J

e e

HOSTH IMTIENSIONS

{\

i

A 4

R

\

? I FORTH INTEREST GROUP Volume II|
P.O.Box 1105 Number 6
/;—' San Carlos, CA 94070 Price: $2.%

168 Letters

170 Technotes

174 Techniques Journal:
Execution Vectors
Henry Laxon

175 Charles Moore’s BASIC

Compiler Revisited
M.ichael Perry

180 8080 Assembler
John Cassady

182 Skewed Sectors for CP/M
Roger D. Knapp
186 Graphic Graphics
Bob Gotsch
187 Cases Continued
195 FORTH Standard Team Meeting
196 1982 Rochester Conference

FOSTH BIMIENSIDES

Published by Forth Interest Group
Volume 111 No. 6 March/April 1982

Roy C. Martens
Leo Brodie

Publisher
Editor

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith

John Bumgarner
Gary Feierbach
Bob Berkey

FORTH DIMENSIONS solicits editorial material, comments
and letters. No responsibility is assumed for accuracy of material
submitted. MOST MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP IS IN THE PUBLIC DOMAIN, Information in
FORTH DIMENSIONS may be reproduced with credit given to the
author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with membership
in the Forth Interest Group at $15.00 per year ($27.00 foreign
air). For membership, change of address and/or to submit
material, the address is:

Forth Interest Group
P.0O. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in 1969 at the
National Radio Astronomy Observatory, Charlottesville, VA. It
was created out of dissatisfaction with available programming
tools, especially for observatory automation.

Mr. Moore and several associates formed FORTH, Ine. in 1973
fo the purpose of licensing and support of the FORTH Operating
System and Programming Language, and to supply application
programming to meet customers' unique requirements,

The Forth Interest Group is centered in Northern California.
Our membership is over 3,500 worldwide. It was formed in 1978
by FORTH programmers to encourage use of the language by the
interchange of ideas through seminars and publications.

PUBLIC NOTICE

Although the FORTH Interest Group specifies all its publica-
tions are non-copyright (public domain), several exceptions
exist. As a matter of record, we would like to note that the
copyright has been retained on the 6809 Assembly listing by
Talbott Microsystems and the Alpha-Micro Assembly listing by
Robert Berkey. Several conference papers have had copyright
reserved. The general statement by FIG cannot be taken an
absolute, where the author states otherwise.

FROM THE EDITOR

Hil I'm happy to say that starting with this issue, I'll be
serving as regular editor of FORTH Dimensions. I'd like to thank
Carl Street, the previous editor, who has been a great help to me
during the transition. Carl has made several important contribu-
tions to FORTH Dimensions, such as the writer's kit for helping
you submit articles., Carl will rejoin FORTH Dimensions as our
advertising director beginning later this year.

I'd also like to thank Roy Martens, the publisher, for sug-
gesting that I take the editor's post, and for teaching me some of
the facts of life in magazine publication.

I hope to make this magazine as useful as possible to the
greatest number of people. Since most of our readers are still
learning FORTH at one level or another, [intend to encourage the
publication of tutorials (such as Henry Laxen's excellent series
which continues with this issue), application stories (sure, FORTH
is fun, but let's show the world what we can do with it!), examples
of well-written FORTH code (the best way to learn style is by
reading elegant examples), and any ideas, discoveries, impressions
or feelings you care to express (this is your magazine, after all!).

In short, we'll be concentrating on how to use FORTH in
solving problems.

By contrast, system implementation details are more the
responsibility of the individual vendors' documentation. In
addition, the FORTH community boasts two organizations
devoted to improving and extending the language: the Standards
Team and the FORTH Modification Laboratory (FORML). Each
of these groups convenes annuslly, and the proceedings of these
conventions (available through FIG) are extremely valuable docu-
ments for the advanced study of FORTH.

I'm looking to each of you to help make this the kind of
magazine you want it to be, by contributing articles, examples,
and letters. We don't have a staff of writers, so everything we
print comes from you. (If you want to contribute but don't know
what or how, drop me a line. I'll send you the information kit that
Carl put together, and answer any questions you may have.)

I hope you enjoy FORTH Dimensions. And remember, | hope
to hear from all of you.

Leo Brodie

NEW POLICY

The 79-Standard has been voted on and adopted to serve as a
common denominator for transportable FORTH code and for
future discussion of FORTH systems. Beginning with the next
issue, FORTH DIMENSIONS will give preference to articles that
adopt the 79-5tandard

Listings which us2 words that are not 79-Standard are
welcome, but if possible explain such words in a brief glossary
with a note that they are not 79-Standard. For instance, if your
application addresses the name field of a definition (which is
illegal in the Standard), you should supply a glossary description
of NFA.

If possible, also include the definition of such a word. High
level source is preferred, but if necessary, the definition may be
written in assembler.

We hope this policy will encourage unification, eliminate
ambiguity, and simplify explanations.

Page 167

FORTH DIMENSIONS 111I/6

FORTH Application Library
Dear fig,

As distributors in the UK for FORTH
Inc., with a rapidly growing customer
base, we are potentially interested in any
application software that is generally
use ful.

Most of our customers are in the pro-
cess control/industrial/scientific sectors
which, by their nature, require fairly spe-
cialized and customized software. Never-
theless, we are sure there are many areas
of commonly useful software and that
such software would be useful even if only
as a starting point or guideline, in order to
avoid too much reinvention of the wheel!

Such software might be offered as free
and unsupported, at media cost, or as a
chargeable product. Whichever way, it
needs to have at least some documenta-
tion, (i.e., overview and glossary) but it
does not have to be a professional pack-
age.

We have an initial enquiry from a user
who needs a 3-term controller program for
servo control, and some process mathe-
matics for numerical filtering and linear
conversion. As he said to us, "surely
someone has done this before and written
it up enough to be useful?'. So can you
help? If you're offering something free,
perhaps we can do a trade for something
you would like.

If people are interested in application
exchanging we would be happy to act as a
‘node' for making contacts. And where
someone has some software that has a
marketable value, we are interested in
helping to create and promote viable
packages. We'll not make any firmer plans
or suggestions until we hear from you!

Nic Vine

Director

COMSOL

Treway House

Hanworth Lane

Chertsey, Surrey KT16 9LA

Benchmark Battles
Dear Fig:

I believe that the primary considera-
tion of an implementation be fluency of
use, and not speed or size except when
specific problems arise. But after reading
the "Product Review" in FORTH Dimen-
sions [1I/1, page 11 and seeing some
benchmarks, 1 couldn't resist trying the
same on my own home-brew implementa-
tion: 4mHz Z-80, S-100 bus (cne wait
state on all memory ref's). These are the
results I got, plus another column correct-
ing for my slower clock (but not for the

LETTERS

wait state). I guess I designed for speed.

Just want to stick up for the ol' Z-80,
If other people can brag about how com-
pact their implementations are, can't [
brag about how fast mine is?

Timin Duncan

LOOPTEST 2.3 2.9
-TEST 5.9 7.4
*TEST 44.0 54.9
/TEST 74.3 88,6

Bonadio 4%61
LOOPTEST)) 1
-TEST 6.8 4.5
*TEST 17.5 11.7
JTEST 29.4 19.6
Mote

All times in seconds. FEach test involves

32767 iterations.

MNo, I don't use any special hardware.
Just the normal Z-80 instruction set. That
mulitply threw me off when I first timed
it, but the cycles add up about right. 1
just can't figure out why everyone else is
so slow.

I don't have mass storage. That's why [
skipped the last two benchmarks. 1 store
everything in EPROMs. Much faster than
those clumsy mechanical devices.

Allan Bonadio
1521 Acton St.
Berkeley, CA 94702

Editor's Note:

Here is the code for the benchmarks
published in Volume I1I, No. 1:

: LOOPTEST
7FFF 0 DO LOOP 3
: -TEST
JFFFODOIDUP -
: *TEST
JFFF 0DOIDUP * DROP LOOP;
: [TEST
TJFFF 0 DO 7FFF 1

DROP LOOP ;

/ DROP LOOP;

To "G" or not to "G"
Dear Fig,

I would like to comment on the "Start-
ing FORTH Editor.” The "M" command is
bad for reasons of safety and philosophy.
It takes a line from the current screen,
and puts it "out there" somewhere. If it
goes to the wrong place (these things hap-
pen), good luck finding it.

A far better alternative is the inverse
command, which I call "G" for "get." G
takes the same parameters as M (block/
line-) and gets a line onto the current
screen. [believe that only the screen

being edited should change. M violates

this rule, G does not.

One further point: G inserts the new
line at the current line, not under it. This
allows you to alter line 0, which M cannot.

The next extension is BRING , which
gets several lines. It takes (block/line/
count-). I find G and BRING extremely
useful. Comments are solicited.

Mike Perry

I agree! G is more satisfying from the
user's point of view. With M, I find myself
checking back and forth between the
source and destination blocks repeatedly.

The problem of copying a line onto line
zero with "M" reminds me of the same
problem one has with "U" (also in the
"Starting FORTH" editor). I'd like to point
out a simple way to "push" a line onto line
zero, moving the current line zero and
everything else down:

0 T U This will be the new line zero
0TXU

The second phrase swaps lines zero and
one.--ed.

FORTH in its Own Write
Dear Fig,

The two paragraphs below appeared in
an article in BYTE Magazine on pg. 109 of
the August 1980 issue. When it first
appeared, | agreed with what it was saying
but did not feel the need to point it out to
others. Now, however, I think that it's
time to remind all of us about FORTH and
what it isn't. Clearly it isn't any other
language.

The most important criticism of
FORTH is that its source pro-
grams are difficult to read.
Some of this impression results
from unfamiliarity with a lan-
guage different from others in
common use. However, much of
it results from its historical
development in systems work and
in read-only-memory-based
machine control, where very
tight programming that sacrifices
clarity for memory econcmy can
be justified. Today's trend is
strongly toward adequate com-
menting and design for readabil-
ity.

FORTH benefits most from a

new, different programming
style; techniques blindly carried
over from other environments

can produce cumbersome results.

FORTH DIMENSIONS 111/6

Page 168

It still eludes me as to why people
insist on building thinas into FORTH which
are "imports" from other language struc-
tures and that in most places do not have
any logical place in FORTH. Surely they
would not be used by a good FORTH pro-
grammer. Take as a simple example spac-
ings. FORTH does not impose indentation
or strict spacing requirements as do some
other constructs, so why do pesople insist
on indenting? I disagree that this contri-
butes to the readability of the language as
FORTH is one of the mest terse con-
structs in existence. One might say that a
first attempt to improve the readability of
FORTH should center around removing the
cryptological do-dads that are used. For
instance, "@" should be repamed
"FETCH". Likewise, " ! " should be re-
named "STORE" and "." changed to
"PRINT",

Obviously this is absurd and so is the
notion of indentation and other pseudo
spacing requirements that some say con-
tribute te "good programming style."
Good programming style is writing clear,
concise, fast code that does simple things
and then using that and other code to
construct more complex definitions. This
is the premise upon which FORTH was
based. I have seen readable code that was
sloppily written, too big for the job that it
attempted to accomplish and in a single
word was abominable. However, it
"looked neat and clean.”

When the FORTH 79 standard was
released | applauded. We are all aware of
the small ambiguities and possible defi-
ciencies in the standard. However, the
standards team must be commended mere-
ly because they exist and they at least
attempted to create a standard of some
kind. Why then don't people write in stan-
dard code? It aggravates me to see code
in your journal prefixed or post-addended
by a phrase similar to "all you need to do
to bring this code up to the standard
is.." Why not write standard code in the
first place?

This letter is purposely provocative
and I sincerely hope that you decide to
publish it. Through it 1 hope to force a re-
evaluation of the way some individuals
look at FORTH. Some of us still think
that FORTH is elegant because of its
simplicity. It is unfortunate that many
refuse to see FORTH as the beautiful
language that it is, but see it only as
another language that they'd like to
resemble.

J.T. Currie, Jr.
Virginia Polytechnic Institute
Blacksburg, VA 24061

Well-expressed, on hoth points! Regarding
the use of the 79-Standard, see our "New
Policy" at the front of this issue.--ed.

Minnesota Chapter
Dear fig,
Greetings from the Frozen Wasteland!

This letter is to inform you of the
formation of a Minnesota chapter of the
FORTH Interest Group. We have had two
meetings so far, with attendances of
twelve and sixteen respectively. We plan
to be meeting once a month. Anyone who
is interested should get in contact with us
first at the above address.

We hope to start some kind of news-
letter in the near future. I've heard that
it's possible to get copies of program list-
ings and other handouts which have
appeared at Northern California meet-
ings. Could you please let us know how we
go about getting copies? [have enclosed a
SASE for you to respond.

One of our members is running a Con-
ference Tree (a Flagship for The Commui-
Tree Group) which we hope to use for
interchange of ideas, programs, etc. out-
side the general meeting, and to comple-
ment the newsletter. The phone number
for that Tree is (612) 227-0307. The
FORTH branch is very sparse right now,
however, since we are just getting off the
ground.

We are also contacting local computer
groups about jointly sponsoring FORTH
tutorials for specific machines, and pro-
viding a public-domain, turn-key FORTH
system that will turn on their machines.
We currently have such software for the
Apple 11, SYM-1, are close on an Osborne-
1, close on an OSI, and are seeking out a
TRS-80 version.

Well, that's our plans for the next few
months. We would appreciate your cur-
rent mailing list of Minnesota residents
(55xxx and 56xxx zip codes, I believe).

Hope to hear from you soon!

Mark Abbott
Fred Olson
Co-founders of MNfig

Happy to hear about your new
chapter! Your mailing list is on its way.
And yes, handouts from the Northern Cali-
fornia Chapter meetings are available.
Here's how to obtain them:

John Cassady of the Northern Cali-
fornia chapter has agreed to serve as a
clearinghouse. The Secretary of any FIG
Chapter can mail, each month, handouts
from his own Chapter's meetings to Mr.
Cassady. In return, John will send back
one set of all handouts he receives each
month, including those from the Northern
California meetings. Even if a local
Chapter has no handouts, the Secretary
must sent at least a postecard to indicate
the Chapter's continued interest. The

local Chapter's Secretary will make the
necessary copies to distribute to members
of that Chapter.

So, let's see those handouts from all
the Chapters! Write to:

John Cassady
339 15th Street
Oakland, CA 94612

Brain-System

Dear fig,

The special FORTH issue of Dr. Dobb's
Journal made a deep impression on me and
on my son. My son is since 12 years a
system programmer and knows more than
a dozen computer programming lan-
guages. I am a logician and engineer, code
designer and the developer of the only
existing proto-model of Interdisciplinary
Unified Science and its computer-
compatible language, the UNICODE.

Thus, I represent a radically different
path of scientific development--disre-
garded by many because it does not
promise immediate financial returns.

My approach is centered on a new and
far more encompassing system-idea of the
temporary name "brain-system" having a
physical-hetero-categorical genetically
ordered sequence of models of logic. This
sequence has a specific case for present-
day formal logic and a corresponding sim-
plified variant of the system-idea: this is
the system-idea of the digital computer.

UNICODE is the first specific brain-
systern programming language. It is a
content oriented language, it has powerful
semantics and register-techniques. It has
"words" which are at the same time total
programs for the generation of the invars
and "content" the term intends to com-
municate.

I think to study UNICODE will lead to
unsuspected breakthrough in the develop-
ment of programming, especially if think-
ing has been made elastic and modular by
studying FORTH.

I would like to receive the private
addresses of a few creative FORTH fans.
In the hope of your early reply, I remain...

Prof. Dipl. Ing. D.L. Szekely
P.0O. Box 1364

91013 Jerusalem, Israel
December 1981

Anyone follow that?--ed.

Page 169

FORTH DIMENSIONS 111/6

ENCLOSE Correction
for 6502

Andy Biggs
41, LLode Way
Haddenham
Ely, Cambs
CBé 3UL
England

On converting my 6502 fig-FORTH
(V1.1) to work with 256 byte disc sectors, |
discovered (after many system hang-ups)
that WFR's 'ENCLOSE' primitive is not
guaranteed to work with disc sector sizes
greater than or equal to 256 bytes in size.

In his 'ENCLOSE," Bill uses the 6502 Y
register to index through the input text
stream, but this register is only 8 bits, so
if the text stream contains a block of
delimiter characters, e.g., 'space' bigger
than 256, it will loop forever, as I found to
my cost!

When will this occur? Never from the
terminal input buffer, which is only 80
characters long.

With a disc sector size of 256 or
bigger, if you have an entire sector of
spaces in a load screen, then the load will
hang up on this chunk of spaces.

Of...

If your sector size is bigger than 256, then
any chunk of spaces 256 or bigger will
hang it.

I encountered this because [decided to
emulate John James' method used on the
PDP-11 version, where R/W' handles 1K
every time, so as far as BLOCK, BUFFER,
and ENCLOSE are concerned, the disc
block is 1024 bytes, and compiling hung up
on any text gap bigger than 256 bytes!

Anyway, I ENCLOSE (ha ha) a revised
version of the ENCLOSE primitive which I
am now using, which has full 16 bit index-
ing. I'm sure some assembly language
programmer could produce a neater ver-
sion, but at least | know that this one
works.

Keep up the good work.
By the way, I'm willing to act as a fig

software exchange/library in the UK,
unless there is someone already doing it?

TECHNOTES

L313

AHX1

L318

L326

L327

XX¥S

TENCL
THE *

SIACK
THE L

.CYTE
MORD
LMORD

LCA
JSR
TXA
SEC
SEC
TAX
STY
STY

DEY
LEC
PEC
INY
ENE
InC
INC
[
CHMP
BEQ

ONE
INC

FLA

CHP
BNE
5TY
JMP

OSE® PRIMITIVE FOR G502 WITE 16-31T7 INREXING
¥* PEGISTEFE Y1 E
LOCATION * i EYTr
ASL ALDELE ST 1L FLAD AFFECTED
S87."ENCLOSE "
LZ43
we?
T2
LECTUP
#38
£3.X
Ti.X i+ INITIALISE AS BEFORE
3 SETTIWG H1 INDEX = &
SH+3
®1,X 3 PRIME THESE VAL LABLES FOR LODP
Xi®1
EN+3 i INCREMENT HI ADDFESS
21,4 3 AND H1 INDEX
{SH+2),Y i GET CHARACTER FROM INPUT STREAM
iN i 1S IT DE_IMITER 7
L313 H LOGF IF TRULC
T4 % 3 HON-DELIMITIR S0 PUT FIRST
£1,X% 1 RESULT ON THE STALCK
I5,%
(EH+2),Y i GET CHARACT IR AGAIN
L327 i BRANCH IF NOT £ MULL
2 .X
LT i TIDY UP RESJLTS FOR *®ULL® EXIT
%1 .X
3.X
- s IF FIRST AND LAST IKDEXES ARE EQUAL
L3Z&
£1,X
5,8 3 THEHN
L3326
22 ,X% % INCREMEMT THIS RESULT
L326
$3.X
NEXT
1 SAVE CHARACTER
$2,%
S1.X H SAVE TURRENT INDEX AS DFFSET TO
3,.X 5 FIRST DELIMITER AFTLER TEXT
KAXE
£1.X ; INCREMENT INDEX
FN+3 : AND H]I ADDRESS
: RECOVER CHASACUTEF
N 3 IF KOT DELIMITER
1.318 o THEN LOO?
LK ; ELSE EXIT
REXT

FORTH DIMENSIONS I1I/6

Paqe 170

TRANSIENT DEFINITIONS
Phillip Wasson

Editor's Note: This article appeared in
the last issue, but, unfortunately, without
the source code. Here is the article as it
should have appeared. Our apologies.

