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EDITOR'S COLUMN 

A special thanks this month goes t o  Mr. Larry Forsley and the 
University of Rochester. The majority of this issue comes from 
his efforts  and those of his asociates. While acting a s  guest edi- 
tor  for this issue of FORTH DIMENSIONS, Mr. Forsley was also 
compiling and editing the proceedings from this year's FORTH 
conference a t  the University of Rochester. Even with this 
"double duty," Mr. Forsley has done an excellent job. 

The quality of material we have received from the  University 
of Rochester is excellent and greatly encourages me in my plans 
to "de-Californize" FORTH DIMENSIONS through the use of re- 
gional guest editors. While Mr. Forsley and the  University of 
Rochester may be a tough ac t  to follow, 1 will welcome contacts  
frorn anyone e!se (person and/or organization) who would like to 
try guest editing an issue. For your peace of mind, let me assure 
you tha t  production (typesetting, proofing, printing, etc.) will be 
handled for you. If you think you have what i t  takes, give me a 
call or drop me a line. 

You may find that  some of this issue's sections have been re- 
duced is size and/or eliminated. This is a temporary concession 
because of the volume of material we have t o  publish in this 
issue. Postal costs prohibit expanding the size of FORTH 
DIMENSIONS to publish all we receive, so when we have a quan- 
t i ty of quality material we publish those i tems tha t  would seem to  
have the greatest  reader interest. 

I hope to meet many of you a t  the FIG National Convention in 
Santa Clara, California on November 28th. Meanwhile, 
GO-FORTH and ge t  additional members. 

Subscription to FORTH DIMENSIONS is f ree  with membership '' J' Street 
in the Forth Interest Group a t  $15.00 per year ($27.00 foreign 
air). For membership, change of address and/or to submit 
material, the address is: 

PUBUSHER'S COLUMN 
Forth Interest Group 
P.O. Box 1105 
San Carlos, CA 94070 We are  heading into some busy t imes for FIG. By the t ime you 

get  this copy of FORTH DIMENSIONS we'll have completed the 
Mini-Micro Show in Southern California and be deep into the 
details of the FORML Conference and FIG National Convention. 
Remember tha t  the Convention is Saturday, November 28th a t  
the Marriott Hotel in Santa Clara, California. Expect t o  see 
many of you there. 

HSTORICAL PERSPECTIVE 
We've sent out packets to FORTH vendors about exhibiting a t  

the FIG National Convention. If you are  interested in exhibiting 
FORTH was created by Mr. Charles H. Moore in 1969 a t  the and haven't received a packet, call the FIG line and request one: 

National Radio Astronomy Observatory, Charlottesville, VA. It (415) 962-8653. Only $50 for a table! 
was created out of dissatisfaction with available programming 
tools, especially for observatory automation. This issue is the much awaited University of Rochester 

effort .  Its packed with useful material. You ought t o  order the 
Mr. Moore and several associates formed FORTH, Inc. in 1973 Proceedings of the 1981 Rochester FORTH Standards Conference. 

forthe purpose of licensing and support of the FORTH Operating It has 378 pages of excellent papers 
System and Programming Language, and t o  supply application 
programming t o  meet  customers' unique requirements. "Starting FORTH' by Leo Brodie is available from FIG '-- ---------- and replaces "Using FORTH" a s  the  book t o  have 

The Forth Interest Group is centered in Northern California. about the FORTH language. 
Our membership is over 2,400 worldwide. I t  was formed in 1978 
by FORTH programmers to encourage use of the language by the Now, a l i t t le  lecture. We have conducted an unscientific 
interchange of ideas through seminars and publications. survey and Found tha t  in many locations there are people who are 

using FORTH and aren't members of the FORTH Interest Group. 

ORDER YOUR COPY! You a s  a member should work on them to  join. All you have to do 

proceedings  of t h e  1 9 8 1  Roches ter  FORTH Standa rds  is make a the Order Form------------------- and 

Conference  have your associates fill in their name and adaress. If we each 
$25 .00  US, $35- 0 0  ~ ~ ~ ~ i ~ ~ .  send check o r  MO t o  ge t  One more person t o  join we'll have over 5,000 members. Let's 

F I G  i n  US funds on U S  bank.  do it. 

" S t a r t i n g  FORTH" Roy C. Martens 
Hard Cover - $ 2 0 . 0 0  U S ,  $ 2 5 . 0 0  F o r e i g n  
S o f t  Cover - $ 1 6 . 0 0  US, $ 2 0 . 0 0  Fo re ign  
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FORTH AND THE UNIVERSITY 

Lawrence P. Forsley 
Laboratory for Laser Energetics 

University of  Rochester 

Welcome to the wonderful world of  
URTH, or, University of Rochester 
FORTH. URTH was developed several 
years ago and has been used for  many 
applications, some of which are 
documented here. Beginning wi th  the 
1978 FORTH Internatinal Standards 
Conference, held on Catalina, we have 
followed the FORTH standardization 
effort. As a result, the majority o f  our 
systems are close to beirtg FORTH-79 
Standard, although not FIG model. Very 
few papers i n  this issue v:ill refer to 
URTH. 

The 1981 Rochester FORTH Standards 
Conference was held at  the University. 
The major reason for this, aside from the 
delightful weather at  that t ime of year, is 
the FORTH act iv i ty at  the University. 
This work shows up i n  several divisions and 
departments including the Univarsity 
Computing Center; Optics; Physics and 
Astronomy; Chemical Engineering; 
Mechanical Engineering; Department o f  
Radiology, Division of  Diagnostic Ul tra- -. 
sound; Department o f  dytopathology; 
Electrical Enqineerinq and the Laboratory 
for Laser ~nerget ics.  Indeed, we ark 
indebted to the original work by Dick 
Berg, who i n  1976 was an assistant profes- 
sor of  Physics and Astronomy, for  deriving 
the f i rst  URTH system; and to  Ken 
Hardwick, who i n  1977 was with the 
University Computing Center, for bringing 
up the IBM 360/65 TSO version based on 
Dick's work. A t  this time, Ken, Dick and I 
were the only FORTH users at  the 
University. I believe the name URTH was 
coined by Ken, although Dick was part ia l  
to  PARTH, for Mike Williams' 
multitasking In te l  8080 FORTH system. 
Unfortunately, Ken and Dick are no longer 
with the University; and Mike's commit- 
ments prevented his authoring a paper. 
However, their work is reflected i n  the 
material presented here. 

This issue starts with three overview 
papers. The f i rst  paper is mine and covers 
the development of  FORTH at the Labora- 
tory for Laser Energetics, which remains 
the largest university FORTH user. The 
second paper, by Peter Helmers, reflects 
on the uses of FORTH i n  medical research 
and clinical applications. The third, by 
John Lefor, covers one of the more visible 
university FORTH systems: The IBM 3032 
telecommunications front-end. 

The next three papers demonstrate a 
variety of ways by which FORTH can be 
used to  interact w i th  hardware. The f i rst  
paper, by Rosemary Leary and Carole 
Winkler, deals w i th  three methods of using 
mapped memory. A second paper, by Bob 

Keck and me, demonstrates a high ievel 
interrupt handler used in plasma physics 
experiments. The third paper i n  this 
section is by Joe Sawicki, and suggests 
powerful structures for easily and 
eff ic ient ly interfacing hardware, 

The last section illustrates the diff i- 
culty wi th defining the difference berween 
systems and applications. The f i rs t  paper 
is by Michael McCourt and Richad Marisa, 
and describes a transportable String 
Stack. The second paper is by Al fred 
Clark and covers a FORTKbased complex 
arithematic calcuiator. The last paper is 
by Greg Choimondeiey and documents a 
microprocessing tool simiiar t o  one 
supplied by Signetics. 

These papers have many things i n  
common. One exampie is the di f f icul ty i n  
discriminating between users and imple- 
mentors. Bab Keck, a user, worked wit11 
me to  devolop a tool  for high level inter- 
rupt handling. Likewise, A1 Clark, also a 
user, has augmented a fioatinq point 
package with words appropriate to  the 
complex plane. The String Stack is clearly 
a system tool. Complex arithmetic is less 
so, and a rrricroprogramming system :s 
clearly an application. Or  is i t ?  I n  the 
context o f  i ts  user, the microprogramming 
words are a system. We seem to be for- 
ever chasing our ta i l  when determining a 
FORTH context. But  1 think that this i s  
the power o f  FORTH. 

Another facet is the use o f  defining 
words used throughout the papers. An 
extension of definin words, Paul 
Bartholdi's TO concept,' is used i n  both 
Joe Sawicki's and Greg Cholmonde y's 
code. Mike McCourt's "IN" concept' is  
used by Peter Helmer's to  implement the 
TO concept. However, a student, Carole 
Winkler, thought that TO complicated 
things unnecessarily, so she doesn't use it. 

This last comment illustrates one o f  
the virtues o f  universities: freedom of 
dissent. Unfortunately, I have found that 
most groups, and many people, using 
FORTH are intolerant of  different views. 
During my involvement w i th  FORTH I 
have watched many groups rise to  
ascendency, tout the true way, and then 
be replaced by another group. This has 
been especially true of  the FORTH 
Standards e f for t  where K i t t  Peak, 
FORTH, Inc., the European FORTH User's 
Groups and FIG have all played this role. 
But another view is possible, which is 
more i n  keeping wi th  FORTHs nature. 

Many of us see FORTH as being a 
system ' of  controlled, or directed, 
anarchy. Since every man, or woman, can 
be for himself it is highly idiosyncratic 
and anarchistic i n  form. Anyone who has 
t r ied  a teem approach to  FORTH 
programming is familiar wi th the :endency 
towards a Tower of  Babel. On the other- 
hand, people comfortable with thie 

unstructured environment f ind both their 
pmductivity and creativity increased. 
But, some direction must be applied to 
share code among users. I suggsst that 
this direction should be one of form, and 
not o f  content. 

It is appropriate t o  define documenta- 
t ion standards which imply a form. But is 
is inappropriate t o  state that something 
can be done only ens (with the implied 
right) way. However, people who !earn 
something by doing it the wrong way 
understand much better than people who 
are the r ight way. 

I think an example o f  this can be foun 
i n  a conversatior! I had wi th  K i m  Harris. 9 
K i m  took erceptioq to an ear!ier paper by 
Peter Helmers on ~ s e r s t a c k s . ~  I was told 
that the approach was wrong. Period. But  
on further discussion, I found that I agreed 
with Kim, The faul t  was that Peter had 
found oniy a part ia l  solution t o  data 
typing, and i n  a multitasking system his 
technique rn i jh t  be very cumbersome. 
That's fine. Peter Helmers does not use 
multitasking systems, as his systems are 
a l l  single user, interruptlevent driver;. 
thus, it is worth remembering that eac of 
us has different, and valid, viewpoints. ! 

As a major promoter of  FORTH at the 
University o f  Rochester, I have tr ied to 
define an environment conducive t o  this 
type of  interplay. This has resulted i n  a 
learning environment with many student 
opportunities; and wi th  Leo Brodie's book, 
Startinq Forth, and Don Colburn's study 
guide, Goinq Forth, we can begin teaching 
with FORTH. Not  teaching FORTH, but 
teaching with it. Four o f  the authors i n  
this issue are students and three other 
authors teach courses or seminars. I f  
FORTH is ever t o  catch on l ike Pascal, or 
FORTRAN, then it must begin wtih 
university teaching as those two languages 
did. I n  f ive years my present students wi l l  
be i n  industry, as my f i rs t  student con- 
tacts already are. A univeristy environ- 
ment coupled wi th  i t s  students' enthusiasm 
and their eventual employment w i l l  
further FORTH more than any seminar 
series or interest group. But it w i l l  take 
time. 

1. FORTH DIMENSIONS Vol. I No. 4 and 
Vol. I No. 5. 

2. FORTH DIMENSIONS Vol. !I No. 4 

3. Personal conversation on May 10, 1981 
prior to  the Rochester Conference. 

4. FORTH DIMENSIONS Vol. 11, No. 2 

5. Since that paper, Peter has published 
another one, entit led "Alternative 
Parameter Stacks," which can be found 
in the Proceedings o f  the 1982 
Rochester FORTH Standards Con- 
ference. 

-..----- 
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FORTH IN LASER FUSION 

Lawrence P. Forsley 
Laboratory for Laser Energetics 

University of  Rochester 

Inertial confinement fusion research 
using lasers has resulted i n  the laboratory 
creation o f  extraordinary conditions o f  
temperature and pressure, duplicating 
those found i n  the cores of  white dwarf 
stars. The machines which create these 
conditions and the diagnostics that moni- 
tor them have become increasingly auto- 
mated. The demands of this research have 
forced us to adopt new techniques, l ike 
FORTH, for enhancing interactions 
between engineers, physicists and their  
experiments. 

Introduction 

Lasers have been used to simulate 
plasma conditions of  high density (ap- 
proaching solid) and temperature (over 60 
mil l ion degrees) for several years. The 
goal of  these experiments has been either 
for weapons e f fec t  simulation, practiced 
a t  the national laboratories, or for the 
possible commercial generation of  
power. This lat ter program has been 
exclusively pursued by the Laboratory for  
Laser Energetics (LLE) for almost a 
decade. As can be expected, these exper- 
iments have resulted in  the development 
of new diagnostics, and these diagnostics, 
i n  turn, have resulted i n  new fields o f  
physics. Besides the Laser Fusion Feasi- 
b i l i t y  Project, there are research 
programs in: sub-picosecond lasers, nano- 
second X-Ray sources, X-Ray lasers, 
laboratory astrophysics, and materials 
damage testing. 

These research programs, and the main 
supporting lasers, are highly automated. 
About one half of  the computer systems 
on the 24 beam 13 terrawatt  infrared 
Omega laser and al l  o f  the computers on 
the single beam Glass Development Laser 
(GDL) are implemented i n  FORTH. This 
paper w i l l  explore the development of  
FORTH-like languages at LLE. 

The laboratory is also part  of  the 
College o f  Engineering o f  the University 
of  Rochester. Thus, there is an important 
interplay between the staffs, and students, 
of LLE and the University. Most of  our 
FORTH systems have been partially, or 
totally, implemented by students f rom 
chemistry, electrical engineering, physics 
and computer science. Four of the other 
papers i n  this journal issue have a student 
author who is also a member o f  LLE. 

Standardization 

LLE  was one o f  the f i rst  Laser Fusion 
laborato ies to  automate i t s  laser 
systems! Whenever possible, we relied 

upon standard computers, interfaces and 
software. Originally, in 1971, we chose 
the Hewlett  Packard 2100 series com- 
puter, and the RTE (Real Time Executive) 
Operating System wi th  Fortran, Assembler 
and Algo!. We used the HP backplane for 
our instrument interface. This system ran 
for over f ive years and 15,000 shots, but 
building a completely automated laser 
with 24 instead of 4 beams required a 
different approach. 

The Hewlett  Packard computer back- 
plane was l imited In  the number and vari- 
ety of  devices which could be procured 
and attached to it. We overcame this 
di f f icul ty by adopting CAMAC (5 ) .  
CAMAC provided us with a large capacity, 
computer-independent backplane. It was 
also a widely used standard i n  the nuclear 
physics community w i th  Instrumentation 
and interfaces appropriate to  our needs 
available f rom several sources. 

The problems of computer and soft- 
ware standardization were more di f f i -  
cult. Some of our applications were real- 
time, and appeared to require a fast 
interrupt response. I n  other cases, we 
were interested i n  direct  image digitiza- 
t ion and needed a large address space. 
Other requirements suggested the need for 
a powerfi l l  multiprogramming operating 
system. Unfortunately, no one computer 
type and operating system supported a l l  of 
our applications; and yet, w i th  l imited 
manpower, it was d i f f i cu l t  to support a 
variety o f  hardware and software. 

Computer languages, including 
FORTRAN, are different f rom one vendor 
to  another, and especially when operating 
system calls were taken into account. The 
problem o f  software consistency and sup- 
port  was not l imited to  dissimilar com- 
puters. Ehrman (4:16,17) has shown that as 
many as 12 di f ferent languages may be 
encountered by a pi-ogrammer when edi- 
tors, linkers, and loaders are included i n  
addition t o  the programming language. 
Therefore, a unifying software approach 
was needed among various operating sys- 
tem functions and languages on the same 
and different computers. We did not know 
of the unix System f rom Bell Laboratories 
(11:1905-1929) and the 'C' programming 
language of Richie and Stevens (121991- 
2019) i n  1976. However, I had talked wi th  
people a t  K i t t  Peak i n  1976 and travelled 
there in  the spring o f  1977 to see FORTH 
being used. 

FORTH 

FORTH was originally developed as a 
small, real t ime operating system for  tele- 
scope control and image processing by 
Moore (8:497-511), (9) and Rather (10:223- 
240) at the K i t t  Peak and NRAO facil i t ies 
which are funded by the National Science 
Foundation. I found three groups a t  these 
faci l i t ies using FORTM' scientists, com- 
puter engineers and technicians. I n  some 

cases, the scientists were very knowledge- 
able about FORTH, whereas i n  other 
cases, they only knew a few words. I was 
especially impressed by Dr. Mark Alcott, 
who was, a t  the time, with Cai Tech and 
was observing on NRAO's 36 foot radio 
telescope. He was pleased wi th  his abil i ty 
t o  change the graphics routines and other 
"systems" software while continuing to 
collect data. Similarly, I found many 
technicians programming and writ ing test 
programs. This appeared to  make good 
use of their time, especially when they 
would be familiar wi th a device, l ike a 
Varian computer disk controller, and did 
not  have to  e x ~ l a i n  i ts  function t o  a pro- 
grammer. It also appeared that many of 
the computer group's staf f  enjoyed 
FORTH, although there were problems 
with dandardization and change. I found 
out several years later, talking wi th  Jeff 
Moler, wha was then i n  operations a t  K i t t  
Peak and is now with the Livermore 
Tandem Mirror Experiment, how d i f f i cu l t  
i t  was to  maintain programs i n  this envi- 
ronment. 

FORTH seemed to have many desirable 
characteristics, and it provided the same 
programming environment on many 
machines. It allowed both very low level 
access to  hardware and high level struc- 
tures to shield users from that hardware. 
There was an assembler, a compiler, and 
an interpreter. What we did not know 
then was the care required i n  documenting 
it, and the tendency to create personal- 
ized applications and words. But, we 
needed a version o f  FORTH a t  the Univer- 
sity. 

Dick Berg, an assistant profess r in  
physics and astronomy at  the time! de- 
compiled a K i t t  Peak Varian nucleus circa 
1974. He recoded it for the National 
Semiconductor PACE microprocessor. 
Ken  Hardwick, t h  with the Univerity 
Computing Center? used this as a model 
f o r  the IBM 360165 under TSO and Mike 
Williams developed a multitasking version 
on the INTEL 8080. This was the bir th of 
URTH. 

We also procurred a version for the 
Zilog Development System from FORTH, 
Inc. a t  about the same t ime to demon- 
strate an automated X-Ray spectrometer. 
Although I had a system for the Hewlett  
Packard 2100 f rom K i t t  Peak and a "disk- 
less" version from Don Berrian a t  Prince- 
ton, f decided that we should develop our 
own version based upon the URTH model. 
Ken Hardwick and I did this i n  la te  1977. 
Since then, other members of  the Univer- 
sity community and the Laboratory for 
Laser Energetics have worked on various 
versions o f  FORTH for Data  General, 
Modcomp, PDP 212 and IBM 3032 compu- 
ters. Through the ef forts of  Mike 
McCourt, originally wi th the Department 
of  Cytopathology and then wi th  LLE, we 
developed a FORTH-79 system. A l l  of  
these were multitasking systems (2:314- 
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The f i rst  FORTH applications a t  LLE  
were hardware testbeds. There are two 
distinct phases i n  dealing with hardware. 
The first occurs during i t s  in i t ia l  checkout 
and reoccurs when it fails, or you suspect 
it of failing. A t  this stage, one is con- 
cerned with device and interface imple- 
mentation, and it is important to  be able 
to  interactively set and test data and ad- 
dress lines. 

A testbed must be capable of  exer- 
cising hardware a t  a rate of  about 1 kilo- 
hertz. Devices which operate i n  a faster 
t ime domain wi l l  usually be buffered, as 
an example, w i th  transient digitizers. 
Most other devices, such as relays, 
operate i n  a 10 Hz or slower t ime 
domain. A t  a 1 kHz rate, sufficient sam- 
ples can be taken f rom AID'S and D/A's to  
quickly check their accuracy and range, 
and thereby checkout many parts of  a sys- 
tem quickly. 

Several language features are required 
for tests like these. A means must be pro- 
vided to individually and collectively set 
address and data lines. There must also be 
a way of repetit ively issuing data/ address 
patterns. Often, a hardware problem is 
intermittent, and a test and branch capa- 
bi l i ty is necessary to  allow loopiung unt i l  a 
failure occurs. 

Thus, the specification for a testbed 
language grows quite large, wi th a major 
role occupied by the command processor, 
or text interpreter. Regardless of  
whether the testbed language is imple- 
mented i n  Fortran, Basic, Pascal or most 
other programming languages, a substan- 
t ia l  ef fort  w i l l  be spent on the text inter- 
preter. One of the virtues of  FORTH is 
that it comes wi th  a generalized tex t  
interpreter, suitable for testbeds and 
other applications. 

Our FORTH testbed applications in- 
cluded: power conditioning testbed for 
checking out laser amplifiers; alignment 
testbed for debugging and calibration of 
automated components; and, general 
CAMAC module testing. Other testbeds 
have been used to develop image pro- 
cessing hardware and software, and one- 
dimensional reticon arrays. 

The laser amplif ier testbed was 
developed along the following schedule: 

1. October 1977-Ken Hardwick and I 
began writ ing a FORTH system 
for the H P  2114. 

2. January 1978- The FORTH system 
was completed and CAMAC soft- 
ware started. 

3. March 1978- A laser amplif ier 
testbed was demonstrated. 

4. Apr i l  1978- Single laser amplif ier 
testbed was operational a t  laser 
hardware subcontractor's site, 
wi th a duplicate a t  LLE. 

By April, it was clear that the 
Ornega Power Conditioning corn- 
puter would not be available unt i l  
August, 1978. Since ihe Depart- 
ment of  Energy four-beam mile- 
stone was originally scheduled for 
early September, 1978, this l e f t  
insufficient t ime for laser prepar- 
ation. 

5. Apr i l  1978- An  LLE engineer, John 
Boles, and a consultant w i th  the 
software subcontractor developing 
the power conditioning software, 
began coverting the single ampli- 
f ier  testbed t o  run 4 laser beams 
synchronized with the laser oscil- 
lator. 

6.  June 1978- A six beam laser sys- 
tem was operational. 

7. August 1978- Preliminary delivery 
of  f u l l  24 beam system which was 
Fortran-based. 

8. October 1978- Department of  
Energy Milestone passed. 

There were substantial differences be- 
tween the 24 beam Fortran based system 
and the 6 beam FORTH version. These 
included the lack of  an error detecting 
command processor, a graphic display and 
error archiving on disk. However, whereas 
the FORTH version used 16K words of  
memoiy and a floppy disk, the Fortran 
based system required 196K words of 
memory and a 15 megabyte hard disk. 

This application also made us aware o f  
FORTH'S compactness end the speed with 
which applications could be developed. It 
is my feeling that this, and several other 
applications, were brought up i n  cne half 
the time i t  would have taken i n  Fortran, 
including ' FORTH training time. Once 
good documentation is available, FORTH 
wi l l  prove even better. 

Also, I have found FORTH systems to  
be more maintainable than comparable 
Fortran systems, because FORTH uses 10 
times fewer source lines. Some care is 
needed when writ ing FORTH. Another 
advantage can b e  gained by the ease of 
using data base technology when building 
process control systems in  FORTH. 

Spatial and Temporal Relationships 

The f i rst  phase of dealing with hard- 
ware is over when the hardware works. 
The relationships among devices then 
become important. One can hierarchically 

organize related devices into subsystems. 
This hierarchy consists of both spatial and 
temporal relationships among components 
(11, (3). The manipulation of  these rela- 
tionships requires the development of  a 
data-base-like language. My ini t ia l  work 
wi th  Fortran and RTE, and discussions 
wi th  Ray Helmke a d Er ic Knobil a t  the 
Wilson Synchrotron? led me to develop 
such a language for process control called 
Maps, because it "maps" relationships 
6:109,110. 

