Sort 50 binary numbere in RAM 04Mar85 JJ
1 CREATE DATA 100 ALLOT
2 : X \ n -- a :P Get addrese of nth element in DATA array
3 2 DATA + ;
4 : COMPARE \ nl n2 -- ? ;P Compare two items, given item #a
5 SWAP X O SWAP X 8 > : \ Ascending, eo exch if 1st is >
6 : EXCHANGE \ nl n2 -- :P Exchange two items
7 DUP X 8 ROT ROT \ Save a copy of one value, 3rd on stack
8 OVER X B SWAP X 1 \ Move the other value into place
9 X 1 : \ Move the copy into place
10 : SORT-TEST1 \ -- ;P Sort the array
11 C'l COMPARE [' I EXCHANGE 50 SORT :
12 \ Note: if test from keyboard, use ' , not C'1
13
14
15

Scr # 7 A:FD.BLK
0 \ Example 2: Sort 64-character records 04Mar85 JJ
1 \ Note: usee €83 string compare, COMP a1 a2 n -- -1101+1
2 10 CONSTANT START-BLOCK \ First block taken as 64-char records
3 : X \ n -- a :P Get address of nth data element
4 6 4 * 1024 /MOD START-BLOCK + BLOCK + :
5 : COMPARE \ nl n2 - - ? :P Compare two items, given item #a
6 X PAD 15 CMOVE \ Get one key out of block buffer
7 X DUP PAD 3 COMP (Major keys) ?DUP O= IF \ Need minor
8 DUP 10 + PAD 10 + 5 COMP NEGATE THEN
9 SWAP DROP (Arg) 1 = : \ If +1, from either key, exch
10 : EXCHANGE \ nl n2 -- :P Exchange two items, given ltem #a
11 DUP X PAD 6 4 CMOVE OVER X PAD 6 4 + 6 4 CMOVE
12 X UPDATE PAD 6 4 + SWAP 6 4 CMOVE \ Can't move buf to buf
13 X UPDATE PAD SWAP 64 CMOVE ;
14 : SORT-TEST2 \ - - ;P Sort 50 64-byte records on disk
15 [' I COMPARE [' I EXCHANGE 50 SORT FLUSH :

Scr # 8 A:FD.BLK
0 \ Example 3: Sort entire Forth ecreens 04Mar85 JJ
1 \ Note: usee F83 string compare, COMP a1 a2 n - - -1101+1
2 10 CONSTANT START-BLOCK \ First of the blocke to be sorted
3 : X \ n - - a :P Get addreee (in buffer) of nth block
4 10 + BLOCK ;
5 : COMPARE \ nl n2 -- ? :P Compare two blocks, firat 6 4 char
6 X PAD 6 4 CMOVE \ Get one out of the buffer
7 X PAD 64 COMP 1 = :
8 : EXCHANGE \ nl nZ -- ;P Exchange two blocks
9 DUP X PAD 1024 CMOVE OVER X PAD 1024 + 1024 CMOVE
10 X UPDATE PAD 1024 + SWAP 1024 CMOVE
11 X UPDATE PAD SWAP 1024 CMOVE : \ Note need 2K bytes at PAD
12 : SORT-TEST3 \ -- :P Sort 50 screens
13 [' I COMPARE [' I EXCHANGE 50 SORT FLUSH :
14
15

to separate modules, reducing com-
plexity and the chances of error by
preventing side effects. In most of
these systems, the subroutine knows
about the data, but the calling program
does not. Here, the roles are changed.
The calling program knows about the
data, and it passes a module which also
knows about the data into a sub-
routine, which does not know about
that data but executes the module at
appropriate times. The module com-
municates with the subroutine by its
normal input and output, and it com-
municates with the calling program by
directly affecting its data, as .it was
designed to do. Other language con-

structs relevant to this approach in-
clude the "generic procedures" of
ADA (which are templates resolved at
compile time) and the "operators" of
APL (which accept routines as argu-
ments - for example, the inner-
product operator accepts + and * to
perform matrix multiplication).

Forth is more extensible than these
languages, and it offers a key advant-
age of very low expense for experimen-
tation. We can quickly put prograrn-
ming concepts to the test. Practical
program modularization presents un-
solved problems. Useful results, not
fixed rules known in advance, serve as
the guides in this effort.

FORTH Dimensions Volume VII. No. 1

The Forthcard
STAND ALONE OPERATION

STD BUS INTERFACE

EPROMIEEPROM
PROGRAMMER

PARALLEL I10

ROCKWELL FORTH CHIP

The Forthcard provides OEMs and end
users with the ability to develop Forth and
assembly language programs on a single
STD bus compatible card.

Just add a CRT terminal (or a computer
with RS-232 port), connect 5 volts and you
have a self contained Forth computer.
The STD bus interface makes it easy to
expand.

Download Forth source code using the
serial port on your PC. Use the onboard
EPROMIEEPROM programming capability
to save debugged Forth and assembly
language programs. Standard UV erasable
EPROMs may also be programmed with
an external Vpp supply.

Evaluation Unit $299
Part #STD65F11-05 includes:
ForthCard, Development
ROM, 8Kbyte RAM, Manuals

OEM Version as low as
Part #STD65F11-00 $
does not include 199
memory or manuals

NEW! Options and Application Notes

Electrically Eraseable PROMS (EEPROMs)

FREEZE the dictionary in EEPROM (save in
non-volatile memory, to be restored on
power up)

Download Software for your IBM PC or CP/M

Non-Volatile CMOS RAM with battery 2K,
8K, optional Clocklcalendar

Fast 2MHz clock (4MHz crystal)

Disk Controller Card (5%")

Self Test Diagnostics

Parallel printer interface

Ask about our ForthBoxTM
A complete STD bus oriented system including
the ForthCard, Disk Controller, Disk Drive(s),
STD Card Cage, Cabinet and power supply.

CALL TODAY FOR COMPLETE INFORMATION!

9560 Black Mountain Road
Sun Diego, CA 921 26
(6 19) 566- 1892

A . Spread!;tieet d i s p l a y be.fo1.e da ta e n t r y

F o r t h Sp~.eadstieet
T i t l e

.---.. -F;- - 1:) - -
0 I 0 I 0 1.::: 0 ::. I 0 I
1 I 1 I 0 I 0 I 0 I
2 1 0 I 0 I 0 I 0 I
3 1 0 I 0 I 0 I 0 I
4 1 0 I 0 I 0 I 0 I
9 I 0 I 0 I 11 I 0 I
6 l 0 I 0 I 0 I 0 I
7 1 0 I 0 I 0 I 0 I
8 I 0 I 0 I 0 I 0 I
9 I 0 I 0 I 0 I 0 I

1 0 1 0 1 0 I 0 I 0 I
1. 1. I 0 I 0 I 0 I 0 I
1 2 1 0 I 0 I 0 I 0 I
1 3 1 0 I 0 1 0 I 0 I
1 4 1 0 I 1) I 0 I 0 I . .

E:, ry jpical !spreisd!;hret af ter . da ta entrl:!

F o r t h Spreadsheet.
T i t l e j an f e b mar 31) r

........ - p (- I)
ir~c:one 0 1 $27511.~10 1 $>?750,00 1.::: $2790,00:::.1 $575O.i10 I

1. I $0 .00 I $ 0 , 0 0 1 $0.011 I $ 0 . 0 0 I
loerr aril-.rcil:~:le 2 1 $ 6 3 . 4 5 1 $ 6 3 . 4 5 1 $ 6 3 . 4 5 I IBC.8.45 I
].oar, i r t tere! j t 3 1 $ 7 9 7 . 0 3 1 $ 7 5 7 . 8 3 1 $ 7 5 7 . 8 3 1 9 7 5 7 ~ ! 1 3 1
].oar, insl..lr.artc:e 4 1 $137.50 1 $ 3 7 . 5 0 1 $ 3 7 . 5 0 1 8 :37*90 1

5 1 $ 0 . 0 0 I $ 0 . 0 0 I $0.00 I !t I1 . (1 O I
car psyner~t 6 1 6 2 0 0 . h l 1 6200.61 . 1 4 2 0 0 . 6 : l I B?OO.OJ I
car gas 7 1 !b1.20.34 1 3200.:!1 1 $:3h0*32 1 6111:;+63 1
car misc:: n a i r ~ t . 8 1 $ 0 . 0 0 1 9>?0.00 1 6 0 + 0 0 1 $ 4 5 . 6 0 1

9 I $ 0 + 0 0 1 $ 0 . 0 0 I a 0 , o o I $ 0 * 0 0 I
t . r . l i l i . t i e s 1 0 1 $ 2 3 0 . 5 4 1 $2'30.54 1 !6230,54 1 4'2:10.5'(1
sav i r~qs ;accc:)l.lr~t 111 B 9 O I l ~ l l 0 1 * 5 0 0 , 0 0 1 $ 5 0 0 . 0 0 I Q500.0O I

1.2 1 $ 0 . 0 0 I $O,00 1 B0.I lO I $0 . 0 0 I
c o s t o - F :I.ife 1131 6 1 9 1 . l l . 2 7 I % 2 0 1 . 0 + 1 4 I 6:?:150.25 I $:L941r : l .b l
money l e f t 1 4 1 $1339.73 1 $7:39.136 1 $ 5 9 0 . 7 5 I $fHOf?.!3"1

.. --- -- -.

See t,e:.:t for . d e t a i l s .

Figure One

which will start the process. At this
time, the screen will clear and the
message
Spreadsheet Compiling
will appear. The F83 system prompt
"ok" will reappear when the
compilation is completed. To execute
the spreadsheet program, type:
spreadsheet < cr >
and you will see the display shown in
figure one-a. Notice that at any one
time, the display shows four columns
and fifteen rows of the 26 x 26
spreadsheet. Every row/column
intersection is referred to as a cell of
the spreadsheet. Further, the cell
surrounded by the greater-than/less-
than symbols is called the "current
cell." Data and/or equations can only
be entered at the current cell.

Positioning of the current cell is
controlled by the cursor arrow keys
and the G (or Go-To) command. If the
current cell position tries to leave the
display window, the window will scroll
to keep the current cell position on the
display. See table one for a list of all
c o m m a n d s used f o r d i sp l ay
positioning.

As an example of how this
. spreadsheet is used, let's construct a
simple home budget sheet. Figure one-
b shows how this might look when we
are finished. The first step in building a
new spreadsheet is to give the various
rows and columns names. The column
names shown in the figure correspond
to the months of a year. The various
row names are shown on the left of the
figure.

Column names are input to the
spreadsheet program by selecting "C"
from the command menu. This
command will prompt for the column
letter at which to begin the naming,
and then for each of the desired names.
For our example, enter (starting at
c o l u m n A) t h e th ree - l e t t e r
abbreviations for the twelve months of
the year, each followed by a <c r> .
After inputting "dec" for December,
hit <cr> twice to exit the column-
name entry mode.

Row names are entered in exactly the
same manner. The row-name entry
mode is selected via the "R"
command. If you wish to leave a blank

VolumeVI1, No. 1 15 FORTH Dimensions

line for a particular row, enter a space
followed by a <c r> . Entering just a
<cr> will terminate this mode of
operation.

Because our budget spreadsheet will
be used for monetary quantities, we
must select the dollars/cents format
for our display. This is accomplished
by selecting the "F" - for Format -
command and then selecting the
dollars/cents mode. You will notice the
display now shows "$0.00" for each
entry, instead of just "0".

To place data into our spreadsheet,
use the cursor positioning keys to place
the current cell at row 0, column A, if
it is not there already. Select the "D"
command to enter data at this location.
Enter "2750 <cr >" (the trailing
decimal is implied). In this example,
our income is assumed to be constant
from month to month. Use the "A"
command to enter this data again for
the eleven subsequent columns of this
spreadsheet. If you use the cursor
positioning keys to move the display
window around on the spreadsheet,
you'll notice $2750.00 is entered as the
first entry in each month.

Loan principle, interest, insurance,
car payment, utilities and saving
deposit are also the same amount for
each month, so enter them in the same
manner. Quantities that change from
month to month, like car maintenance
and gasoline, must be entered
separately, using the "D" command
described above.

The final two rows on the
spreadsheet - money left and cost of
life - are calculated items. By this, I
mean they are dependent on other
amounts already entered in the
spreadsheet, and will require equations
to be entered for these quantities.
Using the cursor positioning keys,
position the current cell at 13A in
preparation for equation input. Now
select the "E" - or Equation -
command to input the following
equation:

Note: The spaces between the
characters are very important for

Psuedo-code f o r Fo r th Spreadshee t

PROCEDURE SPREADSHEET (s p r e a d s h e e t)
o ~ l t p ~ l t i n i t i a l s c r een d i s p l a y (d i s - s c r e e n)
do fo reve r

y e t ope ra to r input, (IBM-key)

j f c o r ~ t r a l t hen
p roces s c o r ~ t r o l i n p u t (c o n t r o l - i n)

e l s e
p roces s commar~d inpa-~t (command-in)

end i f
d i s p l a y c u r r e n t s t a t u s (d i s - s t a t u s)

endclo

PROCE:DURE PROCESS CONTROL INPUT (c o n t r o l - i n)
do c a s e of c o n t r o l i n s t r u c t i o n

home key: do t o p row (top-row)
~.tp arrow: do 1.1p arrow (up-arrow)

F'q Up: do l e f t 4 columns (l e f t - 4 - c o l s)
l e f t arrow: do l e f t arrow (l e f t,-arrow

r i q h t arrow: do r i g h t arrow (r i g h t - a r r o w)
e1-d: do bottom row (bottom-row)

dour1 arrow: do down arrow (down-arrow)
F's \In: do r i g h t 4 columns (r i q h t - 4 - c o l s)

A] . e f t arSr5ow: do f i r s t c011.1mi-I (f i r s t - c o l)
A r q h t arrow: do l a s t column (l a s t - c o l)

e 1 s e
e r r o r c o n d i t i o n (Ireep)

e r~dyase
1% e t I..I 1% n

PROCEZDLJHE COMMAND INPUT (command-in)

do c a s e of ope ra to r c:ommand
A: r e p l i c a t e c e l l d a t a (aga in- rep1)
C: inpl-lt c:olumn names (inp~lt-col-names)
C): inpc-lt c e l l d a t a (i n p u t - c e l l - d a t a)
E: inpc-lt c e l l eql.lat,ions (input -equ)
F: i r ~ p l ~ t rtl~mber d i s p l a y format (f o r m a t)
G: qoto s p e c i f i e d c e l l (90- to)
M: s e t c a l c u l a t e mode (mode)
N: c l e a r sp readshee t (new)
O: s e t c a l c l ~ l a t i o r ~ order (o r d e r)
F': perfor'n ca l c~ . . l l a t i ons (per form-ca lc)
(2: q u i t sp readshee t (q u i t - c a l c)
R: i npu t row names (inp~..~t-row-names)

e l s e
e r r o r co l -~di t ion (beep)

e r ~ d c a s e
r e t l ~ r r ~

PROCEZDIJHE (;(I 'r0 ((,~o ._ to)
pr'oml:)t for' row I - I I . . I M ~ ~ ~

i f u i t h i n proper range then
prompt f o r column l e t t e r
i f w i th in proper range t h e n

make t h e s p e c i f i e d row/col t h e c l ~ r r e r ~ t one
s e t row/col d i sp lacement t o z e r o
d i s p l a y t h e d a t a on d i s p l a y (d i s - d a t a)

end i f
end i f
r e t ~ l r n

FORTH Dimensions 16 VolumeVII. No. 1

proper operation of the equations. If a
mistake is made entering an equation,
hit <cr > and then select "E" again
and re-input the equation.

Next, use the down-arrow cursor
positioning key to move the current cell
down one position. Input the equation:
O A - 1 3 A <cr>
This equation subtracts income from
our expenses to give us the amount left
over. This amount will always be
displayed in cell 14A. Use this same
technique for each of the twelve
monthly columns.