These utiliites allow you to have tem-
porary definition (such as compiler
words: CASE, OF ENDOF, ENDCASE,
GODO, ete.) in the dictionary during
compilation and then remove them after
compilation. The word TRANSIENT
moves the dictionary pointer to the
"transient area" which must be above the
end of the current dictionary. The tem-
porary definitions are then compiled into
this area. Next, the word PERMANENT
restores the dictionary to its normal
location. MNow the application program is
compiled and the temporary definitions
are removed with the word DISPOSE.
DISPOSE will take a few seconds because
it goes through every link (including vo-
cabulary links) and patches them to bypass
all words above the dictionary pointer.

NOTE: These words are written in
MicroMetion's FORTH-79 but some
non-79-5tandard words are used. The
non-Standard words have the fig-
FORTH definitions.

FIRST 1000 - CONSTANT TAREA (Transient area address)
VARIABLE TP TAREA TP | (Transient pPointer)
: TRANSIENT (--- ADDR)
HERE TP @ DF ! ;
:+ PERMANENT (ADDK - --)
HERE TF ! DP ! ;
: DISFOSE (-==)
TAREA TP | VOC-LINK
BEGIN DUF
BEGIN @ DUF TAREA U(UNTIL NUP ROT ! DUP 0=
UNTIL DROP VOC-LINK @
BEGIN DUF 4 -
BEGIN DUF
BEGIN PFA LFA @ DUP TAREA U(
UNTII. DUF ROT FFA LFA ! LDUP 0=
UNTIL DROF @ DUP O=
UNTIL DROF L[COMPILE FORTH DEFINITIONS ;

¢ Examrle)
TRANSIENT
: CASE vae §
+ OF ves §
: ENDOF e 7
ENDCASE 4+ 3
PERMANENT
DEMOL
+v+ CASE
+oe OF 44+ ENDOF
LI DF LI ENDDF
ENDCASE

TRANSIENT
¢+ EQUATE (N ---)
CREATE : IMMEDIATE
DOES) @ STATE @&
IF CCOMPILE LITERAL THEN i
7 EQUATE SOME-LONG-YWORD-NAME

FERMANENT
¢+ DEMDZ2 { SOME-LONG-WORD-NAME is comriled)
SOME-LONG-WORD-MNAME . ¢ (as a literal)
DISFOSE (Removes the words EQUATE, SOME-LONG-WORD-NAME,)
{ CASI, OFs ENDODF, and ENDCASE from the)
{ dictionary.)
DEMOZ 7 OK (Test DEMOZ, it pPrints a seven:)

RENEW TODAY!

Page 171

FORTH DIMENSIONS I11/6

NOVA bugs

John K. Gotwals
Computer Technology Department
South Campus Courts C
Purdue University
W. Lafayette, IN 47907

I have just finished installing fig-
FORTH on my NOVA 1200, using the
listing I received from fig. Instead of
running it standalone, as the fig listing
does, | run it as a task under RDOS Rev.
5.00.

So far I have found four bugs or omis-
sions in the listing. They are as follows:

Page 10 of the listing - EMIT does not
increment OUT.

[COMPILE] does not work properly, It
can be fixed by removing CFA, from
line 07 on page 42 of the listing.

VOCABULARY does not work proper-
ly. This can be fixed by adding CFA
between AT and COMMA on line 53 of
page 44.

{(FLUSH) can not be accessed until a
missing <51> is inserted after FLUSH
on line 13 of page 52.

After installing fig FORTH, 1 entered
the CYBOS editor from the keyboard and
used this editor to boot the fig editor
listed in the installation manual. After
this experience, I am somewhat pessimis-
tic about FORTH's portability between
word and byte addressing machines. [had
to make quite a few changes before the
fig editor would run. Some examples:

BLANKS expects a word address and
word count.

COUNT expects a word address and
returns a byte address.

HOLD and PAD both return word

addresses.

If any RDOS NOVA users would like a
copy of my "fig-FORTH," they should feel
free to contact me.

RENEW NOW!

RENEW TODAY!

FORTH Standards Corner

Robert L. Smith

DO, LOOP, and +LOOP

There have been some complaints
about the way that +LOOP is defined in
the FORTH-79 Standard. The first
obvious problem is that the Standard does
not define the action to be taken when the
increment n is equal to zero. Presumably
that was either an oversight, or a typogra-
phical error. The most likely correction is
to treat the n=0 case the same as n>0,
since the arithmetic is defined to be two's
complement, and for that arithmetic, the
sign of 0 may be considered to be posi-
tive. I am aware of other possibilities, but
they seem to be fairly difficult to imple-
ment or explain.

The second point that is mentioned is
that the parameter range seems to have a
strange asymmetry. When a positive in-
crement is used, the DO-LLOOP index [
may not reach the specified limit. How-
ever when a negative increment is used,
the index I may be equal to the specified
increment. Users of fig-FORTH systems
have pointed out that the fig +LOOP is
symmetric in the sense that for either
negative or positive increments the limit
value is never reached. One may consider
that the Standard version terminates when
the boundary between the limit n and n-1
is crossed, whether the increment is
positive or negative.

Finally it has been noted that the
Standard LLOOP and +LOOP depend on
signed arithmetic. Many, but not all,
FORTHs use a modular or circular arith-
metic on DO-LOOPs, allowing the index I
to directly address memory. The use of I
to address memory in a Standard LOOP
may result in a non-transportable program
unless a certain amount of care is taken.
The Standard version is easier to define
than one involving circular arithmetic.
Note also that the Standard version allows
approximately twice the range of most
circular loops (such as in fig-FORTH).

The best suggestions for new looping
methods can be found in a paper given by
Robert Berkey at the recent FORMLU
Conference. The paper is entitled "A
Generalized FORTH Lonping Structure." 1
recommend that readers interested in the
topic get a copy of this paper and imple-
ment his suggested words. | wgould like to
slightly modify his results for the current
discussion. Berkey essentially shows a
technigque for looping in which the incre-
ment for +LOOP may alternate between
positive and negative values without
necessarily terminating the loop. Modular
arithmetic is used so that either signed or
unsigned use of the index I may be
employed. The increment may be any
value. The terminating condition is when

the boundary between n and n-1 (actually
n+l in Berkey's paper) is crossed dynami-
cally. The implementation appears to be
even more efficient than that described by
Brodie and Sanderson ("Division, Rela-
tions, and Loops," Rochester Conference,
1981). The only apparent disadvantage of
the implementation is that the index is
computed by addition or subtraction. A
novel feature of Berkey's implementation
is that when the word LEAVE is executed,
the loop is terminated at that point (i.e.,
LEAVE actually leaves). Berkey also
suggests that for normal positive
incrementing loops that the index range
should include the upper limit, in a manner
more consistent with other languages as
weil as typical use in the fig-FORTH
INDEX. Finally, he suggests a construct
so that a loop may be skipped entirely if a
counting parameter is zero.

The work discussed above is of poten-
tial interest to future directions in
FORTH. It shows that FORTH is still
evolving, even though it cannot effect the
current Standard.

Position Wanted

1 am looking for a software engineering
position with another company that uses
FORTH. I would like to work for a firm
using FORTH to develop state-of-the-art
systems software; specifically, a FORTH-
based development and oeprating system
environment to compete head on with
UNIX.

Brent Hoffman
13533 37th NLE.
Seattle, WA 98125
(206) 363-0642

FORTH DIMENSIONS 11I/6

Paqe 172

go
(3}
Ha
ué
S}
an
a8c

1

Ag
AN

B4
BC

vy

Page 173

9900 Trace

Heinz F. Lenk
Loewensteiner Ring 17
6501 Woerrstadt
Germany

I have had some trouble getting iy
9900 FOR TH running.

To ease the finding of errors | wrote a
program to display all important vectors
(IP, W, CODE, R, SP) and the first 7 stuck
contents. Even the stack's growing is
visible.

[would like to contribute it to you, so
you can offer it to all Y900 users with «a
L0OM or similar hoard.

It was a qreat luck for ine that | did
not need the addresses »>37C and »371 , and
could use it for a branch to the STATUS
program. This program is switched off by
the code HFEX 455 384 ! and switched on by
HEX 457 384 !,

The program list contains the routines
for terminal input and output, too.

I hope | can help some people with my
prograrn.

frg PO 9900
SYSTEM DEPENDEND CODE FOR 9290/ 10O0M HUAKD
FOLLOWING PROGIARMS SUPEOKT e T1HEY” AND
TEMIT NS TRUC T LONS,

149 A FROGEAM
TO PRINT OQUT ITHE POINTERS AND fHL B URGT
SEVEN S1ACE CONTEHILS

HEINZ LENE, LOFWENSEETNER KING 1/, 49001 WEORKSTDI
12070867000
R R R R RN

*

L

4

*

1

00 FASE ERRUK P IRNDING YHERE
L

*

‘4

¥ GERMANY .
*

ARG 44

(2N A B R XOF 1 VECTOK W
DATA KENTIRY X0 1 VECIOK P
DAt Froo XOF 2 WECTOR W
DALA EREsr XOp 2 VEX Ok b
DAt FE20 X0F L VEETOR We
DATA MENTLE X L VEC Uk e
|S720 NAT S Sl XU 4 VECHOER W
DATA WeeyY X0 A4 Ve e

LR R R R R R

* KREAD DATA 1O STALE FPOLINIED B¢ RO

4 CALL Wil xor ske,1
AUKG o
2000 KENTRY 1l K1, U0 SEL RO
U
1-1% I o1 IO IVEL 1 L et
160G ONE B RRY
mhb SICK &1, 7 LE O anilt
1612 GhZ HECL IV TN Db
230 KW
LR Y]
OWRITE A CHAERAL TER 10 TERMINAL CEMLL?
* CALL WL xOF sk,
n
20C FMLISF 1 12, o ST RO
HO
1o B 0] RIS 0N
1F14 122 s TRANSMLE . ey
16FE JNE
1Fik 127 T DUK Y
16FE JnL LAy
SNl LD 4.0 TR
1F16 TE2D Th 22 VERANSGILT BUE . Efe Y
16FE RIS o
1F17 TH 23 TRANSMEY SHIEL EMPTY Y
146FC JNE e
80 e

LR)

OAOD S DOTA onob Che e
TEXT "1
s2 exr * W
8% TEXT " CODE ="
654 TeEXT " ke
54 fEXT ™ Spren

Fo

(N3
L2
FL
bt
10
102
104
106
100
1oA
106
108
110
e
114
114
1148
1A
11C

“an
sal
nAar

o

e

i7E
00

U2
A

RS 2

L R]

* SUBFROGRAM TO OUTFUT A STRING TERMINATED BY 00

¥ CAalLy
i
DOBE MCNTR
1302
c2a
10FC
SHO MEXTT
LEAR R R
4 SUBPI
LRSI
¥
201 WENIRY
4
c2ep
LAl
COUl WNEXT
242
oo

282

NtiM
OO0
2ea2

Beo

LUl
16F2

O
IR R R R
¥ PRIN

WITH XOF SADRESS, 3
MOVE 2111+ R
JEQ meEXIT
XOF W2,
O MENTR
Riwie
LR R R R R R R e R el
ROGHAM TO OUTFUL A HEX WORD
K0P SOURCE, 4

FETCH BYTE
EXIT IF ZERO
FRINT ASCII CHAR.

LI k1,4 oty

FETCH WOk
AL TGNMEMT
COFY

MAGE O

MOV sR11,K11
SR K1i,Aa
MOV RI1,R2
ANDT KL, SoFoo
cl 2, 7900 NUMBER
JLE S NUM

Al K2y /0w ADJUGT LETTER

Al K, 2000 ADJUST ASCEL
YOP o k2,2 OuEul

SRO KL, 12 SHLET

DEC COUNT -1

JNE WNE X ZERU

KW EXT

FERREAT N AR AR AR AR RN AN AR RN AR
T STATUS PROGRAN

AUSED FOR DEROG DUKING SET LP

1000 STATLS
PSS A
N
Long
LA
Thoo
Jle o
Nt
ook

shot

Lo
s Oue

Lot

stuu

S1extl
L

LEER R
LAY
+ nNOI

OTHIS 4 LIneS SOLvVE Hi

ant

1000

.

LEER R
A e

4 rOIN
¥ IHE

o

Q07
(3]
CoFe
ci7p
as7

NOF SHARE

X uoan, man S
MOV K7 KO Cory

Deer Ko an ziv
XOF RO 4 ooreuyr e
X a9 N, MG 2w

MOV K1), ko
DECT ko

X0 Ko, 4
XOF 6 L4t MGG CODE
X0 KL 4

X0k oy e, MGG IR

XU Ko, 4
L I I B M 25

X0 Ky,

N
Ul 7 Siac s
[KL, 7 covng
MOV B SIART FEVTCH STACK STakl STAX
i1 K2, Loon GHALE
XOP KU, MG BLANC
XOF 3349 FRINED HEX
[i kY CUHRKENT STACK POINTUR?
JEe o o sTex JumMe TEFOUAL
DECT K2 NEXT GTAl
bre Kl couNT
JNE Stonn REFEAT UNTILL Z2ERO
h s I SUME WORE BY #RY

LR R R R R]
ORLIGINAL DYNAFEE KAM ALLOCAT 10N PROGIRAM DOES
WORE WY T AN UNTERMINATED DATABUS.

FRUBLEML

AOKG tan
s xRS
MOV sk
JED Seaken
NOM

Cl EAK BAM ADDRESS
s DUMMY
JUME Bace TF S ZEKO

R R S R R Y]
INNLE INTERRE TEfR TS CHANGED 160 PRINT AL
TERS (T W, CODERODY.R,SF) AND STACK.
STATUS 1S SWITCIED ON By HEX A%7 04 ¢
SIATDS 1S SWIETCHED OFF BY HEX 4%5% =R4 !

ADKG 576

11 w7, FB FCOF S1ATUS
MOV AZ1Fe, 20
Moy AZWer , ZTEMF
B ¥R7

FOINT T0O BODY
BRANCH 10 STATUS

FORTH DIMENSIONS T11/6

A TECHNIQUES TUTORIAL: EXECUTION VECTORS

This month, we continue our explora-
tion of FORTH programming techniques
by taking a look at a concept known as
Execution Vectors. This is really a fancy
name for very simple concept, namely
using a variable to hold 2 pointer to a
routine that is to be executed later.

It is only fair to warn you that the
dialect of FORTH that I am using is the
one discussed in Starting FORTH by lLeo
Brodie. It has several differences from
figFORTH, not the least of which is the
fact that in figFORTH EXECUTE operates
on code field addresses (cfa's)., while in
Starting FORTH EXECUTE operates on
parameter field addresses (pfa's). This
may not seem like a big deal, but if you
have ever fed EXECUTE a pfa when it was
expecting a cfa, you have undoubtedly
remembered the result. Anyway, my
EXECUTE uses pfa's. Its function is to
perform or EXECUTE the word that this
pfa points to. An example will clear this
up. Suppose we have the following:

: GREET ."HELLO, HOW ARE YOU" ;
' GREET (LEAVE THE PFA OF
GREET ON THE STACK)
EXECUTE (AND NOW PERFORM IT)

the result is:
HELLO, HOW ARE YOU

which is the same result as just typing
GREET.

The above may not seem too signifi-
cant, but the implications are tremen-
dous. Consider the following examples:

VARIABLE "EMIT

:EMIT (CHAR ---)
EMIT @ EXECUTE ;

" (EMIT) 'EMIT !

[assume that (EMIT) is a routine which
takes a character from the stack and
sends it to the terminal. By defining EMIT
to use 'EMIT as an execution vector, we
now have the ability to redirect the output
of FORTH in any manner we choose. For
example, suppose we want all control
characters that are sent to the screen to
be prefixed with a caret. We could do the
following:

3+ CONTROL-EMIT (CHAR =—=)

DUP 32 (BLANK) < IF { Control Char?)
@4 ¢~y (EMIT) { Yes, emit an ™)
&4 (ASCII A - 1) + (and convert it)

THEN

{EMIT) ;

" CONTROL-EMIT "EMIT !

Now all regular characters will fail the
test, since they will be larger than blanks;

Henry Laxen
Laxen % Harris Inc.
24301 Southland Drive
Hayward, CA 94545

however, control characters will succeed
and will be incremented by 64, making
them displayable.

There are several other FORTH words
that have proven useful to vector. Some
of these include:

KEY input from keyboard primitive
CREATE change header structures
LOAD uwseful for many utilities
R/W disk ifo primitive

For example, if LOAD were vectored,
then by redefining it to print a screen
instead of loading it, you could write a
print utility which prints screens in load
order by LOADIng a load screen and rede-
fining LOAD to print. CREATE could be
changed to add the screen number of each
definition to the dictionary header so that
it could later be retrieved with VIEW or
the equivalent. KEY may be changed to
get its characters from a file somewhere
instead of the keyboard. In short, there
are a thousand and one uses for Execution
Vectors.

But be careful, 1 may have opened
Pandora's box with the above selling job.
There is a price to be paid for execution
vectors, and that is complexity, the arch-
enemy of reliability. Every word that you
decide to vector at least doubles the com-
plexity of the FORTH system you are
running, since it introduces at least two or
more states that the system can be in.
You must now also know what the version
is of each execution vector you are
using. If you have 3 different EMITs and 2
different KEYs and 3 different LOADSs,
you have a total of 1B different states
that the system can be in just on these
vectors alone. So use vectors sparingly,
otherwise you will lose control of the
complexity very very quickly.