A Map contained two types of struc- 
tures, or Tags. A tag was either a collec- 
tion o f  date, or a set of  pointers t o  other 
Tags. The Map contained an inverted l ist  
of pointers to each tag, so that al l  tags 
were unique and accessible. Two special- 
ized programs, SETUP and BUILD, were 
developed to manipulate and create the 
in i t ia l  Maps from text files. About a dozen 
subroutines were developed to  allow tags 
t o  be accessed. Data could then either be 
placed into one or more Tags, or retrieved 
from them. In  the interest of speed, this 
system was recoded i n  assembly language 
and later microcoded on a Hewlett  
Packard 21MX-E computer. This com- 
puter currently runs the Omega 24 beam 
power conditioning, and was mentioned i n  
the Testbed Section of  this paper. 

Alternatively, by using the text  inter- 
preter and FORTH's capability to  define 
arbitrary data structures, several data- 
base-like systems have been developed. In  
i ts simplest form, everything i n  FORTH is 
an executable data structure. Thus, 
FORTH allows one t o  define spatial and 
temporal relationships i n  a simpler, and 
more concise fashion than Maps. In  ad- 
dition, it is internally consistent, whereas 
Maps had Fortran, assembler, microcode 
and operating system interface facets. 

Roductim Sys tem 

Once FORTH had proven viable for 
small systems, we decided to implement 
production systems i n  it. These systems 
included automated diagnostics as wel l  as 
the laser control systems. The prototype 
Omega 24 beam calorimetry system was 
an example of  an early production 
system. It used simple, vector l ike struc- 
tures to  contain the addresses, relation- 
ships and values associated with various 
calorimeters, analog to digital convertors 
and calibrators. It was capable of display- 
ing beam energies and calculating expo- 
nential f i ts  to the data. 

The Omega 24 beam Alignment System 
is more complex. It has run on an LSI 1112 
with 5 CAMAC crates and 3 color dis- 
plays, controlling over 1000 devices. 
Initially, the operators used the FORTH 
text interpreter for a l l  commands and 
queries. One advantage was their abil i ty 
t o  wri te new "macros" to  setup compli- 
cated alignment procedures more 
quickly. However, there was a risk asso- 
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ciated with let t ing operations' personnel 
directly program the  system. Therefore, 
the iiew Alignment System has a more 
complete command processor imple- 
mented in FORTH, but  which does more 
error detection than the simple tex t  inter- 
preter. This system also uses the  defining 
words capability and has a large disk resi- 
dent data base for describing components. 
With the advent of the  command proces- 
sor, the system was switched ovef to  an 
LS1 11/23 with mapped memory. This 
addition allowed approximately 20 tasks to  
handle various functions, communicating 
via a queue-based message protocol. 

The laser beam quality is also impor- 
tant  to  us. We use streak cameras  inter- 
faced to  Princeton Applied Research 
Optical Multichannel Analyzers for  this 
purpose. The PAR OMA includes a 
FORTH-based LSI 11 for acquisition and 
reduction. As with the  early Alignment 
and Calorimetry systems, it is pro- 
grammed directly in  FORTH.^ Unlike 
those systems though, this was originally 
not a turnkey system provided by software 
engineers, but  rather  was incrementally 
developed by physicists and students. 

We also use FORTH exclusively on the 
Glass Development Laser (GDL) with simi- 
lar computer systems. A FORTH based HP 
2100 is used for power conditioning and 
interlocks for  the main bay and three  sur- 
rounding laboratories. A DEC LSI 1112 
collects laser and target  calorimetry data,  
reduces it, and also maintains a d a t a  base 
on disk. A second LSI 11 is used in a PAR 
OMA for processing streak camera  data. 
This is especially significant since GDL is 
engaged in converting the  infrared light t o  
ultraviolet, and the f irs t  harmonic IR, a 
second harmonic green and the  third har- 
monic, UV a r e  observed with the same 
streak camera. This required a very flexi- 
ble system to allow reduction in a quasi- 
two dimensional mode. Another Hewle t t  
Packard 2100 has two video digitizers and 
a color graphics unit. It is used for  
determining absolute beam intensity and 
modulation for materials  damage testing. 
This system is being converted to  a DEC 
LS1 11/23 with an RLOl disk attached. A 
third LSI 11 has been used by a graduate 
student to  observe ta rge t  plasma produced 
X-raysa7 Finally, an LSI 11/23 is used 
with the  nanosecond X-Ray facility for  
the  real t ime acquisition and reduction of 
2D X-ray diffraction patterns. Recently, 
this system has had an array processor 
interfaced to  it to  allow real-time f a s t  
fourier transforms of sample diffraction 
rings. All of these systems a r e  FORTH 
based, with the automated imaging diag- 
nostics serving a s  prototypes for  Omega 
diagnostics. 

Conclusion 

Although FORTH was relatively un- 
known, i t  has made a positive impact  on 
the development of systems and instru- 

mentation a t  LiE. i t  has allowed the 
computer  sy tems  group t o  adopt the phi- 
losophy of providing tools to scientists and 
engineers, equipping them to  do a job 
themselves. Sometimes, i t  was questioned 
whether this was the best use of their  
time: and, for  some people, i t  wasn't. But, 
for  t h e  majority of people in GDL, and e 
fa i r  number on the Omega systems end 
other  laboratories a t  LLE, FORTH has 
been a success. 

I would like to  thank an almost endless 
list of people for  their  help over t h e  past  
f ive years. Most important among them 
though, a r e  Ken Hardwick, Dick Berg, 
Chip Nimick and Ivlike McCourt. Also, 
without the help of many students  during 
this  period, many of these sytems wotrld 

PROCEEDINGS OF THE 
1981 ROCHESTER FORTH STANDARDS 

CONTCRMCF 

Many have been waiting for  this  con- 
ference proceedings to  come out, frorn 
what was a very interesting, and different  
conference. I t  was  t h e  f irs t  conference to  
address the  FORTH Standard since the 
Catal ina meeting of October 1979. Al- 
though it was suggested tha t  t h e  
Rochester  conference was only a regional 
meeting, at tendees came from six coun- 
tr ies  aid thir teen states.  Also notable, we 
successfully divided papers into serial oral 
sessions one morning and had parallel 
poster  sessions t h a t  afternoon. This way, 
almost everyone of the seventy partici- 
pants  presented something, and no one 
missed anything (we think). 

never have been built. In addition, we added travel sponsor- 

This work was partiaily supported by 
ship this year. The Standard Oil Company 

the  following sponsors: Exxon Research (Ohio), Friends Amis, Inc., Miller Micro- 

and Engineering Company, General Etec- computer Services, and Software Ventures 

tric Company, New York Energy contributed over $5,000. This t ravel  fund 
covered partial t ravel  expenses for  at ten- 

Research arid Development Authority, dees from far away as iiawaii, Chile, 
Northeast  Utilities, The Standard Oil 
Company (Ohio), the University of Germany and the  Netherlands, and a s  
Rochester, Emoire S t a t e  Electr ic  Eneray close a s  California and Kentucky. . . 
Research Corporation, and the U. 3. 
Department of Energy inertial fusion pro- 

The original call for papers was in 
under number DE-AC08- three  major areas: the  Standard, floating 

80DP40124. 
point and files management. These a reas  
a r e  well represented in t h e  proceedings. 

Lawrence P. Forsley is group leader of In addition, there a r e  sections on Philoso- 
phy, Vocabulary, Multi-tasking and Data  

the Computer Systems Group at the Acquisition, Data  Structures and the  
Laboratory for  Laser Energetics, Univer- Future  ~f FORTH. The organization we 
sity of Rochester ,  Rochester, N.Y. adopted combined poster sessions, oral 

Footnotes 
sessions and some material  not 
a t  the conference. There is an entire sec- 

1 The four-beam system, Delta, had tion devoted to  working groups on a reas  
like Standards clarification, FORTH tech- and monitoring in niques, Floating point and Files Manage- 1972. (6:lOl). ment. There a r e  378 pages covering the 

We is now with the Defense Mapping s t a t e  of FORTH. The Proceedings a re  
Agency in -Washington, D.C. available for  $25. See the FIG Order 

Form. 

Men is now with Network Systems Inc., 
in  Minneapolis, MN. 

Corneli Univerity in the summer of 
1977. This facility is now known a s  t h e  
Cornell Electron Storage Fiing. 

The mapped memory techniques a r e  
discussed by Leary end Winkler in the 
"Mapped Memory Techniques in 
FORTH1' paper in this issue. 

15 PAR purchased this  system f rom 
FORTH, Inc. 

This is mentioned in Bob Keck's and my 
paper, "A High Level Interrupt  Handler 
in FORTH", which can be found in this 
issue. 

For those who are  interested, there 
will be another Rochester  FORTH Confer- 
ence  the third week of May, in 1982. The 
ten ta t ive  subject a rea  will be Process 
Control and Data  Acquisition. We expect  
t h a t  there  will be  subareas dealing with 
microprogramming, FORTH machines, 
personal computing, and t h e  Standard. 
For information, please contac t  the con- 
ference chairman: 

Lawrence P. Forsley 
Laboratory for  Laser  Energetics 
250 East  River Road 
Rochester, NY 14623 
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IMPLEMENTING FORTH BASED 
MICROCOMWTERS AT THE 

UNIVERSlTY OF ROCHE!XER 
MEDICAL CENTER 

Peter H. kielmers 

Introduction 

"The micros are coming!" Everyone 
has heard this so that i t  is not unexpected 
that physicians and researchers at the 
Clniversity of Rochester Medical Center 
ask the question: "How can they be put to 
use?" Over the past four years I've been 
attempting to answer this question by 
assembling a series of microcomputers for 
both research and ciinical applications. 
These systems are all similar i n  their use 
of an 5-100 bus hardware architecture and 
a FORTH software environment. Yet they 
differ significantly when i t  comes to 
specific hardware interfaces, appiication 
software, and types of system users. 

In this article, I am going to focus on 
both these similarities, end these differ- 
ences in microcomputer systems. I am 
going to start out by discussing their 
common hardware foundation, and then 
explore peripheral devices unique to each 
system's design. Because the ultimate 
users of a system have a significant 
impact on application software, I am going 
to try to characterize the types of users I 
have dealt with, and their specific soft- 
ware capabilities and needs. From here I 
will discuss some common software pack- 
ages that were written to transcend both 
variable hardware, and variable user, 
requirements. By discussing a l l  of this in 
terms of how FORTH has aided system 
development, I hope to fully support my 
contention that FORTH is an ideal envi- 
ronment to meld many different types of 
users to just as diverse hardware configu- 
rations. 

General Hardware Organization 

So let's start out by considering the 
common architectural arrangement of 
these microcomputers. They are a l l  Z-80 
based machines with typical memory sizes 
of from 32K to 48K bytes of static read/ 
write memory and 1K to 2K of EPROM 
memory used to contain machine specific 
implementations of commonly needed 110 
routines such as console and disk drivers. 
Each microcomputer uses one or two eight 
inch single density floppy disk drives. The 
primary system console is comprised of a 
16 line by 64 character memory mapped 
video display along with detached ASCII 
keyboard. Each machine also has an R5- 
232 serial port for printer hookup. 

These computers are all organized 
around the 5-100 (IEEE-696) bus with from 
ten to fifteen card slots available. With 
the basic setup described above using from 
four to six of these slots, the customiza- 
tion to specific sysLem configurations Is 

accomplished by a mixture of standard 
commercial endfor wire-wrapped peri- 
pheral interface cards. Let's consider 
some of these systems in greater detail, 
looking at special hardware and how this is 
reflected in  the syseems' software. 

The UDA microcomputer is part of an 
experimental system to explore the scat- 
tering (diffraction) of medical ultrasound 
signals through tissue samples. The 
scattering is a function of both frequency 
of the ultrasound siqnat (2 to 8 Mhz! and 
the angular position of a receive trans- 
ducer relative to the ultrasound transmit- 
ter. The UDA system thus must ccntrol 
three primary functions: analog carrier 
signal generation, tissue sample position- 
ing, and received signal analog process- 
ing,. At present, only samp!e positioning 
(uslng stepper motors) is not directly 
handled by the UDA microcomputer. 

Carrier signal generation is controlled 
by means of a Hewlett-Packard 8165A 
programmable signa! generator interfaced 
to the microcomputer by means of an 
IEEE-a88 (GP-IB or HP-16) instrumenta- 
tion bus. An opto-isolated parallel TTL 
output port is used to control a program- 
mable attenuator on the output of the 
8165A. With a range of 0 to 130 db, the 
attenuator can be used to automatically 
adjust gains for maximum signal dynamic 
range. 

The most crit ical aspect of the UDA 
hardware is the generation of gating 
signals used by the analog processing 
circuitry. This is accomplished by using 
high speed analog mixers driven by digital 
timing circuitry with a resolution of 100 
nsec., and an accuracy of 0.01%. 

Study of Vein Mechanics 

The basis of this system is an experi- 
ment to measure axial force, diameter and 
transmural pressure in  a blood vein (in 
vitro) while controlling axial strain and 
pressure. The system consists of a verti- 
cal chamber for the vein specimen, a pre- 
fusion and pressure clan:ping apparatus, 
force and pressure transducers, and a 
microprocessor for data acquisition. 

The microprocessor contains a sixteen 
channel, twelve b i t  multiplexed analog to 
digital (AID) convertor to digitize the 
force and pressure signals under high level 
program control- 

In  conjunction with this A/D is a com- 
mercial video (TV) digitizer capable of 
programmed resolution up to 240 lines of 
256 picture elements. The input to this 
digitizer is from a TV camera aimed at 
the blood vessel under study. A special 
code definition was written to analyze a 
programmable area of the TV image for an 
indicalion of vessel diameter. This works 

by first threshholding, then detecting 
vessel edges via a software algorithm. By 
using FORTH/ZBO assembly language, the 
diameter determination executes in  less 
than one second. 

This data acquisition system also con- 
tains a dual mode graphics display capable 
of 128x128~4 grey scale images or 256x 
240 dot graphics. Digitized video images 
use the former mode while acquired pres- 
sure and force data use the dot graphics. 
In  addition, the TV signal dynamic range 
can be studied by a dot graphic plot of TV 
signal amplitude versus time. 

Also included in this system, to aid in  
data reduction, is an Advanced Micro 
Devices AM9511 high speed floating point 
processor IC. This circuit's speed, com- 
bined with the memorv maooed oraohics 
display, allows real-Gme 'analysis ' and 
display of acquired data, thus giving 
continuous feedback on the progress of the 
experiment. 

Overall, this system replaced a manual 
strip chart and photographic recording 
setup that required several days for data 
collection and analysis. Now data can be 
automatically acquired and processed 
within a couple of hours. 

Pulmonary Microcomputer 

The pulmonary clinic uses a micro- 
computer identical to that just described 
except without the TV video data acquisi- 
tion interface. Used in a clinical setting, 
this pulmonary microcomputer is inte- 
grated with a mass spectrometer and a 
breathing chamber to  allow analysis of 
pulmonary tissue volume and capillary 
blood flow. The basic procedure requires 
keeping track of the patient's breathing 
(by monitoring volume within the flexible 
breathing chamber) while analyzing the 
decreasing concentration of two soluble 
gases: dimethyl ether (DME) and acetylene 
(C2H2), referenced to the concentration 
of an ~nsoluble gas: helium (He). 

The hardware floating point unit facili- 
tates rapid (30 seconds) analysis of the 
acquired data, including several curve f i t -  
ting operations, and analysis of signals for 
relative maximafminima. The graphics 
interface allows immediate viewing of the 
acquired data to ascertain proper signal 
leve!s, and to compare raw data to the 
curve f i t  data. 

X R a y  Scanning System 

This experimental scanner uses a 
slotted wheel and two horizontal slots 
(mounted at 90' to the radial orientation 
of the wheel) to achieve a mechanically 
raster scanned X-ray source. The wheel 
and horizontal slots are controlled by 
means of three separate stepper motors 
pulsed under control of the 
nricrocomputer. X-ray exposure is also 
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controlled by the computer as a function 
of measured patient X-ray attenuation. 

The microcomputer contains a 
counterftimer chip which is used to 
control the stepper motors, a seven 
channel multiplexed eight b i t  A I D  con- 
verter (used to  measure patient X-ray 
attenuation and X-ray power), and an 
eight b i t  D/A converter to  control the 
exposure t ime of  each X-ray pulse. 
Several digital I/O lines are used to  start 
the X-ray rotor, turn on the X-ray genera- 
tor, and control stepper motor direction. 
Other lines are used to sense mechanical 
l im i t  switches. 

The software used i n  this machine is 
primarily concerned with controlling 
exposure t ime for each X-ray pulse in  
synchrony with the motor movement. The 
system ramps the motors up to  speed from 
an init ial stopped condition. In  addition, it 
gradually increases speed to compensate 
for linear speed as the horizontal slots are 
moved radially towards the center of the 
wheels. 'he software also controls expo- 
sure t ime by sampling the attenuation o f  
X-rays through the patient once each 
motor step, and using table look-up tech- 
niques t o  set the next pulse's exposure 
time. In  addition, total x-ray power is 
sampled and accumulated to keep track of 
total  patient dosage and X-ray tube usage. 

How Usem' Needs Impact These System 

I n  my development o f  these systems, I 
have encountered three types of users: 
system developers, researchers, and physi- 
cians (and their cl inical technicians). This 
grouping of users also roughly corresponds 
to levels of FORTH software utilization. 
The system developer--myself and pre- 
sumably yourself--is expected to  know a l l  
the in's and out's o f  system operation. I f  
something is missing, it's generally easy t o  
add it; this is a primary reason why many 
of us l ike FORTH. However we don't 
actually apply a system, we only set up 
the software foundation for the system. 
As users, we don't count! 

A true end user, whether researcher or 
physician, cannot be sold on FORTH 
because missing capabilities can be easily 
f i l led in; they don't have the knowledge to  
do so. Nor do they really want to  learn t o  
do so. They have to  be sold on other 
virtues o f  FORTH. 

In  my experience, researchers have 
been very receptive to  FORTH. In  general 
they have sophisticated technical back- 
grounds but l i t t l e  practical computer 
knowledge. This is a prime benefil: they 
may have used FORTRAN on a large 
machine for number crunching, but other- 
wise they have few preconceived notions 
about computer organization. They are 
less impressed with structured program- 
ming techniques or f i le  systems than they 
are by the fact that they can physically, 

and interactively, control peripheral 
devices. A research scientist may not 
understand how a word l ike RAMP or 
SAMPLE works, but can readily learn what 
they do. 

For example, the FORTH software 
wri t ten for the UDA system allows 
explicit user control o f  the hardware for 
setup purposes as wel l  as automatic con- 
t ro l  during experimental data acquisition 
runs. Setup can be done through words 
such as: 

OK 25 DB - 
( Rm's  a n a t u r a l  here l  ) 

" FRQ 2500 KHz" TALK 

(v ia  the GPIB ) 

A data acquisition experiment can be set 
up using words such as: 
OX 100 2000 SWEPT-FRmUmCY - 
( define c o n t r o l  o f  HP8165A ) 
OK FIXED-ATTENUATION 
( def ine c o n t r o l  o f  a t t e n  ) 
OK DON' T-SHOW-ATTENUATIONS 

1500 32 NOVA-COhlTROL - 
( l e t  the minicomputer take 
over c o n t r o l  o f  the micro.) 

I n  addition, the researcher car? build 
upon basic words to create custom appli- 
cation programs as needed. Thus the X- 
ray scanner system can be easily program- 
med by: 
OK MOTDR WHEEGMOTOR - 
( def ine a 'MOTOR' data t&) 

: ROTATE-Ex 
OK m - 
OK - WHEEL-MO'lQR RAMP 

( ramp stepping motors) 
OK LIMIT-SWIXHES? 

( e x i t  loop i f  motor l i m i t e d )  
OK - SYNCHRONIZE 
( synchronize to motor pulse) 
OK LOOP - 
OK ; - 

A physician or clinical technician is 
much more of an end-user than the 
researcher. As such, they are less 
concerned with words that allow them 
flexibil i ty i n  control o f  peripheral 
hardware; instead they want words that 
control hardware i n  specific ways towards 
some specified clinical objectives. Thus 
they need to impl ic i t ly use both basic 
FORTH words and peripheral driver words, 
but want to  only explicit ly know words 
that achieve specific aims. But even here 
FORTH can be appreciated. It allows a 
flexible, conceptual system with a non- 
confining syntax. With the pulmonary 
microcomputer, the physician might 
typically have the following dialog: 

OX PUWNARY CALCULATIONS - 
( acquire data, and calc i t  ) 
OK PRINTE8 SHOW RESULTS - 
( p r i n t  results ) 

OK DME VIZW - 
( view p l o t s  o f  gases m r 
OK C2H2 VIM - 
( ... graphics disnlpy  ) 

By learning a limited, yet full, vocabulary 
o f  perhaps twenty to f i f t y  well chosen 
words, these non-technical users can 
effectively use a FORTH based micro- 
computer with l i t t l e  training or under- 
standing of programming. And without 
fail, they learn to  use colon definitions to  
group these basic words to their own 
specific usage patterns. 

Ccmmon Software Packages 

As we have just seen, I group FORTH 
software i n  three coarse categories cor- 
responding to  types of  users: basic 
FORTH system software, peripheral sup- 
port  extentions, and custom applications. 
The basic system software does not vary 
a t  a l l  while custom application software is 
unique to  each end-user system. Peripher- 
a l  support software is i n  a hazy area. 
From the point o f  view of  documentation 
and support, any given type o f  peripheral 
should appear uniform between systems; 
but at  the hardware level, each type of 
peripheral varies i n  myriad details. By 
creating common software packages with 
this i n  mind I have been able to avoid 
constantly recreating software because of  
hardware variations. 

Common software packages can do 
more than just ease support for similar 
systems. It can effectively hide hardware 
details f rom the user, thus making dis- 
similar AfD converters, for example. 
appear identical f rom the software point 
o f  view. And a well designed set o f  driver 
software also imparts increased capabili- 
t ies to  a system than just those of the 
"raw" hardware. Let's look a t  a few 
examples o f  software peripheral drivers to  
reinforce these points. 

Many of  these microcomputers are 
used for data acquisition purposes involv- 
ing different types of A I D  converters and 
real t ime clocks. From a hardware point 
o f  view, some of these AID'S have eight 
b i t  versus twelve b i t  resolutions. Some 
have seven or eight analog multiplexer 
channels while others have sixteen. Some 
of the real t ime clocks have fixed 60 Hz 
resolutions, others are programmable. 

From a conceptual point o f  view, these 
data acquisition systems a l l  operate 
identically: they can randomly sample 
multiple analog signals a t  some specified 
rate. The driver software implements 
these concepts using two words: SAMPLE 
and DELAY. SAMPLE takes an integer 
multiplexer channel number as an input 
argument, and returns an integer ampli- 
tude value. It works identically no matter 
what hardware is controlled by it; the 
multiplexer addressing and A I D  digital 
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output format a r e  hidden from the  user. 
Similarly, the  real t ime clock works in a 
manner transparent to  hardware 
specifics. DELAY requires only an input 
argument to  specify the  number of real 
t ime clock "ticks" to  delay. 

But the conceptual basis of the  da ta  
acquisition package transcends just the  
A/D hardware; there must be some place 
to  put the data. This may be on t he  para- 
meter  stack, in data arrays, or in disk 
based virtual arrays. When this capability 
is added, the da ta  acquisition specific 
hardware c rea tes  a synergy with t he  fund- 
amental  system hardware such a s  read/ 
write rnemory or floppy disk. 

Another example of a peripheral driver 
package t ha t  I developed is a memory- 
mapped video graphics package* The 
typical hardware interfaces ranged frorn 
240x256 resolution up to 512x480 resolu- 
tion, with as  many different methods of 
addressing specific dots on the display. 

Conceptually, we want, f irst  of all, t o  
be able to plot physical X,Y points inde- 
pendent of hardware specifics. A word 
such as PLOT, using X and Y integer para- 
meters  on the stack top, can give us this 
capability very readily. 

But to  really use graphics effectively, 
i t  is nice to  be able to specify different  
a reas  on the video screen t o  plot different  
data, as  well as  scaling functions to  adopt 
logical coordinates to  this specified 
graphics area. The GRAPH data  type 
(built with a defining word) allows these 
different graphics areas and scaling func- 
tions to  be associated, and invoked, by a 
common name. Further capabilities were 
added to  allow easy creation of vectors, 
grids, tick marks, axes, and boxes. All of 
a sudden, a very proletarian graphics peri- 
pheral is transformed into a powerful 
tool. And because these new functions a re  
all built on t he  PLOT word, they a r e  
readily tansferred between systems with 
different hardware interfaces. 

