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EDITOR'S COLUMN

A special thanks this month goes to Mr. Larry Forsley and the
University of Rochester. The majority of this issue comes fromn
his efforts and those of his asociates. While acting as guest edi-
tor for this issue of FORTH DIMENSIONS, Mr. Forsley was also
compiling and editing the proceedings from this year's FORTH
conference at the University of Rochester. Even with this
"double duty," Mr. Forsley has done an excellent job.

The quality of material we have received from the University
of Rochester is excellent and greatly encourages me in my plans
to "de-Californize" FORTH DIMENSIONS through the use of re-
gional quest editors. While Mr. Forsley and the University of
Rochester may be a tough act to follow, | will welcome contacts
from anyone else (person and/or organization) who would like to
try guest editing an issue. For your peace of mind, let me assure
you that production (typesetting, proofing, printing, etc.) will be
handled for you. If you think you have what it takes, give me a
call or drop me a line.

You may find that some of this issue's sections have been re-
duced is size and/or eliminated. This is a temporary concession
because of the volume of material we have to publish in this
issue. Postal costs prohibit expanding the size of FORTH
DIMENSIONS to publish all we receive, so when we have a quan-
tity of quality material we publish those items that would seem to
have the greatest reader interest.

I hope to meet many of you at the FIG National Convention in

Santa Clara, California on November 28th. Meanwhile,
GO-FORTH and get additional members.
C. J. Street
Editor
PUBLISHER'S COLUMN

We are heading into some busy times for FIG. By the time you
get this copy of FORTH DIMENSIONS we'll have completed the
Mini-Micro Show in Southern California and be deep into the
details of the FORML Conference and FIG National Convention.
Remember that the Convention is Saturday, November 28th at
the Marriott Hotel in Santa Clara, California. Expect to see
many of you there.

We've sent out packets to FORTH vendors about exhibiting at
the FIG National Convention. If you are interested in exhibiting
and haven't received a packet, call the FIG line and request one:
(415) 962-8653. Only $50 for a table!

This issue is the much awaited University of Rochester
effort. Its packed with useful material. You ought to order the
Proceedings of the 1981 Rochester FORTH Standards Conference.
It has 378 pages of excellent papers

"Starting FORTH" by Leo Brodie is available from FIG ===
e and replaces "Using FORTH" as the book to have
about the FORTH language.

Now, a little lecture. We have conducted an unscientific
survey and found that in many locations there are people who are
using FORTH and aren't members of the FORTH Interest Group.
You as a member should work on them to join. All you have to do
is make a copy of the Order Form = ===-===———=——ce—___ and
have your associates fill in their name and adaress. If we each
get one more person to join we'll have over 5,000 members. Let's
do it.

Roy C. Martens
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FORTH AND THE UNIVERSITY

Lawrence P. F orsley
Laboratory for Laser Energetics
University of Rochester

Welcome to the wonderful world of
LURTH, or, University of Rochester
FORTH. URTH was developed several
years ago and has been used for many
applications, some of which are
documented here. Beginning with the
1978 FORTH Internatinal Standards
Conference, held on Catalina, we have
followed the FORTH standardization
effort. As a result, the majority of our
systems are close to being FORTH-79
Standard, although not FIG model. Very
few papers in this issue will refer to
URTH.

The 1981 Rochester FORTH Standards
Conference was held at the University.
The major reason for this, aside from the
delightful weather at that time of year, is
the FORTH activity at the University.
This work shows up in several divisions and
departments including the University
Computing Center; Optics; Physics and
Astronomy; Chemical Engineering;
Mechanical Engineering; Department of
Radiology, Division of Diagnostic Ultra-
sound; Department of Cytopathology;
Electrical Engineering and the Labaratory
for Laser Energetics. Indeed, we are
indebted to the original work by Dick
Berg, who in 1976 was an assistant profes-
sor of Physics and Astronomy, for deriving
the first URTH system; and to Ken
Hardwick, who in 1977 was with the
University Computing Center, for bringing
up the IBM 360/65 TSO version based on
Dick's work. At this time, Ken, Dick and
were the only FORTH users at the
University. [ believe the name URTH was
coined by Ken, although Dick was partial
to PARTH, for Mike Williams'
multitasking Intel 8080 FORTH system.
Unfortunately, Ken and Dick are no longer
with the University; and Mike's eommit-
ments prevented his authoring a paper.
However, their work is reflected in the
material presented here.

This issue starts with three overview
papers. The first paper is mine and covers
the development of FORTH at the Labora-
tory for Laser Energetics, which remains
the largest university FORTH user. The
second paper, by Peter Helmers, reflects
on the uses of FORTH in medical research
and clinical applications. The third, by
John Lefor, covers one of the more visible
university FORTH systems: The IBM 3032
telecommunications front-end.

The next three papers demonstrate a
variety of ways by which FORTH can be
used to interact with hardware. The first

Keck and me, demonstrates a high level
interrupt handler used in plasma physics
experiments.  The third paper in this
section is by Joe Sawicki, and suggests
powerful  structures for easily and
efficiently interfacing hardware.

The last section illustrates the diffi-
culty with defining the difference Letween
systems and applications. The first paper
is by Michael McCourt and Richad Marisa,
and describes a transportable String
Stack. he second paper is by Alfred
Clark and covers a FORTH-based complex
arithematic calculator. The last paper is
by Greg Choimondeley and documents a
microprocessing ton! similar to one
supplied by Signetics.

These papers have many things in
common. One exampie is the difficulty in
discriminating between users and imple-
mentors. Bob Keck, a user, worked with
me to develop a tool for high level inter-
rupt handling. Likewise, Al Clark, aiso a
user, has augmented a floating point
package with words appropriate to the
complex plane. The String Stack is clearly
a system tool. Complex arithmetic is less
so, and a microprogramming system is
clearly an application. Or is it? In the
context of its user, the microprogramming
words are a system. We seem to be for-
ever chasing our tail when determining a
FORTH context. But I think that this is
the power of FORTH,

Another facet is the use of defining
words used throughout the papers. An
extension of definin words, Paul
Bartholdi's TO concept,” is used in both
Joe Sawicki's and Greg Cholmondeley's
code. Mike MecCourt's "IN" concept” is
used by Peter Helmer's te implement the
TO concept. However, a student, Carole
Winkler, thought that TO complicated
things unnecessarily, so she doesn't use it.

This last comment illustrates one of
the virtues of universities: freedom of
dissent. Unfortunately, 1 have found that
most groups, and many people, using
FORTH are intolerant of different views.
During my involvement with FORTH 1
have watched wmany groups rise to
ascendency, tout the true way, and then

be replaced by another group. This has
been especially true of the FORTH
Standards effort where Kitt Peak,

FORTH, Inc., the European FORTH User's
Groups and FIG have all played this role.
But another view is possible, which is
more in keeping with FORTH's nature.

Many of us see FORTH as being a
system of controlled, or directed,
anarchy. Since every man, or woman, can
be for himself it is highly idiosyncratic
and anarchistic in form. Anyone who has
tried a team approach to FORTH

unstructured environment find both their
productivity and creativity increased.
But, some direction must be applied to
share code among users. ! suggest that
this direction should be one of form, and
not of content.

It is appropriate to define documenta-
tion standards which imply a form. Bul is
is inappropriate to state that something
can be done only one (with the implied
right) way. However, people who learn
sormething by doing it the wrong way
understand much better than people who
are told the right way.

1 think an example of this can be foun_?
in a conversation I had with Kim Harris.
Kim took exception to an earlier paper by
Peter Helmers on Userstacks.” I was told
that the approach was wrong. Period. But
on further discussion, I found that I agreed
with Kim, The fault was that Peter had
found only a partial solution to data
typing, and in a multitasking system his
technique might be very cumbersome.
That's fine. Peter Helmers does not use
multitasking systems, as his systems are
all single user, interrupt/event driven.
thus, it is worth remembering that each of
us has different, and valid, viewpoints.

Ag a major promoter of FORTH at the
University of Rochester, 1 have tried to
define an environment conducive to this
type of interplay. This has resulted in a
learning environment with many student
opportunities; and with Leo Brodie's book,
Starting Forth, and Don Colburn's study
guide, Going Forth, we can begin teaching
with FORTH. MNot teaching FORTH, but
teaching with it. Four of the authors in
this issue are students and three other
authors teach courses or seminars. If
FORTH is ever to catch on like Pascal, or
FORTRAN, then it must begin wtih
university teaching as those two languages
did. In five years my present students will
be in industry, as my first student con-
tacts already are. A univeristy environ-
ment coupled with its students' enthusiasm
and their eventual employment will
further FORTH more than any seminar
series or interest group. But it will take
time.

1. FORTH DIMENSIONS Vol. I No. 4 and
Vol. I No. 5.

2. FORTH DIMENSIONS Vol. If No. 4

3. Personzal conversation on May 10, 1981
prior to the Rochester Conference.

4. FORTH DIMENSIONS Vol. 11, No. 2
5. Since that paper, Peter has published

another one, entitled "Alternative
Parameter Stacks,” which can be found

paper, by Rosemary Leary and Carole programming is familiar with the tendency in the Proceedings of the 1981
Winkler, deals with three methods of using towards a Tower of Babel. On the other- Rochester FORTH Standards Con-
mapped memory. A second paper, by Bob hand, people comfortable with thie ference.
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FORTH IN LASER FUSION

Lawrence P. F orsley
Laboratory for Laser Energetics
University of Rochester

Abstract

Inertial confinement fusion research
using lasers has resulted in the laboratory
creation of extraordinary conditions of
temperature and pressure, duplicating
those found in the cores of white dwarf
stars. The machines which create these
conditions and the diagnostics that moni-
tor them have become increasingly auto-
mated. The demands of this research have
forced us to adopt new techniques, like
FORTH, for enhancing interactions
between engineers, physicists and their
experiments.

Introduction

Lasers have been used to simulate
plasma conditions of high density (ap-
proaching solid) and temperature (over 60
million degrees) for several years. The
goal of these experiments has been either
for weapons effect simulation, practiced
at the national laboratories, or for the
possible  commercial  generation  of
power. This latter program has been
exclusively pursued by the Laboratory for
Laser Energetics (LLE) for almost a
decade. As can be expected, these exper-
iments have resulted in the development
of new diagnostics, and these diagnostics,
in turn, have resulted in new fields of
physics. Besides the Laser Fusion Feasi-
bility  Project, there are research
programs in: sub-picosecond lasers, nano-
second X-Ray sources, X-Ray lasers,
laboratory astrophysics, and materials
damage testing.

These research programs, and the main
supporting lasers, are highly automated.
About one half of the computer systems
on the 24 beam 13 terrawatt infrared
Omega laser and all of the computers on
the single beam Glass Development Laser
(GDL) are implemented in FORTH. This
paper will explore the development of
FORTH-like languages at LLE.

The laboratory is also part of the
College of Engineering of the University
of Rochester. Thus, there is an important
interplay between the staffs, and students,
of LLE and the University. Most of our
FORTH systems have been partially, or
totally, implemented by students from
chemistry, electrical engineering, physics
and computer science. Four of the other
papers in this journal issue have a student
author who is also a member of LLE.

Standardization
LLE was one of the first l_aser Fusion

laboratories to automate its laser
systems. Whenever possible, we relied

upon standard computers, interfaces and
software. Originally, in 1971, we chose
the Hewlett Packard 2100 series com-
puter, and the RTE (Real Time Executive)
Operating System with Fortran, Assembler
and Algol. We used the HP backplane for
our instrument interface. This system ran
for over five years and 15,000 shots, but
building a completely automated laser
with 24 instead of 4 beams required a
different approach.

The Hewlett Packard computer back-
plane was limited in the number and vari-
ety of devices which could be procured
and attached to it. We overcame this
difficulty by adopting CAMAC (5).
CAMAC provided us with a large capacity,
computer-independent backplane. It was
also a widely used standard in the nuclear
physics community with instrumentation
and interfaces appropriate to our needs
available from several sources.

The problems of computer and soft-
ware standardization were more diffi-
cult, Some of our applications were real-
time, and appeared to require a fast
interrupt response. In other cases, we
were interested in direct image digitiza-
tion and needed a large address space.
Other requirements suggested the need for
a powerful multiprogramming operating
systern. Unfortunately, no one computer
type and operating system supported all of
our applications; and yet, with limited
manpower, it was difficult to support a
variety of hardware and software.

Computer languages, including
FORTRAN, are different from one vendor
to another, and especially when operating
system calls were taken into account. The
problem of software consistency and sup-
port was not limited te dissimilar com-
puters. Ehrman (4:16,17) has shown that as
many as 12 different languages may be
encountered by a programmer when edi-
tors, linkers, and loaders are included in
addition to the programming language.
Therefore, a unifying software approach
was needed among various operating sys-
tem functions and languages on the same
and different computers. We did not know
of the unix System from Bell Laboratories
(11:1905-1929) and the 'C' programming
language of Richie and Stevens (12:1991-
2019) in 1976. However, [ had talked with
people at Kitt Peak in 1976 and travelled
there in the spring of 1977 to see FORTH
being used.

FORTH

FORTH was originally developed as a
small, real time operating system for tele-
scope control and image processing by
Moore (8:497-511), (9) and Rather {10:223-
240) at the Kitt Peak and NRAQO facilities
which are funded by the National Science
Foundation. [ found three groups at these
facilities using FORTH: scientists, com-
puter engineers and technicians. In some

cases, the scientists were very knowledge-
ahle about FORTH, whereas in other
cases, they only knew a few words. | was
especially impressed by Dr. Mark Alcott,

" who was, at the time, with Cal Tech and

was observing on NRAO's 36 foot radio
telescope. He was pleased with his ability
to change the graphics routines and other
"systems" software while continuing to
collect data. Similarly, 1 found many
technicians programming and writing test
programs. This appeared to make good
use of their time, especially when they
would be familiar with a device, like a
Varian computer disk controller, and did
not have to explain its function to a pro-
grammer. [t also appeared that many of
the computer group's staff enjoyed
FORTH, although there were problems
with standardization and change. 1 found
out several years later, talking with Jeff
Moler, who was then in operations at Kitt
Peak and is now with the Livermore
Tandem Mirror Experiment, how difficult
it was to maintain programs in this envi-
ronment.

FORTH seemed to have many desirable
characteristics, and it provided the same
programming  environment on  many
machines. It allowed both very low level
access to hardware and high level struc-
tures to shield users from that hardware.
There was an assembler, a compiler, and
an interpreter. What we did not know
then was the care required in documenting
it, and the tendency to create personal-
ized applications and words. But, we
needed a version of FORTH at the Univer-
sity.

Dick Berqg, an assistant professpr in
physics and astronomy at the time,“ de-
compiled a Kitt Peak Varian nucleus circa
1974. He recoded it for the National
Semiconductor PACE  microprocessor.
Ken Hardwick, the’n with the Univerity
Computing Center,” used this as a mode!
for the IBM 360/65 under TSO and Mike
Williams developed a multitasking version
on the INTEL 8080. This was the birth of
URTH.

We also procurred a version for the
Zilog Development System from FORTH,
Inc. at about the same time to demon-
strate an automated X-Ray spectrometer.
Although I had a system for the Hewlett
Packard 2100 from Kitt Peak and a "disk-
less" version from Don Berrian at Prince-
ton, I decided that we should develop our
own version based upon the URTH model.
Ken Hardwick and I did this in late 1977.
Since then, other members of the Univer-
sity community and the Laboratory for
Laser Energetics have worked on various
versions of FORTH for Data General,
Modcomp, PDP 212 and IBM 3032 compu-
ters. Through the efforts of Mike
MeCourt, originally with the Department
of Cytopathology and then with LLE, we
developed a FORTH-79 system. All of
these were multitasking systems (2:314-
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318).
Testbeds

The first FORTH applications at LLE
were hardware testbeds. There are two
distinct phases in dealing with hardware.
The first occurs during its initial checkout
and reoccurs when it fails, or you suspect
it of failing. At this stage, one is con-
cerned with device and interface imple-
mentation, and it is important to be able
to interactively set and test data and ad-
dress lines.

A testbed must be capable of exer-
cising hardware at a rate of about 1 kilo-
hertz. Devices which operate in a faster
time domain will usually be buffered, as
an example, with transient digitizers.
Maost other devices, such as relays,
operate in a 10 Hz or slower time
domain. At a 1 kHz rate, sufficient sam-
ples can be taken from A/D's and D/A's to
quickly check their accuracy and range,
and thereby checkout many parts of a sys-
tem quickly.

Several language features are required
for tests like these. A means must be pro-
vided to individually and collectively set
address and data lines. There must also be
a way of repetitively issuing data/ address
patterns. Often, a hardware problem is
intermittent, and a test and branch capa-
bility is necessary to allow loopiung until a
failure occurs.

Thus, the specification for a testbed
lanquage grows quite large, with a major
role occupied by the command processor,
or text interpreter. Regardless of
whether the testbed language is imple-
mented in Fortran, Basic, Pascal or most
other programming languages, a substan-
tial effort will be spent on the text inter-
preter. One of the virtues of FORTH is
that it comes with a generalized text
interpreter, suitable for testbeds and
other applications.

Our FORTH testbed applications in-
cluded: power conditioning testbed for
checking out laser amplifiers; alignment
testbed for debugging and calibration of
automated components; and, general
CAMAC module testing. Other testbeds
have been used to develop image pro-
cessing hardware and software, and one-
dimensional reticon arrays.

The laser amplifier testbed was
developed along the following schedule:

1. October 1977-Ken Hardwick and 1
began writing a FORTH system
for the HP 2114.

2. January 1978- The FORTH systemn
was completed and CAMAC soft-
ware started.

3. March 1978- A laser amplifier
testbed was demonstrated.

4. April 1978- Single laser amplifier
testbed was operational at laser
hardware subcontractor's site,
with a duplicate at LLE.

By April, it was clear that the
Omega Power Conditioning com-
puter would not be available until
August, 1978. Since the Depart-
ment of Energy four-beam mile-
stone was originally scheduled for
early September, 1978, this left
insufficient time for laser prepar-
ation.

5. Apri! 1978- An LLE engineer, John
Boles, and a consultant with the
software subcontractor developing
the power conditioning software,
began coverting the single ampli-
fier testbed to run 4 laser beams
synchronized with the laser oscil-
lator.

6. June 1978- A six beam laser 3ys-
tem was operational.

7. August 197B- Preliminary delivery
of full 24 beam system which was
Fortran-based.

8. October 1978- Department of
Energy Milestone passed.

There were substantial differences be-
tween the 24 beam Fortran based system
and the 6 beam FORTH version. These
included the lack of an error detecting
command processor, a graphic display and
error archiving on disk. However, whereas
the FORTH version used 16K words of
memory and a floppy disk, the Fortran
based system required 196K words of
memory and a 15 megabyte hard disk.

This application also made us aware of
FORTH'S compactness and the speed with
which applications could be developed. It
is my feeling that this, and several other
applications, were brought up in cne half
the time it would have taken in Fortran,
including” FORTH training time. Once
good documentation is available, FORTH
will prove even better.

Also, 1 have found FORTH systems to
be more maintainable than comparable
Fortran systems, because FORTH uses 10
times fewer source lines. Some care is
needed when writing FORTH. Another
advantage can be gained by the ease of
using data base technology when building
process control systems in FORTH.

Spatial and Temporal Relationships

The first phase of dealing with hard-
ware is over when the hardware works.
The relationships among devices then
became important. One can hierarchically

organize related devices into subsystems.
This hierarchy consists of both spatial and
temporal relationships among components
(1), (3). The manipulation of these rela-
tionships requires the development of a
data-base-like language. My initial work
with Fortran and RTE, and discussions
with Ray Helmke and Eric Knobil at the
Wilson Synchrotron,” led me to develop
such a language for process control called
Maps, because it "maps" relationships
6:109,110.

A Map contained two types of struc-
tures, or Tags. A tag was either a collec-
tion of data, or a set of pointers to other
Tags. The Map contained an inverted list
of pointers to each tag, so that all tags
were unique and accessible. Two special-
ized programs, SETUP and BUILD, were
developed to manipulate and create the
initial Maps from text files. About a dozen
subroutines were developed to allow tags
to be accessed. Data could then either be
placed into one or more Tags, or retrieved
from them. In the interest of speed, this
system was recoded in assembly language
and later microcoded on a Hewlett
Packard 21MX-E computer. This com-
puter currently runs the Omega 24 beam
power conditioning, and was mentioned in
the Testbed Section of this paper.

Alternatively, by using the text inter-
preter and FORTH's capability to define
arbitrary data structures, several data-
base-like systems have been developed. In
its simplest form, everything in FORTH is
an executable data structure. Thus,
FORTH allows one to define spatial and
temporal relationships in a simpler, and
more concigse fashion than Maps. In ad-
dition, it is internally consistent, whereas
Maps had Fortran, assembler, microcode
and operating system interface facets.

