
FORTH INTEREST GROUP Volume Ill
P.O. Box 1 105 Narnber 1
San Carlos, CA 94070 Price $2.00

I-----

I 1 --(I--

2 . Letters

4 Announcements

5 FORTH-79 Dialog
@

7 Technical Notes

10 Programming Aids

13 FORTH, Inc. News

I @ Parameter Passing

15 Compiler Security

20 Userstack

23 A Stack Diagram Utility

33 Chapters/Meetings

Published by Forth lnterest Group

Volume Ill No. 1

Publisher
Guest Editor

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith
John Bumgarner

Roy C. Martens
C. J. Street

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP IS iN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth lnterest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth lnterest Group at $1 2.00 per
year ($24.00 foreign air). For membership, change of
address and/or to submit material, the address is:

Forth lnterest Group
P.O. Box 1 105
San Carlos. CA 94070

HllSTORllCAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radio Astronomy Observatory,
Charlottesville, VA. It was created out of dissatisfaction
with available programming tools, especially for obser-
vatory automation.

Mr. Moore and several associates formed FORTH,
Inc. in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage, and to supply application programming to meet
customers' unique requirements.

The Forth lnterest Group is centered in Northern
California. Our membership is over 2,400 worldwide. It
was formed in 1978 by FORTH programmers to encour-
age use of the language by the interchange of ideas
through seminars and publications.

EDITOR'S COLUMN

The last edition of FORTH DIMENSIONS was the
beginning of many changes in editorial policy and
format. All these changes are designed to make FORTH
DIMENSIONS a practical and useful communications
tool.

This practicai approach continues. In this edition
you will find a number of utility programs that will make
the task of implementing practical applications in
FORTH easier and faster. All of these utilities have
been contributed by FIG members who have fotlnd
them to be valuable tools. The editorial staff thanks
these contributors and wobld like to encourage all FIG
members to share their ideas and experience.

If you have a programming idea or tooi that you have
found usefui, please send it to:

Editor
FORTH DIMENSIONS
P.O. Box 11 05
San Carlos, CA 94070

YOU DON'T HAVE TO BE A WRITER-the editorla1
staff wili provide whatever copywriting is necessary to
make your ideas publishable.

On the aesthetic side, you will find this edition con-
tains severai photographs and art illustrations. This is
a FORTH DIMENSIONS' first and you can expect to see
more in the future. Photographs and art illustrations
will be chosen and published on the basis of their
educational and human interest value.

This issue also introduces the character HEX who
will be FORTH DIMENSIONS' official comic strip. You
will find the HEX comic strip in future editions of
FORTH DIMENSIONS. HEX'S adventures will be a com-
bination of humor and education. Ideas for HEX comic
strips are welcome.

C. J. Street
Editor

PUBLISHER'S COLUMN

Renewals and new members are coming in at a fast
pace. We expect to climb to 3,000 members in the next
few months and to 5,000 within a year.

Both the Computer Faire in San Francisco and the
Computer Festival in Trenton, New Jersey were huge
successes. We'll be in both again next year. (I'd like to
know of any other shows where you think FIG should
exhibit.)

Good mater ia l i s coming in for FORTH
DIMENSIONS. Keep it coming and send in your
comments.

Roy Martens

Page 1 FORTH DIMENSIONS 1111 1

LETTERS

Dear Fig:

My company is developing business
systems using FORTH and we would be
interested in communicating with local
FIGGIES as well as offering our input to
FST, FORML, FIG and other applicable "F"
acronyms since it is obviously in our
interest to promote the spread and
acceptance of FORTH. We're also confirmed
FORTH fanatics .

David B. Moens
BUSINESS SYSTEMS SOFTWARE, I N C .
27 East Kings Highway
Haddonfield, NJ 08033
(609) 429-0229

You are our kind of fanatic and we're
happy to put the word out for you Dave! --
ed .

Dear Fig:

Thank you for the prompt and efficient
service I have received. I realize that
you can't have much time left to look
after the rest of the world, but without
your interest it may never have reached
these shores. Spread the good WORD.

J. Huttley
UNIVERSITY OF AUCKLAND
19 Duncan Avenue
Auckland 8,
New Zealand

You are very welcome! -- ed.

Editor's note:

At the WEST COAST COMPUTER FAIRE in
California two versions of a FORTH bumper
strip were circulated:

?FORTH IF HONK THEN

or alternately
Dear Fig:

Re: "Born-again programmer" and "Born-
again FIGGER" in FORTH DIMENSIONS 1115.

My interest in FORTH as a programming
language does not envolve becoming mired
down in the morass of a religion. It
would be best to stay on rational grounds
in the development of FORTH and leave
religion to those who are unable to think
without faith.

I will not take part in a religious
group. Therefore I will not be renewing
my membership.

Larry R. Shultis
P.O. Box 218
Fontana, WI 53125

Just goes to show you that there is more
than one type of fanatic! Keep the faith,
Larry, (OOPS, sorry about that! I meant:
Don't worry, ~arry,) FIG is not envolving
(your spelling) into a religious group. --
ed .

: LOVE-FORTH
IF HONK THEN ;

Just thought you might like to know. --
ed .

Dear Fig:

TGIF is very interested in swapping
listings with other Fig-FORTH groups. Our
current listings are 2 Decompilers; Full
screen editor; CASE statements for 8080,
280 and 6502; 6502 Assembler.

TGIF
FORTH INTEREST GROUP -- TULSA
Box 1133
Tulsa, OK 74103

How about sending them in to FORTH
DIMENSIONS? -- ed.

FORTH DIMENSIONS III/1 Page 2

Dear Fig:

I was lucky enough to attend one day of
the feeent West Coast Computer Faire and
to meet some of the mentors of FIG. I had
numerous questions and enjoyed talking to
Bill Ragsdale and others about them. (By
the way, for those of you who couldn't
make it to the Faire, the FIG booth was
one of the most crowded. People were
standing there like no where else even as
the 5:00 closing approached. We all owe a
thanks to the dedicated folks for their
time and effort in this endeavor,
promoting and spreading the word of FORTH
and FIG.)

One of my questions to Bill was "How can
we remote members contribute to FIG" in
ways other than articles for FOR.TH
DIMENSIONS. I got a number of project
ideas, for one of which I need the help of
the whole membership. So PLEASE: NOW
HERE THIS!

I propose to assemble a book of utility
program packages for publication by FIG.
I have a list of functions which 1 think
should be included. This covers such
things as editors (both the current FIG
line oriented editor and a video screen
type editor), string processing, data
structures, extended math (double prec-
ision as an example), math functions (sin,
log, etc.), matrix operations, and float-
ing point routines. No doubt there are
others to be considered and I solicit your
suggestions.

The plan I propose to compile and
publish such a document is as follows:

Members are asked to send their
proposals for implementing utility
packages to me at the above address
(or through FIG). These proposals
should consist of well documented
(lots of comments) fig-FORTH source
code accompanied by complete instruc-
tions for use, any known operating
limitations, and a brief technical
description or reference if appro-
priate. The programs should be as
transportable as practicable; if
system unique routines are necessary,

enough information should be provided
so as to allow them to be adapted to
a different machine.

2. I will compile a draft of the pro-
posed publication and submit it to a
technical review committee for review
and appropriate testing. This com-
mittee of FIG members (I am looking
for volunteers) will scrutinize the
proposals (and alternatives if appro-
priate), test them on a running FORTH
system, and make recommendations.

3. I will then compile the final version
and submit it to FIG for publication.

I have set some timelines for com-
piling this compendium such that it
can be published by next year's
Computer Faire. Material should be
sent in no later then 1 September
1981 (please send them early and give
me a chance to get ahead). I will
distribute the draft for review and
testing by 15 October 1981. Finally
I will begin compiling the final
version by 1 January 1982 and have it
ready for publication by 1 February
1982.

This may seem like a long time
abuilding, but I want to provide
ample opportunity for the contribu-
tors to develop their ideas fully and
conduct a fair amount of testing
themselves before submission, I also
want to provide a good review by the
committee to provide the highest
quality document for FIG. It will be
worth it in the long run. Your con-
tributions will be sincerely appre-
ciated, and though the publication,
as are all of FIG'S, will be in the
public domain, credit will be given
to the authors and contributors. So
if nothing else, this is a chance to
get your name in print, in an inter-
national publication.

Sincerely ,
George 0. Young I11
617 Mark NE
Albuquerque, NM 87123

--
Page 3 FORTH DIMENSIONS III/1

This is a great project. Our goals
continue to be to decentralize FIG
activities, and George's project of a
published "Goodies Package" will be
helpful to all. Contributors should send
a brief description to George and then
prepare the full document. This will
allow co-ordination of similar material.
-- ed.

.9 - . .; . ' . . .
. . . .
' , . . .

5 , . - ..
I . . . ' , .-i. a , ' ~

; , . . . '. . . . ; , - ...
, .,.. ~ ..

. . . . ,.. ' . . .

Spreading the fig-FORTH at the West Coast
Computer Faire, April, 1981.
Top: (1-r) Michel Mannoni (FORTE vendor),
Dave Boulton and Martin Schaaf. (Answering
the question: What's FORTH? 10,000 times)
Bottom: (1-r) Roy Martens (FD Publisher),
Anne 6 Bill Ragsdale (FIG prime movers).
Order your T-shirt, l i k e Bi l l ' s !

ANNOUNCEMENTS

FORML CONFERENCE CALL FOR PAPERS

Papers are requested for the three day
technical workshop to be held next
November 25th to 27th at the Asilomar
Conference Grounds in Pacific Grove,
California (Monterey Peninsula).

Although registration for this con-
ference is not yet open, attendance will
be limited to 60 persons. Authors will be
accepted before listeners, so if you want
to attend, the only sure way is to write a
paper. Please note: abstracts or propo-
sals for papers or discussions must be
submitted no later than September 1, 1981
for inclusion in the conference and its
proceedings; completed papers by Sep-
tember 15, 1981.