A final software driver to  consider is 
tha t  of the  hardware floating point unit. 
It is interesting to  consider this from both 
a FORTH, and a conventional language 
point of view. In a language such a s  
PASCAL, the system generally has built in 
software based operators for floating 
point. Because t he  system is not inherent- 
ly extensible, the  addition of a hardware 
floating point peripheral requires ei ther a 
manufacturer rewrite of the PASCAL 
floating point routines, or  else a user 
interface through PASCAL functions or 
procedures. The former requires manu- 
facturer  acceptance and support of a new 
hardware peripheral; unless a very popular 
device, such support will be reluctant  a t  
best. The la t te r  requires a very awkward 
language syntax t o  invoke hardware fioat- 
ing point capabilities. Either way, the  

problem is tha t  the hardware has to  be 
forced to  conform tu  the  manufacturer's 
language btandard. 

A t  the Medical Center ,  a hardware 
floating paint package was easily added a s  
an extention to the basic FORTH system; 
t he  language adopted the  hardware! 

Anachronism op Portent? 

At this juncture i t  is valid to  ask if 
FORTH justified itseif in i ts  use at  the 
University of Rochester Medical Center .  
Is i t  an anachronism of the  past, nr a phil- 
osophy portending the  future'? 

Admittedly, FQRTH is somewhat 
limited without such things %s a file 
system or procediiral name senping of 
variables. Perhaps there  should also be 
lsss explicit knowledge nf addresses, end 
more system security. Perhaps. But if so, 
then these things will be evolved as  
FORTI-I matures. 

It is what FORTH espouses, though, 
t ha t  justifies i t s  use, I t  al:ows hardware 
components to  d ic ta te  the software 
design, thus allowing rapid incorporation 
of technoiogical advances. Other lang- 
uages force conformance of hardware t o  
language standards--a slow, expensive 
process. 

FQRTH allows isolation of users from 
hardware dependencies, and adds capabili- 
t i es  to  the basic hardware. The resuit is e 
user environment t ha t  supersedes specific 
machine configurations with concept 
oriented, ye t  f ree  syntax, computer opera- 
tion. The FORTH system developer might 
need to  know -1, but the  system user 
need only know "what". Conventional 
systems, to  the contrary,  generally require 
everyone concerned to  ask: "why?" 

FORTH encourages an exploratory 
development technique. A user can 
choose between interactively trying con- 
cepts,  writing full programs, editing pro- 
grams. compiling programs, and/or debug- 
ging programs. He or she can do this in a 
single, consistent FORTH environment, 
utilizing any of these phases of develop- 
ment as  required. The result is eff icient  
use of all system resources. 

The embodiment of the  FORTH philos- 
ophy is tha t  programming is what i t  is 
v i ten  taught t o  be: the  application of top- 
down programming techniques 60 a single 
problem. Instead, it involves a series of 
interrelated problems all related to  
system use. This might mean a s e t  of 
words tha t  allow a researcher to  control a 
TV digitizer, or i t  may mean a series of 
words t o  calculate and graphicaily display 
the  results nf a mathematical  analysis. 
While the  series of capabilities needed will 
aiways vary between different  systems, i t  
is only by providing a rich enouqh vocabu- 

Iery t ha t  a user can have a flexible, effec- 
tnve, and Friendly system, FORTH is 
unlque among lsnguages in tha t  i t  ericour- 
ages the  programming of sohrtion$ 

Peter  Helmers is a senior laboratory engi- 
neer in the  diagnostic ultrasound research 
laboratory within :he Department of 
Radiology a t  the  University of Rochester 
Medical Center. 

9elmex-s' a r t i c l e  cont inued  
on nex t  .two pages 

BUG FIXES 

Sorry you had trouble with FEDIT. The 
listing was retyped a t  FIG and several 
typos creeped in. They are: 

1. SCR 64 Line 10: compile should be 
COMPILE 

2. SCR 65 Line 23: 1+ /MOD should be 1+ 
16 /MOD 

3. SCR 67 Line 48: B/RUD should be 
BiBUF 

4. SCR 67 Line 49: : E should be : .E 

5. SCR 67 Line 50: + ALIN should be 
+ALIN 

You a r e  perfectly right tha t  source 
tex t  should be loadable. I talked to  some 
of the people a t  FIG about this and they 
were acutely aware of the problem but 
they are  simply not se t  up to directly 
reproduce listings in F D  a t  the present 
time. They do the best job they can with 
the resources available to them, and they 
work darn hard a t  it.  I can't fault  them. 

REPL is a pseudonym for the fig- 
FORTH line editor definition, R . I used 
the  pseudonym because FEDIT was t he  
f irst  program i wrote in FORTH and 1 
wasn't really familiar enough with 
Vocabularies to  comfortably use a word 
tha t  was already used in the  FORTH 
vocabulary. 

Le t  me know how it  works for  you. If 
you would like a machine produced listing, 
I could run one for you from my current  
version. Le t  me know. Good luck. 

Edgar H. Fey 
18  Calendar Court  
La Grange, Ih 60525 
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FLOPPY DISC 

Fig. 1: Block diagram of a typical S l O O  b d  microcomputer; this one is used to study 
blood vein mechanics. 

MTECTOR DAS 

Fig. 2: Block diegram of UDA analog electronics timing control interface. Mim- 
computer sets up interface parameters, but timing then rum independently using 
PRFSYNC and ACK handshaking signals from Nova Minicomputer data acquisition 
system. Because the microcomputer can synchronize to timing hardware, other capabil- 
ities such as attenuator end frequency control can be utilized. 

SsDO B s S  
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Force 
1ran.lduc.r 

T ransducer  

Fig. 3: Diagram of vein mechanics experimental chamber. Microcomputer aamples 
pressure and force sicpals, end determines vein diameter fmm eoftware analysis of N 
image. 

Microcomputer - + 
I Grid tank interface 

Scanning beam 

Film cass'ette . 
X- ray  detector 

Fig. 4: Diagram of  X-ray smnner apparatus showing how wheel collimator end fore and 
aft b i z m t a l  collimators, controlled by stepper motors, create a mechanically seamed 
X-ray raster. The micmmmputer, with A/D and D/A interfaces, also monitors and 
controls X-ray exposures. 
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DATA STRUCTLIRES 
I N A  

TELECOMWCATIONS FRONT END 

John A. Lefor 
University of  Rochester 

URTH, the University of  Rochester 
dialect of  FORTH, was used to  implement 
a telecommunications front end for an 
IBM 3032. This package provides access to  
the IBM 3032 f rom as many as 160 ASCII 
terminal at speeds up to  9.6Kb. Each o f  
these terminals contend for 128 simulta- 
neous connections a t  the IBM computer. 

The reasons for choosing URTH as the 
development language and a review o f  the 
major advantages and disadvantages o f  
using Ur th  for this project is discussed. 
Also, some conclusions as to the applica- 
bi l i ty of URTH, and the data structures 
used i n  this application is reviewed. The 
use of conventional data structures for  
providing information paths between the 
various components of  the system is 
examined and the possihle advantage of 
less conventional data structures more 
f i rmly based in  URTH constructs is ex- 
plored. 

A plan for development of  similar sys- 
tems is presented which integrates some 
of these concerns and promises a better 
structured system. 

Introduction 

I n  1977, the University of  Rochester 
Computing Center f i rst  got involved wi th  
the FORTH language. The ini t ia l  devel- 
opment i n  FORTH was the irnplementation 
of various flavors of the FORTH system 
known collectively as URTH. Most of  the 
URTH systems developed have provided 
multitasking capability on a variety o f  
micro-, mini-, and mainframe computers. 
During the development of the various 
URTH systems, a number of people within 
the Computing Center showed interest in  
using an URTH based system for develop- 
ment of  real projects rather than viewing 
URTH as just another academic curiosity. 

Concurrent wi th the development of  
the URTH system, was the growth of  tele- 
communications i n  computing a t  the Uni- 
versity. A need for additional tele- 
communications lines in to  the computer 
was fast becoming a necessity and the 
financial support fo r  such a purchase was 
on the verge of  becoming a reality. 

In this environment, the design and 
implementation o f  a locally designed tele- 
communications front end was beginning 
to emerge. The front end had to exist i n  
an academic computing center where the 
need for teleprocessing was growing. The 
front end had to communicate with an IBM 
host ( i t  was generally believed that. the 

XBM environment was a t  the University for 
many years t o  come). The front and had 
t o  provide access for the ever growing 
number of  ASCII terminals being 
purchased for  both computing and non- 
computing environments. Importantly, the 
front end had t o  provide for  access to  the 
IBM host f rom more terminals than could 
be dedicated to the host a t  any one time. 
The ~ n l y  f ront end which could possibly 
meet these goals and be reasonably cost 
ef fect ive had to  be one o f  !ocai design. 
meeting local requirements. 
Featurea b i d e d  

The front end designed a t  the Uni- 
versity of Rochester Computing Center 
does provide some unique features t o  the 
users of  our IBM 3032 computer. To be 
sure, the features are not unique within 
the context o f  computing, but are not 
generally available i n  an IBM mainframe 
environment. 

One o f  the major advantages provided 
by the locally desigced front end is the 
abi l i ty to switch between systems from 
the same terminal. I n  a tradit ional (non- 
SNA) IBM mainframe, it is not always 
convenient to have a terminal switched 
between different software teleprocessing 
applications. Typically, a terminar either 
is connected t o  one application or an- 
other. With the locally designed front 
end, it is possible to  choose the appii- 
cation ot which the terminal is attached. 
I n  effect, the front end is a port  contender 
for various applications on the mainframe. 

The second major feature arising from 
a local f ront end is the abil i ty to support 
an XON/XOFF protocol. Since the IBM 
mainframe communicates with i ts  termin- 
als i n  a half duplex mode, XON/XOFF 
support is not tradit ionally available. The 
local f ront end is based on fu l l  duplex 
communication to  the terminal so 
XONJXOFF can be supported i n  a ful ly 
ef fect ive fashion. Those terminals which 
have buffers which can overflow can turn 
o f f  the input a t  will, a feature not avail- 
able without special support i n  the IBM 
world. 

The front end is today running a t  the 
University of  Rochester Computing Cen- 
ter. It is supporting 160 ASCII terminals 
contending for 128 host computer ports. 
Each terminal can select connection speed 
between 110 and 9600 Baud as well as a 
few other tailored features. The fac t  that 
the implementation continues to run fre- 
quently appears to  be a miracle but repre- 
sents some fa i th  that the concept is a t  
least esscntlally sound. 

Hardware Decisions 

I n  order t o  implement the telecom- 
munications f ront  end to  an IBM 
computer, the processor chosen for the 
irnpiernentation had to provide the capa- 
b i l i t y  to interface to an IBM byte multi- 

plexor channel. Since the protocol for 
channel interfacing is non trivial, there 
are e l imited number of vendors of  mini- 
computers who were able t o  provide this 
interface capability. Another important 
consideration in  the design of a telecom- 
munications front end is the realization 
that if a failure should occur i n  the front 
end, there is a perception that the host 
computer failed. Because there is great 
need to  access the host computer, i t  is 
undesirable to  have hardware failures 
affecting the front end. To this end, the 
mini-computer chosen as the front end had 
t o  have both a history of  reliable service 
and a maintenance team capable of 
repairing any di f f icul ty wi th a minimum of 
fuss. 

I n  evaluating the available inini- 
computers against these criteria, the pro- 
cessor which was fina!ly chosen was a 
Dig i ta l  Equipment Corporation PDP 
11/34. The interface to the channel is via 
a DX-1lB, and the ASCII terminals are 
supported by DZ-11's (actually many of 
the terminals are supported by a Dig i ta l  
Communications Associates 205, which 
emulates 32 lines of  DZ-11 on a single 
quad height board). 

I n  retrospect, we can see that though 
the PDP 11/34 does work i n  the required 
environment there are some deficiencies. 
The most notable is i n  the maintainabil i ty 
o f  the DX-11B (the channel interface 
which connects the PDP 11/34 processor 
t o  the IRM ~rocessor). There are so few 
DX-11B's i n  production throughout the 
United States that the DEC customer 
engineers are relatively unfamiliar wi th 
the details o f  i t s  operation. When subtle 
problems have occurred, the repair of the 
problems has taken considerable t ime and 
talent. To be sure that the subtle diff icul- 
ties were discovered and corrected is a 
tribute to  the engineers dedication to the 
problem, but a more popular interface 
would probably have been repaired i n  a 
shorter time. 

Software Decisians 

I n  determining the nature of the soft- 
ware to run for this application, i t  was 
necessary to  evaluate the probable struc- 
ture of  the end goal and to  consider al l  the 
concerns o f  a project of  this sort. A f ter  
the major considerations are evaluated, 
the best software choice can be made 
based on the concerns and knowledge of 
what is available. 

A telecommunications front end is a 
realt ime device which must be able to 
handle e relatively large number of poten- 
t i a l  V D  devices. I n  particular. many ter- 
minals are expected to  be connected to  
the front end. Also, there were consid- 
erations for  attachment of  synchronous 
lines for support o f  Hasp Bisync, Remote 
3170'3, and local area network communi- 
cations. A l l  these considered together, it 
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was important to choose a software 
implementation which provides support fo r  
reltime device handling. 

The wide variety of I f 0  devices which 
were contemplated for the  front  end also 
reuired tha t  the software provide tools t o  
help the designers of the system gain 
understanding of a wide variety of hard- 
ware devices. There were going t o  b e  
asynchronous and synchronous devices a s  
well as  a channel interface which had no 
well defined characteris t ics  ( the  bes t  
documentation of how the OX-118 worked 
was found in the diagnostic programs sup- 
plied for  hardware maintenance). In 
addition, there was always the possibility 
of needing t o  support a new and different  
class of 1/0 device. Though the  manuals 
documented how the hardware worked, 
any software which would allow inter- 
action with the unfamiliar hardware would 
be beneficial in the  debugging of the over- 
all system. 

Another area of debugging which was 
considered in t h e  software choice was t h e  
software protocols. The connection t o  the 
channel of an IBM computer by asyn- 
chronous ASCII devices invokes a non- 
trivial se t  of software protocols. A simple 
example of the kinds of problems is in the 
transmission of any single ASClI charac te r  
t o  the channel. In the  IBM environment, 
the software running in the processor 
expects  tha t  any ASCII characters  trans- 
mit ted from a telecommunications front  
end are sent not a s  simple ASCII 
characters  (as generated by the terminal), 
but rather  demands t a t  each ASCII char- 
ac te r  be bi t  reversed? Though this is  not  
a difficult fea t  t o  accomplish, i t  points 
out the nature of some of the software 
protocol issues which must b e  dealt  with 
in a telecommunications f ron t  end. 
Suffice i t  to say the software used t o  
design the  front end wouid benefit t h e  
designer if i t  helped t o  identify, and 
resolve, software protocol issues. 

In the development of any real t ime 
software project, i t  is recognized t h a t  t h e  
throughput of the system is important. 
The telecommunications front  end is no 
exception. Since there a re  t o  be a large 
number of I f 0  devices providing input t o  
the software application asynchronous t o  
the  operation of the  software, i t  is imper- 
ative tha t  the application software be able 
to keep pace with the  demand. On t h e  
other hand, the inability of the front  end 
t o  keep pace with t h e  demand is not criti- 
ca!. If a character  destined t o  a terminal 
is lost, a human being will not die but a 
programmer may ge t  upset. Keeping 
these priorities in mind the  project  had t o  
be implemented in an environment which 
was not wasteful of processor time, but  
there was no need t o  b e  alarmed if there  
was the potential t o  loose data. 

The hardware decision made specific 
features of the  processor had to b e  con- 

sidered in the  software choice. Specl- 
fically, the PDP 11/34 had 64K bytes of 
memory. We had t o  have some degree of 
confidence t h a t  the  entire system could be 
packaged in 64K bytes. If tha t  was not 
possible, the development t ime could be 
s!owed down waiting for  &ipment of addi- 
tional memory. The speed of the  Ill)& 
processor led us t o  believe we would have 
sufficient CPU t o  do the  job, but  not a lot  
t o  spare. 

The final and perhaps major consider- 
ation which affected the  choice of 
software was the perceived development 
time. The project was initiated a t  a t ime 
when there was en ex t ra  EBM processor a t  
the  University. It would b e  possible t o  
design and debug t h e  entire front  end on a 
processor which was not in use. That was a 
real  opportunity not t o  b e  passed up. 
However, the  processor could not remain 
idle for too long a time. Any software 
package which could help t o  shorten t h e  
development t ime and thereby allow de- 
bugging of the front  end on the  unused 
processor would be of g rea t  benefit t o  tne 
implementation. 

Alternative Software Strategies 

Examining the issues in making t h e  
software choice, there appear t o  be three 
al ternative software strategies. The use of 
assembler language, t h e  use of a high level 
language such a s  C or  Fortran, or  the use 
of URTH. 

Assembler language provides a number 
of solutions to the  problems outlined. i t  
tends t o  b e  compact  in memory usage, i t  
certainly has the  potential to make most 
eff icient  use of the limited CPU, and i t  is 
quite  capable of handling the foreign 
devices needed for a front  end. However, 
the assembler has a few drawbacks. 
Probably the major difficulty with assem- 
bly language is the  extended development 
time. Debugging is  slow and tedious and 
design of code and da ta  structures t o  aid 
debugging is  totally a responsibility of the 
programmer. Thus. develbpment of a 
major application in assembly language is 
concerned both with the solution of t h e  
problem but  also much ef for t  is  spent on 
good design and coding techniques. 
Another difficulty with the assembler is 
maintainability. Each programmer has an  
individual design style. The documenta- 
tion rests  largely in design of the code. If 
the  original designer is no longer available 
for maintenance of the  project, there  is a 
long learning curve to train a new indi 
vidual. 

High level languages solve many of the  
difficulties with assembly language. If the  
language is well conceived for  a real t ime 
problem, i t  will support the  difficult 
hardware issues and will provide a frame- 
work for  da ta  s tructure design which pro- 
vides readability' and maintainability of 
the  software. A major difficulty with high 

l w e i  languages is their  use of memory, 
and sophisticated operating system ser- 
vices. These two concerns may make a 
larger fas te r  CPU needed for  effect ive 
execution of the appiication. Another 
drawback of both the  assembler and high 
level solution is  the lack of inherent inter- 
act ive develoment and debugging tools. 
They typically can b e  designed into the 
system, but  they generally a r e  not present 
in the basic environment. 

Evaluation of U I T H  

URTH appears t o  meet  many of the 
goals in the  software choice. Though 
there a re  limitations, the advantages seem 
t o  outweigh t h e  disadvantages especially 
when design t ime is  so important a consid- 
eration. 

When looking a t  URTH, a clear  advan- 
tage qffnrded by URTH is  implementation 
time. Most of the  other  advantages pro- 
vided by URTH can be directly tied t o  the  
speed of implementation. URTH provides 
easy access t o  any s e t  of unusual devices, 
because the device handlers a re  ach tai- 
lored t o  the  system and the  hardware. 
Once a program is debugged in URTH, 
there is good reaspf t o  believe i t  will 
continue t o  work. Another major 
advantage offered in t h e  URTH environ- 
ment is the  enormous flexibility in design 
of both source codes and d a t a  structures. 
The ability t o  code both high level URTH 
and machine level code and t o  achieve a 
uniform interface provided many oppor- 
tunities t o  speed up inefficient code. The 
ability t o  design new da ta  strucutres t o  
work in a large scale environment offers  
much flexibility in design. 

The URTH environment is not without 
fault. The f a c t  tha t  URTH is an  inter- 
preter  does mean t h e  code is  not a s  
eff icient  in CPU speed a s  possible. Of 
course, the ease of generating assembly 
code helps alleviate this  problem. How- 
ever, a major drawback of t h e  URTH 
environment s tems  from i t s  flexibility in 
da ta  s tructure design. 

The very f a c t  tha t  i t  is possible t o  
design any needed da ta  structures coupled 
with the implementation of the  traditional 
data s tructures of arrays, constants, and 
variables created some difficulties in the  
design of system which had so much pres- 
sure for  development in a short  time. 
There was not a lot  of t ime  spent on 
development of the  best data s tructure for  
the  problems encountered. Rather, tradi- 
tional data s tructures were used t o  meet  
individual demands. In particular, many 
arrays were implemented for  storing of 
information relating t o  specific I f 0  
devices, and queues (obtained from a free- 
pool) were used t o  Suffer  da ta  between 
devices. The use of such data structures 
had two major impacts  on the  project. 
First, the  queues were sufficiently diffi- 
cult to handle a s  to have impact on the 
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speed of the overall systems4 The use of 
the arrays to hold information for later  
processing yielded much difficulty in 
debugging individual words and tended t o  
leave side e f fec ts  which had impact on 
words already debugged. 

Thus, the  use of URTH has many vir- 
tues but i t  is crucial to recognize the 
particular issues which may lead t o  
difficulty in debugging. Using data 
structures such as arrays and variables t o  
communicate information between tasks 
in the front end tended t o  leave open 
many portential pitfalls in the  debugging 
and design of a system as complex and 
highly integrated a s  a front  end. 

Alternative Design Strategies 

In examining the resulting front  end 
for difficiencies, it becomes clear tha t  
there are some strategies for  alternative 
design which could limit the  difficulties 
encountered in any similar realtime 
project, and would make URTH a vehicle 
for well designed, well integrated, and 
effective systems design. 

The issues of code design are  well con- 
sidered in URTH. The ability t o  switch 
between machine level code and high level 
URTH provides a classic tradeoff between 
speed of execution and memory utili- 
zation. The f ac t  tha t  the interface 
between bofh environments is standard 
allows all design in high level URTH, and 
conversion t o  machine code when and 
where appropriate. In this area, URTH 
provides suffficent tools and a good s e t  of 
options. 

In the data design area, URTH provides 
so many options that  the best  data struc- 
t u r e  choice is very much a t  the control of 
the programmer. In the  case of the front  
end design, the traditional data structures 
were not sufficient t o  e f fec t  the job but 
there was ipufficient  t ime t o  design an 
optimal data structure. In retrospect, i t  is 
possible to peruse the alternatives and 
choose a structure which provided t he  
flexibility needed, and also limits the  side 
e f fec ts  from preventing effective debug- 
ging of words. 

One of the major advantages URTH 
provides over alternative software 
approaches is the stack. Proper design of 
URTH words with parameter passing via 
the stack helps to insure that  a debugged 
word will tend to continue t o  work, and 
will have no side e f fec ts  Given this 
observation, it would be natural t o  use t he  
stack t o  pass parameters in the telecom- 
munications environment. Unfortunately, 
the  stack is not useful in communication ' 

between tasks, and the stack is difficult to 
address and use when too much informa- 
tion is passed. In the front  end, there a r e  
so many unrelated parameters which need 
t o  be passed between tasks t ha t  t he  stack 
is not useful. But, t he  concept of a stack 

does solve one of the  major difficulties 
encountered in the front end design. Given 
this set of considerations, it seems like a 
good jdea t o  define a "named object  
stack" for each I/O entity defined in the  
teleconlmunication environment. When a ' 

particular I/O device needs some form of 
service, the  named stack is invoked and all 
data relating t o  the I/O device is availa- 
ble. The stack can contain pointers t o  
ring buffers a s  well as current  s ta tus  of 
the device. Using this strategy provides 
an environment that  naturally f i ts  within 
the basic strucutre of URTH program- 
ming, makes effective use of constructs 
within the URTH system, and promotes 
good URTH programming practices which 
minimize the  side e f fec t  problems. Over- 
all speed of the application is not 
significantly impacted and many old 
functions can take  advantage of the  data 
structure. 

The stack will contain sufficient 
volumes of information about each 110 
device that  i t  may be  advisable t o  c rea te  
a "framing" of the stack. This would allow 
access t o  individual parts  of tke stack a s  
if i t  were the  current  top of stack, thus 
allowing access t o  more data in a conve- 
nient notation. 

Summary 

The telecommunications front end 
designed and implemented a t  t he  Univer- 
sity of Rochester Cornpuring Center  is a 
useful model of many realtime applica- 
tions. In the design a r e  found a number of 
flaws which are primarily related to the  
particular pressures present a t  the t ime of 
the  design. The choice of URTH a s  the  
software vehicle appears to have been an 
excellent one however, the choice of data 
structures t o  use within the IJRTH envi- 
ronment was not  a s  well conceived. 

URTH provided a software 
environment which clearly effected t ime 
effective development of a complex 
system. I t  provided a comprehensive 
interactive debuggirlg environment with 
the  ability t o  address specific speed 
inefficiences in a uniform manner. The 
major drawbacks t o  the  URTH environ- 
ment resulted from the  choice of data 
structures for  intertask communication 
within the application. 