Having decided to use execution vec-
tors, we're now faced with different
approaches towards implementing them.
The one described above works, and is
used by many people, but it has one unfor-
tunate property, namely the need to name
a variable which is basically overhead.
Here is another way to accomplish the
same thing without having to define a
variable. Consider the following:

: DIE { ===
1 ABORT* THIS WOULD HAVE CRASHED!'" j

: EXECUTE:
CREATE { ===
£°1 DIE ,
DCES »
9 EXECUTE ;

s 1S { FFA ===}
* g

DIE is used to send an error message to
the terminal and reset the FORTH system
into a clean state. EXECUTE: is a defin-
ing word which initializes itself to DIE,
but hopefully will be changed later by the
user. Words defined with EXECUTE: can
be changed with 1S as follows:

EXECUTE: EMIT

* (EMIT) ISEMIT {or perhaps)
' CONTROL-EMIT IS EMIT

What EXECUTE: has done is combined
the wariable name with the Execution
Vector name into one name. IS is used as
a convenience, so that the user can forget
the internal structure of words defined by

EXECUTE:. Also it provides an extremely
readable way of redefining Execution
Vectors. MNaotice that as defined, IS may

only be used during interpretation. I leave
it as an exercise for the reader to define
an IS that may be compiled within : defini-
tions,

Another approach to redefining execu-
tion vectors is via the word ASSIGN. It
could be defined as follows:

@ (ABSLGN) { CFA —==)
> 2+ SWAF ! 3

: ASSIGN ===
COMPILE (ASSIGN)

L " : OFA @ § LITERM i IMMEDIATE

It would be used as follows:

: UPPER-DONLY { ===}

71 EMIT ASSIGN
DUF 94 ¢ ASCII a=-1) > IF
DUP 123 (ASCLE z+1) < IF
32
(HEN
THEN
(EMIT) ¢ AS ALWAYS 1 3

When UPPER-ONLY is executed, EMIT
is redefined to execute the code following
the ASSIGN, which will convert all lower
case characters to upper case, and send
them to the terminal. Note that unlike IS,
ASSIGN may only be used within : defini-
tions.

That's all for now, good luck, and may
the FORTH be with you.

FORTH DIMENSIONS I11/6

Page 174

CHARLES MOORE’S BASIC COMPILER REVISITED

In this paper I will discuss several
interesting features of the "BASIC
Compiler in FORTH" by Charles Moore
(1981 FORML Proceedings).

Why is a BASIC compiler interesting?
There are a number of reasons. Foremost
of them is that BASIC is in many ways
typical of a variety of popular languages,
particularly FORTRAN, PASCAL, and
ADA. Conspicuous features of these lan-
guages are algebraic notation, lack of
access to the underlying hardware, poor
input and output facilities, and non-exten-
sibility. FORTRAN and BASIC also suffer
from poor structuring due to the extensive
use of GOTO. These languages all tend to
be best at solving equations. Other prom-
inent features of BASIC &re it s use of
statement numbers as iabels, low speed,
and its use of a few complicated functions
(e.g., PRINT) rather than many simple
ones.

Why is it slow? BASIC interpreters
usually convert source code statements to
an intermediate form, where keywords
become tokens. The token interpreter is
slow because tokens must be deciphered
(translated into actions) at run time. This
BASIC to FORTH compiler produces code
which runs unusually fast. This is because
it produces FORTH object code, i.e., se-
quences of addresses of code routines.

You should look at the example pro-
grams (blocks 80-82) before reading the
text. You will notice that each BASIC
program becomes a FORTH word named
RUN. 1t is executed by typing its name,
i.e., RUN. This is how BASIC usually
works; you type RUN to execute the
program. It serves to demonstrate that
from FORTH's point of view, BASIC only
knows one "word,” RUN. Is it not more
useful and flexible to let routines have any
name, and to be able to execute any of
them by typing its name? Yes, and that is
a key feature of FORTH,

How It Works

D will refrain from commenting on the
intrinsic value of a BASIC compiler; that
has already been covered well in Moore's
paper. The principal features 1 will dis-
cuss are the handling of operator prece-
dence, variables in algebraic equations,
and the use of the FORTH compiler. The
most important part of this BASIC com-
p_ile_r is its ability to convert algebraic
(infix) source code to reverse polish (post-
fix) object code.

A BASIC program is compiled inside
the colon definition of a word named
RUN. This means that the FORTH system
is in its compile state, and any words to be

Michael Perry

executed during compilation must be
immediate. This use of the FORTH com-
piler was perhaps my greatest lesson from
studying this BASIC compiler. The ordi-
nary FORTH compiler is far more versa-
tile than [had realized. If I had written
this compiler, it would doubtless have run
in the execution state and would have
been far more complicated as a result.
Let's look at an example. The BASIC
statement
IDLETX=A+B
will be compiled into object code equiva-
lent to the FORTH expression
X A@B@A+SWAP!
where X, A, and B are variables. One of
the variables (X) returns an address, the
rest return values (with a fetch). The add
is compiled after the fetches of the values
to be added. The equals becomes the
" SWAP !" at the end. Because the source
code {in BASIC) is in algebraic notation,
and the (FORTH) object code is in reverse
polish order, some way is needed to
change the order of operations when com-
piling the BASIC program. The mecha-
nism which controls the compilation order
is based on the idea of operator prece-
dence, which means that some operatars
are assigned higher priority than others.

PRECEDENCE

The idea of operatar precedence is a
prominent feature of most computer lan-
guages (FORTH is a notable exception).
Operations are not necessarily performed
in the order you specify. An example will
help. The equation X =5+7* 2 could
mean either X =(5+7)%2 or X=5+
(7 * 2), usually the latter. In FORTH this
would be 72 *5 + X !where the order is
explicit. In algebraic languages some
method is needed to clarify the order of
evaluation of operators in expressions.
That is what precedence does. Each oper-
ation is assigned a precedence level.
Operations with higher precedence are
performed earlier.

During compilation of the BASIC pro-
gram (the FORTH word named RUN) the
compilation of many words is deferred.
This allows the order of words to differ
between the source code and the object
code. Take '+' as an example. To defer
compilation of '+' a new word is created
which is immediate (and so executes at
compile time). When this new word is
executed, it leaves the address of '+' on
the stack, and on top it leaves the prece-
dence value of '+. The defining word
PRECENENCE creates the new word as
follows: "2 PRECEDENCE +". This
creates a new, immediate word named '+,
which will leave the address of the old
word "+ under the value 2.

The word which decides how long to
defer compilation is DEFER. DEFER
looks at two pairs of numbers on the
stack. Each pair consists of an address
and a precedence value, If the precedence
of the top pair is larger than that of the
lower, DEFER does nothing. If the top
precedence is less than or equal to the one
below, the address part of the lower pair
is compiled, and its precedence is dis-
carded. DEFER will continue to compile
until the upper precedence is larger than
the lower.

5o how do you get started? Essen-
tially, most BASIC keywords (such as LET)
execute START wahich leaves NOTHING
0 on the stack, where 'NOTHING is the
address of a do nothing routine and G is its
precedence. This pair will remain on the
stack during the compilation of that
statement, because everything has higher
than zero precedence.

At the end of each line, RPN is execut
ed. It performs a 0 1 DEFER, which
forces the compilation of any deferred
words, because every operator has a pre-
cedence of at least 1. RPN then consumes
the 0 and executes NOTHING. Actually,
each statement is ended by the start of
the next. BASIC keywords such as LET
execute STATEMENT, which contains
RPN (to finish the previous statement) and
START (to begin the next).

BRANCHING

Three new branching primitives are
used. They are compiled by various higher
level words. JUMP is used by GOTO.
SKIP and JUMP are used by IF-THEN.
JUMP is compiled followed by an absolute
address. When executed it simply loads
that address into the IP (virtual machine
instruction pointer). When SKIP executes,
it takes a boolean off the stack. If true it
adds & to the IP, skipping (usually) the
foliowing JUMP.

(NEXT) is used for FOR-NEXT loops.
It is compiled followed by an absolute
address. When executed it takes three
parameters from the stack: final value of
the loop index, step size, and the address
of the variable containing the current
value of the loop index. It adds the step
(plus or minus) to the variable, and loops
until the index passes the limit.

Adding GOSUB would require another
branching primitive, CALL.

Page 175

FORTH DIMENSIONS II1/6

STATEMENT NUMBERS

Each BASIC statement must be pre-
ceded by a number. This number acts as a
label, allowing branches between lines. In
this compiler, the numerical value of the
labels does not affect execution order.
When a statement number is encountered,
it is compiled in line as a literal. The
address of LIT is compiled followed by the
literal value 10. For example, when the
statment "10 REM" is encountered, 10 is
compiled as a literal. The keyword REM
is immediate, and so is executed. It
begins by executing STATEMENT, which,
amongst other things, fetches the vaiue of
the line number just compiled (10), and
enters it into the statement number table
(#5) along with the address (HERE) of the
start of that statement. STATEMENT
then de-allocates the space used by the
literal 10 (with a -4 ALLOT). It scans the
table and resolves any forward references
to the new statement, When a forward
reference occurs, as in "GOTO 50" before
statement 50 is compiled, GOTO compiles
'JUMP 0. The zero will later be replaced
by the address of line 50. The reference is
entered into the table with the address to
be patched instead of the actual address
of statement 50. Additional forward
references to the same point will be
chained to each other. To indicate that
this is a forward reference, the address in
the table is negated. This means that
BASIC programs must be compiled below
8000H, so that all addresses appear to be
positive. Here simplicity was chosen over
generality.

VARIABLES

There are two particularly interesting
things to notice about variables, They are
immediate, and they know which side of
an equation they are on. Three types of
variables are supported: integers, arrays,
and two dimensional arrays. Variables
must be declared (defined) before use.
The BASIC expressions: LETX =A+8
(where X, A, and B are variables) compiles
into the following FORTH equivalent:

X A@B@ +SWAP!

Notice that when an integer appears on
the left of an equals sign, it must compile
its address, and when on the right side, its
value (address, fetch). Also note that only
one can appear on the left, while many
can be on the right.

The way this is implemented is sur-
prisingly simple. The variable ADDRESS
contains a flag which indicates which side
of the equals sign a variable is on. The
word LET sets ADDRESS to 1. "INTEGER
X" creates a variable named X, which is
immediate. When X is executed it com-
piles its address. X then examines
ADDRESS., If it is true (non-zero), X
simply makes it zero. If ADDRESS is
false, X compiles a @ after the address,
thereby rturning the wvalue when the
BASIC program is run.

Notice that the equals sign plays no
role in this process; everything is done by
keywords (e.g., LET) and variables.

Future Directions

Many more features can easily be
added to this BASIC compiler. But why
bother? A much more fruitful line of
endeavor would be to make use of the
lessons learned in this compiler to write
compilers for other, more useful, lan-
guages such as C. A C compiler which is
easy to modify and extend, and just as
portable as FORTH is, could actually be

useful. Another area worthy of effort
might be generators for machine code, a
common thing for compilers to have.

Conc lusions

It is possible to use FORTH to produce
portable compilers for other languages.
Doing so provides insight into the nature
of languages, and the desirability of vari-
ous approaches to problem solving.
Whether the compilers themselves prove
useful or not, it is worthwhile to write
them.

(screens on following pages)

Transportable Control Structures
With Compiler Security

Marc Perkel
Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803

This article is an enhancement of the
idea presented by Kim Haris at the
Rochester FORTH Conference (from the
Conference Proceedings, page 97).
Basically, the article proposes a wordset
of primitives for defining control words
such as IF , ELSE , THEN , DO, LOOP ,
BEGIN , WHILE , REPEAT , UNTIL ,
AGAIN , CASE , etc. Kim points out that
these strucures are either compiling a
branch to a location not yet defined (such
as IF --> THEN) or back to a location
previously defined (BEGIN <-- UNTIL).
There are two steps in compiling either
kind of branch: marking the first place
compiled and then later resolving the
branch. This observation leads to four of
Kim's words:
>MARK Marks the source of forward
branch and leaves a gap.

>RESOLVE Resolves forward branch and
leaves a gap.

<{MARK Marks destination of back-

ward branch.

<{RESOLVE Resolves backward branch.

1 complement Kim at this point for his
excellent choice of names. Here's where

compiler security comes in.

The word >RESOLVE is filling a gap
left by >MARK . If >RES0OLVE were to
first check to make sure a gap was there
({DUP @ 0 ?PAIRS) it would help ensure
that the value on the stack was indeed left
by >MARK . Likewise, if (RESOLVE made
sure that the point where it branches back
to does not have a gap (DUP @ NOT
0 ?PAIRS) it would guarantee that it was
not answering a >MARK . This method
allows some compiler security where it is
important not to carry pairs on the stack.

Example:

>MARK HERE D, ;
>RESOLVE DUP @ 0 ?PAIRS HERE
SWAP !;
<MARK HERE ;
{RESOLVE DUP @ NOT 0 ?PAIRS, ;
IF C, >ARK ;
ENDIF >RESOLVE ;
ELSE C3IF SWAP ENDIF ;
BEGIN <MARK 3
UNTIL ©C,<RESOLVE;
1 AGAIN C3 UNTIL
: WHILE IF;
: REPEAT SWAP AGAIN ENDIF ;

FORTH DIMENSIONS I11/6

Page 176

72 73

8 { Charles Moore's BASIC coepiler, acdified for fig-FORTH) { Frecedence !
| VOCABULARY ARITHMETIC ARITHMETIC DEFINITIONS 4 VARTABLE ADDRESS (VARIABLE &4
2 VOCABULARY LOBIC VOCABULARY INPUT FORTH DEFINITIONS i <10 &0 #7 %03 0 ABORT® Unmatched !* ; IMMEDIATE
3 s DEFER (anan-anl #0 3+
4 ; +LDAD BLE 3 + LDAD BEGIN 20VER SWAF DRUP OVER < NOT
5 : (GET#} BL KORD HERE WUMBER DROP ; WHILE 2SMAP LROP CFA , REPERT ;
&3 i, §-)0 SWAP OVER DRBS (¥ #5 GGk & ; + PRECEDEMCE (n -} IN @ [COMPILED " R IN!
7 0 VARIRELE #5 128 ALLDT {BUILDS , R» , IMMEDIATE DOES; 23 DEFER ;
B:SCR J45 2+ B2y
? { Precedence ' 1 +LDAD Z +LOAD I +LDAD : RPN i ni O) DEFER ZOROP 8{ 3 OR ABORT® Syntax" ;
163 [93 WORD ; IMMEDIATE 1 MOTHING
11 ARITHMETIC DEFIWITION t START ¢ - and G @ ! © RDDRESS ! ° NOTHING ¢
12 { BASIC 7 4 +LDAD 5 +LOAD & +LOAD 7 +L0AD ARITHMETIC ; IMMEDIATE
132 0 10 80 +! ; IMNEDIATE : TIGNORE &{ 3 IF ¢ | DEFER Z2OROP R> DROP THEM ;
My [l .3 1 PRECEDEMCE ;
15 FORTH DEFINITIONS
i 75
@ | Branching - high level } { Yariables!
1 + INTEGER <BUILDS 0 , IMMEDIATE DDES» [COMNPILE] LITERAL
21 JUMP RXD R ADDRESS & IF © ADDRESS ' ELSE COMPILE & THEN ;
ToSKIP 0= 0F Ry 4+ 3R THEN
4 GNEXT? { to % step \ variable address -- § : UARRAYY {aa-ap!
S IDUP +' { add step to var ! SWAP 3R 7 DEFER R» [COMPILE] LITERAL
& RIDUPR:ZSHRP itcztvs) ADDRESS & IF © ADDRESS ¢
7 BLIF SNAP THEN - LSE " % 7 0§+ 2SHAP THEN ;
8 O IF 2DROP B> 2+ ELSE R} @ THEN OR: Dedl b1a-ab SHAP 1- 204
7 1 INEXT] COMPILE (NEXT) , ; s ARRAY { a -} {BUILDS 29 ALLOT IMMEDIATE
i DOES: ' [+) (ARRAY) ;
11
12 s i) fxya-ab ROTRITOIR I- OVERZ ¥ Ro ¢ 20+
H : DARRAY § y x -} {BUILES DUP . ® 24 ALLOT IMMEDIATE
" DOES) [8+] iARRAY} ;
i3
7 77
O { Statement nusber { BASIC 1}
1:FINDEn-a) 185885 2¢00 + LET STATEMENT | ADDRESS ! ; IMMETIATE
2 QVER I 3=1IF 20ROF I 2+ 0 LEAVE THEW & +LODF + FOF [COMPILEY LET ; [IMMEDIATE
3 IF OGHAP 853 2' 4522+ 445+ TRER; : [1] COMPILE | MHERE ;
4 : 10 RPH DROP ¢ 3 IMMERIAT
5 ¢ RESDLYE { n) FIND DUF & DUP ¢ ABORT" duplicated” + STEP RPN DROP INNEDIATE
6 BESIN 7DUP RKILE [DUP 2 HERE ROT ! REPEAT 1 NEJ a1 8 RDDREES ! 4 IMMEDIATE
T HERE NEGRTE SHAP H 1+ C/L ¥ IN ! 5 IMMEDIATE
B 1 CHAIN ¢ n - a2} FIND DUP 2 OC IF & MEGATE H O [COHF EM 3 'I‘!"Eﬂlﬁ'f
9 ELSE DUP 2 HERE ROT ' THEM ; I g + IMMERIATE
1 - STF‘.;E!&N" ‘DQDP ICOMPILEY 5 CCOMPILE! FORTH 3 IMMEDIATE
11 ; STATEMENT { n! MERE 2- & °R -4 ALLODT RPM CFa EXECUTE
12 R: RESOLVE ([COMPILE] START + (G0T0: {GETE) [OWPILE JUMP CHAIN ,
13 ; GOTR STATEMERT (80TDY }H‘..I}Iﬂ
14 i IF CTATEMENT LOSIC 1 IMMEDIA
HH : THEN RPN © COMPILE SKIP (BOTO : IMHELIATE

Hichsel Ferrv 1981

Page 177 FORTH DIMENSIONS 111/6

72

0 { Charles Moore’s BASIC coapiler, Input and Dutput)

ASK
BUT
LINPLT
)

i
i
{ ni

e e BN dm Nk bg R

=

INpY

~a co

=

© PRINT
i INPLT

el g e

A

8¢

INTEGER

+ RUN
14 PRINT

Ee EM dm el B3 = oD

3G PRINT

7ALFOR) =

v
S0 PRINT

N g €4 Ry e 43 .0 €0

: RUR

20 LET ¥

83 END

o8
I

£ dm Gk B3 se £D w0 £0 S G- €A ga G B =S <D

26 FOR K

10 INPUT X

7 QUERY
{GET#) CHAP ! 3
I COMPILE PUT 4

nl

Vai

TIGNDRE

Ll

* [COMPILED .
DEFINITIONS
y TIGMORE RPW 0

14 DVER - SPACES TYPE SPACE

25

STATEMENT
STATEMENT

| ADDRESS

[Dwver, page 1

H

T

1M

o
7, Pro

d IKTEGER ¥

STRRT
*TH

* () 1 DEFER ;

ne
oF

{INPLT)

ITHMETIC DEFINITIONS
COMPILE ER

IKMEDIATE

1 ADDRE

T gy
gl

ZDROP COMPILE AS

EDIATE

gram 12

" HOTHING CAR G0

" W

START

=1

nuen

I

1
i

FOPRINT X, ¥

1703

il
i

1 SR

L)
£
=

IMHEBIATE

85!