The purpose of this workshop is to dis-
cuss advanced technical topics related to
FORTH implementation, language and its
applications. Potential authors should
write for an author's packet for detailed
instructions. Send all correspondence
regarding the conference or papers to:

FORML CONFERENCE
P.O. Box 51351
Palo Alto, CA 94303

FORTH WORKSHOPS

Beginners and advanced workshops in
FORTH are being jointly sponsored by the
College of Notre Dame and Inner Access
Corporation both of Belmont, CA.

Beginners workshops start June 23 and
advanced workshops start July 14. Classes
meet every Tuesday and Thursday evening
from 7:00 to 9:00 P.M. Registration is
$135 for 3 weeks (12 hours).

For more information and registration
contact :

College of Notre Dame (415) 593-1601

FORTH DIMENSIONS III/1 Page 4

CONTINUING DIALOG ON

FORTH-79 STANDARD

Dear Bill:

We recently obtained a copy of the
FORTH-70 Standard from FIG and are
attempting to align our version of FORTH
with it. The document is generally well
done and in most cases clearly and con-
cisely expressed. However, there are
about a half dozen or so definitions that
seem to us somewhat ambiguous.

I am writing to you in the hopes that
you can clarify, the word definitions in
question; or, that you can refer us to
someone who can. I am also interested in
knowing whether the FIG model has been
aligned yet, if not, when it will be.

My list of questions is enclosed and I
would appreciate anything you can do to
assist us in their resolution.

Cordially,

Robert D. Villwock
MICROSYSTEMS, INC.
2500 E. Foothill Blvd., #lo2
Pasadena, CA 91107

OPEN QUESTIONS
FORTH-79 Standard

1. For the words / and */ does the
terminology "rounded toward zero"
essentially mean truncated? If not,
precisely what does it mean?

2. The word SGIN is now apparently
defined to be used "outside" of the
<#, I/> operators. What is the pre-
cise definition of where the minus
sign character is to be stored? Why
was this word changed from its former
function between < # and d/> ?

3. The word : is defined as a non-
precedence word. Is this a typo or
is it intentional? If intentional,
could you exp1ai.n the rationale? It
seems that the number of occasions
for which "colon" needs to be com-

piled are
handled
operator.

few and could easily be
by using the [COMPILE]
ON the other hand, syntax

errors and typos often result in
mistaken attempts to compile I:'

which, when it's an immediate word,
can be flagged by the compiler.

4. The word CODE is defined as using the
form:

CODE <name> . . . END-CODE
However, the word ;CODE says nothing
about the corresponding form. Our
version of FORTH rquires that code
level action routines defined by
;CODE also be terminated by the word
END-CODE. Is this compatible with
FORTH- 7 9 ?

5. The words FIND, , I : , etc., as
defined in the Standard, indicated a
search of CONTEXT and FORTH only. Is
it considered an incompatibility if
the CURRENT vocabulary is also
searched (if different)? The defini-
tion of VOCABULARY is not clear
regarding the possibility of "sub-
vocabularies" such as ABC chained to
XYZ chained to FORTH. If this is
allowed, and, ABC is the CONTEXT
vocabulary, is not ABC, XYZ, and
FORTH searched?

6. What is the mnemonic significance of
the C words such as C!, CMOVE,
etc.? Surely it doesn't stand for
"cell," does it? The term "cell" is
defined on page 3 of the Standard to
be a 16-bit memory location. The word
MOVE is defined on page 26 to trans-
fer 16-bit words ("cells"), while the
word CMOVE on page 20 is defined to
move bytes (not "cells"). If the C
does stand for "cell" what is the
rationale? Why was the former stan-
dard's B (for byte) replaced by the
mysterious C?

7. I note that in the reference section
of the Standard, the word DPL which
formerly used to handle both input
and output "point" situations now
strongly emphasizes that input con-
versations should not affect its

Page 5 FORTH DIMENSIONS 111/1

value. What is the reason f o r this
restriction? Wow l i k e l y is it that
this may become part of the Standard?

6. The definition for CREATE is not
clear, Docs the second sentence
"When (name) is subsequently
executed, the address of the first
byte o f <name) 's parametzr field is
left on tlme stack" mean that the word
CREATE alone is to function this way
or only when followed by ;CODE or
DOES) ? In other words, is it
intended that CREATE work as in the
FIG rnodel or has its definition
changed? Taken literally, FORTH-79
says that CREATE will generate an
unsrnudged header with the CFA point-
ing to the run time procedure for
variables. Is this what is intended?

COMMENTARY FROM THE FORTH DOCTOR

1. Some computers apparently (by Stan-
dard Team comrr~ent) round quotients
and remainders to smaller magnitude
(more negatived. Trucation of nega-
tive quotients would do this. If a
correct representation is not possi-
ble, the resdlt should be nearer
zero. Dave Boulton is more know-
ledgeable on this point.

2. " Sign is to be used within < # and
4 > The user chooses where to store
the sign. Notice that no word gener-
ates the saving of the sign. In fig-
FORTH the only difference is the ROT
would be explicitly done just before
SIGN, rather than in,SIGN.

FIG and the Europeans make : an imme-
diate word for error control. Other
users, and FORTH, Inc. reject this
level of error control--too bad! We
need a technical paper presenting the
trade-offs (code needed and compila-
tion slowdown). Conversation at a
team meeting is insufficient to
change opinions developed over ten
years.

4, These topics were barely touched on
by the Team as CODE definitions are
not portable, ;CODE probably should

terminate in END-CODE. This is an
unresolved area.

5. Thc standard wording was painstaking-
ly dune regarding vocabularies. This
is the most divergent topic among
users. all known methods can comply
with the Standard, but it does less
than all systems. The rationale is
that you build CURRENT but you exe-
cute only from CONTEXT (and FORTH).
No chaining is recognized, beyond
context leading to FORTH, This may
be physical links or logical (within
FIND). Again, position papers are
essential to get a common, more
advanced, construct.

6. Charles Moore has used C for ten
years as a character (byte) prefix.
Tgnore (if you can) that a character
is defined as 7 bits in the Stan-
dard. This was a hotly disputed
poi-nt with FIG and the Europeans for
"Bg'yte and FORTH, Inc. and a couple
of others for "C". Kitt Peak was
adamant before the meeting for "B"
and other uniformity improvements.
Their representatives made no defense
of the issue. Historical precedence
wins this one.

7. Reference Section is just left-
overs. Only one vote of any team
member was sufficient to maintain a
Reference word on the list. The
Standard attempts to minimize system
variables. Increased usage of
special variables is unlikely.
Things like DPS are delegated to
applications.

8. The definition of CREATE is quite
clear. You have stated it and then
correctly paraphrased it. Other
defining words may be used before
DOES > which help build a parameter
field. DOES > rewrites the code field
to its own code.

: CPU CONSTANT DOES> ;

is equivalent to

: CPU CREATE , DOES > ;

FORTH DIMENS IONS IIZ/ 1 Page 6

TECHNICAL NOTES, BUGS & FIXES

Dear Fig:

I have recently brought up FORTH on a
6800 system and find it to be a very easy
and powerful system for microcomputers.

I have a mini-computer with a cross-
assembler on it which I used to assemble
the source after keying it in. Naturally,
as soon as I got it working I wanted to
change it. I feel that the EXPECT routine
and backspace handling could be improved
significantly by incorporation of the en-
closed recommendations.

I also experimented with the GLOSSARY
routine submitted by D.W. Borden in FORTH
DIMENSIONS, Volume 1, No. 4. I modified
it to handle the variable length name
field and changed the format slightly.

Keep up the good work.

Toby L. Kraft
San Diego

EXPECT
0 0 1 1 EXPECT M O D I F I E D FOR USER D E F I N E D BACKSPACE CHAR)

0 0 2 I 2 6 F E B S I TOBY L KRAFT I
0 0 3 EXPECT
0 0 4 W E R + OVER
00'1 nn

1 ADD COUNT T O ADDRESS FOR LOOP L I M I T 1
- - - --
0 0 6 KEY DUP 1 CET CHAR AND SAVE COPY I
0 0 7 OE +ORIGIN e = 1 CET SYSTEM BACKSPACE AND CHECK FOR IT)

008 I F
0 0 9 DROP DUP I = LOSE CHAR . CHECK BUFFER BEGIN I
0 1 0 DUP R> 2 - + >R 1 ADJUST BUFFER POINTER A P P R P R I A T E L *
0 1 1 I F 0 7 E L S E BSTOF C e E N D l F I B E L L C B E C I N N I N C . B S O T M R U l S E
0 1 2 E L S E
0 1 3 D U P O D X
,,,a ,r

1 CHECK FOR CARRIAGE RETURN ',
-. . .,
0 1 5 LEAVE DROP B L 0 (PREPARE TO LEAVE I

0 1 6 E L S E DUP E N D I F
0 1 7 1 C ' 0 I I + ' I STDRE CHARACTER I N BUFFER I
0 1 8 E N D I F
0 1 9 EM11
0 2 0 LOOP
0 2 1 DROP
021 .

1 ECHO CHAR TO TERMINAL I

CLOSSARY
0 0 1 1 CLOSS6RY CENERATOR ROUTINES)

0 0 2 DECIMAL
M)3 0 VARIABLE c n o
0 0 4 TOF CR CR 32 SPACES ' CLOSS&RY' CR CR 1 GENERATE PACE HEADING '
0 0 5 " L E N UORD" 1 5 SPACES " NFA P F A " CR CR ,
001 HEX
0 0 7 CLOSSARY TOF CONTEXT C C CMD '
0 0 8 BEGIN c n o Q IF
0 0 9 CflD P CB 3F AND
0 1 0 DECIMAL DUP 3 R SPACE
OII F SWAP - cno c ID SPACES
0 1 2 CMD e HEX 6 R SPACE
0 1 3 CMD C 1 TRAVERSE DUP
0 1 4 3 + 6 R SPACE CR
0 1 5 I+ P cno
O l b -TERMINAL I F Q U I T E N D I F
0 1 7 ELSE Q U I T THEN AGAIN ,

Modifications to the fig-FORTH boot-up
literals:

i . Backspace Character
Character to emit in response to a
backspace entry. X'08' (control-H)
is character FORTH responds to for
backspace function. Character to
emit is terminal dependent and should
be defined in the user table.