Production Systems

Once FORTH had proven viable for
small systems, we decided to implement
production systems in it. These systems
included automated diagnostics as well as
the laser control systems. The prototype
Omega 24 beam calorimetry system was
an example of an early production
system. It used simple, vector like struc-
tures to contain the addresses, relation-
ships and values associated with wvarious
calorimeters, analog to digital convertors
and calibrators. It was capable of display-
ing beam energies and calculating expo-
nential fits to the data.

The Omega 24 beam Alignment Systemn
is more complex. It has run on an LSI11/2
with 5 CAMAC crates and 3 color dis-
plays, controlling over 1000 devices.
Initially, the operators used the FORTH
text interpreter for all commands and
queries. One advantage was their ability
to write new "macros" to setup compli-
cated alignment procedures mare
quickly. However, there was a risk asso-
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ciated with letting operations' personnel
directly program the system. Therefore,
the new Alignment System has a moare
complete command processor imple-
mented in FORTH, but which does more
error detection than the simple text inter-
preter. This system also uses the defining
words capability and has a large disk resi-
dent data base for describing components.
With the advent of the command proces-
sor, the system was switched over to an
LS! 11/23 with mapped memory.” This
addition allowed approximately 20 tasks to
handle various functions, communicating
via a queue-based message protocol.

The laser beam quality is also impor-
tant to us. We use streak cameras inter-
faced to Princeton Applied Research
Optical Multichannel Analyzers for this
purpose. The PAR OMA includes a
FORTH-based LSI 11 for acquisition and
reduction. As with the early Alignment
and Calorimetry systems, il‘6 is pro-
grammed directly in FORTH. Unlike
those systems though, this was originally
not a turnkey system provided by software
engineers, but rather was incrementally
developed by physicists and students.

We also use FORTH exclusively on the
Glass Development Laser (GDL) with simi-
lar computer systems. A FORTH based HP
2100 is used for power conditioning and
interlocks for the main bay and three sur-
rounding laboratories. A DEC LSI 11/2
collects laser and target calorimetry data,
reduces it, and also maintains a data base
on disk. A second LSI 11 is used in a PAR
OMA for processing streak camera data.
This is especially significant since GDL is
engaged in converting the infrared light to
ultraviolet, and the first harmonic IR, a
second harmonic green and the third har-
monic, UV are observed with the same
streak camera. This required a very flexi-
ble system to allow reduction in a quasi-
two dimensional mode. Another Hewlett
Packard 2100 has two video digitizers and
a color graphics unit. It is used for
determining absolute beam intensity and
modulation for materials damage testing.
This system is being converted to a DEC
LSI 11/23 with an RLOL disk attached. A
third LSI 11 has been used by a graduate
student_to observe target plasma produced
X-rays." Finally, an LSI 11/23 is used
with the nanosecond X-Ray facility for
the real time acquisition and reduction of
2D X-ray diffraction patterns. Recently,
this system has had an array processor
interfaced to it to allow real-time fast
fourier transforms of sample diffraction
rings. All of these systems are FORTH
based, with the automated imaging diag-
nostics serving as prototypes for Omega
diagnostics.

Conclusion
Although FORTH was relatively un-

known, it has made a positive impact on
the development of systems and instru-

mentation at LLE. [t has allowed the
cormputer sytems group to adopt the phi-
losophy of providing tools to scientists and
engineers, equipping them to dc & job
themselves. Sometimes, it was questioned
whether this was the best use of their
time: and, for some people, it wasn't. But,
for the majority of people in GDL, and &
fair number on the Omega sysiems and
other laboratories at LLE, FORTH has
been a success.

Acknowledgements

I would like to thank an almost endless
list of people for their help over the past
five vears. Most important among them
though, are Ken Hardwick, Dick Berg,
Chip Nimick and Mike McCourt. Also,
without the help of many students during
this period, many of these sytems would
never have been built.

This work was partiaily supported by
the following sponsors: Exxon Research
and Engineering Company, General Elec-
tric Company, New York Steste Energy
Research and Development Authority,
Northeast WUtilities, The Standard Oil
Company (Ohio), the University of
Rochester, Empire State Electric Energy
Research Corporation, and the U. 5.
Department of Energy inertial fusion pro-
gram under contract number DE-ACO0B-
80DP40124.

Lawrence P, Forsley is group leader of
the Computer Systems Group at the
Laboratory for Laser Energetics, Univer-
sity of Rochester, Rochester, N.Y,

Footnotes
1 The four-beam

computer control
1972. (6:101).

system, 0Oelta, had
and monitoring in

2 He is now with the Defense Mapping
Agency in Washington, D.C.

3 Ken is now with Network Systems Inc.,
in Minneapolis, MN.

4 Corneli Univerity in the summer of
1977. This facility is now known as the
Cornell Electron Storage Ring.

5

The mapped memory techniques are
discussed by Leary and Winkler in the
"Mapped Memory Techniques in
FORTH" paper in this issue.

6 pAR purchased this from
FORTH, Inc.

system

This is mentioned in Bob Keck's and my
paper, "A High Level Interrupt Handler
in FORTH", which can be found in this
issue.

PROCEEDINGS OF THE
1981 ROCHESTER FORTH STANDARDS
CONFERENCE

Many have been waiting for this con-
ference proceedings to come out, from
what was a very interesting, and different
conference. It was the first conference to
address the FORTH Standard since the
Catalina meeting of October 1979. Al-
though it was suggested that the
Rochester conference was only a regional
meeting, attendees came from six coun-
tries and thirteen states. Also notable, we
successfully divided papers into serial oral
sessions one morning and had parallel
poster sessions that afternoon. This way,
almost everyone of the seventy partici-
pants presented something, and no one
missed anything (we think).

In addition, we added travel sponsor-
ship this year. The Standard Oil Company
(Ohio), Friends Amis, Inc., Miller Micro-
computer Services, and Software Ventures
contributed over $5,000. This travel fund
covered partial travel expenses for atten-
dees from as far away as Hawaii, Chile,
Germany and the Netherlands, and as
close as California and Kentucky.

The original call for papers was in
three major areas: the Standard, floating
point and files management. These areas
are well represented in the proceedings.
In addition, there are sections on Philoso-
phy, Vocabulary, Multi-tasking and Data
Acquisition, Data Structures and the
Future of FORTH. The organization we
adopted combined poster sessions, oral
sessions and some material not presented
at the conference. There is an entire sec-
tion devoted to working groups on areas
like Standards clarification, FORTH tech-
nigues, Floating Point and Files Manage-
ment. There are 378 pages covering the
state of FORTH. The Proceedings are
available for $25. See the FIG Order
Form.

For those who are interested, there
will be another Rochester FORTH Confer-
ence the third week of May, in 1982. The
tentative subject area will be Process
Control and Data Acquisition. We expect

that there will be subareas dealing with
microprogramming, FORTH machines,
personal computing, and the Standard.
For information, please contact the con-
ference chairman:

Lawrence P. Forsley

Laboratory for Laser Energetics
250 East River Road

Rochester, NY 14623
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IMPLEMENTING FORTH BASED
MICROCOMPUTERS AT THE
UNIVERSITY OF ROCHESTER
MEDICAL CENTER

Peter H. Helmers
Introduction

"The micros are coming!" Everyone
has heard this so that it is not unexpected
that physicians and researchers at the
University of Rochester Medical Center
ask the question: "How can they be put to
use?" Over the past four years I've been
attempting to answer this question by
assembling a series of microcomputers for
both research and clinical applications.
These systems are all similar in their use
of an 5-100 bus hardware architecture and
a FORTH software environment. et they
differ significantly when it comes to
specific hardware interfaces, application
software, and types of system users.

In this article, I am going to focus on
both these similarities, and these differ-
ences in microcomputer systems. [ am
going to start out by discussing their
common hardware foundation, and then
explore peripheral devices unique to each
system's design. Because the ultimate
users of a system have a significant
impact on application software, [ am going
to try to characterize the types of users |
have dealt with, and their specific soft-
ware capabilities and needs. From here |
will discuss some common software pack-
ages that were written to transcend both
variable hardware, and variable user,
requirements. By discussing all of this in
terms of how FORTH has aided system
development, 1 hope to fully support my
contention that FORTH is an ideal envi-
ronment to meld many different types of
users to just as diverse hardware configu-
rations.

General Hardware Organization

So let's start out by considering the
common architectural arrangement of
these microcomputers. They are all Z-80
based machines with typical memory sizes
of from 32K to 48K bytes of static read/
write memory and 1K to 2K of EPROM
memory used to contain machine specific
implementations of commonly needed 1/O
routines such as console and disk drivers.
Each microcomputer uses one or two eight
inch single density floppy disk drives. The
primary system console is comprised of a
16 line by 64 character memory mapped
video display along with detached ASCIH
keyboard. Each machine also has an RS-
232 serial port for printer hookup.

These computers are all organized
around the S-100 (IEEE-696) bus with from
ten to fifteen card slots available. With
the basic setup described above using from
four to six of these slots, the customiza-
tion to specific system configurations is

accomplished by a mixture of standard
commercial andfor wire-wrapped peri-
pheral interface cards. Let's consider
some of these systems in greater detail,
looking at special hardware and how this is
reflected in the systems' software.

Ultrasound Diffraction Apparatus (UDA)

The UDA microcomputer is part of an
experimental system to explore the scat-
tering (diffraction) of medical ultrasound
signals through tissue samples. The
scattering is a function of both frequency
of the ultrasound signa! (2 to 8 Mhz) and
the angular position of a receive trans-
ducer relative to the ultrasound transmit-
ter. The UDA system thus must centrol
three primary functions: analog carrier
signal generation, tissue sample position-
ing, and received signal analog process-
ing. At present, only sample positicning
(using stepper rmotors) is not directly
handled by the UDA microcomputer.

Carrier signal gensration is controlled
by means of a Hewlett-Packard Bl65A
programmable signal generator interfaced
to the microcomputer by means of an
IEEE-488 (GP-IB or HP-IB) instrumenta-
tion bus. An opto-isolated parallel TTL
output port is used tc control a program-
rmable attenuator on the output of the
B165A. With a range of 0 to 130 db, the
attenuator can be used to automatically
adjust gains for maximum signal dynamic
range.

The most critical aspect of the UDA
hardware is the generation of gating
signals used by the analog processing
circuitry. This is accomplished by using
high speed analog mixers driven by digital
timing circuitry with a resolution of 100
nsec., and an accuracy of 0.01%.

Study of Vein Mechanics

The basis of this system is an experi-
ment to measure axial force, diameter and
transmural pressure in a blood vein (in
vitro) while controlling axial strain and
pressure. The system consists of a verti-
cal chamber for the vein specimen, a pre-
fusion and pressure clamping apparatus,
force and pressure transducers, and a
microprocessor for data acquisition.

The microprocessor contains 2 sixteen
channel, twelve bit multiplexed analog to
digital (A/D) converter to digitize the
force and pressure signals under high level
program control.

In conjunction with this A/D is a com-
mercial video (TV) digitizer capable of
programmed resolution up to 240 lines of
256 picture elements. The input to this
digitizer is from a TV camera aimed at
the blood vessel under study. A special
code definition was written to analyze a
programmable area of the TV image for an
indication of vesse! diameter. This works

by first threshholding, then detecting
vessel edges via a software algorithm. By
using FORTH/Z-80 assembly Janguage, the
diameter determination executes in less
than one second.

This data acquisition system also con-
tains a dual mode graphics display capable
of 128x128x4 grey scale images or 256x
240 dot graphics. Digitized video images
use the former mode while acquired pres-
sure and force data use the dot graphics.
In addition, the TV signal dynamic range
can be studied by a dot graphic plot of TV
signal amplitude versus time.

Also included in this system, to aid in
data reduction, is an Advanced Micro
Devices AM9511 high speed floating point
processor IC. This circuit's speed, com-
bined with the memory mapped graphics

display, allows real-time analysis and
display of acquired data, thus giving

continuous feedback on the progress of the
experiment.

Overall, this system replaced a manual
strip chart and photographic recording
setup that required several days for data
collection and analysis. Now data can be
automatically acquired and processed
within a couple of hours.

Pulmonary Microcomputer

The pulmonary clinic uses a micro-
computer identical to that just described
except without the TV video data acquisi-
tion interface. Used in a clinical setting,
this pulmonary microcomputer is inte-
grated with a mass spectrometer and a
breathing chamber to allow analysis of
pulmonary tissue volume and capillary
blood flow. The basic procedure requires
keeping track of the patient's breathing
(by monitoring volume within the flexible
breathing chamber) while analyzing the
decreasing concentration of two soluble
gases: dimethyl ether (DME) and acetylene
(CyH,), referenced to the concentration
of an insoluble gas: helium (He).

The hardware floating point unit facili-
tates rapid (30 seconds) analysis of the
acquired data, including several curve fit-
ting operations, and analysis of signals for
relative maxima/minima. The graphics
interface allows immediate viewing of the
acquired data to ascertain proper signal
levels, and to compare raw data to the
curve fit data.

X-Ray Scanning System

This experimental scanner uses a
slotted wheel and two horizontal slots
(mounted at 90° to the radial orientation
of the wheel) to achieve a mechanically
raster scanned X-ray source. The wheel
and horizontal slots are controlled by
means of three separate stepper motors
pulsed under control of the
microcomputer. X-ray exposure is also
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controlled by the computer as a function
of measured patient X-ray attenuation.

The microcomputer contains a
counter/timer chip which is used to
control the stepper motors, a seven
channel multiplexed eight bit A/D con-
verter (used to measure patient X-ray
attenuation and X-ray power), and an
eight bit D/A converter to control the
exposure time of each X-ray pulse.
Several digital 1/O lines are used to start
the X-ray rotor, turn on the X-ray genera-
tor, and control stepper motor direction.
Other lines are used to sense mechanical
limit switches.

The software used in this machine is
primarily concerned with controlling
exposure time for each X-ray pulse in
synchrony with the motor movement. The
system ramps the motors up to speed from
an initial stopped condition. In addition, it
gradually increases speed to compensate
for linear speed as the horizontal slots are
moved radially towards the center of the
wheels. The software also controls expo-
sure time by sampling the attenuation of
X-rays through the patient once each
motor step, and using table look-up tech-
niques to set the next pulse's exposure
time. In addition, total x-ray power is
sampled and accumulated to keep track of
total patient dosage and X-ray tube usage.

How Users' Needs Impact These Systems

In my development of these systems, |
have encountered three types of users:
system developers, researchers, and physi-
cians (and their clinical technicians). This
grouping of users also roughly corresponds
to levels of FORTH software utilization.
The system developer--myself and pre-
sumably yourself--is expected to know all
the in's and out's of system operation. If
something is missing, it's generally easy to
add it; this is a primary reason why many
of us like FORTH. However we don't
actually apply a system, we only set up
the software foundation for the system.
As users, we don't count!

A true end user, whether researcher or
physician, cannot be sold on FORTH
because missing capabilities can be easily
filled in; they don't have the knowledge to
do so. Nor do they really want to learn to
do so. They have to be sold on other
virtues of FORTH.

In my experience, researchers have
been very receptive to FORTH. In general
they have sophisticated technical back-
grounds but little practical computer
knowledge. This is a prime benefit: they
may have used FORTRAN on a large
machine for number crunching, but other-
wise they have few preconceived notions
about computer organization. They are
less impressed with structured program-
ming techniques or file systems than they
are by the fact that they can physically,

and interactively, control peripheral
devices. A research scientist may not
understand how a word like RAMP or
SAMPLE works, but can readily learn what
they do.

For example, the FORTH software
written for the UDA system allows
explicit user control of the hardware for
setup purposes as well as automatic con-
trol during experimental data acquisition
runs. Setup can be done through words
such as:

OK 25 DB

{ RPN's a natural here! )
Ciii "™ FRQ 2500 KHZ" TALK

{via the GP-IB)
OK 2.5 USEC CARRIER-OFF

A data acquisition experiment can be set
up using words such as:

OK 100 2000 SWEPT-FREQUENCY

{ define control of HPB165A )

OK FIXED-ATTENUATION

( define control of atten )

OF DON'T-SHOW-ATTENUATIONS

OK 1500 32 NOVA-CONTROL

{ l=t the minicomputer take

over control of the micro.)

In addition, the researcher can build
upon basic words to create custom appli-
cation programs as needed. Thus the X-
ray scanner system can be easily program-
med by:

O MOTOR WHEEL-MOTOR
{ define a 'MOTOR' data type)
OK : ROTATE-EM

OK DO

OK WHEEL-MOTOR RAMP

{ ramp stepping motors)

OK LIMIT-SWITCHES?

( exit loop if motor limited)
OK SYNCHRONIZE

( synchronize to motor pulse)
Ok LOOP
oK ;

A physician or clinical technician is
much rore of an end-user than the
researcher, As such, they are less
concerned with words that allow them
flexibility in control of peripheral
hardware; instead they want words that
control hardware in specific ways towards
some specified clinical objectives. Thus
they need to implicitly use both basic
FORTH words and peripheral driver words,
but want to only explicitly know words
that achieve specific aims. But even here
FORTH ean be appreciated. It allows a
flexible, conceptual system with a non-
confining syntax. With the pulmonary
microcomputer, the physician might
typically have the following dialog:

OK PUILMONARY CALCULATIONS

{ acguire data, and calec it )
OK PRINTER SHOW RESULTS
( print results )

OK DME VIEW

{ view plots of gases on )
OK C2H2 VIEW

( ... graphics display )

By learning a limited, yet full, vocabulary
of perhaps twenty to fifty well chosen
words, these non-technical users can
effectively use a FORTH based micro-
computer with little training or under-
standing of programming. And without
fail, they learn to use colon definitions to
group these basic words to their own
specific usage patterns.

Common Software Packages

As we have just seen, | group FORTH
software in three coarse categories cor-
responding to types of users: basic
FORTH system software, peripheral sup-
port extentions, and custom applications.
The basic system software does not vary
at all while custom application software is
unique to each end-user system. Peripher-
al support software is in a hazy area.
From the point of view of documentation
and support, any given type of peripheral
should appear uniform between systems;
but at the hardware level, each type of
peripheral varies in myriad details. By
creating common software packages with
this in mind | have been able to avoid
constantly recreating software because of
hardware variations.

Common software packages can do
more than just ease support for similar
systems. It can effectively hide hardware
details from the user, thus making dis-
similar A/D converters, for example.
appear identical from the software point
of view. And a well designed set of driver
software also imparts increased capabili-
ties to a system than just those of the
"raw" hardware. Let's look at a few
examples of software peripheral drivers to
reinforce these points.

Many of these microcomputers are
used for data acquisition purposes involv-
ing different types of A/D converters and
real time clocks. From a hardware point
of view, some of these A/D's have eight
bit versus twelve bit resolutions. Some
have seven or eight analog multiplexer
channels while others have sixteen. Some
of the real time clocks have fixed 60 Hz
resolutions, others are programmable.

From a conceptual point of view, these
data acquisition systems all operate
identically: they can randomly sample
multiple analog signals at some specified
rate. The driver software implements
these concepts using two words: SAMPLE
and DELAY. SAMPLE takes an integer
multiplexer channel number as an input
argument, and returns an integer ampli-
tude value. It works identically no matter
what hardware is controlled by it; the
multiplexer addressing and A/D digital
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output format are hidden from the user.
Similarly, the real time clock works in &
manner transparent to hardware
specifics. DELAY requires only an input
argument to specify the number of real
time clock "ticks" to delay.

But the conceptual basis of the data
acquisition package transcends just the
A/D hardware; there must be sorne place
to put the data. This may be on the para-
meter stack, in data arrays, or in disk
based virtual arrays. When this capability
is added, the data acquisition specific
hardware creates a synergy with the fund-
amental system hardware such as read/
write memory or floppy disk.

Another example of a peripheral driver
package that [ developed is a memory-
mapped video graphics package. The
typical hardware interfaces ranged from
240%256 resolution up to 512x480 resolu-
tion, with as many different methods of
addressing specific dots on the display.

Conceptually, we want, first of all, to
be able to plot physical X,Y points inde-
pendent of hardware specifics. A word
such as PLOT, using X and Y integer para-
meters on the stack top, can give us this
capability very readily.

But to really use graphics effectively,
it is nice to be able to specify different
areas on the video screen to plot different
data, as well as scaling functions to adopt
logical coordinates to this specified
graphics area. The GRAPH data type
(built with a defining word) allows these
different graphics areas and scaling func-
tions to be associated, and invoked, by a
common name. Further capabilities were
added to allow easy creation of vectors,
grids, tick marks, axes, and boxes. All of
a sudden, a very proletarian graphics peri-
pheral is transformed into a powerful
tool. And because these new functions are
ali built on the PLOT word, they are
readily tansferred between systems with
different hardware interfaces.