1

IMMEDIATE

7%
{ Jgeratorsi
LOBID DEFINITIONS
prlan-t1 =N0T;
=lnn=-t1 »HOT;
slan-t 1 (N0
ARITHMETIC DEFINITIONS
=iaal GNP ' 1
Minn-at | EHEF

& PRECEDENCE ABS
S PRECEDEMCE 11
]
a4

L
{ basic: array deac
INTESER ¥
% ARRAY CRORDINATE

t RUN START
FRE=1T079
20 LET CDORGIRATE K

& PRINT COORDINATE K

ol NEXT &
80 END

RUN

wn

]

-
& =
en

PRECEDENCE <
PRECEDENCE /=
PRECEDENEE =

PRECEDENCE =

F3 k3 B3 R

PRECEDENCE =

OVER 1 LOOP 1

IRFUT PRECEDENCE ¢ 2 PRECEDENCE / 4 PRECEGENCE ¥/
PRECEDENCE + I PRECEDENCE -
PRECEDENCE { 2 PRECEDENCE

m

PR ER R SRR i bbR et i i bi R est i it ussfssitivs

144

N

FE e L L R e PR e s e iiTs]

Michael Perry 1981

Michael Perry
& Btannag
Berkeley, Calif., 94702
14151 326-Be9s

e

FORTH DIMENSIONS III/6

Page 178

A ROUNDTABLE ON RECURSION

Recursion, as it applies to FORTH, is
the technique of defining a word in such a
way that it calls itself. One of the nicest
examples I've seen of a good use for
recursion can be found in Douglas R.
Hofstadter's book Godel, Escher, Bach.
He describes a system which can produce
gramatically correct phrases out of parts
of speech.

I''' use FORTH to describe his
example:
: FANCY-NOUN
4 CHOOSE
(select random number 0-3)
CASE
0 OF NOUN ENDOF
1 OF

NOUN PRONOUN
VERB FANCY-NOUN ENDOF
2 OF
NOUN PRONOUMN
FANCY-NOUN VERB ENDOF
3 QF
NOUN PREPOSITION
FANCY-NOUN ENDOF
ENDCASE ;

Three of the four possible variations on
FANCY-NOUN include a call on FANCY-
NOUN itself. Case 0 might produce
'"books," Case 1 might produce "man who
reads books." But Case 1 might also
produce something more complicated, like
"man who reads books that explain alge-
bra," if the iner call to FANCY-NOUN
decides to get fancy.

Normally FORTH deliberately prevents
recursion so that you can call an existing
word inside the definition of a new defini-
tion of the same name. For example:

:+ SHOW-STACK + SHOW-STACK ;

This example might be a redefinition
of plus to teach beginners what the stack
looks like before and after addition. The
plus that is called in the middle of the
definition is the original + , not the one
being defined.

FORTH prevents recursion with a word
called SMUDGE . This word usually tog-
gles a bit in the name field of the word
most recently defined. With this bit tog-
gled, the name is "smudged"; that is, un-
recognizable. In the definition of + above,
the colon lays down a head in the diction-
ary, and then executes SMUDGE before
compiling the rest of the definition.

When the second + is encountered, the
compiler searches the dictionary for a
word of that name. The new head with
the same name is bypassed only because it
has been smudged.

At the end of the definition, semi-
colon again executes SMUDGE . This
toggles the bit back to its original state,
so that the name is again findable.

There are various means of circum-
venting FORTH's protection against recur-
sion. Here are two recent contributions
from our readers:

A Recursion Technique

Christoph P. Kukulies
Aachen, West Germany

Here is my solution to the problem of
recursion in FORTH shown in a possible
way to implement the ACKERMANN's
function (see FORTH DIMENSIONS, Vol.
11, No. 3, p. 89).

First test if your FORTH-system is
"crash-proof" with the following sequence:

: CRASH [SMUDGE] CRASH ;
SMUDGE CRASH

After having recovered from CRASH
you should try this:

(m n => ACKERMANN (m,n)
tACKERMANN (mn -- ACK)
[SMUDGE] SWAP DUP 0= IF. DROP 1+
ELSE SWAP DUP
D= IF DROP 1 -1 ACKERMANN
ELSE OVER SWAP
1 - ACKERMANN SWAP
1 - SWAP ACKERMANN
THEN
THEN ; SMUDGE

Be aware of typing
3 4 ACKERMANRN .,

Another Recursion

Arthur J. Smith
Osahawa Canada LIG 6P7

Regarding the recursion problem, I
think that I have found a more elegant
solution. The solution involves an
immediately executed word to re-
SMUDGE the word being defined.

| define a word RECURS as follows:
: RECURS SMUDGE ; IMMEDIATE

then use the word to bracket the recursive
self definition as in the example:

: SUM
DUP 1- DUP IF RECURS SUM RECURS
ENDIF

+

.

I use the RECURS word in tree

searches.

Editor's note:

The technique that is generally pre-
ferred was described by Joel Petersen in
the original article. It defines MYSELF as

s MYSELF
LATEST PFA CFA, ; IMMEDIATE

or, for some other versions such as poly-
FORTH:

: MYSELF
LAST @ @ 2+ , ; IMMEDIATE
MYSELF simply compiles the code
field of the latest header in the dictionary
(the word being defined) into the defini-
tion.

The problem with using the word
SMUDGE inside a definition is 1) it's not
readable, since smudging has nothing to do
with what the definition is about, and 2)
its behavior is different on different sys-
tems.

Similarly, having to say RECURS
ACKERMANN RECURS is not quite as
readable as simply MYSELF.

An even more readable solution is this:

: R
[COMPILE] : SMUDGE ; IMMEDIATE

R;
SMUDGE [COMPILE] ;; IMMEDIATE
Here a special version of colon and of

semi-colon named :R and R; are defined to
allow recursion without any other hoopla.

RENEW

RENEW TODAY!

Page 179

FORTH DIMENSIONS T11/6

This B0B0 assembler has been available
in a slightly different form for approxi-
mately one and one-half.years. It appears
to be bug-free.

ENDIF 's have been replaced by THEN,
and AGAIN has been rermoved in conform-
ance with FORTH-79. 1 have never had
ocecasion to use AGAIN 3 I doubt if I'll
miss it.

I have removed the compiler security.
We frequently want non-structured control
mechanisms at the code level. The
?PAIRS really gets in the way.

[have introduced three macros: NEXT
PSH1 and PSH2. They emplace, respec-
tively, a jump to NEXT , a jump to the
byte before NEXT and a jump to two bytes
before NEXT . Literally, PSH1 means
push one level (HL) and fall into NEXT . 1
believe this is a more traditional approach
and the source code has a cleaner appear-
ance.

The actual address of NEXT is stored
in (NEXT) . Its value is plucked from ;5.
This technique was suggested by Patrick
Swayne of the Heath User's Group. [say
"suggested" because Swayne's method is a
bit different.

I have left out the conditional
CALLs. I never used them and they can
always be " C, " 'd in. The conditional
jumps are, of course, handled automatic-
ally by the conditionals: IF WHILE and
UNTIL, in conjunction with the flag
testers: 0 =CSPE 0< and NOT .

I have opted to retain the immediate
instructions MVI and LVI as opposed to an
immediate flag #.

The 1MI ZMI etc stands for "number
one machine instruction" ete. The first
cut of this assembler was written when
three letter names were the craze.

I have a selfish motive in publishing
this assembler. [hope that this will flush
out assemblers for other processors and
that there will be a "rush to publish."
There is a good reason to do this besides
vanity. If someone else publishes the
assembler for the "xyz" chip that vou use,
and it becomes established, it means that
you will have to change your code to con-
form with the quirks of the "established"
version. It pays to get there first.

8080 ASSEMBLER

John J. Cassady
339 15th Street
Qakland, CA 94612

Screen

3
0 (FIGFORTH 80

1 HEX VOCABULARY ASSEMBLER IMMEDIATE
2 ' ASSEMBLER CFA ' ;CODE § + !
3 : CODE ?7EXEC CREATE [COMPILE] ASSEMBLER
Yy C; CURRENT 8 CONTEXT !
5
) 1CSP ; IMMEDIATE
T 4 CONSTANT H 5 CONSTANT L
8 2 CONSTANT D 3 CONSTANT E
9 6 CONSTANT M 6 CONSTANT SP s
10 : 1IMI <BUILDS €, DOES> €8 C, ;
1 3MI <BUILDS C, DOES> C@ SWAP 8%
12 4MI <BUILDS C, DOES> C@ C, C, ;
3 5MI <BUILDS C, DOES> €@ c, , ;
14 : PSH2 C3 G, (NEXT) 2 = , 3
15 ;S
Screen 49 314
0 (FIGFORTH 8080 ASSEMBLER 2
1 00 1MI NOP 76 1MI HLT F3
2 07 1MI RLC OF 1MI RRC 17
3 E9 1MI PCHL F9 1MI SPHL E3
4 27 1MI DAA 2F 1MI CMA 37
5 80 2MI ADD 88 2MI ADC 90
65 AD 2MI ANA A8 2MI XRA BO
7 09 3MI DAD C1 3MI POP cs5
8 0A 3MI LDAX o4 3MI INR 05
9 0B 3MI DCX CT 3MI RST D3
10 CH UMI ADI CE 4MI ACI b6
11 E6 4MI ANI EE 4MI XRI F6
12 22 5MI SHLD 2A 5MI LHLD 32
13 €D 5MI CALL HE
14
15
Screen 50 32H

0 (FIGFORTH 8080

48

1 €9 1MI RET
E2 CONSTANT
T MOV 8% 40 + + C,

0

H
80 ASSEMBLER 1

ASSEMBLER 3

€3 SMI JMP
PE F2 CONSTANT 0<

THEN HERE SWAP ! ;
ELSE €3 IF SWAP THEN
UNTIL C,
REPEAT SWAP €3 C, ,

Ll L

H

L

THEN

C2 CONSTANT 0=
NOT 8 +
MVI 8% 6 + C, C
TE G
BEGIN

3

(PATCH
1CsP
?EXEC ?CSP SMUDGE

* H

PSH1 C3 C,

81A0G17

0 CONSTANT B

; IMMEDIATE

: LABEL ?EXEC 0 VARIABLE SMUDGE -2 ALLOT [COMPILE] ASSEMBLER
ASSEMBLER DEFINITIONS
7 CONSTANT A

JJC SOMAROY)
8% DUP + DUP + DUP + ;
;CODE IN NUCLEUS)
; IMMEDIATE

6 CONSTANT PSW
1 CONSTANT C
;S OB + @ CONSTANT (NEXT)

NEXT C3 C, (NE

1MI
1MI
MI
TMI
a1
2MI
3MI
3MI
UMI
4MI
4MI
5M1

81MAR22
pI FB
RAL 1F
XTHL EB
STC 3F
SUB 98
ORA B8
PUSH 02
DCR 03
ouUT LB
SUl DE
ORI FE
STA 3A

81AUG17

WHILE IF

HERE

XT)

(NEXT) 1

2MI <BUILDS C, DOES> C8 + C, ;

= 1
.
’

JJC B0OMAROY)

MI
™I
1MI
TMI
2MI
2MI
3MI
3MI
4MI
4MI
UMI
5MI

EI
RAR
XCHG
CcMC
SBB
CMP
STAX
INX
IN
SBI
CPI
LDA

JJC BOMAROY)

D2 CONSTANT CS

BXE S
HERE 0, ;

FORTH DIMENSIONS I11/6

Page 180

wa

= oW N EWN =00

reen 51 33
(EXAMPLES US
FORTH DEFINIT
CODE CSWAP (
H POP
CODE LCFOLD
D POP H
BEGIN D
WHILE M
IF
THEN
REPEAT

2

_—y

N

[%]

— 3
=L P \V]

15
Screen 52
CODE CMOVE
C L MOV
BEGIN
WHILE
REPEAT
-CMOVE
¢ L MoV
H &P 3
BEGIN B
WHILE H
REPEAT
MOVE

>R
LF

8
M

CODE

=2
OWia—~ O Elwun = O

11
12
13
14
1% ;8

Sereen 53
(EXAMPLES US

2DUP

L A MOV H L MOV

B POP

B POP
{(FROWM~-3 TO-2

~-CMOVE

351

?NG FORTH 8080 ASSEMBLER 1 81AUG17 JJC 80MAR12)
TONS HEX
WORD-1--- SWAPS HI AND LOW BYTE OF WORD ON STACK)
A H MOV PSH1 C;
(FROM-2 QTY-1--- CONVERTS LOWER CASE TO UPPER)

POP

A MOV E ORA
A MOV 60 CPI
0 SUIL A M MOV
D DCX H INX
EXT C;

0=
Cs

NOT
NOT

3UH
(EXAMPLES USING FORTH 3080 ASSEMBLER 2 81AUG17

JJC 8OMAR12
(FROM-3 TO-2 QTY-1--- SAME AS IN NUCLEUS
B POP D POP XTHL

C ORA 0= NOT
H INX D STAX

NEXT C;

(FROM=3 TO-2 QTY-1--- SAME BUT OPP DIRECTION

B H MOV B POP XCHG

DAD XCHG XTHL B DAD

A MOV C ORA 0= NOT
DCX M A MOV D DCX

NEXT C;

f{-1--- SMART MOVE,

ROT

CMOVE THEN

B H MOV
A MOV
A MOV

D INX B DCX

D STAX B DCX

DOES NOT OVERLAY
ROT
ELSE

R>

I.I
ING FORTH 8080 ASSEMBLER 3 81AUG1T JJC 8OMAR12

(COMMAND BYTE)
(COMMAND PORT)
(STATUS PORT)

80 CONSTANT CHMMD
FO CONSTANT CMMDPORT
F1 CONSTANT STATUSPORT

LABEL DELAY
BEGIN
CODE STATUS
1 FPOF
1234
BEGIN
STATUSP
UNTIL NE

D
cM™

N= CWU—ONEWN = O

—_

15

LT

--- DELAY CONSTANT IN DE, DON'T USE THE STACK
D A MOV E ORA 0= UNTIL RET C;
{ BIT MASK-1---

(
pCcX

MD A MVI CMMDPORT OUT
{ DELAY CALL
0=

ORT 1IN NOT

XT C;

L ANA

Sieve of Eratostenes
in FORTH

Mitchell E. Timin
Timin Engineering Co.

The enclosed version of Eratosthenes
Sieve was written for an implementation
of Timin FORTH release 3. I was pleased
that it executed in 75.9 seconds, as com-
pared to the 85 seconds of figFORTH.
Mine was run on a 4 MHZ Z-80 machine,
as were the others in the BY TE magazine
article.

The speed improvement is primarily
due to the array handling capability of
Timin FORTH release 3. FLAGS is
created with the defining word STRING;
n FLAGS leaves the address of the nth
element of FLAGS. This calculation
occurs in machine code.

SCR = 35
0 { The Sieve of Eratosthenes, afier J. Gilbreath, BYTE 9/81)
B190 CONSTANT SIZE SIZE STRING FLAGS { make array of flaas)
i PRIME 0 FLAGS SIZE 1 FILL { start by settino the flaas)

o t create counter which remains on tor of stack)
{ remeat followinc loor B190 times)
{ fetch next flac to tor of stack)
{ if flac is true then do the followina!)
DUP + 3 o+ (calculate the erime number)
UP I+ { stack is! counter,» prime, K)
EGIN DUP SIIE < WHILE { reereat for K < B190)
o] OVER FLAGS C! (clear Kth flao)
OVER + (add erime to K)
REPEAT
DROF DROP
ENDIF
3 SPACES

SIZE O DO
I FLAGS
IF

ce

==

1+ (dror K &k Prime, increment counter)

. disrlay count)

LOOP +" PRIMES i { finish,
36

testinc the sieve alcorithm)
BELL 7 EMIT
NEW-LINE CR © OUT !

NEW-LINE? our @ 70>

O VARIABLE KOUNT

e ek

'
IF NEW-LINE ENDIF i
PRIME-TEST
10 0 DO PRIME LOOF
above is for timinc test.
0 KOUNT ! NEW-LINE
SIZE 0 DO
I FLAGS Ce
IF

BELL { first sound the bell)
BELL ¢ run the prime finder 10 X)
below is for validation)

(clear counter, start new
check each flac)
see if it's set)
calculate the prime number)
diselay it)
count it)

i

line)

I DUP + 3+

7 +R NEW-LINE?
1 KOUNT +!

ENDIF

LOOP CR KOUNT ?

(
(
(
(
(

+* PRIMES (display the count)

Page 181

FORTH DIMENSIONS I11/6

SKEWED SECTORS FOR CP/M

In regard to Michael Burton's article in
FORTH DIMENSIONS, 111/2, page 53, "In-
creasing fig-FORTH Disk Access Speed," |
enclose a simple mod to the 8080 or Z80
assembly list to effect the CP/M skewed
sector disk I/O. The FORTH routines I
used to test the scheme are included. The
first cluster or screen is offset by 52 sec-
tors so that the operating system is trans-
parent and screens 0 and 1 hold the direc-
tory. I move the message screens to
SCR# 24 and 25 leaving 2-20 for the
FORTH binary program run by CP/M or
CDOSs.

In order to check any increase in disk
access speed [timed the following opera-
tion with a 10 screen buffer:

20 270 10 MCOPY 20 270 10 MCOPY
20 270 10 MCOPY

Elapsed times were 204 and 138 seconds
for straight and skewed sectors respec-
tively. MNote that this reflects disk access
speed for read/write of several sequential
sectors and in no way compensates for
inadequate planning or poor programming
in other disk 1/O applications.