This also allows use of a printable
character (e.g, c'\') to emit for
backspace for use on printing
terminals.

2. Form Feed Character
Character to emit to cause terminal
(or printer) to advance to top of
form. This is also device dependent
and should be in user table.

3. Form Feed Delay
Number of null characters to emit
after issuing a form feed charac-
ter. This is similar to CR/LF delay
which is already provided.

Recommendation :

Add variable 'BSTOF' to user table.

X'BBFF' - two characters of data
FF - form feed character

(X'OC' initial value)
BB - back space character

(X'08' initial value)

Add word 'BSTOF' to vocabulary to access
this variable in user table. (Similar
to 'BASE'

Modify definition of current user varia-
ble 'DELAY' to include formfeed delay in
upper byte.

Add word 'DELAY' to vocabulary to access
this variable in user table.

Modify startup parameters and cold start
accordingly.

--
Page 7 FORTH DIMENSIONS 11111

Modify EXPECT to use user defined
backspace character and to explicitly
generate bell code (X'07'). Currently,
EXPECT tests for the beginning of the
buffer and subtracts the boolean flag
result from X'08' to generate the char-
acter to emit in response to a back-
space.

Toby L. Krafr
7822 Convoy Court
San Diego, CA 32111
(7 1 4) 268-3390

This really needs expansion and gener-
ality. How about terminals that need an
I I escape sequence" to clear screen, i. e.
form feed? Toby, HEX should be used
insteat of XI.--ed.

Dear Fig:

I wish to convey a concept which has
greatly increased the clarity of my FORTH
coding. It has to do with in-line docu-
mentation of the contents of the stack
(comments within parathesis).

Unfortunately, none of the existing
techniques (space, hyphens, brackets, or
ordinal suffix) provide the brevity and
clarity that one becomes accustomed to
with FORTH. The technique which L have
devised provides both. It revolves around
the backslash character ' \ I , which I refer
to as ' under ' and the double hyphen ' -- ' ,
which I refer to as 'leaves'. Using this
terminology, the following comment:

is read "address under count leaves
nothing, " and

is read "Number1 under Number2 leaves
Number 3. "

The 'under' symbol imparts a clear
verbal and graphic representation of the
ordering of the stack contents, and
provides an elegant solution to a major
problem encountered when transporting
FORTH algorithms and source code.

Don Colburn
Creative Solutions, lnc.
4801 Randolph Road
Rockville, MD 20852

Dear Fig:

. Some time ago I bought your Installation
Manual and the 6502 Assembly Listing. I
have been studying both for quite a vhile,
and am also a charter member of the
Potomac FORTH Interest Group (PPIG: Joel
Shprentz and Paul VanDerEijk).

L have MMS FORTH (cassette) for the
TRS80 up, and have just bought GEOTEC
FLEX-FORTH for my KIM, although I don't
have my 16K ram card installed in KIM
yet. I do like FORTH! ! ! The PFIG has
been fairly inactive for some time due to
lack of a meeting place, but Joel Shprentz
has been conducting some Intermediate
FORTH classes ($30 for six lessons) which
are ongoing, and very interesting - we are
well into <BUILDS/BOES>, and will then go
on to disking, etc. Ask Joel for details.

I'm still planning to bring up FORTH on
the KIM from my own hand-assembled ver-
sion, just to satisfy my own curiousity
about what makes FORTH tick. I do think
I'm finally beginning to understand how
everything fits together.

In this vein, I have a few comments to
pass on from an (advancing) novice FORTH
enthusiast. The first two comments regard
the above referenced Installation Manual
and 6502 Assembly Listing. The last two
awe ideas of my own which I offer for what
they are worth.

1. There is a disparity in the Instal-
lation Manual version of the 6502
memory map regarding the placement of
the Disk buffer and User Area.

FORTH DIMENS IONS III/ 1 Page 8

Indeed, there is disparity in the
6502 Assembly Listing between what is
done near the front and what is actu-
ally implemented (per the installa-
tion Manual). The Installation
Manual puts the Disk buffer at the
top of RAM with the User area just
below. Line 0051 of the assembly
manual says User area is top 128
bytes, with disk buffer next (line
0052). CREATE assumes just the
oppposite in both the Installation
Manual and Assembly Listing. (~ditor
-- correct on all all points. The
author was inconsistent.)

2. In screen 49 of the Installation
Manual, I see no need whatsoever for
a dedicated word such as ID. to move
the word name to Pad and then type it
out! The first 4 words are not
needed, and neither are the words
following " - " (PAD SWAP CMOVE
PAD). Just a waste of time and space
to bring the name to PAD and then
type it out! (Editor -- this is not
so. If you have WIDTH set to less
than 31, ID. is required.

I would suggest a word (Q) that
might be inserted into any type of
loop (DO/LOOP or BEGIN/AGAIN) to
allow a timely exit when things go
awry (as they do with Novices!).
It's very simple - : Q ?TERMINAL IF
QUIT ENDIF ; MMS FORTH has this
embedded into the code of " : " , but
I think that's overkill. But it sure
is nice to undo errors put into
loops. (Editor -- this is terrible
style. LEAVE is the correct way for
a controlled termination.)

4. This has specifically to do with the
Jump Indirect of the 6502 as used in
both the Installation Manual and the
assembly listing. Having used the
6502 for better than 4 years, I have
yet to use the JMP indirect after
finding out about its shortcoming of
wrapping around within a page if low
byte of address is $FF. I pretend
this opcode does not exist. (Editor
-- CREATE on 6502 systems correctly

places code field. Anymore comments
should be directed to Chuck Peddle,
designer of 6502.)

Keep up the good work.

Edward B. (Ted) Beach
5112 Williamsburg Blvd.
Arlington, VA 22207

*

CORRECTION ON SEARCH
by John James
(~ol. 11 # 6)

When you are debugging or modifying a
program, it is often important to search
the whole program text, or a range of it,
for a given string (e.g. an operation
name). The 'SEARCH' operation given below
does this.

To use 'SEARCH', you need to have the
FIG editor running already. This is
because 'SEARCK' uses some of the editor
operations in its own definition. The
'SEARCH' source code fits easily into a
single screen; it is so short because it
uses the already-defined editing func-
tions. Incidently, the FIG editor is
documented and listed in the back of FIG'S
Installation Manual.

Use the editor to store the source code
of 'SEARCH' onto a screen. Then when you
need to search, load the screen. (of
course if you are using a proprietary
version of FORTH, it may have an editor
and search function built in and auto-
matically available when needed. This
article-ette is mainly for FORTH users
whose systems are the ten-dollar type-it-
in-yourself variety).

Here is an example of ilsing 'SEARCH'.
We are searching for the string 'COUNT' in
screens 39-41; the source code of 'SEARCH'
is on screen 40. The screen and line
numbers are shown for each hit. Inci-
dently, the search string may contain
blanks. Just type the first screen
number, the last screen number, 'SEARCH'
followed by one blank and the target text
string. Conclude the line with return.
The routine will scan over the range of

Page 9 FORTH DIMENSIONS III/1

s c r e e n s do ing a t e x t match f o r t h e t a r g e t
s t r i n g . A l l matches wi .11 be l i s t e d w i t h
t h e l i n e number and s c r e e n number.

Happy SEARCHing!

39 41 SEARCH OOUNT
00 VARUI3TlE C(XTNT ER -

l C O U N T I S R + ! c3xmER@
1 CX~UN%-R +! CXXTNT ER @
5 6) ~ 0 COUNT me!
12 EMZT 01 ?IrlXf - O ER! -

8 : .S (prints stack c~xitent-s, ~ o p last;
stack mclmgd)

9 DGBI IF SP@ 2- SO @ 2-- ICr) I ?
-2 +urn

10 - .I1 F q t y I' 'DEN ;
11

SCR # 4 0

o \ S E A ~ C H , OVER RANGE OF SIREENS ure)
1 UECIHAL
2 0 0 VARIABLE COUNTER
3 : BUMP (THE L I N E NUMBER AND HANDLE PAGING)
4 1 COUNTER tl COUNTER P
5 5 6 , I F 0 COUNlCR I

6 CR CR 15 HESSAGE 12 EMIT THEN ;
7 : SEARCH (F R O M , TO - - - TARGET S T k I N G)

8 1 2 E H I T 0 1 TEXT 0 COUNTER 1

9 1+ SUAP D O F O R T H I S C R I

t O E D I T O R TOP
I 1 REGIN 1 L I N E I F 0 H SCR 7 BUMP THEN
12 1023 R # e t UNTIL
1 3 LOOP ; CR ." SEARCH I S LOADED " ; 5
14
15 TYPICAL USE TO LOCATE hEY-UORD : 21 4 4 SCARCH K tY-UORD

12 2 BASK). B. (print i n b inary)
13

PROGRAMMING AIDS & UTILITIES

K i m H a r r i s
FORTHRIGHT ENTERPRISES

P.O. Box 50911
P a l o A l t o , CA 94303

I n t r u e i d e a l FORTH programming s t y l e
t h e d e f i n i t i o n s c o n t a i n e d w i t h i n t h e
s c r e e n s c l e a r l y d e s i g n a t e s t h e i r use .