URTH does provide tools t o  develop 
the optimal data structures for  any par- 
ticular application. In the  case of real- 
t ime applications, the choice of da ta  
structures is particularly critical. From 
my experience, I believe that  a data struc- 
ture similar t o  the named object s tack 
would benefi t  many realtime applications 
in URTH both function provided and in the 
limiting of side e f fec ts  so  prevelant in 
global data strucutres such a s  arrays. 

A second fea ture  which would be valu- 
able in an URTH environment wwld  be  

sny useful stand-alone dump with indexing 
t o  help the  programmer walk through the  
dictionary. When total  application col- 
lapse occurs, URTH is not very informa- 
tive a s  t o  the  nature of the  problem. A 
memory dump (with a good index for the  
dictionary) would help t o  debug some 
rather sticky timing problems. 

Overall, URTH is a good choice for 
development of real t ime applications, but 
c a r e  in the  design of data structures 
should help to make the  overall mainte- 
nance of the  application a simpler chore. 

Footnotes 

1. This is not simple an example of a per- 
verse IBM, but  instead is another f a c t  
of IBM computing history. The stan- 
dard device IBM used t o  connect ASCII 
terminals t o  the host (a 270x1 was not 
designed using today's UARTS, rather 
i t  collected the  bit serial da ta  in a 
register. The data was collected in a 
register in such a way a s  t o  cause the 
characters t o  be  captured in bit 
reverse order. Rather than correcting 
t he  problem in the  front  end, they 
transmitted the bit reversed ASCII t o  
the host, and translated the  bit  
reversed ASCII t o  EBCDlC for pro- 
cessing. The software stayed, so the  
need for bit reversed ASCII exists 
today. 

2. This advantage was certainly realized 
in the actual  project. The basic system 
was operational within four months 
from beginning of the  project. 

3. This is dependent upon good URTH 
programming practices. But, in our 
project there became clear a self 
evident truth. We attempted t o  debug 
so  many "words" which were already 
correct, we began t o  believe tha t  i t  is 
very difficult t o  debug a working pro- 
gram. 

4. Converting most of the queues t o  indi- 
vidually assigned ring buffers speeded 
up overall processing by 20% or  more. 

5. See Pe ter  Helmers, "Userstack", 
FORTH DIMENSIONS, Vol. 111, No. 1 
and Peter  Helmers, "Alternative 
Parameter Stacks", Proceedings of the 
1981 Rochester FORTH Standards 
Conference. 
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Abstract 

Three techniques for using memory 
management hardware i n  a FORTH system 
have been implemented at the Laboratory 
for  Laser Energetics at  the University o f  
Rochester. One method uses mapped 
memory for data storage by creating a 
''data window" i n  the logical address 
space. A second method increases the 
available space for programs by mapping 
tasks i n  a multi-tasking system. The third 
uses mapped memory for data storaqe by 
taking advantage of special instructions 
and a second set of memory management 
registers. 

introduction 

The problem of insufficient memory 
for programs or data is commonly encoun- 
tered on computers with a 16 b i t  word 
size. Many manufacturers now offer hard- 
ware to  alleviate this problem. A t  the 
University of Rochester's Laboratory for 
Laser Energetics we have devised sola- 
tions to three different aspects of the 
problem using FORTH on PDP-11/23 and 
PDP-11/34 computers. 

Two applications at  the Laboratory had 
a need for large image processing arrays 
(up to lOOK words). We solved this by 
using a double precision array index which 
maps physical memory into a logical mem- 
ory "data window" within the FORTH sys- 
tem. 

On a different, very large FORTH ap- 
plication, we needed both more program 
space and more data space. We increased 
the amount of program space by imple- 
menting a multi-tasking system in which 
certain portions o f  memory contain the 
nucleus and common code, while other 
portions are task specific and are period- 
ically switched i n  and out o f  active use. 

To increase the available data space 
we are using special instructions and a 
second set of memory management regis- 
ters on the PDP-11/23 and PDP-11/34 
computers. 

Additional material on these systems 
can be found i n  "FORTH i n  Laser 'Fusion," 
by Larry Forsley, i n  this issue o f  FORTH 
DIMENSIONS. 

Hardware 

The memory management hardware on 
the PDP-11/23 and PDP-11/34 computers 
consists of two sets of registers that map 
16 b i t  logical addresses in to  18 b i t  phys- 

ica l  addresses. One set of registers is Figure 2 shows the loqical address 
used when the processor is i r i  "kernel" space. 
mode, the cther when it is i n  "user" 
mode. The mode is determiner! by two page 7 v} 4 
bits o f  the processor status word. 

The 16-bit logice! address space is 
divided into eight 'pages" shown i n  Page 3 
Table i. When the memory management 
uni t  is enabled, any access t o  memory w i l l  
be mapped through the APR for that Page 2 
address. 

I 
1 

Each set s f  registers contains eight 32- Page 6 
b i t  Active Page Registers (APRrs). Each 
APR is actually two registers: the Page 
Address Register (PAR) which contains a Page 5 
base address, and the Page Descriptor 
Register (PDR) which contains the page 
length and the access control key. . Page 4 

Pase L o s i c a l  Add ress  Ransc 

block bu f fe rs  - - - - - - - - - - , - - 
r e t u r n  stack - -  - - - -  - - -  

parameter stack 

( o c t a l  ) 
0 0 - 17776 
1 20000 - 37776 
2 40000 - 57776 
3 60000 - 77776 
4 100000 - 117776 
5 120000 - 137776 
6 140000 - 157776 
7 160000 - 177776 

Tab le  1. L o s i c a l  A d d r e s s  Space. 

The physical memory address that wi l l  
actually be accessed is a combination o f  
the logical address and the PAR for that 
page. Figure 1 shows how the logical 
address is deriv: d. Bi ts 15-13 o f  the 
logical address give the page (or APR) 
number. The PAR for  that page gives the 
base address i n  64 byte blocks. This value 
is added to  the block number f ie ld o f  the 
logical address (bits 12-61 to  f ind bits 17-6 
o f  the physical address. Bi ts 5-0 o f  the 
physical address are the same as bi ts 5 6  
of the logical address. 

I 1 -  

Figure 2. Logical  address space f o r  
s ing le  task wi thout  mapped memory. 

Page i t 

Additional information on the PDP-11 
memory management it can be found i n  
the processor handbookT. 

page 0 

Data Window and Memory Management 

d i c t i ona ry  - - - - - - - - - - - - - - 
nucleus 

One way to  ut i l ize the memory man- 
agement hardware and additional memory 
is t o  use i t for data storage. Two of our 
applications a t  LLE  require large data 
arrays (up to  lOOK words) for image pro- 
cessing. We solved this problem by 
creating a "data window" i n  our logical 
address space. Figure 3 shows the logical 
address layout of a system with a data 
window. 

I\ 0 

Page Address F i e l d  I 
I 

Page 

Act ive  Page 
Register 

1 1  t 0 

Physical Block No. DIB Physical 
Address 

Block No. 

L ! 

(Displacement 
i n  blocks) 

Figure 1. Construct ion o f  a Physical Address 

DIB 

(der ived from f igure  7-9 of [I] and 
rep r in ted  w i th  permission from DEC.) 

Logical  
Address 
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Figure 3. - I 

Page 

Page 

Page 

Page 

6 data window 

block buffers 5 - - - - - - - - - - - - -  - 
r e t u r n  stack - - - - - - - - - -  - - -  

parameter stack 

3 I 
Page 2 I 
Page I I 

I d i c t i o n a r y  
p a g e 0  - - - - - -  - - - - - - -  

nucleus I I 
Logical  Address Space With Data Window. 

The block buffers, return stack, and 
parameter stack are moved down to  the 
top of  the next 4K word page of logical 
memory, leaving a 4K word gap i n  the log- 
ica l  address space. I n  a 128K word sys- 
tem, lOOK words of physical memory are 
then accessed through this window. 

The X and Y coordinates of  the image 
array are converted to  a double precision 
index. This is done by multiplying the Y 
coordinate by the number of pixels per 
line and adding the X coordinate. This 
index is divided by the number o f  pages 
per image. The quotient indicates which 
page the pixel  i s  in, and tine remainder w i l l  
be the address offset o f  the pixel  in to  the 
page. 

The relocation constant for  the needed 
page is set i n  the PAR so that i t  can be 
accessed through the data window. The 
logical address o f  the pixel  is obtained by 
adding the address offset t o  the starting 
address o f  the data window. 

Multi-tasking and Memory Management 

Our version of  FORTH implements 
multi-tasking i n  the following manner. 
Each task has a "state vector" which 
contains "user" variables that  can d i f fe r  
f rom task t o  task. This includes: 

- Dictionary and stack pointers 
- Program counter and interpreter 

pointer 
- Status flags and state indicators 
- Terminal 110 routines and buffer 

pointers 
- Vocabulary pointers 
- Number base 

The state vector for  the master task is 
included i n  the nucleus. 

Each task also has i t s  own terminal 
buffer, dictionary, parameter stack, and 
return stack. New tasks are created with 
a routine called BLDTASK which allocates 

space for them i n  the master task's dic- 
tionary. Figure 4 shows the logical 
address spece i n  an unmapped mult i -  
tasking system. 
I --I \ 

Page 7 I I / O  

1 b lock  b u f f e r s  
Page 6 - - - - - _ - - - - - - - ,  

r e t u r n  stack - - - - - - - - - - - - -  - .  
Page 5 

parameter stack 

1 

Page 4 I 
I TASK 2 I {e 

d i c t i o n a r y  - - - -  - - - -  - - - - -  - 
nucleus I 

I I 

Figure 4. Log ica l  address space f o r  
unmapped system w i t h  two tasks. 

r.?turn stack 
parameter s tsck  
t 

d i c t i o n a r y  
4 

TTY b u f f e r  
s t a t e  vector 

Task state vectors are l inked t o  each 
other i n  a circular fashion, one pointing t o  
the next and the last back to  the first. A 
"round robin'' scheduler starts running a 
new task when the current task executes a 
PAUSE. PAUSE stores the current 
machine state into the state vector o f  the 
existing task and sets the new machine 
state according to  the new task's state 
vector. 

Additional information on mult4- 
tasking y n  be found i n  works by Forsley , 
McCourt , and Leary end ~ c ~ l i m a n s ~ .  
Figure 2 shows the logica! address space 
of  a FORTH application wi th a single task 
and not  using memory management. 

To add program space to our mult i -  
tasking system, we reserved a "task win- 
dow" i n  the logical address space. The 
master task occupies the low five pages of  
address space. Code i n  this area is  usable 
by a l l  tasks. 

Mapped tasks occupy pages 5 and 6 o f  
the logical address space. Definit ions and 
data within a mapped task arp accessible 
only t o  itseif. Each task must have a 
separate vocabulary. I f  definitions i n  a 
mapped task are entered into the FORTH 
vocabulary, the dictionary l inks w i l l  be 
gone when the next task becomes active. 
This usually results i n  a system crash. 
Figure 5 shows the logical address space i n  
a mapped multi-tasking system. 

Page 7 I 
parameter stack 

Page 5 d i c t i o n a r y  a 
P 

block  buf fers  - -, - -. - - - - - -  - 
r e t u r n  stack 

Page 1 ! T I 1 d i c t i o n a r y  
Page 0 -.. - - - - - - - 

1 nucleus I I 
Figure 5. Log ica l  Address Space fo r  

Mapped Mu1 t i - task ing System. 

Implementing this technique required 
the following changes: 

- Modify the scheduler PAUSE so 
that it sets the page 5 and 6 
memory management registers, as 
wel l  as swapping i n  the usual state 
vector information. 
Move the block buffers and master 
task stacks t o  the top of  page 4. 

- Change the routine BLDTASK to  
assign the new task's return stack, 
parameter stack, and dictionary t o  
pages 5 and 6, instead o f  giving 
them space i n  the master task's 
dictionary. 

- Change BLDTASK to  assign physi- 
ca l  memory t o  the task. It must 
calculate the appropriate settings 
for  APR 5 and APR 6 and save 
them i n  the task's state vector so 
that they can be loaded into the 
memory management registers by 
PAUSE. 

User Space for Data 

The two approaches discussed pre- 
viously both ran i n  processor "kernel" 
mode. To increase our memory resident 
data storage i n  the multi-tasking appli- 
cation described previously, we use the 
"user" mode memory management regis- 
ters. 

The processor status word has two 
mode fields: current mode and previous 
mode. The instruction MFPD moves a 
word from the "previous" mode address 
space t o  the "current" mode processor 
stack (the return stack i n  our FORTH 
implementation). The instruction MTPD 
moves a word f rom the "current" mode 
processor stack t o  the '9previous" mode 
address space. 

Using these instructions it is possible 
t o  retrieve and store data quickly and 
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efficiently, and the data stored there is 
accessible to a l l  kernel mode programs, 
whether they are mapped tasks or not. 
Data tables that would otherwise need to  
be disk resident because o f  their size can 
now be memory resident to  speed response 
time. 

The source l isting o f  the user mode 
data storage code is included at the end o f  
this article. 

The first technique, the data window, 
has been used for two image processing 
applications. One is used to  view infrared 
and ultraviolet laser beams in  materials 
damage testing experiments. The system 
does circular averaging and calculates an 
absolute intensity within the 10 minute 
shot cycle. 

The other image processing application 
observes X-ray diffraction patterns pro- 
duced by a nanosecond X-ray source. A 
technique of radial averaging is also used 
here to enhance the diffraction pattern 
and study changes induced by samp!e stim- 
ulation. 

The second and third techniques are 
used on the Omega Alignment System, 
which now has 17 tasks installed and uses 
about 140,000 bytes o f  memory for pro- 
gram space. The user mode data storage 
method is used by the data base software 
and for the intertask message queues. 

Although this paper describes tech- 
niques used with DEC PDP-11 series com- 
puters, the techniques are similar t o  those 
used with any l imited address system with 
logical/physical mapping hardware. Thus, 
they are applicable to  minicomputers l ike 
the Hewlett-Packard 1000 series and the 
much newer 16 b i t  microcomputers l ike 
the Motorola 68000 and Zilog 8000. The 
techniques are especially appropriate i n  a 
FORTH-79 context where the FORTH 
machine is defined as having a 64K byte 
address space, carved out o f  an arbitrari ly 
large physical address space. 
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LL$Y*ttl**tt*X***Xt**t BLOCK t 445 *ttS$SL*$S*tt*t*t*ll$tt 

( UEHORY MANAGEKNT - Ui?, U !  ) 

CODE UE' ( cAl3RS3---CUAT#l  RETRIEVE FROM USER NODE MEMOhY 
7 7 7 7 7 6 0  @# 3 0 0 0 0 0  # HOW, ( SET PROCESSOR STATUS UOHD: i 

( CURRENT=hERNELt PREV=USER ) 

s @ ) t  FPDs ( FKOf4 ADHS ON SSACh TO RP ) 

7 7 7 7 7 6 0  Qt 0 # ?IOU, ( PSW EACh TO NORMAL ) 

5 - )  RP ) +  HOV, ( HP T O  S T A C ~  : 
NEXT* ( RETURN 

CODE U I  ( CDATA3CADRS3---EI STORE I N  USER HOIIE HEHORY ) 
RP - )  2 s I) nou, ( D A T A  FROM S T A C K  T O  RP ) 

7 7 7 7 7 6 0  BC 3 o o o o o  # nov? ( SET PROCESSOR STPTUS UORD: ) 

( CURKENTrKERNEL, PREV=USER ) 
S @)t TPDr ( FROM RP TO ADRS ON STACh ) 

7 7 7 7 7 6 0  @ #  0 # HOW, ( PSU RACK TO NORHAL ) 

POP Jt ( RETURN WITH CLEAN STACK ) --. 

( MEHORY HANAGEMENT - K.:.U ) 

SOElE K>U ( LK ALrKSIEU ADRSIECOUNTI---C1 COPIES 'COUNT' 1 
( WDRDS FROH KERNEL SPACE TO USER SPACE ) 
W S ) +  nov, ( W=COUNT > 
R 0 S ) f  HOW? ( RO=USER SPACE ADDRESS ) 

R l S ) $  HOVg ( RI-KERNEL SPACE ADDRESS ) 
7 7 7 7 7 6 0  3 0 0 0 0 0  # HOVt i SET PROCESSOR STATUS WORO: ) 

f CURRENT=KERNELr PREV=USER 
B E C i I N l  

R P - )  R l f +  MOV, ( FROU KERNEL SPACE TO RP ) 
KO ) +  TPDv ( FROM RP TO USER SPACE ) 

W SOBI ( DEC W P  BRANCH I F  NOT ZERO ) 

7 7 7 7 7 6 0  @ #  0 # HOV, ( PSU BACK TO NORHAL ) 

NEXT, ( RETURN ) - - :. 

*b*b$t*tS*S1XISU*X1*** BLOCK # 447 Xt*tXXSXI*****tt**X**** 

( MEMORY MANhGEMENT - U:.K ) 

CODE U>K ( fU ADRS3EK ADRSIECOUNTI-- - [ I  COPIES 'COUNT' f 
( WORDS FROM USER SPACE TO KERNEL SPACE 

W S ) +  MOV,  ( W=COUNT 
R 0 S ) +  M U V P  ( RO=KERNEL SPACE ADDRESS ) 

R 1 S It MOW, ( R1-USER SPACE ADDRESS ) 

7 7 7 7 7 6 0  e# 3 o o o o o  # nou, ( SET PROCESSOR STATUS WORU: ) 

( CURRENT=KERNELt PREU=USER ) 
BEGIN,  

R l  ) +  F P D t  ( FROn USER SPACE TO RP f 
R O  ) +  RP ) +  MDVv ( FHOH RP TO KERNEL SPACE ) 

U SOB, ( DEC W s  LOOP I F  NOT ZERO ) 

7 7 7 7 7 6 0  @ #  0 # MOVv ( CURRENT=KERNEL, PREV=KERNEL ) 

NEXT, ( RETURN 
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A HGH LEVEL BJTEFtRUPT 
HANDLER lN FORTH 

R. L. Keck and L. P. Forsley 
Laboratory for Laser Energetics 

Unversity of Rochester 

A system for writing interrupt service 
routines in high level FORTH is des- 
cribed. An example of the utility of high 
level interrupt service in a dynamic da ta  
acquisition situation is provided. 

b tmhc tim 

X-ray data from laser-plasma inter- 
action experiments on the GDL laser 
system a t  LLE has in the past been 
acquired frorn photographs of oscilloscope 
traces. Because of the large number of 
detectors currently being employed, this 
method has become impractical and we 
have chosen t o  use 12 channel integrating 
A/D converters for da ta  acqu'sition. These I AID converters a re  CAMAC compatible 
modules and because of the extensive 
CAMAC vocabulary available in the  UR 
FORTH-79 system, as well as the 
suitability of FORTH for use in a dynamic 
programming environment, FORTH is used 
for the  acquisition software. 

The AID modules integrate the signal 
a t  each of their  12 inputs for  the  duration 
of a gate signal, which is derived from the  
laser oscillator. The oscillator is fired 
once every 10 seconds t o  keep i t  in stable 
operation, however, our da ta  signal occurs 
only when the full system of laser ampli- 
fiers is fired a s  well, an event which 
occurs when a f ire sequence is carried out  
by the  laser system controller on com- 
mand from the operator. We require a 
means of clearing the A/D modules just in 
advance of the oscillator pulse a t  which 
the full system will fire. This is accom- 
plished by feeding a ready-to-fire signal, 
provided by the laser system controlier 4 
seconds in advance of fire-time, t o  a 
CAMAC contact  sense input module. Our 
acquisition sequence then is: look for a 
ready-to-fire signal from the contact  
sense input module, clear  the  AID module, 
wait for  da ta  available indication from the  
A/D module and read the da ta  from the 
AID module. 

The above sequence could be  imple- 
mented directly, using the  available 
CAMAC vocabulary, by simply continu- 
ously interrogating a module until the  
desired condition occurs and then pro- 
ceeding t o  the  next step. This method 
needlessly ties up the computer executing 
loops and prevents i t  from handling any 
other task while the  sequence is in 
progress. Since both the  contac t  sense 
input module and A/D module will gener- 
a t e  CAMAC Look At Me's (LAM'S) when a 
signal occurs a t  their  inputs and a CAMAC 
LAM can generate an interrupt, we can 

use an interrupt driven acquisition system 
which will avoid needless looping. This 
requires the writing of interrupt service 
routines in machine code, which is a t  best  
cumbersome. I t  wwld  b e  nice to be  able 
t o  write high level FORTH interrupt ser- 
vice routines which could be readily 
changed. This can, in fact ,  be  done and 
our method for  doing this is discussed 
below. 

Implementation 

Our system consists of UR FORTH-79 
running on a Digital Equipment Corpora- 
tion LSI-11 microcomputer under DEC's 
RT-11 operating system. While a com- 
plete description of the  implementation of 
this system may be found in the imple- 
mentation guide2, we will briefly cover 
FORTH's usage of processor registers for  
reference in the following discussion. 

Four of t he  processor's general purpose 
registers a re  dedicated FORTH registers. 
R6, the system stack pointer, serves a s  
FORTH's return stack pointer (RP). R5 is 
used a s  the stack pointer (S). R4 is used 
as the FORTH interpreter pointer (IC); i t  
contains the address of the compilation 
address (also referred to a s  the code field 
address or CFA) of the next word to be 
executed. Finally, R1 is the  s t a t e  veetor 
pointer (SV); more will be said about the 
SV later. 

The procedure for executing a FORTH 
word from code is essentially quite simple 
and is accomplished by the word 
XEQ.MACR0 ( a  listing is ~ncluded in the  
appendix!. It accepts an address, into 
which will l a te r  be placed the compilation 
addrsss of the interrupt service word, on 
the stack and generates code which will 
place the compilation address of the 
service word on the stack [MOV @iMDDR> 
,-(5) 1, loads t he  IC with the address of the 
compilation address of the return frorn 
interrupt code [MOV iHERE+E>,IC 1 (note 
tha t  cHERE+E> contains the compilation 
address of RTI (COMPILE RTI), the return 
from interrupt  code word) and then jump 
to  the  executable code for EXECUTE t o  
begin execution of the interrupt service 
word [JMP ' EXECUTE]. The net e f fec t  
of this code sequence is t o  s t a r t  execution 
of a high level interrupt service word and 
subsequently execute the return from 
interrupt code. 

Before execution of the  code gener- 
ated by XEQ.MACR0 can begin, the con- 
ten ts  of the  processor registers must be 
preserved by pushing them onto the sys- 
tem stack. Code t o  do this is generated 
by REG.SAVE.MACR0. We must addi- 
tionally ensure tha t  the S and SV registers 
point t o  valid memory areas. In t he  multi- 
tasking UR FORTH-79 system, this is 
most easily accomplished by having a 
separate interrupt task area. The task 
a rea  contains return and parameter stack 
memory allocations a s  well a s  a s t a t e  

vector allocation. The SV register points 
t o  t he  s t a t e  vector and the s t a t e  variables 
contained in the s t a t e  vector are addres- 
sed relative t o  the  value of the  SV 
register. 

I t  should be noted tha t  it is not 
necessary t o  have a multi-tasking system 
in order t o  implement high level interrupt 
routines. This is because the  values of the 
s t a t e  variables referenced by the  interrupt 
routine a re  in general identical t o  those 
for  the  master  task. On a non multi- 
tasking system we would simply reserve a 
parameter stack area for the interrupt 
routines and s e t  S t o  point t o  it. I t  is 
necessary, however, tha t  FORTH be  coded 
reentrantly for  this scheme to  work. 

The SV.SET.MACRO is used t o  gener- 
a t e  code which will set t he  SV and S 
registers. Note tha t  i t  also changes the  
return stack location. This would not be 
necessary, except  for the  f a c t  tha t  the 
FORTH stack checking routines require 
tha t  the  return stack be located in mem- 
ory immediately above the parameter 
stack. The value of the interrupted task's 
return stack pointer is stored in a f ree  
vector location [52T(SV) I. 

SETUP.INT se ts  the  interrupt vector, 
in this case specifically for  CAMAC ( the  
vector for  the device in slot N for the 
CAMAC c ra t e  is located a t  400+N+4). 
The processor is run a t  priority 7 during 
interrupt service t o  prevent further 
interrupts from occurring. 

To make i t  simple t o  c rea te  interrupt 
service rcutines, the macros previously 
discussed a r e  combined t o  produce a 
defining word called 

This word when executed, accepts a task 
a rea  and CAMAC slot number on the  stack 
and crea tes  a word which contains the  
code sequences previously developed 
starting a t  the second parameter field 
location of the newly created word and 
s e t s  the interrupt vector t o  point t o  this 
code. The first parameter field location is 
reserved t o  hold the compilation address 
of the word t o  be  executed when an 
interrupt occurs. The DOES* part  of the  
new word will load this reserved location 
with the compilation address of the  
desired interrupt service word. 