After all data entry is completed, the
spreadsheet can be calculated by
executing the "P" - or Perform
calculation - command. Before your
eyes, you will see the totals for each
month displayed. Scroll the
spreadsheet to see each month's totals.
To perform "what if" types of
analysis, select the auto-calculate mode
via the "M" - or Mode - command.
This will force recalculation of the
complete spreadsheet every time new
data is entered. For example, decrease
your February income (using the "D"
command) and watch the result in cell
14B. Even this simplistic example
program demonstrates the power of
this program for real-world situations.

All commands supported by this
spreadsheet program, as mentioned
previously, are shown in table one. You
might notice the absence of a
command to print the spreadsheet on a
printer. This feature could easily be
added, or you can use the screen-print
utility provided by many operating
systems to make hard copy when
necessary.

To save a spreadsheet for further
use, type the following:
' spreadsheet is boot < cr >
save-system filename.com < cr >

This will create a stand-alone
program called filename.com (or any
other name you would like to give a
.com file) that will execute immediately
upon typing

PROCEDURE REPLICATE CELL DATA (a g a i n - r e p l)
g e t d a t a of c u r r e n t l y marked c e l l
prompt o p e r a t o r f o r number of columns t o copy d a t a i n t o (# i n)
i f number of columns is g r e a t e r t han 0

do f o r t h e s p e c i f i e d r~l~mber of columns
move c e l l marker r i g h t one c e l l (r i g h t - a r r o w)
copy d a t a i n t o c e l l

enddo
d i s p l a y d a t a on s c r e e n (d i s - d a t a)

end i f
r e t u r n

PROCEDURE FORMAT (fo rma t)
ou tpu t format prompt t o ope ra to r
g e t response
i f = 1 thert

s e t format f l a q t r u e
e l s e

s e t format f l a g f a l s e
end i f
r e t u r n

PROCEDURE PERFORM CALCULATIONS (per form-ca lc)
c a l c u l a t e c e l l s (c a l c - c e l l s)
d i s p l a y t h e d a t a on t h e d i s p l a y (d i s - d a t a)
r e t l ~ r n

PROCEDURE MODE (mode)
o u t p u t mode command prompt
g e t resporlse
i f = 1 then

s e t mode f l a g t r u e
e l s e

s e t mode f l a q f a l s e
e r ~ d i f
r e t c l r r~

PROCEDURE NEW (new)
ask. aga in (y / n)
i f 31-lswer i!: yes tilei-I

c l e a r c e l l s a r r a y
c l e a r row name ;si.r.;%y
cl.ear c o l name a r r a y
e r a s e i e l l e q l - l a t i ~ r ~ s from d i c t i o r ~ a f y
s e t row/col d i sp lacement t o z e r o
d i s p l a y the d a t a on t h e d i s p l a y (d i s - d a t a)

end i f
r e t u r 1-1

f:'ROCEDlIRt: CJ\JI'r (ql-lit-calc)
a!:k aqairt (!j/n)
i f esrtswer i t : yes t hen

a h n r t proqran (a h a r t)
end i f
r.e.L~.~r n

filename < cr > I

This spreadsheet program now has
become a part of the F83 system and
will execute (with all data and

Volume VII, No. 1 17 FORTH Dimensions

equations intact) immediately upon
loading.

Modifications for Your Computer

If you have an IBM-compatible
computer, this program will run
without modification. Most other
computers will need the key codes
changed, however, to accommodate
those returned by your system.
Specifically, the spreadsheet words
IBM-key (defined in screen seven),
control-in (defined in screen forty-
four) and, finally, spreadsheet (defined
in screen forty-five), will need to be
modified.

ISM-key is an IBM-specific word
that allows access to all 256 of the key
codes returned by the IBM keyboard
driver. It maps the "extended key
codes" produced by the PC into the
range 128 - 256 decimal to allow easy
access by the programmer. The
control-in word case statement is
based upon these key codes. In your
system, first determine what key codes
you wish to use to access the functions
selected with control-in and then edit
them into screen 44. Also, screen 45
will have to be changed to select either
control-in or command-in in
accordance with the range of key codes
you have chosen. After the appropriate
changes to the key codes are made, the
program should compile and run
without difficulty.

The coding of this spreadsheet
program is a relatively straightforward
process, given the finished design in
pseudo-code. Two aspects of this
implementation need to be discussed to
make clear the operation of the
program. These are (1) data structures
utilitized and (2) algebraic equation
usage.

Data Structures

Arrays are used for the data
structures in this spreadsheet program.
Two types - two dimensional and
string arrays - are used to satisfy the
data storage requirements of this
program. A two-dimensional array
called "cells" is used to hold all
information about a particular cell of
the spreadsheet. As defined in screen 6

F'HClCElUUF?E: INF'II'T ERlJATION (i r~put , . . -equ)
pr>oml:)t f o r e s l - l a t io r~ i.nl,l.l't,
move d e f i . r ~ i . t , i o r ~ preawb1.e t o t e r m i n a l I r ~ p v t hl-lffer (t i b) a r e a
l e t ol:)er.;tt,or ir~pl..tL (?q~lat,i,(:)r~ . f ~ l l o w i . r ~ g pr,(?amble
mcwe d e f i r ~ i t i o r ~ pos t - amhle t c t t i l s
?~t,or.c t o t a l d e f i ~ - ~ i t : i o r ~ l e r ~ n . t h i n % t i t \ , to mal(.e f o r t h

t, l.1 :i 1-1 k. j. t i3 :I. :I. c a! me f r C) m .t, h e o p e r' a .t, (3 r
: i . r~ ter~pr~e. l ; e q u a t i o r ~ d e f i r ~ i t i o r ~ i r ~ t c ~ dic : t ior~ar<y

~..~c:iir.~q al .gehrsa voc:abl..l:lar.~j
r.ese1ec.t f o r t h ~(:)cal:11-lli3~'y
1% e .t 1.1 r 1-1

F:'f2(3(3EDlJFZf: INI='II'T CE:I ... 1.. DATA (i~- put,-c!el 1 - d a t a)
1:)r~omint fors di3ti j t o be e r ~ l e r e d i s t c-l..lrrently marked c e l l
s e t , inpl-lt di3ta (q e t l :)
:;.tor,e i r ~ t , o marsk.ed ce:L:L
q€?.t M O ~ F ~ .Fl.iitq
i f a ~ . ~ t o c:slc:~.~:Lat.i.o~-~ mode s e l e c t e r S t h e n

c:i~lcul.at,e a l l ce1:Ls (talc.-cells)
e n d i f
d i c ip lay dat ,a 01-1 diaipliey (d i s - d i s t a)

F'KOCECDIIRE (X'I' :LNF'IJT DATA (get*)
i l - ~ p ~ t a r~~. .~mber f rom t h e o p e r ~ a t o r '
s e t f o r m a t f l a g
:if d c) l l a r ~ s and eel-~t,s f o r m a t s e l e c t e d t h e n

d o c a s e o f d e c i m a l p o i n t p o s i t i o n
ran decimal. : mul t j . p ly number i n p l ~ t hy 100

1 d e c i m a l : m c l l t i p l y number i n p u t by 1 0
2 d e c i m a l : m~.?l.tipl!j n1.1nber ir1p1.1t by 1
3 d e c i m a l : d i v i d e number inpcl t by 10

e r l d c a ~ e
e r ~ d i f
r e t ~ . . ~ r r ~

PRUCEDUUE INPUT COL.IJMN NAMES (inp l .~ t - co l -names)
prompt o p e r a t o r f o r s t a r t i n g column l e t t e r (A -Z)
make i t t h e c ~ l r r e r ~ t c o l l ~ m r ~ (o n e d i s p l a y e d i n upper l e f t)
do f rom t h e c l - l r r e r~ t c p l l ~ m r ~ t i l l f i n a l . column

ol-ltpl-lt c(~11.1mr1 i d e r ~ t i f i c a t i n r ~ l e t t e r
i r ~ p u t c o l ~ l m r ~ r~ame f r y o p e r a t r o r i n t o C O ~ . I J ~ I . . I r~ame a r r a y
i f e n t r y = CR (no name i n p u t)

1.1 r ~ d o (e x i t p r o c e d l ~ r e)
e r ~ d i f
i f 4 names h a v e heen input ,

s c r o l . 1 d i s p l a y r i g h t t o show them (d i s . - c o l - c h a n g e)
end i f
d i s p l a y col . l~mr~ names (d i s .-. c o l names)

enddo
r5etl.lrn

of the listing, each entry in the cells is the current value of this particular
array (row,col) is six bytes in depth. cell. Specifying a particular row and
The six-byte data sub-structure is column can, therefore, pinpoint in the
organized as follows: cells array not only a cell's value, but

also its defining equation.
0 - 1 Equation CFA storage Two string arrays - col-names and
2 - 5 Double Integer Value storage row-names - are defined for storage

of the user-specified column and row
Bytes 0 and 1 contain the code field names. As with all arrays used in this
address (CFA) of an equation, if one program, an index value on the
has been assigned to this cell. Zeros are parameter stack followed by the array
stored in these locations if no equation name will result in the array element's
exists. Bytes 2, 3, 4 and 5 contain address being returned to the top of the
storage for a double-length integer that stack. For example:

FORTH Dimensions 18 Volume VII, NO. 1

PROCEDURE INPUT ROW NAMES (inpl-tt-row-names)
prompt operator f o r s t a r t i n g row nunher
make t h a t row t h e C I - ~ r r e n t row
do from spec i f i ed row t o maxim~m row

display row prompt
ge t row name from operator
s t o r e name i n row name a r ray
i f only CR entered

I-undo (e x i t procedure)
end i f
i f 5 row names have beer1 entered

s c r o l l screen v e r t i c a l l y (dis-row-change)
e 1 s e

display tow names
endif

enddo

PROCEDURE START ALGEBRAIC DEFIN1T:LON (aE)
s e t operator s t ack t o e m p t y
s e l e c t a lgebra vocah1.11ary

PROCEDURE RIGHT PARENTHESIS 0)
do while items on operator s t ack

pop operator s t ack
compile operator i n t o f o r t h d i c t i o r ~ a r r Cop>)

er~ddo
i f l e f t parenthesis fo l~nd then

backup operator s t ack pointer by 4 t o remove it

I display "Missing (" e r r o r messaqe
abor t program

end i f

PROCEDURE LEFT PARENTHESIS (0
place CFA of)missing rou t ine on top of operator s t ack
place a precedance of 1 on t h e top of operator s t ack
pclsh both ont,o t h e stack. (:::.op)
re tu rn

PROCEDURE I N F I X (i n f i x)

HIGH LEVEL DEF IN IT ION - compile
get CFA of dol~ble in teger math r o l ~ t i n e
place preceder~ce or1 top of paraneter s t ack
s t o r e both i n t o high l e v e l d e f i n i t i o n

HIGH LEVEL DEF IN IT ION - r l~nt ime a t equation compile t i n e
ge t CFA and precedence from high l eve l d e f i n i t i o n t o parameter
s tack i f higher precedence than operator on top of operator

s t ack then place CFA and precedence on top of operator s t ack
e l s e

compile operator i n t o d e f i n i t i o n
endif
r e tu rn

PROCEDURE END ALGEE:RAIC DEF IN IT ION (l a)
pop remaining items off operator s tack and compile (op>)
s e l e c t f o r t h vocabl.llarr

will return the address of column name
four (remember, array elements are
numbered from zero) to the top of the
stack. Also:
3 4 cells 2+ 2@

will return the double integer value of
the cell at the intersection of row 3 and
column 4 to the top of the stack. The
CFA of this cell's equation, if one
exists, can be accessed by
3 4 cells @

If a value other than zero is
returned, the cell has been assigned an
equation. The equation can be
executed, with the final result being
placed in the same cell, as follows:
3 4 cells calculate

See the listing for the definition of
calculate. The spreadsheet words
calc-rlc and talc-clr use this technique
for stepping through the spreadsheet
and calculating each cell's value.

Algebraic Equations

To make the spreadsheet easier to
understand and use, it was decided
during the design phase to make all
equations input by the operator in
algebraic - as opposed to reverse
Polish (RPN) - form. Suppose the
current cell on the display (the one
surrounded with the < > characters)
is 3A, and you want it to contain the
sum of cells OA, 1A and 2A. By
selecting the input equation command
"E" from the menu, you could enter:
O A + l A + 2 A < c r >
From this time forward, the displayed
value of cell 3A will reflect the sum of
cells OA, 1A and 2A after each time the
spreadsheet is recalculated. The
a lgebra ic o p e r a t o r s cu r ren t ly
supported are +, -, *, / and mod,
although other operators could be
added easily by use of the technique
shown in screens 30 and 3 1.

The words involved in algebraic
equation processing are contained in
screens 27 - 32 and 37 of the listing.
Their operation is described somewhat
in the program's design. The method
utilized here was conceived by Michael
Stolowitz (Forth Dimensions IV/6).

Volume VII, No. 1 19 FORTH Dimensions

Basically, the program word inputequ
builds an equation in the terminal
input buffer (TIB) area in the form:

FORMULA a[---------- la
[cell-ptr
2+] literal 21 ;
last @ name> cell-ptr !

where the area denoted by hyphens is
the algebraic equation input by the
operator. When the operator enters a
carriage return, the entire equation is
compiled into the Forth dictionary with
the name FORMULA. The symbol a[
informs the compiler that an algebraic
equation follows which will be
terminated by]a. The next portion of
the equation, up to and including the
semicolon, stores the double-integer
result left on the stack by the algebraic
equation into the storage area of the
cell corresponding to the equation just
entered. The final portion of the
equation returns the CFA of the
equation just entered for storage into
the CFA storage area for this cell. The
end result of this process is that
whenever the CFA is executed, the
compiled equation will be executed,
with the result being stored back into
the corresponding cell. (You will note
that each equation stored in the Forth
dictionary is given the name FORMULA.
This does not matter, as each is
executed via its CFA and not by its
name.) For additional information on
parsing of algebraic equations, see the
article mentioned above.