81 UST 82 LIST
SCR $I 81

0 (Software Developlrnt tools fig-KRTH 1.x)
1 (for IDADing
2:mAD (scd!--1 m . mAD ;
3 : THRU (IstScreerdj lastScremJ/ -)

(WADS range of screens)
4 l+SCJAPD3 1mAD LOOP ;
5
6 (non-destructive stack print)
7 : DEPM (- #StackCellsUsed) SP@

s o @ SWAP-21;

12 (&i& vocabulary is being referenced?)
13 r .VOC (prints VOXHJh@Y rnarne)
14 CX3TEXT@ 4 - W A D . ;
15

SCR 82
0 ('Tools: nuder printing fig-FC#ITH 1 .x 1
I
2 : .BASE (-) (prints current radix in

decimal)
3 BASE @ WP DEClMllL . BASE ! ;
4
5 (create base-specific stack-print operators)
4 : BASED. ((IuJILE: n w k s e -
(El=>: n -)

7 BUILDS>
8 DOES)@ BASE@ SWAPBASE! SWAP.

BASE ! ;
9

10 16 lM!XD. H. (print top-of-stack i n hex 9
11 8 BASED. 0. (print i n octal)

The fo l lowing u t i l i t y indexes 10 s c r e e n s
a t a t ime and i s an e x c e l l e n t a i d i n
s e a r c h i n g .

HEX : +TNDEX 113 0 DO
DUP lo-+ SWAP OVER INDEX
KEY ?ESC I F LEAVE THEN LOOP;

The f o l l o w i n g u t i l i t y was c o n t r i b u t e d by
Sam B a s s e t t and i s an e x c e l l e n t program
development a i d t h a t shows you what t h e
c u r r e n t base i s

: BASE?
BASE @
DUP
D E C I W

BASE !

FORTH DIMENSIONS 111/1 Page 10

Here is an adaptation of George Shaw's
VIEW to use the word WHERE, which on my
system invokes a f u l l screeen editor that
highlights the word pointed to by a block
number and displacement. It certainly
helps pick out a word in dense code.

0 ('VIEW' USING 'WERE' 4/15/81
1 (ADAPIED FW~M FOlMI DDENSI~S W.1,

NBR 6, P 162
2FQWHDE!mmONS
~ : > M ~ c < E K @ , IN@ , ; (SAVEBZKAND
DISP- 1

4: cxxslmc >MX=<C~~~~?IIEI m m ;
(RmmDmWDRDS 1

5 : V m L E >IXX: < ia3~~lU1 V- ;
 BUILD^. 1

6:: >M)(=<C~IIEI : 9

7 3 3 m m s)WC<IOOMPIIEI BUILDS ;
8 : USER >M3C(COOMP~1 USER
9:cwlus >mc<CaWnelcxarue ;
1O:VDN IOOMPILEI 'NFA (GETHEADOF

m-)
11 m (CoPYmAlmEss)
12 2 - @ ((;EII 'ME DI-
13 W 4 - @ (GET'MEBLLEKNUMEER)
14 WERE (G O ~ & ~ G H T) ;
15 ;S

HELP WANTED

Senior Level FORTH Programmers

Friends-Amis
505 Beach Street
San Francisco, CA 94133
Call: Tom Buckholtz
(415) 928-2800

R.E.E.

Intermediate & Senior Level FORTH
Programers for Data Entry Applications

MSI Data
340 Fischer Avenue
Costa Mesa, CA 92627
Call: Joan Ramstedt
(714) 549-6125

. PRODUCT REVIEW

by C.H. Ting, Feb. 26, 1981

Timin-FORTH, from Mitchel E, Timin Engi-
neering Co., 9575 Genesee Ave., Suite E2,
San Diego, CA 92121, (714) 455-9008.
8" single density diskette, $95.00

I was invited by Dr. Timin to compare
his CP/M FORTH (FD II/3, p. 56) with the
Z-80 FORTH by Ray Duncan, Laboratory
Microsystems (FD 1113, p. 54; FD II/5,
p. 145) I ran the two FORTH systems on
his home made 2-80 computer (S-100 bus,
6 MHz) The results of a few bench marks
were :

Tirrrin 2-80 - -
2.3 sec 2.9 sec

97 UXD (four hundred eighty 9's) 17.9

5
I was surprised that Timin-FORTH which

is 8080 fig-FORTH ran faster than 2-80
FORTH which uses the extra 2-80 registers
for IP and W. Dr. Timin's opinion was
that the 2-80 instructions using these
extra registers are slower then the
simpler 8080 instructions. The word WIPE
tests disc access time. Timin-FORTH
accesses the disc by 1024 byte blocks, and
it is twice as fast as 2-80 FORTH, which
readslwrites by 128 byte sectors, as in
the fig-FORTH model.

The dictionary in Timin-FORTH is about
11 Kbytes, including an editor and an
assembler. The editor is the same as that
of the fig-FORTH model. The assembler has
all the 2-80 instructions. An interesting
word SAVE allows the whole system in-
cluding application words to be preserved

Page 11 FORTH DIMENSIONS 11111

as a CP/M file which can be loaded back
for execution. It maintains eight i Kbyte
disc buffers.

The documentation supplied with the
system is a 68 page booklet 'USER'S MANUAL
& TUTORIAL' . It is a very well done
manual introducing users to the systems
and to the FORTH language. However,
source listings are not provided.

My overall impresssion was that this is
a well rounded FORTH system suitable for
engineering and professional applications.

Editors Comment -- FORTH Dimensions
re frains f rorn publ.ishing timing benchmarks
as this reflects processor speed more than
effectiveness of problem solving. Row-
ever, the above review points out that the
allegedly superior 2-80 runs these tests
slower than the 8080. Our point is that
the user should evaluate all aspects of
problem solving: hardware characteris-
tics, language implementation and appli-
cation technique. The Timin manual is
sold separatly for $20.00. This price is
not justified by the copy received for our
evaluation.

HELP WANTED
FORTH PROGRAMMER

PDP-11 RSX Op Sys On Site Contractor

Micro/Temps
790 Lucerne Dr.
Sunnyvale, CA 94086
(4 0 8) 738-4100

FORTH TELE-CONFERENCE IS NOW OPERATIONAL

FORTH now has a dynamic, public access
data base. By dialing into the FIG
CommuniTree (tm, the CommuniTree Group)
you may access our tele-conferencing
system. It was created by Figger John
James to allow group interaction to build
upon our collective knowledge.

The number is 415-538-3580. The system
runs 24 hours a day. Use a 300 baud modem
and start with two "returns", the system
is self-ins tructing. This conference
holds information on employment, vendors,
applications, announcement calendar,
inquiries, books, etc. Information of the
conference is organized in a tree struc-
ture, hence the name I' Conference Tree".

Our hope is that half of the callers
will review the available material and
then ask questions. The other half should
add answers to these questions. You
simply find a topic or message and attach
your querylresponse. Users naturally
organize their material in a form that
facilitates retrieval.

This system was written in Cap'n
Software Version 1.7. Versions for other
than Apple I1 are being developed.

For availability contact:

The CommuniTree Group
Box 14431
San Francisco, CA 94119

or call the original Tree:
526-7733.

FORTH DIMENSIONS III/l Page 12

FORTH, INC. NEWS

MAJOR EXPANSION PLANS

FORTH, Inc. is now entering a major
expansion phase, according to President
Elizabeth Rather. Appearing on a panel on
11 Programming Languages for Small Systems"

at the recent NCC in Chicago, Rather
observed, "The level of excitement and
enthusiasm about FORTH in the industry is
tremendouus. We are increasing our number
of OEMIS and we have been approached by
several major silicon manufacturers
desiring to obtain marketing rights for
special versions of polyFORTH. Arrange-
ments are also being made to produce the
FORTH processor, and we expect this
project to start very soon."

LIFEBOAT REPRESENTATIVE VISITS

Masa Tasaki, Managing Director of
Lifeboat, Inc., FORTH, Inc. ' s distributor
in Japan, spent two days at FORTH, Inc.
recently to discuss mutual marketing
plans. Lifeboat, Inc. is one of the few
software distributors in Japan, and
polyFORTH is the top of their product
line. Tasaki has installed over 40
polyFORTH systems in Japan in the past
year, and plans to sell an additional 50
polyFORTH systems by the end of 1981.

STARTING FORTH BOOK PREPRINTS AVAILABLE

STARTING FORTH, a 380-page book intro-
ducing the FORTH language and operating
system will be published by Prentice-Hall
this September in both hard and soft-bound
editions. FORTH, Inc. is offering limited
preprints to customers until then. The
preprint, numbered and signed by both
author Leo Brodie and Charles H. Moore
sells for $50.00 (plus 6% sales tax for
residents of California). You may reser-ve
a copy of STARTING FORTH by calling lJinnie
Shows at (213)372-8493. All orders must
be pre-paid.

W3CENT FORTH COMMERCIAL APPLICATIONS

Work has just been completed for
Raytheon Corporatisn on a terminal cluster
(up to 32 terminals with a single concen-
trator). Each component of the system is
controlled by an 8085 processor, and all
are programmed independently, using
polyFOR'irH. This is a capability they've
never had before -- to do custom program-
ming and provide extensibility. Terminals
up to two miles away can be polled at a
rate 30 times faster than the previous
protocol, which was written in assem-
bler. Dean Sanderson was the principal
programer on the project .
The famous 200" Hale Telescope at Mt.

Palomar Observatory (near San Diego) has
recently installed a polyFORTH system for
data acquisition and analysis using a
PDP11/44 and a Grinnell display proces-
sor. The Observatory has been using FORTH
since the early 1970ss, including a
miniFORTH system installed in 1975 and an
early polyFORTH installed in the late
70's. Barbara Zimmerman, a programmer at
Cal Tech (which operates the observatory)
said, "I am extremely impressed by the
level of polish and sophistication in
polyFORTH, and the performance of this
system is outstanding." The type of work
done involves reading data from an 800 x
800 array of CCD sensors, integrating and
recording the data, and displaying it in
the Grinnell. Charles Moore installed the
system, which features a comprehensive
math package for analysis as well as basic
image-processing functions.

A by-product of this installation is the
availability of polyFORTH in RK05 disk
cartridges. These are available with on-
site installation.