If this seems trivial, then you have no
need for CP/M file compatible /O. My
motive for these changes is the desire to
write the assembler program for fig-
FORTH via modem (easy to implement in
FORTH) to friends and colleagues. As
added value my disk 1/0 can be faster.

Roger D. Knapp

LD DE, SETDSK
CALL 1ns

PP BC

JP HEXT

3 SEM

o)

3 RESTORE (IP)

np £6H

03 'S-SKE!
"W+EOH
“ SETORV-12

; S-SKEW

np e ; SECTOR SEQUENTIAL
HL ,TRTBL 4

R7H
'TASCAL'
'Clea0Y
SSKEY-0Q .
DOCOL ,DENSTY Y
ET
D ZBRAN, TSCALS-S
; DOUBLE DEMSITY

0l LIT,BUPDR?

3 TASCALC

: SIMGLE DENSITY
TSCrLS: DY LIT.52.PLUS .
o L17,BUPDAL
i SLTA0
Di! LIT.FXDRV-1
N WM

o S

DUP,DRIVE

AT, EGUAL
ZREAN,TSCAL2-S
n20P

SLHTD, TRACH
STORE ,ONEP

SSKEL! 5 SEQUEN
SEC, ST0RE

n¢ SEFIS

-
SCR = A6
| isk Tavout and 1/0
1 FOITH NS NEC TIAL
} LABEL NS (CP/h: SERVICE RE(UEST
&8
S 0faE SET-10 (sector track addrs ---
B oudp, B PUSH, HB LD, L CLD,
7 H PGP, B PUSH, HB LD, L CLD.
4 W POP, B PUSH, L C LD,
6 NEXT, C;
10
11 CODE SET-DRIVE (n --- 1
12 H PP, B PUSH, L G LD,
12 HEXT, C;
14
15

; SECTOR TRANSLATED

NRIVE # T0 CP/H

0,1,7,13,1¢,26.5,11,17,23,2.0
ng 15,21,2.02,14,20,25,6,12,18,24,4,10,15,22

TRANSLATIOY TARLE ARGVE
1 ADDR OF W“EW SECTNR

MODIFIED

Y1 LhHLe,

21
n

Lort,
LoPT,
LDPI,

12D -

1£D

12 9 LDPI

)

. ADDED
>~ AFTER
"SET DRIVE”

J

QIP 52 SECTORS FoR
OPERATING SYSTE M

DOATRP, JOHL,

1S CALL, B PNP,
108 CALL, B PP,
NS CALL, [enp,

IS CALL, 8 POP,

FORTH DIMENSIONS I11/6

Paqge 182

SCR = 81
N { SECTOR SKEW FCR CP/M FORMAT CLUSTERS)
1 FORTH DEFIMITIONS DECIMAL
2 @ CTRBLE (bytesize TRBLE)
3 <BRYILDS 0 DG €, LNOP DOES> + CG
4 72 16 10 4 24 1% 12 6 26 20 14 R 221 158 3 23 17 11 5 25 10
§ 13 7 1 0 27 CTABLE S-SKEW (for CP/M clusters)
A
7 ¢ NSETUP { Setup n sectors for HXTS.)
2 0 adrs bk n --- seC trk addr ... secn trkn addrn)
2 BOT OVER 127 * + ROT ROT OVER + 1- SWAPR 1- SUAP

Diagnostics on Disk Buffers

Timothy Huang
9579 NE Gertz Circle
Portland, OR 97211

While I was in the process of explaining
the disking to some friends, I found it
would be nice to show them some sort of
representation which lists all the disk
buffer status. This short program was
then written for this purpose.

The figFORTH uses the memory above
USER area for the disk buffer. This disk
buffer area is further divided into several
blocks with the length of each block equal
to B/BUF + 4 bytes, There are some im-
plementations that set B/BUF to be 1024
bytes and some, like B0B0 CP/M, that set
it to be 128 bytes. Another constant
beside B/BUF frequently referred in disk-
ing is the B/SCR (buffers per screen). For
B/BUF = 1024, the B/SCR = 1 and for
B/BUF =128, B/SCR = 8.

Each block needs 2 bytes in front of it
as the header which contains the update
bit {bit 15) and block number (lower 0-14
bits). It also needs a 2-byte tail to end the
block.

The word BLOCK will put the begin-
ning address of a given block (assuming
the block number on stack before exe-
cuting BLOCK). With these simple words,
virtual memory can be utilized, but it is
beyond the scope of this short article.

‘\\“ The short program will display the

status of each disk block until it is ex-
hausted or you terminate it by pressing
any key. The first thing it does is print
out the title line (line 4). Line 5 sets up
the boundary for the DO ... LOOP. Line 6
prints the buffer number while line 7
prints the beginning address of each buffer
in hex. Lines 8 and 9 check the buffer
update status. If it has been updated, then
an " !" will be printed in the upd
column. Lines 10 and 11 calculate the
block number, screen number and the -sub
number. The reason for teh -sub is
because for my system, B/LBUF = 128,
B/SCR = B, there are 8 blocks to make a
whole screen. So, I thought it would be
handier to know which subpart of a given
screen the block 1 want.,

Lines 12 and 13 check the early termi-
nation and finish the definition.

PO

10 00 1 26 /MOD SWEP 1+ S-SXEW SWAP ROT 128 - DUP
11 -1 +L0OP DROP
12
12 : MRTS (Read nsectors.) [s t a ... sn tn an n ---)
14 0 DO SET-I0N SEC-READ DISK-ERRNR @ IF LEAVE THEN LOOP ;
15
LR = RO
O (WMCGRE CP/% FOGRUEAT DISK 1I/0 }
1 FORATH DEFIKITINMS DECIMAL
2
30T [Write n osectars to CP/Y cluster.)
Z NN SET-IN SEC-VRITE DISK-ERRCR @ IF LEAVE THEY LOOP
A oyoufuanp/e U 0PN shewsd cluster 1/000
7 0 addrs Bl¥ f ---) >R 52 + 2000 /MOD SET-DRIVE
9 SEC/BLK MSETUP [82 + so cluster alloc CE/M)
G R» IF SEC/BLK HRTS
30 ELSE SEC/PLK MMTS
11 EMOTIF DISK-ERRDNR £ 9 TERRCR
17
12 0 £11 of scrcens 61 and A2 sh2meolessly adanted from John Jamesg')
16 (fio-FidTH for the LSI-11.)
15
nk
SCR # 90
0 (.BUFS TDH 7/11/81)
1 DECIMAL
2 .BUFS (display adr of all buffers)
3 CR ." # Addr(hex) Upd Block# Screen -sub"
b FIRST #BUFF 1+ 1 DO
5 CRI 2 .R 2 SPACES
6 DUP 2+ HEX 6 0 SWAP D,R DECIMAL 1 SPACES
7 DUP @ 132768 AND
8 0= 0= 72 + EMIT 2 SPACES
9 DUP @ 32767 AND DUP 6 R 4 SPACES
10 B/SCR /MOD 5 ,R L SPACES 2 .R
11 132 + 7?TERMINAL IF LEAVE THEN
12 TOOP DROP CR
13
1L
15
oK
L.BUFS
Addr(hex) Upd Block# Sereen -sub
1 IER2 720 90 0
2 IF06 721 90 1
3 3F8A 722 20 2
I LOOE 723 90 3
5 Log? 724 90 L
6 1116 725 90 5
7 1194 726 90 6
8 L21| 727 90 7
9 Lopo 0 0 0
Page 183

FORTH DIMENSIONS 111/6

FLOATING POINT ON THE TRS-80

Most FORTH systems have no provi-
sions for handling floating piont numbers,
although most popular micros have the
necessary routines hidden in their ROM-
based BASIC interpreter. These are fast
routines written in assembler. The follow-
ing is to demonstrate how these can be
accessed and used to implement single
precision floating pint arithmetics for the
TRS-80 in MMSFORTH, Version 1.8.

Single precision floating point data is
stored as a normalized binary fraction,
with an assumed decimal point before the
most significant bit. The most significant
bit also doubles as a sign bit.

A binary exponent takes one byte in
each floating point number. It is kept in
excess 128 form; that is, 128 is added to
the actual binary exponent needed.

The binary mantissa is 24 bits long, the
most significant bit representing the sign
bit. It is stored as 3 bytes normally with
the least significant byte (L.SB) stored
first and the most significant byte (MSB)
last, followed by the exponent.

Numbers should be entered using the
notation specified for the TRS-80 L2
BASIC. Integers and dobule precision
numbers are converted to and stored in-
ternally as single precision numbers.

The complete vocabulary and listing of
the source screens for either MMSFORTH
or figFORTH (specify) is available for $7
(U.S.) from Kalth microsystems. It in-
cludes both single and double precision,
trigonometric and log functions, floating
point constant, variable and stack opera-
tors, conversion routines to/from integers
(FORTH type) and floating piont numbers.

GLOSSARY

Single Precision Floating Point

F+ (F1F1 --F) Add
(F=F2+F1)

F - (F2F1--F) Subtract
(F=F1-F1)

F* (FZF1-—-F) Multiply
(F=F2%F1)

F/ (F1F1--F) Divide
(F=F2/F1)

Kalman Fejes
Kalth Microsystems
PO Box 5457, Station F
Ottawa, Ontario K2C 3J1

Canada
BLOCK 9
0 (FTP #1 :KIF 810816) FORGET FTASK FTASK ; HEX
1 (SINGLE PREC. FLOATING POINT FOR TRS-80 IN MMSFORTH V1.8)
2 EXX D9 ¢, ;
3 CODE F.& EXX OFBD CALL 28A7 CALL EXX NEXT
L CODE F#& EXX HL POP 2 RST OE3C CALL
5 0AB1 CALL EXX NEXT
6 : F@ DUP 2 + @ SWAP @ 4 WOAF C! ;
7 : Kt DUP ROT SWAP ! 2 + ! L LoAF C!
8 : AS Li21 Fa ;
9 : F#0 HERE O OVER 3E FILL BL WORD F#& A S ;
10 : F#IN " 7 "™ PAD DUP 1+ 63 EXPECT F#& A S ;
11 ¢ F#L F#0 SWAP (L) (L) , , (L) (L), , ;
12 : F# STATE C@ IF F#1 ELSE F#0 THEN ; IMMEDIATE
133 P, S A F.& L4 Loa® C!
14 : 10FT ; DECIMAL
15
BLOCK 10
?}({E)FELOT. PT, #2 :IF 810816) FORGET 10FT : 10PT ;
2 CODE F+& EXX DE POP BC POP 716 CALL EXX NEXT
3 CODE F-& EXX DE POP BC POP 713 CALL EXX NEXT
4 CODE F¥& EXX DE POP BC POP 847 CALL EXX NEXT
5 CODE #/& EXX DE POP BC FOP 8A2 CALL EXX NEXT
6 : F+ S A F+ AS ; : F- S A PFP-& AS ;
7 :F% S A F*¥& A S ; : ®/ S A F/& AS ;
8 DECIMAL
9 (SAMPLE AND TEST ROUTINES)
10 : FTEST F#IN CR F# 2 F+ F# 200,0E-2 P-
11 F# 5000,1 F¥ F# 5,0001E+43 P/
12 PAD F' PAD F@ &, ;
13 ;8
14
15
F (- F) FTEST (-
Takes a number from the current A sample program to demon-
buffer, converts it to single pre- strate the use of these floating
cision floating point number and point operators. It asks for a
leaves it on the stack. floating point number from the
keyboard, manipulates it using all
F#IN (-F) the operators defined and prints
Asks for a floating pint number the result. (It should be the same
from the keyboard, and leaves it number that was supplied.)
on the stack.
Notes: A -- 16 bit address
F@a (A-F)
Floating point fetch. Takes a F, F1, F2 -- are single precision
floating point number from floating pint numbers (two 16-bit
memory at address and leaves it words each).
on the stack.
F! (F A-)

Floating point store. Stores the
floating point number on stack in
memory at location A,

FORTH DIMENSIONS 111/6

Page 184

TURNING THE STACK INTO LOCAL VARIABLES

Mare Perkel
Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803

Oceasionally in writing a definition, I SR & W
find that I need to do unwieldiy stack 0 (¥%k{ ARGUMENTS-RESULTS >%¥x%k)
juggling. For example, suppose you come 1 VARIAEBLE CARG] VARTAELE [TOI
into a word with the length, width, and 2 ¢ +ARG CREATE » DOES: P CARG] @ SWAFP - [TOJ @ 7OUF
height of a box and want to return the 3 IF 0« IF +! ELSE ! ENDIF ELSE @ ENDIF O LTOZ ! 3
volume, surface area, and length of 4
edges. Try it! 4] 0 +aARG 51 2 +ARG 82 4 +ARG 53 6 +ARG 54
A 8 +aARG 55 A +ARG 54 C +ARG 57 E +ARG S8
For this kind of siuation 1 developed 7 10 +ARG 59 (¥TOD VARIABLESX)
my ARGUMENTS-RESULTS words. The 8
middle block fo the triad shows my solu- =S TN o DS B s ¢ 3 A A { ¥SETS STORE FLAG FOR +ARGX)
tion to the box problem. A3 4TO —1 CTOD ! (¥SETS +STORE FLAG FOR +ARGX)
B
The phrase "3 ARGUMENTS" assigns ¢ ¢ ARGUMENTS R> LARG1 @ »R >R 2% SP@ + DUF LCARGI ! 12 - SPR SWAF
the names of local variables 1 through 9 to i) -2/ 0 D0 O LODE O CTOT + 5
nine stack positions, wtih S1, S2 and S3 E ! RESULTS 2% [ARG] @ SWAF - SF@ - 2/
returning the top 3 stack values that were P 0 DO DROF LOOF R> R> CARGI | >R 3
there before 3 ARGUMENTS was exe-
cuted. 5S4 through S9 are zero-filled and
the stackpointer is set to just below S9.
S1 thorugh S9 act as local variables
returning their contents, not their
addresses, To write to them you precede SCR & C
them with the word " TO ". For example, 0 ¢ ARGUMENT EXAMPLE --- EBOX COMES IN WITH HEIGHT» LENGTH
5 TO S4 writes a 5 into 54. Execution of 1 & WIDTH AND LEAVES VOLUME, SURFACE AREA & LENGTH OF EDGES)
S4 returns a 5 to the stack. 2
3 § BOX 3 ARGUMENTS
After all ecalculating is done, the 4 ¢ JvoLm 51 52 83 ¥ x TO 54
phrase "3 RESULTS" leaves that many 5 { SURF) S1 S2 2 % % 82 83 2 % % 51 S3 2 % X + + TO §5
results on the stack relative to the stack & ¢ EDGE) 51 4 X 52 4 X §3 4 % + + TO 53
position when ARGUMENTS was exe- 7 4% 1O 52
cuted. All intermediate stack values are 2 54 TO 51
lost, which is good because you can leave K4 1 SULTS &
the stack "dirty" and it doesn't matter.]
B
G
o
E
F
GCR %
o 3
1 T GISK@! 5 ARGUMENTS
2 51 52 0400 U/MOD 1+ TD S1 TO §2
X ECGTN S4 05
4 WHILE S1 BLOCK 52 + §3
3 59 IF SWAF UFDATE ENDIF

é 54 0400 52 - MIN DUF TO S4 CMOVE

7 54 +TO B3

& S4 NEGATE +T0 54
? 1 +70 51

[0 TO 52

E REPEAT

C O RESULTS 5

n ¢ DISKE O DISKE@! 5

£ § DISK! 1 DISKE!

Page 185 FORTH DIMENSIONS 1I1/6

Accompanying these comments are
several graphic specimens drawn on Apple
computer using FORTH and printed on a
dot-matrix printer. They range from logo-
type design to experiments in geometry
and pattern. One can generate real-time
motion graphics on the Apple in which
color and action partially compensate for
the low resolution of 280 by 192 pixels.
Hardcopy, whether prinout or color photo,
isn't the final product. The interactive,
sequenced and timed display on the screen
is the designed product, likely to displace
the medium of print on paper in the
future.

While these graphic samples could have
been programmed in other languages, I
have found the advantages of using
FORTH are both practical and
expressive: immediate and modular ex-
perimentation with the peculiarities and
limitations of the Apple video display, and
orchestration of complex visual effects
with self-named procedures rather than
the tedious plots and pokes to undis-
tinguished addresses. With this ease of
wielding visual ideas, FORTH might lead
to a new era of computer graphics, even
creative expression.

It may remain individual and personal
expression, however, without graphics
standards. Transportability of grahics--
generating code may be neither possible
nor desirable considering the differences
in video display generation, alternate
character sets, shape tables, display lists,
interrupts, available colors, ete., between
microcomputers. Each has some individ-
ual features to exploit. Most have, how-
ever, such limited memory for graphics as
to make machine-dependent economy an
overriding aspect of programming for
graphics.

Despite the rarity of FORTH graphics
thus far, I'm convinced it is an excellent
vehicle for bringing out undiscovered
graphics potential of each micro. In ad-
dition, the visibility gained by some effart
to evolve grahic ideas in FORTH would
help in both spreading and teaching the
language. Perhaps this issue of FORTH
DIMENSIONS will stimulate just such
activity.

Editor's Note: The author tells me
that Osborne/McGraw-Hill publishers have
used his patterns, generated on Apple Il
using Cap'n Software FORTH, as cover
artwork for their book "Some Common
BASIC Programs™!

GRAPHIC GRAPHICS

Bob Gotsch

California College of Arts and Crafts

"-.

Fop | f“':!.'rﬁ?. \r'jfd 4,
| 5";*'4“ m;,ﬂ:;f’?!'f -

OO N M N

FORTH DIMENSIONS 11176

Page 186

CASES CONTINUED

Editor's Note: In Volume II, Number 3,
FORTH DIMENSIONS published the results
of FIG's CASE Statement Contest. As we
had hoped, the variety of responses has
stimulated further work on the subject.
Here are four additional CASE constructes
submitted by our readers.