PROCEDURE R I G H T FOUR COL..UMNS (r i g h t - 4 - c o l s)
10 f rom 0 t o 4

r i q h t a r row (r i g h t - a r r o w)
e r ~ d d o
r e t u r n

PROCEDURE L E F T FOUR COLUMNS (l e f t - 4 - c o l s)
do f rom 0 t o 4

l e f t a r row (l e f t - a r r o w)
end do
r e t c l r n

PROCEDURE E:OTTOM ROW (h o t t o n - r o w)
c c l r r e n t row = 11 (max row - 15)
s c r o l l d i s p l a y v e r t i c a l l y (d i s - row-change)
r e t u r n

PROCEDURE TOP ROW (top- row)
c u r r e n t row = 0 (t o p row)
s c r o l l d i s p l a y v e r t i c a l l y (d i s - row-change)
r e t u r n

PROCEDURE L A S T COLUMN (l a s t - c o l)
c u r r e n t column = W (n a x c o l - 4)
s c r o l l d i s p l a y h o r i z o n t a l l y (d i s - c o l - c h a n g e)
r e t u r n

PROCEDURE F I R S T COLUMN (f i r s t - c o l)
c u r r e n t column = 0 (f i r s t c o l u n n)
s c r o l l d i s p l a y h o r i z o n t a l l y (d i s - c o l - c h a n g e)
r e t u r n

PROCEDURE DOWN ARROW (down-arrow)
g e t c u r r e n t n a r k e d ce l l p o s i t i o n
i f a t b o t t o n o f d i s p l a y t h e n

i f n o t a t l a s t row p o s s i b l e t h e n
i n c r e n e n t c u r r e n t row number
s c r o l l d i s p l a y v e r t i c a l l y (d i s - row-change)

e n d i f
else

e r a s e ce l l n a r k e r (e r a s e - c e l l - n a r k e r)
i r ~ c r e n e n t row d i s p l a c e n e n t f r o n c u r r e n t row

e n d i f
p l a c e ce l l marker on d i s p l a y (p l a c e - c e l l - m a r k e r)
r e t l ~ r r ~

PROCEDURE U P ARROW (up-a r row)
se t c u r r e n t marked c e l l p o s i t i o n
i f ce l l is a t t o p o f d i s p l a y t h e n

i f n o t a t t o p o f s p r e a d s h e e t t h e n
d e c r e n e n t c u r r e n t row number
s c r o l l d i s p l a y v e r t i c a l l y (d i s - row-change)

e n d i f
else

e r a s e c e l l marker (e r a s e - c e l l - n a r k . e r)

decrement row d i s p l a c e m e n t f r o n c u r r e n t row
end i f
p l a c e ce l l marker (p l a c e - c e l l - n a r k e r)
r e t l ~ r r ~

FORTH Dimensions 20 Volume VII, No. 1

PROCEDURE LEFT ARROW (l e f t - a r r o w)
s e t CI- l r rent marked c e l l p o s i t i o n
i f a t l e f t end o f d i s p l a y t h e n

i f n o t a t f i r s t c o l l ~ m r ~ o f sp readshee t t h e n
decremer~ t c u r r e r ~ t coll-lmi-I r ~unhe r
s c r o l l d i s p l a y h o r i z o n t a l l y (d is -co l -chanqe)

end i f
e l s e

e rase c e l l marker (e rase -ce l l -ma rke r)
decrement coll.~mn d isp lacemer l t f r om c l ~ r r e n t colclmr~

e r ~ d i f
p l a c e c e l l marker (p l a c e - c e l l - m a r k e r)
re t l - l rn

PROCEDLJRE: ORDER (o r d e r)
r)~ . .~ tp l -~ t operat,or prompt
s e t r\esponse
i f := 1 t h e n

s e t o rde r f l a q t r u e
e l s e

s e t o rde r f l a q f a l s e
er1di.f

F:'ROC:E:DLJRE CALCLJL-ATE ALL CELL5 (c a l c - c e l l s)
s e t o rde r f l a g
i f s e t

c a l c u l a t e toll-lmns and t h e n rows (c a l c - c / r)
el!;*

c a l c u l a t e rows and t h e n c o l l ~ m r ~ s (c a l c - r / c)
e r ~ d i f

F'ROCEDIJRE: CALCtJLATE COLUMNS AND THEN ROWS (c a l c - c / r)
do f rom t h e f i r s t t o t h e l a s t row

do f r o m t h e f i r s t t o t h e l a s t column
g e t c e l l f o r m u l a address (CFA)
c a l c ~ l l a t e forml.rla (c a l c ~ ~ l a t e)

e r~ddo
er~ddo

PFiOCEDLJRE CAL.CUL..A'T'E ROWS AND THEN COLUMNS (c a l c - r / c)
do f r om t,he f i r s t t o t h e l a s t c!olumn

do f r om t h e f i r s t t o t h e l a s t row
y e t c e l l f o r m ~ l l a address (CFA)
ca l c l - t l a t e for*ml-lla (ca lc l . l l a te)

ersddo
ertddo
r-etl..wn

F'ROCEDURE CALCULATE CELL. FORMULA (c a l c u l a t e)
g e t d a t a a t c e l l f o r m u l a address
i f n o t eql-la1 t o 0 (i . e . f o r m ~ l l a ass i gned f o r t h i s c e l l)

e:.:ec:ute f o r m ~ l l a

I FORTH I
into

EUROPE
l ~uppor t for major FORTHS~

and our own products

VAX FORTH 32
+ Complete VMS support
+- Command line qualifiers

DEC compatible full
screen editor

+ On line HELP facilities
+ Start-up files
Ir Switchable log-files
+ System files with

precompiled modules
+ Cross compilers

available for most
microprocessors

I FORTH-83 CROSS- I
COMPILERS

Sr 6-tree symbol table of
unlimited size

+ Compiles FORTH-83
nucleus

+ Compiles 16 or 32 bit
code

+ Two passes allow
automatic pruning of
nucleus for ROM
applications

+ Automatic handling of
defining words

St Targets include 1802,
28,8070,8080,
6801 13, 6502, 651 1 Q,
6809, 99xxx, 808618,
68000,Z80

MicroProcessor Engineering, 21
Hanley Road, Sh~rley, Southampton,
SO1 5AP, England. Tel: 0703 780084

FORTH-Systerne Angelika Flesch,
Scheutzenstrasse 3, 7820 T~t~see-
Newstadt. West Germany, Tel: 07651

Volume VII, No. 1 21

Multiuser/Multitasking
for 8 0 8 0 , 2 8 0 , 8086 I

Industrial (,,q-\
Strength

The First
Professional Quality
Full Feature FORTH

System at a micro price*

LOADS OF TIME SAVING
PROFESSIONAL FEATURES:

a Unlimited number of tasks
a Multiple thread dictionary,

superfast compilation

Q Novice Programmer
Protection package^^

Sr Diagnostic tools, quick and
simp19 debugging

St&i.ii~g FORT;?, c',!r3TH-79,
FORTH-83 compatible

a Screen and serial editor,
easy program generation

a Hierarchical file system with
data base management

Starter package $250. FUN peckape 5395 Slngk
user and commercial licenses available.

If you are an experienced
FORTH programmer, this is the
one you have been waiting for!
If you are a beginning FORTH
programmer, this will get you
started right, and quickly too!

Available on 8 inch disk
under CP/M 2.2 or greater

also
various 53h" formats

and other operating systems

FULLY WARRANTIED,
DOCUMENTED AND

SUPPORTED

DEALER
lNOUlRES YM'

I INVITED PII*ll'

Shaw Laboratories, Ltd.
24301 Southland Drive, #216

Hayward, California 94545
(41 5) 276-5953

PROCEDURE D I S P L A Y S C R E E N (d i s - s c r e e n)
c l e a r d i s p l a y
p l a c e cu r so r on C R T
d i s p l a y sp readshee t t i t l e
d i s p l a y boarder (d i s -boa rde r)
d i s p l a y menl-I I dis-menl.1)
d i s p l a y co l l~mr~ l a b e l s (d i s - co1 . - l ahe l s)
d i s p l a y colomn names (dis-col-names)
d i s p l a y row l a b e l s (d i s - row- l abe l s)
d i s p l a y row names (dis-row-names)

d i s p l a y d a t a on d i s p l a y (d i s - d a t a)
s e t row/col d i sp lacement t o z e r o
d i s p l a y s t a t u s (d i s - s t a t ~ ~ s)
r e t l ~ r n

PROCEDURE S C R O L L D I S P L A Y H O R I Z O N T A L L Y (dis-.c:ol_cha~-~ge)
d i s p l a y coll~mi-I rlames (dis-c01-names)

d i s p l a y C O ~ ~ J M I - I l a b e l s (d i s - c o l - l a b e l s)
d i s p l a y d a t a on d i s p l a y (d i s - d a t a)
r'etl-urn

PROCEDURE S C R O L L D I S P L . A Y V E f 3 T I C A L L . Y (dis-row-change)
d i s p l a y row names (dis-row-names)
d i s p l a y row l a b e l s (d i s - row- l abe l s)
d i s p l a y d a t a on d i s p l a y (d i s - d a t a)
r et,l.~r n
PROCEDURE D I S P L A Y C U R R E N T S T A T U S (d i s - s t a t , u s)
p l a c e CI-trsor on C R T
d i s p l a y c1.1rrerlt row n~.~mher
p l a c e cu r so r on C R T
d i s p l a y c l ~ r r e n t colclmr~ l e t t e r
p l a c e cl-lrsor on C U T
s e t mode f l a g
i f set. t hen

d i s p l a y "A\JTO1' i . e . a u t o c a l c l . ~ l a t e mode s e l e c t e d
e l s e

d i s p l a y "NORMAL"
end i f
p l a c e CI-lrsor on C R T
s e t o rde r f l a g
i f s e t t hen

d i s p l a y " C / R " i . e + c a l c u l a t e columr~s t h e n rows modc
e 1 s e

d i s p l a y " R / C U
end i f
p l a c e cl-lrsor, on C R T and d i s p l a y commarrd prompt
p l a c e c e l l marker an d i s p l a y i r e . p l a c e 4 ::. around

c u r r e r ~ t l y s e l e c t e d c e l l

(Cont. on page 25)

22 Volume VII. No. 1

October 23, 1985 - November 3, 1985

FORML
Forth Modification Laboratory

presents

EuroFORML Conference
Stettenfels Castle

Heilbronn, Federal Republic of Germany
Followed by

SYSTEMS Trade Fair, Munich
Computers and Communications 9th International

Trade Fair and International User's Congress
and

Selected sightseeing tours and entertainment in Germany
International technical conference October 25-27, 1985 Stettenfels Castle

Software Metrics - Programs and methods to measure program performance, complexity,
structure, programmer productivity, development methods, models, tools, program verification
aids, and procedures. Individual participation is encouraged and attendees are requested to submit
a conference paper. Conference proceedings will be published.

SYSTEMS Rade Fair October 28 - November 1, 1985 Munich Fair Grounds

Computers and Communications - This is a major international event covering computers and
communications. The trade fair is scheduled October 28 through November 1, 1985.

Guest and Tour Program - A complete program will be available for guests not attending the
technical conference sessions. Sightseeing escorted tours are planned for the group.

Reservations, authors instructions, itinerary, special group rate - Write to EuroFORML, Forth
Interest Group, Post Office Box 8231, San Jose, CA 95155 or telephone the FIG Hotline (408)
277-0668. East and West Coast departures are planned. Advance reservations are required.

CALL FOR PAPERS

Volume VII, No. 1

FORTH INTEREST GROUP MAIL ORDER FORM
P.O. Box 8231 San Jose, CA 95155 (408) 277-0668

Please Print

Name

Company

Address

City

State/Prov. ZIP

Country

Phone

Membership in the FORTH Interest Group
& Volume 7 of FORTH Dimensions
No sales tax, handling fee or discount
on membership. See col. 3

BACK VOLUMES
..... Volume 1 FORTH Dimensions *$I51 161 18 -
...... Volume 2 FORTH Dimensions 151 161 18 -
...... Volume 3 FORTH Dimensions 151 161 18-
...... Volume 4 FORTH Dimensions 151 161 18-
...... Volume 5 FORTH Dimensions 151 161 18 -

. Volume 6 of FORTH Dimensions.. .$15/ 161 18-

REFERENCE

BOOKS ABOUT FORTH
All About FORTH*$25/26/35-
Beginning FORTH. 171 18/21 -
Complete FORTH 161 17/20-
FORTH Encyclopedia.. 25126135-

........ FORTH Fundamentals, V. I 161 17120-
FORTH Fundamentals, V. 2 131 141 16-

.................... FORTH Tools. 19/21 123 -
................. Learning FORTH. 171 18/21 -

............... Mastering FORTH.. 181 19122-
....... Starting FORTH (Soft Cover) 20121 122 -
...... Thinking FORTH (Soft Cover) 161 17120-
..... Thinking FORTH (Hard Cover) 23125128-
.... Threaded Interpretive Languages. 23/25/28 -

Understanding FORTH.. 3.501 516-

CONFERENCE PROCEEDINGS
FORML Proceedings 1980 $251 28/35 -
FORML Proceedings 1981 (2 V.) 40143145 -
FORML Proceedings 1982 25128135-
FORML Proceedings 1983 25/28/35 -
FORML Proceedings 1984 251 28/35 -
Rochester Proceedings 1981 25/28/35 -

......... Rochester Proceedings 1982 25/28/35 -
Rochester Proceedings 1983 25128135-
Rochester Proceedings 1984 251 28/35 -

JOURNAL OF FORTH APPLICATIONS
AND RESEARCH
Journal of FORTH Research V. 1 #1.$15/ 161 18-
Journal of FORTH Research V. 1 #2. 151 161 18-
Journal of FORTH Research V. 2 # I . 151 16118-
Journal of FORTH Research V. 2 #2. 151 16/18-
Journal of FORTH Research V. 2 #3. 151 161 18-

............ FORTH 83 Standard.. .$I51 161 18-
FORTH 79 Standard. 151 161 18 - REPRINTS

........................ Bibliography of Forth References, Byte Reprints $5161 7- 2nd Ed.. 151 161 18- Popular Computing 9/ 83 5/61 7 -
Dr. Dobb's 9 /82 51617-
Dr. Dobb's 9 /83 51617-
Dr. Dobb's 9/84 51617-

OFFICE USE ONLY
BY Date Type -
Shipped by Date
UPS Wt. Amt .
USPS Wt. Amt.
BO Wt. Amt. -

HISTORICAL DOCUMENTS
................. Kitt Peak Primer .$25/27/35 -

..... fig-FORTH Installation Manual 151 161 18 -

h

ASSEMBLY LANGUAGE SOURCE LISTINGS
.......................... 1802.. .*$I51 161 18-

6502 15/16/18-
............................. 6800 15/16/18-

6809 15/16/18-
8080 15/16/18-

.......................... 8086/88 151 161 18-
9900 15116118-

.................. ALPHA MICRO 151 161 18-
.......................... Apple I1 151 161 18 -

........................ ECLIPSE. 151 161 18 -
IBM/PC 15116118-
NOVA 15/16/18-

............................ PACE 15/16/18-
PDP-11 15/16/18-

............................. VAX 15/16/18-
.............................. Z80 15/16/18-

MISCELLANEOUS
T-shirt Size:$lo/ 111 12-

.............. Poster (BYTE Cover). 151 161 18-
................ Handy Reference Card FREE

Subtotal $-

10% Member Discount -
Member No. Required

Subtotal S-

CA Residents Add Sales Tax
Handling Fee
Membership (*20/ 271 33)

TOTAL

O VISA Mastercard #
Expiration Date

$1 5 Minimum on VISA/ Mastercard Orders.
Make check or money order payable in
US funds drawn on a US Bank to: FIG.

*PRICING Column 1 - US, Canada, Mexico
Column 2 - Foreign Surface Mail
Column 3 - Foreign Air Mail
Prices Are Subject To Change.