SCHEDULE OF UPCOMING FORTH, INC. SEMINARS
AND WORKSHOPS :

Location

Palo Alto
Iiouston
Tampa
Irvine

Seminar

June 4
July 7
July 9
July 23

Workshop

June 5
July 8
July 8
July 24

--
Page 13 FORTH DIMENSIONS I1111

PARAMETER PASSING TO DOES)

David McKibbin
S ygne t ron

2103 Greenspring Drive
Timonium, MD 21093

Often in programming one runs into the
case where several different processes
share similar structures. Not wanting to
waste time or space for redundant code,
the programmer usually creates a sub-
routine or procedure to execute the basic
structure. Then the individual processes
merely pass arguments to the prodecure to
accomplish their task. Several schemes
can be used to pass these parameters, In
simple cases, the stack can be used
directly. This is the typical act of
programming in FORTH.

However, as the procedures get more com-
plex it gets more and more difficult to
keep track of the passed parameters espe-
cially when the procedure itself is using
the stack heavily. Also many times it is
necessary to pass not only numbers but
operators or words as parameters. One
means of accomplishing this is via (BUILDS
DOES). Parameters will be stored in the
parameter field of the newly defined word
and accessed from DOES) via a new word
{ $ } . 1 $ will push the first parameter
on the stack, 2 $ will push the second,
etc. All parameters are 16 bits. Varia-
ble R# is used to store the parameter base
address.

Now that the mechanics are explained the
following example will more fully demon-

strate its usage. Both DUMP (16 bit dump)
and CDWP (8 bit dump) share a common
structure with only a few inner words dif-
fering. DUMPS is a new defining word used
as a procedure for botfi DUMP and CDUMP.

What has been accomplished is akin to
passing procedures/functions as parameters
in Pascal. I expect that there are other
ways to do this FORTH beyond what has been
proposed.

FIG-FORTH UNDER 0s-65U

Sof tware Consultants has announced the
availability of Fig-FORTH under 0s-65U for
the Ohio Scientific Line. The package
includes assembler and a terminal oriented
editor and is available now for $79.95.

This version is said to support hard-
disk, multi-user systems and may even be
run in one partition and BASIC in another.

For more information contact:

Software Consultants
7053 Rose Trail
Memphis, TN 38134
(901) 377-3503

FORTH DIMENSIONS 111/l Page 14

COMPILER SECURITY

George W, Shaw I11
SHAW LABS, LTD.

17453 Via Valencia
San Lorenzo, CA 94580

How it Works and How it Doesn't (Adapted
from a section of the Acropolis A-FORTH
manual)

There is much argument about parameter
validation and error detection in FORTH.
Many problems exist with many good solu-
tions. Fig-FORTH and its derivitives have
taken one route of extensive protection in
compiler directives and their associated
words. This is not an only solution in
this area. Its extensiveness may not be
necessary. There may be better alterna-
tives. Read on, learn how fig-FORTH
works, consider the options and then
decide. Your opinion and ideas are
needed.

Fig-FORTH and its derivitives provide a
type of compiler error detection referred
to as "compiler security". Compiler
security provides protection against
structural programming errors made by the
programer as well as insuring the proper
machine state and, in a very few in-
stances, the validity of parameters.
Though it depends on the type of program-
ming, the most common errors are struc-
tural errors* , machine state errors, and
then parameter errors, respectively.

(* structural errors may be caught
internally by detecting parameter
errors. See text.)

STRUCTURAL ERRORS

The compiler security system uses two
methods to trap structural programming
errors inside of colon-definitions .
Structural errors are those caused by
incorrect program structure; either
improper nesting of structures or not
completing a structure inside of a defi-
nition. Either of these conditions would
cause the program to compile incorrectly

and could cause disastrous effects (i.e. a
system crash) at run-time. The methods
used by the csmpiler security system
entail either checking a value on the top
of the stack (to verify the proper nesting
of structures) or checking that the stack
position is the same at the end of a defi-
nition as it was at the beginning of the
definition (to ensure program structure
completion). These two methods probably
trap about ninety percent (90%) of the
structural programing errors that a pro-
grammer might make.

The first in each of the paired struc-
tural compiler directives (i.e. pairs such
as IF THEN, DO LOOP, etc.) leave
on the stack at compile time a value which
is checked by the ending structure to
ensure the proper nesting of structures.
For example the word IF leaves, in
addition to the other data necessary to
compile an IF , the value of two (2) on
the top of the stack. The words ELSE
and THEN remove a value from the top of
the stack and check to see if it is a two
(2) . If the value on the stack was not a
two (21, a Conditionals Not Paired error
(819) results, and compilation is termi-
nated (control returns to the keyboard).
If the value is a two (2) the remainder
of ELSE or THEN executes, removing the
necessary data from the stack to finish
the structure, and compilation continues
on to the next word.

Below is a table of the conditional
pairs for the current structural compiler
directives, with the values placed on the
stack open and the values removed from the
stack in parenthesis. Note that UNTIL
and END as well as THEN and ENDIF
have the same effect. Only the former of
each pair are presented here for clarity.

BEGIN
BEGIN
BEGIN
IF 2
IF 2
DO 3
DO 3
DO 3
DO 3

1 UNTIL
1 WHILE
1 AGAIN

THEN
ELSE
LOOP
+LOOP
/LOOP
+/LOOP

REPEAT (1) (4)
(1)
4
(1)
(2)
(2) 2 THEN (2)
(3)
(3)
(3)
(3)

Page 15 FORTH DIMENSIONS 11111

Note that ELSE tests and replaces the
same value on the stack. Because of this
the current compiler security system
cannot detect the presence of multiple
ELSEs in a definition. For example, in
the definition:

: ELSE-EXWE flag - true or false mssage)
IF ." True part 1 " EISE ." False part 1 "

ElSE ." False part 2 I' ELSE ." False part 3 "
D E N ;

if compiled , (and it will compile,) and
then executed with a boolean value (zero
or non-zero) on the stack, will execute
without crashing the system. But the
execution may not be what you expected.
If entered with a true flag (non-zero) the
"True Part 1" and the "False Part 2" will
print, while if entered with a false flag
(zero) the "False Part 1" and "False part
3" messages will print. To borrow a
phrase from Kim Harris, probably "Not what
you had in mind!".

This is the only case I know of where
the compiler security system plainly does
not work, but there are probably more.

How is this, apparently incomplete,
structure checking performed? Read on.

The values on the stack is verified by
?PAIRS . For example the words ?PAIRS ,
BEGIN and AGAIN are defined as follows:

: ?PAIRS - 19 ?ERROR ;
: BEGIN ?COMP HERE 1 ; IMMEDIATF,
: AGAIN 1 ?PAIRS COMPILE BRANCH BACK
; IMMEDIATE

BEGIN first checks to make sure that it
is being executed in compile mode (inside
a definition) with ?COMP which issues an
error if it is not. It leaves the current
dictionary address on the stack (HERE)
as a branching reference for AGAIN , and
then the 1 as the first of a conditional
pair, When AGAIN later executes during
the compilation of the definition it first
checks the stack to see that a BEGIN
preceded it at the same level of nesting
by executing ?PAIRS . ?PAIRS expects
to find a matched pair of values, in this
case ones (I), as a matched set of condi-

tional pairs. If ?PAIRS does not find a
matched set, it aborts with a Conditionals
Not Paired error (#19). If the values on
the stack are paired, it removes them and
returns.

The above simple form of error checking
is very effective, but as structures
become more complex, manipulating and
maintaining the stack values can become
cumbersome and unwieldy. The above is
also not yet complete. One more check
must be executed to ensure that: the
structures in the definition have been
completed. Since the above error checking
leaves data on the stack if a structure
has not been completed, the simplest check
is that of the stack position. 'hen a
definition is entered : (colon) stores
the Current Stack Position in the user
variable CSP . At the end of a defini-
tion, ; (semi-colon) executes ?CSP to
compare the current stack position to the
value stored in CSP . If the values
differ a Definition Not Finished error
(#20) occurs indicating that either data
was left on the stack or that too much
data was removed from the stack, i.e. that
a programming structure was probably not
completed. The word "probably" is used
here because other conditions, such as the
improper or sometimes various proper uses
of the word LITERAL , will cause the same
error condition to occur.

IJLACHINE STATE ERRORS

The loading and execution of a FORTH
program causes the system to enter several
different machine states. Three of these
are loading, compiling, and executing.
Each of these states is defined by its own
set of parameters and some states may even
overlap. For example, while loading a
screen off the disk the machine will be
either executing or compiling. Here the
loading state has overlapped with either
the execution or compilation state. The
machine cannot be in the execution state
and the compilation state at the same
time, though the states may be inter-
leaved. An example of interleaved states
is the use inside a definition of a pro-
gram segment similar to this:

FORTH DIMENSIONS 111/1 Page 16

which temporarily suspends compilation to
calculate the value within the brackets
and then compiles it as a sixteen (16) bit
literal. ' Remember though, that to com-
pile, the machine is executing a program,
and that compiler directives (such as
LITERAL above) execute during compilation
to perform their task, but the machine
state remains that of compilation.

Certain words require that the machine
be in a specific state to execute proper-
ly. These words are programmed to contain
one of the following words:

which check for their corresponding state
and issue an error message if the machine
is not in that state. Below is a descrip-
tion of each of the above words and the
parameters which determine the current
machine state.

The execution state or compilation state
is determined by the value of the user
variable STATE which has a zero (0)
value if the machine is in the execution
state and a non-zero value the machine is
in the compilation state.

state when ?COMP executes a Compilation
Only, Use in Definition error (ill71
occurs.

If the machine is not in a state of
loading when ?LOADING is executed a Use
Only When Loading error (822) occurs.

The testing of machine states as above
is necessary when words such as BEGIN
and AGAIN (see example in STRUCTURE
ERRORS above) are used. These words may
only be compiled because they must compile
something other than themselves which is
not known at the time they are executed.

PARAMETER ERRORS

During compiling and similar operations
there are only a few parameters which are
actually checked. In most cases, the
parameters checked are those involved in
the other areas of compiler security or
those which deal with the size or validity
of the dictionary and stack.