$ 0 0 (CASE STATEMENT BY CHARLES EAKER FD II 3 39 JJC 81AUGO9)
EHs R CASE for B0H 1 : CASE 2COMP CSP & !CSP 4 ; IMMEDIATE

John 3. Cassady 2 CODE (OF) H POP D POP ' - 8 + CALL L A MOV H ORA 0=

3 IF B INX B INX NEXT ENDIF D PUSH ' BRANCH JMP C;
Here is an BOBD (Z80) version of the y OF 4 ?PAIRS COMPILE (OF) HERE O , 5 ; IMMEDIATE
keyed case statement by Charles Eaker 5 EN.DOF 5 ?PAIRS COMPILE BRANCH HERE 0 ,
that was published in FORTH DIMEN- ; pal Ecgi‘ﬁiﬁglcgﬁg‘h: P
. ? I)
E;S;\Iu?. 11/3, page 37. 1 have found it very 8 BEGIN SP@ CSP @ = 0=
9 WHILE 2 (COMPILE] THEN
10 REPEAT CSP ! ; IMMEDIATE
11 TEST CASE 41 OF ."™ A " ENDOF
12 42 OF ." B " ENDOF
13 55 OF ." e " ENDOF ENDCASE ;
14 (41 TEST A OK)
15
Eaker's CASE Augmented
Alfred J. Monroe
3769 Grandview Blvd.
Los Angeles, CA 90066
I was delighted with Dr. Eaker's ——
i i e 14
SCIgi‘ES, V:Ic.:nflt‘rulgzl.o:;, LI‘TD;')!'F-;ndiJ:xE::_ M oL LR, EAKERS UHSE L:Ul_-{':»'l R i-.il_'I!_-i_ H SLIGHT MOLIFICATION >
mented it immediately., Recently | have 1 @ LRz JLumb CoF @ fUse 4_:' “'H"f'"“_r‘:b_
found it desirable to augment CASE with 2 & ks uUeR = Lk LROFOL ELSE G I‘_:Hi“’:':_ S
three additional constructs in order to = 2 UF 4 THFRLRS i_.ur_'1:~i'1‘i;::_ 'L:i— ¢ PORCILE. | BEsercH
t > iables. - HbkE @ o % 3 LIFMMEDIATE _ :
i S L eemed S B S e T e e o e
i ; ; 5 LCOMELILE S » 3oLk
e ot e v 1 ENDGHEE < VPHIND COMPALE DKOP EEGIN SP@ C5F 4 =@ =
i 5 WHILE 2 LCUMPILES EHDIF REFEAT CSF 0 IMMEDIATE
Screen 144 lists Dr. Faker's CASE e
construct with one slight modification. 1o
OF has been modified to use (OF), The Li
original OF compiled to ten bytes. The 1z
revised OF compiles to six bytes. This 15
forty percent reduction in code is not as 14
impressive as that which occurs using Dr. 15—
Eaker’'s CODE word (OF) construct, but
it does have the advantage that it is highly Sk # ldn
portable. (OF) tests for equality and o iHRE dub. o sOb . AL RHo-OF ERTEMSIOHS
leaves a true or false flag on the stack. 1 2 w2 Gk > 1k DROF 1 ELSE @ ENDIF 3
Note that it drops the test value if the £ a0 & SPHIRD Cubibile d0F) COMPLILE GRRANCH
test is true, 3 Helie @ . % 3 IPMMEDLIHITE
4 ¢ owoubo UdkR < IF RO 1 BELSE @ EMHLIF 2
Screen 145 lists the extensions that | ooe sk 4 vRRLGES LukeALE CROFD COMFILE GRBRAMCH
have found useful, <OF, >OF, and RN(:- & HekE & . 9 3 IMMEDIATE
OF. <OF does a "less than" test. >OF does vos REAMGE MR OOUER DUE B> I+ < 1F SWHF 1- > IF DROF 1 ELSE @
a "greater than" test. RNG-OF does an =3 gL lE cosk DRl DREOF 8 EHLILF 2
inclusive range test. <OF and >OF are 42 ERLTUE 4 UrHadE COMPILE RAMGE COMPILE GBRANCH HERE @ . 5 2
trivial modifications of OF and (OF). g IMMELIHIE
RANGE and RNG-OF are constructed in il
the same spirit as (OF) and OF . Lz
Screen 144 compiles to 175 bytes. 14
Screen 145 compiles to 223 bytes. e

Page 187 FORTH DIMENSIONS III/6

S0k #1485

8 « BExAHMFLE USk OF AHUGMENTED CARSE

Lo4s CONSaMT "a” O CONSTHNT 2" 65 CONSTANT “"A®

£ LSO HENY "R 1a CONSTHHT “"CR®

S5 COMHSTRHY CHTRL-C

4

oo UHRIABLE FLAG

=]

¥R ovh-ERRM CRoL" SVHITHY ERROK. REEMTER NUMBER " Ok
] bR DROF @ "@a" 3

g 8 L-mHBUR D OO " COMMAND ABORT Y CR DROF DROF GUuly 3
i@
il
12 & YHEORET CHIRL-C = IF DROF CE .Y COMMANDG ABCRT " CR QUL
13 ELSE U ENDIF 3
s

in -1

SUK # 14¢
¢ © GbI-HEM LEAUE # HEX # ON TOF OF STRCK O

L ok PREE Uk. EBAkER SOLLTION TO AN INTERACTIVE TERMIMAL INPUT

1

4 1 Obi-HEM @ FLAG ' @ BEGIN KEV DUF DUF EMIT ?PABORT

o 13 = 1k 1 FLAG ! LROF

E) ELskE DUF "g" < IF SVH-ERR

i ELSE Dy vgt IF DUF "A” 1F SYH-ERF
= ELSE DUF "R > 1IF SVH-ERK EMDIF

£l EMDIF EHULLIF ENDLIF ENDIF

19 FLHG = @= IF 42 -~ Db 9 > 1IF V — ENDIF SWAF 18 % + ENDIF

i1

12 FLAG @ UNTIL 2

]

Sk #1442

@ v H MEATER SOLLYTIOM 1O THE TEEMINAL INFUT ROUTINE >
1 ¢ GEi—-HER @ FLAL !

Z W OREGIN KEY DU DL EMLY

5 CHSE UMIRL-C UF C-ABORT EHMLOE
4 "CR" O OF 1 FLAL ! DROP ENDOE
L] "G <UF SYH-ERE EMOOF
& "R MUF SVYN-ERE EMDOF
v S S S LU SE - LHDOF
o "HY L - *OF 55 — EHDOF
9 ShH-ERRE
i EHLCASE
11 FLAG o = §F SWAF 1S + + EHDIF
12 FLAG o UMTIL »
13
L4
1%

ik # 149

g Mo ILL e kR SOLLDION 2
fonE-HER v FLHG

[

< 2 BeGIH k&Y LUF DUF EMIT

3 CHSE CHITRL-C OF C-ABORT EMLHOF
4 “oR® a1 FLHG D DROF ERNDLIF
5 gr onen RHG-UF 48 - EMDOE
& THYO"FY BEHG-OE 25 - EMCF
K'g SH-ERER

5 EnLCHSE

9 FLAG @ o= iF Sk 16 +« + ENDIF

10 FLAG & UNT1L 5

11

14

%

2

Screen 147 illustrates a pre-Eaker
solution to the design of an interactive
terminal input that places a hexadecimal
number on the stack, and which provides
for error detection and error recovery. It
is, of course written in my usual sloppy,
unannotated, semi-readable fashion.

Screen 148 offers a neater solution in
terms of <OF and >OF. It is definitely
more readable. Screen 149 aoffers a still
neater solution in terms of RNG-0F.

Screen 147 compiles to 160 bytes,
screen 148 to 176 bytes, and screen 149 to
144 bytes. Need I say more?

SEND A CHECK TO FIG TODAY!
MAKE THIS YOUR BEGINNING!
RENEW NOW!

RENEW TODAY!

FORTH DIMENSIONS T111/6

Page 188

CASE as a Defining Word

Dan Lerner

After reading the CASE contest arti-
cles and looking for a simple function, I
am compelled to submit a simple CASE
statement. These words are fast to
compile and execute, compact, simple,
generate minimum code, and very sim-
ple. There is no error checking since the
form is so simple the most novice pro-
grammer can use it.

CASE is analogous to vectored GOTO
in other languages. Its usage with my

words is:

CASE NAME
A IS FUNCTION A
8 IS FUNCTION B
c Is FUNCTION C
(etc.)

OTHERS ERROR FUNCTION

General usage would be as a menu
selector; for example, you print a menu:

1 BREAKFAST

2 LUNCH

3 DINNER
SELECTION -->

The user types a number which goes n
the stack, then executes the CASE word

MEAL. MEAL selects BREAKFAST,
LUNCH or DINNER, or ABORTS on
error. The source is:
CASE MEAL

1 IS BREAKFAST

2 IS LUNCH

3 1S DINNER

OTHERS NO MEAL

You have previously defined BREAK-
FAST, LUNCH, DINNER and NO MEAL.

How CASE is Structured

CASE builds an array using IS and
OTHERS to fill and complete the values in
the array. At execution, the DOES>
portion of CASE takes a value from the
stack and looks through the array for it.
A match executes the word, no match
executes the word after OTHERS in
source.

The form of CASE is a new class of
words, as CONSTANT , VARIABLE ,
MSG , ele. are. The code executed to test
the array is minimal.

106
0
1

-

AL O0R

¢ CASE NAME
a I8 FUNCTION-# FATR = ValLUE-A
I IG FUNCTION-I ADTIR OF FUNCTION-A
C I8 FUNCTION-I
ETC.
OTHERS ERRORFUNCTION)
= CASE CREATE HERE 0. ¢ AT COMPILATION BUILDS HEADER,LINK
FOINTS TO ADDR OF %+ OF PALRS
HERE SET TO ADDR OF VALUE-1)
LOES ¢ AT EXECUTION, ADDR OF *0F PAIRS)
1 ROT ROT DUFP 2+ SWaAF @
O 0 20UF @ = IF DUP 2+ @ ¢ COMPAIRS INFUT VALUE)
FAECUTE ROT DROF O ROT ROT ¢ WITH VALUE A, By Cy ETCy AND)
LEAVE ELGE 2+ 2+ THEN LOOF { EXECUTES ASSOCIATED FUNCTION)
ROT IF @ EXECUTE ELSE DROP THEN DROF 5
(CASE WORDS)
LI S T A T O { HERE. PALRS® - HERE , NEXT-PATRE)
= OTHERS * , SWAP T 3 (HERE, #-0F-FAIRS)

THIS IS THE END!

THE END OF VOLUME 111

THE END OF YOUR MEMBERSHIP?
DON'T LET IT HAPPEN!
RENEW TODAY!

Page 189

FORTH DIMENSIONS I11/6

Generalized CASE Structure
in FORTH

E.H. Fey

Introduction

The CASE CONTEST held by FIG last
year ended with some excellent
contributions to the FORTH literature.
The judges noted however that few people
tried to devise a general case structure
encampassing both the positional type,
where the case is selected by an integer
denoting its position in the list of cases
(ala FORTRAN's computed GO T0O), and
the more general keyed type of structure,
where the case selector key is tested for a
match in the case words key list.

This article discusses a general case
structure which combines the paositional
and keyed types. Like FORTH itself, the
case structure is extensible. | have added
a third type called range where the case
selector key is tested to be within the
range of pairs of values in the case words
key list.

For any of the three types of
structures, the user is also provided with
the option of using headerless high level
code sequences to specify the execution
behavior of the individual cases.

A complete source listing in fig-
FORTH is given on screens 165 to 180
with illustrative examples on screens 180
and 181. The source code listings may
seemn lengthier than usual but it is the
author's practice to include the Glossary
de finition right with the source and to
annotate the source code with notes on
the status of the parameter stack. When
this practice is followed, 1 find FORTH to
be an emminently readable language, even
months after the particular coding has
been prepared. However, this style of
coding requires a good FORTH video
editor. With a good case structure in
FORTH, that is not difficult to develop.

Background

In the Aug. B0 issue of Byte, Kim
Harris introduced a very simnle positional
type of case compiler. A slightly revised
version of his compiler is
: CASE: <LIST DOES> IX @ EXECUTE ;
where
: <LIST <BUILDS SMUDGE CSP] ;
+ IX (kpfa..adr) SWAP 1 MAX

1l- DUP + + ;

and is used in the form:

CASE: xxxx cfal cfa2cfan ;

to define a case selector word named
KXKK,

When the new word, xxx , is executed
in the form
le xxxx (k=1,2,...,n)
the k'th word in the list will be executed.

For example, define the following words,
COW , CHICK , PIG , and BARN :

: COW " MooOOgo" ;
: CHICK " Peep" ;
: PIG M Oink™ 3
CASE: BARN COW PIG CHICK ;

If we now execute the sequence 2
BARN , Oink will be typed. Similarly 1
BARN will type MooOOoo.

Although there are no error checks,
this case structure is easy to use, executes
fast and requires a minimum of dictionary
space for each case word, xxx. Bilobran,
etal have used CASE: extensively in
developing a FORTH file system with
named record components (1980 FORML
proc. pp 188, Nov. 1980). 1 have done
likewise following their example.

The interesting part of the definition
of CASE: is the <BUILDS part which I have
called <LIST for obvious reasons. It
creates the dictionary entry for xxxx.
Then, after executing SMUDGE and ! CSP
which are part of fig-FORTH's compiler
security, it executes] which forces
FORTH into the compilation state so that
the user can enter the list. The list is
terminated by ; which completes the
definition of xxxx .

For CASE: words, the list is a list of
code field addresses of previously defined
FORTH words. Since FORTH is in the
compilation state when the list is being
entered, all the user has to do is list the
names of the case select words (COW PIG
CHICK in the example of BARN).
FORTH then compiles their code field
addresses, as long as they are not special
IMMEDIATE words which execute during
compilation.

Now suppose that we knew beforehand
that the code field address of PIG was say
14382, The same definition of BARN
could then have been achieved by

CASE: BARN COW [14382, 1 CHICK ;

where [stopped the compilation state,
14382 was entered to the stack, the word ,
{comma) , compiled it and] resumed the
compilation state.

The point is that <LIST is a powerful
word for entering named lists and data of
all sorts to the dictionary. The method of
retrieval of the data is determined by the

DOES> part of the compiler. Hence if we
simply change the definition of the DOES>
part of CASE: , we can transform it into a
general purpose case compiler.

The Multi-Purpose Case Compiler

The method utilized to develop a
generalized case compiler is to compile a
number for the case type as the first byte
in the parameter field of xxx . At
execution time, the number is retrieved
and used to select the appropriate DOES>
part for the case type of xxxx . The type
number is transparent to the user.

The definition of the new case
compiler is:

: MCASE: <BUILDS SMUDGE !CSP
HERE 1 ¢, 0 C,]
DOES> DUP C@a DOESPART ;

where DOESPART is a case selector word
defined by CASE: .

The <BUILDS part of MCASE: compiles
a "1" for the default case type (positional)
and a "0" for the count of the number of
cases entered into the case list. It also
leaves the parameter field address of the
newly defined word on the stack so that it
can be found later during the compilation
process even though its name field is
smudged.

if the newly defined case word, say
%xX¥X , is to be other than the positional
type, it is immediately followed by the
word KEYED or RANGE to define the
type of xxxx as keyed type = 3 or range
type = 5.

tKEYED 3
: RANGE

IMMEDIATE
IMMEDIATE

OVER C1!;
S OVER C!;

The case list subsequently entered
must agree with the case type specified.

Two options are provided for the
execution elements of the case list. The
first or default option is the single word
execution as in CASE: . The second option
allows a headerless sequence of FORTH
words to be defined as the execution
elements of each case. The two may not
be mixed.

A default case at the end of the case
list is mandatory, although it may be a
null word. The default case must be
preceded by the word DEFAULT: whose
definition is

: DEFAULT:
OVER C@ [DEF] ;

2COMP EOL , HERE
IMMEDIATE

where EOL is an end of list terminator
constant defined by

'3S CFA CONSTANT EOL

FORTH DIMENSIONS 11I/6

Page 190

and [DEF] is a case selector word de fined
by CASE: .

DEFAULT: first checks to see that you
are in the compile state since you should
be compiling xxxx . It then enters the end
of list terminator, EOL , to the diction-
ary. Finally it takes the parameter field
address of xxxx left on the stack by the
<{BUILDS part of MCASE: , gets the type
of xxxx and executes the case selector
word [DEF] depending on the type of xxxx

If the type is 1, 3 or 5, [DEF] counts
the number of cases entered and stores it
in the second byte of the parameter field
of xxxx . If the case type is 2, 4 or 6, then
the execution elements are headerless
code sequences. Hence for these types,
[DEF] initiates the process of defining
the default code sequence.

Execution of Case Selector

All case selector words, xxxx , defined
by MCASE: are executed in the form:

Kk xexxx

where the key, k , is an integer. The
interpretation of k in selecting the case
depends on the case list type.

With three case list types and two
options for each type, there are actually 6
different forms of case lists available.
Let's consider first the lists with single
word execution elements.

Single Word Execution Elements
(1) Positional type
MCASE: is used in the form:

MCASE: xxxx cfal cfa? ... cfan
DEFAULT: cfad ;

When xxxx is executed in the farm k
xXxx , the case cfak will be selected if
k=1, 2,...,n . Otherwise the default
case, cfad, will be selected and
executed.

(2) Keyed type

MCASE: xxxx KEYED
[kl,] cfal
[k2 ,] cfa2

[kn,] efan
DEFAULT: cfad ;

When xxxx is later executed in the
form k xxxx , the case cfai will be
executed if a value of k=ki is found in
the list. Otherwise, the default case,
cfad , will be executed.