A final software driver to consider is
that of the hardware floating point unit.
It is interesting to consider this from beoth
a FORTH, and a conventional language
point of view. In a language such as
PASCAL, the system generally has built in
software based operators for floating
point. Because the system is not inherent-
ly extensible, the addition of a hardware
floating point peripheral requires either a
manufacturer rewrite of the PASCAL
floating point routines, or else a user
interface through PASCAL functions or
procedures. The former requires manu-
facturer acceptance and support of a new
hardware peripheral; unless a very popular
device, such support will be reluctant at
best. The latter requires a very awkward
language syntax to invoke hardware float-
ing point capabilities. Either way, the

problem is that the hardwsare has to be
forced to conform to the manufacturer's
language standard.

At the Medical Center, a hardware
floating point package was easily added as
an extention to the basic FORTH system;
the language adopted the hardware!

Anachronism or Portent?

At this juncture it is valid to ask if
FORTH justified itseif in its use st the
University of Rochester Medical Center.
Is it an anachronism of the past, or a phil-
asophy portending the future?

Admittedly, FORTH is somewhat
limited without such things @=s a file
system or procedural name scoping of
variables. Perhaps there should also be
less explicit knowledge of addresses, and
rmore system security. Perhaps. But if so,
then these things will be evolved as
FORTH matures.

It is what FORTH espouses, though,
that justifies its use. It allows hardware
components to dictate the software
design, thus allowing rapid incorporation
of technological advances. Other lang-
uages force conformance of hardware to
language standards--a slow, expensive
process.

FORTH allows isolation of users from
hardware dependencies, and edds capabili-
tizs to the basic hardware. The result is a
user environment that supersedes specific
machine configurations with concept
oriented, yet free syntax, computer opera-
tion. The FORTH system developer might
need to know "how", but the system user
need only know "what". Conventional
systems, to the contrary, generally require
everyone concerned to ask: "why?"

FORTH encourages an exploratory
development technique. A user can
choose between interactively trying con-
cepts, writing full programs, editing pro-
grams. compiling programs, and/or debug-
ging programs. He or she can do this in &
single, consistent FORTH environment,
utilizing any of these phases of develop-
ment as required. The result is efficient
use of all system resources.

The embodiment of the FORTH philos~
ophy is that programming is not what it is
often taught to be: the application of top-
down programming techniques to a single
problem. Instead, it involves a series of
interrelated problems all related to
system use. This might mean a set of
words that allow a researcher to control a
TV digitizer, or it may mean a series of
words to calculate and graphically display
the results of a mathematical analysis.
While the series of capabilities needed will
always vary between different systems, it
is only by providing a rich enough vocabu-

lary that a user can have a flexible, effec-
tive, and friendly system. FORTH is
unigque among languages in that it encour-
ages the programming of solutions!

Peter Helmers is a senior laboratory engi-
neer in the diagnostic ultrasound research
laboratory within the Department of
Radiology at the University of Rochester
Medical Center.

Helmers' article continued
on next two pages

BUG FIXES
Correction to FEDIT
Sorry you had trouble with FEDIT. The
listing was retyped at FIG and several

typos creeped in. They are:

1. SCR 64 Line 10: compile should be
COMPILE

2. SCR 65 Line 23: 1+ /MOD should be 1+
16 /MOD

3. SCR 67 Line 48:
B/BUF

8/BUD should be

4. SCR 67 Line 49: : E should be : .E

5, SCR 67 Line 50:
+ALIN

+ ALIN should be

You are perfectly right that source
text should be loadable. 1 talked to some
of the people at FIG about this and they
were acutely aware of the problem but
they are simply not set up to directly
reproduce listings in FD at the present
time. They do the best job they can with
the resources available to them, and they
work darn hard at it. I can't fault them.

REPL is a pseudonym for the fig-
FORTH line editor definition, R . [ used
the pseudonym because FEDIT was the
first program [ wrote in FORTH and 1
wasn't really familiar enough with
Vocabularies to comfortably use a word
that was already used in the FORTH
vocabulary.

Let me know how it works for you. If
you would like a machine produced listing,
I could run one for you from my current
version. Let me know. Good luck,

Edgar H. Fey
18 Calendar Court
La Grange, IL. 60525
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Fig. 1: Block diagram of a typical $5-100 based microcomputer; this one is used to study
blood vein mechanics.
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Fig. 2: Block diagram of UDA analog electronics timing control interface. Micro-
computer sets up interface parameters, but timing then runs independently using
PRFSYNC and ACK handshaking signals from Nova Minicomputer data acquisition
system. Because the microcomputer can synchronize to timing hardware, other capabil-
ities such as attenuator and frequency control can be utilized.
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Fig. 3: Diagram of vein mechanics experimental chamber. Microcomputer samples
pressure and force signals, and determines vein diameter from software analysis of TV

image.
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Fig. 4: Diagram of X-ray scanner apparatus showing how wheel collimator and fore and
aft horizontal collimators, controlled by stepper motors, create a mechanically scanned
X-ray raster. The microcomputer, with A/D and D/A interfaces, also monitors and
controls X-ray exposures.
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DATA STRUCTURES
IN A
TELECOMMUNICATIONS FRONT END

John A. Lefor
University of Rochester

Asbtract

URTH, the University of Rochester
dialect of FORTH, was used to implement
a telecommunications front end for an
IBM 3032, This package provides access to
the IBM 3032 from as many as 160 ASCII
terminal at speeds up to 9.6Kb. Each of
these terminals contend for 128 simulta-
neous connections at the IBM computer.

The reasons for choosing URTH as the
development language and a review of the
major advantages and disadvantages of
using Urth for this project is discussed.
Also, some conclusions as to the applica-
bility of URTH, and the data structures
used in this application is reviewed. The
use of conventional data structures for
providing information paths between the
various components of the system is
examined and the possible advantage of
less conventional data structures more
firmly based in URTH constructs is ex-
plored.

A plan for development of similar sys-
tems is presented which integrates some
of these concerns and promises a better
structured system.

Introduction

In 1977, the University of Rochester
Computing Center first got involved with
the FORTH language. The initial devel-
opment in FORTH was the implementation
of various flavors of the FORTH system
known collectively as URTH. Most of the
URTH systems developed have provided
multitasking capability on a variety of
micro-, mini-, and mainframe computers.
During the development of the various
URTH systems, a number of people within
the Computing Center showed interest in
using an URTH based system for develop-
ment of real projects rather than viewing
URTH as just another academic curiosity.

Concurrent with the development of
the URTH system, was the growth of tele-
communications in computing at the Uni-
versity. A need for additional tele-
communications lines into the computer
was fast becoming a necessity and the
financial support for such a purchase was
on the verge of becoming a reality.

In this environment, the design and
implementation of a lorcally designed tele-
communications front end was beginning
to emerge. The front end had to exist in
an academic computing center where the
need for teleprocessing was growing. The
front end had to communicate with an IBM
host (it was generally believed that the

IBM environment was at the University for
many years to come). The front end had
to provide access for the ever growing
number of ASCII terminals being
purchased for both computing and non-
computing environments. Importantly, the
front end had to provide for access to the
IBM host from more terminals than could
be dedicated to the host at any one time.
The only front end which could possibly
meet these goals and be reasonably cost
effective had to be one of local design.
meeting local requirements.

Features Provided

The front end designed at the Uni-
versity of Rochester Computing Center
does provide some unique features to the
users of our IBM 3032 computer. To be
sure, the features are not unique within
the context of computing, but are not
generally available in an IBM mainframe
environment.

One of the major advantages provided
by the locally designed front end is the
ability to switch between systems from
the same terminal. In a traditional (non-
SNA) IBM mainframe, it is not always
convenient to have a terminal switched
between different software teleprocessing
applications. Typically, a terminal either
is connected to one application or an-
other. With the locally designed front
end, it is possible to choose the appli-
cation ot which the terminal is attached.
In effect, the front end is a port contender
for various applications on the mainframe.

The second major feature arising from
a local front end is the ability to support
an XON/XOFF protocol. Since the IBM
mainframe communicates with its termin-
als in a half duplex mode, XON/XOFF
support is not traditionally available. The
local front end is based on full duplex
communication to the terminal so
XON/XOFF can be supported in a fully
effective fashion. Those terminals which
have buffers which can overflow can turn
off the input at will, a feature not avail-
able without special support in the IBM
world.

The front end is today running at the
University of Rochester Computing Cen-
ter. It is supporting 160 ASCII terminals
contending for 128 host computer ports.
Each terminal can select connection speed
between 110 and 9600 Baud as well as a
few other tailored features. The fact that
the implementation continues to run fre-
quently appears to be a miracle but repre-
sents some faith that the concept is at
least essentially sound.

Hardware Decisions

In order to implement the telecom-
munications front end to an IBM
computer, the processor chosen for the
implementation had to provide the capa-
bility to interface to an IBM byte multi-

plexor channel. Since the protoco! for
channel interfacing is non trivial, there
are a limited number of vendors of mini-
computers who were able to provide this
interface capability. Another important
consideration in the design of a telecom-
munications front end is the realization
that if a failure should occur in the front
end, there is a perception that the host
computer failed. Because there is great
need to access the host computer, it is
undesirable to have hardware failures
affecting the front end. To this end, the
mini-camputer chosen as the front end had
to have both a history of reliable service
and a maintenance team capable of
repairing any difficulty with a minimum of
fuss,

In evaluating the available mini-
computers against these criteria, the pro-
cessor which was finally chosen was a
Digital Equipment Corporation PDP
11/34. The interface to the channel is via
a DX-11B, and the ASCII terminals are
supported by DZ-11's (actually many of
the terminals are supported by a Digital
Communications Associates 205, which
emulates 32 lines of DZ-11 on a single
quad height board).

In retrospect, we can see that though
the PDP 11/34 does work in the required
environment there are some deficiencies.
The most notable is in the maintainability
of the DX-11B (the channel interface
which connects the PDP 11/34 processor
to the IBM processor). There are so few
DX-118's in production throughout the
United States that the DEC customer
engineers are relatively unfamiliar with
the details of its operation. When subtle
problems have occurred, the repair of the
problems has taken considerable time and
talent. To be sure that the subtle difficul-
ties were discovered and corrected is a
tribute to the engineers dedication to the
problem, but a more popular interface
would probably have been repaired in a
shorter time.

Software Decisions

In determining the nature of the soft-
ware to run for this application, it was
necessary to evaluate the probable struc-
ture of the end goal and to consider all the
concerns of a project of this sort. After
the major considerations are evaluated,
the best software choice can be made
based on the concerns and knowledge of
what is available.

A telecommunications front end is a
realtime device which must be able to
handle a relatively large number of poten-
tial 1/O devices. In particular, many ter-
minals are expected to be connected to
the front end. Also, there were consid-
erations for attachment of synchronous
lines for support of Hasp Bisync, Remote
3170's, and local area network communi-
caticns. All these considered together, it
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was important to choose a software
implementation which provides support for
reltime device handling.

The wide variety of I/O devices which
were contemplated for the front end also
reuvired that the software provide tools to
help the designers of the system gain
understanding of a wide variety of hard-
ware devices. There were going to be
asynchronous and synchronous devices as
well as a channel interface which had no
well defined characteristics (the best
documentation of how the DX-11B worked
was found in the diagnostic programs sup-
plied for hardware maintenance). In
addition, there was always the possibility
of needing to support a new and different
class of 1/O device. Though the manuals
documented how the hardware worked,
any software which would allow inter-
action with the unfamiliar hardware would
be beneficial in the debugging of the over-
all system.

Another area of debugging which was
considered in the software choice was the
software protocols. The connection to the
channel of an IBM computer by asyn-
chronous ASCIl devices invokes a non-
trivial set of software protocols. A simple
example of the kinds of problems is in the
transmission of any single ASCII character
to the channel. In the IBM environment,
the software running in the processor
expects that any ASCI characters trans-
mitted from a telecommunications front
end are sent not as simple ASCII
characters (as generated by the terminal),
but rather demands that each ASCII char-
acter be bit reversed.” Though this is not
a difficult feat to accomplish, it points
out the nature of some of the software
protocol issues which must be dealt with
in a telecommunications front end.
Suffice it to say the software used to
design the front end would benefit the
designer if it helped to identify, and
resolve, software protocol issues.

In the development of any realtime
software project, it is recognized that the
throughput of the system is important.
The telecommunications front end is no
exception. Since there are to be a large
number of I/O devices providing input to
the software application asynchronous to
the operation of the software, it is imper-
ative that the application software be able
to keep pace with the demand. On the
other hand, the inability of the front end
to keep pace with the demand is not criti-
cal. If a character destined to a terminal
is lost, a human being will not die but a
programmer may get upset. Keeping
these priorities in mind the project had to
be implemented in an environment which
was not wasteful of processor time, but
there was no need to be alarmed if there
was the potential to loose data.

The hardware decision made specific
features of the processor had to be con-

sidered in the software choice. Speci-
fically, the PDP 11/34 had 64K bytes of
memory. We had to have some degree of
confidence that the entire system could be
packaged in 64K bytes. If that was not
possible, the development time could be
slowed down waiting for shipment of addi-
tional memory. The speed of the 11/34
processor led us to believe we would have
sufficient CPU to do the job, but not a lot
to spare.

The final and perhaps major consider-
ation which affected the choice of
software was the perceived development
time. The project was initiated at a time
when there was an extra IBM processor at
the University. It would be possible to
design and debug the entire front end on a
processor which was not in use. That was a
real opportunity not to be passed up.
However, the processor could not remain
idle for too long a time. Any software
package which could help to shorten the
development time and thereby allow de-
bugging of the front end on the unused
processor would be of great benefit to the
implementation.

Alternative Software Strategies

Examining the issues in making the
software choice, there appear to be three
alternative software strategies. The use of
assembler language, the use of a high level
language such as C or Fortran, or the use
of URTH.

Assembler language provides a number
of solutions to the problems outlined. It
tends to be compact in memory usage, it
certainly has the potential to make most
efficient use of the limited CPU, and it is
quite capable of handling the foreign
devices needed for a front end. However,
the assembler has a few drawbacks.
Probably the major difficulty with assem-
bly language is the extended development
time. Debugging is slow and tedious and
design of code and dats structures to aid
debugging is totally a responsibility of the
programmer. Thus., development of a
major application in assembly language is
concerned both with the solution of the
problem but also much effort is spent on
good design and coding technigues.
Another difficulty with the assembler is
maintainability. Each programmer has an
individual design style. The documenta-
tion rests largely in design of the code. If
the original designer is no longer available
for maintenance of the project, there is a
long learning curve to train a new indi
vidual.

High level languages solve many of the
difficulties with assembly language. If the
language is well conceived for a realtime
problem, it will support the difficult
hardware issues and will provide a frame-
work for data structure design which pro-
vides readability and maintainability of
the software. A major difficulty with high

level languages is their use of memory,
and sophisticated operating system ser-
vices. These two concerns may make a
larger faster CPU needed for effective
execution of the application. Another
drawback of both the assembler and high
level solution is the lack of inherent inter-
active develoment and debugging tools.
They typicaily can be designed into the
system, but they generally are not present
in the basic environment.

Evaluation of URTH

URTH appears to meet many of the
goals in the software choice. Though
there are limitations, the advantages seem
to outweigh the disadvantages especially
when design time is so important a consid-
eration.

When looking at URTH, a clear advan-
tage gffarded by URTH is implementation
time.“ Most of the other advantages pro-
vided by URTH can be directly tied to the
speed of implementation. URTH provides
easy access to any set of unusual devices,
because the device handlers are ach tai-
lored to the system and the hardware.
Once a program is debugged in URTH,
there is good FBEST to believe it will
continue to work. Another major
advantage offered in the URTH environ-
ment is the enormous flexibility in design
of both source codes and data structures.
The ability to code both high level URTH
and machine level code and to achieve a
uniform interface provided many oppor-
tunities to speed up inefficient code. The
ability to design new data strucutres to
work in a large scale environment offers
much flexibility in design.

The URTH environment is not without
fault. The fact that URTH is an inter-
preter does mean the code is not as
efficient in CPU speed as possible. Of
course, the ease of generating assembly
code helps alleviate this problem. How-
ever, a major drawback of the URTH
environment stems from its flexibility in
data structure design.

The wvery fact that it is possible to
design any needed data structures coupled
with the implementation of the traditional
data structures of arrays, constants, and
variables created some difficulties in the
design of system which had so much pres-
sure for development in a short time.
There was not a lot of time spent on
development of the best data structure for
the problems encountered. Rather, tradi-
tional data structures were used to meet
individual demands. In particular, many
arrays were implemented for storing of
information relating to specific 1/O
devices, and queues {obtained from a free-
pool) were used to buffer data between
devices. The use of such data structures
had two major impacts on the project.
First, the queues were sufficiently diffi-
cult to handle as to have impact on the
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speed of the overall systern.k The use of
the arrays to hold information for later
processing yielded much difficulty in
debugging individual words and tended to
leave side effects which had impact on
words already debugged.

Thus, the use of URTH has many vir-
tues but it is crucial to recognize the
particular issues which may lead to
difficulty in debugging. Using data
structures such as arrays and variables to
communicate information between tasks
in the front end tended to leave open
many portential pitfalls in the debugqging
and design of a system as complex and
highly integrated as a front end.

Alternative Design Strategies

In examining the resulting front end
for difficiencies, it becomes clear that
there are some strategies for alternative
design which could limit the difficulties
encountered in any similar realtime
project, and would make URTH a vehicle
for well designed, well integrated, and
effective systems design.

The issues of code design are well con-
sidered in URTH. The ability to switch
between machine leve! code and high level
URTH provides a classic tradeoff between
speed of execution and memory utili-
zation. The fact that the interface
between both environments is standard
allows all design in high level URTH, and
conversion to machine code when and
where appropriate. In this area, URTH
provides suffficent tools and a good set of
options.

In the data design area, URTH provides
so many options that the best data struc-
ture choice is very much at the control of
the programmer. In the case of the front
end design, the traditional data structures
were not sufficient to effect the job but
there was insufficient time to design an
optimal data structure. In retrospect, it is
possible to peruse the alternatives and
choose a structure which provided the
flexibility needed, and also limits the side
effects from preventing effective debug-
ging of words.

One of the major advantages URTH
provides over alternative software
approaches is the stack. Proper design of
URTH words with parameter passing via
the stack helps to insure that a debugged
word will tend to continue to work, and
will have no side effects Given this
observation, it would be natural to use the
stack to pass parameters in the telecom-
munications environment. Unfortunately,
the stack is not useful! in communication
between tasks, and the stack is difficult to
address and use when too much informa-
tion is passed. In the front end, there are
so many unrelated parameters which need
to be passed between tasks that the stack
is not useful. But, the concept of a stack

does solve one of the major difficulties
encountered in the front end design. Given
this set of considerations, it seems like a
good gdea to define a "named object
stack"’ for each 1/O entity defined in the
telecommunication environment.
particular 1/O device needs some form of
service, the named stack is invoked and all
data relating to the I/O device is availa-
ble. The stack can contain pointers to
ring buffers as well as current status of
the device. Using this strategy provides
an environment that naturally fits within
the basic strucutre of URTH program-
ming, makes effective use of constructs
within the URTH system, and promotes
good URTH programming practices which
minimize the side effect problems. Over-
all speed of the application is not
significantly impacted and many old
functions can take advantage of the data
structure.

The stack will contain sufficient
volumes of information about each 1/O
device that it may be advisable to create
a "framing" of the stack. This would allow
access to individual parts of the stack as
if it were the current top of stack, thus
allowing access to more data in a conve-
nient notation.

Summary

The telecommunications front end
designed and implemented at the Univer-
sity of Rochester Computing Center is a
useful model of many realtime applica-
tions. In the design are found a number of
flaws which are primarily related to the
particular pressures present at the time of
the design. The choice of URTH as the
software vehicle appears to have been an
excellent one however, the choice of data
structures to use within the URTH envi-
ronment was not as well conceived.

URTH provided a software
environment which clearly effected time
effective development of a complex
system. It provided a comprehensive
interactive debugging environment with
the ability to address specific speed
inefficiences in a uniform manner. The
major drawbacks to the URTH environ-
ment resulted from the choice of data
structures for intertask communication
within the application.

URTH does provide teols to develop
the optimal data structures for any par-
ticular application. In the case of real-
time applications, the choice of data
structures is particularly criticel. From
my experience, I believe that a data struc-
ture similar to the named object stack
would benefit many realtime applications
in URTH both function provided and in the
limiting of side effects so prevelant in
global data strucutres such as arrays.

A second feature which would be valu-
able in an URTH environment would be

When a *

any useful stand-alone dump with indexing
to help the programmer walk through the
dictionary. When total application col-
lapse occurs, URTH is not very informa-
tive as to the nature of the problem. A
memory dump (with a good index for the
dictionary) would help to debug some
rather sticky timing problems.