An Example 

The listing for  blocks 3 and 4 illustrate 
how the  interrupt handler is used in our 
acquisition system. A task area (ITASK) 
is created and initialized for the interrupt 
routines t o  use. I t  must be  delinked from 
the  multi-tasking system to  make i t  trans- 
parent to the multi-tasking dispatcher. 
Then two interrupt service routines a r e  
defined (RDY.WORD and FIRE.WORD) 
each with an associated CAMAC slot (or 
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device). They share the same task area 
since only one interrupt service routine 
can be active a t  a time. 

I n  block 4, the high level service 
routines are defined. RDY.INT is used to  
clear the A/D module, enable A I D  LAM'S 
(XCLR XENLAM) and then clear and dis- 
able further LAM'S from the contact sense 
input module, on occurrence of a L A M  
from the contact sense module. FIRE[ 
collects the A I D  data, disables further 
A ID  LAM'S (XCOLLECT XDISLAM) and 
activates another task which wi l l  p r in t  the 
results (ZTASK DISPATCH) on occurrence 
of a L A M  f rom the A I D  module. These 
high level routines are installed as the 
interrupt service routines for the appro- 
priate CAMAC devices with the sequen- 
ces: RDY.WORD RD'f.INT and 
FIRE-WORD FIRE[. Changing an interrapt 
service routined with this system requires 
only defining a new high level handler 
word and installing it as the handler word, 
e.g., FIRE.WORD FIRE?[ w i l l  make the 
word FIRE2[ the new interrupt service 
routine for the A/D module. 

Conclusions 

We have shown that it is possible to 
write high level interrupt service routines 
i n  FORTH. This makes it possible for pro- 
grammers unfamiliar wi th interrupt pro- 
gramming to easily wr i te interrupt service 
routines. In addition, the faci l i ty wi th 
which this system permits changes to  be 
made to the interrupt handlers makes this 
an ideal way to  handle data acquisition i n  
a rapidly changing experimental environ- 
ment. 

Acknowledgement 

The authors would l ike to thank 
Michael McCourt for assistance with 
details on the internal operation o f  UR 
FORTH-79. 

R.L. Keck is a graduate student i n  Mech- 
anical Engineering at the University of 
Rochester. L.P. Forsley is Group Leader 
of Computer Systems at  the Laboratory 
for Laser Energetics, Universitv of 
Rochester. 

1. Modular instrument and digital 
interface system (CAMAC, IEEE STD. 
583-1975) 

2. McCwrt ,  Michael, "University of 
Rochester PDP-11 FORTH-79 Imple- 
mentation Guide," Release Number 
1.0, May 1981, unpublished. 

APPENDIX 
UORD LISTINGS 

ELOCK 1 ****S***************************X**X***t*****%******* 

( SiHh level FORTH interrupt handler rlk lrf 25-mar-Bl 

: REG.RESTORE.flACRO ( <>-<>r restore resisters 0-5 1) 
ASSEHBLER 0 5 DO I RP )+  MOVr -1 +LOOP FORTH ? 

C9DE RTI E restore resisters, return from interrupt *) 

XF 5 2 ~  sv I) nou, REGIRESTOREIMACRO RTII FORTH 
I: XEO.MACR0 ( <addr of xea wordr assemblr time>-<> $ )  
ASSEMBLER S -) SWAP @C HOUI ( rush handler uord addr on stack) 

IC HERE 8 + I MOVt ( preset the IC ) 

' EXECUTE P JMPr ( dumr to execute ) 

COMPILE RTI ( pointer to next instruction ) 

FORTH i 
: REGISAVE~MACRO ( <>-<>r save registers 0 - 5 t) 
ASSEMBLER 6 o DO RP - 1  I nov? LOOP FORTH i 

--3. 
ELOCK 2 * * * * * * * * * * * * * t * * * t * * * t * * * * * * X * t * * * * * * * * * * * * * * * * * * * * * *  

( more interrupt stuff 25-mar-81 rlk ) 

: SETUP.INT ( Cslot#>.<code addr>-<> set camac vector * )  

SWAF 4 * 4000 + DUP ROT SWAP ! 
2+ 3400 SWAF ! i 

: SVoSET'oMACRO ( (SV lot>-0 set SV for interrupt routines X )  
ASSEMBLER SV SWAP # MOVr S 14T SV I) MOV, 52T SV I )  RP MOVP 
HP 16T SV I) MOvr FORTH i 

: CREATE+CAMhC+INT.WORD ( .<SV loc>~:::slot#>-0.7 create int. 1 )  
( defin. word* *)  

<BUILDS 0 9 HERE SETUP.INT HERE 2- REG.SAVE.MACR0 
SWAP SVISETIMACRO XEO.MACRO 
DOES> CCOflPILE3 INSTALL SWAP ! i 

-- :> 
BLOCK 3 *S***********S***S*********************************** 

( Interrupt task area initialization rlk 16SEP81) 

20 30 0 47 BLDTASK lTASK ( create a task area *) 

ITASK TCLEAR ( initialize task area *) 
1TASK DUP ! SV DUP ! ( delink task from task list *) 

lTASK DISPATCH ( merk task as active f )  

( create e readr to fire handler word for CAMAC slot 6 t )  
ITASK 6 CREATEtCAMAC.INT+WORD RDY-WORD 

( create a fire time uord for the A/D module L) 
ITASK XAD CREhTE+ChMAC+INT+WORD FIREeWORD 

i S 
BLOCK 4 ****$******$*t**$********Y*$$*f$******Y**********$******* 

( xrar interrupt service 
40 I20 0 47 BLDTASK 2TASK 

13-arr-81 rlk ) 

( task area for post fire uord * )  

: RDY INT ( rdu fire int handler t)  
XCLR XENLAM 6 N 0 A 2 F DROP 24 F i 

: FIRE! 
XCOLLECT XDISLAM 2TASK DISPATCH ; 

( fire tire har~dler *)  

RDY WORD RDY + INT ( make RDYIINT the readr to fire f )  
( interrupt service routine Y )  

FIRE.WORD FIRE! ( make FIRE! the fire time interrurt handler *) 
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OPTIMIZED DATA STRUCTURES 
FORHARDWARECONmOL 

Joseph D. Sawicki 
Laboratory for Laser Energetics 

University of Rochester 

Abstract 

Data structures have been developed to more easily control hardware. A disk driver is used as an example for exploring alternative 
FORTH data structures and ways of optimizing them. These examples show that FORTH data structures are well suited to minimizing 
programming time and increasing software efficiency. 

Introduction 

While work' g at the Laboratory for Laser Energetics this summer one of my projects was to write a general purpose backup routine I? for a DEC-like RXD2 rnode floppy disk drive. In  doing this certain commonly used FORTH tools became useful. This paper will serve to 
illustrate these tools, and the modifications necessary due to the nature of the project. 

Data Structurw 

The TO concept was developed by Dr. Paul Bartholdi and was described in  FORTH DIMENSIONS Vol. I No. 4 and Vol. I No. 5 concept2 
in variables. This could be implemented in high level as follows: 

0 VARIABLE %To 
: TO 1 %TO ! ; 
: VAL <BUILDS ( <#>-<> , ACCEPTS INITIAL VALLE ) 

, 
DOES> ( <~-o;o-< i '~ ,  STORES OR GIVES "VAL" ) 
%TO @ 
IF ! 

0 %TO ! 
ELSE @ 
THEN ; 

It would be used like a variable. Entering O VAL<NAME>would define a variable with an initial value of zero. To change the value to a 
six one would say 6 TOcNAMEr; sayingcNAME>would now put a six on the stack. 

This technique makes the code more readable by eliminating the use of @ and [ with variables (and ' with constants) to access and 
modify them. The backup driver is no exception to this and i n  fact offers the opportunity to carry the concept one step furthef. In  the 
DEC POP-11 architecture, 110 is memory mapped so that, for instance, the Disk Control Status Register is at location 1771700 and the 
Data Buffer Register is at location 1771720. One way to communicate with these addresses is to define two constants: 

1771700 CONSTANT CSR 
1771720 CONSTANT DBR 

but then the use of 9 and [ becomes necessary. A way around this problem is to define a data structure similar to VAL except that i t 
contains an address in  i ts  parameter field instead of a value. I t  would also be useful to fetch the address as well as to send data to and 
from the address. An easy, though by no means optimal, implementation of such a structure is given below. 

: TO ( SETS FLAG.SO THAT A NUfi U I L L  BE STOKED I N  A R E G * )  
I %TO ! i 

: FROH ( SETS FLAG SO THAT A NUt l  U I L L  RE GOTTEN FROH A REG) 
-1 %TO ! i i b 

( TEST BED FOR BEGINING OF RX02  DRIVER JD5 1 5 J U N b l  
: REGISTER \BUILDS t 

( \ADD,-\>, B U I L D S  A DATA T r P E  CALLED A REGISTER ) 
DOES ( GIVES REGISTER ADD, CONTEdTS OR SENDS D A ? # a  

TO THE REGISTER IIEPENDING ON THE STbTUS OF a0 
Q XTO @ ( GET ADDRESS OF REG AND 96TO 

DUP -1 = IF SWAP e s u n p  ( G E T  CONTENT) 
THEN 

I = IF ! ( STORE VALUE IN REG ; 
THEN 0 Po 

Once these two structures are implemented it becomes very easy to talk to the disk drive. For example, i f  a VAL had been defined 
called IN-TRACK# which contained the track to be read, sending it to the DBR would simply consist of saying IN-TRACK# TO DBR. 
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In  the RXOZ mode there are e:ght disk commands. They are a11 similar i n  t ha i  they need to  have a drive ana ciensity bit set and they 
are sent t o  the CSR. The first problem is soived by a VAL called DRIVEfDENSITY and the four words shown below: 

: SINGLE-DENSITY (  cow,:-ccon.::., S E T S  THE DENSITY B E T  T O  o ) 
D R I V E / D E N S I T Y  '256 B I C  TO I iK IOE/ ' i lENEITY  1 

: DOUBLE-DENSI_TY ( tcon.:>-. ..con::: , SETS TYE-DENSITY HIT T O  i ) 
D R I V E / D E N b I T Y  256 P I S  TO I I R I V E . ' ~ ~ E N S I T  8 r 

: OUHIVE i .:COW.>-.;COn.:'r SETS THE D R I V E  B I T  TO 3 ) 
D R I V E / D E N S I T Y  16 BIC TO D H I V E / U E N S I l Y  7 

: l D R l V E  ( .:'COH.:*-.:..CKfM,> 9 SET THE D R I V E  B I T  TO 1 
D R I V E / D E N S I T Y  16 B I S  T O  U R I V E / D E N S I T Y  i 

After setting the drive and density as desired, the VAL DRIVE/DENSTTY can then be ORed wi th  the command t o  produce the desired 
results. There are two approaches that can be taken a t  this point. For example, takc the cofnrnand to format a disk in  a single or double 
density; call it (SET-DEN). A word could be defined, aionq with seven others l ike it, as shown: 

: (SET-DEN) 110 DRIVE/DENSITY OR TC) CSR ; 

The second approach would be to again use e defining word: 

: DISh-COKHANF - B U I L D S  ( ..Cot4 - TAhES THE CON FOh A D I S h  OF', ) 
I 

IIOES ( GET con AHD DRIVE BEN INFO OR, ANU SEND ) 
@ D R I V E / I I E N S I T Y  OK TO CSL v 

1 1 0  XI iSh-COEMAf lD (SET-DEN) ( USED TO FOREAT t lX5KS S I N G  OR D DEN) 

As usual we have a classic FORTH space-time tradeoff. The second approach executes somewhat slower (see figure 1) because the 
constant needs t o  be fetched, but whereas the f i rst  approach takes 18 bytes per command or a total  o f  144 bytes, the second approach 
takes only 10 bytes per command plus 24 bytes for the defining word for a total  of  104 bytes. Because of the space savings the philoso- 
phy that very similar things should be grouped together could override the execution speed losses and the second approach was used. 

A l l  of  this would have been fine except that when doing the track t o  track backup a sector interleaving technique must be used to  
keep backup times down to a reasonable level. Since these VAL'S and REG'S have high level IF statements i n  them and they are used each 
t ime a sector is read or written, they require an overly large interleave step size, The solution t o  this problem is t o  use ;CODE instead 
of DOES? Thauqh this makes the word less transportable i t  isn't seen as a problem since this is a PDP-11 specific disk backup. The V A L  
word now can be defined as follows: 

: VAL ( B U I L D S  ( # - ., TAhES THE I N I T I A L  VALUE O f f  THC STACK f 
1 

;CODE ( % t , -  , OR <% .- .# , r  GETS VALUE OR STORES VALUE ) 
%TO F T S T r  ( S E t  I F  %TO P O S I T I V E  I 
Ei I F ,  

UPAPAH M I )  S ) t  HOV? ( STORE VALUE ! 
X T O  F G t n o v ~  t ZERO OUT % T O  FLAG , 

ELSE, 
s -, WPAKAK u I )  nov, ( FETCH VALUE OF VIL ) 

THEN, NEXT, -- 

where W is the POP-11 register containing the CFA (code f ie ld address) of  the word executing, WPARAM is a constant equal to the 
offset f rom the CFA to  the PFA, and I) indicates indexed addressing. No t  only is the coded VAL faster than the high level version, but  it 
is also faster than a VAR at  fetching and the same speed a t  storing (see figure 2). It was also necessary to  code REG as shown below: 

: REG .... B U I L D S  ( HUIL I IS  A DATA TYPE CALLED A REGISTEK ) 
? 

!CODE ( ~~..#:*-~.. .~,. : i -<#~~ GETS ADDI VALUE OR STORES VAL ) 
%TO P TST, ( CHECK I F  %TO I S  POS NEG OK Z E R O  ) 
GT I F ,  

UF'ARAM U P I )  S ) +  HO'Jr ( STORE VALUE I N  REG ! 
E L S E  r 

L T  I F ,  
5 - )  UPARAM W @ I )  MOV, ( GET VALUE i 

ELSE 9 

S - )  WF'ARAK U I j  HOV! i PUT T.O,S, ) 
THEN, 

THEN I 
ITO P 3 # n u v ~  NEXT, --. 

To il lustrate the use of  these concepts the FORMAT-DISK word w i l l  be shown. But f i rst  t o  insure that the program doesn't t r y  t o  do 
things before the disk controller is ready, two more words are needed that wait for the done and transfer request b i t  t o  be asserted i n  the 
CSR. 

: TR.WAIT ( WAITS  FOR THE DATA TRANSFER B I T  TO 3 E  S E I  ) 

B E G I N  2 0 0 0  FRO6 CSR ,AN11 EN11 : DONE.WAIT ( WAITS  FOK THE !JON( B I T  TO HE ASSERTED ) 
B E G I N  400 f H O n  CSR AN11 EN11 9 
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The disk command a s  shown before was called (SET-DEN). After receiving this command the  disk controller waits for a "key" byte 
(1110, the  le t te r  I in ASCII) to be sent  t o  t he  DBR, therefore the  entire command is coded a s  shown: 

: F O R H A T - D I S h  ( <;.-i.>, S E T 5  THE L l E N S I T Y  OF A DISK ) 
(SET-DEN)  TR.U$IT 
1110 TO D B F  ( bENa 'kEYm hYTE 
DONE+UAIT r 

To format the disk in the drive one double density one would enter  IDRIVE DOUBLE-DENSITY FORMAT-DISK; t o  format the disk in 
drive zero single density one would enter  ODRIVE SINGLE-DENSITY FORMAT-DISK. 

Timing 

To show the ef fec ts  of the different approaches timing tests  were run. The first  contrasts the difference between the two types of 
disk commands. In all tes t s  the  action was placed inside a double loop like: 

: TEST 10 0 DO 30000 0 DO LOOP LOOP ; 

This routine took 23 seconds which was then subtracted from the  other results t o  give the t ime t o  do the  operation 300,000 times. This 
was then divided by 300,000 t o  give the  time per operation. These are  the  results on a DEC LSI 1112: 

To Send Disk Command 

Colon d e f i n i t i o n  

Defining word 

. 23  msec. 

. 28  msec. 

Then a high level VAL was compared t o  a coded VAL and a VAR: 

high level VAL 

coded VAL 

VAR 

f e t c h i n g  (msec) s t o r i n g  (msec) 

.237 .39 

. 0 6 7  .ll 

.083 .093 

Summary 

This paper not only showed the usefulness of certain techniques in FORTH but also illustrates some general properties of the 
language. The first of these is the ease of implementation of new data structures. Through the  use of BUILDS ... DOES or BUILDS ... 
;CODE one can first  build the  structure t o  suit the needs of the  application and then imbed in the executable code necessary operations 
for  the  structure. Also a structure can easily be given variable execution a s  in the  case of VAL and REG. Another important benefit of 
FORTH is the ease of optimization of the word by the  use of assembly code. Changing the  VAL and REG words t o  ;CODE took less than 
a half hour. 
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Abstract  

Applications which require a tex t  data 
type a re  supported by a group of functions 
which operate with string variables and a 
string stack. The string stack is analogous 
t o  the parameter stack, however, the data 
type with which i t  operates is the  string, 
containing length and character  data. 

String Defining Words 

Two defining words are available for 
the creation of string data entities. The 
f irst  is: 

<maxlen> STRING-VAR <NAME> 

which crea tes  a varying length character  
string with maximum length cmaxlen>. 
Invoking~NAMGplaces 

<beginning address><maximum string length> 

on the parameter stack. The f irst  byte 
atcbeginning addressris  the current string 
length; the string tex t  begins a t  the  next  
byte. 

The second string defining word is: 

which crea tes  an array of variable length 
strings. Invoking 

<i ><NAME> 

places caddress  of the  i - t h  string, ~maxlen> 

on the parameter stack. Note tha t  
(number of elements) x (rnaxlen) bytes will 
be allocated to hold the string array. 

String Stack Manipulation 

A string stack, separate from the  para- 
meter  stack, is maintained in memory for 
the purpose of manipulating string data. 
Several words which manipulate the string 
stack are defined in the string stack 
library which can be compiled by execut- 
ing >STRINGS (which loads in t he  string 
stack package). Currently 20@ (decimal) 
bytes are allocated for the  string stack. 

The quote word (") is available for  
placing a string on the string stack. To 
stack a string, type: 

" <text>" 

" is followed by exactly one space, then 
<text> delimited by a quotation mark. 

A string print word .SS is  used t o  print 
the top element of the  string stack, 

! STRING STACK--FIXED LENGTH STRING COKPARISON LAR 19-SEP-79 ) 
SS v ! NOTE: P A R k n  ORDER NOU CADR><LEN> H A 6  11 -JUN-80  I 
( C I D D  A r  ADD RI LEN l r - - -CADDAr  ABBBr = OH + OR - I ) 
( COHPARES CHARS. I N  STRINGS A 8 B P A R I U l S E i  RETURNS 0 I F  
( STRINGS I R E  = r  t I F  A>Bv - I F  A..iB ) 

1 STFDO o SNAP o DO DROP OVER ce OVER CB - HOT 
ROT 1+ ROT DUP 31 NOT I F  LEAVE THEN LOOP , 

( CADD A r  ADD B r  LEN]---[= OR t OR - 1 9  SAHE AS S?FDO ) 
( EXCEPT ADDRESSES NOT RETURKED ) 

: S?F S t F D O  ROT ROT ZDROP i 
( [ADD A t  LEN]---C= OR + OR - 3 r  COKPhRFS STRING A TO ) 
( A STRING OF PLANKS--RETURNS 0 I F  TWO A R E  EQUAL J : S?B o SWAP o DO DROP DUP ce BL - SWAP I+ SWAP DUF 0,:: 

I F  LEAVE THEN LOOP SNAP DROP i -- .> 
t S S t S t t t t X t S l X l t S S  BLOCK 97 S t t $ t t S t t X S S S $ $ t S L t  

- - 

S X S t t % t t X S t S S $ t t S t  BLOCK 98 * S S t S t S t S t L S S S t t S t S  

( STRING STACK WORDS LAR 19 -SEP-79  ) 
SVAR SSO O.SVAR SSH 0 SVAR SST 

e SSTOP SST @ r . SSTOP! SST ! 
: SSDAG SSD B 6 : SSHAX SSfl @ I 

( EFROHr TO, L E N  3---['I CHEChS FOR S T I C K  ROUNDARIE 
: SOVCHECK OVER SSORG U+: 

I F  SSHRX S S T O f  ! 1 4 T  TARORT THEN i 
f CADBI - - - [ I  INSURES THAT ADDRESS P O I N T S  TO STRING 

: SSVER DUP DUP ce t SSKAX u>= 
IF ssnax SSTOP ! 1 3 ~  TABORT THEN i 

( ADD OF TOP STRINGI - - - [AD OF NEXT STRING I IOUNI ) 
: SSDDMN DUP C@ 1t  t 7 

( C h D D l - - - [ I  PUSHES STRING AT AIIDH. TO TOS 1 
: SSPUSH DUP Ce  I t  SSTOP OVER - DUP SSTOP! S U l P  RHOVE 

--> 
S t t t t t t t L S t t S S t S t S  BLOCK 9 9  t t t S S t S t S S S t t t t X t t t  

! 2 T R i N G  STACK WORDS LAR 19-SEP-79 1 
* DROP ( C I - - - C l  REYOVES TOP STRING FROM STACK t j  

$STOP SSVER SSDOWN SSTOP! 
: LEN (.CI---CI R E ~ U R N  LEN OF TOS STRING $! 