165 ¢
165 1
163 2
163 3
185 4
165 5
185 6
165 7
163 8
165 9
103 10

165 11
165 12
165 13
165 1

145
1465

P
;6:

[

w
o
o

~3 @ e en eopa by Pt

-
o

™
3
(=)

167
167
167
167
167 12
167 13
167 14
167 15
165 ¢
168 1
168 2
168 3
165 4
i3 3
163 &
168 7
168 3
168 %
143 10
168 11
168 12
165 13
168 14
148 15
169 ¢
169 1
167 2
169 3
167 4
169 3
169 6
167 7
169 8
167 9

{ GENERAL CASE STRUCTURE EHF 10/23/81)

{ EXECUTION VARIABLES AND ARRAYS slz Kim Harriss Bule Aus ‘50)
{ pF 184 &iso see M. Ay NMeCourts FLO IL/4 Re 109, EHF Z/1i/84

v IX 0 K Ffeevsadr b ComPutes adr of index K = 192ssseen)

SWAF 1 MAK C veurfe kmaxl)
1 - LUF + + 4 C wewrfat2lk-13)
¢ ALIBT (GeEnersi o wara to construct named listz)
<BUILIS SMULGE
© + CFa @ CONSTANT COLON { For hesderless code definitions)
‘35 LCFa CONSTANT EOL { End of list delimiter)

-

+ Cfel cfalvescfen 4
A wilh initisi velues ofzly !
sddresses of Freviously
ne form: Kowana

g 1 K= LryZrewesn

{ 8594 1 the fore CASE

{ to creste an execulion

{ cfs2svercfan which are cogd 1
(gefined words. Executins x.,,« in
{ will proguce the eseculion of C

= 1]
e
< QL

L Ix e

{ LISTY st T 0d 2 02 5 03 2awwr 0 33

{ Lo creale 3 list of consilanis named xaxx » Execulins wuxs

{ in the form.: K owamy will lesve nK aon Lhe sizck.)

v SLIST .,'J'-",-'

i

+ XEQWAS: «LIST DOES» @ EXECUTE 4

(Useg in the formi XEQVARD suiwn ofs s ¥
{ Lo creale an executlion varisble wwxx with an inilisl value
{ ofz which ic an exisling word. Executing x¥¥¥ csuses) --»
{ cfe to bz eseculed, The word cfs msx be chensed by usins

{ INSTALL nnhn AT wxxxd where nnnn is Lhe new words

¢ INSTALL (...cfs) CCONFILE] ’ STATE @ IF COM®ILE CFA ELSE CFA
THEN & IMMEGIATE

AT ¢ cfaees) CCONFIL
ELSE 2+ ! THEN 7+

1 MAX 2 % 4+ 1 5 (Ster
K=1sZssvesn Comriled by ATHI

+ (ATRINDY (K cf2 Pfa...) ROT
{ sdr=2Zrntrfa where

: ATRIN { K cfsess) [CONFILED ¢
ELSE (ATKRIN) THEN # IMAELIATE
{ Used in formi K INSTALL cfe ATRIR saxu)
{ where wuwss is sn execulion arraw defined &
{ is the new word Lo be instzllied 55 eicsm

H T s

{ NOTE: HMcCouri’s ims=lementsztion of the funclion INSTALL ATKIR
{ does not work inside & 1§ definition. The above doss.
KCASES » A GENERALIZED EXTENSION OF CASED
1, Thres turec of case siuclures:
. FOSITIONAL (aefaull
& NEYELD
c. RANGE
2, Tuo structure ortions for esch lurel
2, SINGLE WORL ERECUTION { defauit)
b HIGH LEVEL HEALERLESS COLE SEGUENCE

(Define DOESFART and [DEF] ss Execution arraws to be filled)
¢ in lster)

DOESFART DUM DUN DUM DUN DUM LUM LUN 5 (& Cases)

CDEF] UM DUM LUM DM DUR LUM LUN 5

: MCASE: (The senerslized case cowriler)
<RUILDS SHUDGE ICSP HERE ¢ Leave »fa on stack)

Page 191

FORTH DIMENSIONS 1I1/6

169 10 1Cs { Defzult ture = 1)
(3) Range type 147 11 ¢ Ly (Wumber of cases in list = 0)
167 12 3 (Enter comrile siate for list)
MCASE: xxxx RANGE 169 13 DOES> DUF C@ { Gets ture)
[LA H 5 1 efal 167 14 DOESFART { Execules arrrorriazte search)
[Lz , H2 ,] cfa2 6% 13 =3
176 0 ¢ DEFAULTS ¢ rfesss) (Mandstors word used after csselist in!
[Ln, Hh,] cfan 1_?0 1 (an !‘1’:;’-‘1‘5‘5: definition., Comriles 33 .)
DEFAULT: cfad ; 175 2 TCoMF EOL » HERE OVER C® U seopfs adeh fure
176 3 LDEF] & IMMEDIAT
For this type each of the n entries to 17y 4 e
the case list consists of a pair of 7_v & : hr.Tr.i'-tl Ffeovirfal Used after MIASLY wa to sel caseiuwresd)
values specifying the upper and lower LA 3 GVeR C! IMHELIATE
limits of the range , Li and Hi , 17¢ 7) R IRRRARRIIN
followed by the execution element, 7% 8 ¢ RANGE { Fia vvorfa) (Used after MCASE! oo lo sel tueesS)
b 170§ 5 QUER C! ; INMEDTATE
176 16
When xxxx is later executed in the 176 11 i NT L n Ffavesn Fia) (Checks for valid casecounts nos with
form k xxxx , the case cfai will be 174 12 { couni in cese list with rfa specified. True if velid, J
selacted if the condition 176 13 OVER OVER 1+ CE C oeont of3 0 count)}
170 14 OVER 1 < R { vesm Ffe 0 count)
Li=k<=Hi 3-:{‘ ;?' » Ko OR 6= 5 e
P L
is found during a search of the list. If 173 § (POSITIONAL TYFE WITH 5INGLE WORD EXECUTION OFTIONs TYFE 1)
not, the default case, cfad , will be vi oz -
executed. 17 3 ¢ POFIRD { n FTeess) (Tumre | cese for DDESFART, finds and)
17l & { exnecules cese n or defauit if ndl or nicssecount foo)
Headerless Code Execution Elements 175 ¢ MCASZI! list #fe, Similar to I for CASES)
171 6 NT IF ¢ Velidn 2 + SWAF { esePfEt2 n)
Instead of specifying the execution !‘-{} 7 ELSE DUF C@ >R & + SWAP IROP R> (v.urfaté C)
elements as previously defined FORTH Uil THEN 1 - LUF ¢ + (..opfatki2in-11)
words, the elements may be specified as a AT 7 & EXCCUTE
sequence of FORTH words in the form: 171 i¢
171 1 + FSLEF { piz sarcef.s) { Counts # coses entered end stores)
M ciseesBBQennnnn 3H 171 12 { in cesecount &l rfetl .« The zddress of the defsull cofe is)
171 13 { &l sdrdefl = rfatét2in-13 J
O HE HE O QVER 6 + - 2 / { weerfe 0-1 1}
171 15 -—
DEFAULT:? 1200e88Queee § {:; 1"3
AF i
where ...seq.... is the sequence of eE
executable FORTH words. 17z 3
72 4 ¢ TYFE 2)
Again we have the three applicable RIS
case list types, the default type, position, Sde 4 s of nth hish
the keyed type and the range type. :if 4 Return ozfeuii;
Examples of the structure of each of these L) 3
types is 7z 9 THER ¢ swntf pie)
il WAT SR 4 ¥ { vorpfatéd 1sSave nif:
1) Positional type 172 11 i CVE { voerfatd 1 T
< i 1721z WAILE ¢ { voerfatd count
MCASE: xxxx e . { veeEdrnat count)
H: ..seql.. 3H dhi L REFEAT
H: ...seq2... ;H e b ._ ==
73 PHEIND { nopfesed) { Find and execule hi code sea n in turel
H ..seqn.. jH 1731 { 2 caselisly rfs . Esecuts oefsuil if cul of ranse,)
DEFAULT:seqd.... ; Afs 2 ZFINDEXECUTE 4
173 3
(2) Keyed type 173 3 :
173 L] ¥
MC ASE: xxxx KEYED sl
{ k1,] H: ..seql.. ;H LA
Lk,] H ..seg2. i 173 8
L 1':: ‘?
[kn , 1 H: ..seqn.. H 173 16
DEFAULT; ...seqdus 3 s 1l
aid A
173 13 H
173 14
173 15
74 1 b
174 2
i7a @
174 4 2 INSTALL FHFIND ATHIM LIZSTART
174 5 2 INSTALL FHLIF ATRIN [DEF2
FORTH DIMENSIONS I1I/6 -

Page 192

174 6
(3) Range type 74 7 { KEYEL TYFE WITH SINGLE WORL EXECUTION OFTION, TYFE 3 }
74 8
MC ASE: xxxx RANGE 74 9 ¢ KSLEF ¢ efe sd-oefese) (Counts # cases entered snd stores)
[er, Hi, 1 He oeseqla. sH 174 14 (in cesecount st rfatl. Address of defsull cfs is)
[L2 , H2 ,] H: ..seql... ;H 174 11 { sdrdef=rfatétslin-11)
e 174 12 OVER & + - 4 / 1t BwaF 1+ C! ¢
[Lh, H , 1 H: ..seqn... ;H 174§ 13
DEFAULT: ..seqd... ; i74 14 H K PTavesd { S=u ches Lure 3 y
174 135 0 et FfetZ + Execuiles e
The interpretation of k in case 7 ¢ or Loat no omsloh Tound,.
selecting is the same as previously 175 IN 1 R IUS @ EOL

discussed for the single word execution of 175 2 IF (not EQL) OVER OVER
the same case type. The only difference 175 3 IF { mstched) 24
is that a FORTH sequence, ...seqi.. is 175 4 SR 4 + THEN
executed instead of a single FORTH word, 175 &
cfai. 178 &
175 7 O_) 5WA" LROF
Examples 7% ¢
7
Examples of all 6 possible 14
combinations of case structures are given i75 11
on Screens 180 and 181. If the screen is 74 12 O KETEL OFTISH WiITh HIGH LEVEL DEF IK LISTs TYFE 4 J
loaded and examples tested, typical 17a 13
execution results should be: VI 14 +ORHFIRD ¢ K B = B L for melch uf he»)
175 1% { L3k + 5 5 & = f v&5 hish ie\.ei
EXECUTE RESULT TYPED ie @ { followins msich or defauil seauence if no ¥
i76 1 2+ B=CIW 1 >R LU” B EQGL - { sesk 2 '.
1 BARN MOO i7é 2 IF { not EGL) OVER GVER & = { +4ok B0
2 BARN OINK ifé 3 IF © mstocnzd) 4 + { week a0
18 BARN PEEP (Default) e 4 ELSE R 1 A 21 B THIK vk s
1746 5 ELSE EGLY 2+ { veek &9
1 700 PEEP PEEP PEEP 76 & THEN R { verk & i
3700 PEEP PEEP MOO 17¢ 7 UNTIL { Mstched o- EOL) SWA® LRIF EXECUTE »
-6 Z00 OINK OINK OINK i7¢ 8
(Default) HP- STAcL RESFIND ATHIN DOE
i7d 1% Ll EF ATRINW [LEF3 tsre 20
1 FARM OINK (Default) 176 11
77 FARM MOO 176 12 { RANGD TYPL WITH SINGLE WIRL EXECUTION CFTions T/FC 5
1746 13
-10 CASE MOOOINK PEEP i7¢ 14 v RSLEF { pfe adragsteed { adrazfs pfatéiéin-id Comruis o &hdd
(Default) 176 15 { store st rfatl) -
77 CASE MOOo00000 77w OVER & + - &6 / 1t 3WaM 1+ Cf 3
7701
-10 CORRAL PEEP PEEP 177 2 : F.“ HEET (K 330wt True 17 Kr= velue sl sdr &ND K= veiue)
1 CORRAL OINK OINK & = oL mdel 3; bU True 17 K value sl 237 AND K= vElue
309 CORRAL PEEP DINK MOO 177 4
310 CORRAL MOO (Default) i77 S
PN « *
COMMENTS 177 7
Py o
1. Kim Harris' case compiler, CASE: 177 9
avoids the use of OVER = IF DROP 177 14 7
ELSE...THEN for every case as used in 177 14 ¢
many of the other CASE constructs. 137 2 ¢ .
The result is shorter compiled code in 177 13 { aqr
the application. The compiler, i77 14 3 { i
MCASE: presented here is an extension 7745 URTIL ¢ In ranse o EOLJ SW&™ LROF & EAECUTE 5 N
of CASE: and consequently shares this ;
feature. 1 S INSTALL RSFIND ATKIN LOES5EAR
2 5 INSTALL RBLZF ATRIN LDEF3
2. The compiler, CASE: and the 3
Execution Array introduced by M.A. 4 { RANGE DPTION WITH HIGH LEVEL LZF IN LISTy TYFE 6)
MeCourt in FD 1I/4 pp 109 are ; 5
functionally equivalent. Further, the i’ & ¢ ORATIND { K rfevee) (Szarches ture & list for first oocurr-i
Execution Variable, XEQVAR , of 176 7 { ence of & within eair of ranse vaiues. IT Tounds execuiess)
McCourt turns uu_t to be a degenerate 178 8 (TolloWins hish level secuences else execules gef sec«.m'.;e}
case of CASE: with only one element 178 ¢ 2+ BEGIN 1 R LUs @ EQOL - { veook 3801 F))
in the case list. The definitions 78 1 IF (not EOL) OVER OVER RANGET { ..I.K gdrl 5)
i76 il IF ¢ inranses & + [T D
: XEQARRAY CASE: ; 178 1Z ELSE F;'»‘ 1 - 5R 4+ @ THEN { 4ok &ar rj::? i
: XEQVAR <LIST DOES> @ EXECUTE ; 178 13 ELSE ¢ EOL) 2+ { vook adrdef)

Page 193 FORTH DIMENSIONS 1I1/6

are fig-FORTH functional equivalents 172 14 THEN Fos C veok 357niEW T)
of McCourt's definitions. Hence 178 15 UNTIL ¢ In rense of EOL) 5WAS DX~ EXECUTE 5 -
CASE: can be used as an Execution %6
Array as suggested by McCourt. The 79 1 & INSTALL RHTIND ATLIN BOZSFART
definitions of AT , ATKIN and 2 & INSTALL FHLIF ATRIN [LZFJ (Samz &s luces 2 &nd 4)
INSTALL on screens 167 and 168 can 3 i5
be used ala McCourt to change the 4
elernents in CASE: list words. They 5
are used in the form 5
k INSTAL yyyy ATKIN xxxx 8
G
to change the k'th element in a case 19
list, xxxx defined by CASE: to the code 11
field address of yyyy . Now whenever 7Y AE
k xxxx is encountered, the word yyyy 175 15
will be executed rather Lhan the L7114
original word in the k'th position of the 177 135
case list. G ¢ MIASIL EXAATLES)
4
Using the previous CASE: example of 2 o PIC W& OIn " 4
BARN , if we execute 3 ¢ COW ™ M33"
4 + CHICK " FEEF " 4
2 INSTALL. COW ATKIN BARN 5
& MZASZY Bantd CUW FIG CRICK LzfFaULTy CRICH
the second case in BARM will be 7
changed from PIGG to COW. Later 8 MCASEY Z0J H: CKRICK CHICHL CHICH +H
execution of 2 BARN anywhere in the 5 H: COw +" o©33022" iH
program will then type MooOQOoo 16 H: CHICK CHICh L0 iH
instead of Oink. HH DIFAULTY FIG FIC FIG 4
Although this is non-structured 13 MCASE: FASM KEYES © 83 ¢+ 1 FPIG
programming, it is still a valuable 167 14 L 77 » 3 COW
programming tool when used 186 15 [67 s+ 1 CHICK -
properly. The present definitions of 81 @ DZFAULT: F1G 4
INSTALL and ATKIN can be used 181 1
within a colon definition. 181 2 MCASZY CAGE REYED [77 » 3 HI COW " ©337293" H
188 3 L 8 s 1 HY FIG FIG 1H
Please note that the use of the 161 4 L & ¢ 1 Hy CHICh CRHICHK if
Execution Array in the development of 181 S DCFAULT: COW FIG CHICE
MCASE: on screen 169 is purely 161 &
stylistic. It is not a necessary feature 181 7 MCASES FEN RANGE [-32746% » -1+ 1 ChIlhL
of the development. g1 8 L G s 1 1 FiG
12 5 L 1, 32767 + 1 COW
3. The essentially unique feature of 181 1% DEFAULTS 5
FORTH is that it is extendable by the 181 11
user. With an expanding FORTH 1ci 12 MCASZ? CORRAL RANGE [=16 » =5 » 1 Hi CHICK CKICh iH
literature, it is clear to this author 161 313 [-1+ -1 s+ 1 H: iH
that FORTH will improve with time 181 14 L ¢s ©3s 31 H iH
faster than all other lanquages and 181 15 L1y 30% 5 1 H! CHICH FIC COW 3H G

that there is oo upper limit to its
mmprovement. It has been less than 18
maonths since [first got FORTH up and
running. In that short period of time,
thanks to the fig literature, the
FORTH system | have ramnning now is,
in my opinion, vastly superior to any
other language [have ever seen. And
it will get better!

FOR TH DIMENSIONS 111/6 - T T Page 194

FORTH STANDARDS TEAM MEETING

A FORTH Standards Team meeting
will be held in Bethesda, MD, from May 11
through May 14. The meeting is open to
the current Standards Team members and
a limited number of observers. The site
will be the National 4H Center, a self-
contained educational facility, just outside
Washington, DC. The campus-like Center
has meeting rooms, dining facilities and
dormitory accommodations.

This four-day meeting will allow
world-wide Team members to consider
proposals and corrections for the current
FORTH Standard and develop future stan-
dards policy. Participation is possible by
submittal and attendance. Written sub-
mittals received by April 30 will be
distributed to attendees before the
meeting. Late receipts will be distribued
at the team meeting. Those wishing to
attend must apply without delay, as space
is severely limited.

Applicants (other than team members)
must submit a biography by April 15 for
consideration by the credentials com-
mittee. You should include:

1. Your skills and comprehension of
multiple FORTH dialects and their
application.

2. Why your views are representative
of a significant portion of the
FORTH community.

Accommodations are $41 to $47 per
day, per person, including meals. Send a
refundable $100 deposit (and biography for
observers) to the meeting coordinator.
You will receive further details on choices
in housing and meals.

Submittals are essential if Team
actions are to represent the broadening
scope of FORTH users. Specific con-
sideration will be given to an addendum
correcting FORTH-79, the Team Charter,
and alliance with other standards groups.
Those not attending may receive copies of
submittals by sending $30 to the meeting
coordinator.

All submittals and reservations should
be directed to the meeting coordinator:

Pam Totta

Creative Solutions
4801 Randolph Road
Rockville, MD 20852
(301) 984-0262

FORTH DIMENSIONS
VOLUME IV

BEGINS NEXT ISSUE

From the Editor:

Beginning with the next issue, each
edition of FORTH DIMENSIONS will high-
light a special theme. Our May/June issue
will feature several articles on complex
arithmetic routines in FORTH such as
fixed-point trig, square root, and floating
point. Of course, the remainder of each
issue will contain the usual technotes,
product reviews, tutorials, letters, etc.

Suggestions for future themes include:

Process Control Applications
Database System Applications
Teaching FORTH

Data Acquisition and Analysis
FORTH in the Arts

CP/M

Laboratory Workstations

Serial Communications
Metacompilation and its Alternatives
The FORTH Environment

Your input to these topics is greatly
needed!