PAYMENT MUST ACCOMPANY
ALL ORDERS

(Including Purchase Orders).
All Prices Include Shipping. 5 / 8 5

PROCEDURE DISPLAY COLUMNS NAMES (dis-col-names)
p l a c e c u r s o r on CRT
do from c u r r e n t column f o u r t i n e s

i f c u r r e n t column = max column
undo (e x i t p rocedure)

e n d i f
p l a c e cu r so r on CRT
9 e t column name from column name a r r a y
d i s p l a y a t proper p o s i t i o n

enddo
r e t u r n

PROCEDURE DISPLAY COLUMN LABELS (d i s - c o l - l a b e l s)
do f r o n c u r r e n t column fou r t imes

i f c u r r e n t colunn = max column
undo (e x i t p rocedure)

end i f
p l a c e cu r so r on CRT
g e n e r a t e a l p h a b e t i c l a b e l
d i s p l a y a t proper p o s i t i o n

enddo
r e t l ~ r n

PROCEDURE DISPLAY ROW NAMES (dis-row-names)
do f r o n c u r r e n t row I 5 t imes

i f c u r r e n t row = nax row
clndo (e x i t p rocedure)

end i f
p l a c e cu r so r on CRT
g e t row name from row name a r r a y
d i s p l a y a t proper p o s i t i o n

enddo
r e t u r n

PROCEDURE DISPLAY ROW LABELS (d i s - row- l abe l s)
do from c u r r e n t row 15 t i n e s

i f c u r r e n t row = mas row
undo (e x i t p rocedure)

end i f
p l a c e cu r so r on CRT
sene r a t e row number
d i s p l a y a t proper p o s i t i o n

enddo
r e t u r n

PROCEDURE DISPLAY DATA ON'DISPLAY (d i s - d a t a)
do f o r a l l 4 p o s s i b l e s c r e e n d i s p l a y c o l ~ ~ n r ~ s

i f column d i sp l ayed = f i n a l column number
~.lndo

e n d i f
do f o r 15 p o s s i b l e s c r e e n d i s p l a y rows

Volume VII. NO. 1 25

i f row d i sp l ayed = f i n a l row r ~ ~ ~ m h e r
1.1 n d 0

end i f
p o s i t i o r ~ cu r so r on CRT
s e t c e l l c o n t e r ~ t a t cellsCrow,c!ol~-1mr13
format c e l l d a t a (format*)

erlddo
er~ddo
retl-lrn

PROCEDURE FORMAT CEL.L. DATA (f ormat*)
q e t format f l a g
i f s e t

format a s d o l l a r s / c e r ~ t s (f d + r
e l s e

f ormat a s n~..~mtrer (d , r)
E? 1-1 d i f
r e t, 1.J r 1-1

F'RUCEDIJRE ERASE [:ELI ... MAfit<IZR (e r ase-.eel l...mar k.er)
calcl-11.ate c e l l d i s p l a ~ j l o c a t i o n (~ % l - . c e l l - d i s p . ~ l o c)
I . . I I . . I M ~ ~ ~ ~ . c e l l (~..lnmark.-cel 1)
r e t l..~ r n
PROCEDLJRE PLACE CEL.1.. MARt:ER (p lace.-cell-mark.er)

c a l c u l a t x c e l l d i s p l a 3 l o c a t i o n (c a l - c e l l - . d i s p - l o c)
mark. cel.1 (marl<.-cell)
retl.rri-I

PROCEDURE ASK AGAI:N (Y/N)
p lace cu r so r on CRT
d i s p l a y "Are yol.1 sl.1r.e" messaqe
s e t r esporlse
c o r ~ v e r t t o upper c a s e c h a r a c t e r
i f yes t hen

s e t res1.11t t,rl.~e
e 1 s e

s e t r e s u l t f a l s e
erldif
r e t u r r ~

NOTES:

a + The words showr~ i n pa ren theses a r e t h e Fo r th words t h a t
were coded from t h e pseudo code des ign . Refer t,o l i s t i n s
one for. t h e actclal code q e r ~ e r a t e d from t h i s desiql-I.

The Mlrth Dimension ...

: HEN-SCRATCH (n --- ?)
RANDOM 0 DO

PlCK PlCK PlCK PlCK PlCK
DROP DROP EMlT EMIT

LOOP ;

: FUNCTIONAL-SPEC (pages --- ??)
1000 *
O W

I HEN-SCRATCH
LOOP ;

--5cott Heiner & Cnarles Knowltor:

FORTH Dimensions 26

Free Power !
r. -R U *OUR AWLE Ikll lC AND GET ONE BOOK FREE FROM a'

-**II*..*** T H I S I O I I T W E V E R Y 1 2 0 m W R C W 1 5 E .*******.'*...... ..***..*......*.*..~*.....
R. - U P L E L O l k UI.tr* POWER FORTH Ex- FlpFORTH
b" ELL& F l O g i ln., dno. 310 9d .p . h m p l r
T h cunom Awl* and Olh.. M y a r l n -0. - Nnh g n p h r . ."a -nd
mnls#ns hardware rmd8t~ut~on mstruC O.drM 6155 11995
,,on, *, well a3 wm.rr tor dam
~ q u ~ a c t a n wud and oocv and control pneralon awl~-~~onr vrlng the ~ h . AWLE ," yc*.r hd by E F ~ ~ * X I

AY18912 svnem% and the mnferfxmng The I\PPLE n Your
of o tha masropr-arr to thr 6502
 dudes lnrrruolom for payamm ng BASIC program
Ih 6622 "tern., ,,m* p.~rlr.mm,ng n.,rm.nt, for

rlsuai dlrobav lmlrno ~roprammmq ~ t n k d lmrrs pion n'i
the Gl .oudch,Dam rnirh nor .
hdr M I b k l 11980 funstlonr Faurler

BAREBOARDL lor I W b II1IIe a1 and

ro.. la Pa- Outer g'aphln

KIT mnYm". b.Wd .d ndmmmmm Olh" &rand

so, npn
loplcl ,"dud. thr*

mdrm em I l S * . :,:.:::=;he ::::::,,.,,, 0 , ,,a,,,,, -"- M *I. n ,en,on 0" m r n nr lrngurr
Old- No 601 1 9 OS nirmuc., b anshe, comwrlonl

6522 110 E x p l l m n t r c r d m n d e x a &drw iubroul "CI A d

0 - m 605 11.95 6522 0

2716 EPROM Burnn
hd.rNo 178 I b k l 11295

Or& M 601

RNAIROY bad
l9 95 6W2165C02 M r r w w m b l o for

Ordr M 609
APPLE II 8 4 compat~bln

$ 9 9 5 V.." 'a,, easy lo uu ,"I a ,thm..ral
L u r n FORTH <or I W L E It. + Itc clorerrlonr rhln oDcratorr Dractra i iy
A wbuc of 6,pFORTH tor the bqlnncr un mm t d macro nest ng nci d v l v m b Lr

Oldr Nr 6153 5 9 9 5 (k d r M 699 IDI*I 12995

DU*~ a d dlnrthtor mquorm are PAVMINT c h r k VISA MC
lnrnd C I .Nd.nl, add 6 X uln l.x

ELCOYPUBLlWlNG INC A&, 1 2 m tor . h a p p a r *

2174 V k 3 F m h l l Urd Unoc E USA dd 15X'or *lW.- - U 9 1 7 S I"-- 22.54
M l l Y l LTI.CIU TI. I 1 91 * G m u l s a 52 H 73

~d hob from thm d vs m Da 8 Buy a11 15 bmks for only 1 1 1 95 Insnd** lm". - Y I I your o,d" 1od.y I

a m Bur- -U1ASIC A&#-8-m Uaa - r n W a koCm I#n#w - Tha b m k Dr..m-n mntams th. CD dnrr#L l~nr Bool tor
of ""44lW ill d." blOdr mmlor" m n .I, roi,,".,. W d m r .nd h.rd*.r. IW
1.01 InalCIr* ."a mom
W- b 177

d u n , tor ATARI from Hollckr
1 1 m (* d - ~ o 1 7 ~ r i m - - A h r mm h. Fvtun -"YW m 6 ~ 1 2 ~ . h m L.-

- w r ATARI m n * M
W I M 171

m *our PET + CBM
I 1 m 2 mmp*,. -

7x41 I TlUEX - - m m w ln iul Mdlw b- monitor lh.xdumpl.
BASIC nd Lry.c hdr M 1- 1 lm
 has bmk IS &d -8th p w s m -hlh TI,. nd ~ r m ; OHIO
RW from 0.- m data mnq.-l I+.- to . X W ~ wrwn.l mmpmn
'"d m*,m Em.
MI M 174

Yerv d3 whrrucls. ldul lor c r n y

W E q . n a h . d o o l
1 1 m b.*.,.bdl

W - m 1 s r i m
'rd'ndt3- 5 ,m n.SrondBoolotO"H) MI* ?Y - - Y n u l I""od""lo" fo 05.660 m",". I"*.-

01.- 16(r im W-M1= I l m
k r r k . r r a r c a n n a e n ~nt. lrp.~-kt-
PE7 0I .* .1- 1 1 00 R.w#nl of lnt.1 I#?rrture 18085 81551
v. Y IV" - -1 ,n W- No 153 1 t m
un: - a i m r i m ~ o ~ . ~ o u ~ - - ~
F M T W on tk ATARI - Lmsm by A+pl,uton rrvnwl tor In. T I 7 6 0 7

mrw*. aund p.nmC.!
%T" m ,ha *TAR, dl- lhur - a 1%
of FORTH lor -.tlrq o d obnlw

1 1 m

#**. '"d h."dl,r* 7.n .nd l,.,W -'I h- -
ondurn .. y m ~ .-- l ~ ~ u l ~ m , n g P r v m 8" BASIC 10. t k em-
rn- a d MP. mnh u o< s h em Innntoq dwck bmk wrroll - 1 1 4
an '"d . rmpl. nu,l,W tl" I,., nc
Qdr b 170 r 1 m W - m la 1 1 m

E L m N . L U W I N G INC
2174 W F d l l W Unn E

PAYMENT hd VISA YE

I*nd C A V 1 r n
C A n h ' , . d d S % r * l r u
AM12mto.**p"l

mom 0141 -1.n~ a 81 v i -"a* d i s % k . h w ~

rn.<,,ng 11.1 -8th m a , O . lr l l lnp and . 0 M . M 6,U
rnrn0l.t. b u . l w r &.p. so*lnlnD
,"_,_ ",r<,,q rnl,,W I,., and ,nnn

On - -
tow mnwol mol.umo-I vow.-

for %:; ,p pl,u,, an ‘,,, *
1295

mr,a .nd ..pn *wr .mm 118 p~
-No 61 1-1 Thmr b m k dm~us%es ,he u 01 FORTH

for pmr.1,w m u d . wnmr* pr.cmrr.
-En FORTn lor m L E 11.. ATARI b."allw tern and firl- ~ndubl
mXL.Com- .r. umol, p w . m Ill""rnl"9 lnpn nd
E r t - d d F q FORTH en.1 dalor nd .mwt man, ur ot r h - pn
mn7 u t u l u l l l l t n V.rr W u l and a umpk maalmp 1111
FqFORTH h! ADD* II r a d r m Irn I W ~ I 1 7 s

1 ' 9 s FORTH ,-a 0.7 m, APPLE lk
<The Mp* #n sour "."a)

Macro Generation
Don Taylor

Sydney, Australia

In a past issue of Forth Dimensions
(V/5), Jeffrey Soreff presented a
method of writing macros in Forth.
The idea was to put COMPILE before
each non-immediate word, [COMPILE]
before each immediate word, and
make the whole thing IMMEDIATE. This
certainly does the job but, of course, it
leads to definitions in which every
second word is COMPILE or [COMPILE].
Inspired by Soreff's article, I set myself
the task of writing a defining word that
would create a macro from any
segment of legal Forth code. A solution
is presented in figure one.

Typing:
MACRO: < name >
creates a dictionary entry for <name>

and copies all the text following
<name > up to the next semi-colon into
the parameter field. The dictionary
entry is completed by inserting I (offset
by blanks) after the text.

When <name> is encountered
within a colon definition, it redirects
the input stream to the text within its
parameter field. Then, lNTERPRET
compiles the words that it finds
there as though they were part of the
colon definition. The input stream
is restored to its original state by
the word) that occurs at the end of
each macro.

It is possible to nest the macros
created by this approach, and it is not
necessary to have defined any of the
words within the macro at the time of
its creation. Of course, these words do
need to be defined before the macro is
used.

This solution to the problem has an
obvious drawback. Namely, it con-
sumes a large amount of dictionary
space. On the other hand, it does allow
a great deal of freedom and, since the
macros are not needed after they have
been used, space could be saved by
loading them as TRANSIENT definitions
(see the note by Phillip Wasson, Forth
Dimensions III/6) and removing them
after compilation of the words that use
them.

If compilation crashes within a mac-
ro, TIB will be left pointing somewhere
inside the dictionary. To restore
normal input, use TIB! from figure one
and FORGET the corrupted macro
definition.

The macros DO' and LOOP' given in
figure two correspond in function to
the macros with the same names
provided by Jeffrey Soreff.

: ASCII BL WORD 1 + C@ STATE @ IF [COMPILE] LITERAL THEN ; IMMEDIATE

: MACRO: CREATE ASCII ; WORD C@ BL C , ALLOT ASCII I C, BL C,

IMMEDIATE

DOES> R> BLK 64 >R >IN 6%' >R TIB 6%' >R >R TIB !

0 BLK ! 0 >IN ! ;

: I R> R> TIB ! R> >IN ! R> BLK ! >R ; IMMEDIATE

TIB @ CONSTANT T I M

: TIB! T I M TIB ! ;

Figure One

MACRO: DO' 2DUP - O> IF DO ;
MACRO: LOOP' LOOP ELSE 2DROP THEN ;

: EXAMPLE CR DO' I . CR LOOP' ; (Macro example)

: EXAMPLE CR 2DUP - 0 > (Equivalent code)

IF DO I . CR LOOP ELSE 2DROP THEN ;
Figure ' h o

(conr.)

Volume VII, No. 1 27 FORTH Dimensions

3 L I S T
Screen # 3

CR ." T h e MACRO generator "
: MACRO: CREATE A S C I I ; WORD C@ B L C , ALLOT A S C I I (C , B L C ,

IMMEDIATE
DOES> R > BLK @ > R > I N @ > R T I B @ > R >R T I B !

0 BLK ! 0 > I N ! ;
. I - I R> R > T I B ! R > > I N ! R > BLK ! > R ; IMMEDIATE

T I B @ CONSTANT T I B @
: T I B ! T I B @ T I B ! ;

(E x a m p l e . c f . F o r t h D i m e n s i o n s V / 5)
MACRO: DO' 2DUP - O > I F DO ;
MACRO: LOOP ' LOOP E L S E 2DROP THEN ;

: EXAMPLE CR DO' I . CR LOOP ' ;

O k
3 LOAD
T h e MACRO generator O k
EXPAND EXAMPLE

CR
2 D U P
-
0 >
OBRANCH 18
<DO>
I

CR
<LOOP> -8
BRANCH 4
2DROP
;S O k

3 4 EXAMPLE
O k

4 3 EXAMPLE
3

O k

Figure Three

the poberful multitasking1
multivser operating system

is now available for most 1
micro-computers running-

and

Offers CP/M users:
An ability to run multiple
terminals
Unlimited control tasks

@ Concurrent printer
operation

These advanced features combine
with FORTH, Inc.'s powerful ver-
sion of the FORTH programming
language to offer CP/M users the
ideal environment for all interactive
and real-time applications.

Featuring speed of operation, shor-
tened development time, ease of
implementation and overall cost-
effective performance, this system
is fully supported by FORTH, Inc.'s:

Extensive on-line documen-
tation
Complete set of manuals
Programming courses
The FORTH, Inc. hot line
Expert contract programming
and consulting services

From FORTH, Inc., the inventors
of FORTH, serving professional
programmers for over a decade.

Also available for other popular
mini and micro computers.

/ For more information contact:

/ 2309 Pacific Coast Hwv.
Hermosa Beach,
CA 90254
21 31372-8493
RCA TELEX: 275182
E a s t e r n Sales Office
1300 N. 17th St. #1306,
Arlington, VA 22209
7031525-7778

*CP/M is a registered trademark of Digital Research

FORTH Dimensions 28 FORTH Dimensions

Keywords - Where Used
Nicholas L. Pappas
Oakland, California

We have created a number of tools
to facilitate our work: FINDNO is one
such tool. FINDNO tells which keywords
use a given keyword. For example,
when one wants to load Forth above
8000h in memory, you quickly discover
the need to replace < with u < so that
addresses, which are unsigned
numbers, are compared correctly. Or,
when base changes are annoying, you
may want to ask, "Which keywords
change base, and where are those
keywords used?" Suddenly, you need
to know which keywords use <, BASE,
HEX and DECIMAL.

The basis for FlNDNo is this: when
keyword A uses keyword B, A's code
body includes B's code field address
(cfa). So we need to search memory for
the two-byte cfa number starting at
some address for some number of
bytes. Consistent with Forth memory-
reference keywords, the prefaces

addr, number-of-bytes, cfa

give FINDNO the data it needs to do its
task. FINDNO starts searching at addr
for number-of-bytes, looking for cfa
(keyword B) in order to reveal
keywords A using B.