The words involved in other compiler
security areas are !CSP , ?CSP ,
?PAIRS . These words are used to protect
against structural programming errors as
described above in STRUCTURAL ERRORS. An
explanation of each of the uses of these
words is as follows:

! CSP ?CSP

Loading is determined when the value of
the user variable BLK has a non-zero
value. A value of zero for BLK indi-
cates that input is coming from the user's
terminal and that the machine is therefore
not loading.

The above words are defined as follows:

: ?EXEC STATE @ 18 ?ERROR ;
: ?COMP STATE @ 0= 17 ?ERROR ;
: ?LOADING BLK @ 0= 22 ?ERROR ;

If the machine is not in the execution
state when ?EXEC executes an Execution
Only error (!I181 occurs.

If the machine is not in the compilation

These words are used together to check
for changes in the stack position.
!CSP stores the current stack position in
the user variable CSP . ?CSP compares
the value in CSP to the current stack
position and, if they are not the same,
issues a Definition Not Finished error
(1120 1. !CSP and ?CSP are currently
used in : and ; respectively to ensure
that all structures in the definition have
been completed before the semi-colon. Any
structures uncompleted will leave data on
the stack and thus allow ?CSP to flag
the error. These words can also be used
to check the stack effect of user defini-
tions. For example, if a definition
should have no stack effect (leaves the
same number of items on the stack as it
removes) the following would test this:

Page 17 FORTH DIMENSIONS 11111

!CSP cccc ?CSP

which would execute a definition named
cccc and issue a Definition Not Finished
error (1 2 0) if the number of items on the
stack at the beginning and end of the
definition were different.

This word is used when testing for
correct structure in compiler directives
(see STRUCTURE ERRORS) to check that the
value of the two numbers on the stack is
the same. If the value of the two compi-
lation conditionals on the stack is not
the same, a Conditionals Not Paired error
(#19) occurs. ?PAIRS can be used to test
similar situations in user programs, but
the error message given will be the same
(error 819).

The checks on the dictionary and stack
consist of testing the stack for under-
flow, the dictionary and stack for over-
flow, and the name of the dictionary entry
to be created for uniqueness (in A-FORTH
this test is optional and there is a test
to ensure that a definition name is not
null). Some of the tests are performed
during the execution of other functions by
the testing word (such as the tests per-
formed by WORD and by CREATE). Only
the testing performed by these words will
be described here.

CREATE

This word creates a dictionary header
for a new word. In the process of
creating this header a dictionary search
is performed to check that the header is
unique. The message given if a duplicate
is found is Isn't Unique (# 4) . This is
not a fatal error but just a warning.
A-FORTH allows the disabling of this test
(and the associated message) and performs
another test for a dictionary entry whose
name is a null. The creation of a dic-
tionary entry with a null name is not
allowed because the null is the name of
the entry interpreted at the end of the
disk or terminal buffers. If an attempt
to create a null entry is detected a Null

Definition Name! error (# 9) is given. If
a dictionary entry with a null name were
created, the system would attempt to
interpret this as the end of the current
buffer with unpredictable results.

This word checks that the parameter
stack is within bounds. It compares the
current stack position (by executing SP@)
against the base stack position in user
variable SO to check for a stack under-
flow. It also checks that there are at
least 128 bytes of dictionary space left
(to leave room for PAD and stack work).
If the stack underflows an Empty Stack
error (#l) is given. If the stack comes
within the 128 bytes of the dictionary a
Full Stack error (#7) is given. ?STACK
is not executed at runtime unless compiled
by the programmer, though it is executed
frequently during compiling and text
interpretation.

WORD (A-FORTH only)

This definition moves text from the
current input buffer to the head of the
dictionary. The error test performed
checks that there is enough space between
the head of the dictionary and the top of
the stack for the text about to be
moved. If there is not enough space a
Dictionary Full error (#2) is given. This
prevents the system from crashing by
writing over its own stacks.

DO WE NEED IT?

Should we have all this security all the
time? Or just when we think we need it?
Fig-FORTH currently does not give us a
choice on the matter. Sure, we can com-
pile on top a new set of compiler direc-
tives which don't have the tests, but we
have then already wasted all the memory
for the secure directives, the ?XXX words,
and the lot. The reverse course I con-
sider more appropriate. The kernel system
should have as little protection as pos-
sible. The system should not suffer the
overhead for those who do not desire it.
If security is desired, a "Novice Pro-
gramer Protection" package could be

FORTH DIMENSIONS 11111 Page 18

compiled into a user's area which would
include all the words necessary to protect
him or her (and the other users) from him
or herself. This would allow protection
even for the words such as ! (store),
FILL and CMOVE when desired.

Something as simple and extremely effec-
tive as the !CSP and ?CSP in : and
; respectively may be left in the kernel
system to give warning to even the best of
us when necessary. Definitely, also the
stack checks at compile time and possibly
the uniqueness (though it should be
optional) and null definition (currently
A-FORTH only) checks should be left in,
but the structure and state testing is
often incomplete and annoying. Anyone who
has tried to write and secure a good
general CASE structure, or a BEGIN
WHILE REPEAT loop which allows mul-
tiple WHILES will know what a pain it is
to try to secure them in a reasonably
complete fashion. For these people
compiler security dosn't work. Addition-
ally, new structures transported from my
system to another may not remain secure
because the same conditional pair numbers
used in my structure on my system may have
been used in a different structure on the
other system. Again, the compiler secur-
ity dosn't work.

The same method used in high level struc-
ture testing is also used in one known
assembler, which the author considers
totally inappropriate. If one is program-
ming in FORTH assembler one is doing so
for speed, which may require not being
structured at all.

Currently, the matter of compiler security
is being studied by the group writing the
next 8080 fig-FORTH version (which could
possibly outline a new model). Should we
have all the protection all the time, or
just some of it and a programmer protec-
tion package? Or maybe there is a better
alternative. Your input is wanted and
needed. Write to the 8080 group at FIG,
PO Box 1105, San Carlos CA 94070 and tell
us what you think.

NEW PRODUCTS

POLYMORPHIC FORTH NOW AVAILABLE

FORTH is now available for the Poly-
Morphic Systems SSSD 5" systems (8813 &
8810). The PolyMorphic disk operating
system has been patched in and the system
is interfaced to the PolyMorphic operating
system, PolyMorphic FORTH includes a
modified systems disk, and brief documen-
tation on changes to interface to the
PolyMorphic SSSD 5" disk operating system
-- based on 8080 Fig-FORTH. Price is
$50.00. For more information contact:

Ralph E. Kenyon, Jr.
ABSTRACT SYSTEMS, ETC.
145-103 S. Budding Avenue
Virginia Beach, VA 23452

FORTH FOB HP83/HP85

A disk based FORTH is now available for
the HP85/HP83 personal computers. The
implementation is the FIG FORTH 1978
standard with some machine dependent util-
ities. User receives both 16k and 32k
versions with user space being 2k and 18k
respectively. Both versions require a
disk. Included is an assembler, a FORTH
decompiler and editor. This is not an HP
supported product but available through
the user's library. FORTH, in object form
(no source), an assembler, decompiler and
editor, in source, are sent on a disk.
This product recommended for experienced
users only! Those familiar with FORTH
should have no trouble using this system
(i.e. there is no manual inluded).
However, sufficient references are
given. Current cost is $50.00. For more
inf2rmstion contact Nany Reddington at
(503) 757-3003.

FORTH PROGRAMMER AVAILABLE

3 mos. experience with FORTH (also know
BASIC & COBOL) Active member of F.I.G.
Contact: Martin Schaaf, PO Box 1001, Daly
City, CA 94017 (415)992-4784

-
Page 19 FORTH DIMENSIONS 11111

USERSTACK

Peter H. Helmers
University of Rochester
Department of Radiology
Medical Center, Box 648
Rochester, NY 14642

INTRODUCTION

One of the advantages of FORTH is its
use of a stack oriented architecture. In
conventional FORTH implementations, one
has available two kinds of stacks: the
return stack and the parameter stack. In
general, the return stack is used to keep
track, at execution time, of the path of
invocation of nested FORTH words while the
parameter stack is used to manipulate data
used within and/or passed between FORTH
words.

Unfortunately, in the real world, such a
clean segmentation between parameter data
and execution nesting data tends to break
down. For example, DO. ..LOOPS are imple-
mented by using the return stack to keep
track of the loop count and associated
data. The motivation for this violation
of the sanctity of the return stack with
DO., .LOOP parameters is the desire to
separate the DO.. .LOOP data from any
parameters being used by the programmer
within the loop. Failure to do so would
allow confusion of loop parameters with
actual user data -- causing a consequent
abnormal execution of the JM... LOOP
arising from an unwarranted modification
of loop parameters.

In addition to the above saving of
DO.. .LOOP parameters on the return stack,
it is not uncommon practice for a program-
mer to want to save some parameter stack
data in order to be able to first calcu-
late using data beneath it. One previous-
ly employed method to do this was to
temporarily push the parameter stack data
onto the return stack, and then later

Editor's Note: Mr. Helmers uses URTH, a
dialect of FORTH.

retrieve it when subsequently needed.
Admittedly, this is an easy -- lazy! --
way to achieve tranisent data storage.
But woe unto those who forgot to pop the
return stack of this temporary data...!

USER STACKS

The "user" stack concept allows a FORTH
program to retain the convenience of an
auxiliary stack, but in such a way as to
avoid mixing temporary data with execution
time return information. As an added
convenience, this concept allows creation
of multiple, named, stacks which can be
typed according to the number of (two
byte) words per stack element.

A user stack can be thought of as an
array (integer, double precision, or real)
of data which has implicit addressing.
Consider, by way of analogy, a conven-
tional array such as:

100 ()DIM MY-ARRAY

One would store the 53rd integer element
by explicitly stating the index:

52 MY-ARRAY ! (ZERO ORIGIN. ..)

This would take data from the top of the
parameter stack and store it in MY-
ARRAY. Alternatively, one would access an
integer from this array by:

27 MY-ARRAY @

The disadvantage of arrays is that they
require both an explicit index, and an
explicit load (@) or store (!) operator.
While an array could be used for temporary
storage of parameter stack data, such
programming practice is not neccessarily
clear or efficient.