Overall, URTH is a good choice for
development of realtime applications, but
care in the design of data structures
should help to make the overall mainte-
nance of the application a simpler chore.

Footnotes

1. This is not simple an example of a per-
verse IBM, but instead is another fact
of IBM computing history. The stan-
dard device IBM used to connect ASCII
terminals to the host (a 270x) was not
designed using today's UARTS, rather
it collected the bit serial data in a
register. The data was collected in a
register in such a way as to cause the
characters to be captured in bit
reverse order. Rather than correcting
the problem in the front end, they
transmitted the bit reversed ASCII to
the host, and translated the bit
reversed ASCII to EBCDIC for pro-
cessing. The software stayed, so the
need for bit reversed ASCIl exists
today.

2, This advantage was certainly realized
in the actual project. The basic system
was operational within four months
from beginning of the project.

3. This is dependent upon good URTH
programming practices. But, in our
project there became clear a self
evident truth. We attempted to debug
so many "words" which were already
correct, we began to believe that it is
very difficult to debug a working pro-
gram.

4. Converting most of the queues to indi-
vidually assigned ring buffers speeded
up overall processing by 20% or more.

5. See Peter Helmers, "Userstack",
FORTH DIMENSIONS, Vol. III, No. 1
and Peter Helmers, "Alternative
Parameter Stacks", Proceedings of the
1981 Rochester FORTH Standards
Conference.
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Abstract

Three techniques for using rnemory
management hardware in a FORTH system
have been implemented at the Laboratary
for Laser Energetics at the University of
Rochester. One method uses mapped
memory for data storage by creating a
"data window" in the logical address
space. A second method increases the
available space for programs by mapping
tasks in a multi-tasking system. The third
uses mapped memory for data storage by
taking advantage of special instructions
and a second set of memory management
registers.

Introduction

The problem of insufficient memory
for programs or data is commonly encoun-
tered on computers with a 16 bit word
size. Many manufacturers now offer hard-
ware to alleviate this problem. At the
University of Rochester's Laboratory for
Laser Energetics we have devised solu-
tions to three different aspects of the
problem using FORTH on PDP-11/23 and
PDP-11/34 computers.

Two applications at the Laboratory had
a need for large image processing arrays
(up to 100K words). We solved this by
using a double precision array index which
maps physical memory into a logical mem-
ory "data window" within the FORTH sys-
tem.

On a different, very large FORTH ap-
plication, we needed both more program
space and more data space. We increased
the amount of program space by imple-
menting a multi-tasking system in which
certain portions of memory contain the
nucleus and common code, while other
portions are task specific and are period-
ically switched in and out of active use.

To increase the available data space
we are using special instructions and a
second set of memory management regis-
ters on the PDP-11/23 and PDP-11/34
computers.

Additional material on these systems
can be found in "FORTH in Laser Fusion,"
by Larry Forsley, in this issue of FORTH
DIMENSIONS.

Hardware

The memory management hardware on
the PDP-11/23 and PDP-11/34 computers
consists of two sets of registers that map
16 bit logical addresses into 18 bit phys-

ical addresses. One set of registers is
used when the processor is in "kernel"
mode, the cther when it is in "user"
mode. The mode is determined by two
bits of the processor status word.

Each set of registers contains eight 32-
bit Active Page Reqgisters (APR'). Each
APR is actually twe registers: the Page
Address Register (PAR) which contains a
base address, and the Page Descriptor
Register (PDR) which contains the page
length and the access control key. -

The 16-bit logical address space is
divided into eight "pages" shown in
Table 1. When the memory management
unit is enabled, any access to memaory will
be mapped through the APR for that
address.

Fazde Logical Address Ranse

(octal)

0 - 17776
20000 - 37776
40000 - 57776
60000 - 77776
100000 - 117776
120000 = 137776
140000 = 157776
160000 - 177776

NOUb G o

Table 1, Losical Address Space.

The physical memory address that will
actually be accessed is a combination of
the logical address and the PAR for that
page. Figure 1 shows how the logical
address is deriv:d. Bits 15-13 of the
logical address give the page (or APR)
number. The PAR for that page gives the
base address in 64 byte blocks. This value
is added to the block number field of the
logical address (bits 12-6) to find bits 17-6
of the physical address. Bits 5-0 of the
physical address are the same as bits 5-0
of the logical address.

Figure 2 shows the logical address
space.
Page 7 1/0 } 4K
Page 6 |__ _b'l_otik-bt-.iffe_rf e
return stack
Page 5 pararretgr stack
Page 4
Page 3 r 28K
Page 2
Page 1 T
dictionary
s L Gl lias Midc e s il i J
Figure 2. Logical address space for

single task without mapped memory.

Additional information on the PDP-11
memory management Ufﬂt can be found in
the processor handbook™.

Data Window and Memory Management

One way to utilize the memory man-
agement hardware and additional memory
is to use it for data storage. Two of our
applications at LLE require large data
arrays (up to 100K words) for image pro-
cessing. We solved this problem by
creating a "data window" in our loagical
address space. Figure 3 shows the logical
address layout of a system with a data
window.

FOR TH DIMENSIONS TI1/4

1] 13 132 e 5 (=}
Logical
Page Block No. DIB Rddrecs
1\ (=]
: Active Page
///j;/:;/ Page Address Field Register
17 e 5 * o
. Physical
Physical Block No. DIB i ki
{Displacement
in blocks)
Figure 1. Construction of a Physical Address
(derived from figure 7-9 of [1] and
reprinted with permission from DEC.)
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Figure 3.
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Logical Address Space With Data Window.

The block buffers, return stack, and
parameter stack are moved down to the
top of the next 4K word page of logical
memory, leaving a 4K word gap in the log-
ical address space. In a 128K word sys-
tem, 100K words of physical memory are
then accessed through this window.

The X and Y coordinates of the image
array are converted to a double precision
index. This is done by multiplying the Y
coordinate by the number of pixels per
line and adding the X coordinate. This
index is divided by the number of pages
per image. The quotient indicates which
page the pixel is in, and the remainder will
be the address offset of the pixel into the

page.

The relocation constant for the needed
page is set in the PAR so that it can be
accessed through the data window. The
logical address of the pixel is obtained by
adding the address offset to the starting
address of the data window.

Multi-tasking and Memory Management

QOur version of FORTH implements
multi-tasking in the following manner.
Each task has a "state vector" which
contains "user" wvariables that can differ
from task to task. This includes:

- Dictionary and stack pointers

- Program counter and interpreter
pointer

- Status flags and state indicators

- Terminal I/O routines and buffer
pointers

- Vocabulary pointers

- MNumber base

The state vector for the master task is
included in the nucleus.

Each task also has its own terminal
buffer, dictionary, parameter stack, and
return stack. MNew tasks are created with
a routine called BLDTASK which allocates

space for them in the master task's dic-
tionary. Figure 4 shows the logical
address space in an unmapped multi-
tasking system.

A
Page 7 1/0 }‘”\
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Page 1 T
dictionary
Rege Qif= = 7= = nucleus
Figure 4. Logical address space for

unmapped system with two tasks.
raturn stack

parameter stack
+

dictionary
TTY buffer
state vector

Task state vectors are linked to each
other in a circular fashion, one pointing to
the next and the last back to the first. A
"round robin" scheduler starts running a
new task when the current task executes a
PAUSE. PAUSE stores the current
machine state into the state vector of the
existing task and sets the new machine
state according to the new task's state
vector.

Additional information on multj-
tasking c?n be found in works by Forsley”,
McCourt”, and Leary and McClimans™.
Figure 2 shows the logica! address space
of a FORTH application with a single task
and not using memory management.

To add program space to our multi-
tasking system, we reserved a "task win-
dow" in the logical address space. The
master task occupies the low five pages of
address space. Code in this area is usable
by all tasks.

Mapped tasks occupy pages 5 and & of
the logical address space. Definitions and
data within a mapped task are accessible
only to itseif. Each task must have a
separate vocabulary. If definitions in a
mapped task are entered into the FORTH
vocabulary, the dictionary links will be
gone when the next task becomes active.
This usually results in a system crash.
Figure 5 shows the logical address space in
a mapped multi-tasking system.
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Figure 5. Logical Address Space for

Mapped Multi-tasking System.

Implementing this technique required
the following changes:

-  Modify the scheduler PAUSE so
that it sets the page 5 and 6
memaory management registers, as
well as swapping in the usual state
vector information.

- Move the block buffers and master
task stacks to the top of page 4.

- Change the routine BLDTASK to
assign the new task's return stack,
parameter stack, and dictionary to
pages 5 and 6, instead of giving
them space in the master task's
dictionary.

- Change BLDTASK to assign physi-
cal memory to the task. It must
calculate the appropriate settings
for APR 5 and APR & and save
them in the task's state vector so
that they can be loaded into the
memory management registers by
PAUSE.

User Space for Data

The two approaches discussed pre-
viously both ran in processor "kernel"
mode. To increase our memory resident
data storage in the multi-tasking appli-
cation described previously, we use the
"user" mode memory management regis-
ters.

The processor status word has two
mode fields: current mode and previous
mode. The instruction MFPD moves a
word from the "previous" mode address
space to the "current" mode processor
stack (the return stack in our FORTH
implementation). The instruction MTPD
moves a word from the "current” mode
processor stack to the "previous" mode
address space.

Using these instructions it is possible
to retrieve and store data quickly and
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efficiently, and the data stored there is
accessible to all kernel mode programs,
whether they are mapped tasks or not.
Data tables that would otherwise need to
be disk resident because of their size can
now be memory resident to speed response
time,

The source listing of the user mode
data storage code is included at the end of
this article.

Conclusion

The first technique, the data window,
has been used for two image orocessing
applications. One is used to view infrared
and ultraviolet laser bearmns in materials
damage testing experiments. The system
does circular averaging and calculates an
absolute intensity within the 10 minute
shot cycle.

The other image processing application
observes X-ray diffraction patterns pro-
duced by a nanosecond X-ray source. A
technique of radial averaging is also used
here to enhance the diffraction pattern
and study changes induced by sample stim-
ulation.

The second and third techniques are
used on the Omega Alignment System,
which now has 17 tasks installed and uses
about 140,000 bytes of memory for pro-
gram space. The user mode data storage
method is used by the data base software
and for the intertask message queues.

Although this paper describes tech-
niques used with DEC PDP-11 series com-
puters, the techniques are similar to those
used with any limited address system with
logical/physical mapping hardware. Thus,
they are applicable to minicomputers like
the Hewlett-Packard 1000 series and the
much newer 16 bit microcomputers like
the Motorola 68000 and Zilog B000. The
techniques are especially appropriate in a
FORTH-79 context where the FORTH
machine is defined as having a 64K byte
address space, carved out of an arbitrarily
large physical address space.
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RO=USER SFACE ADDRESS )

R1=KERNEL SFACE ADDRESS )

SET FROCESSOR STATUS WORD: )
CURRENT=KERNELs FREV=USER )

FROM KERNEL SFACE TO RF )

FROM RF TO USER SFACE )

DEC W» EBRANCH IF NOT ZERO )

FSW BACK TO NORMAL )

RETURN )
447 3K KKK KKK R OHOKOK R ORI K K

‘COUNT )

( WORDS FROM USER SFACE TO KERNEL SFACE )

W S )+ HOV
RO 5 )+ MOV
R1 S 2+ MOV,
7777760 @% 300000 & MOV,
BEGINS
R1 )+ FFDy
RC ¥+ RF )+ MOV »
W SO0k,
7777760 C% 0 #% MOV,
NEXT»
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A HIGH LEVEL INTERRUPT
HANDLER IN FORTH

R. L. Keck and L. P. Forsley
Laboratory for Laser Energetics
Unversity of Rochester

Abstract

A system for writing interrupt service
routines in high level FORTH is des-
cribed. An example of the utility of high
level interrupt service in a dynamic data
acquisition situation is provided.

Introduction

X-ray data from laser-plasma inter-
action experiments on the GDL laser
system at LLE has in the past been
acquired from photographs of oscilloscope
traces. Because of the large number of
detectors currently being employed, this
method has become impractical and we
have chosen to use 12 channel integrating
A/D converters for data acqu'isitian. These
A/D converters are CAMAC" compatible
modules and because of the extensive
CAMAC vocabulary available in the UR
FORTH-79 system, as well as the
suitability of FORTH for use in a dynamic
programming environment, FORTH is used
for the acquisition software.

The A/D modules integrate the signal
at each of their 12 inputs for the duration
of a gate signal, which is derived from the
laser oscillator. The oscillator is fired
once every 10 seconds to keep it in stable
operation, however, our data signal occurs
only when the full system of laser ampli-
fiers is fired as well, an event which
occurs when a fire sequence is carried out
by the laser system controller on com-
mand from the operator. We require a
means of clearing the A/D modules just in
advance of the oscillator pulse at which
the full system will fire. This is accom-
plished by feeding a ready-to-fire signal,
provided by the laser system controller &4
seconds in advance of fire-time, to a
CAMAC contact sense input module. Our
acquisition sequence then is: look for a
ready-to-fire signal from the contact
sense input module, clear the A/D module,
wait for data available indication from the
A/D module and read the data from the
A/D module.

The above sequence could be imple-
mented directly, using the available
CAMAC vocabulary, by simply continu-
ously interrogating a module until the
desired condition occurs and then pro-
ceeding to the next step. This method
needlessly ties up the computer executing
loops and prevents it from handling any
other task while the sequence is in
progress. Since both the contact sense
input module and A/D module will gener-
ate CAMAC Look At Me's (LAM's) when a
signal occurs at their inputs and a CAMAC
LAM can generate an interrupt, we can

use an interrupt driven acquisition system
which will avoid needless looping. This
requires the writing of interrupt service
routines in machine code, which is at best
cumbersome. It would be nice to be able
to write high level FORTH interrupt ser-
vice routines which could be readily
changed. This can, in fact, be done and
our method for doing this is discussed
below.

Implementation

Our system consists of UR FORTH-79
running on a Digital Equipment Corpora-
tion LSI-11 microcomputer under DEC's
RT-11 operating system. While a com-
plete description of the implementation of
this system may, be found in the imple-
mentation guide“, we will briefly cover
FORTH's usage of processor registers for
reference in the following discussion.

Four of the processor's general purpose
registers are dedicated FORTH registers.
R6, the system stack pointer, serves as
FORTH's return stack pointer (RP). RS5 is
used as the stack pointer (S). R4 is used
as the FORTH interpreter pointer (IC); it
contains the address of the compilation
address (also referred to as the ccde field
address or CFA} of the next word to be
executed. Finally, Rl is the state vector
pointer (SV); more will be said about the
5V later.

The procedure for executing a FORTH
word from code is essentially quite simple
and is accomplished by the word
XEQ.MACRO (a listing is included in the
appendix). It accepts an address, into
which will later be placed the compilation
address of the interrupt service word, on
the stack and generates code which will
place the compilation address of the
service word on the stack [MOV @#<ADDR>
,~(5) 1, loads the IC with the address of the
compilation address of the return from
interrupt code [MOV #<HERE+83IC ] (note
that <HERE+8> contains the compilation
address of RTI (COMPILE RTI), the return
from interrupt code word) and then jump
to the executable code for EXECUTE to
begin execution of the interrupt service
word [IMP ' EXECUTE]. The net effect
of this code sequence is to start execution
of a high level interrupt service word and
subsequently execute the return from
interrupt code.

Before execution of the code gener-
ated by XEQ.MACRO can begin, the con-
tents of the processor registers must be
preserved by pushing them onto the sys-
tem stack. Code to do this is generated
by REG.SAVE.MACRO. We must addi-
tionally ensure that the S and SV reqisters
point to valid memory areas. In the multi-
tasking UR FORTH-79 system, this is
most easily accomplished by having a
separate interrupt task area. The task
area contains return and parameter stack
memory allocations as well as a state

vector allocation. The SV register points
to the state vector and the state variables
contained in the state vector are addres-
sed relative to the value of the SV
register.

It should be noted that it is not
necessary to have a multi-tasking system
in order to implement high level interrupt
routines. This is because the values of the
state variables referenced by the interrupt
routine are in general identical to those
for the master task. On a non multi-
tasking system we would simply reserve a
parameter stack area for the interrupt
routines and set S to point to it. It is
necessary, however, that FORTH be coded
reentrantly for this scheme to work.

The SV.SET.MACRO is used to gener-
ate code which will set the 5V and S
registers. Note that it also changes the
return stack location. This would not be
necessary, except for the fact that the
FORTH stack checking routines require
that the return stack be located in mem-
ory immediately above the parameter
stack. The value of the interrupted task's
return stack pointer is stored in a free
vector location [52T(5V)].

SETUP.INT sets the interrupt vector,
in this case specifically for CAMAC (the
vector for the device in slot N for the
CAMAC crate is located at 400+N*4).
The processor is run at priority 7 during
interrupt service to prevent further
interrupts from occurring.

To make it simple to create interrupt
service routines, the macros previously
discussed are combined to produce a
defining word called

CREATE.CAMAC. INT.WORD .

This word when executed, accepts a task
area and CAMAC slot number on the stack
and creates a word which contains the
code sequences previously developed
starting at the second parameter field
location of the newly created word and
sets the interrupt vector to point to this
cade. The first parameter field location is
reserved to hold the compilation address
of the word to be executed when an
interrupt occurs. The DOES>part of the
new word will load this reserved location
with the compilation address of the
desired interrupt service word.

An Example

The listing for blocks 3 and 4 illustrate
how the interrupt handler is used in our
acquisition system. A task area (1TASK)
is created and initialized for the interrupt
routines to use. It must be delinked from
the multi-tasking system to make it trans-
parent to the multi-tasking dispatcher.
Then two interrupt service routines are
defined (RDY.WORD and FIRE.WORD)}
each with an associated CAMAC slot (or
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device). They share the same task area
since only one interrupt service routine
can be active at a time.

In block 4, the high leve! service
routines are defined. RDY.INT is used to
clear the A/D module, enable A/D LAM's
{XCLR XENLAM) and then clear and dis-
able further LAM's from the contact sense
input module, on occurrence of a LAM
from the contact sense module. FIRE[
collects the A/D data, disables further
A/D LAM's (XCOLLECT XDISLAM) and
activates another task which will print the
results (2TASK DISPATCH) on occurrence
of a LAM from the A/D module. These
high level routines are installed as the
interrupt service routines for the appro-
priate CAMAC devices with the sequen-
ces: RDY.WORD RDY.INT and
FIRE.WORD FIRE[. Changing an interrupt
service routined with this system requires
only defining a new high level handler
word and installing it as the handler word,
e.q., FIRE.WORD FIRE2[ will make the
word FIRE2[ the new interrupt service
routine for the A/D module.

Conclusions

We have shown that it is possible to
write high level interrupt service routines
in FORTH. This makes it possible for pro-
grammers unfamiliar with interrupt pro-
gramming to easily write interrupt service
routines. In addition, the facility with
which this system permits changes to be
made to the interrupt handlers makes this
an ideal way to handle data acquisition in
a rapidly changing experimental environ-
ment.
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APPENDIX
WORD LISTINGS

BLOCK 1 R0RROROKOR 3K KRR MR KR KR OK R KK KK KKK KR K OR KRR K KK KKKk X

( Yigh level FORTH interrurt handler rlk lef 25-maw-B1 )
t REG.RESTORE.MACRD ( <>=<>» restore redisters 0-5 %)

ASSEMBLER 0 S D I RP )+ MOV, -1 +LOOP FORTH i
CIDE RTI { restore redgisters, return from interrurt %)

RF 52T SV I) MOVr REG.RESTORE.MACRO RTIs FORTH
¢ XEQ.MACRO ( <addr of xec wordr assembly timeX>-<> ¥*)
ASSEMBLER S -) SWAP @4 MOV, ( rush handler word addr on stack)

IC HERE 8 + # MOVs ( preset the IC )
4 EXECUTE F JMPy ( Jumr to execute )
COMPILE RTI ( pointer to next instruction )

FORTH i
REG.SAVE . MACRD ( <>»>=<>y save redisters 0 = 5 ¥%)
ASSEMBLER 6 O DO RP =) I MOV, LOOFP FORTH i

-2
BLOCK 2 KRR 2K KKK KK KK 0K 3k 380k 8 3Kk 30K 3K 3 0k 3K 3 3 3 38 0 K 3K 3K o K oK 3 0K 3K oK 30K KoK
( more interrurt stuff 25-mav-B1 rlk )
SETUP.INT ( <slot¥><{code addr>-<> set camac vector %)
SWAF 4 X% 4000 + DUF ROT SWAF 1
2+ 3400 SWAF !

s

SV.SET.MACRO { <8V locr»-<»> set SV for interrurt routines X)
ASSEMBLER SV SWAF # MOV, S 14T SV I) MOV, 52T SV I) RF MOV,
RF 14T SV I) MOVs FORTH

.s

CREATE .CAMAC . INT .WORD ( <5V locr<slot#>-<>y create int. %)
( defin. word. X)

<BUILDS 0 » HERE SETUF.INT HERE 2- REG.SAVE.MACRO

SWAF SV.SET.MACRO XEQ.MACRO

DDES> C[COMFILE] INSTALL SWAF !