:STOP SSVER CQ r 

: EL,!!& 1+  : 
( [ I - - - E l  RETURN ADDR OF TOS STRING t )  

w w , . , .  . . , 
: 'DUP ( [I---[] COPY TOS STRING Xj  

!STOP SSVER SSPUSH i 
: SUAP ( [I---[I EXCHANGE TOP 2 STRINGS 8 )  

SSTOP DUP SSDOUN DUP s s P u s n  SSDOUN SSTOP SUAP SSTOP! 
SWAP SSPUSH SSPUSH r 

: 'ROT ( E l - - - E l  ROTATE TOP THREE STRINGS ARC->BCA 1 )  
SSTOP DUP SSDOUN DUP SSDOWN DUP SSPUSH.SSDOWfl SSTOP SUAP 
SSTOP! SbJAP SSPUSH SUAP SSPUSH SSPUSH r 

S t X t S t t t S S t t X t L \ S X  BLOCK 1 0 0  I S t X t S S S t t S S t S S S S S t  

( STRING STACK YORDS HAH 13-JUN-80  i 

: 'OVER ( [I---[I PUSH 2ND STRING DOYN ONTO TOS \ )  
;STOP SSDOWN SSVER SSPUSH i 

: 2DUP ! [I---El COPY TOP 2 STRINGS S )  
'OVER 'OVER 

: *2DROP ( El - - -C3 DROP TOP 2 STRINGS I )  
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removing the top element in the process. 
For example, 

tlIttltfISlSttIIII BLOCK 1 0 1  t I t I I I ~ I ~ I X l 1 ~ t I l ~ ~  

( STRING STbCK YORUS CONT'B HAH 13-JUN-80 ) 

OK " STACK THIS STRING " <CR> : ' !  ( EADRIELENI---[I STORE TOS AT  ADDR. L DROP TOS t )  
SSTOP 'DROP SNAP OVER Ce HIN, ZDUP SUAP C! 1t 
ROT SYAP RfiOVE 

( ESTRIMGI---C: STONES STRING I N  PAD THEN HOVES I T  FHOH ) 
( THERE TO THE TOSS -- WORKS DURING EXECUTION T I M E  ) 

: X *  4 2 0  WORD 0 'e I 
: $ *  K> DUP o * e  DUP ce b u r  2 non 

I F  I t  ELSE ?t THEN t >R i 
( CSTRINGI-- -C3 STORES STRING AT TOP OF D ICT.  STACK ) 
( DURING COHPILATION ) 

: C '  COW' ILE  $ '  4 2 0  UQKD CE ?UP ? HOD 
I F  1 i  ELSE 2 t  THEN ALLOT T 

: ' STATE @ I F  C' ELSE X '  THEN i I H P  ' 

STACK THIS STRING OK 

Notice that the functions .SS and.  are 
similar. Several other functions operate 
on the string stack in a manner analogous 
to words which operate on the parameter 
stack. These are: 

WORD ...................... 
"DUP 
"SWAP 

FUNCTION BEFORE AFTER 
.----------------------------------------------------------------- 

copies top of stack B A A  
reverses top two 
strings on the stack B A A B 

B A B 
B A B A B  
C B A B A C  

B A B A B A 
C E A  C 
O C B A  B A D C  
D C B B  D C B A D C  
B A B A 

"DROP 
"OVER 
"ROT 

"ZDUP 
"ZDROP 
"2SWAP 
 OVER 
'I+ 

removes top of stack 
copes 2nd string onto top 

moves 3rd string to top 

copies top 2 strings 
removes top 2 strings 
reverses 1 6  2 with 3 & 4 
copies 3 & 4 to top 

string addition (catenation) 

: .SS ( E l - - - [ ]  TYPE OUT STRING AT TOSS 1) 
$STOP SSVER 'DROP COUNT TYPE 

t <'>-<>P PUT STRING I N  DIC~IONARY~ HAKE EVEN LENGTH 1 
: 4 2 0  WORD COUNT DUP HERE SUAP 1t - 2  AND ALLOT SWbP CnOVE 9 

Just as  the parameter stack relational 
operators -emove their arguments from 
the parameter stack, the following string 
stack relational operators remove their 
arguments from the string stack. The 
logical result of the string relation is 
placed on the parameter stack. The avail- 
able relationals are: 

I*= "<= 

( SOHE F I X E D  LENGTH STRING D E F I N I T I O N S  ) 
( [ADDRvHAX L E N I - - - E l  PUSH STRING AT ADDR TO TOSS ) 

: '@F DUP SSTOP OVERa- 1- SSTOP! SSTOP C !  SSTOP I+ SUAP C n o v E  r 
t CAUDRrMAX LEN3--- [ I  COPY CHARS ONLY FROn TOSS TO ADBR ) 

: ' ! F  2DUP BLANK 'LEN H I N  SSTOP 1t ROT ROT CMOVE 'DROP r 

SI~~I l t t I t t t$ t ISII  BLOCK 103 
String Variable Storage and RetrievaJ 

( STHING STACK YORDS CONT'D LAR 19 -SEP-79  ) 
: t ( [I---[I ADD TOP 2 STRINGS ON STACK L E F T  TO RIGHT I  

'SWAP SSTOP SSDOWN SSVER C@ SSTOP Ce  DUF ROT t 
SSTOP C! SSTOP DUP I t  ROT 1+ RHOVE SSTOP 1t SSTOY! i 

( [ L E N ?  BEGINNING CHAR 1 3 - - - E l  REPLACE TOSS WITH ) 
( SUBSTRING OF LENGTH [LEN]+  STARTOHG WITH S P E C I F I E D  ) 
( CHAR OF O R I G I N A L  STRING ) 

: "UBSTK 1- SSTOP SSVEK 'IIROP .+ DUP ROT ROT C !  SSPUSH i 
( [ADD OF 2ND S T R + l r  1ST  CHAR OF 1 S T  STKr  L E N  OF 2NDr 0 
( ---[OFFSET OR 0 I SEARCHES 2ND STH+ FOk 1ST CHAR OF 
t 1 S T  S T R + r  I F  FOUNDr COHPARES 2ND STR. FROM THAT P O I N T  
I T n  1ST STP 1 

The string store word, It[, places the 
top of the string stack in the string vari- 
able described by the parameter stack, 
popping the string stack. The string 
retrieve word, If@, places the string 
referred to  by the parameter stack onto 
the string stack. 

: *IN~L!XDI~'D~'OVER I t ce OVER = 
I F  OVER I t SSTOP 1t 'LEN S?F 0- 

I F  DROP I 1t ROT ROT LEAVE THEN THEN LOOP i 
OK 30 STRING-VAR MYSTRING <CR> 

" string text " MYSTRING "! <CR> 

OK 

MYSTRING "@ MYSTRING 'I@ "+ .SS <CR> string text string text 
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Invoking the name of the string variable 
MYSTRING in the  preceding example 
placed <address> <maulen> on the para- 
meter  stack. String store and string 
retr ieve check the maximum and current  
length of the  string variable when moving 
string data. 

When i t  is required to move fields of 
fixed length which do not contain an 
embedded current  length in the f irst  byte, 
fixed length string store and retrieved 
words may be used, The syntax is: 

String Functions 

"LEN returns on the parameter stack, 
the  length of the  string on top of the  
string stack. The string remains on the 
string stack. The address of the f irst  byte 
of the string (one byte a f t e r  t he  length 
field) is found by executing "LOC. 
<length> Cbegizning character number> 

"SUBSTR 
replaces the top of the string stack with a 
substring of length <length>, beginning 
with the specified character  of the 
original string. For example, 

" abcde" 2 3 "subs t r  .SS 
cd OK 

The "INDEX function searches for  the 
first occurrence of the  string in the  
second string. If an occurrence is found, 
i ts  offset  is returned on the  parameter 
stack. If an occurrence is not found, -1 is 
returned. The top of the string stack is 
popped- 

String Stack Errors 

Two errors a r e  reported by the  string 
stack package: string stack underflow and 
overflow. As s ta ted  previously 200 bytes 
a re  initially allocated for the  string 
stack. If repeated overflows a r e  gener- 
a ted  more space can be allocated for t he  
string stack by changing the  parameter 
passed to "INIT in the string stack 
library. String stack initialization is the 
last  function performed when t he  string 
stack library is loaded. 

Summary 

This was t he  f irst  major software 
package transported throughout t he  
University URTH community. Originally, 
i t  had a few code routines which were 
machine specific t o  reduce execution 
time. However, these were removed on 
all the systems but  the Intel 8080. The 
package has run, without change (except 
for  the above mentioned machine-specific 
code) on Hewlett  Packard 2100, DEC 
PDP-11, IBM 360 and the  INTEL 8080. 

t t S t S t S S t t t Y l i t t t U  BLOCK 104 I t S U S t S t t S t U t X S L l l t  

( STRING STACK UORDS CONT'D LAR 19-SEP-79 1 
( [ I - - - [ - I  OR OFFSET1 SEARCHES FOR I S T  OCCURENCE OF ) 
( TOP STH+ I N  2ND STR.--- IF FOUND OFFSET I S  RETURNED ) 
( ON PARAM STACK ELSE -1 I S  RETURNED. TOSS I S  POFPED 

: 'INDEX -1 SSTOP DUP C@ 0<> 
IF DUP SSDOWN SSVER PUP ce ROT I+ ce ROT 1 t  SUAP 
ROT 0 'INDEXDO 
ELSE 0 ROT ROT THEN 2DROP 'PROP i 
( TI---El COMPARE S DROP 7'0r 2 STR~NGSI  LEAVE 0,<0 OR >O ) 

: '? SSTOP DUP SSDOUN S? 'DROP 'DROP r 
( [ I - - - C T / F I  LOGICAL =, TESTS TO? 2 STRINGS ) : 's *?  O r  ; 
( El---ET/F3 LOGICAL LESS THAN TESTS TOP 2 STRINGS ) : * < * ? O >  i 

***tS*S*t*S**SSt*u BLOCK 105 S*S*St* * t tSS*$&St&t  

I STRING STACK WORDS CONT'D 
s '> n A n  is- MAR-^^ ) 

( C l - - - C T / F l  TESTS TOP 2 STRINGS FOR 5 X )  
'To'; ; 
./= . . ( C l - - -KT/F l  TESTS TOP 2 STRINGS FOR <= X) '> NOT i : * I:, = ! Cl - - -ET/F l  TESTS TOP 2 STRINGS FOR >= t )  
-.: NnT . 

: ' S P ~ ~ E S '  ( <N>-i>,  PUSH A STRING-OF N SPACES ON SS $ )  
DUP 0 DO SSTOP I- BL SOVCHECk OVLR C! SSTOP! LOOP 
SSTOP 1- DUP ROT SUAP C ?  SSTOP! i 

: ' I N I T  ( <#CHARS TO ALLOCATE FOR S S > - O r  I N I T  SS- INTO DICT ) 
1 ?# HERE SSO ! ALLOT HERE 2- DUP SSM ! SST ! 9 

200T ' I N I T  ( ALLOCATE 2 0 0  CHARS FOR STRING STACK ) 
--> 

t l t t t i t t t t S t t t t S t t  BLOCK 1 0 6  t S U S S t U S t t t U S S S S t t S  

( STRING VARIABLE AND STRING ARRAY HAH 13-JUN-80 ) 

( CnAx LEN]---[] ALLOTS SPACE IN DICT FOR n h x  LEN AND ) 
( HAX t OF CHARS* ) 

: STRING-SPACE DUY , 0 9 2/ D P t !  
( CHAX LEN1 STRING <NAME> --- ~UILDS A STRING VARIABLE ) 
( UHEN <NAME; I S  EXECUTED THE BYTE ADDR. OF THE STRING ) 
( STAR! AHD LENGTH ARE LEFT ON THE STACK ) 

: STRING-JAW (BUILDS STRING-SPACE 
,CODE s -)  u nov, ( PUSH PARAW ADDR ) 

S) 4 # ADD* ( POINT TO COUNT ANb F I R S T  CHhR 
S -) 2 U I) MOV, ( PUSH hAX LENGTH ) 

NEXT , 

U S t t S t t S S S U S t S t l t S  BLOCK 1 0 7  S S S S U U U t S 8 t S U S S l t l t  

! STRING ARRAY ROUTINE HAM 13-JUN-80 ) . O S T R I N G  ( I# OF ELEMENTS, HAX LEN1 ---<NhME:> t )  
<BUILDS SUAP DUP , ( BUILD HEADER, STORE t OF STRINGS ) 
0 8 0  DUP STRING-SPACE ( ALLOT D I C  SPACE, STORE HAX LEN 

LOOP DROP 

DOES> 2+ DUP @ ROT ROT 3 PICK ( ADUH OF 1ST ELEHENT ) 
DUP 2 MOD I F  3 t ELSE 4 t THEN ( i t  TO MAX LEN I F  ODD ) 

( 2 t  I F  EVEN, 2 t  FOR MAXLEN 
ROT t 2 t  t SUAP i ( STRING ADDR t ELEHENT OFFSET ) 

( RETURNS COUNT AND ADDR ) 

--) 

t S t S t S t t L S S t S $ $ t t $  BLOCK 1 0 8  t U t S S t S U X $ t t S S t t t S t  

( STRING EXECUTION ROUTINE LPFFHAM 18-HAR-81 ) 

: 'EXEC i <WORD NAtlE ON TOSS>-O, EXECUTE UORD I F  FOUND ) 
HERE 'LEN '! 
F I N D  ?DUP I F  EXECUTE 

ELSE 0 TABDRT THEN i f UNDEFINED UORD ERROR ) 

: 'FORGET ( (WORD NbHE ON TOSS>-<>, FORGET UORD I F  FOUNn ) 
HERE 'LEN '! 
F I N D  ?DUP I F  UPARAH + SFORGET 

ELSE 0 TABORT THEN i ( UNDEFINED UORD ERROR ) 
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The first application was for a screen- 
oriented data entry system. Later appli- 
cations included an ISAM data base, a 
menu-driven interface for f low cytometry 
and a word processing system. The pack- 
age consists almost entirely of i ts original 
code written i n  1977 by Mike Willisms, of 
the University Computing Center. The 
major change has been the addition of 
comments. 

We would l ike t o  thank the following 
people for their assistance: Mike 
Williams, of  the University Computing 
Center, who developed the original String 
Stack Package for URTH on the IBM 360 
and the Intel  8080; and two undergradu- 
ates who worked for Lawrence Forsley, 
Lynn Raymond and Dan Blumenthal, for 
documenting this package. 

This work was partial ly supported by 
the following sponsors: Exxon Research 
and Engineering Company, General Elec- 
t r ic  Company, New York State Energy 
Research and Development Authority, 
Northeast Utilities, The Standard Oi l  
Company (Ohio), the University of 
Rochester, Empire State Electric Energy 
Research Corporation, and the U.S. 
Department o f  Energy inert ia l  fusion 
program under contract number DE-ACU8- 
80DP40124. 

R. Marisa is the manager s f  the computing 
facil i ty of  the Production Automation 
Project i n  the College of Engineering a t  
the University of  Rochester. M. McCourt 
was a senior laboratory engineer with the 
Laboratory for Laser Energetics at  the 
University of  Rochester and is now an 
applications . engineer for Harvey 
Electronics. 

HELP WANTED 

Associate Systems Manager, 
Pulmonary Computer Systems 

Primary responsibility for designing, 
debugging and implementing major soft- 
ware projects on the Pulmonary Computer 
System. Programming experience wi th  
PDP-11 Assembly language and FORTH 
desirable. Some hardware experience wi l l  
be useful. 

Salary range to  $35,000. Superior 
benefits package, three weeks vacation 
first year. 

Contact: 

John Gilbert, Employment Off icer 
Cedars-Sinai Medical Center 
8723 Alden Drive 
P.O. Box 48750 
Los Angeles, C A  90048 
(213) 855-5529 

Released on two 5.25" diskettes with 
source i n  280 assembler 820080-25 ($80). 

FORTH Application Modules 
D i e t t e  Released on one 8" diskette with 

source i n  Z80 assembler 8@0080-Z8 ($80). 

The diskette of  FORTH application 
moduels, a new product by Timin 
Engineering, is a variety package of 
FORTH source code. It contains hundreds 
of FORTH definitions not previously pub- 
lished. Included on the diskette are data 
structures, software development aids, 
string manipulators, an expanded 32-bit 
vocabulary, a screen calcuIator, a typing 
practice program, and a menu genera- 
tion/selection program. In addition, the 
diskette provides examples o f  recursion, 
<BUILDS ... DOES> usage, output number 
formatting, assembler definitons, and 
conversational programs. One hundred 
screens of  software and one hundred 
screens of instructional documentation are 
supplied on the diskette. Every screen is 
i n  exemplary FORTH programming style. 

The FORTH screens, wr i t ten by Scott 
Pickett, may be used wi th  Timin FORTH 
or other fig-FORTH. The price for the 
diskette o f  FORTH application modules is 
$75 ( i f  other than 8'' standard disk, add 
$15). To order the FORTH modules, wr i te 
Timin Engineering Company, 9575 
Genesee Ave., Suite E-2, San Diego, CA 
92121, or cal l  (714) 455-9008. 

INNER ACC'ESS FORTH 
SOFTWARE AND DOCUMENTATION 

Fig-FORTI-4 compilerfinterpreter for 
PDP-11 for RT-11, R S X l l M  or stand- 
alone with source code i n  native as- 
sembler. Included in this package are an 
assembler and editor wr i t ten i n  FORTH 
and installation documentation. 

Manual for CP/M (or CROMEMCO) 
fig-FORTH above 620080-99 ($20). 

METAFORTH Cross-Compiler for 
CP/M or CROMEMCO CDOS to  produce 
fig-FORTH on a target machine. The 
target can inclilde an application without 
dictionary heads and l ink words. It is 
available on single density diskettes with 
128 byte 26 sectorltrack format. Target 
compiles may be readiIy produced for any 
of  the following machines. 

CROMEMCO--all models 
TRSBO Model I1 under CP/M 
Northstar Horizon 
Prolog Z80 

Released on two 5.25" diskettes 
1/20100-85 ($1,000). 

Released on one 8" diskette t20100-88 
($1,000). 

Complete Zilog (AMD) 28002 
develoment system that can be run under 
CP/M or CROMEMCO CDOS. System 
includes a METAFORTH Cross-Compiler 
which produces a 28002 fig-FORTH 
compilerfinterpreter for the Zilog 28000 
Development Module. Package includes a 
28002 assembler, a Tektronix download 
program and a number o f  utilities. 

Released on two 5.25" diskettes 
W29102-85 ($4,000). 

Released on one 8" diskette #29102-88 
($4,000). 

This is available on a one 8" single 
density diskette only. 120011-01 ($80) 

Zilog 28002 Develoment Module fig- 
Reference Manual for POP-11 fig- FORTH ROM set. Contains fig-FORTH 

FORTH above. 620011-99 ($20) w i th  28002 assembler and editor in 4 
(2716) PROMS. #38002-00 ($850). 

Fig-FORTH compiler/interpreter for 
CP/M or CROMEMCO CDOS system 
comes complete with source code wri t ten 
in native assembler. Included i n  this 
package are an assembler and editor 
wr i t ten i n  FORTH and installation 
documentation. 

A l l  diskettes are single density, witk 
5-25'' diskettes i n  128 byte, 18 
sectorftrack format and 8" diskettes i n  
128 byte, 26 sectorltrack (IBM) format. 

For orders and further information, 
contact: 

INNER ACCESS CORPORATION 
Software Division 
Box 888 
Beimont, CA  94002 
(415) 591-8295 

ANNOUNCEMENTS 

Released on two 5.25" diskettes wi th  Sym-FORTH Newsletter now available, 
source i n  8080 assembler 120080-85 ($80). contact: Saturn Software Ltd., PO Box 

397, New Westminister, Brit ish Columbia, 
Released on one 8" diskette with V3L 4 W ,  CANADA. 

source i n  8080 assembler #20080-88 ($80). 
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COMPLEX ANALYSIS IN FORTH 

Al f red Clark, Jr. 
Department o f  

Mechanical Engineering 
University o f  Rochester 

3uring my years as an engineering 
educator and a researcher i n  theoretical 
f luid mechanics, 1 have often wished for 
the perfect calculator--a compact 
machine which would perform intr icate 
and useful mathematical tasks i n  response 
to a few keystrokes. The pocket scientif ic 
calculators, amazing as they are, never 
seemed t o  have quite the power and flexi- 
b i l i t y  (and certainly not the graphics 
ability) that I hoped for. I always sup- 
posed that my hopes were unreasonable 
unt i l  I discovered FORTH two years ago. 
Having been a FORTRAN programmer for 
20 years, I found the transition to  FORTH 
somewhat di f f icul t  and even painful at 
times. Originally, 1 took up FORTH out of  
curiosity, but  gradually I realized that the 
quest for the perfect calculator was over- 
-it is FORTH plus a microcomputer. 

Perhaps I should say a l i t t l e  more 
about what a perfect  calculator is sup- 
posed to  do. Among other features, it 
should have (1) standard trigonometric and 
exponential functions, (2) other common 
special functions (e.g., Bessel functions), 
(3) graphics and automated plot t ing o f  
functions, (4) numerical integration, (5) a 
root-finder, (6) special purpose applica- 
tions, such as a direction f ie ld plot ter for 
f irst order differential equations, and (7) 
complex arithmetic, including complex 
transcendental functions. Further, a l l  
procedures should be executable with a 
few keystrokes. 

The last i t em in  the list-complex--is 
i n  some ways the most stringent test of 
any would-be perfect  calculator. It's 
certainly not available on any pocket 
calculator. Although it can be imple- 
mented i n  BASIC, it is cumbersome and 
requires a large package of subroutines. 
The versions of  FORTRAN available for 
small machines generally, omit  the com- 
plex arithmetic and complex functions 
which are available on large machines. 
With FORTH, however, the extension t o  
complex f rom rea l  f loating point is simple 
t o  implement, easy to use, and powerful. 
Since complex arithmetic is not yet very 
common in  FORTH on small machines, I 
thought it would be worthwhile t o  sketch 
br ief ly my implementation. 

The most fundamental question i n  
introducing complex analysis is how to  
represent complex numbers. Here i t turns 
out that the pure mathematician's defini- 
t ion of  a complex number as an ordered 
pair of  real numbers is exactly what we 
need. Thus the complex number 3.5 + 7.2i 
is regarded as an ordered pair, and is 
pushed on the stack by typing 3.5 7.2 . 
With this convention established, i t  is easy 

t o  define a l l  o f  the important stack mani- 
pulations such as ZDROP, ZDUP, ZOVER, 
ZROT, and ZSWAP, which perform exactly 
l ike their integer and floating point 
counterparts. The basic load and store 
operators, Z@ and Z[, can be defined i n  
terms o f  @ and I. 

There are many single number opera- 
tions which are useful. These include the 
rea l  pert  REZ, the imaginary part  IMZ, 
the complex conjugate CONJ, the modulus 
1.71, the square of  the modulus /Z/2, the 
reciprocal l /Z ,  and the phase ARGZ 
(radians). Most o f  these are quite simple 
to  define. IMZ, for example, is just 
: IMZ FSWAP FDROP ; where FSWAP and 
FDROP are floating point stack oper- 
ations. As another example, consider 1/Z 

defined by I 1/z ZRlP /2/2 PEwr F/ 

F F U n ! p r a a r ~ / r n ~ ;  

For ARGZ it is very important to establish 
a precise range and to  implement it care- 
fuily. The conventional range, which I 
have used, is -PI < ARGZ <= PI. Any care- 
lessness i n  the definit ion of  ARGZ wi l l  
lend to disasters later when multi-valued 
functions are introduced. Many engineer- 
ing applications require the phase in 
degrees, and it is convenient t o  bui ld i n  a 
function DARGZ which supplies this. 

Conversion words between rectangular 
and polar forms are also very useful. To 
go from retangular t o  polar, w i th  the 
phase ( in radians) on top of the stack and 
the modulus just below, we have 

: m u m  Z D U P / z / F I I O T m A R G Z ;  

A similar word, DPOLAR, leaves the argu- 
ment i n  degrees. For conversion from 
polar t o  rectangular, we have RECT (angle 
i n  radians) 

: m  m v E F ( F O V W a x F * C F I I D T m s n ? P  

and a word DRECT for the angle i n  
degrees. A very useful application o f  
these is a rotat ion operator ROTZ, defined 
so that the sequence Z F ROTZ rotates 
Z by F radians and leaves the result on the 
stack. The definit ion is 

:lwrz# m m P O l A R R W T F + ~ ; .  

There are several different useful 
formats for complex output. ("y system 
has 8 different formats, which is handy 
but a l i t t l e  extreme.) The word Z. prints 
the number as an ordered pair -- 3.5 7.2 , 
for example. The conventional mathema- 
t ica l  notations is obtained by ZI. -- (3.5) + 
(7.211. Words t o  pr in t  in polar form are 
also useful. For example, ZP. is defined 
so that the sequence 3.5 7.2 ZP. gives 

KID = 8.00%2303 AEG = 1.11832144 (IUU)) . 
A l l  o f  these output words are defined i n  
terms o f  the basic f loating point pr in t  
word F. . For example, Z. is defined by 

: Z. J S i A P  F. 2 SPAI3ES F. : 

The binary complex operations are Z+, 
Z-, Z*, and Z/. These are quite easy t o  

define. For  example, Z+ is defined by 

where FROT is a floating point ROT, end 
F +  is a floating point add. 

Higher functions can be defined, pro- 
vided the underlying real  f loating point 
has the standard real functions SIN, COS, 
ATN, and EXP. The complex exponential, 
for example, is then defined by 

Other useful functions such as ZSIN, 
ZCOS, ZTAN, ZSINH, ZCOSH, and ZTANH 
are defined similarly. 

O f  the multi-valued functions, the 
most useful are the square root ZSQR, the 
logarithm ZLOG, and the power Z**. As 
an example of the definitions, consider the 
principa! value of  the square root: 

The basic words described above can 
be the building blocks for substantial 
applications. One such application, which 
is particularly useful pedagogically, is 
conformal mapping. I have defined a word 
MAP such that the sequence 

wi l l  take any previously defined curve i n  
the 2-plane and any previously defined 
complex function, and produce a graph 
showing the curve and i ts  image under the 
transformation. This tool  allows students 
(and the instructorD t o  improve their 
understanding of  the geometry of complex 
functions. 

Notes an Implementation 

The code described above runs on the 
author's 48K Apple 11. The underlying 
integer FORTH is the excellent version 
wri t ten by William Graves and distributed 
by SOFTAPE. The real  floating point 
arithmetic and functions have been 
implemented by interfacing the SOFTAPE 
FORTH wi th  the Applesoft ROM rou- 
tines. The same data stack is used for 
integers (2 bytes), reals (6 bytes), and 
complex numbers (12 bytes). The code for 
the complex routines was wri t ten entirely 
in FORTH, and, i n  compiled form, occu- 
pies about 2K. The conformal mapping 
code compiles to  about 1K additional. 

ORDER NOW! 
Proceedings  of t h e  1 9 8 1  Roches ter  

FORTH S tanda rds  Conference 
$25.00 US, $35.00 Fore ign .  Send 
check o r  MO t o  F I G  i n  U S  funds  
on U S  bank.  