Proceeding in a simple way, we read
each byte pair (addr a) while
incrementing addr by one, not two.
This means we search through memory
from Forth's start address to the dp
value. Since we read through name
bytes and link field address bytes, as
well as the code bytes, we take the risk
of getting false reports. Incrementing
addr by one avoids the complicating
questions, "Where are the code cells,
and does this Forth use byte cells
(naughty, naughty) as well as word
cells? "

How does FlNDNO work? With the
cfa on top of the stack, the initial code
fragment shown in Figure One leaves Then we start a new line and do loop that increments by unity is
the stack values alone as it prints a manipulate the stack values to what we use. The loop index I is an
friendly message telling us what is calculate a loop index and limit as address because the loop limits are
about to happen (e.g., "Looking for shown in Figure Two. We have a addresses. Note the consequent
1624 Compile." known number of bytes to search, so a simplicity in Figure Three.

(x = s t a c k b o t t o m)
CR CR . " LOOKING FOR " c f a n a d d r x
DUP 0 4 D.R
S P A C E
DIJP 2 + NFA I D .

Figure One

C R c f a n a d d r x
ROT ROT n a d d r c f a x
OVER + a d d r + n a d d r c fa x
SWAP addr addr+n c fa x

Figure W o

addr a d d r + n c f a x
DO c fa x

DUP I @ n i c fa c f a x - - f c f a x
I F I 0 4 D.R S P A C E c f a x

I F I N D I D . c f a x
THEN

LOOP c f a x
Figure Three

B E G I N a d d r x
DUP X L I T = £ 1 a d d r x
SWAP 1 - addr-1 £ 1 x

Figure Four

DUP 1+ @ n i addr-1 £ 1 x
DOCOL = £ 2 addr-1 £ 1 x

Figure Five

DU P £ 2 £ 2 addr -1 £ 1 x
I F @ £ 2 addr -1 £ 1 x

OVER 1 + a d d r £ 2 addr -1 £ 1 x
0 4 D.R
S P A C E

THEN £ 2 addr-1 £ 1 x

Figure Six

Volume VII. No. 1 29 FORTH Dimensions

ROT £1 £2 addr-1 x
OR f 3 addr -1 x

U N T I 1. addr-1 x

Figure Seven

3 + 'addr+2 x (f o r w a r d t o p f a)
N F A I D . x
CR ;

Figure Eight

N L F FORTH EDITOR
SCR: 220 INSERT OFF

..'.. - - - - - - - ..'.. - _ - - _ - - .'... - - - - - - - ..'.. - - - - - - *
(1) CR ." s c r utility 820512"
1
3
A ' : CFA 3 CONSTANT DOCOL
7 a " L I T L F A CONSTANT X L I T
4 : F I N D I D . I a d d r ---)
C
J BEG I N
6 DUF' X L I T =
7 SWAF' 1 -
8 DUP 1+ 3
9 DOCOL = DUP
A I F OVER 1+ O 4 D. R SPACE
B THEN
C ROT
D OR
E U N T I L
F - 3 +

1 (1) NFA I D .
11 CR ;
12
13 : FINDNO (addr n l n2 ---)

1 4 CH CR ." LOOKING FOR "
15 DUP 0 4 D.R
16 SPACE DUF' 2+ NFA I D .
17 CR ROT ROT OVER + SWAP
18 DO DUP I 3 =
19 I F I Cl 4 D.H SP6C.E
1A I F I N D I D .
l a THEN
1C LOOF'
I D DROF' ; :S
1E COF'YRIGHT (C) 1983
1F b y N i c h o l a s L. F'appas. F'hD

I @ is addr @ that leaves ni, which is
compared to cfa so that flag f is non-
zero if equal and zero if not equal. The
if-then statement is skipped on false
flags, LOOP increments the index by
one and branches back to DUP for a
look at the next byte pair. On true
flags, the if-then statement executes to
print the address holding a number
equal to the cfa of B, leaves the address
on the stack and executes FINDID..
FINDID. assumes the number is indeed a
cfa being used by a code body as it
proceeds to print the cfa and <name >
of the using keyword (keyword A).
More later on FINDID..

Our useful friend cfa is still on the
stack, so we end with DROP ;.

The basis for FINDID. is that docol -
run-time code for : - is stored in
keyword A's cfa. (Only colon
definitions have cfa's in their code
bodies, so this is real.) If the number ni
is not really a cfa, then it is in an lfa or
part of a <name > . FINDID. still moves
down memory through the next code
body, looking for docol, and performs
its tasks - producing a false report.
(More later on false reports.) In the
unlikely, yet possible, event there are
no docols down memory, FINDID. does
nothing and exits gracefully when LIT'S
lfa is reached. If LIT is not your first
keyword, redefine XLIT accordingly.

Here is how FINDID. works. Not
knowing apriori where docol is, we use
a begin-until loop for our search. We
do last things first in order to avoid
some stack manipulation and to be
easier to read ("think-about . . .
until"). First, test an exit possibility by
checking for end-of-search and
backing up one byte to the code .in
Figure Four.

In case our cfa is also docol we just
left it, so the code in Figure Five
follows. I f j 2 is true, we execute the if-
then statement, printing the cfa of user
A with Figure Six. Checking for an
exit, we get both flags on top and do a
logical-or operation, as in Figure
Seven, to exit i f j 3 is true (non-zero) or
to loop if it is false. When we exit, note
that addr-1-1 is the Ifa (lfa = addr-2
if addr is the cfa of the keyword). We
want to print the < name > of our user
A via ID. so we need its nfa (see Figure
Eight).

FORTH Dimens~ons 30 Volume VII, No. 1

- - -- - --

6EO 20 DUMP

O6EO 26 00 G Z 42 4C CH D7 06 17 06 15 00 82 42 D; EZ
Cl6FCl 06 17 (56 36 ClCl 87 44 49 5Z 50 45 4F CC EC Clb 17
OK

OlClO 1FOO ' EMIT CFA FINDNO
COMPILE CFA . 1606 Oli.

0100 1FC)CI 1606 FINDNO LOOI-;ING FOR 944 EMIT
C02 BA6 EXPECT

LOOKING FOR 1606 COMPILE CJ4 C30 SPACE
5E2 JDE : CAC C98 TYPE
6E9 668 : 1945 1918 INDEX
167A 1676 ; CODE 19DO 199C TRIAD
l6DD l6D3 LITERAL OK
lR6O 1F5A AGAIN OK
1881 1F7F DO CllCIO 1FOO ' KEY CFA FINDNO
lRR3 lRAD ELSE
lBCE lRCC IF LOOKING FOR 954 KEY
IRE9 1HE3 LOOP RHO HA6 EXPECT

; lAFF 1RF9 +LOOP lEH9 1EA7 t . X
1C15 1COF UNTIL OC.
1 DED 1 DDF . " OK
0 I: UlOO lFOO ' ?TERMINAL CFA FINDNO
OK
iCOMPILE3 CFA . 1624 01. L0OC:ING FOR 960 ?TERMINAL

0100 IF<)':) 1624 FINDNO 17AA 1762 VLIST
1935 191H INDEX

LOOKING FOR 1624 CCOMF'ILEI 19B6 199C TRIAD
Ok Ok.1

PCRT PCRT

Figure Nine

..

In the examples, COMPILE'S "where-
used list" includes colon. This is a false
report, because the value 1606h
(COMPILE'S cfa) happened to be within
a user variable. So FINDID. backed up
past douser (no docol in a user
variable) and kept going until it found
a docol - this happened to be in
colon. The clue is the large difference,
for a keyword, between the two printed
addresses 668 and 6E9 (see the memory
dump in Figure Nine).

Note that the simple test DOCOL = in
FINDNO can be replaced by an or test
for docol, dovar, docon, douser or
dodoes; we let it go, in the interests of
simplicity. Also note that the
immediate word [COMPILE] does not
show up as expected. And, perhaps a
review of where EMIT., KEY and
TERMINAL are used is of interest.
Finally, please note that a screen editor
can be writ ten which has a
reformattable display complete with
window roll-up and roll-down.

lntroduclng
4xFORTHm for the Atari 520ST

l CONS
Windows

Pull Down Menus
B i t Mapped Graphlcs

32 bit Forth Based on '83 Standard
The "Only Concept"

The Colburn Sieve at 1.35 seconds/pass
The Forth Accelerator yielding 0 . 4 6 5 seconds/pass

Compile from 150 to 6 0 0 blocks/second

lncredfable Software and Hardware at Fantastic Prices
l ntroductory Prices

4xFORTH with Assembler $99 .9SX
4xFORTH Acceleratorm $75.00
4xFORTH with GEM Interface $149.95

'Ihe Dragon Group, 'Lnc.
148 Poca Fork Road. Elkvlew. WV 2507 1

304/965-5517

*All prices FOB Elkview. W, USA. Copyright (B 1985 by The DRAGON Group. Inc.

Simple Control of Search Order:

Not ONLY But ALSO
Bill Stoddart

Middlesbrough, England

The story so far:
"The evolution of Forth continues,

particularly in the area of vocabularies.
The latest step is a recognition of the
importance of controlling the search
order." Bill Ragsdale, 1982 FORML
Conference

"The ONLY Concept for Vocab-
ularies" was submitted by Bill as an
experimental proposal in the Forth-83
Standard. ' 1 2 It departs somewhat from
the standard and from other systems
(inc luding f ig -FORTH a n d
polyFORTH), in that executing a voc-
abulary name places that vocabulary at
the start of the search order list, rather
than actually specifying a search order.

As this sequence of words is inter-
preted, the system CONTEXT is changing
at a furious rate. Indeed, the fact that
the vocabularies are actually executing
their run-time behavior makes the
definition of the search order setup
words so simple. The still point in this
storm is the FORTH vocabulary. New
vocabularies are defined within the
FORTH vocabulary, and since
SEARCHES and ALSO both Set CONTEXT
to FORTH, the following vocabulary
name is always "in context" (i.e.,
within the search order specified by
CONTEXT).

Finally, the word SEAL is used to
limit the search order specified by a
vocabulary to that vocabulary's defini-
tions, as in:

MENU SEAL

of search order occurs during
metacompilation, but that is another
story. The following example is a
simple but realistic one involving the
Forth assembler.

One of the best uses of vocabulary
switching in Forth occurs in CODE
definitions. CODE switches the context
vocabulary to ASSEMBLER, and the
words IF, ELSE, THEN, etc. take on
meanings appropriate to code assemb-
ly. The default search order specified
by a standard definition of ASSEMBLER
would be ASSEMBLER then FORTH, but
it can be useful to modify this. Suppose
we have an application that interfaces
to a network with portions of as-
sembler code that need direct access to
constants and data structures in a
NETWORK vocabulary. Part of the ap-
plication might be organized like this:

This paper arg;es that such a departure
is not necessary. On the contrary, the Subsequent execution of MENU sets

standard forms a good basis for a set up a search order containing a single VOCABULARY NETWORK
vocabulary, which is MENU itself. ASSEMBLER SEARCHES NETWORK of simple and powerful words that give

A problem arises when a sealed ALSO FORTH ENDSEARCH the Forth user complete control of the
search order. vocabulary is to be included in a search NETWORK DEFINITIONS

order setup sequence. Just consider the CREATE BUFFER 256 ALLOT (space
Vocabulary handling in my

83-Standard system is extended with above setup sequence with MENU as the for buffer) HEX

four simple words: SEARCHES, ALSO,
sealed vocabulary. After MENU ex- EOOO CONSTANT PORT-ADDRESS etc. . . .

ENMEARCH and SEAL. These are all ecutes, ALSO will be "out of context."

one-line definitions. They give There are ways around this, of which

complete confrol over the specification the most obvious is to compile the ~h~ search order specified by

of search order. setup sequence before executing it, as ASSEMBLER (and therefore implicitly
Consider the creation of a new in: specified by CODE) has been set to

vocabulary with the phrase: ASSEMBLER, then NETWORK, then
: SETUP FORTH. We could now enter CODE

VOCABULARY APPLICATION APPLICATION SEARCHES MENU definitions which contain references to
ALSO EDITOR words in the NETWORK vocabulary; for
ALSO FORTH example:

When APPL~CATION is subsequently ENDSEARCH ; SETUP
executed, it specifies a search order of
APPLICATION followed by FORTH.

Suppose we want APPLICATloN I leave the reader to think of a slight- CODE SEND (--- send packet)
specify a search order of APPLlCATloN ly less flexible alternative which PORT #
followed by MENU followed by EDITOR requires no compilation! DI MOV BUFFER # SI MOV etc. . . .
followed by FORTH. This is achieved by DEF~N~T~ONS is present with its usual
the phrase: usage, and FORGET can work across

multiple vocabularies. ROMmable
APPLICATION SEARCHES MENU ALSO code is easily supported, though the

definitions given here operate from (This example is from an 8086 as-
EDITOR ALSO FORTH END-SEARCH

RAM. sembler. An I/O port is being moved
into the DI register and a buffer ad-

The specified search order becomes dress into the SI register.)
operational when APPLICATION is sub- Example When the NETWORK DEFINITIONS
sequently executed. Some of the most demanding control are all loaded, we can restore

FORTH Dimensions 32 VolumeVII, No. 1

Volume VII. No. 1 33 FORTH bimensions

NEW BOOKS - "FORTH GUIDE" by Haydon. An e x p l o r a t i o n o f t h e i n t r i c a c i e s o f MVP-FORTH $20.00
"FORTH A p p l i c a t i o n s " by Weber $13.00

THE FORTH SOURCE^^
7

MVP-FORTH FORTH DISKS
Stable - Transportable - Public Domain - Tools FORTH with editor, assembler, and manual.
You need two primary features in a software development package a rn APPLE by MM, 83 slO0 q 8086/88-by L ~ , 83 $100
stable operating system and the ability to move programs easily and quickly
to a variety of computers. MVP-FORTH gives you both these features and ++* by MM, 83 25 68000 by LM3 83 $250

many extras. This public domain product includes an editor. FORTH assem- ATARlm valFORTH $60 VIC FORTH by HES,
bler, tools, utilities and the vocabulary for the best selling book "Starting q CP/M by MM, 83 $1 00 VIC20 cartridge $20
FORTH". The Programmer's Kit provides a complete FORTH for a variety of HP-85 by L~~~~ $90 q C64 by HES Commodore
computers. Other MVP-FORTH products will simplify the development of HP-75 by Cassady 50 64 cartridge $40
your applications. IBM-pC by LM, 83 $1 00 q HW,

q TIS 1000lZX-81
*U IBM-PC by MM, 83 $1 25 2068

$25
MVP Books - A Series $30
0 Vol. 1, All about FORTH by Haydon. MVP-FORTH glossary with cross *' 280 by LM. 83 $1 00

references to fig-FORTH, Starting FORTH, and FORTH-79 Standa$rg ~ ~ h ~ ~ ~ ~ d FORTH with: F-~loating Point, G-Graphics. T-Tutorial.
2"d Ed. S-Stand Alone. M-Math Chip Support, MT-Multi-Tasking. X-Other

O Vol. 2, MVP-FORTH Assembly Source Code. lncludes IBM-PCm , Extras. 79-FORTH-79, 83-FORTH-83.
CP/Mm .and APPLEm listing for kernel $20 APPLE by MM. q C64 with EXPERT-2 by

Vol. 3, Floating Point Glossary by Springer $1 0 F, G, & 83 $180 p s $99
O Vol. 4, Expert System with source code by Park $1 5 ATAN by PNS, F,G, & X, $90 Extensions for LM specify
O Vol. 5, File Management System with interrupt security by Moreton $25 q by MM, & 83 40 IBM, 280, or 8086

q TRS-8011 or Ill by MMS Software Floating
Vol. 6, Expert Tutonal for Volume 4 by M & L Derick F, X. &79 $1 30 Point $1 00

MVP-FORTH Software - A Transportable F O R T H U C64 by PS MVP, F, G & X $96 q 8087 Support
(IBM-PC or 8086) $1 00

0 MVP-FORTH Programmer's Kit including disk, documentation, Vol- K ~ Y 10v.ndors: 951 1 Support
umes 1 & 2 of MVP-FORTH Series (All About FORTH. 2" Ed, & Assem- HW Hawg W~ld Software (Z80 0r 8086) $1 00
bly Source Code), and Starting FORTH. CP/M, CP/M 86, 21 00, LM Laboratory Mlcrosystems

MM M~croMOtlOn
Color Graphics

APPLE. q STM PC, IBM PCIXTIAT. PCIMS-DOS, Osborne, MMS Mlller Mcciocomputer Serv~ces (IBM-PC) $1 00
q Kaypro, MicroDecisions. DEC Rainbow, TI-PC. PNS P I O ~ Nolse stud10 Data Base

NEC 8201, TRS-801100 $1 50 PS Parsec Management $200

q MVP-FORTH Enhancement Package for IBM-PCIXTIAT Program- FORTH MA^^^^^, GUIDES & DOCUMENTS mer's Kit. lncludes full screen editor. MSDOS file interface, disk
display and assembler operators. $1 ld &U Thinking FORTH by Leo Starting FORTH by Brodie.