-
BRLOCK KRRt 232222323083 288 338333833333 33333 3333343333333 34% 33
{ Interrurt task area initialization rlk 16SEP81)
20 30 0 47 BLDTASK 1iTASK
1TASK TCLEAR

1TASK DUF !
1TASK DISPATCH

{ create 2 task area %)

( initislize task area %)

( delink task from tesk list %)
( mark task as active X)

SV DUF !

( create a ready to fire handler word for CAMAC slot & %)
1TASK &6 CREATE.CAMAC.INT.WORD RDY.WORD
( create a2 fire time word for the A/D module X)
1TASK XAD CREATE.CAMAC.INT.WORD FIRE.WORD

iS5

BLOCK A AR KKK KK KKK K 3K KK K K 3K KKK KK KKK KKK KK K KKK JOK JOKKOKK R KK KKk X

13~arr-81 rlk )
{ task area for rost fire word %)

( xray interrurt service
40 120 0 47 EBLIDOTASK 2TASK

! RDY,INT ( rdu fire int handler %)
XCLR XENLAM 6 N O A 2 F DROF 24 F

! FIRE! ( fire time handler X)

XCOLLECT XDISLAM 2TASK DISFATCH #

( make ROY.INT the readys to fire %)
( interrurt service routine %)

RIY.WORD ROY.INT

FIRE.WORD FIRE! ( make FIRE! the fire time interrurt handler %)

-
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OPTIMIZED DATA STRUCTURES
FOR HARDWARE CONTROL

Joseph D. Sawicki
Laboratory for Laser Energetics
University of Rochester

Abstract

Data structures have been developed to more easily control hardware. A disk driver is used as an example for exploring alternative
FORTH data structures and ways of optimizing them. These examples show that FORTH data structures are well suited to minimizing
programming time and increasing software efficiency.

Introduction

While workTg at the Laboratory for Laser Energetics this summer one of my projects was to write a general purpose backup routine
for a DEC-like® RXD2 mode floppy disk drive. In doing this certain commonly used FORTH tools became useful. This paper will serve to
illustrate these tocls, and the modifications necessary due to the nature of the project.

Data Structures

The TO concept was developed by Dr. Paul Bartholdi and was described in FORTH DIMENSIONS Vol. I No. 4 and Vol. I No. 5 -::cmcept2
in variables. This could be implemented in high level as follows:

0 VARIABLE %TO
TO 1 %TO ! ;
: VAL <BUILDS ( <#>-<> , ACCEPTS INITIAL VALUE )

DOES> ( <#>-<>;<>-<#>, STORES OR GIVES "VAL" )
%T0 @
IF !
0 %TO !
ELSE @
THEN ;

It would be used like a variable. Entering 0 VAL<NAME>would define a variable with an initial value of zero. To change the value to a
six one would say 6 TO<NAME>; sayingsNAME>would now put a six on the stack.

This technique makes the code more readable by eliminating the use of @ and [ with variables (and ' with constants) to access and
modify them. The backup driver is no exception to this and in fact offers the opportunity to carry the concept one step furthe; In the
DEC PDP-11 architecture, I/O is memory mapped so that, for instance, the Disk Control Status Register is at location 17717007 and the
Data Buffer Register is at location 1771720. One way to communicate with these addresses is to define two constants:

1771700 CONSTANT CSR
1771720 CONSTANT DBR

but then the use of @ and [ becomes necessary. A way around this problem is to define a data structure similar to VAL except that it
contains an address in its parameter field instead of a value. It would also be useful to fetch the address as well as to send data to and
from the address. An easy, though by no means optimal, implementation of such a structure is given below.

v T0 l SETS FLﬁG S0 THAT A NUM WILL BE STORED IN A REG.)
' FRDH f SETS FLAG 50 THAT A NUM WILL BE GEITTEH FROM A REG)

.
I

( TEST BED FOR BEGINING OF RX02 DRIVER Jis 15JUnB1 ]
¢ REGISTER <BUILDS ,
i <AlDs=<>y BUILDS A DATA TYFE CALLED A REGISTER )
DDES ( GIVES REGISTER ADDs CONTEWTS OR_SENDS DATa
0 THE REGISTER DEFENDING ON THF STATUS OF %TO
@ %70 @ ( GET ADDRESS OF REG AND ¥TO
DUF -1 = IF SWAF @ SWAFP (GET CBNTENIJ
THEN )
1 =1IF ! (SIDRE UﬁLUE IN REB b
THEN 0 %T0

Once these two structures are implemented it becomes very easy to talk to the disk drive. For example, if a VAL had been defined
called IN-TRACK# which contained the track to be read, sending it to the DBR would simply consist of saying IN-TRACK# TO DBR.
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In the RX02 mode there are eight disk commands. They are ail similar in that they need to have a drive ana density bit set and they
are sent to the CSR. The first problem is solved by a VAL called DRIVE/DENSITY and the four words shown below:

¢ SINGLE-DENSITY ( <COM, -<COM,»» SETS THE DENSITY BIT T0 ¢
DRIVE/DENSITY 258 RIC TU DRIUEIUENSIIT '

! DOUBLE-DENSITY ( <COM.>--CON.> s SETS THE DENSITY BIT TO 1)
DRIVE/DENSITY 256 BIS T0 DRIVE/DENSITY

7

! ODRIVE { <COM.>-<COM.>: SETS THE DRIVE BIT T0 0 )
DRIUEKIENSITT 16 BIE TU DRIU‘{DENcle ]

v IDRIVE ( <COM,»-<COM.> HE DRIVE BIT TC 1
DRIUE!DEN:ITY 16 BIS Tﬂ DR!UE!DENSITY i

After setting the drive and density as desired, the VAL DRIVE/DENSITY can then be ORed with the command to produce the desired
results. There are two approaches that can be taken at this point. For example, take the coimmand to format a disk in a single or double
density; call it (SET-DEN). A word could be defined, aiong with seven others like it, as shown:

: (SET-DEN) 110 DRIVE/DENSITY OR TO CSR ;
The second approach would be to again use a defining word:

¢ DISK-COMMAND <BUILDS ( <CON»-<- TAKES THE CON FOR A DISK OF. )

ﬁéEc- ( GET COM AND DRIVE DEN INFO OR» AND SEND )
@ DRIVE/DENSITY OR TO CSK

110 DISK-COHMAND (SET-DEN} ( USED TO FORMAT DISKS SING OR D DEN)
Optimization

As usual we have a classic FORTH space-time tradeoff. The second approach executes somewhat slower (see figure 1) because the
constant needs to be fetched, but whereas the first approach takes 18 bytes per command or a total of 144 bytes, the second approach
takes only 10 bytes per command plus 24 bytes for the defining word for a total of 104 bytes. Because of the space savings the philoso-
phy that very similar things should be grouped together could override the execution speed losses and the second approach was used.

All of this would have been fine except that when doing the track to track backup a sector interleaving technique must be used to
keep backup times down to a reasonable level. Since these VAL's and REG's have high level IF statements in thern and they are used each
time a sector is read or written, they require an overly large interleave step size. The solution to this problem is to use ;CODE instead
of DOES= Though this makes the word less transportable it isn't seen as a problem since this is a PDP-11 specific disk backup. The VAL
word now can be defined as follows:

T VAL CBUILDS ( <#:-<-y TAKES THE INITIAL VALUE OFF THE STACK )

;EDBE { <#r-.r OR <»-<#>» GETS VALUE OR STORES VALUE )
ZT0 F 15Ty ( SE£ IF %70 POSITIVE )

IF»

WPARAM W I} S )+ MOVs ( STORE VALUE )

gTU F O & MOVs ( ZERD OUT XT0 FLAG
ELSE

5,-? WEARAM W 1) MOV, ( FETCH VALUE OF VAL )
THENy NEXT» =0

where W is the PDP-11 register containing the CFA (code field address) of the word executing, WPARAM is a constant equal to the
offset from the CFA to the PFA, and I} indicates indexed addressing. Mot only is the coded VAL faster than the high level version, but it
is also faster than a VAR at fetching and the same speed at storing (see figure 2). It was also necessary to code REG as shown below:

! REG <RUILDS ¢ BUILDS & DATA TYPE CALLED A REGISTER )

{CODE ( <#s=<>p<»=<87» GETS ADD: VALUE O STORES VaL )
50" ot U Check 1F 270 1s POS NEB OR ZERD

GT IF»
WFARAM W BI) S )+ MOY: ( STORE VALUE IN REG !

" LT IR,
5 -) WPARAM W @I) MOVs ( GET VALUE )

ELSE»
5 -) WFPARAM W 1) MOV» ( FUT T.0.S. )
THEN»

; O # HOV: NEXT»
[ ]

To illustrate the use of these concepts the FORMAT-DISK word will be shown. But first to insure that the program doesn't try to do
things before the disk controller is ready, two more words are needed that wait for the done and transfer request bit to be asserted in the

CSsR.

; TR.WALT ( WAITS FOR THE DATA TRﬁNSFER BIT TC BE SET )

2000 FROM CSK AND END
i BEEETEAI? ? WAITS FOR THE DUNE RIT TO BE ASSERTED )

' "EEGIN 400 FROM CSR AND END
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The disk command as shown before was called (SET-DEN). After receiving this command the disk controller waits for a "key" byte
(1110, the letter I in ASCII) to be sent to the DBR, therefore the entire command is coded as shown:

ETS THE DENSITY OF A DISK )
D *KEY* BYTE )

To format the disk in the drive one double density one would enter 1DRIVE DOUBLE-DENSITY FORMAT-DISK; to format the disk in
drive zero single density one would enter DDRIVE SINGLE-DENSITY FORMAT-DISK.

Timing

To show the effects of the different approaches timing tests were run. The first contrasts the difference between the two types of
disk commands. In all tests the action was placed inside a double loop like:

: TEST 10 0 DO 300G0 0 DO LOOP LOOP ;

This routine took 23 seconds which was then subtracted from the other results to give the time to do the operation 300,000 times. This
was then divided by 300,000 to give the time per operation. These are the results on a DEC LSI 11/2:

To Send Disk Command
Colon definition .23 msec.

Defining word .28 msec.

Then a high level VAL was compared to a coded VAL and a VAR:

fetching (msec) storing (msec)

high level VAL .237 .39
coded VAL .067 .11
VAR .083 .093

Summary

This paper not only showed the usefulness of certain techniques in FORTH but also illustrates some general properties of the
language. The first of these is the ease of implementation of new data structures. Through the use of BUILDS ... DOES or BUILDS ...
;CODE one can first build the structure to suit the needs of the application and then imbed in the executable code necessary operations
for the structure. Also a structure can easily be given variable execution as in the case of VAL and REG. Another important benefit of

FORTH is the ease of optimization of the word by the use of assembly code. Changing the VAL and REG words to ;CODE took less than
a half hour.
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THE STRING STACK

Michael McCourt
Laboratory for Laser Energetics
University of Rochester

Richard A. Marisa
Production Autnmation Project
University of Rochester

Abstract

Applications which require a text data
type are supported by a group of functions
which operate with string variables and a
string stack. The string stack is analogous
to the parameter stack, however, the data
type with which it operates is the string,
containing length and character data.

String Defining Words

Two defining words are availabie for
the creation of string data entities. The
first is:

<maxlen> STRING-VAR <NAME>

which creates a varying length character
string with maximum length <maxlen>.
Invoking<NAME=places

<beginning address><maximwum string length>

on the parameter stack. The first byte
at<beginning address>is the current string
length; the string text begins at the next
byte.

The second string defining word is:
<pumber of elements> <maxlen> ()}STRING <NAME>

which creates an array of variable length
strings. Invoking

<i=<NAME>
places <address of the i-th string> <maxlen>

on the parameter stack. Note that
(number of elements) x {(maxlen) bytes will
be allocated to hold the string array.

String Stack Manipulation

A string stack, separate from the para-
meter stack, is maintained in memory for
the purpose of manipulating string data.
Several words which manipulate the string
stack are defined in the string stack
library which can be compiled by execut-
ing >STRINGS (which loads in the string
stack package). Currently 200 (decimal)
bytes are allocated for the string stack.

The quote word (") is available for
placing a string on the string stack. To
stack a string, type:

<text>"

" is followed by exactly one space, then
{text> delimited by a quotation mark.

A string print word .55 is used to print
the top element of the string stack,

EREREREERFEXERRRRE  BLOCK 94 KERRRRRZARARRANERAR

i STRING STACK--FIXED LENGTH STRING COMFARISCN LAR 19-SEF-79 )

P88 { NOTE: PARAH ORDER NOW <ADR><LEN> th 3= JUN 80
( CADD Ar ALD By LENI»---[ADDAs ALDE, = OK + OR - 1
( COMFARES CHARS. IN STRINGS A 3 BBP?RIHIEEr RETURNS 0 IF

( STRINGS AKE = + IF ArBs - IF

+ S7FDO 0 SWAF O DO DROP OVER C@ OVER CE@ - ROV 1+

DT 14+ ROT DUP 0= NOT IF LEAVE

THEN LOOF

( CADD Ar ADD By LENJ---[= OR # OR -]y SAWE AS S?FDO )

( EXCEPT ADDRESSES NOT RcTUFhED }
! §%F S?FPU ROT ROT 2DROF »

{ {RDD y LEN]-~-(= OR _+ OR ~ ]y COMFARES STRING A TO )
{ A STRING DF BLANKS--RETURNS ¢ IF TWO ARE EQUAL )
¢ S7B 0 SWAF 0 DO DROFP DUP C8 RL - SWAF 1+ SWAF DUF 0<:-

IF LEAVE THEN LOOF SWAF DROF &

AARXKRKRERXRRRNIEY  EBLOCK 57 EXERRRERRRRRNRRNRRR

{ STRING COMFARISON---VARYING LENGTHS )
{ [ADD Ay ADD By LEW DIFFJ---[= OR +

( TO SEE IF LENGTH DIFF. BTWN. A & B IS 0 ; IF NOTs TESTS )
{ THE LONGER STRING TO SEE IF THE E!TRAECEE%E. ARE BLANKS )

N BOTH CASES 0 IS5 RETURNEDs OTHE

OR -1 FIRST TESTS )

{
: S"!ILTEST DLUF 0= IF DROF 2LROF ¢ ELSE DUF 0<

IF MINUS ROT DROP S7R MINUS ELSE SHhP DORF S B THEN THE ¥
( [ADD Ay ADD B1---[0 IF A=E, IF A< + IF TESTS
( WHETHER 2 VARIABLE LENGTH SYFIBNC HRUE BDTH THE SANE # )
{ OF CHARS. AND THE SAME ORDER & TYFE )

+ §7 OVER CP OVER C@ 2DUF - >R MKIN ROT 14 ROT 1+ ROT S?FDU

DUFP 0<> IF ROT ROT 2DROP R> DROF
ELSE DROFP K> STBLTEST THEN

KXRXEXRRKRRRRENRKE  BLOCK 8 AERERRRXRRARERRRARY

( STRING STACK WORDS LAR 19-SEF-79 )

0 SVAR SSD_ 0 SVAR SSH 0 SVAR SST

i SSTOF SST @ 5 + SSTOR! SST !

+ SSORG SSO @ t SSHMAX SSH :

SOVCHECK OVER SSORG
IF SSHAX SSTOF ! 147 Tﬂ

(L]
( [FROM» TOs LEN ]“'[ 1 CHECKS FOR STACK BOUNDARIES )

BORT THEW
( CADDI---[] INSURES THAT hDDRESS FOINTS TO STRING )

+ SSVER DUP DUP C@ + SSMAX U>=
IF SSMAX SSTOP ! 13T TARORT THEN

( _ADD OF TOF STRINE}---LQD OF NEXT STRING DOWND )

: SSDOWN DUF Ce 1+ +

{ [ADDI---L1] PUSHES STRING AT ADDR. TO TOS )

SSFUSH DUF C@ 14 SSTOF OVER - DUF SSTOF! SWA® RMOVE

-3

ERRRARRERXEXXXRXRrk  EBLOCK 99 PSRRI SE LTRSS S
{ STRINB STHCK UDRDC LAR 19-SEP-79 )

SSTGP SSVER SS[IDHN SSTOF!
L1-==0] RETUﬂh LEN OF
?570? SSVER C@ i

SSTOF 1+ 4
*[IUF (
§ST2§ SSVER SSPUSH

SHAF SSPUSH SSPUSH ;

SSTOF! SWAF SSPUSH SWAF SSFUSH SSFUSH

SK ( [J---[) EXCHANGE TOPF 2 STR
SSTOF DUF SSHOWN DUF SSFUSH SSDOWN SSTOF

IN
SWA
"ROT J---L] ROTATE TOF THREE STR
SSTOF DUP SS[IOHN DUF SSDOWN DUF SSFUSH SSDOW

3——=E] REHEUES TOP STRING FROM STACK Xx)

TOS STRING *!

( [J---0L1 RETURN ADDR OF TOS STRING ¥}
[1---[] COFY TOS STRING %)

GS
SSTCIF !

F
INGS _ARC->ECA %)
N SS5TOF SWAF

-

¥

EAXKXERRXXXRXEXKXE  BLOCK 100 EREAXEREXRKKKKRERXS

nggF SSDUUN(SSUER SSPUSH i
*OVER "OVER
* 2DROP
TDROF "DROP &
*20VER (

SSTOF SSDOWN SSIIIJUN DUF SSDOWN SSVER
" 25WAF { [)-

H {LEN>---L} PUSH
DROP SSFUSH i

STRING STACK WORDS - HAH  L13-JUN-80
*OVER ( [1--~C] PUSH 2ND STRING DOWM ONTO TOS %)
( [J---L3 COFY TOF 2 STRINGS X}

E £3---0] DROF TOF 2 STRINGS x)

[)---[1 PUSH 3RD Ah[i 4TH T0 TDS t}

SSFUSH

] EXCHANGE 1ST & 2ND UITH 3|'\[J ﬁND 4TH x)
DUF SSDOWN S?DDHHDESDGUN SSTQP! S5SPUSH SSFUSH_SS5PUSH_SSFUSH i
: A

STRING AT ADDR TO SS %)
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removing the top element in the process.
For example,

OK " STACK THIS STRING " <CR>
OK
.88 <CR>

STACK THIS STRING OK

Notice that the functions .SS and . are
similar. Several other functions operate
on the string stack in a manner analogous
to words which operate on the parameter
stack. These are:

WORD FUNCTION

RERRROOROr kR Ky BLOCK 101 KEEEXXRRERERRARARRY
( STRING STACK WORDS CONT'D HAN 13-JUN-BO )
: &t ( [ADRILLEN]---[) STORE TOS AT ADDR. & DROF TOS x)
SSTOP ‘*DROP SHﬁP OVER CE MIN 2DUF SwaP C! 1+
ROT_SWAF RMOVE
{ ISTHINGJ'“-CJ STORES STRING IN PAD THEN MOVES IT FROM )
{ THERE T0 THE TDSS -~ WORKS DURING EXECUTION TIHE ?
Xt 420 ORD O @
H DUP ‘e DUF Cé DUP 2 HOD
IF 1+ ELSE 2+ THEN + >R 3
{ éagklﬁﬁl--—il STDRES STRING AT TOF OF DICT. STACK )

( ING CBHF’ILF‘TI )

+ C* COMFILE $' 420 WORD CE BUP 2 HOD
IF 1+ ELSE 24 THEN ALLOT

* STATE @ IF C*" ELSE X* ?HEN i IMF °*

BEFORE AFTER

"DUP copies top of stack B A B AA
"SWAP reverses top two

strings on the stack B A AB
"DROP removes top of stack B A B
"OVER copes 2nd string onto top B A BaAB
"ROT moves 3rd string to top CBaA BAC
"2DUP copies top 2 strings B A BABA
"2DROP removes top 2 strings CBaA c
"2SWAP reverses 1 & 2 with 3 & & DCBA BADC
"20VER copies 3 & 4 to top DCEBA DCBADC
"+ string addition (catenation) B A BA

. . EAXXXEREXKRRREXNRX  ELOCK 102 KXERERRRRERR AR KX NK
String Relationals ( STRING STACK WORDS CONT'D HAM 18-HAR-81 )

Just as the parameter stack relational
operators ~emove their arguments from
the parameter stack, the following string
stack relational operators remove their
arguments from the string stack. The
logical result of the string relation is
placed on the parameter stack. The avail-
able relationals are:

= M=

||<> ">=
||< ",
. X
String Variable Storage and Retrieval y
The string store word, "[, places the :

top of the string stack in the string vari-
able described by the parameter stack,
popping the string stack. The string
retrieve word, "@, places the string
referred to by the parameter stack onte
the string stack.