" S t a r t i n g  FORTHn 
H a r d  - $20.00 U S ,  $25.00 Fore ign  
Soft - $16.00 US, $20.00 Fbreign 

ORDER NOW! 
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A FORTH BASED 
MICRO-SEED 

MICRO ASSEMBLER 

Gregory E. Cholmondeley 
Laboratory for Laser Energetics 

University of Rochester 

Abstract 

The FORTH programming language can 
be used t o  implement a very small and 
useful micro assembler. Functions ranging 
from automatic field alignment to user 
definable macros can be written and 
altered easily, permitting a flexible and 
easy t o  use microcoding technique. This 
paper also serves to illustrate several of 
the many programming features found in 
FORTH. 

Computer central  processors often 
contain an iternal data form called 
"microcode." This code defines the 
instruction se t  of the processor. The 
creation of this internal code is called 
"microcoding." 

Microcoding by hand is a t  best a tedi- 
ous and wasteful undertaking where a slg- 
nificiant portion of a programmer's t ime is 
spent aligning fields, formatting output 
and correcting typographical errors. 
Understanding ( let  alone debugging) a 
microcode program is difficult due to the 
lack of readability from a human point of 
view. Through the use of comments, auto- 
matic field positioning, labels and other 
such tools, a good micro assembler should 
minimize the above problems making 
microcoding a much more agreeable form 
of programming. 

There already are micro assemblers 
written which handle these along with 
other problems associated with micro- 
coding, but most of them share one rather 
serious drawback: they are  large pro- 
grams. The micro assembler presente 
here is based heavily upon the Signetics f 
micro assembler but requires only a f ew  
"blocks" of FORTH code. Thus i t  is pos- 
sible to have a micro assembler on a small 
home computer[ Such an assembler could 
be used a s  a design tool a s  well a s  an 
inexpensive and effective teaching aid. I t  
would allow even wide instruction words 
to be built in a simple to use, high level 
form. 

There a re  two main phases associated 
with this micro assembler: instruction 
definition and actual  programming. A 
third phase will be implemented shortly t o  
allow the user to explicitly and easily 
define output formats. The first of these 
phases t o  be  explored is the instruction 
definition phase. This is the  t ime when 
the various instruction word formats a r e  

defined. A simple example of such a 
definition would be  as follows: 

INSTRUCTION WIDTH 8 
Define an 8-bit instruction. 

FORMAT 
FIELD GG WIDTH 16 DEFAULT 65535 

FORMAT. Ern 
FIELD HH WIDTH 8 DEFAULT 255 

FIELD A WIDTH 4 DEFAULT 3 Figure (1 )  : Sample I n s t r u c t o n  De f in i t i on  
Define field A a s  the  4 most signifi- 
cant  bit positions in the instruction, 
having a default value of 3. i n s t r u c t  i on  

FIELD I3 WIDTH 2 
/ 

Define field 6 as the next  2 bit posi- / 
/ 

tions, having a default value of 0. AA-->BE-->HH f i e l d s  AA, BB and HH 

FIELD C WIDTH 2 DEFAULT 1 
I 

Define field C as the  2 least  signifi- 
I 
*---->* f i e l d  BB has 2 a l t e r n a t e  

cant  bits, having a default value of 1. / I formats 

END.INSTRUCTION 
/ I 

/ 
Close the instruction definition. 

I 
CC-->DD GG format 1 con t a in s  f i e l d s  CC 

I and DDformat 2 con t a in s  f i e l d  
The resulting instruction word would 1 S.G 
appear in the  following form: * 

1 f i e l d  DJI has 1 a l t e r n a t e  : 7 4 : 3  2 : l  0: 

1 / format A I B I  C L  / 
EE-->FF f i e l d s  EE and FF 

From this point on the field names A, B, 
and C will be  unique and may not  be  used 
t o  define other fields. F igure  (2) : S t r u c t u r e  of  F igure  (1) 

While the  preceding example is rather 
trivial an instruction definition may 
become quite complex., I t  is, for instance, 
possible t o  define multiple formats for  
every field, with each of these containing 
multiple sub-fields. This is useful when i t  
is deemed t ha t  fields shwld  have different 
meanings depending upon the context  of 
the rest  of the instruction word (vertical 
versus horizontal programming). Sub- 
fields a re  treated in the same manner a s  
fields so tha t  they too may have multiple 
formats and sub-fields. This feature is 
implemented as a t r e e  structure allowing 
an unlimited nesting of fields, formats and 
sub-fields. Figures (1) and (2) should 
clarify this  concept. 

This part  of the micro assembler has 
error checking capabilities which prevent 
unintentional overwriting of fields. For 
example, if field EE of figure (1) is filled, 
then fields BB, DD and GG (and of course 
EE) could not be used. Automatic field 
defaulting uses the same mechanism so 
t ha t  if field EE is the only field filled 
(using the format  from the  previous 
example) then fields AA, CC, F F  and HH 
will be  defaulted. 

INSTRUCTION WIDTH 32 
FIELD AA WIDTH 8 DEFAULT 255 
FIELD BB WIDTH 16 DEFAULT 65535 

FORMAT 
FIELD CC WIDTH 4 DEFAULT 15 
FIELDDDWIDTH12 DEFAULT4095 

FORMAT 
FIELD EE WIDTH 10 DEFAULT 1023 
FIELD FF WIDTH 2 DEFAULT 3 

FORMAT.END 
FORMAT. END 

The programming phase of the  micro 
aasembIer is where the  actual  microcoding 
takes  place. An instruction is created by 
typing the name of a field followed by a 
number or expression representing the 
value t ha t  t ha t  field should take. This is 
continued for a s  many fields a s  needed in 
the  instruction word. When the  instruc- 
tion is complete a "$" (dollar sign) is typed 
and the  computer readies itself for  
another word. A t  this  point any undefined 
fields a re  s e t  t o  their  default values, the 
instruction and other related information 
is stored in memory, and the location 
counter  is incremented. Figures (3) and 
(4) demonstrate a simple microcoded pro- 
gram which merely se ts  one field a t  a 
t ime equal t o  a zero. 

PROGRAM lEXAMPLE WIDTH 32 

ORG 512 

END. PROGRAM 

Figure  (3) : Sample Program 
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AA used 
BB used 
CC used 
DD used 
EE used 
FF used 
GG used 
HH used 

BB & HH de fau l t ed  
AA C HH de f au l t ed  
AA, DD & HH d e f a u l t e d  
A A ,  CC & HH d e f a u l t e d  
AA, CC, FF & HH de fau l t ed  
AA, CC, EE & HH d e f a u l t e d  
AA & HH de fau l t ed  
AA 6 BB de f au l t ed  

F igure  (4) : Sample Output 

While automatic field alignment is in An example of this microp in use would be 
itself a vast improvement over hand found in the programming phase and might 
coding, there are a few other tools avail- look like: 
able t o  the programmer which make 
microcoding even easier. A "(." denotes a 
comment allowing anything up t o  and 
including a ".)" to be ignored. Typing ORG A A 7 H H ( L C ) $  

and a number or an expression will s e t  the AA 8 EX1 $ 

location counter ( LC ) to tha t  value. 
SET <new v a r i a b l e  name> 

TO <number o r  expression> 

will declare and initialize a variable, while 

typing EQU <old  v a r i a b l e  name>- 

WITH <number o r  express ion> 
will s tore a new value into a previously 
declared variable. These variables return 

NOTE: LC in the preceding example is 
a variable, the  It(" and ")" a r e  required 
for i t s  proper execution. They do not 
denote a comment in t he  MICRO 
vocabulary context. This is also true 
when building microps. In the MICRO 
vocabulary comments a re  delimited by 
I f /  11 --A I1  \ I1 \. CaIIU .I . 

their value when they a r e  typed (similar t o  
a constant in FORTH) and can be used in Being simple colon definitions, microps 

a t  any time and in  any phase can do internal testing, looping and every- 
of the micro assembler. thina else offered in FORTH. M i c r o ~ s  can 

expect  parameters on t he  stack as well a s  
One of the most versatile tools avail- numbers or expressions from the input 

in this a*emb1er is the buffer via a function called GETW. For 
MICROP function. Microps are user- example: 
definable functions desioned to eliminate 
a large part  of the  repetitious program- 
ming associated with microcoding. For 
example there may be times when several 
fields will always take on constant or 
relative values. Rather than cluttering 
the program by having t o  set all of these 
fields every time, a microp can be written 
to do this automatically. A program writ- 
ten using well named microps can in turn 
be quite a bit easier t o  read and under- 
stand than one which merely se ts  the  
fields. 

The definition of a microp requires a 
unique name and a set of commands which 
will be executed whenever i ts  name is 
called. Any FORTH programmer will soon 
realize tha t  a microp definition is nothing 
other than a colon definition, thus allow- 
ing the full power of FORTH t o  b e  easily 
accessed directly from the micro assem- 
bler[ An example of a simple microp tha t  
se t s  a few fields to zero  would be: 

MICROP EX1 (. s e t  f i e l d s  CC, FF, 
CC 0 and HH t o  0 .) 
FF 0 
HH 0 

END.MICROP 

HICROP ?GT (. <expr l>  ?GT <exF 
GET# > 

IF  AA 0 BB 0 CC 0 
ELSE HH ( LC ) 
THEN 

END.MICROP 

This could be used like: 

Finally, microps have macro capabilities 
in that  they can be nested and may even 
crea te  several lines of code in one call  (as 
may be needed in a tes t  and branch, or 
jump substitute routine). 

MICROP EX3 
LC 100 > 

IF  EX1 $ 
LC ?GT 1000 $ 

ELSE AA 0 $ 
CC 0 HH 0 $ 

THEN 
END.MICROP 

Another way t o  increase readability in 
the  micro assembler is  through the  use of 
labels. This feature is only partially 
implemented a t  this time but will work as 
follows. Labels must have unique names 
and must  be declared via LABEL state-  
ments before they are  used. When a label 
is found immediately preceding a new 
instruction word (or in other words; 
immediately following a 'I$'? the current  
value of the location counter ( LC ) is 
stored a s  the value of the label. Multiple 
labels may be used to represent the same 
line of code. When a label is used inside 
an instruction definition af te r  i t s  value 
has been set, i t  will be  t rea ted  a s  any 
other variable. If the label has not been 
se t  t o  a value (i.e., forward referencing) a 
zero  will be  returned and all information 
necessary t o  resolve t he  reference will be 
stored in memory for the second pass. 
During the second pass the micro assem- 
bler will shift the cor rec t  value(s) of the 
label(s) into the proper place(s) and then 
add t he  resulting number t o  the res t  of the 
word. This allows labels t o  be referenced 
more than once in a single instruction. It 
also allows addition and subtraction of 
other non-label expressions to labels (i.e., 
AA ( 1LABEL + 2 or AA ( ILABEL - 1 ) 
but not AA (1024 - lLABEL ) ). When this 
is implemented another extended precision 
function ( E+ ) will be needed to perform 
the extended precision addition. 

1r2> -- t e s t s  i f  exp r l  is > expr2 .) 

The last major feature of the micro 
assembler concerns output formatting. 
This has not been developed at all but  will 
consist of a basic instruction s e t  for  
programmers to use t o  define specific 
output formats (i.e., hex, insertion of 
special delimiting characters, etc.). The 
programmer will define a function (similar 
t o  a microp or colon definition) for each 
type of output format. The executable 
code field address of the current  format- 
ting function is stored along with the 
other instruction word information on the 
first pass. On the  second pass the  format- 
ting function will be executed to produce 
the desired result. I t  will be possible t o  
change the current  format function 
between instruction words by using a 
command of the form: 

SET.FORMAT <format func t ion  name> 

allowing multiple output formats  within a 
single program. By installing different 
formats in currently existing ones, i t  will 
be possible t o  view the code in punched 
card format a s  well a s  a format suitable 
for  blowing PROMS! 
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Implementing Techniques 

The f irs t  problem t h a t  I addressed was 
how to align the fields in an instruction 
word definition. For words t h a t  a re  32 or 
fewer bits wide the solution is simple, 
merely do logical shifting and ORing. 
Since 32 bits is a rather  stringent limit on 
the word width, I have kept  the  same basic 
strategy but have defined a se t  of func- 
tions which can do logical operations upon 
extended precision words. The precision 
(in terms of 16-bit words) is stored in a 
variable called PRECISION and is se t  a t  
the PROGRAM WIDTH statement. These 
a re  the extended precision functions which 
I needed: 

1. EXT.PREC - This is a defining 
word tha t  c rea tes  an extended 
precision variable which uses the 
Bartholdi "TO concept" t o  store 
and fetch extended precision 
numbers. EXT.PREC expects  t h e  
desired precision of the new 
variable on the stack. 

2. E.FILL - E.FILL expects  a number 
and the precision of tha t  number 
in te rms  of 16-bit words on the 
stack. It uses this  t o  fill in the  
most significant places with zeros 
until the  number has a precision 
equal t o  the current  value of 
PRECISION. Notice tha t  the 
value of PRECISION must b e  
larger or equal t o  the length of 
the given number. 

3. E-DROP - This function drops an  
extended precision number from 
t h e  top of the  stack. 

I. ESI- - The ESL function performs 
a logical shift t o  the l e f t  on an  
extended precision number. It 
expects  the extended precision 
number and the number of shif ts  
on the  stack and returns t h e  
shifted number. 

5. EOR - This takes two extended 
precision numbers off of t h e  
stack, logically ORs them togeth- 
e r  and r e t u m s  t h e  resulting 
number. 

6. EXOR - This executes an  exclu- 
sive OR operation between two 
extended orecision numbers. I t  
expects  two extended precision 
numbers and r e t u m s  the result. 

7. ECOM - ECOM does a 1's comple- 
ment  of the given extended preci- 
sion number. 

One extended ari thmetic function will b e  
needed to implement forward referencing 
of labels. This function has already been 
mentioned and will b e  called E+. 

t J t l t S t S S S t t X t X l t S  BLOCK 160 t t S t S L t S S l t t $ t C 1 C t X  

( a l s e b r a i c  n o t a t i o n  GEC 15-JUL-81 , 
: GET# t L<t--<input  express1on:s  va luer1  

32 UORB NUtiBER NOT ( g e t  next  i n r u t  charlnum ) 

I F  R> R:> SWAP >R >R THEN i ( i f  c n a r  then  t r e a t  a s  ' ( '  I 

: ( .  ECOnPILEl ( i I M E D I A T E  ( d e f i n e  (. a s  comment d e l i m i t e r  J 

YOCABULARY HICRO NICkO DEFINIT ION5 . + GFT* + i (. E<#l>--<#l t #2>1 r e d e f i n e  t , )  
( ,  C<#l>--r#l - #2/3 redefane - . I  
( .  C%#l?--,#l t # ? , I  r e d e f i n e  t . t 

: / GET# j ; i, [,;?I)--‘. .#l i #2,3 r e a e t l n e  / + / 
: ) R;, R> SNAP i R  >R i (. Cc.,--<:>l end e x r r e s s l o n  . )  
' 0 ;  ( .  C<>--.iil s t a r t  e x ~ r e s s i o n  I I 
~ O R T H  DEFINITIONS -- 

( value  and f l i p f l o p  t ~ ~ e f  GEC 10-JUfl-81 ) 
0 UAR %TO ( f l a *  ) . TO 1 %TO ! ; 

: V A L - (  r e t u r n s  value of v a r ~ a b l e  f not address  3 ) 
*.BUILDS DOES) 

%TO I? I F  ! 0 XTO ! ( s t o r e  va lue  J 
ELSE e push va lue  1 
THEN i 

: FLIYFLOP ( r e t u r n s  0/1 and s t o r e s  1 / 0  ) 
<BUILDS O 9 

( [<:>--.!.,. .,I i n i t i a l i z e  F.F 
DOES), %TO @ 

I F  ! 0 XTO ! ( C<l/Oi- -<>I  s e t  F . F .  ) 
ELSE ?UP e uur NOT ROT ! ( E ~ > - - C I / O ; ~ I  f l l r  F . F .  
THEN r - - 

( v a r i a b l e  d e f i n i t i o n s  GEC 19-JUN-81 ) 
0 VAL CUH.ADUF: ( c u r r e n t  address  

t c u r r e n t  f i e l d  ) 
( c u r r e n t  format ) 

( c u r r e n t  i n s t r u c t i o n  word ) 
( f i e l d  l e r ~ s t h  I 

( f i e l d  r o s i t i o n  ) 
( l o c a t l o n  counter  1 

( i n s t r u c t i o n  width ) 
( l a s t  f l r l o  i 

O VAL L.FORH ( l a s t  format J 
O VAL L.INSTH ( l a s t  ~ n s t r u c t ~ o n  ) 
0 VAL HEf4 ( c u r r e n t  memory addr f o r  p r l n t  r o u t l n e s  1 

0 VAL NEY.UORD ( f l a S  s e t  a t  s t a r t  of new i n s t r ,  uord I 
0 VAL OFFSET ( o f f s e t  of s h i f t  Iused  i n  ESL) ) 

- - .  

( v a r i a b l e  d e f i n i t i o n s  - 2 GEC 19-JUN-81 ) 
0 VAL 
0 VAL 
0 VAL 
0 VAL 
0 VAL 
G VAL 
0 VAL 
5 VAL 
F L I P F I  
0 XEO 
0 XEQ 

OVFLI. ( overf low f l ad  t 
PLACE ( addr of temp s t o r a d e  I n  extended o r e r a t l o n s  J 
PRECISION (  recision of word ~n 16 b i t  units 1 
TEST-FLAG ( f l a s  used I n  e r r o r  checkln* and d e f a u l t i n d  ) 
TSHIFT ( ~ n t e r m e d i a t e  number of s h i f t s  IESL) 3 
TIIEF ( d e f a u I t  rhase  I O .  u s e / l +  s e t / ? .  ~ n i t i a l ~ z e ?  ) 
LFLAG ( value  t o  s t o r e  ~n f l a g 5  I 0 / 1 >  I 
%PRINT*FORB6T ( addr of  o u t r u t  format code i 

.OP FLD.FF ( f i e l d  F.F. f o r  e r r o r  checkind S d e f a u l t i n g :  
BROTHER ( b r o t h e r  of c u r r e n t  field!format 1 
PARENT ( p a r e n t  of C.FIELD ) 

0 XEQ SELF 
0 XEQ UNCLE 

r  FIELD ) 
( uncle  of C.FIELU ) 

t ~ t t t $ t t X t t t t t t S S t  BLOCK 164 t t t X S t t t S S t t t S S S I f X  

( extended p r e c i s i o n  f u n c t i o n s  GEL 12-JUN-81 ! 

: EXT.PREC i <prec is ion ; ' -0  b u i l d s  an extended p r e c i s i o n  # f 
(BUILDS DUP 2* r 0 DO 0 I LOOF 
DOES:., ( (3-..< .leu-order ..+ hi3h-order; o r  reversed i f  %TO ) 

DUP OUP e + 2 t suAr 2 t 
XTU e IF DO I ! 2 +LOOP 0 %TO ! ( s t o r e s  # ) 

ELSE SWAP 2 - DO I C -2  +LOOP f f e t c h e s  t ) 
THEN i 

: E - F I L L  f <# 1en)-i# 0 4 . .  0) r u t s  0 ' s  i n  h i 3 h  o r d e r . ~ l a c e s  i 
PRECISION SUAP PBUP i I F  DO 0 LOOP ELSE 2DROF THEN r 

: EDROP ( i::low-order ... hi?h-order>-<:? d r o r s  e x t . r r e c r s i o n  # 
PRECISION 0 DO DROP LOOP , 

Page 128 FORTH DIMENSIONS 11114 



When a field is assigned a value and is 
aligned, the following process occurs. An 
extended precision number with a preci- 
sion equal to PRECISION is on the stack. 
This is the value of the  current  line of 
microcode. After  the field-name is typed, 
an extended precision number with a 
precision equal to the width of the field is 
accepted. E.FILL is used on this number 
to make i t  the same precision as the 
instruction word, ESL is used t o  shift it 
over the proper number of bits, and EOR 
is used t o  update the micro-instruction. 
This is repeated until a "$" is encountered 
which will clear the flags, se t  any defauft- 
ed fields, s tore the extended precision 
instruction word in memory and leave an 
extended precision number equal t o  zero 
on the stack (for the next micro- 
instruction). 

The second main problem tha t  I faced 
dealt with how to  handle multiple for- 
mats. I implemented a t ree  structure 
where the instruction is the  root with the  
list of fields a s  its children. Each field 
has a list of formats or a zero for i t s  
children. Every format has a list of fields 
a s  i ts  children and the cycle continues. 
Each node in this t ree  has pointers to i ts  
parent, "oldest" child, and next youngest 
brother. Each node also contains a flag 
denoting whether i t  is a valid field or not, 
a value corresponding to its starting posi- 
tion in the instruction word, i ts  field 
length and i ts  default value. Thus when a 
field is accessed a test  is executed t o  
determine whether it is valid or not. This 
is accomplished by traversing up the t ree  
and checking the validity flag. If the first 
se t  flag is found in a field, then the  
programmer is trying to overwrite another 
format in the  same field. If no flaq is s e t  
and this is not a new line of microcode, 
then this field is not defined in the  same 
instruction word as the previous one(s) and 
another error condition is found. If ,  how- 
ever, the field is determined t o  be valid, 
then the flag bit of tha t  field will be s e t  
along with the flag of i ts  parent, and i ts  
parent, continuing up t o  the  root. When a 
"$" is encountered, the t ree  is traversed in 
tho same manner but from the root down 
and all flags are reset. A t  the same t ime 
any unused brothers of the lowest level 
fields used will be assigned their default 
values. 

INSTRUCTION FORMAT FIELD 

INSTRUCTION FORMAT FIELD 
-- 

I f i e l d  I 
Brother  1 
Used Flag I 0 /1  I I 0 / 1  I 
C h i l d  1 f i e l d  ] 1 f i e l d  I 
Field S t a r t i n g  P o s i t i o n  
F i e l d  Length 
Default  Value 

o r  Zeros 

I format ( 
/ f i e l d  I 
I 0 / 1  I 
I format l 
1- I 
I- I 
I - - - -  I 
1 - .- - - 1  

XXttt$XSttt\t1:ttt1: BLOSk 165 $SXt1:$$1:1:$1:tX$f$$X~ 

! e.:tended r r e c .  f u n c t ~ c n s  - 2 GEC 12-JUN-81 ? . ESL ! ( leu-ord  , + .  h:sh-ord t - s h x f t s  -d lou-orb  ... hlsh.ord:  
s h i f t s  # - s h l f t s  t o  l e f t  i d r o r s  high cv S s h l f t s  i n  3 ' s  > 

0 TO OVFLG HERE PPEC!S!Og 2 X 4 DUF TO PLACE HECE 
DO 0 I I 2 +LOOP c r e a t e  worksrace 

0 PRECISION 1 - ?t DO I TO OFFSET 3UP TO TSHIFT SYA? 
( f o r  byte  from h l s b  t o  low du 

HEGIN ?SHIFT 16 >= 
iF ( #-shift r =  16 r 

OFFSET ? + TO OFFSET 
TSHIFT 16 - TO TSHIFT 
1 TO OVFLG i s e t  overflow f l a 3  

ELSE t t - s h i f t  . 16 < s h l f t  ncrmal l r  ) ! 
DUF TSHIFT -L OFFSET HERE + 
DUP @ POT OR SUAP 1 

--> 

tlil1:tX1SSStSS%tfS BLOCK 165 $t1:SXSft$t~XXXlt1:~$ 

< extended r r e c .  f u n c t ~ u n s  - 3 GEC 11-JUN-61 j 

OFFSET 2 4 HERE + DUP e ( handles #s t h a t  a r e  s r l i t  i 
ROT 16 TSHIFT - ->L OR SWAP 1 ( ~ n t o  2 h r t e s  br s h i f t  ) 

THEN OVFLG NOT 0 TO OVFLG 
FNTi 

-2 ~GOP DROP 
PLACE HERE DO I 2 +LOOF i ( f e t c h  # from temp uorksrace  ) 

: EGET ( E-.addr of v a r i a b l e , - - < . e x t . ~ r e . t . 3  , 
DUP PRECISION 1 - It + BO I @ -2  +LOOP i 

( extended prec.  functions - 4 GEC 15-JUN-BI i 
: EOF ( . e x t . r r e . #  e x t , ? r ~ . t  - e c t . r r e + t ?  Uh ' e - t . ~ l e  ts ) 
HERE FRECISION 91: t 1 - DUP TO PLACE HERE DO o i 1 " ~  +LOOF' 
1 FRECISIGN DO 

I PhECISION + PRECISION I - + PICh 
F'RECISION 1 + F'iCh OR - 2  +LOOP 

HEhE PLACE DO I 1 - 2  +LOOP 
PRECISION 2$ 0 DO DROP LOOP 
PLACE HERE DO I t? 2 SLOOP Y 

: ECOt! ( C<ext.#.r--.;MOT ex: . # > I  one comrlements e x t  .?re.# 
HERE PRECISION 2$ t 1- DUP TO PLACE HERE 
SMAP DO I I -2 +LOOP 
PLACE HERE DO I e con 2 +LOOP ; 

: ERROR.FUNCT .' ERROR CODE: ' . CR i -- . 
$ ~ N ~ : ~ x s x x ~ ~ x $ ~ : Y x s ~   BLOC^ 168 %urtutr$$rxr$trtur 

f u n c t ~ o n s  - 5 GEC I 
. r r e . #  e c t . r r e .  #>- tex t , r re .# .>  OR 
21: + 1 - DUP TO PLACE HERE DO O 
+ PRECISION I - + PICK + PICK XOR -1 +LOOP 
I ' -2 +LCiOP 
DO DROP LOOP 

I @ 2 +I-OOF i 

XXlLlttttttttttttt BLOCK 1 0 9  XSt$tSX1:$ttttXlltYf 

i o f f s e t s  i n  f i e l d  s t r u c t u r e  GEC 3-JUL-81 i 
: 0FF.VAL + KT0 @ IF ! 0 %TO 1 ELSE DUP O i >  IF @ THEN THEN i 

: ?FARENT O OFF.VAL i : ?BROTHER 2 OFF,VAL i 
: ?FLAG 4 OFFeVAL i : ?CHILD 6 OFF.VAL Y 

: ?ANCESTOR ?PARENT ?PAkENT i 
: ?INSTRUCTION.UIDTH 8 0FF.VAL i i INSTKUCTIGN i 
: ?FiELD,START C.FIELD 0 OFF+VbL i A ( FIELC! ) 
: 7FIELD.LENGTH C.FIELD 10 OFF,VAL r ( FIELII 1 
: ?DEFAULT C.FIELD 12 + i ( FIELD f 
! NEU.SON 
DUP 'CHILD DUP ROT AN13 

IF O SWAf BEGIN DUP ?BROTHER ROT DROP DUP NOT END DROP 
ELSE nRnr o 
THEN TO HkOTHER i --> 
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With the structures defined, the task 
of creating a program comes to light, An 
explanation has already been given des- 
cribing how the words are constructed. 
The following diagram should help clarify 
how a "program" is actually stored in 
memory in its first pass form. 