MVP-FORTH Floating Point & Matrix Math for IBM PCIXTIAT with * Brodie' author Of best Best instructional manual
"Starting FORTH $1 6 available. (soft cover) $20

8087 or Apple with Applesoft
$85 ALL ABOUT FORTH by 68000 fig-Forth with

q MVP-FORTH Graphics Extension for IBM PClXTlAT or Apple $65 Haydon. MVP Glossary $25 assembler $25
q MVP-FORTH Programming Aids for CP/M, IBM or APPLE Program- q FORTH Encyclopedia by FORML Proceedings

mer's Kit. Extremely useful tool for decomNing, callfinding, translat- Derick & Baker $25 1980 1981 Vol 1
ing. and debugging. $200 .$U FYS FORTH from the .$ 1981 Vol 2 1982
MVP-FORTH Cross Compiler for CP/M Programmer's Kit. Gener- *' Netherlands ++ I 983 1984 each $25
ates headerless code for ROM or target CPU $300 User Manual $25 q 1981 Rochester Proceedings

q MVP-FORTH Meta Compiler for CP/M Programmer's kit. Use for q Source Listing $25 0 1 9 8 1 0 1 9 8 2 0 1 9 8 3

applications on CP/M based computer, lncludes public domain .$ q FORTH Tools and Applic. by ' 984 each $25

source. $1 50 C' Feierbach $1 9 0 Bibliography of FORTH $1 7

MVP-FORTH PADS (Professional Appllcation Development System) q The Complete FORTH The Journal of FORTH
for IBM PClXTlAT or PCjr or Apple II, 11+ or Ile. An integrated system for by Winfield $1 6 Appllcation & Research
customizing your FORTH programs and applications. The editor in- 40 Learning FORTH by Vol. Ill ov01. 112
cludes a bidirectional string search and is a word processor specially *' Armstrong $1 7 '* Vol. 211 0 Vol. 212
designed for fast development. (PADS has almost triple the compile understanding FORTH C q Vol. 213 each $1 7
speed of most FORTH's and provides fast debugging techniques. by Reymann $3 U METAFORTH by Cassady $30
Minimum size target systems are easy with or without heads. Virtual Threaded Interpretive
overlays can be compiled in object code. PADS is a true professional q ~ O ~ ~ ~ i ~ ~ ~ ~ , " ~ e f a l S s $16 Languages $25
development system. Specify Computer. $500 q Vol. II Glossary $1 4 q Systems Guide to flg-FORTH
q MVP-FORTH MS-DOS file interface for IBM PC PADS 80 Mastering FORTH by by Ting $25

MVP-FORTH Floating Point & Matrix Math see above $85 * Anderson & Tracy $1 8 Inside F83 Manual by

MVP-FORTH Graphlcs Extension see above $65 Beginning FORTH by *+* Ting $25

MVP-FORTH EXPERT-2 System for learning and developing Chirlian $1 7 q FORTH Notebook by Ting $25

knowledge based programs. Both IF-THEN procedures and analytical q FORTH Encycl. Pocket Invltatlon to FORTH $20
d6* ~"broutines are available. Source code is provided. Specify q Apple. Gulde $7 PDP-11 User Man. $20

IBM, or CPIM. Includes MVP Books, Vol. 4 & 6 $1 00 q And So FORTH by Huang. A 6502 User's Manual by
FORTKWrlter, A Word Processor for the IBM PClXTlAT with 256K. college level text. $25 Rockwell Intl. $1 0

,$MVP-FORTH compatible kernel with Files, Edit and Print systems. FORTH Programming by FORTH-83 Standard $1 5
. Includes Disk and Calculator systems and ability to compile additional Scanlon FORTH-79 Standard $1 5

FORTH words. $1 50
MVP-FORTH Fast Floating Point Includes 951 1 math chip on board Installation Manual for fig-FORTH $1 5
with disks, documentation and enhanced virtual MVP-FORTH for Apple
II, II + , and Ile. $450 0 Source Listings of figqORTH, Specify CPU $1 5

Ordering Information: Check. Money Order (payable to MOUNTAIN VlEW PRESS, by Air. $5 for each Item under $25. $1 0 for each Item between $25 and $99 and $20 for
INC.), VISA. Mastercard. American Express COD'S $5 extra. Minimum order $1 5. No each item over $1 00. All prices and products subject to change or withdrawal without
billing or unpaid PO'S. California residents add sales tax. Shipping costs in US included notice. Single system andlor single user llcense agreement required on some
in price. Foreign orders, pay in US funds on US bank, include for handl~ng and shipping products.

MOUNTAIN VlEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (41 5) 961 -4103

7

SCR 7 0
0 (V o c a b u l a r i e s)
1
2 : VOCABULARY
3 CREATE VOC @ HERE VOC ! DUP , (c o m p i l e VLINK)
4 2 + C@ 1 + C , (next voc) 1 C, (FORTH) 0 C ,
5 0 , DOES> 2 + CONTEXT ! ;
6
7 : SEARCHES (-- a d d r l a d d r 2) CONTEXT @ 1 + FORTH ;
8
9 : ALSO (a d d r -- a d d r + l) CONTEXT @ C@ OVER C! 1 + FORTH ;

1 0
11 : END-SEARCH (a d d r l a d d r 2 --) ALSO 0 SWAP C! FORTH ;
1 2
1 3 : SEAL 0 CONTEXT @ 1 + C! FORTH ;
1 4
1 5 : D E F I N I T I O N S CONTEXT @ CURRENT ! ;

ASSEMBLER to its original meaning
with:
ASSEMBLER SEARCHES FORTH
END-SEARCH

Implementation
The parameter field of each

vocabulary is a data structure which
contains information to specify the
search order. The words SEARCHES,
ALSO, ENPSEARCH and SEAL operate
on these data structures. Another ele-
ment in a vocabulary's parameter field
is the VLlNK field, which contains a
pointer to the previously defined
vocabulary. This information is used
when creating the parameter field of a
new vocabulary, and when FORGET
operates across multiple vocabularies.
The user variable voc contains the ad-
dress of the VLINK field of the most
recently created vocabulary.

The following details and the source
screens are particular to my own sys-
tem, but the underlying ideas, as well
as the glossary entries, are quite
general.

Each vocabulary is identified by a
number between one and sixteen. (A
sixteen-thread hashing algorithm is
used to organize the di~tionary.~) A
vocabulary's parameter field contains
a list of up to four bytes which specify
the search order. The value zero is used
as a terminator. The number one iden-
tifies the FORTH vocabulary, and two
the ASSEMBLER vocabulary. The seven-
byte parameter field of ASSEMBLER
looks like this:

VLINK 2 1 0 0 0

The two-byte field VLINK contains
the address of the corresponding field
in the dictionary entry for FORTH. A
user variable voc contains the address
of the link in the most recently created
vocabulary. This information is used
to assign a number to the next
vocabulary created.

If FORTH and ASSEMBLER are the
only vocabularies in the system, and we
now define:

VOCABULARY APPLICATION

its parameter field will contain:

VLINK 3 1 0 0 0

VOCABULARY uses VOC to locate the
last vocabulary created, which was
ASSEMBLER, and from this works out
the new vocabulary's VLlNK and num-
ber, which is three. VOC is updated to
point to the VLINK field in the new
vocabulary.

When APPLICATION becomes the
CONTEXT vocabulary, CONTEXT holds
the address of the third byte in the
parameter field of APPLICATION. FIND
scans this and the following bytes, and
will search in turn vocabularies three
and one.

Now we can walk through a typical
search order setup:

ASSEMBLER Leaves CONTEXT pointing

to the 2 in the parameter field of
ASSEMBLER.

SEARCHES (--- addr) Leaves the ad-
dress of the following byte in the pa-
rameter field of ASSEMBLER.

APPLICATION NOW CONTEXT points to 3
in the parameter field of APPLICATION.

ALSO (addr --- addr + 1) Copies the 3
from the APPLICATION vocabulary's
parameter field into addr in the param-
eter field of ASSEMBLER.
FORTH Points CONTEXT to the FORTH
vocabulary.
END-SEARCH Copies 1 (identifying
FORTH) from the FORTH vocabulary's
parameter field to the parameter field
of ASSEMBLER, then writes 0 to the
following address to mark the end of
the search order list.
The parameter field of ASSEMBLER
now contains:

LINK 2 3 1 0 0

APPLICATION becomes the CURRENT
vocabulary in the usual way, by execut-
ing APPLICATION DEFINITIONS. CURRENT
then holds the address of the third byte
in the parameter field of APPLICATION.
The contents of this location are used
by CREATE t o decide in which
vocabulary new dictionary entries
should be placed.

Suppose we want a search order con-
taining more than four vocabularies?
This is no problem. The additional
bytes of the parameter field may be
allotted when the vocabulary is
created. Thus , if we wanted
APPLICATION to eventually specify a
search order of seven vocabularies, this
would be set up with:

VOCABULARY APPLICATION 3 ALLOT

On the other hand, where memory is
in short supply, we can recover unused
bytes in a similar way.

Final Word

Four simple words have been added
to an 83-Standard system to provide
powerful facilities for the control of
search order. These definitions will be
easily adapted to systems in which the

FORTH Dimensions VolurneVII. No. 1

parameter field of a vocabulary entry
contains information which directly
specifies a search order. They provide
facilities which are not available when
search order is specified by the order in
which vocabularies are created (as in
the FIG model) and they provide a
more readable source than systems
such as polyFORTH which require the
user to specify a search order in
numeric format.

Glossary

ALSO (sysl --- sys2) Set the
CONTEXT vocabulary as the next
vocabulary in the search order list iden-
tified by sysl . Leave sys2, which iden-

tifies the position of the following
element in this list, for subsequent use
by ALSO or END-SEARCH.

END-SEARCH (sys ---) Set the
CONTEXT vocabulary as the next and
final vocabulary in the search order list
identified by sys.

SEAL Set the search order specified
by the present CONTEXT vocabulary to
contain only the present CONTEXT
vocabulary, and make FORTH the new
CONTEXT vocabulary.

SEARCHES (--- sys) Leave the
system-dependent information sys
which identifies the position of the first
element in the CONTEXT vocabulary's
search order list. Make FORTH the new
CONTEXT vocabulary.

References

1. W.F. Ragsdale. "The ONLY Con-
cept for Vocabularies." 1982 FORML
Proceedings.

2. W.F. Ragsdale. "Search Order
Specification and Control." Ex-
perimental Proposal , Forth-83
Standard.

3 . Evan Rosen. "Vocabulary
Tutor ia l ," Pa r t two. Forth
Dimensions, V/4.

4. M. McNeil. "Hashed Dictionary
Searches. " 1981 FORML Proceedings,
Vol. One.

Volume VII, No. 1 35 FORTH Dimensions

Another Forth-83 LEAVE
John Hayes

Laurel, Maryland

I would like to propose yet another
solution to the Forth-83 LEAVE prob-
lem. The ideal implementation of
LEAVE should compile a (LEAVE) code
primitive followed by a pointer to the
first word after LOOP (or +LOOP), as in
figure one. Since multiple LEAVES are
allowed per LOOP level, LOOP must
somehow resolve all these forward
references. Also, in nested DO LOOPS,
LEAVE must exit only the innermost
loop surrounding it. These require-
ments, combined with the fact that
LEAVE will usually occur inside IF THEN
control structures, suggest that the
compile-time actions of DO, LEAVE and
LOOP need to be quite complicated.
However, the situation is not as bad as
it seems.

My implementation is a modifica-
tion of one used by Bill Stoddart (Forth
Dimensions V/4). His solution avoids
the problem of resolving multiple
forward branches by having each of
the LEAVEs point back to DO, where
there is a pointer to the end of the
LOOP. This is less efficient than the
ideal implementation pictured in figure
one. It turns out that coding the ideal
solution is not difficult. I have written
a general-purpose word > >RESOLVE
that resolves multiple forward
branches. I will explain how
>>RESOLVE works in the context of
the LEAVE problem. Then , t o
demonstrate the word's generality, I
will show its application in a set of case
structure compiling words.

In my implementation, a linked list
of unresolved forward references is
maintained. A VARIABLE named CLUE
points to the most recent entry added
to the chain. Each time the IMMEDIATE
word LEAVE is executed, a code primi-
tive (LEAVE) is compiled followed by a
pointer back to the previous LEAVE
link. If there are no previous LEAVES, a
null pointer is compiled. Then CLUE is
updated to point to the new head of the
list. It is LOOP'S job to convert this list
into a set of pointers to the first word

(CODE FOR RESOLVING FORWARD AND BACKWARD BRANCHES)

: (MMa (--- ADDR) (USED AS DESTINATION)

(OF BACKWARD BRANCH. 1
H E R E ;

: (RESOLVE

r ;

: >MARK

HERE 2 ALLOT ;

BEGIN
DUP WILE

(ADDR ---) (RESOLVE BACKWARD)
(BRANCH.)

(--- ADDR) (SOURCE OF FORWARD)
(BRANCH.)

(ADDR ---) (RESOLVE FORWARD
(BRANCH.)

(OLDLINK --- (RESOLVE A CHAIN
(OF FORWARD BRANCHES.)

DUP @ HERE ROT !
REPEAT DROP ;

(THE CODE WORDS CD03, CLOOP3, AND C+LOOP3 IMPLEbWJT FORTH-83 DO..LOOPS.)
(CLEAVE3 IS A FORM-83 LEAVE. CLUE IS USED TO IMPLEMENT LEAVE.)

VARIABLE CLUE (--- ADDR) (CLUE POINTS TO)
(LAST WORD IN LEAVE CHAIN.)