OK 30 STRING-VAR MYSTRING <CR>
0K
" string text " MYSTRING "! <CR>

OK
MYSTRING "@ MYSTRING "@ "+ .S5  <CR> string text

OK

i .8S { [1---[] TYFE UUT STRINB AT TDES ¥)
SSTDF’ SSVER "DROF COUNT TYFP

H { <>=<>y PUT STRING IN DICTIUN#R‘I’o HAKE _EVEN LENGTH
420 WORD COUNT DUP HERE SWAF 1+ -2 AND ALLOT SWAP CHOVE ;

( SOME FIXED LENGTH STRINB DEFINITIONS )
{ [ADDRsMAX LENJ---[] PUSH STRING AT ADDR TU T05S )
+ "@F D[UF SSTOP OVER - 1- SSTOP! SSTOP C! SSTO
1+ SWAP CHMOVE &

( [ADDRyMAX LENJ---[] COPY CHARS ONLY FROM TOSS TO amm )
*!'F 2DUP BLANK "LEN MIN SSTOF 1+ ROT ROT CHOVE ‘DROF

FREXERERRRRRRNRy  BLOCK 103 EEEXXRRRRXRXXREXERN

STRING S;ﬁt‘l\ WORDS EONT U LAR 19-5EP-79 )
[J-==C] ADD TOF 2 STRINGS EIN STACK LEFT TO R

'SHM-' SSTDF‘ SSDOWN SSUER ce 55? @ DUF ROT + IGHT %)

SSTOF C! SSTOP DUP 1+ ROT 1+ RHTJUE SSTOP 1+ SST(]F"
( [LENs BEGINNING CHAR #1---[1 REFLACE TO0S

0SS WITH
( SUBSTRING OF LENGTH [LENL STﬁRTDHG WITH SFECIFIED )
AR OF ORIGINAL STRIN

{
SUBSTR 1- SSTOF SSUER 'I.IRDP + DUF ROT ROT C! SSPUSH

{ CADD OF 2ND STR+1+ 1ST CHAR OF 1ST STR, LEN OF 2ND» ©
% -E;EDFFﬁgT OR 0 1 SEARCHES 2ND' STk. FOE 1ST CHAR U;
(

I

1)
)
STR.S%RIF} FOUND, COMPARES 2ND STR. FROM THAT FOIN )

1
T
“INDEXDO DD OVER I + CE OVER
IF OVER I + SSTOF 1+ °*LEN S'F 0=
IF DROF I 14 ROT ROT LEAVE THEN THEN LOOF i

R

string text
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Invoking the name of the string variable
MYSTRING in the preceding example
placed <address> <maxlen> on the para-
meter stack. String store and string
retrieve check the maximum and current
length of the string variable when moving
string data.

When it is required to move fields of
fixed length which do not contain an
embedded current length in the first byte,
fixed length string store and retrieved
words may be used. The syntax is:

<address> <length> "!F

<address> <length> "@F
String Functions

"LEN returns on the parameter stack,
the length of the string on top of the
string stack. The string remains on the
string stack. The address of the first byte
of the string (one byte after the length
field) is found by executing "LOC.
<length> <beginnirg character number>

"SUBSTR
replaces the top of the string stack with a
substring of length <length>, beginning
with the specified character of the
original string. For example,

OK
" abcde" 2 3 "substr .SS
cd OK

The "INDEX function searches for the
first occurrence of the string in the
second string. If an occurrence is found,
its offset is returned on the parameter
stack. If an occurrence is not found, -1 is
returned. The top of the string stack is

popped.

String Stack Errors

Two errors are reported by the string
stack package: string stack underflow and
overflow. As stated previously 200 bytes
are initially allocated for the string
stack. If repeated overflows are gener-
ated more space can be allocated for the
string stack by changing the parameter
passed to "INIT in the string stack
library. String stack initialization is the
last function performed when the string
stack library is loaded.

Summary

This was the first major software
package transported throughout the
University URTH community. Originally,
it had a few code routines which were
machine specific to reduce execution
time. However, these were removed on
all the systems but the Intel 8080. The
package has run, without change (except
for the above mentioned machine-specific
code) on Hewlett Packard 2100, DEC
PDP-11, IBM 360 and the INTEL 8080.

IXEERRXERRRRRRRREE  BLOCK 104 EREKEEERERRREKRKERR
( STRING STACK WORDS CONT'D LAR  19-SEF-79 )
(LI--"L-1 Ok OFFSET)  SEARCHES FOR 1ST OCCURENCE OF )
( TOP STR., IN 2ND STR.---IF FOUND OFFSET IS RETURNED )
{ ON PARAH STk ELSE -1 1 RETURNED. TOSS IS FOPPED . )
*INDEX -1 SSTOP DUF C@ 0%
IF DUP SSDOWK SSVER DUF Ce ROT 1+ C@ ROT 1+ SWaF
ROT 0 *INDEXDO
ELSE 0 ROT ROT THEN 2DROP *DROF ;
(LJ---C1 COMPARE § IRQP TOP 2 STRINGS: LEAVE 01<0 OK >0 )
t *? S5TOP DUF_SSDOWN §7 *DROF ‘0RO
, W B3ootivFTLoe! Tal =, TESTS TOF > STRINGS )
. o{ §3-5-LT/F3 LOGICAL LESS THAN TESTS TOF 2 STRINGS )
LERRERRERTRERRLEESY  BLOCK 105 EERKERRRERRERINRTRE
( STRING STACK WORDS CONT’D HAM  18-MAR-81 )
P13 e | GIm--TT/FITESTS TOP 2 STRINGS FOR > K)
LA |
- { [1---[T/F1 TESTS TOP 2 STRINGS FOR <= &)
4 ’
tth=  ( [J---[T/F) TESTS TOF 2 STRINGS FOR >= X)
’

"< NOT

+ "SPACES <N»=<>y PUSH A STRING OF N SFACES ON S5 %)
DUF 0 DO ssroﬁ i- BL sou:nzcn OVER C! SSTOFT LOOF
SSTOP 1- LUP ROT SWAF C! SSTOP! ;

¢ "INIT ( <#CHARS TO ALLOCATE FOR S55--<,s INIT SS INTO DICT )
1 7# HERE SSD ' ALLOT HERE 2- DUF SSM ! SST

2007 *INIT ¢ ALLOCATE 200 CHARS FOR STRING STACK )
-3

YRRk RkRERXRsasEy BLOCK 106 EERRRRRRRBRLERRRERY

{ STRING VARIABLE AND STRING ARRAY MAM 13-JUN-80 )
( [MAX LEN]---L] ALLOTS SFACE IN DICT FOR MAX LEN ANLD )
( MAX & OF CHARS., )

+ STRING-SFACE DUP » O ¢ 2/ DP+! j

[MAX LEM] STRING <MAME:» --- BUILIIS A STRING VARIABLE )

(
( WHEN \NﬁﬁE» IS EXECUTED THE BYTE ADDR, OF THE STRING )
{ START AND RE LEFT ON THE STACK )
+ STRING-VAR <BUILD5 STRING SPACE
iCODE 5 =) W MOV» ( FUSH FARAM ADDR )
5) 4 % ADD, ( POINT TO COUNT ANU FIRST CHAR )
S =) 2 W I) MOVs ( PUSH mAX LENGTH
NEXT»
ERprRRkRRkRek ARy BLOCK 107 KERKRRERRERRARLRRE R

( STRING ARRAY ROUTINE MAM 13-JUN-80 )

! ()STRING ( [0 DF ELEHENTSr HAX LEN] ---<NAHE> X)

QBUILDS SWAF DUF BUILD HEADERs STORE # OF STRINGS )
¢ 00 Dur STRIHG SPﬂCE t ALLOT DIC SFACEs STORE MAX LEN )
LOOF DROF

DOES> 2+ DUP @ ROT ROT 3 PICK ( AIDR OF 1ST ELEMENT )
DUF 2 MOD IF 3 + ELSE 4 4 THEN ( 14 TD MAX LEN IF ODD »
( 24 IF EVENs 2+ FOR_MAXLEN )
ROT ¥ 2+ + SWAF ( STRING ADDR + ELEMENT OFFSET )
( RETURNS COUNT AND ADIDR )

-

EERERAAXRXERRARKEXR  BLOCK 108 EERARXTERKREXKERREN

( STRING EXECUTION ROUTINE LFF » MAN 18-MAR-B1 )

H 'EEEE { (HORII NAME ON T0SS>=<>» EXECUTE WORD IF FOUND )
FIND "LuF EI{SEXEC%QBON' THEM # ( UNDEFINED WORD ERROR )

¢ "FORGET ( -’HDR!J NAME ON T0SS»>-<>» FORGET WORD IF FOUND )
4

HERE "LEN
FIND ?D0F IF UPﬁRnH + $FORGET
ELSE O TABORT THEN # ( UNDEFINED WORD ERROR )

iS
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The first application was for a screen-
oriented data entry system. Later appli-
cations included an ISAM data base, a
menu-driven interface for flow cytometry
and a word processing system. The pack-
age consists almost entirely of its original
code written in 1977 by Mike Williams, of
the University Computing Center. The
major change has been the addition of
comments.
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HELP WANTED

Associate Systems Manager,
Pulmonary Computer Systems

Primary responsibility for designing,
debugging and implementing major soft-
ware projects on the Pulmonary Computer
System.  Programming experience with
PDP-11 Assembly language and FORTH
desirable. Some hardware experience will
be useful.

Salary range to $35,000. Superior
benefits package, three weeks vacation
first year.

Contact:

John Gilbert, Employment Officer
Cedars-Sinai Medical Center

8723 Alden Drive

P.O. Box 48750

Los Angeles, CA 90048

(213) 855-5529

NEW PRODUCTS

FORTH Application Modules
Diskette

The diskette of FORTH application
moduels, a new product by Timin
Engineering, is a variety package of
FORTH source code. It contains hundreds
of FORTH definitions not previously pub-
lished. Included on the diskette are data
structures, software development aids,
string manipulators, an expanded 32-bit
vocabulary, a screen calculator, a typing
practice program, and a menu genera-
tion/selection program. In addition, the
diskette provides examples of recursion,
<BUILDS...DOES> usage, output number
formatting, assembler definitons, and
conversational programs. One hundred
screens of software and one hundred
screens of instructional documentation are
supplied on the diskette. Every screen is
in exemplary FORTH programming style.

The FORTH screens, written by Scott
Pickett, may be used with Timin FORTH
or other fig-FORTH. The price for the
diskette of FORTH application modules is
$75 (if other than 8" standard disk, add
$15). To order the FORTH modules, write
Timin  Engineering Company, 9575
Genesee Ave., Suite E-2, San Diego, CA
92121, or call (714) 455-9008.

INNER ACCESS FORTH
SOF TWARE AND DOCUMENTATION

Fig-FORTH compiler/interpreter for
PDP-11 for RT-11, RSX11M or stand-
alone with source code in native as-
sembler. Included in this package are an
assembler and editor written in FORTH
and installation documentation.

This is available on a one 8" single
density diskette only. #20011-01 ($80)

Reference Manual for PDP-11 fig-
FORTH above. #20011-99 ($20)

Fig-FORTH  compiler/interpreter  for
CP/M or CROMEMCO CDOS system
comes complete with source code written

in native assembler. Included in this
package are an assembler and editor
written in FORTH and installation
documentation.

All diskettes are single density, with
5.25" diskettes in 128 byte, 18
sector/track format and 8" diskettes in
128 byte, 26 sector/track (IBM) format.

Released on two 5.25" diskettes with
source in 8080 assembler #20080-85 ($80).

Released on one B" diskette with
source in 8080 assembler #20080-88 ($80).

Released on two 5.25" diskettes with
source in Z80 assembler #20080-Z5 ($80).

Released on one 8" diskette with
source in Z80 assembler #@0080-Z8 ($80).

Manual for CP/M (or CROMEMCQO)
fig-FORTH above #20080-99 ($20).

METAFORTH  Cross-Compiler  for
CP/M or CROMEMCO CDOS to produce
fig-FORTH on a target machine. The
target can include an application without
dictionary heads and link words. It is
available on single density diskettes with
128 byte 26 sector/track format. Target
compiles may be readily produced for any
of the following machines.

CROMEMCO--all models
TRSBO Model II under CP/M
Northstar Horizon

Prolog Z80

5.25" diskettes

Released on two

#20100-85 ($1,000).

Released on one B" diskette #20100-88
($1,000).

Complete Zilog  (AMD)  Z8002
develoment system that can be run under
CP/M or CROMEMCO CDOS. System
includes a METAFORTH Cross-Compiler
which produces a 78002 fig-FORTH
compiler/interpreter for the Zilog Z8000
Development Module. Package includes a
ZB002 assembler, a Tektronix download
program and a number of utilities.

5.25"

Released on diskettes

#29102-85 ($4,000).

two

Released on one B" diskette #29102-88
($4,000).

Zilog ZB002 Develoment Module fig-
FORTH ROM set. Contains fig-FORTH
with Z8002 assembler and editor in 4
(2716) PROMS. #38002-00 ($850).

For orders and further

contact:

information,

INNER ACCESS CORPORATION
Software Division

Box 888

Beimont, CA 94002

(415) 591-8295

ANNOUNCEMENTS

Sym-FORTH Newsletter now available,
contact: Saturn Software Ltd., PO Box
397, New Westminister, British Columbia,
V3L 4Y7, CANADA.
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COMPLEX ANALYSIS IN FORTH

Alfred Clark, Jr.
Department of
Mechanical Engineering
University of Rochester

During my years as an engineering
educator and a researcher in theoretical
fluid mechanics, 1 have often wished for
the  perfect calculator--a  compact
machine which would perform intricate
and useful mathematical tasks in response
to a few keystrokes. The pocket scientific
calculators, amazing as they are, never
seemed to have quite the power and flexi-
bility (and certainly not the graphics
ability) that I hoped for. [ always sup-
posed that my hopes were unreasonable
until I discovered FORTH two years aqo.
Having been a FORTRAN programmer for
20 years, | found the transition to FORTH
somewhat difficult and even painful at
times. Originally, | took up FORTH out of
curiosity, but gradually I realized that the
quest for the perfect calculator was over-
-it is FORTH plus a microcomputer.

Perhaps 1 should say a little more
about what a perfect calculator is sup-
posed to do. Among other features, it
should have (1) standard trigonometric and
exponential functions, (2) other common
special functions (e.qg., Bessel functions),
(3) graphics and automated plotting of
functions, (4) numerical integration, (5) a
root-finder, (6) special purpose applica-
tions, such as a direction field plotter for
first order differential equations, and (7)
complex arithmetic, including complex
transcendental functions.  Further, all
procedures should be executable with a
few keystrokes.

The last item in the list--complex--is
in some ways the most stringent test of
any would-be perfect calculator. It's
certainly not available on any pocket
calculator.  Although it can be imple-
mented in BASIC, it is cumbersome and
requires a large package of subroutines.
The versions of FORTRAN available for
small machines generally omit the com-
plex arithmetic and complex functions
which are available on large machines.
With FORTH, however, the extension to
complex from real floating point is simple
to implement, easy to use, and powerful.
Since complex arithmetic is not yet very
common in FORTH on small machines, |
thought it would be worthwhile to sketch
briefly my implementation.

The most fundamental question in
introducing complex analysis is how to
represent complex numbers. Here it turns
out that the pure mathematician's defini-
tion of a complex number as an ordered
pair of real numbers is exactly what we
need. Thus the complex number 3.5 + 7.2i
is regarded as an ordered pair, and is
pushed on the stack by typing 3.5 7.2 .
With this convention established, it is easy

to define all of the important stack mani-
pulations such as ZDROP, ZDUP, ZOVER,
ZROT, and ZSWAP, which perform exactly
like their integer and floating point
counterparts. The basic load and store
operators, Z@ and Z[, can be defined in
terms of @ and [

There are many single number opera-
tions which are useful. These include the
real part REZ, the imaginary part IMZ,
the complex conjugate CONJ, the modulus
/Z/, the square of the modulus /Z/2, the
reciprocal 1/Z, and the phase ARGZ
(radians). Most of these are quite simple
to define. IMZ, for example, is just
: IMZ FSWAP FDROP ; where FSWAP and
FDROP are floating point stack oper-
ations. As another example, consider 1/Z

defined by . /2 zpup /2/2 FROT FOVER F/
FROT FROT F/ COtiJ ;

For ARGZ it is very important to establish
a precise range and to implement it care-
fuily. The conventional range, which I
have used, is -PI < ARGZ <= Pl. Any care-
lessness in the definition of ARGZ will
lend to disasters later when multi-valued
functions are introduced. Many engineer-
ing applications require the phase in
degrees, and it is convenient to build in a
function DARGZ which supplies this.

Conversion words between rectangular
and polar forms are also very useful. To
go from retangular to polar, with the
phase (in radians} on top of the stack and
the modulus just below, we have

: POLAR 2ZIUP /Z/ FROT FROT ARGZ ;

A similar word, DPOLAR, leaves the arqu-
ment in degrees. For conversion from
polar to rectangular, we have RECT (angle
in radians)

: RECT FOVER FOVER COS F* FROT FROT SIN F* ;

and a word DRECT for the angle in
degrees. A very useful application of
these is a rotation operator ROTZ, defined
s0 that the sequence Z F ROTZ rotates
Z by F radians and leaves the result on the
stack. The definition is

: FOTZ FROT FROT POLAR FRJT F+ RECT ;

There are several different useful
formats for complex output. (*‘y system
has B different formats, which is handy
but a little extreme.) The word Z. prints
the number as an ordered pair -- 3.5 7.2,
for example. The conventional mathema-
tical notations is obtained by ZI. -- (3.5) +
(7.2)1. Words to print in polar form are
also useful. For example, ZP. is defined
so that the sequence 3.5 7.2 ZP. gives

MOD = 8.00502303 ARG = 1.11832144 (RAD) .

All of these output words are defined in
terms of the basic floating point print
word F. . For example, Z. is defined by

: 2. FSWAP F. 2 SPACES F. ;

The binary complex operations are Z+,
Z-, Z*, and Z/. These are quite easy to

define. For example, Z+ is defined by
i Z+ FROT F+ FROT FROT F+ FSWAP ;

where FROT is a floating point ROT, and
F+ is a floating point add.

Higher functions can be defined, pro-
vided the underlying real floating point
has the standard real functions SIN, COS,
ATN, and EXP. The complex exponential,
for example, is then defined by

: ZEXP FSWAP EXP FDUP FROT FIUP COS FROT F*

FROT F* FROT FROT SIN F*

Other useful functions such as ZSIN,
ZC0S, ZTAN, ZSINH, ZCOSH, and ZTANH
are defined similarly.

Of the multi-valued functions, the
most useful are the square root Z5QR, the
logarithm ZLOG, and the power Z*¥, As
an example of the definitions, consider the
principal value of the square root:

: ZSQR POLAR 2. F/ FSWAP SOR FSWAP RECT ;

The basic words described above can
be the building blocks for substantial
applications. One such application, which
is particularly useful pedagogically, is
conformal mapping. [ have defined a word
MAP such that the sequence

<function>

will take any previously defined curve in
the Z-plane and any previously defined
complex function, and produce a graph
showing the curve and its image under the
transformation. This tool allows students
{and the instructor[}) to improve their
understanding of the geometry of complex
functions.

MAP <curve>

Notes on Implementation

The code described above runs on the
author's 48K Apple II. The underlying
integer FORTH is the excellent version
written by William Graves and distributed
by SOFTAPE. The real floating point
arithmetic and functions have been
implemented by interfacing the SOF TAPE
FORTH with the Applesoft ROM rou-
tines. The same data stack is used for
integers (2 bytes), reals (6 bytes), and
complex numbers {12 bytes). The code for
the complex routines was written entirely
in FORTH, and, in compiled form, occu-
pies about 2K. The conformal mapping
code compiles to about 1K additional.

ORDER NOW!

Proceedings of the 1981 Rochester
FORTH Standards Conference
$25.00 Us, $35.00 Foreign. Send
check or MO to FIG in US funds
on US bank.
"Starting FORTH"

Hard - $20.00 US, $25.00 Foreign
Soft - $16.00 US, $20.00 Foreign

ORDER NOW!
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A FORTH BASED
MICRO-SIZED
MICRO ASSEMBLER

Gregory E. Chelmondeley
Laboratory for Laser Energetics
University of Rochester

Abstract

The FORTH programming language can
be used to implement a very small and
useful micro assembler. Functions ranging
from autornatic field alignment to user
definable macros can be written and
altered easily, permitting a flexible and
easy to use microcoding technique. This
paper also serves to illustrate several of
the many programming features found in
FORTH.