So how does a user stack help us?
Consider the integer user stack defined:

100 STACK MY-STACK

MY-STACK would, in this case, have a
size of 100 integer elements. Data can be
put into this user stack from the top of
the parameter stack by:

FORTH DIMENSIONS 11I/1 Paee 20

PUSH MY-STACK

while it can be retrieved back to the
parameter stack by:

POP MY-STACK

Note that addressing is implicit-- there
are no indices -- and that the direction
of data transfer is set by the PUSH and
POP words.

USER STACK WORDS:

In practice, three types of user stacks
have proved useful; STACK, DSTACK, and
FSTACK. While stack variables created by
these three defining words all use the
PUSH and POP words to save and retrieve
data, the amount -- or type -- of data
pushed or popped differs. As discussed
earlier, STACK deals with integer (two
byte) words. DSTACK consists of elements
of double precision integer words (four
bytes) while FSTACK elements are floating
point numbers (six bytes). All three of
these words are defined in terms of an
arbitrary n-precision NSTACK word which
allows specification of any number of two
byte words per stack element.

Two other words are also useful with
user stacks. There are EMPTY-STACK and
?STACK. Note that both of these cannot
(presently) be used within colon
definitions. The line:

?STACK MY-STACK

-will dump out the contents of the stack
from the top of the stack through the
bottom of the stack. ?STACK is intended
purely as an aid in debugging.

terms of a more general NSTACK defining
word. A line such as:

22 4 NSTACK WIDE-STACK

will define a 22 element stack with eight
bytes (four words) per element. NSTACK
has two primary parts. The first part,
executed when a new stack is defined,
builds a FORTH word header, stores some
stack definition parameters into the dic-
tionary, and finally allocates the actual
dictionary space for the stack, The
second part, written in 8080 assembly
language for speed, defines the execution
time actions taken by the stack varia-
ble. Both of these defining parts will be
explored in greater detail below.

The format of the user stack in the
dictionary is shown in Fig. 1. It con-
sists of a normal FORTH header, followed
by the following four stack definition
parameters:

a) current stack pointer (two bytes)
b) Sfwords per stack element (one byte)
c) maximum stack pointer address (two

bytes)
d) minimum stack pointer address (two

bytes)

#BYTES FIELD COMMENTS

EMPTY-STACK MY- STACK n c l M M X W 3
Y2

will, for example, reset the stack pointer 2 VDCAB LINK
for the user stack: MY-STACK so that it 2: 2 CX)DEAIIXESS
will be empty. Again using the MY-STACK
example, 2 cmREtQmPIlR

1 ~ S / S I I A C K ~
2 MAXSMPTRADmEs
2 M I N S r K P T R ~ S
m SllACKDAWAREA # bytes needed to

contain specified #
of stack elanents

IMPLEMENTATION:

As was previously mentioned, STACK,
DSTACK, and FSTACK are all defined in

characters Saved
for word name

Points to ;m part
of NSTKK def.

Figure 1 -- Dictionary Layout
for a Stack Type Variable

Page 21 FORTH DIMENSIONS 1111 1

**+ BLOCK I) 1%

I STACK DATA TYPES -- P W 23 OC1 80)

(C.ELEWNTS3CIUWffiIELTIlENTl NST- NWNN CREflTES THE STAUO
(CaLLED MNN UITH THE GIVEN NUMBER OF ELEMENTS. STACK WTR)
(TYPES IY)V BE P-0 OR POPPED TO OR FROM THE -TER)
I STACK I
I NSTRCK CBUILDS suap WER WP + * DUP I *BYTES IN ST- 3

M R E * DUP I I SET UP CURRENT STK PTR I
ROT C . I *UORDS/STK ELEM I , (rU IX SP & D M I
HERE . (t l I N SP aDDR) 10 + ALLOT I SPWE FOR STllCK)

I C O E WMIVI Z + B LXI . B WD. H PUSH. (K PTS TO 4URDSIELE I
RP LILD. H DCX. D I OV. H DCX. E I I(OV. RP SHU). I W I P)
H POP. B POP. (PUSHIPOP FLW) C A P W J v B oRn. 0-.
IF. I POP lYITL F R M NBTACK TO PlVIMETER STACK)

r(A NOV. (*WRDS/ELE 1 H DCY. I4 E WV, H DCX. ti C N W .
I CSP I N BC)

-->

*** BLOCK (I 151

I NSTWK D E F I N l T l W Cffl 'T I
BEGIN. I lYWINC W T & UWDS AT 11% I PSU PUSH.

B LWX. B INX. a E mv. B m x , e INX. a D m.
PY) POP. I COUNT) D PUS(. C W T A FRa(NSTACK)
fl m. 0..

Fun.
ELSE, I PUSH PIIRCYlETER STACK DIITA TO NSTACK)

U A MOV. H DCX. U B UOV. H DCX. H C MOU, I CSP I N BC I
BEGIN. (TO WSU W T A I D POP. PSU PUSH. (CaJNT)

B EX. D a mv. B srax . B DCX. E a nov, e smx.
PY) POP. a D m . 0-.

END.
TMN,
c n nov. H rNx. E n rmv. I s n v ~ mu csp)
RP LKD. n E MOV. H INXI n D nov, n INX. w SHLD. NEXT m.

-->

(S T K K TYPE VAR1I)BLES CON'T I
COOE POP 0 H LXI . PUSW Jlw.
CODE PUSH -1 H LXI . PUSH JnP.
l STACK I NSTACK 1 (INTEGER ELaMTS
I OSTACK 2 WTACK I (OWBLE PREC INTEDUI E-NTS)
I FSTWK 3 NSTACK I (FLOATING W I N 1 ELEMENTS)

(USER AIDS WHICH CANNOT BE COWILED ... I
(WTV-STACK NHW - W T I E S THE USER STACK 'W" BY
(RESETTING I T S STACK WINTER I
I WTY-STACK 1 ' C CUP 3 + SWPP ! 1

%TI)(X I(NHI -- PRINTS OUT THE CDWTENTS OF TIE USER STACK)
I 7STWK 1'1 DU) 3 + . OVER - WP O> I F I ->L SUAP DUW

ELSE ZDROP T. U 8 R STACK EWTY THEN I

Uk
OK
OK
OK 100 STACK MY-STACK
OK 35 STACK YOUR-STACK
OK
OK 11 22 33 44 55 66 77 88 99
OK PUSH MY-STACK
OK PUSH MY-STACK
OK PUSH YOUR-STACK
OK PUSH MY-STACK
OK PUSH MY-STACK .
OK PUSH MY-STACK
OK'PUSH YOUR-STACK
OK + POP MY-STACK - .
-11 OK
OK POP YOUR-STACK POP YOUR-STACK 2DUP . + .

77 33 110 OK
OK POP MY-STACK .
. 55 OK
OK POP MY-STACK .
66 OK

OK POP MY-STACK .
88 OK

OK POP MY-STACK .
99 OK

OK
OK
OK
OK
OK
OK
OK ?STACK MY-STACK
USER STACK EMPTY OK.
OK I1 WSH MY-STACK 22 PUSH HY-STACK ?STACK MY-STACK
3A7A 0016 OOOB
OK
3K
OK EMPTY-STACK MY-STACK ?STACK MY-STACK
USER STACK EMPTY OK
OK
OK
OK
OK

Note that the stack, consistant with the
8080 architecture, grows down in memory.
Following these stack parameters is the
actual stack area w11icl-n is allocated in
the dictionary.

The PUSH and POP words are code defini-
tions (for speed) which push a 0 or -1
flag value to the top of the parameter
stack. Thus, when the stack variable is
subsequently executed, this flag is used
to differentiate between popping from the
user stack (flag=O) and pushing to the
user stack (flag=l). The assembly code is
thus separated into two very similar exe-
cution loops which move stack data one
word at a time until the proper number of
words for the stack element have been
moved; these two loops differ only in the
direction of the data transfer. In both
loops, the A register contains the current
word count which is intially set to the
number of words per stack element and
decremented each time through the loop.
The BC register pair contains the current
user stack pointer while the HL register
pair contains the address of the stacks
parameter field so that the new user stack
pointer value may be saved after all words
within the stack element have been trans-
fer red.

CONCLUDING REMARKS

These user stacks have been optimized to
provide rapid execution speed at the
expense of high level transportability and
error checking Eor a stack pointer out of
bounds. It is felt that the concept, in
whatever realization, is important since
it provides a very readable and structured
method to temporarily store and sort data
without having to resort to such "unclean"
practices as using either explicitly
addressed arrays or the return stack.
It's the type of FORTH word that, once you
have it, prompts the question: "it's so
obvious, why didn't someone think of it
before?"

-

FORTH DIMENSIONS 11111 Page 22

NEW PRQDUCT A STACK DIAGRAM UTILITY

STAND-ALONE FIG-FORTH FOR OSI

FORTH Tools has announced stand-alone
Fig-FORTH for all OSI mini-floppy com-
puters that combines Fig-FORTH with stand-
alone machine drivers by FORTH Tools.
With this system OSI-65D is superfluous--
with FORTH booting up directly, yet the
disk is 0s-65D compatible.

Since FORTH Tools FORTH dispenses with
the OSI operating system, FORTE! Tools has
developed disk, display and keyboard
drivers for the OSI hardware.

FORTH Tools FORTH for OSI is strictly
compatible with Fig-FORTH. All words in
the Fig model, including d i s k support,
work correctly. Portability to other
machines is also claimed.