General First Pass Structure for 
Micmcode Programs 

............... . . . . . . . . . . . . . . .  1 - L . I  Forth 
For th  1 1 1  Name 
Header (-I-,--- Link 
. . . . . . . . . . . . . . . I  ............... +:--I ----- Description 
Program 1- *--I ----- Ins t ruct ion Word Width 
Header 1 0 1  . . . . . . . . . . . . . . .  " - - I - - - - -  . . . . . . . . . . . . . . .  I- Address of Label 

* - - I  -,--- I-. F ie ld  ( ie .  it of s h i f t s )  

Complete 
F i r s t  Pass 
Data For 
One 
Ins t ruc t ion  
Word 

I-:-I 
12zIl----- Address of Label 

;\- - 1 - - --- I- F i e ld  
1 0 1  " - - I  ----- I- Output Format IAI----- LC 

- - 

I _  _ - 1  I n s t ruc t ion  
I - -  I Word 
- - ............... .. . . . . . . . . . . . . .  I- I )+--!----- Address of Label 

1 2 1  ----- Field  
/ : I  
I-:-I 
1 - -  1 Ins t ruct  ion 

1- I Word 
1 1 1  End of Program 

Each program has a unique name which 
defines a FORTH header. When this name 
is typed, the program is listed in a basic 
binary and hex form along with the format 
address, LC, and any unresolved labels. 

One of the primary objectives of this 
micro assembler is to make microcoding 
easier by making it more readable, and 
there are quite a few places where the 
reverse polish notation found in FORTH 
does not appear quite as nice as an infix or 
prefix form. Hence, I have written a f ew  
short functions to allow FORTH functions 
to accept numbers and expressions from 
the input bufter as well as from the para- 
meter stack. 

This method uses the return stack v i a  a 
function GET# which accepts input from 
the input buffer. If the input is a number 
GET# places i t  on the stack and returns. 
If t h e  input  is not a number then GET# 
assumes that the programmer typed a left 
parentheses "(" meaning that there is an 
expression or a variable in the input 
buffer. If this is the case then GET# will 
swap t h e  last two values on the return 
stack and return. When a right parenthe- 
ses is found, the top two values of the 
return stack are again swapped and the 
system is back to normal. This is simple 
and fast, although i t  has no method of 
checking whether a set of parentheses is 
properly closed. However, a variable 
could be used which would be incremented 

4tttSStttSStSttttt BLOCK 170  SltttSStttXttSStSSt 

! headers o f  f i e l d s  formats GEC 3-JUL-81 
t ?NAME DUP 0 0  IF CFA,TNAME ELSE DROP THEN i 
: IGNORE 32 WORD DROP r 

: HEADER ( creates 1st 4 f i e l d s  i n  FIELD and  FORfiAT ) 
0 TO UNCLE HERE TO SELF 
BROTHER O i Z  IF SELF BROTHER TO ?BROTHER 

ELSE SELF PARENT TO ?CHILD 
THEt4 SELF TO BROTHER 

PARENT r 0 0 , 0 P i ( rarent/brother/f las! /child ) 

: FORMAT.HEABER ( def ines  FORHAT relat ives  8 executes HEADER ! 
INSTALL LeFIELD IN UNCLE INSTALL CeFIELD IN PARENl 
INSTALL L-FORM IN BROTHER INSTALL CeFORh IM SELF 
CeFIELD NEUtSON HEADER 0 TO C.FIELD r --,.. 

YXStftYttStttttttt BLOCK 171 tttYSttSttSt*lYtSt* 

( i n s t r u c t i o n  and f o r h a t  defs .  GEC 3-JUL-81 

: INSTRUCTION ( INSTRUCTION <name> WIDTH < w i d t h >  ) 
0 TO C.FIELD FORMAI.HEADER 
IGNORE GET# 
PUP i i n s t r u c t i o n  u i d t h  
DUP ;O F.LENGTH TO F.POS i ( f i e l d  l e n d t h / f i e l d  r o s l t l o n  ? 

: FORMAT ! FORMAT 
?FIELD.LENGTH TO F.LENGTH ( f ~ e l d  l e n + t h  ) 
?FIELD.START F:LENGTH t TO F.POS i f i e l d  ~ o s l t l o n  f 
FORMAT.HEADER t 

: SET,FLAGS t <#>-<I:> sets f l a d s  from CIFIELD UP t o  # ) 
TO XFLAG 

k i ~ ~ k L ~ p A R ~ N ~  XFLAG TO OVER ?FLAG DVP NOT END M'OP 
%FLAG C,FIELD TO ?FLAG i 

ttSStSttttttSSSSt1 BLOCK 172 SSttttt%tSttSttStlS 

! f o r m a t , e n d  and  f i e l d  header  GEC 3-JUL-81 ) 
FORMAT*END ( ENII,FORHAT I 
C.FIELD ?ANCESTOR DUP TO L.FIELD TO C.FIELD 
CeFIELD ?PARENT IF ?FIELU.START ELSE 0 THEN FtPOS 0 

IF 2 ERROR*FUNCT RESTART 
ELSE ?FIELD+LENGTH TO FeLENGTH 

IFIELD+START TO F+POS 
THEN r 

: FIELB.HEADER 
INSTALL L,FORH IN UNCLE INSTfiLL C*FORM IN PARENT 
INSTALL LeFIELD IN BROTHER INSTALL C.FIELD IN SELF 
SELF O<> IF SELF ?PARENT ELSE C,FORM THEN 
DUP T O  PARENT NEU.SON 

HEADER P -- :. 

StttXttttttXtttttt BLOCK 173 t%t%IZtSSStt%kXSI%$ 

! er ro r  c h e c k i n d  fo r  used  f i e l d s  GEC 3-JUL-ill ) . ER.CHECK ( check t o  see i f  f i e l d  is rermitted 1 
0 TO FLBtFF CeFIELD 
RFRTN 

DUP ?FLAG TO TEST.FLAG 
FLD,FF DfiOP 
?PARENT 
DUP NOT TEST.FLAG OR 

END DROP 
TEST-FLAG FLD.FF AND 

IF 4 ERROR+FUNCT RESTART 
ELSE TEST+FLAG NOT +LFz ERROR+FUNCT RESTART 

( set  TEST+FLAG=FLAG ) 
( f l l ?  f i e l d . f l l r t f ' l o ~  j 

( so  t o  p a r e n t  ) 
( i f  f l a g  found o r  root reached) 

( f i e l d  d e f i n e d  t u l c e  ) 

( not p roper  i n s t r u c t i o n  ) 

SS%%$XXStSStSS$S%I BLOCK 174 t$OX%S%tXtX%%$St%tS 

.." 
i., 0 ==> DROP ' 

: DEFAULT 
GET# TO.DEF DO.BEFAULT i 
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when a 'I(" is encountered and decrement- 
ed when a ")" is found. This would catch 
any errors involving too many closing par- 
entheses. A "]" function could be wri t ten 
which would behave i n  the same manner as 
the UCI  LISP function of  the same name. 
It would use the variable mentioned above 
to  close a l l  open parentheses for  a suc- 
cessful evaluation o f  the expression. 

G E T I  and i t s  related algebraic func- 
tions have some interesting features i n  
that there is no hierarchial ordering of  
functions (i.e., 2 + 3 5 = 25 while 5 * 3 + 
2 = 17), however, expressions enclosed i n  
parentheses wi l l  be solved before others 
(i.e., 2 + (3 + 5) = 17). The entire code for  
this is only a few lines long and is as 
follows: 

: GET!i 32 WORD NUEIBER 
KOT IF R> R> SWAP >R >R 
THEN ; 

ttSt$ttStitStSSSff BLOCK 175 SfXSStttllttttXttXX 

( f i e l d  s t ruc tu re  GEC 3-JUL-81 j 

: FIELD 
'BUILDS IGNORE GET# 

DUP F,LENGTH <= 

' FIELII .riame WIDTH .,uldth, ) 

IF FIELDSHEADER 
F-LENGTH OVER - TO F,LENGTH 
FaPOS OVER - DUP T O  F-POS 
r 7 ( f i e l d  s t a r t l f i e l d  l ens th  i INIT+IIIF ,DO+DEFAULI 

ELSE 1 EKKOLaFUNCT RES T A R T  
THEN 

DOES;. TO C.FIELD 
NEM.UORD IF O TO NEU,UORB ELSE ER.CHECK THEN 1 SETSFLAGS 
GET# ?FIELD.LENGTH ?PRECISION EeFILL 
?FIELD.STAHT ESL €OR - - .Z 

g e t s  number 
swap i f  not a number 

VOCABULARY ALGEBRAIC ALGEBRAIC DEFINITIONS redef ine  functions 

: + GET# + ; : - GET# - ; 
: * GET// ; : / GET{/ / ; 
: ) R> R> SWAP >R >R ; 
: o ;  
FORTH DEFINITIONS 

re-swap return stack 
swap return stack 

A typical usage of this function could 
be: 

Current 1 I Parameter I Return 
Function 1 Command I Stack I Stack 
--------- --------- ----------- ..................................... - 

main 1 3 1 3 I invut a 3 
{+I 
GET# 

main 
t+? 
GETS 
( + I  
main 

1 

{+I 
main 

I main 
1 main {+) 
I {+) main 
I {+? 
[ {+) main 
I {+) main (+ 
1 {+I main 
1 { + I  
I {+) main 
I main (+) 
1 main 
I 

There are a few general concepts 
which are used throughout this micro 
assembler, one o f  which is the "TO con- 
cept" (see Joe Sawicki's paper entit led 
Optimized Data Structures for Hardware 
Control). This concept allows the use of 
variables without the programmer having 
t o  deal directly w i th  the address. While 
this may be thouqht o f  as beinq a b i t  un- 

c a i l  function {+) 
c a l l  function GET{/ 
swap return stack 
return and input a 4 
c a l l  (+) again 

) input a 5 
return and add 
return to main 
c a l l  function ) 
swap return s tack 
return and add 
return and pr in t  

FORTH-like, it does result i n  much 
cleaner code. I adapted the concept i n  
one place t o  build a f l ip-f lop function. 
This function creates a data type which 
alternately returns zeros and ones when- 
ever i t is celled and makes use of the "TO 
concept" t o  allow itself t o  be init ial ized to  
either state. The micro assembler also 
makes use o f  multiple vocabularies to  
allow the same function to  have di f ferent 
meanings i n  different contexts. While this 
is not absolutely essential fo r  the assem- 
bler to run, it again makes the code 
cleaner and easier t o  use. 

The reason why I have chosen to  wr i te  
this micro assembler i n  FORTH is simpli- 
city. As I mentioned earlier, this "pro- 
gram" is based largely upon a very lengthy 
micro assembler wr i t ten by Signetics and 
yet the FORTH code is only a few pages 
long. The t ime spent programming was 
equally short. It took roughly hal f  o f  my 
t ime a t  work f rom around June 10 through 
July 15 to  complete the micro assembler 
to this point (although I have occasionally 
gone back to  add or change a feature or 
two). Two o f  the features that I did 
change, labels end forward referencing 
through the f i rs t  pass, brought up another 
quality o f  FORTH: i ts  modular nature. 
These are rather major additions and yet 
they only required one new "block" o f  
code, a few minor changes in the old code 
and took only a few hours to  implement[ 

Once the forward referencing is com- 
pleted and the output formatt ing is imple- 
mented, this code wi l l  be a micro assem- 
bler by itself as wel l  as a kernel fo r  more 
extended versions. An example of an 
extended feature is the compilation o f  a 
symbol table a t  the end of a program. A 
further extension would involve tying this 
symbol table to  other symbol tables to  
allow external references. Through the 
use o f  external symbol tables the micro- 
code could be maintained i n  the f i rst  pass 
format so that the external references 
could be resolved several t imes for  labels 
w i th  differing va luer  This could result i n  
a modular microcoding technique. 
Another extension could be a FORTH pro- 

- 
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gram which wwid  be  used, in much the  
same manner a s  the micro assembler, and 
similar t o  Hardware Description Lang- 
uages, t o  describe a simulator for  the  
microcode. These two programs would 
constitute a powerful ye t  inexpensive 
teaching aid as well as an effective design 
tool. Programmers and students would not 
need t o  waste their t ime punching cards or 
blowing PROMS in order t o  discover the 
errors in their coder A dozen other "nice" 
features can be imagined (i.e., prohibiting 
forward referencing t o  allow interactive 

tXtlXSXSStltlttXSt BLOCK 

( end . i n s t r  8 f i n d  root  8 h ro the r  GEC 

: ENI I - INSTRUCTION ( c h e c k s  fa r  a n y  u t d e f l n e d  f i e l d s  i 
BEGIN FORtiAT,END C.FIELD ?ANCESTOR NOT END r 

: ROOT 0 SUAP ( f i n d s  i n s t r u c t i o n  I 
BEG1 N ( t X  s e l f l - - [ s e l f  r a r e n t l  j 

DUP 'PARENT ROT DROP DUP NOT 
END DROP i 

: FIND.BROTHER O SWAP 
BEGIN 

DUP ?BROTHER HOT DROF 
OUER ?FLAG OVER MOT OR 

END DROP DUP 
?FLAG NOT IF DROP 0 THEW i 

( f i n d s  h ro the r  u i t h  f l a s  s e t  i 

( El s e l f l - - [ s e l f  b ro the r1  j 
( f l a s  OR not hro ther  ) 

( Chrother OR 9 I ) --.> 
microcoding, or thedevelopment of intrin- 
sic m i c r o ~ s  to define commercial c h i ~ s .  XllttXXStlXtSttX$S BLOCK 
etc.), bu t ' the  point is t ha t  they could 'ali 
be based around the  small "kernel" micro 
assembler presented here. 

( default - 2 GEC a-JUL-81 i 

FLAG ?CHILD 
AG NOT 
D DUP ?BROTHER ( no f l a g  s e t - d e f a u l t /  

. - - . - - - - - 
: DEFAULT1 

CeFIELD ROOT 0 OVER TO ? 
BEGIN DUP TO C.FIELB ?FL 

IF BD*DEFAULT CaFIEL 
CeFIELD CR ?NAfiE ,' DEFAULTED ' 

ELSE CsFIELD 0 OVER TO ?FLAb i f l a g  s e t - r e s e t  t o  5 
DUP ?CHILD FIND.BROTHER DUY ( f i n d  sub-format used 

IF 0 OUER TO ?FLAG (, r e s e t  f o r r a t  t'les t o  O ) 
? C H I L D  t c t m r k  sun-t I r l d i  I 

I would like t o  thank Lawrence Forsley 
for the time and effort  he expended help- 
ing to direct  and complete this project. I 
would also like to extend thanks t o  Dr. 
Charles Merriam for his useful comments 
and suggestions. 

. - . . - - - - . . - - - - - , - - - - -. 
ELSE DROP DUF ?BROTHtR rt: format u s e d - f ~ n u  b ro the r ;  

.FIELD CR ?NAnE , USED 
EN BUP NOT 
N DROP ?ANCESTOR DUP ?BROTHER OVER NOT OVER OR END 

THEN SUAP NOT 
i DROP CR i 

C 
THEN THi 
IF REG11 

This work was partially supported by 
the following sponsors: Exxon Research 
and Engineering Company, General Elec- 
tric Company, New York Sta te  Energy 
Research and Development Authority, 
Northeast Utilities, The Standard Oil 
Company (Ohio), the University of 
Rochester, Empire S ta te  Electric Energy 
Research Corporation, t he  Center  for 
Naval Analysis, under grant number CNA 
SUB N00014-76-C-0001 and the U.S. 
Department of Energy inertial fusion 
program under contract  number DE-ACOB- 
80DP40124. 

t ~ S t t t X t l t t l t S S t t t  BLOCK 

( mlcrn-assembler: foruard  r e f .  GEC 17-JUL-81 ) 
: LABEL ( LABEL rname? 

.iBUILLD 
0 0 ( d e f . f l a 3  / va l  ) 

DOES/ NEUIWOHD 
IF DUF @ IF , Lahel ~ r e v i o u s l r  def ined '  CK RESTflRT THEN 

1 OVER ! ( s e t  f lart  ) 
2t LC SUAP ! i s e t  va lue  ) 

ELSE BUP e 
IF 2t e 
ELSE ?FIELD.START SUAP r r 0 

THEN THEN r 

G.E. Cholmondeley is currently an under- 
graduate student in t he  department of 
Electrical Engineering a t  the University of 
Rochester. His interests lie in computer 
software and hardware design. 

lltXXtXtt$XtttSStt BLOCK 

( end of uord 8 o r i g i n  

179 X$XtSlXSStX~lfSSSlt 

GEC 11-JUN-81 ) 

: C ( ends uord ~n program mode ) 
CeFIELD ROOT IF DEFAULT! THEN 
0 9 ! end of l a b e l s  ! 
XPRINT.FOHHAT 9 LC UUP r 1t TO LC 
PRECISION 0 DO DUY Be , LOOP CR 
9 1 E.FILL 

1. Signetics Micro Assembler Reference 
Manual 

: ORG 
GET# TO LC i 

HELP WANTED 

FORTH Software Engineer 

Program, edit and maintain files for  
8080. Ability t o  troubleshoot the 
sof tware-hardware interface. 

ltXf$SStXSlllXSSt~ BLOCK 

( p r i n t i n s  r ou t i ne  GEC 18-JUN-81 ) 
: U.ZEFiO 

DUP 4096T U>= IF OT 
ELSE DUP 256T U>= IF 1T 

ELSE DUF 16T U>= IF 2T 
ELSE 31 

THEN THEN THEN 
our IF DUP OT !O OT IT U,R Loor THEN 
4T SUhP - U + R  T 

Call: 

Wendy Palmer 
1-800-225-4040 
Instrumentation Laboratory, Inc. 
Analytical Instrument Division 
Jonapin Road 
Wilmington, M A  01887 
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i p r ~ r t t z n s  rout ines - 2 GEC 

: #PRINT ( <e>:t.rre.#.addr>-.:> p r i n t  e::t.rre+# in h ina r r  8 hex ) 

DUF' !hEFISI?N ZT $ t SUAP ?[[UP DO I P Be 2T +LOOP . DO I @ U.ZERO ? T  +LOOP 7 

: MEH.INC HEH DUP ?t TO HEM P ; 

$ X I X X 1 S $ t l t t t t $ $ t t  BLOCh 182 X t $ X X L t X X t Y l t $ t Y . t i t  

t r r l r ~ t l r ~ s  rout ines - 3 GEC 16-JUN-81 ) 
: 1,FASS.PRINT 

DUF T0,kEH @ 1 AND 
IF ERROR - PROGRAM LENGTH 0 ' CH 
E L S ~  16 BASE ! CR BEGIN HEN @ 

IF BiGIN 
, LABEL i ' HEM DUP @ CFA TNAME CR ?t TO MEh 
' SHIFTED. ' HEM DUP @ . CR CR ?+ DUP TO IiEM @ NOT 

~ N D  
THEN flEh :+ TO MEIY 

, ' F9RHAT; HEk 11uP @ . CF ?t 10 HEh . 1 , MEU DUP e c~ zt , o  wEn 
?lEh #PhINT CR HEM PRECI~ION 2* + TO hEM 
C f i  CR-CR hEk P 1 = END CR 10T BASE I 
THEN T 

I $ $ X $ t % t l l t $ t X X X $ i  BLOCK 1R3 $ $ t S t t t S X f * X $ $ l t * * $  

( program statement GEC la-JUW-81 i 

: PKOGRAH 
-,E!L!IL.LIS !ENORE GET# DUP , ?PRECISION TO F'RECISION 0 7 

1 TO NEW.WORD 
I:? 1 E.FILL 

DOES:- DUP P ?PREC?SION TO PRECISION 4 t 1.PASS.PRINT i --; 

L # I x x # ~ ~ % x ~ L x ~ ~ x $  BLOCK 184 t $ $ t t t r $ * $ $ $ $ t t $ x $ $  

! end ~ r o s r a m  S Micror comaanls GEC 17-JUN-81 ; 
, ENLI.F'ROGF:AH 

EClF:CIF' 1 r i 

; MICROP fCOHPILE1 : : 
: Et41f.HICROF CCOHPILEJ i i IMMEDIATE 

: SET i def lnes a v a v ~ a h l e  data t r r e  ) 
<BLlILClS IGNORE GET# r ( SET .Ivar.name, TO .:e::pressiort> i 
UOES.: @ ; ( -.:.var,narnr.:. re turns value ) 

: EOU ( ERU :var.name:.~~ WITH t ec r ress ion i  ) 
I'L IGNORE GET# SUAP ! i 

~ I C W O  DEFINITIONS i S 

I N W s l R Y  N E W S  

FORTH-Based Savvy Lets User 
Talk to Computer 

FORTH, Inc. is working wi th  i ts parent 
company, Technology Industries, Inc. of  
Santa Clara, California, to develop a new 
software package for the Apple 11, using a 
ZBO processor. With it, the Apple w i l l  
offer the kind o f  casual and eff ic ient man- 
computer interface that unt i l  now, existed 
only i n  movies l ike 2001 and Star Wars. 

The project calls for Savvy--the trade 
name for Excalibur Technology Corpora- 
tion's Adaptive Pattern Recognition Pro- 
cessor--to be used as a unique language 
interpreter. Savvy permits a user to  com- 
municate with a computer i n  the user's 
native language and normal praseology--no 
special language and formm are needed. 
Specifically, Savvy: 

o Recognizes wri t ten words strung 
together i n  idiomatic phrases. 
(Future versions w i l l  understand 
spoken words and respond to 
Spanish commands as well as 
English. Other languages wi l l  
follow.) 

o Translates these imprecise 
patterns into precise computer 
commands. 

Savvy's unique interactive approach to 
dealing wi th  computers is an importent 
development for the 80s. The powerful 
combination o f  FORTH and Savvy w i l l  be 
significant i n  realizing the system's fu l l  
potential and demonstrating the power o f  
FORTH. A special development team has 
been formed for this project, including A r t  
Gravina, Chuck More, Dean Sanderson, 
and another programmer who has not been 
identified. 

NO ROOM FOR THE ORDER FORM T H I S  TIME! 
ORDER - Proceedings  1981  Rochester FORTH Standards  Conference. Send 
check o r  MO t o  FIG i n  U S  funds on U S  bank, $25.00 U S ,  $35.00 Fore ign.  
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