Introduction

Computer
contain an iternal
"microcode." This code defines the
instruction set of the processor. The
creation of this internal code is called
"microcoding.”

central processors often

data form called

Microcoding by hand is at best a tedi-
ous and wasteful undertaking where a sig-
nificiant portion of a programmer's time is
spent aligning fields, formatting output
and correcting typographical errors.
Understanding (let alone debugaing) a
microcode program is difficult due to the
lack of readability from a human point of
view. Through the use of comments, auto-
matic field positioning, labels and other
such tools, a good micro assembler should
minimize the above problems making
microcoding a much more agreeable form
of programming.

There already are micro assemblers
written which handle these along with
other problems associated with micro-
coding, but most of them share one rather
serious drawback: they are large pro-
grams. The micro assembler presentef
here is based heavily upon the Signetics
micro assembler but requires only a few
"blocks" of FORTH code. Thus it is pos-
sible to have a micro assembler on a small
home computer[ Such an assembler could
be used as a design tool as well as an
inexpensive and effective teaching aid. It
would allow even wide instruction words
to be built in a simple to use, high level
form.

Usage

There are two main phases associated
with this micro assembler: instruction
definition and actual programming. A
third phase will be implemented shortly to
allow the user to explicitly and easily
define output formats. The first of these
phases to be explored is the instruction
definition phase. This is the time when
the various instruction word formats are

defined. A simple example of such &
definition would be as follows:

INSTRUCTION WIDTH 8
Define an B-bit instruction.

FIELD A WIDTH 4 DEFAULT 3
Define field A as the 4 most signifi-
cant bit positions in the instruction,
having a default value of 3.

FIELD B WIDTH 2
Define field B as the next 2 bit posi-
tions, having a default value of 0.

FIELD C WIDTH 2 DEFAULT 1
Define field C as the 2 least signifi-

FORMAT
FIELD GG WIDTH 16 DEFAULT 65535
FORMAT .END
FIELD HH WIDTH 8
END. INSTRUCTION

DEFAULT 255

Figure (1) : Sample Instructon Definition

instruction
/
/
/

AA-->BB-->HH fields AA, BB and HH

#*---->% field BB has 2 alternate

cant bits, having a default value of 1. / | formats
/ |
END.INSTRUCTION ¥
Close the instruction definition. CC-->DD GG format 1 contains fields CC
| and DD format 2 contains field
The resulting instruction word would | ele]
appear in the following form: *
/ field DD has 1 alternate
¥ 4:3 2:3 0: / format
1 A1 B | T | /
EE-->FF fields EE and FF
From this point on the field names A, B,
and C will be unique and may not be used
to define other fields. Figure (2) : Structure of Figure (1)

While the preceding example is rather
trivial an instruction definition may
become quite complex. It is, for instance,
possible to define multiple formats for
every field, with each of these containing
multiple sub-fields. This is useful when it
is deemead that fields should have different
meanings depending upon the context of
the rest of the instruction word {vertical
versus horizontal programming).  Sub-
fields are treated in the same manner as
fields so that they too may have multiple
formats and sub-fields. This feature is
implemented as a tree structure allowing
an unlimited nesting of fields, formats and
sub-fields. Figures (1) and (2) should
clarify this concept.

This part of the micro assembler has
error checking capabilities which prevent
unintentional overwriting of fields. For
example, if field EE of figure (1) is filled,
then fields BB, DD and GG (and of course
EE) could not be used. Automatic field

FIELD FF WIDTH 2 DEFAULT 3
FORMAT.END
FORMAT.END

The programming phase of the micro
assernbler is where the actual microcoding
takes place. An instruction is created by
typing the name of a field followed by a
number or expression representing the
value that that field should take. This is
continued for as many fields as needed in
the instruction word. When the instruc-
tion is complete a "$" (dollar sign) is typed
and the computer readies itself for
another word. At this point any undefined
fields are set to their default values, the
instruction and other related information
is stored in memory, and the location
counter is incremented. Figures (3) and
(4) demonstrate a simple microcoded pro-
gram which merely sets one field at a
time equal to a zero.

PROGRAM 1EXAMPLE WIDTH 32

defaulting uses the same mechanism so ORG 512
that if field EE is the only fieid filled

(using the format from the previous AA O 5

example) then fields AA, CC, FF and HH BB 0§

will be defaulted. CC 0 3

DD O §

INSTRUCTION WIDTH 32 EE 0§

FIELD AA WIDTH 8 DEFAULT 255 FF 0 §

FIELD BB WIDTH 16 DEFAULT 65535 GG 0 3

FORMAT HH 0§
FIELD CC WIDTH 4 DEFAULT 15

FIELD DD WIDTH 12 DEFAULT 4095 END. PROGRAM
FORMAT
FIELD EE WIDTH 10 DEFAULT 1023 Figuze (3) : Sample Program
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0000000011111111 11111111131111111 AA
1111111100000000 1111111111111111 BB
1111111100001111 13111111111111111 CcC
1111111111110000 0C00000011111111 DD
1111111111110000 0000001111111111 EE
11111111111131117 1111110011111111 FF
1111111200000000 0000000011111111 GG
1111111111111111 1111111100000000 HH

Figure (4) : Sample

While autornatic field alignment is in
itselff a wvast improvement over hand
coding, there are a few other tools avail-
able to the programmer which make
microcoding even easier. A “(." denotes a
comment allowing anything up to and
including a ".)" to be ignored. Typing ORG
and a number or an expression will set the
location counter ( LC ) to that value.
Typing

SET <new variable name>
TO <number or expression>

will declare and initialize a variable, while

typing EQU <old variable name>

WITH <number or expression>

will store a new wvalue into a previously
declared variable. These variables return
their value when they are typed (similar to
a constant in FORTH) and can be used in
expressions at any time and in any phase
of the micro assembler.

One of the most versatile tools avail-
able in this micro assembler is the
MICROP function.  Microps are user-
definable functions designed to eliminate
a large part of the repetitious program-
ming associated with microcoding. For
example there may be times when several
fields will always take on constant or
relative values. Rather than cluttering
the program by having to set all of these
fields every time, a microp can be written
to do this automatically. A program writ-
ten using well named microps can in turn
be quite a bit easier to read and under-
stand than one which merely sets the
fields.

The definition of a microp requires a
unique name and a set of commands which
will be executed whenever its name is
called. Any FORTH programmer will soon
realize that a microp definition is nothing
other than a colon definition, thus allow-
ing the full power of FORTH to be easily
accessed directly from the micro assem-
bler[ An example of a simple microp that
sets a few fields to zero would be:

MICROP EX1 (. set fields CC, FF,
cc o and HH to 0 .)
FF O
HH O

END.MICROP

used BB & HH defaulted

used AA & HH defaulted

used AA, DD & HH defaulted
used AA, CC & HH defaulted
used AA, CC, FF & HH defaulted
used AA, CC, EE & HH defaulted
used AA & HH defaulted

used AA & BB defaulted

Qutput

An example of this microp in use would be
found in the programming phase and might
look like:

AA 7T HH (IC ) §
AA 8 EX1 §

NOTE: LC in the preceding example is
a variable, the "(" and ")" are required
for its proper execution. They do not
dencte a comment in the MICRO
vocabulary context. This is also true
when building microps. In the MICRO
vocabulary comments are delimited by
II(." and n_)n_

Being simple colon definitions, microps
can do internal testing, looping and every-
thing else offered in FORTH. Microps can
expect parameters on the stack as well as
numbers or expressions from the input
buffer via a function called GET#. For
example: :

MICROP ?GT (=
GET# >
IFAAOBBOCCO
ELSE HH ( LC )
THEN

END.MICROP

This could be used like:

AA 19 §
<variable.name> ?7GT 1024 §

Finally, microps have macro capabilities
in that they can be nested and may even
create several lines of code in one call (as
may be needed in a test and branch, or
jump substitute routine).

MICROP EX3
LC 100 >
IF EX1 §
LC ?GT 1000 §
ELSE AA O §
CC O HH O §
THEN
END.MICROP

Another way to increase readability in
the micro assembler is through the use of
labels.  This feature is only partially
implemented at this time but will work as
follows. Labels must have unique names
and must be declared via LABEL state-
ments before they are used. When a label
is found immediately preceding a new
instruction word {or in other words;
immediately following a "$") the current
value of the location counter ( LC ) is
stored as the value of the label. Multiple
labels may be used to represent the same
line of code. When a label is used inside
an instruction definition after its value
has been set, it will be treated as any
other variable, If the label has not been
set to a value (i.e., forward referencing) a
zero will be returned and all information
necessary to resolve the reference will be
stored in memory for the second pass.
During the second pass the micro assem-
bler will shift the correct value(s) of the
label(s) into the proper place(s) and then
add the resulting number to the rest of the
word. This allows labels to be referenced
more than once in a single instruction. It
also allows addition and subtraction of
other non-label expressions to labels (i.e.,
AA (1LABEL + 2 ) or AA { ILABEL - 1)
but not AA (1024 - 1LABEL ) ). When this
is implemented another extended precision
function ( E+ ) will be needed to perform
the extended precision addition.

<exprl> 7GT <exprl> -- tests if exprl is > expr? .)

The last major feature of the micro
assembler concerns output formatting.
This has not been developed at all but will
consist of a basic instruction set for
programmers to use to define specific
output formats (i.e., hex, insertion of
special delimiting characters, etc.). The
programmer will define a function (similar
to a microp or colon definition) for each
type of output format. The executable
code field address of the current format-
ting function is stored along with the
other instruction word information on the
first pass. On the second pass the format-
ting function will be executed to produce
the desired result. It will be possible to
change the current format function
between instruction words by using a
command of the form:

SET.FORMAT <format function name>

allowing multiple output formats within a
single program. By installing different
formats in currently existing ones, it will
be possible to view the code in punched
card format as well as a format suitable
for blowing PROMs!
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Implementing Techniques FEERRKREROIRERRERE  BLOCK 160 TAEKKRREARERRKRIKRE
The first problem that I addressed was { alsebraic notation GEC 15-JuUL-81 )

how to align the fields in an instruction : GET4 ¢ L<>--<input expression’s valuer) )

word definitio‘n. For words_that_ ars 32 ar " 32 WORD NUMBER NOT "¢ get next inrut char/num )
fewer bits wide the solution is simple, IF k> K> SWAF >K >k THEN # ( 1f cnar then treat as "(°
merely do logical shifting and ORing. . e

Since 32 bits is a rather stringent limit on P (. LCOMPILE] ( # IMMEDIATE ¢« define (. as comment delimiter )

the word width, I have kept the same basic OCABULARY HICRO MICRD DEFINITIONS
+ (.

VAL

LIP‘FLUP FLD.FF { field F.F. for error checking & defaultinsg:
XEQ BROTHER ( brother of current field/format )

XEG FARENT ¢ parent of C.FIELD )

XEQ SELF v« C.FIELD )

XEG UNCLE { wuncle of C.FIELD )

precision numbers off of the
stack, logically ORs them togeth-
er and returns the resulting
number.

v
strategy but have defined a set of func- H EEH + i t E<:i?--{:11 + :%;; redde:;lge + )
1 i 3 i H - i o [<815-=< - +1 redefine - +J
tlcoa;whicti can ©o logical operdtions Updn { & GET$ ¥ i (1 [<#15-- 81 * $2°] redefine ¥ .,
extended precision words. The precision v/ GETH / i (o [<#1-==<8$1 / $42>] recetine s .,
(in terms of 16-bit words) is stored in a i) Re R» SWAF >R oR i (. [<---<>] end exrression o)
variable called PRECISION and is set at F'DI(ﬂr)i L;lEFINITIBHS (0 == start ®ArTREEION e
the PROGRAM WIDTH statement. These
are the extended precision functions which RXEXRKKXXXTUXTRERE  BLOCK 161 13333 TSRS R SRR FRA SN
I needed: ( value and flirflor tspes GEC 10-JUN-81 )
, 0 VAR XT0 ( flas ) L7001 XT0 Y s
1. EXT.PREC - This is a defining
word that creates an extended i VAL ( returns value of wvariable [ not address 1 )
precision variable which uses the BUILDS 'ED?E&; o %TO 1 ¢ store value )
Bartholdi "TO concept" to store ELSE e i push value )
and fetch extended precision THEN i
numbers. EXT.PREC expects the ! FLIFFLOF ( returns 0/1 and stores 1/0 )
desired precision of the new CRUILDS O » ( [<x==<3] 1matralaze F.F
variable on the stack. DOES> XTD @ ) I
ihet Dub'® Dup not ROT ¢ ¢ FolRLEd M )
Cr==<1/021 f «F.
2. EFILL - E.FILL expects a number EE;EE I,'U v ) . i
and the precision of that number -
in terms of 16-bit words on the
b33}
stack. It uses this to fill in the FEERRNRRRRRERRNRRY  RLOCK 162 EEERERRANRY
most significant places with zeros { variable definitions GEC : 1‘?-JL£IN-3(11 )

i isi 0 VAL CUR.ALDE current addresc )
until the number has a precision & VAL C. FIELD { current field )
equal to the current value of 0 vaL C.FOR ( current formet
PRECISION. MNotice that the g Egt E II.PE‘aBTH ( current ms:t;uc?i‘xja? uo:g )

1e ength
value of PRECISION must be o VAL F.FOS ¢ field rosition )
larger or equal to the length of 0 VAL LC ( location counter }
the given number. ¢ VAL INSTRUWIDTH t wnstruction width }
0 VAL L.FIELD tilastff:ein i
H . 0 VAL L.FORH ( last format )
3. E.DROP - This _functu:ln drops an 0 VAL L.INSTR ( last m;wuctxor: )
extended precision number from g EQL HEE " { Eu;;ent n:no:s tdd{ f?_r erint routines
AL N ad set at start of new 1nstr., wora s
O & (R 0 VAL OFFSET { offset of shift {used in ESL} )
4. ESL - The ESL function performs . L
a logical shift to the left on an FXRRRIRRRNXXRRRRKX  BLOCK 143 RN RXK kKA
extended precision number. It ( vwariable definitions - 2 GEC 19-JUN-81 )
expects the extended precision 0 VAL OVFLG ¢ overflow flas )
i 0 VAL FLACE ( addr of temr storade in e:xtended orerations )
number and the number of shifts 0 VAL FRECISION ( erecision of word in 16 bit units )
on the stack and returns the 0 VAL TEST.FLAG ( flas used in error checkindg and defaulting )
shifted number. 0 VAL TSHIFT intermediate number of shifts {ESL} !
0 VAL XDEF ( default rhase {0, use/l, set/2, initralize} )
i 0 VAL XFLAG { value to store in flade {0/1)
5. EOR - This takes two extended g APRINT JFORMAT ( addr of outrut format code
0
]
0
v

6. EXOR - This executes an exclu- i
sive OR operation between two EXRXKKREKREXHRRKXE  BLOCK 164 EXEXKKRRRERRRKRRERX
extended precision numbers. It
expects two extended precision
numbers and returns the result.

extended erecision functions GEC 12-JUN-81

EXT.FREC { <rrecisions-<: builds an extended precision # }
<BUILDS DUF 2% » 0 DD O » LOOF

7. ECOM - ECOM does a 1's comple_- DDE%UF m"g__ w;x‘l?o:-sﬂgerh.;. high-order, or reversed if %70 )
ment of the given extended preci- ATO @ IF DO I ¢ 2 +LOOF O XT0 ! { stores ¢ )
sion Rimbes: ELGE SUAF 2°- EOUT @ 2 4L00F  { Fesekes'y )
THEN +
One extended arithmetic function will be P EJFILL ¢ <# len>-<# 0 ... 0> Puts 0's 1in h1dn order rlaces
needed to implement forward referencing FRECISION SWAF 2DUF > IF DO 0 LOOF ELSE 2DKOF THEN §
of labels. This function has already been ! EDROF ( <low-order ..., high-order>-<> droes ext.rrecision # )
mentioned and will be called E+. FRECISIDN © IIU DROF LOOF &

-_—
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When a Tield is assigned a value and is
aligned, the following process occurs. An
extended precision number with a preci-
sion equal to PRECISION is on the stack.
This is the value of the current line of
microcode. After the field-name is typed,
an extended precision number with a
precision equal to the width of the field is
accepted. E.FILL is used on this number
to make it the same precision as the
instruction word, ESL is used to shift it
over the proper number of bits, and EOR
is used to update the micro-instruction.
This is repeated until a "$" is encountered
which will clear the flags, set any default-
ed fields, store the extended precision
instruction word in memory and leave an
extended precision number equal to zero
on the stack (for the next rnicro-
instruction).

The second main problem that 1 faced
dealt with how to handle multipie for-
mats. | implemented a tree structure
where the instruction is the root with the
list of fields as its children. Each field
has a list of formats or a zerc for its
children. Every format has a list of fields
as its children and the cycle continues.
Each node in this tree has pointers to its
parent, "oldest" child, and next youngest
brother. Each node also contains a fiag
denoting whether it is a valid field or not,
a value corresponding to its starting posi-
tion in the instruction word, its field
length and its default value. Thus when a
field is accessed a test is executed to
determine whether it is valid or not. This
is accomplished by traversing up the tree
and checking the validity flag. If the first
set flag is found in a field, then the
programmer is trying to overwrite another
format in the same field. If no flag is set
and this is not a new line of microcode,
then this field is not defined in the same
instruction word as the previous one(s) and
another error condition is found. If, how-
ever, the field is determined to be valid,
then the flag bit of that field will be set
along with the flag of its parent, and its
parent, continuing up to the root. When a
"$" is encountered, the tree is traversed in
the same manner but from the root down
and all flags are reset. At the same time
any unused brothers of the lowest level
fields used will be assigned their default
values.

INSTRUCTION FORMAT FIELD

INSTRUCTION FORMAT FIELD
Parent |0 | | field | | format
Brother | 0 | | format | j_ field
Used Flag |_ 0/1 | |} 0/1 | | 0/1
Child | field | | _field | {_format

Field Starting Position
Field Length |
Default Value |
!
|

or Zerecs

FEREAXRERXXXRRZRAE  BLOCK 165 EERXEERKKRARXARLRNR
{ extended rrec, functions - 2 GEC 12-JUN-8B1
+ ESL ( <low-ord + high-ord #-chifts. ~<low-org ... nzsh.nrd

shifts #-shifis to left {d s )
0 T0 gUFLE HFRE PRECISION 2 2 :ngFh%EhPE;CE ﬂE;Ets e

0 1 ! 7 +L0GF )
o PRecreron1 %% 1o 1 o OFFSET LUP 10  ToRIET Swht oo

fo h ;
FEQEH TSHIFT 14 o= r bute from hishk to low do
1

OFFSET 2 + T0 OFFSET b E-RAALS = W6
T8 HIFT 16 = TO TSHIFT

ELSE LTOouELE { hift < léi{seh tf}{erf'louﬁ‘l&? )
-shi < H
DUF TSHIFT <-L DFFSET HERE + o rormeiis '
DUF B ROT  OR SWaF !
-
EXRRRRRRRFNRRLRNSE  BLOCK 1466 ERSSE RS SRS ]

{

FAXERRREXR KRR wxx  RLOCK 167

extended rrec. functions - 3 GEC

OFFSET 2 + HERE + DUF @ ( handles #c that are srlit
ROT 16 TSHIFT - -+ DR SWAF ' { 1nto 2 buytes by snift
EN{HEN OVFLG NOT O TO OVFLG

-2 +LODOF DRO
FLACE HERE [lﬂ I @ 2 +L00F i ( fetch # from temr workseace

TFRECISION { [+ of bitsl--[# of lé-bit words)
0 17 M/MOD DROF SWAF DROF 14 i

EGET ( [<addr of variable --<ext.pre.$:] )
DUF PRECISION 1 - 2% + IO I @ -2 +LOOF +

12-JUN-B1 1}

—

AXRERERRRARRERRANNL

extended Prec. functions - 1 GEC 15-JUN-B1
EOR sext.rre.t ext.ere.$ - e3> DR 2 ent.rre #¢
HERE FRECISIUN 2% 1 - BUP *G FLnCE HERE Do & 1 ¢V 2 +L0OF
1 FRECISION DD

I PRECISION + FRECISION I - + FICK

_REC*SIUN 1 + FICK OR =i +LOOF
HERE FLACE DO I !t -2 +L00F
FRECISION 2% 0 DO DROP LGOF
FLACE HERE DO 1 @ 2 +LOOF &

ECOM ( [<ext.$:~-<NOT ext.$:] one compleneats ext.erre.d )
HERE FRECISIOW 2% + 1~ DUF TO FLACE HE

SWAF DD I ' -2 +LOOF

PLACE HERE DO I @ COM 2 +LOOF 3

ERROR.FUNCT .' ERROR CODE: * . CR -

EXEXRRXERRREXRRRRYX  BLOCK 168 ERXEERR AR AK Y
{ extended prec., functions - § GEC 15-Jun-81 )
" EERE pRecISTAN AN AP O DA L 0 ot 7 A
- " Lﬂ H ')
1 FRECISION DO E o g I LooF
ERECISION 1 + FICK XOR -1 +Lbop o
*ICK =1 +LO0OP

HERE FLACE II0 I ' -2 +LGOFP

FRECISION 2% G DO DROF LOOF

FLACE HERE D10 I @ 2 +LOOF +
ARxpARRckeky ki RLOCK 169 EERERRIRAARRRAIN N K
{ offsets in field structure GEC 3-JUL-8B1 )
¢ OFF.VAL

+ XTO @ IF ' O %70 ! ELSE DUF 0<> IF @ THEN THEN 3
. TFARENT O OFF.VAL i + 7HROTHER 2 OFF.VAL #
' PFLAG 4 OFF.VAL i \ TCHILLD & OFF.VAL 5
! TANCESTOR TFARENT 7?FARENT
+ PINSTRUCTION.WILTH 8 DFF VAL 4 i INSTRUCTIGWN
v PFIELD.START C.FIELD 8 OFF.VAL ( FIELD )
i PFIELD.LENGTH C,FIELD 10 OFF.VAL § { FIELD ]
i PDEFAULT C.FIELD 12 + & ( FIELD )

NEW ., SON

DUP PCHILD DUP ROT AND
IF 6 SWAP EEGIN DUP 7BROTHER KOT DROP DUF NOT END DROP
ELSE DROF 0
THEN TO BRDTHER =i

FORTH DIMENSIONS II1/4
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With the structures defined, the task
of creating a program comes to light. An
explanation has already been given des-
cribing how the words are constructed.
The following diagram should help clarify
how a "program" is actually stored in
memory in its first pass form.