: DO (--- CLUE HERE)
COMPILE (DO) CLUE @ 0 CLUE I (MARK ; IMMEDIATE

: LOOP
COMPILE (LOOP) (RESOLVE
CLUE 0 >>RESOLVE
CLUE ! ; IMMEDIATE

(CLUE HERE ---)

: +LOOP (CLUE HERE ---)
COMPILE (+LOOP) (RESOLVE
CLUE (9 >)RESOLVE
CLUE ! ; IMMEDIATE

: LEAVE (---)
COMPILE (LEAVE) HERE CLUE (9 , CLUE I ; IMMEDIATE

(Listing One)

(ZASE SELECT COMPILING WORDS. 'lliF. SYNTAX OF THE STRUCTURE IS:)
(: NUnCHECK)
(SEL
(((0 ==> ZEROSTUFFMORESTUFF) >
(((1 ==) ONESTUFF~ORESTUFF > >
(((10 ==> TENSTUFF MORESTUFF))
(((OTHERWISE ==) OTHERSTUFF >)
(ENDSEL ; I : s a
0 ; IMMEDIATE

: (((OLDLINK --- OLDLINX)

COMPILE DUP ; IMMEDIATE

: =>
COMPILE ?BRANCH >MARK
COMPILE DROP ; IMMEDIATE

(--- IFADDR)

(--- IFADDR)

I COMPILE =
COMPILE ?BRANCH)MARK
COMPILE DROP ; IMMEDIATE

:) > (OLDLINK IFADDR --- =INK)

COMPILE BRANCH SWAP ,
)RESOLVE
HERE 2- ; IMMEDIATE

: OTHERWISE

COMPILE DUP ; IMMEDIATE

(---) (COPTIONALLY3 CREATE)
(AN OTHERWISE CASE.)

1 : ENDSEL (OLDLINK ---)

I COMPILE DROP))RESOLVE ; IMMEDIATE

(Listing W o)

FORTH Dimensions 36 VolumeVII. NO. 1

after LOOP. This is where > >RESOLVE
comes in. > >RESOLVE'S argument is a
pointer to the start of a linked list.
>>RESOLVE threads down the list,
changing each pointer to HERE instead
of the next link. Figure two-a shows a
DO LOOP with two LEAVES inside before
LOOP is executed. Figure two-b shows
the completed DO LEAVE LOOP struc-
ture.

The address of the LEAVE list has to
be kept in a VARIABLE instead of on the
stack. Since LEAVE can occur inside
other control structures, a list address
kept on the stack could be covered by
an arbitrary number of words, making
it impossible for LEAVE to find the
address. But keeping the address in the
VARIABLE CLUE introduces another
problem. Each loop in a nested DO
LOOP structure needs a separate LEAVE
list. Therefore, at times there can be
more than one unresolved LEAVE list.
The solution is to have DO stack the old
value of CLUE and store a new null
pointer in CLUE. LOOP, af ter
> > RESOLVE^^^ the current LEAVE list,
will restore CLUE to its old value. This
idea is due to Bill Stoddart.

Another instance where it is neces-
sary to resolve multiple forward
branches is in the case structure. The
syntax of the structure is shown at the
top of listing two. Each > > should
compile a branch to the word followir~g
ENDSEL. The method of implementa-
tion is similar to the LEAVE list. Each
time > > executes, it compiles a
BRANCH primitive followed by a link to
the previous > > . ENDSEL converts this
linked list into pointers to HERE using
> > RESOLVE.

Note that my Forth system used
sixteen-bit absolute branches. If your
system uses eight-bit relative branches,
> >RESOLVE will be harder to code, but
not impossible. Happy Forthing!

Figure Two a
DO. . .LEAVE.. .LEAVE.. .LOOP before

Loop is executed

C L U E

x 1

- -

Volume VII. No. 1

1

. . .

FORTH Dimensions

?' I
P . . .

P . . .

(DO)

. . .

. . . .

-
Figure One

Ideal DO. . .LEAVE. . .LOOP

\1

(L E h V E) (DO)

1
. . . .](LEAVE) (LEAVE)

. . . . p

o

. . . .

(LOOP)

, U T

Figure I h o b
DO. . .LEAVE.. .LEAVE. . .LOOP after

LOOP is executed

P (LEAVE) . . . p (LOOP) (LEAVE)

YACS* Part Two
*Yet Another Case Statement

Henry Laxen
Berkeley, California

Last time, we traced the history of
the CASE statement in Forth and took a
look at three different implementations
of "indexed" CASE statements, namely
CASE statements that were basically
arrays of executable procedures. At
run time, the index on the parameter
stack was used to compute an index
into this array, and the corresponding
element of the array was executed.
While this approach is often exactly
what is required and is very efficient at
run time, I pointed out that sometimes
a more flexible CAsE structure would
be handy. I left you with a challenge,
namely to come up with a CASE state-
ment that adds the minimum number
of new words to Forth and allows ar-
bitrary Forth expressions to be used
both as matching clauses and con-
sequent clauses. My solution to this
problem is presented in figure one,
with examples of use in figure two.
Let's take a look and see if we can
figure out how it works.

First, let's look at the word RUN
which, as the name implies, runs some-
thing. All it does is push the address
that is on the parameter stack onto the
return stack. This seems a bit susp-
icious, since we all remember from our
early Forth training that we never push
anything onto the return stack without
later removing it in the same word;
otherwise, disaster may result. Well, as
in life, every rule was made to be
broken. In this case, we use RUN to run
a high-level code fragment. What hap-
pens is that the address we provide is
pushed onto the return stack. Next, the
UNNEST word compiled by ; executes,
and pops the return stack into the IP.
The net result is that interpretation
proceeds at the address we provided on
the parameter stack. When the UNNEST
word at the end of the high-level code
fragment is encountered, it will return
to the word following the RUN in the
high-level definition containing it. RUN
would be a useful word to have in all
Forth systems, since its virtue is that -
unlike EXECUTE - it does not require a
code field.

Now let's examine the word CASE. It
works in conjunction with END-CASE as
follows: CASE will compile high-level
Forth phrases while the number on the

top of the parameter stack is non-zero.
Normally, the number on the parame-
ter stack is the address of the beginning
of the current code phrase, which
should get resolved; however, when the
word END-CASE executes, we notice
that the first thing it does is a DROP
FALSE, which will throw away the ad-
dress and replace it with a zero. This
will terminate the compilation loop.
Notice also that END-CASE is an
IMMEDIATE word, and hence executes
even while compiling. The compile-
time portion of CASE generates a linked
list of code phrases. A picture illustrat-
ing this is in figure three, and
represents the structure built in
memory by the code in figure two. For
those of you unfamiliar with the
Forth-83 words >MARK and
>RESOLVE, their definitions are as
follows:

: >MARK HERE 0 , ;
: >RESOLVE HERE SWAP ! ;

Their function is to leave a pointer to
a cell on the parameter stack and in-
itialize the cell to zero, and to then
resolve the contents of the cell whose
address is on the stack to the current
dictionary location. They are used ex-
tensively in the definitions of IF ELSE
THEN and the looping words. They are
also exactly what is called for here, to
create a linked list in memory. The !CSP
word is required for the compile-time
error checking that is usually imple-
mented inside ;.

Now then, let's analyze what is going
on. At the beginning of the loop, we
lay down a link address and call the
Forth compiler with I. The Forth com-
piler compiles the following words in
the input stream until it encounters a ;.
The ; compiles an UNNEST for us and
exits from the compiler. At this point,
the address left by >MARK should still
be on the stack; if it is, execution con-
tinues through the WHILE. The
>RESOLVE word resolves the link left
by the previous >MARK and branches
back to the BEGIN to repeat the process.
Thus, we are creating a linked list of
code phrases, until the address that was
placed on the stack by >MARK is
replaced by a zero. This is done by END-
CASE.

The run-time portion of CASE simply
uses the information compiled by CAsE

to evaluate the first, third, fifth, etc.
phrases and to compare them to the
top of the parameter stack. If the value
returned by the phrase equals the value
on the stack, then the next phrase - an
even-numbered one - is executed. If
the values are not equal, the even
phrase is skipped and the next odd
phrase is executed. Notice that it is the
user's responsibility to make sure that
the phrases come in pairs, since CAsE
does no compile-time or run-time error
checking. If we march all the way
through the linked list and never find a
phrase that generates a matching value,
we will eventually encounter the zero
link that was compiled last. This will
cause us to exit the BEGIN WHILE REPEAT
loop and 2DROP throws away the initial
value that was passed to us, and the
zero that was fetched to terminate the
list.

One interesting feature of this CAsE
statement is that in order to implement
an OTHERWISE clause, which will al-
ways be executed if none of the
previous clauses matched, we simply
DUP the top of the stack. This will
guarantee that the two values are
equal, and the corresponding con-
sequent clause will be executed.

FORTH Dimensions 38 Volume VII, No. 1

O \ O R F I 1 D ~
1 : R U N (Sad&--) >R ;
2 : CAliE
3 m T E (S-)
4 BEOIN sr#u< !Sf 1 WrJHlLE s f E S # U E REPEFlT
5 DOES, < S n - -)
0 BEGIN aR WILE
7 2WP 2+ RUN = IF NIP O 2+ RUN EXIT TN;N
8 Q O < noaatch, l ink to m x t condition)
9 R E P E A T ; L O R O P .

1 0 : ENXRSE (s n - - b 1
1 1 DR[)P F#SE fCOIPILE1 f . IIWEDI~TE
12: OTWER~ISE (s n - - n n 1 iWP ;

Figure One

O \ n [# 9 L E O F R O R # 1 D M I S E
lCASEREI#RK
2 2 ; .* Thr m l y rwn prime" *

3 6 ; .' The f i r s t perfect nu&' ;
4 OTHEWlSE ; ." Nothing mmrkclble about i t " ;
5 EJWCRSES
6 1 tCRl Nothing rarcrkable about i t OK
7 2 REtlWiK ICRl The only wen prim a(
8 8- t#l l h first pa-fmctnubrw

Figure Two

I
I Pointer to M I List of Code Fields 1 Pointer 10 3rd I List o f Codt Fields 1

I

I Eva1 Code 1 for 2nd Condition I Condition Code 1 for 2nd Eva1 Code I
I

List o f Code Fields
for 1 st Eva1 Code

-- - --- - -

Figure Three

I

Pointer to 2nd
Condition Code

Pointer to 1 st
Eva1 C&

I

o \ PRoeosED O R m E R CFISE
1 : E m [' I = '

2 : FUWE ~ I B E ~ U E E N ;
3 HEX RAWOE GIBE #RSSIF'f
4 0 I F ; ."Control Character" ;
5 20 2F ; . " Puxttattir" ;
6 3 0 3 8 ; . " D i g i t m ;
7 3 A 4 0 ; . " R m t u a t i o n " ;
0 41 SA ; . " Upper Case Letters' ;
9 5B 60 ; . " Punctuation" .
10 61 ?R ; . " L- Case ~ e t t k s " ;
11 7 8 7 E ; . " P u n c t u a t i o n u -
12 7F 7f ; ." Control C3mwctkn ;
13 E N D - C M S

Figure Four

List o f Code Fields
for 1 st Condition

r
Pointer to 3 rd List o f Code Fields 0 -- End of l ist
Eva1 Code for 3rd Condition

.?.' '.Z
?.. MICRO- ..+' Z.
f.. 2. i. iCoNTRoLLWl ...' ...

.-.. 2.' ::: Z i Z. 2. .:.

List o f Code Fields
for 3rd Eva1 Code

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machine

code interrupt handlers
-System t~mekeeping malntalns

time and date wlth leap
year correction

-Supports ROM-based self-
starting appllcatlons

COST
130 page manual --S 30.00
8 K EPROM w~th manual-$100.00

Postage pa~d rn North Arner~ca
lnqulre for l~cense or quantrty prlclng

f. .. .:.
2. ...

?:. . .
Z. ...

3 Bryte Computers, Inc. ... :::
$ P.O. Box 46, Augusta, ME 04330 :.:
.?.' (207) 547-32 18 ?.a

T.
.:. . .

VolurneVII, No. 1 39

John D. Hall
Oakland, California

We want to welcome five new
chapters:

Huntsville FIG Chapter,
Huntsville, Alabama

Central Iowa FIG Chapter,
Ames. Iowa

Fairfield FIG Chapter,
Fairfield, Iowa

North Orem FIG Chapter,
Orem, Utah

Lake Superior FIG Chapter,
Superior, Wisconsin

Central Connecticut FIG Chapter

Feb 6: On Wednesday, we met at the
Meriden Public Library. Upon the sug-
gestion of John Moran, work was
begun on a test suite for fig-FORTH.
As discussion continued on the subject,
we realized we were taking on a non-
trivial project. The purpose of this pro-
ject is to give individuals who have
versions of Forth a means of validating
their instruction set. We are calling on
the entire Forth community to help us!
Although we intend to produce a pro-
gram to validate the entire set of fig-
FORTH words, we are aware that
some versions of fig-FORTH, both
commercial and public-domain ver-
sions, contain bugs. We would like to
trap as many of these as we can. If any
users out there can identify the bugs
their versions contain, we would appre-
ciate as much information as possible
about these peculiarities so we can be
sure these most common bugs are iden-
tified by the test suite.'If you write us
about an existing bug, please try to in-
clude: 1) the source of your Forth,
2) the date of release or version num-
ber, 3) the word(s) that don't work,
4) under what conditions this bug can
be simulated, and 5) if known, the

cause or a cure. Also, any references to
prior work on this subject, or any other
type of help at all, would be appreciat-
ed. Upon its completion, the test suite
will be released - with much criticism,
I'm sure - to the Forth community.

This is a very ambitious group pro-
ject, and any Forth users in Connec-
ticut who can help with suggestions or
coding would be very welcome at our
meetings! Please contact Charles
Krajewski, 205 Blue Rd., Middletown,
CT 06457, (203) 344-9996.

-Charles Krajewski

Atlanta FIG Chapter

Mar 19: Our meeting proved to be in
our familiar mold - unstructured and
with much exciting debate on various
topics. Nathan Vaughn continued his
explanations of ideas for an intelligent
interest-matching system which will
one day relieve him of much routine
work. Anyone with knowledge of a
method for counting word usage and
managing a huge vocabulary, with
elimination of infrequently used
words, should contact Nathan. David
Penz described his need for low-cost,
PC-based productivity tools in a multi-
tasking environment. Chuck Albert
wants to apply Forth to the math used
to predict the effect of complicated
modulation on a carrier. Anyone with
experience in using Forth on Bessel
functions? To gain an overall impres-
sion of what the Forth community in
Atlanta is doing, here are some of the
topics I jotted down that came up in
our conversations: 1) controller read-
ing codes off of moulds, 2) epidemiol-
ogy, 3) ultrasonics, 4) robotics, 5) color
graphics, 6) fuzzy logic, and 7) bit-slice
processors.

-Ron Skelton

Detroit FIG Chapter

Jan 22: Burce Bordt gave an
interesting presentation of his
interrupt-driven system. The system is

operating on his homebrew 6809-based
system. Except for two dependent
machine-code words, the entire
software system was written in high-
level Forth. The system is written so
that by changing a particular vector,
execution of any word could be
invoked by depressing a switch,
triggered by a system timer, etc.

Feb 26: Randy White presented a
short graphics "windowing" demo
from the Val-Forth package on an
Atari Computer. A continuing
discussion of a graphics standard in
Forth followed. A discussion also
followed of the Bulletin Board System
we have been trying to establish. The
system would be used for message
exchange, program exchange and
announcements. Due to financial
limitations at this time, it was decided
to use an existing bulletin board or
Compuserve for this purpose.

-Tom Chrapkiewicz

Hamburg FIG Chapter

Feb: The Hamburg chapter meets on
the fourth Saturday of the month, and
usually about twenty people show up.
There are chapters forming in Berlin,
Wuppertal, Kiel, Bremen, Paderborn
and Karlsruhe. We are organizing
"euroFORML 85," a multi-faceted
conference on October 25-27 in a
castle in southern Germany. Please
plan to attend. See a call for papers
elsewhere in this or the previous issue.

Orange County FIG Chapter

Jan 2: Wil Baden presented a
calendar which easily calculates any
day of the year. Roland Koluvek
presented some work he had done over
the holidays which, on a PC, allows
you to leave Forth resident and return
to DOS, then an ALT-Shift from DOS

FORTH Dimensions 40 Volume VII, No. 1

returns you to Forth. This is something
like Sidekick. Allen Hansen had added
some features to Leo Brodie's Quick
Text Formatter.