RENEW TODAY!

Page 195

FORTH DIMENSIONS I11/6

LECTURES ON APPLIED FORTH
a two day seminar on Forth and its application
and the
1982 ROCHESTER FORTH CONFERENCE ON DATA BASES AND PROCESS CONTROL

May 17 through May 21, 1982
University of Rochester Rochester, New York

As part of the 1982 Rochester FORTH Conference on Data Bases and Process
Control there will be a two day seminar on Applied FORTH. Managers and pro-
grammers will find these lectures very useful for exploring FORTH applications
and programming concepts. Each lecturer will also lead a Working Group at the
subsequent Conference. Participants should have a copy of Leo Brodie's book,
Starting FORTH, which is available from Mountain View Press, PO Box 4656, Mt.

View, CA 94040 for $16.00.
Lecturers for the two day seminar are:

Leo Brodie, author of Starting FORTH, on "Beginning FORTH".
Kim Harris, of Laxen & Harris, Inc., on "FORTH Programming Style".

Hans Nieuwenhuijzen, of the University of Utrecht, on "FORTH Programming
Environment".

Larry Forsley, of the Laboratory for Laser Energetics, on "Extensible
Control and Data Structure".

David Beers of Aregon Systems, Inc., on "A Large Programming Project Case
Study: Building a Relational Database in FORTH".

Steven Marcus of Kitt Peak National Observatory, on "Assemblers & Cross
Assemblers'.

James Harwood of the Institute for Astronomy at the University of Hawaii,
on "Computation Tradeoffs'.

Roger Stapleton of St. Andrews Observatory, Scotland, on "Hardware Control
with FORTH".

Raymond Dessey of Virginia Polytechnic Institute, on '"Concurrency, Net-
working and Instrument Control".

REGISTRATION FORM
(must be received by April 23, 1982)

Name
Address
City State ZIP
Phone (Days) ()
CHOICES TO BE MADE

Applied FORTH Seminar, May 17 & 18 $200.00

1982 Rochester FORTH Conference, May 19-21. 100.00

Housing for: (circle dates) May 16 17 18 19 20 21 $ 13.00/person dbl

16.50/person sgl
TOTAL AMOUNT ENCLOSED $
Make checks payable to: "University of Rochester/FORTH Conference"

Send check and Registration to:
Mrs. B. Rueckert, Lab for Laser Energetics, 250 E River Rd, Rochester, NY 14623
For information call: Barbara Rueckert (716) 275-2357

FORTH DIMENSIONS I11/6 . Pane 196

Marx FORTH for Northstar
now Available
Marx FORTH is a fast, powerful

FORTH system written in Z-80 code.
Package includes self-compiler, complete
source code, screen editor, and "smart"
assembler. Some of the features include
calls to the N* directory functions allow-
ing creation, deletion and listing of
directories and ease of writing FORTH
programs that operate on files created by
N¥* BASIC. Some of the performance fea-
tures include very fast compile speeds,
very fast math, 3l-character variable
length names, case compiler security,
arguments-results, link field in front of
name, and many machine code definitions
for high speed.

The self-compiler allows you to change
anything. If you don't like how I do it,
change it! Add anything you want. Price
is $85 on N* single density diskette.
Source listing available separately for $25.

Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803
(417) B62-9830

FORTH Programming Aids

FORTH Programming Aids are high
level FORTH routines which enhance the
development and debugging of FORTH
programs and complement cross compiler

and meta compiler operations with the.

following features:

- A command to decompile high level
FORTH words from RAM into struc-
tured FORTH source code including
structure control words. This
command is useful to examine the
actual source code of a FORTH
word, or to obtAln variations of
FORTH words by decompiling to
disk, editing, and recompiling the
modified source code.

- A command to find words called by a
specified word to all nesting levels.

- Commands to patch improvements
into compiled words and to merge
infrequently called words for in-
creased program speed.

- Complete source code and 40-page
manual are provided.

Requires a FORTH nucleus using the
fig-FORTH model; a minimum of 3K bytes
and a recommended 13K bytes of free dic-
tionary space. $150 single CPU license;
$25 for manual alone ({credit applied
toward program purchase). California
residents add 6.5% tax. Add $15 for
foreign air shipments. Available on 8-inch
ssfsd disks (FORTH screens or CP/M 2.2

NEW PRODUCTS

file of screens), and Apple 3.2 and 3.3

disks; inquite about other formats.

Ben Curry

Curry Associates

PO Box 11324

Palo Alto, CA 94306

New Book: Introduction to FORTH

Introduction to FORTH, a 142-page
textbook by Ken Knecht, presents the
most complete information available on
the MMS FORTH version of the FORTH
language. It is written for anyone who
wants to learn how to write computer
software using FORTH.

No previous knowledge of FORTH is
required, but some exposure to Microsoft
Level I BASIC will be helpful. Although
the book is designed specifically for the
MMSFORTH version of FORTH for the
Radio Shack TRS-80 Models I and III, most
program examples can be adapted to run
on other rnicrocomputers that use dif-
ferent versions of FORTH.

RENEW NOW!

FORTH for Ohio Scientific

We've received from Technical
Products Co. a copy of their newsletter.
This issue contains product news and
update screens for FORTH-79, We
applaud their intent of good customer
support, but note technical errors in
definition of several standard words
({ WORD , R@ , END-CODE , 2CONSTANT
,D<). This OSI-FORTH operates with
Ohio Scientific 0S5 65D 3.3 operating
system release.

Their new address is Technical
Products Co., Box 2358, Boone, NC
28607 --ed.

RENEW TODAY!

MCZ, 705, UDS FORTH

FORTH is now running on Zilog MCZ,
ZDS, and Multitech UDS microcomputer
systems. It has compiler, editor,
assembler, text interpreter, and I/O drives
for floppy disk, Centronics printer, and
RS5232 devices.

Assembly source listing is available
now for $10. Source code on diskette is
$50 (specify MCZ, ZDS, or UDS). User's
manual will accompany each order.

Send checks to Thomas Y. Lo, Electri-
cal Engineering Department, Chung Yuan
Christian University, Chung Li, Taiwan,
Republic of China.

Software for OSI C1P

Shoot The Teacher - Find the teacher and
shoot him with your water pistol.
(Teaches basic graphing) $6.95

Speedo Math - Race the computer with
your car. (Drills basic addition and
multiplication) $6.95

Kamakaze Education Pack
grams in one. Addition, X Tables,
Spelling, and Place Value Drill. Answer a
question and your men go on their last
mission. $11.95.

- Four pro-

That's Crazy - A takeoff from a famous
TV Show where you risk your life to jump
over cars and a canyon. A spelling
program that provides hours of enter-
tainment. | $11.95 (specify grade level)

Want Ads Life Skills - A program that
helps slow readers understand the Want
Ads. Five levels of difficulty. $7.95

Rescue Ship - Transport injured soldiers to
the hospital. But the enemy has covered
the ocean with mines. One of them could
destroy you.

Addition - $11.95
Subtraction - $11.95
Multiplication - $11.95
(all three on tape - $28.00)

Please include $1.00 to cover postage and
handling and send to:

Henry Svec

668 Sherene Terrace
LLondon Ontario Canada
N6H 3K1

Page 197

FORTH DIMENSIONS 111/6

FORTH VENDORS

Softwere Federation 68000

The following vendors have versions of
FORTH available or are consultants. (FIG
makes no judgment on any products.)

ALPHA MICRO
Professional Management Services
724 Arastradero Rd. #109
Palo Alto, CA 94306
(408) 252-2218

Sierra Computer Co.
617 Mark NE
Albuquerque, NM 87123

APPLE
IDPC Company
P. O. Box 11594
Philadelphia, PA 19116
(215) 676-3235

1US (Cap'n Software)
281 Arlington Avenue
Berkeley, CA 94704
(415) 525-9452

George Lyons

280 Henderson St.
Jersey City, NJ 07302
(201) 451-2905

MicroMetion

12077 Wilshire Blvd. #506
Los Angeles, CA 90025
(213) 821-4340

CROSS COMPILERS
Nautilus Systems
P.D. Box 1098
Santa Cruz, CA 95061
(408) 475-7461

polyFORTH
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254
(213) 372-8493

LYNX

3301 Ocean Park #301
Santa Monica, CA 90405
(213) 450-2466

M & B Design
820 Sweetbay Drive
Sunnyvale, CA 94086

Micropolis
Shaw Labs, Ltd.
P. O. Box 3471
Hayward, CA 94540
(415) 276-6050

Morth Star
The Software Works, Inc.
P. O. Box 4386
Mountain View, CA 94040
(408) 736-4938

PDP-11
Laboratory Software Systems, Inc.
3634 Mandeville Canyon Rd.
Los Angeles, CA 90049
(213) 472-6995

ost
Consumer Computers
B907 LaMesa Blvd.
LaMesa, CA 92041
(714) £98-8088

44 University Dr.
Arlington Heights, IL 60004
(312) 259-1355

Technical Products Co.
P. O, Box 12983
Cainsville, FL 32604
(904} 372-8439

Tom Zimmer
292 Falcato Dr.
Milpitas, CA 95035

1802
FSS
P. O. Box B403
Austin, TX 78712
(512) 477-226G7

6800 & 6809
Talbot Microaystems
1927 Curtis Avenue
Redondo Beach, CA 90278
(213) 376-9941

TRS-80

The Micro Werks (Color Computer)

P. 0. Box 1110
Del Mar, CA 92014
{714} 942-2500

Miller Microcomputer Services
61 Lake Shore Rd.

Matick, MA 01750

(617) 653-6136

The Scftware Farm
P. O. Box 2304
Reston, VA 22090

Sirius Systerns

7528 Oak Ridge Hwy.
Knoxville, TN 37921
(615) 693-6583

6502
Eric C. Rehnke
540 S. Ranch View Circle #61
Anaheim Hills, CA 92087

Saturn Software, Ltd.
P. O. Box 397

New Westminister, BC
V3L 4Y7 CANADA

8080/280/CP/M
l_aboratory Microsystems
4147 Beethoven 5t.
Los Angeles, CA 90066
(213) 390-9292

Timin Engineering Co.
9575 Genesse Ave. #fE-2
San Diego, CA 92121
(714) 455-9008

Application Packages
InnoSys
2150 Shattuck Avenue
Berkeley, CA 94704
(415) 843-8114

Decision Resources Corp.
28203 Ridgefern Ct.

Rancho Palo Verde, CA 90274
(213) 377-3533

Emperical Res. Grp.
P. 0. Box 1176
Milton, WA 98354
(208) 631-4855

Firmware, Boards and Machines

Datricon

7911 NE 33rd Dr.
Portland, OR 97211
(503) 284-8277

Forward Technology
2595 Martin Avenue
Santa Clara, CA 95050
(408) 293-8993

Rackwell International
Microelectronics Devices
P.0O. Box 3669

Anaheim, CA 92803
(714) 632-2862

Zendex Corp.
6398 Dougherty Rd.
Dublin, CA 94566

Variety of FORTH Products

Interactive Computer Systems, Inc.
6403 Di Marco Rd.
Tampa, FL 33614

Mountain View Press

P. O. Box 4656

Mountain View, CA 94040
(415) 961-4103

Supersoft Associates
P.D. Box 1628
Champaign, IL 61820
(217) 359-2112

Consultants

Creative Solutions, Inc.
4801 Randolph Rd.
Rockville, MD 20852

Dave Boulton

581 Oakridge Dr.
Redwood City, CA 94062
(415) 368-3257

Leo Brodie

9720 Baden Avenue
Chatsworth, CA 91311
(213) 998-8302

Go FORTH

504 Lakemead Way
Redwood City, CA 94062
(415) 366-6124

Inner Access

517K Marine View
Belmont, CA 94002
(415) 591-8295

Laxen & Harris, Inc.

24301 Southland Drive, #303
Hayward, CA 94545

(415) B87-2894

Microsystems, Inc.

2500 E. Foothill Blvd., #102
Pasadena, CA 91107

(213) 577-1471

VENDORS: FORTH DIMENSIONS will go to a preduct matrix in Valume IV. Send in a list of your products and services by April 18

FORTH DIMENSIONS 11/é

Page 198

FIG CHAPTERS

How to form a FIG Chapter:

I. You decide on a time and place for the
first meeting in your area. (Allow at least
8 weeks for steps 2 and 3.)

2. Send FIG a meeting announcement on one
side of 8-1/2 x 11 paper (one copy is
enough). Also send list of ZIP numbers
that you want mailed to {use first three
digits if it works for you).

3. FIG will print, address and mail to
members with the ZIP's you want from
San Carlos, CA.

4. When you've had your first meeting with 5
or more attendees then FIG will provide
you with names in your area. You have to
tell us when you have 5 or more.

Northern California

4th Sat FIG Monthly Meeting, 1:00 p.m., at
Southland Shopping Ctr., Hayward,
CA. FORML Workshop at 10:00 am.

Southern California

Los Angeles

4th Sat FIG Meeting, 11:00 a.m., Allstate
Savings, 8800 So. Sepulveda, L.A.
Philip Wasson, (213) 649-1428.

Orange County

3rd Sat FIG Meeting, 12:00 noon, Fullerton
Savings, 18020 Brockhorst, Fountain
Valley, CA. (714) 896-2016.

San Diego

Thur FIG Meeting, 12:00 noon. Guy
Kelly, (714) 268-3100, x 4784 for
site.

Northwest

Seattle Chuck Pliske or Dwight Vandenburg,

(206) 542-7611.

New England

Boston

lst Wed FIG Meeting, 7:00 p.m., Mitre Corp.,
Cafeteria, Bedford, MA. Bob
Demrow, (617) 389-6400, x198.

Boston

3rd Wed MMSFORTH Users Group, 7:00 p.m.,

Cochituate, MA, Dick Miller, (617}
653-6136 for site.

5

Southwest

Phoenix Peter Bates at (602) 996-8398,

Tulsa

3rd Tues FIG Meeting, 7:30 p.m.,, The
Computer Store, 4343 So. Peoria,
Tulsa, OK. Bob Giles, (918) 599-
9304 or Art Gorski, (918) 743-0113,

Austin John Hastings, (512) 327-5864.

Dallas

Ft. Worth

4th Thur FIG Meeting, 7:00 p.m., Software

Automation, 1005 Business
Parkway, Richardson, TX. Marvin
Flder, (214) 231-9142 or Bill Drisse!
(214) 264-9680,

Salt Lake City
Bill Haygood, (B01) 942-8000

Mid Atlantic
Potomac Joel Shprentz, (703) 437-9218,

New Jersey George Lyons (201) 451-2905.
New York Tom Jung, (212) 746-4062,

Midwest
Detroit Dean Vieau, (313) 493-5105.
Minnesota
1st Mon FIG Meeting. Mark Abbott {days),
(612) 854-8776 or Fred Olson, (612)
588-9532. Call for meeting place
or write to: MNFIG, 1156 Lincoln
Avenue, St. Paul, MN 55105,

Foreign

Australia Lance Collins (D3) 292600.

England FORTH Interest Group, c/o 38,
Worsley Road, Frimley, Camberley,
Surrey, GU16 5AlU), England

Japan FORTH Interest Group, Baba-bldg.

8F, 3-23-8, Nishi-Shimbashi,
Minato-ku, Toyko, 105 Japan.

Canada - Quebec
Gilles Paillard, (418) 871-1960 or
643-2561.

W. Germany Wolf Gervert, Roter Hahn 29, D-2
Hamburg 72, West Germany,(040)}
644-3985,

START A FIG CHAPTER

&
SIGN UP A FRIEND
PUT THE ORDER FORM ON THE BULLETIN BOARD

Page 199 FORTH DIMENSIONS Iil/6

o OooCcoaao m]

Oo0O0Ooo

Oo0opoo0O O .

FORTH INTEREST GROUP MAIL ORDER

FOREIGN
USA AIR

Membership in FORTH INTEREST GROUP and Volume IV of $15 %27
FORTH DIMENSIONS (6 issues)
Volume TI of FORTH DIMENSIONS (6 issues) 15 18
Volume II of FORTH DIMENSIONS (6 issues) 15 18
Volume I of FORTH DIMENSIONS (6 issues) 15 18
fig-F ORTH Installation Manual, containing the language model of 15 18
fig-FORTH, a complete glossary, memory map and installation instructions
Assembly Language Source Listing of fig-FORTH for specific CPU's
and machines. The above manual is required for installation.
Check appropriate boxes. Price per each.

0O 1802 O 6502 0O 6800 0 6809

O 8080 01 8086/8088 0 9900 O APPLE II

O PACE 0O NOVA O PDP-11 O ALPHA MICRO 15 18
"Starting FORTH" by Brodie. BEST book on FORTH. (Paperback) 16 20
"Starting FORTH" by Brodie. (Hard Cover) 20 25
PROCEECINGS 1980 FORML (FORTH Modification LLab) Conference 25 35
PROCEEDINGS 1981 FORTH University of Rochester Conference 25 35
PROCEEDINGS 1981 FORML Conference, Both Volumes 40 55

O Velume I, Language Structure 25 35

O Volume II, Systems and Applications 25 35
FORTH-79 Standard, a publication of the FORTH Standards Team 15 18
Kitt Peak Primer, by Stevens. An indepth self-study primer 25 35
BY TE Magazine Reprints of FORTH articles, 8/80 to 4/81 5 10
FIG T-shirts: - OSmall O Medium Olarge O X-Large 10 12
Poster, Aug. 1980 BYTE cover, 16 x 22" 3 5
FORTH Programmer Reference Card. If ordered separately, send a FREE
stamped, addressed envelope.

TOTAL %

NAME MAIL STOP/APT
ORGANIZATION (if company address)
ADDRESS
CITY STATE ZIP COUNTRY
VISA # MASTERCARD #
EXPIRATION DATE (Minimum of $10.00 on charge cards)

Make check or money order in US Funds on US bank, payable to: FIG. All prices include
postage. No purchase orders without check. California residents add sales tax.

ORDER PHONE NUMBER: (415) 962-8653
FORTH INTEREST GROUP PO BOX 1105 SAN CARLOS, CA 94070

BULK RATE
U.S. POSTAGE
PAID
Permit No. 261
Min. View, CA

m 2 mE FORTH INTEREST GROUP
P.O.Box 1105

San Carlos, CA 94070

RA-
— (JED ceOR

\l\lff\..-. T
m " RENEW qoo»,:d

fv-
“(

Address Correction Requested