General First Pass Structure for
Microcode Programs

semisgieemenasrl_ 1 Forth
Forth |1 | Name
Header | #-=|===-- Link
e s g w s s i 2] W —sfearans Description
Program | Fme|=em-= Instruction Word Width
Header | 0 |
shbogpiismiipiiy| Hewfemmm Address of Label
| Hemw|ree-- Field (ie. # of shifts)
[T
Complete |
First Pass |__*?
Data For |
One | |
Instruction |__#ee|-m=e- Output Format
Word | Femfmeme- LC
I I Instruction
| _ _ | Word
pmrzmsa st i) |
| #--]----- Address of Label
| F*e—|=wm—- Field
|
1
[ __ | Instruction
| | Word
| i

End of Program

Each program has a unique name which
defines a FORTH header. When this name
is typed, the program is listed in a basic
binary and hex form along with the format
address, LL.C, and any unresolved labels.

One of the primary objectives of this
micro assembler is to make microcoding
easier by making it more readable, and
there are quite a few places where the
reverse polish notation found in FORTH
does not appear quite as nice as an infix or
prefix form. Hence, I have written a few
short functions to allow FORTH functions
to accept numbers and expressions from
the input bufter as well as from the para-
meter stack.

This method uses the return stack via a
function GET# which accepts input from
the input buffer. If the input is a number
GET# places it on the stack and returns.
If the input is not a number then GET#
assumes that the programmer typed a left
parentheses "(" meaning that there is an
expression or a variable in the input
buffer. If this is the case then GET# will
swap the last two values on the return
stack and return. When a right parenthe-
ses is found, the top two values of the
return stack are again swapped and the
system is back to normal. This is simple
and fast, although it has no method of
checking whether a set of parentheses is
properly closed. However, a variable
could be used which would be incremented

EEEXXXREXTRXRRNERY  EBLOCK 170

headers of fields & formats GEC
TNAME DUFP 0<> IF CFA TNAME ELSE DROF THEN i
IGNORE 32 WORD DROF i

EERRERRXARREREANR AR
3-JuL-81 )

HEADER ( creates 1st 4 fields in FIELD and FORMAT )
0 TO UNCLE  HERE TO SELF
BROTHER 0>

IF SELF BROTHER TO ?BROTHER

ELSE SELF PARENT TD 7CHILD

THEN SELF TO EROTHER )
PARENT » 0 ¢+ 0 » O » 3 ( parent/brother/flad/child

FORMAT . HEADER ( defines FORMAT relatives & executes HEADER )

INSTALL L. FIELD IN UNELE INSTALL C.FIELD IN FARENT

INSTALL L.FORM 1IN HER IHSTALL C.FORM IN SELF
C+FIELDL NEW.SON HERBER 0 70 C.FIELD § -->

KKKRERRRRXAKREEXRR  BLOCK 171 FARREI RN X
{ instruction and format defs., GEC 3-JUL-81 )

s INSTRUCTION ( INSTRUCTION <name: WIDTH <width> )
0 T0 C.FIELD FORMAT.HEADER
IGNORE GET#

DUF » .

DUF TO FL.LENGTH TO F.FOS &
' FORMAT

FFIELDLLENGTH TO F.LENGTH

PFIELD.START F LENETH + T0 F.FPOS

{ <$>-<> sets fladgs from C.FIELD ur to % )

.

instruction width
( faeld 1ens!.n!held Tnéltlgn

{ field lendth
i field rposition

; ENT %FLAG TO OVER PFLAG DUF NOT END DROF
G C.FIELD TO 7FLAG $

EREXERRERRXKXKKERKE BLOCK 172 12333333283 3038083334
{ format.end and field header GEC I-JuUL-81 )
H FOI’\HAT END { END.FORMAT

+FIELD 7ANCESTOR DUP TO L.FIELD TO C.FIELD
C FIELD ?PARENT IF 7FIELH START ELSE O THEN F.FOS <>
IF 2 ERROR.FUMCT RESTAR
ELSE ?FIELD LENGTH_TO F LENBTH
FIELD.START 70 F.F
THEN

+ FIELD.HEADER
INSTALL L.FORM IN UNCLE INSTALL C.FORM IN FARENT
IHSTRLL +FIELD IN BROTHER INSTALL C.FIELD IN SELF
SELF _0<: IF SELF 7PARENT ELSE C.FORM THEN
DUF TO PﬁRENT NEW.SON
'

HEALER -
EEXXXERRRKNRKRRXREX  HLOCK 173 AEEXEXXKARRAARRRARY
( error checking for used fields GEC 3-JuL-81
i ER.CHECh ( check to see 1f field 1s rermitted
gETDNFLn +FF C.FIELD
nuF ?FLnG TD TEST.FLAG { set TEST.FLAG=FLAG )
FLD FF DRO { flie freld.flap.flor )
PPARENT { g0 to earent )
]

DUF NOT TEST.FLAG OR
END _DROP
TEST. FLﬂﬁ FLD.FF
IF 4 ERROR. FUHCT RESTﬁRT
ELSE TESI FLAG N
IF RROR, FUNCT RESTART

TH EN
THEN O TO TEST.FLAG #

( if flag found or root reached

{ field defined twice )

{ not proeper instruction )

EXRREXXXERNERRKERR  BLOCK 174 EXERERRERNRXERRNENY
¢ defaults GEC 8-JUL-81 )
: DO.DEFAULT
PFIELD.LENGTH ?PRECISION
%DEF _SEL
¢S 2 727 DROF 0 10 0, LOOF 0 TO XDEF 0

<% == [IRDP 7[1EFﬂULT SUAF 1 - 23 :]';‘ER
@ -2 +LO0OP ?FIELD.LENGTH 7F’R:CISIEIN
E FILL ?PFIELD.START ESL EOR 0 =

SEL
To. IIIEF 170 IDEF i + INIT.DEF 2 TO XDEF 3

DEFAULT
GET# TO.DEF DO.DEFAULT i
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when a ™" is encountered and decrement-
ed when a ")" is found. This would catch
any errors involving too many closing par-
entheses. A "]" function could be written
which would behave in the same manner as
the UCI LISP function of the same name.
It would use the variable mentioned above
to close all open parentheses for a suc-
cessful evaluation of the expression.

GET# and its related algebraic func-
tions have some interesting features in
that there is no hierarchial ordering of
functions (i.e., 2 + 3 * 5 =25 while 5 * 3 +
2 = 17), however, expressions enclosed in
parentheses will be solved before others
(i.e., 2 + (3 *5) =17). The entire code for
this is only a few lines long and is as
follows:

: GET# 32 WORD NUMBER
NOT IF R> R> SWAP >R >R
THEN ;

VOCABULARY ALGEBRAIC  ALGEBRAIC DEFINITIONS

1+ GET# + : - GET# -

: % GET# * : / GET# /
) R> R> SWAP >R >R ;
C)s

FORTH DEFINITIONS

A typical usage of this function could
be:

{+} GET# + ;

3 {+} (& {+} 5)

EXrRreRxrrxkxixxsx  BLOCK 175 EEERRENEXA KRR NN K
{ field structure GEC 3-JuL-81 )
: FIELD ¢ FIELD <name: WIDTH <width: )

<BUILDS IGNORE GET#
DUP F.LENGTH <=
IF FIELD.HEADER
F.LENGTH OVER - TO F.LENGTH
F.POS OVER - DUF 10 F.FOS

v { field start/field lensth
INIT,DEF LD.DEFA
ELSE 1 ERROR.FUNCT RESTART
THEN
DOES. T0 C.FIELD
NEW.WORD IF O TO NEW,WORD ELSE ER,CHECK THEN 1 SET.FLAGS
GET# TFIELD.LENGTH TFRECISION E.FILL
PFIELD.START ESL EOR i -

FORTH-like, it does result in much
cleaner code. | adapted the concept in
one place to build a flip-flop function.
This function creates a data type which
alternately returns zeros and ones when-
ever it is called and makes use of the "TO
concept" to allow itself to be initialized to
redefine functions either state. The micro assembler also
makes use of multiple vocabularies to
allow the same function to have different
meanings in different contexts. While this
re-swap return stack is not absolutely essential for the assem-
swap return stack bler to rur, it anin makes the code
cleaner and easier to use.

gets number
swap if not & number

Conclusion

The reason why | have chosen to write
this micro assembler in FORTH is simpli-
city. As ! mentioned earlier, this "pro-
gram” is based largely upon a very lengthy
micro assembler written by Signetics and
yet the FORTH code is only a few pages
long. The time spent programming was
equally short. It took roughly half of my
time at work from around June 10 through
July 15 to complete the micro assembler
to this point (although I have occasionally
gone back to add or change a feature or
two). Two of the features that 1 did

12
Current | | Parameter | Return
Function | Command | Stack | Stack
""""" | semrromaslis s omrassr]rass rrr e s R ST e S s S S S
main | 3 | 3 | - input a 3
{+} | {+} | 3 | main
GET# | GET# | 3 | main {+} call function GETY#
| ( | 3 | {+} main swap return stack
main | 4 | 34 | {+} return and input a 4
{+} | {+} | 34 | {+} main call {+} again
GET# | 5 | 345 | {+) main {+} input a 5
{+} | + | 39 | {+} main return and add
main | | 39 | {+} return to main
] | ) | 39 | {+} main call function )
i | 39 | main {+) swap return stack
{+} | + | 12 | main return and add
main | | - | - return and print

There are a few general concepts
which are used throughout this micro
assembler, one of which is the "TO con-
cept" (see Joe Sawicki's paper entitled
Optimized Data Structures for Hardware
Control). This concept allows the use of
variables without the programmer having
to deal directly with the address. While
this may be thought of as being a bit un-

change, labels and forward referencing
. through the first pass, brought up another
call function {+) quality of FORTH: its modular nature.
These are rather major additions and yet
they only required one new "block" of
code, a few minor changes in the old code
and took only a few hours to implement[

Once the forward referencing is com-
pleted and the output formatting is imple-
mented, this code will be a micro assem-
bler by itself as well as a kernel for more
extended versions. An example of an
extended feature is the compilation of a
symbol table at the end of a program. A
further extension would involve tying this
symbol table to other symbol tables to
allow external references. Through the
use of external symbol tables the micro-
code could be maintained in the first pass
format so that the external references
could be resolved several times for labels
with differing values. This could result in
a modular microcoding technique.
Another extension could be a FORTH pro-
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gram which would be used, in much the
same manner as the micro assembler, and
similar to Hardware Description Lang-
uages, to describe a simulator for the
microcode. These two programs would
constitute a powerful yet inexpensive
teaching aid as well as an effective design
tool. Programmers and students would not
need to waste their time punching cards or
blowing PROMs in order to discover the
errors in their code[ A dozen other "nice"
features can be imagined (i.e., prohibiting
forward referencing to allow interactive
microcoding, or the development of intrin-
sic microps to define commercial chips,
ete.), but the point is that they could all
be based around the small "kernel" micro
assembler presented here.
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1. Signetics Micro Assembler Reference
Manual

HELP WANTED
FORTH Software Engineer

Program, edit and maintain files for
8080. Ability to troubleshoot the
software-hardware interface.

Call:

Wendy Palmer

1-800-225-4040

Instrumentation Laboratory, Inc.
Analytical Instrument Division
Jonapin Road

Wilmington, MA 01887

EEEXXARRXNERXKXKEY EBLOCK 176 EXREERNARARAMARNRXX
{ end.instr & find root & brother GEC 11-JUN-81 )

t END_INSTRUCTION ( checks for anu undefined fieldc )
BEGIN FORMAT.END C.FIELD 7ANCESTOR NOT END ;

' ROOT 0 SWAF ( finds instruction
BEGI ( [% selfl--[self rarent]
[iUP PFARENT ROT DROF DUF NOT
ND DROF 4
i FIND.EROTHER © SWAF i finds brother with flags set )
BEGIN
DUF 7HROTHER ROT DROF ( [% selfl--L[self brotherl )
OVER ?FLAG OVER NOT OK { flag OR not brother )
END DROF DUF
PFLAG NOT IF DROF O THEN & ( Cbrother OR 0 7 ) -=>
KEXXXXXAXEXKRRARRE:  HLOCK 177 EEERRARRSRAARRRRRRK
( default - 2 GEC B-JUL-81
+ DEFAULT!

C.FIELD ROOT O OVER TO 7FLAG 7CHILD
BEGIN DUF TB C.FIELD ?FLAG_NOT
IF DO, DEFAULT C FIELT DUF 7BRUTHEF\ ( no flag set-default)
C.FIELD CR 7NAME ." DEFAULTED

ELSE C.FIELD O OVER TO ?FLAG { flag set-reset to & )
F ?PCHILD FIND,BROTHER DUF { Tind sub-format uczed }
IF 0 U'JEI'\ TO ?FLAG { reset forrat flas to O ]

TCHIL { check sub-Tields ]
ELSE [IF\DF DUF ?RROTHER ¢ no format used-fing brother)
C.FIELD CR_TNAME .° USED
THEN THEN DUF NOT
IF BEGIN DROF TANCESTOR DUF 7BROTHER OVER NOT OVER OK ENID
THEN SHhF NOT
END DROF CR i -

EXREERRRXRRNRENRXE  EBLOCH 178 EXERERXRERRRXR IR R KY
( micro-assembler! forward ref. GEC 17-JuL-B1 )
+ LABEL { LABEL <name> )
<BUILDS
v 0 » ( def.flag / val )

0
[DES> NEW.WORL

IF DUP @ IF .* Label previously defined® CR RESTART THEN
1 OVER ! { set flag )
2t LC SUAP ! { set value }

ELSE HUF
ELSE "FEELI.! START SHAF » » O

THEN THEN

EEXKRRXNXERXXRXRXX BLOCK 179 AXEEEXRERRXNRNLRRRY

{ end of word & oridin GEC 11-JUN-81 )

H { ends word in Frrogram mode )
C.FIELD ROOT IF DEFAULT! THEN
0 s { end of labels )}
IFRINT.FDRHAT + LC DUF » 1+ T0 LC
PRECISIDN 0 00 DUF E. » LOOP CR
01 E.FI
1 70 EH HDRH i

ORG
GET# 70 LC 3

EXERRKKKXKRRRREXRXX  EBLOCK 180 ERKRRKEER AT MR RRX
{ erinting routine GEC 18-JUN-81 )
{ U.ZERO

DUF_4096T U>= IF 0T
ELSE DUF 2967 U»= IF 17
ELSE DUF 16T U»= IF 2T
ELSE 3T

L

THEN THEN THEW
DUF IF DUF OT DO OT 1T U.R LOOF THEN

AT SKAF - U.R
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EXEEXXRERRKKRXXXER  BLOCK i81

i srinting routines - 2 GEC

EXXRENXFRARRRRINARN

16=-JUN-81 )

3 ¥PRINT ( <ext.rre.$.addr>-<> print ext.rre.¥ 1n binary § hex

DUF F&E ISIDN 2T % + SWAF 2DUF DO I @ B. 27 +LOOF
N0 I @ ULZERO 2T +LOOF
* MEM.INC HEM DUF 2+ TO MEM @ i
KEERXRRERXRLXRRRXY  ELOCH 182 FEEXRKKEAAKARXRKRRY
« printing routines - 3 GEC 146-JUN-81 )
i 1.PASS.FRINT
DUF _TO MEM @ 1 AND
IF .* ERROR - FROGRAM LENGTH 0 * CR
ELSE 14 BASE ' CR BEGIN MEM @
IF BEGIN
+" LABEL + * MEM DUF @ CFA TNAME CR 2+ 10 MEM
' MEM DUF @ . CR CR 2+ DUF TD MEM @ NOT

W SHIFTED:
END

THEN HMEM 24 TO MEM
.o ;G-cﬂﬁT. " MER DIUF @ .,

HEW $FRINT EC
Ck CR CR MEW B 1 = END
THEN

183

GEC

FREXEPAXKRRORRXRXX  BLOCK

{ program statement

1 PROGRQH
~BUILDS IGNCRE GET# DUF
1 70 NEW.WORD
¢ 1 E.FILL
DOES:: LWLF
KRRKRKRRRXFRRRRXRK  BLOCK 1B4
{ end program % Micror commands GEC
v ENLL.FROGRAM
EDROF 1 »

i MICROF CCOMFILED @
ENL.MICROF [COMFILEY 5 3

tOSET ¢
<BUILDS IGNORE GET4 »
DDES. @

v EQU { EQU <var.name-
1L IGMORE GET# SWAF |

MICROD DEFIMITIONS

IMMEDIATE

defines 2 variable data ture )
« SET

“var.name> T0
“var.name.

WITH <exrression; )

EREEERREXRXRKRRRRRN

16-JUN-81

+ PFRECISION TO FRECISION 0 »

.E PPRECYSION TO PRECISION 4 + 1.PASS.PRINT & --_

EXKERERERRRRRERKKXN R

17-JUN-81

<expression:

returns value )

INDUSTRY NEWS

FOR TH-Based Savvy Lets User
Talk to Computer

FORTH, Inc. is working with its parent
company, Technology Industries, Inc. of
Santa Clara, California, to develop a new
software package for the Apple I, using a
Z80 processor. With it, the Apple will
offer the kind of casual and efficient man-
computer interface that until now, existed
only in movies like 2001 and Star Wars.

The project calls for Savvy--the trade
name for Excalibur Technology Corpora-
tion's Adaptive Pattern Recognition Pro-
cessor--to be used as a unique language
interpreter. Savvy permits a user to com-
municate with a computer in the user's
native language and normal praseology--no
special language and formm are needed.
Specifically, Savvy:

o Recognizes written words strung
together in idiomatic phrases.
(Future versions will understand

spoken words and respond to
Spanish commands as well as
English.  Other languages will
follow.)

o  Translates these imprecise
patterns into precise computer
commands.

Savvy's unique interactive approach to
dealing with computers is an important
development for the 80s. The powerful
combination of FORTH and Savvy will be
significant in realizing the system's full
potential and demonstrating the power of
FORTH. A special development team has
been formed for this project, including Art
Gravina, Chuck More, Dean Sanderson,
and another programmer who has not been
identified.

NO ROOM FOR THE ORDER FORM THIS TIME!

ORDER - Proceedings 1981 Rochester FORTH Standards Conference.
check or MO to FIG in US funds on US bank,

$25.00 Us,

Send

E 1=

L

e

IVACATION
TRAVEL THERE
RESORT

."T.RA—':"'_L.
[:RESORT
.

$35.00 Foreign.

e Ty _ - - ——
MONEY...3) d
MONEY...; IMONEY  WORK; |

FORTH DIMENSIONS II1/4

Page 133



DON’T MISS IT!

FORTH INTEREST GROUP

NATIONAL CONVENTION
NOVEMBER 28, 1981

Marriott Hotel
Santa Clara, CA

MAKE YOUR RESERVATIONS NOW!
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