Feb 6: Wil Baden presented a map of
the United States done Forth style. Ken
Clark presented a paper called "A Set
of Formal Rules for Phrasing." These
rules are regular and it is possible to
pass raw code through a formatter and
have it "phrased." Wil presented
:DOES> which is his solution to the
need in Forth for "self-defining
words."

-Roland Koluvek

All the chapter hand-outs mentioned
in these chapter reports that are sent to
John Hall, are reproduced and
redistributed to the chapters on a

monthly basis. Check with your
chapter for copies.

Silicon Valley FIG Chapter

Feb 23: We had about sixty people
show up at the new meeting place in
San Carlos. FORML used the library
in the morning, and the afternoon FIG
meeting used the gymnasium at the
ABC School. The acoustics in the gym
were bad, so we will try to use the
library until we overflow. For the
morning FORML session, Kim Harris
suggested we organize some small
working groups doing favorite projects
that can be developed and presented as
team efforts. We will select them next

month. John James and Mike Ham
discussed FIG'S plan to distribute
Forth material on the Delphi or
Compuserve nets. Many FIG members
already subscribe, and there are
already Forth activities on these nets.
FIG may be able to make these nets the
focus of the exchange of Forth code
and information, with the chapters as
nodes to the members. A quick poll
was conducted to see if members would
discuss their projects and activities at
work. Much work in Forth gets done
on projects where Forth is not the main
purpose of the project and is not
visible. We would like to focus
attention on these projects. Thirty
people agreed, and each will be given
time at the next meeting.

-John Hall

Volume VII. No. 1 41 FORTH Dimensions

-

TOTAL CONTROL:
FORTH: FOR 2-80? 8086,68000, and IBM@ PC

Complies with the New 83-Standard
GRAPHICS GAMES COMMUNICATIONS ROBOTICS

DATA ACQUISITION PROCESS CONTROL
FORTH p r o g r a m s a r e Ins tan t l y FORTH Appllcatlon Development Systems

p o r t a b l e a c r o s s t h e f o u r m o s t popular include interpreterlcompiler w th virtual memory

m l c r o p r o c e s s o r s
management and mu111 tasking assembler full
screen editor decompiler utilities and 200 page

FORTH Is Interactive and conver- manual Standard random access I es used for
Sat lonal , b u t 20 t i m e s f a s t e r t h a n screen storage extens ons prov ded for access to

BAS l C ail operating system functions

FORTH p r o g r a m s are h igh ly strut- 2-66 FORTH for C P I M ~ 2 2 or MPiM II $100 00

tu red , m o d u l a r , easy t o m a l n t a l n 8080 FORTH lor CP/M 2 2 or MPIM 1 1 $100 00
8086 FORTH for CP/M 86 or MS DOS $1 00 00

FORTH a f f o r d s d l r e c t c o n t r o l o v e r PCIFORTH tor PC 00s CP/M 86 or CCPM
all In te r rup ts , memory locations, and $100 00 68000 FORTH for CP/M 68K $250 00

110 p o r t s FORTH + Systems are 32 bit lmplernentat~ons
FORTH allows full access to DOS that allow creation of programs as large as 1

f ~ l e s and f u n c t i o n s
megabyte The entire memory address space of
the 68000 or 8086188 is supported directly

FORTH a p p l ~ c a t ~ o n p r o g r a m s can
PC FORTH + $250 00 be compl'ed Into turnkey 'OM f'les 8086 FORTH +for CP/M 86 or MS DOS $250 00

and d i s t r i b u t e d w ~ t h no l~cense f e e saow FORTH + for CP/M 6 8 ~ $400 00

Cross Compl 'ers are Extension Packages available include soft
available f o r R O M ' e d o r d i s k based a p - ware floating polnt cross comp~lers INTEL
p l ~ c a t ~ o n s on m o s t m l c r o p r o c e s s o r s 8087 support AM0 951 1 support advanced col
Trademarks IBM lntetnatlonal Business Machlnes Or graphics character sets symbol1c
Corp CP M D g la\ Research Inc PCIForth + and debugger telecornmun~cat~ons cross reference
PCIGEN Laboralory M~crosysrerns Inc util~ty €3 free f~ le manager Wr~ie for brochure

Laboratory Microsystems Incorporated Lqi fast 0ff1.e Box 10430, Marina de/ Rey, CA 90295 [m]
Phone cred~t card orders to (213) 306-7412

ALABAMA Bay Area Chapter
Monthly, 4th Sat.
FORML: 10 a.m.
General: 1 p.m.
ABC Christian School Aud.
Dartmouth & San Carlos Ave.
San Carlos
Call: FIG Hotline - 415/962-8653

Fort Wayne Chapter
Monthly, 2nd Wed., 7 p.m.
Indiana/Purdue Univ. Campus
Rm. B71, Neff Hall
Call Blair MacDermid
21 9/749-2042

MISSOURI
Kansas City Chapter
Monthly, 4th Tues., 7 p.m.
Midwest Research Inst.
Mag Conference Center
Call Linus Orth
8 16/444-6655
St. Louis Chapter
Monthly, 3rd Tues., 7 p.m.
Thornhill Branch of
St. Louis County Library
Call David Doudna
314/867-4482

Huntsville FIG Chapter
Call Tom Konantz
205/881-6483

ALASKA IOWA
Stockton Chapter
Call Doug Dillon
209/93 1-2448

Kodiak Area Chapter
Call Norman C. McIntosh
907/486-4843

Iowa City Chapter
Monthly, 4th Tues.
Engineering Bldg., Rm. 2128
University of Iowa
Call Robert Benedict
319/337-7853

COLORADO
ARIZONA

Phoenix Chapter
Call Dennis L. Wilson
602/956-7678

NEVADA
Denver Chapter
Monthly, 1st Mon., 7 p.m.
Call Steven Sarns
303/477-5955

CONNECTICUT

Southern Nevada Chapter
Call Gerald Hasty
702/452-3368

Central Iowa FIG Chapter
Call Rodrick A. Eldridge
5 15/294-5659

Tucson Chapter
Twice Monthly,
2nd & 4th Sun., 2 p.m.
Flexible Hybrid Systems
2030 E. Broadway #206
Call John C. Mead
602/323-9763

NEW HAMPSHIRE Fairfield FIG Chapter
Monthly, 4th day, 8:15 p.m.
Call Gurdy Leete
5 15/472-7077

New Hampshire Chapter
Monthly, 1st Mon., 6 p.m.
Armtec Industries
Shepard Dr., Grenier Field
Manchester
Call M. Peschke

Central Connecticut Chapter
Call Charles Krajewski
203/344-9996

FLORIDA KANSAS

ARKANSAS Orlando Chapter
Every two weeks, Wed., 8 p
Call Herman B. Gibson
305/855-4790

Wichita Chapter (FIGPAC)
Monthly, 3rd Wed., 7 p.m.
Wilbur E. Walker Co.
532 Market
Wichita, KS
Call Arne Flones
316/267-8852

NEW MEXICO Central Arkansas Chapter
mice Monthly: 2nd Sat., 2
4th Wed., 7 p.m.
Call Gary Smith
501/227-7817

Albuquerque Chapter
Monthly, 1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Call Rick Granfield
505/296-865 1

Miami
Monthly, Thurs., p.m.
Coconut Grove area
Call John Forsberg
305/252-0108

CALIFORNIA
LOUISIANA Los Angeles Chapter NEW YORK

FIG, New York
Monthly, 2nd Wed., 8 p.m.
Queens College
Call Ron Martinez
212/517-9429

Monthly, 4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.

New Orleans Chapter
Call Darryl C. Olivier
504/899-8933

Tampa Bay Chapter
Monthly, 1st Wed., p.m.
Call Terry McNay
813/725-1245 Call Phillip Wasson

213/649-1428 MASSACHUSETTS
GEORGIA

Monterey/Salinas Chapter
Call Bud Devins
408/633-3253

Boston Chapter
Monthly, 1st Wed.
Mitre Corp. Cafeteria
Bedford, MA
Call Bob Demrow
617/688-5661 after 7 p.m.

Rochester Chapter
Bi-Monthly, 4th Sat., 2 p.m.
Hutchinson Hall
Univ. of Rochester
Call Thea Martin
716/235-0168

Atlanta Chapter
Call Ron Skelton
404/393-8764

Orange County Chapter
Monthly, 4th Wed., 7 p.m
Fullerton Savings
Talbert & Brookhurst

ILLINOIS

Central Illinois Chapter
Urbana
Call Sidney Bowhill
217/333-4150

Syracuse Chapter
Monthly, 3rd Wed., 7 p.m.
Call Henry J. Fay
3 15/446-4600

OHIO

MICHIGAN
Detroit Chapter
Monthly, 4th Wed.
Call Tom Chrapkiewicz
313/562-8506

Fountain Valley
Monthly, 1st Wed., 7 p.m.
Mercury Savings
Beach Blvd. & Eddington
Huntington Beach
Call Noshir Jesung
7 14/842-3032

Fox Valley Chapter
Call Samuel J. Cook
3 12/879-3242 Athens Chapter

Call Isreal Urieli
614/594-3731 San Diego Chapter

Weekly, Thurs., 12 noon
Call Guy Kelly
619/268-3100 ext. 4784

MINNESOTA Rockwell Chicago Chapter
Call Gerard Kusiolek
3 12/885-8092 MNFIG Chapter

Even Month, 1st Mon., 7:30 p.m.
Odd Month, 1st Sat., 9:30 a.m.
Vincent Hall Univ. of MN
Minneapolis, MN
Call Fred Olson
612/588-9532

Cleveland Chapter
Call Gary Bergstrom
2 16/247-2492 INDIANA Sacramento Chapter

Monthly, 4th Wed., 7 p.m
1798-59th St., Rm. A
Call Tom Ghormley
916/444-7775

Central Indiana Chapter
Monthly, 3rd Sat., 10 a.m.
Call John Oglesby
3 17/353-3929

Cincinatti Chapter
Call Douglas Bennett
513/831-0142

Dayton Chapter VERMONT Southern Belgium FIG Chapter GERMANY
Twice monthly, 2nd Tues., & Contact Jean-Marc Bertinchamps
4th Wed., 6:30 p.m. Vermont Chapter Rue N. Monnom, 2
CFC 11 W. Monument Ave. Monthly, 3rd Mon., 7:30 p.m. B-6290 Nalinnes

Hamburg FIG Chapter
Suite 612 Vergennes Union High School Belgium Monthly, 4th Sat., 1500h
Dayton, OH Rm. 210, Monkton Rd. 071/213858 Contact Horst-Gunter Lynsche
Call Gary M. Granger Vergennes, VT Common Interface Alpha
513/849-1483 Call Don VanSyckel Schanzenstrasse 27

802/388-6698 2000 Hamburg 6

OKLAHOMA VIRGINIA CANADA
IRELAND First Forth of Hampton Roads

Call William Edmonds
804/898-4099

Central Oklahoma Chapter
Monthly, 3rd Wed., 7:30 p.m.
Health Tech. Bldg., OSU Tech.
Call Larry Somers
2410 N.W. 49th
Oklahoma City, OK 731 12

Nova Scotia Chapter
Contact Howard Harawitz
227 Ridge Valley Rd.
Halifax, Nova Scotia B3P2E5
902/477-3665

Irish Chapter
Contact Hugh Doggs
Newton School
Waterford
051/75757 or051/74124

Potomac Chapter
Monthly, 2nd Tues., 7 p.m.
Lee Center
Lee Highway at Lexington St.
Arlington, VA
Call Joel Shprentz
703/860-9260

Southern Ontario Chapter
Quarterly, 1st Sat., 2 p.m.
General Sciences Bldg.
Rm. 312
McMaster University
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S4Kl
416/525-9140 ext. 3443

OREGON ITALY
Greater Oregon Chapter
Monthly, 2nd Sat., 1 p.m.
Tektronix Industrial Park
Bldg. 50, Beaverton
Call Tom Almy
503/692-2811

FIG Ilalia
Contact Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/645-8688

Richmond Forth Group
Monthly, 2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Call Donald A. Full
804/739-3623

REPUBLIC OF CHINA PENNSYLVANIA
WISCONSIN

Toronto FIG Chapter
Contact John Clark Smith
P.O. Box 230, Station H
Toronto, ON M4C5 J2

Philadelphia Chapter
Monthly, 4th Sat., 10 a.m.
Drexel University, Stratton Hall
Call Melonie Hoag
2 15/895-2628

Lake Superior FIG Chapter
Call Allen Anway
715/394-8360

R.O.C.
Contact Ching-Tang Tzeng
P.O. Box 28
Lung-Tan, Taiwan 325

TENNESSEE FOREIGN
COLOMBIA

SWITZERLAND

East Tennessee Chapter Colombia Chapter
Monthly, 2nd Tue., 7:30 p.m. AUSTRALIA Contact Luis Javier Parra B. Swiss Chapter

Sci. Appl. Int'l. Corp., 8th F1. Aptdo. Aereo 100394 Contact Max Hugelshofer

800 Oak Ridge Turnpike, Oak Ridge ~ ~ ~ ~ ; (& ? . t ~ ~ p.m. Bogota ERN1 & Co., Elektro-Industrie
Call Richard Secrist 214-0345 Stationsstrasse

615/693-7380 Contact Lance Collins 8306 Bruttisellen
65 Martin Road 01/833-3333

TEXAS
Glen Iris, Victoria 3146
03/29-2600 ENGLAND

Austin Chapter
Contact Matt Lawrence
P.O. Box 180409
Austin, TX 78718

Sydney Chapter
Monthly, 2nd Fri., 7 p.m.
John Goodsell Bldg.
Rrn. LG19
Univ. of New South Wales
Sydney
Contact Peter Tregeagle
10 Binda Rd., Yowie Bay
02/524-7490

SPECIAL GROUPS Forth Interest Group - U.K.
Monthly, 1st Thurs.,
7p.m., Rm. 408
Polytechnic of South Bank
Borough Rd., London
Contact Keith Goldie-Morrison
Bradden Old Rectory
Towchester, Northamptonshire
NN12 8ED

Apple Corps Forth Users
Chapter
Twice Monthly, 1st &
3rd Tues., 7:30 p.m.
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman
415/626-6295

Dallas/Ft. Worth
Metroplex Chapter
Monthly, 4th Thurs., 7 p.m.
Call Chuck Durrett
214/245-1064

Houston Chapter
Call Dr. Joseph Baldwin
713/749-2120

BELGIUM
FRANCE Baton Rouge Atari Chapter

Call Chris Zielewski
504/292-1910

Belgium Chapter
Monthly, 4th Wed., 20:OOh
Contact Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343

UTAH
North Orem FIG Chapter
Contact Ron Tanner
748 N. 1340 W.
Orem, UT 84057

French Language Chapter
Contact Jean-Daniel Dodin
77 Rue du Cagire
31 100 Toulouse
(16-61)44-03

FIGGRAPH
Call Howard Pearlmutter
408/425-8700

Volume VII, No. 1 43 FORTH Dimensions

JF'ORTIIIL XWTEREST G O PRESENTS.
Forth National Convention

September 20 - 21, 1985

Complete conference program, educational seminars,
and commercial exhibits.

Hyatt Rickeys in Palo Alto, California USA

euroFORML Conference
October 23, 1985 - November 3, 1985

International Technical conference at Stettenfels Castle
SYSTEMS Trade Fair in Munich

Guest and Tour Program in Germany

Complete group travel arrangements from USA to Germany
and return. Air travel on Lufthansa Air Lines.

Forth Modification Laboratory
November 29, 1985 - December 1, 1985

A technical conference for advanced Forth practitioners.

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California USA

Complete information available from the Forth Interest Group.

,

FORTH INTEREST GROUP
BULK RATE

U S POSTAGE

P. 0. Box 8231 Perrnlt No 3107

Sari Jose, CA 95155 San Jose CA

- -
Address Correction Requested