Stand-alone Fig-FORTH for OSI is avaif-
able on one 5-1/4" disk for C1 (Super-
board), C2 and 64 machines with 24K.
Product includes a structured 6502 ma- LLO- -
assembler and disk utilities designed by
FORTH Tools and the FIG portable Pine
editor. Complete technical documentation
and the fig-FORTH glossary are also
included. The complete price is $49.95.
For more information contact:

FORTH Tools
Box 12054
Seattle, WA 98102

DEA- EDI---

V E STI-- DO1.I-- SEE TFIE ?!EE- FOR 31 ICf!.'------- 1!.AY--.
I N THE <<EN---- CAS-

P.S- MR. F P E - 'THO---- I S '4OT :XJ CXP----- C F
FOR-- INC-

Barry A. Cole
3450 Sawtelle Blvd. #332
Los Angeles, CA 90066

INTRODUCTION AND CONCEPT

A year and a half ago, when I was still
fairly new to FORTH, I spent a lot of time
drawing pictures of stacks as I made up
programs. I crumpled them up and started
over each time I changed them. As
sections were debugged, L drew up another
copy to document the code. When I found
an error? I would have to redraw whole
series of stacks, just as a cartoonist
would have to change a whole series of
frames. It soon became clear that I was
expending time to do rather tedious
work. I came up with an idea for an
automated tool to update these diagrams.
I thought up a way to represent the stack
data easily and an approach to implement
the tool, The original implementation was
done in 8080 polyFORTH by my co-worker
Greg Toussaint. We collaborated in the
initial debugging and then passed it back
and forth over the next four months.
After nearly a year in active use, I
converted it to fig-FORTH and updated
several messy areas to be more straight-
forward. The results of these pursuits
arc detailed in this paper for more
general consumption.

ORIGINAL IMPLEMENTATION

The original program was going to take
push and pop information from the keyboard
to generate pictures of what was on the
stack. It became immediately clear that
the stack could more easily be represented
horizontally than down the page. We chose
to put the stack to the right so that the
size of the stack could be read like a bar
graph. f figured that if I represented
each item on the stack as an address
pointing to a count and printable string,
that many of the stack diagram words would
be identical to the FORTH word equiva-
lent. Thus, DUP, OVER, DROP as well as
many other primitives would be coded
before I started. Even as it was being

Page 23 FOKTH DIMENSIONS 11111

built, the tool grew to get the source
codes directly from disk and then to
generate a printer format spool file also
onto FORTH screens. Keeping track of
values when an IF was encountered and
restoring them on ELSE and THEN was
added. This generates a warning message
if the two paths leave different numbers
of parameters on the stack. Finally,
concatenation of strings for algebraic and
logical expressions was added.

USAGE AND OPERATION

Ihe min routires called by a user are:

screedl DX deFkzae to docunent 1 definition
s c d / SwC to doclmEnt a whole screen
scrd/ mmxX: to print £ran given screen
PDOC to print last dommntaticn

The program clears the display stack
before each colon definition. A search is
made for the first colon on SDOC or the
specified name following a colon on DOC.
The name of the function is displayed
along with the currently empty stack con-
tents. It requires user input to continue
since the entry conditions of the routine
are unknown. It prompts "DROP?" to see
how many excess elements should be dropped
from the stack, A carriage return suf-
fices to leave it alone. It continues
with the prompt , "PUSH VALUE?". For each
symbolic name of a value on the stack, a
free form name should be typed followed by
a carriage return, The prompt will be
repeated until a line consisting of only a
carriage return is typed. There are no
limitations imposed on the input, however,
it is advised that nulls and tabs should
not be included as this will detract from
the clarity of the final output. The
program will then continue reading words
from the source screen and generating
output lines to the console and spool
file.

In a typical sequence, up to about a
dozen lines will be handled without inter-
vention. For example, occurences of DUP,
DROP, and numeric literals will be pro-
cessed automatically. When a @ is encoun-

tered, it will revert to the prompts since
it is not known what a symbolically appro-
priate name is for the fetched value.

Processing will terminate with an "OKff
for sucessful completion of the screen or
colon for SDOC or PDOC, respectively. If
stack underflow occures, it will abort.
It is good practice to do a FORTH after an
abort condition to insure that the stack
vocabulary is properly exited. A user
abort is also provided. This is accom-
plished by typing an escape key followed
by a carriage return in response to the
"PUSH VALUE?" prompt .
SAMPLE DIALOG

The package creates a special stack
vocabulary as well as the user entry
points. The use of the package is best
seen by example. Figure 1 is a sample
dialog. Notice how little intervention is
required and how the ELSE restores the
stack values. Figure 2 is the source that
was used in the examples. Figure 3 is the
printer output as displayed by PDOC.

FIGURE 1

100 SDOC
ANALYZE I
DROP?
P U S H VALUE? addr
P U S H VALUE? len
P U S H VALUE?
ANALYZE I addr len
SWAP I len addr
INCH I
DROP?
P U S H VALUE? char
P U S H VALUE?
INCH I len addr
D U P I len addr
7 F I len addr - I len addr
I F I len addr
D U P I len addr
0 D I l e n addr - I len addr
I F 1 len add1
D U P I len addr
OUCH I
DROP? 1
PUSH VALUE?

char
char char
char char 7 F
char (char-7F)
char
char char
char char OD
char (char-OD)
char
char char

FORTH DIMENS IONS III/ 1 Page 24

FIGURE 1 (cont.) FIGURE 3

OUCH
OVER
C!
1 +
SWAP
1 -
E L S E
(
DROP
SWAP
DROP
2 0
OUCH
DROP? 1
PUSH VALUE?
OUCH
0
OVER
C!
0
THEN
E L S E
(

DROP
8
OUCH
DROP? 1
PUSH VALUE?
OUCH
1 -
SWAP
1 +
THEN

I l e n addr cha r
I l e n add r cha r addr
I l e n addr
I l e n (a d d r + l)
I (a d d r + l) l e n
I (a d d r + l) (l en -1)
I l e n addr c h a r
I l e n addr c h a r
I l e n add r
I addr l e n
I addr
I add r 20
1

I addr
I addr 0
1 addr 0 addr
I addr
I add1 0
I addr 0 1 ;; add r c h a r

add r char
1 l e n addr
I l e n addr 8
I'

I l e n add r
I l e n (addr -1)
I (add r -1) l e n
I (addr -1) (l e n + l)
I (add r -1) (l e n + l)
I (add r -1) (l e n + l)

FIGURE 2

OK
100 L I S T
SCR # 100

0
1 : ANALYZE SWAP INCH DUP 7F - I F DUP O D - I F
2 DUP OUCH OVER C I 1t SWAP 1-
3 ELSE (CR) DROP SWAP DROP 20 OUCH 0 OVER C 1 0 THEN
4 ELSE (DELETE) DROP 8 OUCH 1- SWAP 1 + THEN ;
5
6
OK

PDOC STACK DIAGRAM - SCREEN # 100

ANALYZE I addr l e n
SWAP I l e n addl
INCH I l e n addr char
DUP 1 l e n addr char char
7F I l e n addr cha r char 7P

I l e n addr char (char-7P)
I F I l e n add! char
DIjP I l e n addr char char
0 D I l e n add l char char OD - I :en addr cha r (char-OD)
I F I l e n addr char
DUP I l e n addr char cha r
OUCH I l e n addr char
OVER I l e n add l char addl
C I I l e n add1
1 + 1 l e v (a d d r + l)
SWAP I (a d d r + l) l e n
1 - I (a d d r + l) (l en -1)
E L S E I l e n addr char
(I l e n add1 char
DROP I l e n addr
SWAP I add1 l e n
DROP ! addr
20 I add! 20
OUCH I addl
0 i addr 0
OVER
C !
0
THEN
E L S E
(
DROP
8
OUCH
1 -
SWAP
1 +
THEN

OK

I addr 0 addr
I addr
I addr 0
I addr 0
I ;en addl char
I l e n addr cha r
I l e n addr
I l e n addl 8
I l e n addr
I l e n (addr-1)
I (addr-1) l e n
I (addr-1) (l e n + l)
1 (addr-1) (l e n + l)
I (addr-1) (l e n + l)

KELP WANTED

FORTH PROGRAKMER

Entry Level - W i l l Train

John Sackis
Data Breeze '

2625 B u t t e r f i e l d Rd. S u i t e 112E
Oakbrook, IL 60521

(312) 323-1564

Page 25 FORTH DIMENSIONS 11111

CONDITIONALS

The IF...ELSE...THEN construct
automatically saves and restores the stack
values. A mismatch in number along the
two paths produces a warning message,

"STK ERROR, ELSE -m THEN -n"

where m is the number of parameters left
on the stack at the end of the IF clause
and n is the number left when the THEN is
encountered. The DROP/PUSH prompts are
presented for the user to attempt
recovery. A known cause of this message
is a -DUP preceding the IF, as this is
not handled.

SPOOLING TO DISK

To be useful, a hard copy of the output
without all the intermediate operator
conversation is useful. It is also quite
possible that a machine readable version
would be handy to facilitate distribution
of the documentations. A spool file is
generated to satisfy these requirements.
It may later be displayed or printed by
PDOC .
The spool file contains the encoded

screen from which the diagram was made
followed by variable length lines
separated by carriage return characters.
The file is terminated by an ascii null
character . It resides on a set of
consecutive screens. The first screen and
maximum number are determined by literals
in SPIT and PRTDOC, I use 10 screens
starting at 230. These may be copied
elsewhere and printed by PRTDOC. Failure
to copy them will cause the listing to be
lost the next time a function or screen is
diagrammed.

IMPLEMENTATION PROBLEMS AND SOLUTIONS

It is important not to search the
standard vocabularies when diagramming
stacks. This is because actions are
different for the same name, depending
upon state. By way of example, for the
operator + must concatenate the symbolic
name strings representing these elements

with an embedded plus sign, rather than
adding the top two elements on the
stack. Also, not all operators are
defined. On detection of this case, the
diagrammer must shift control to the
operator prompt section. In polyFORTH,
this was accomplished by defining a new
vocabulary and having it be the only one
searched. in fig-FORTH, this option is
not directly available since the FORTH
vocabulary is searched after the current
vocabulary. This may be solved by
carefully breaking links with zero
entries, or alternatively by defining a
special dictionary search routine that
stops at some fence value. I chose the
latter.

It wasn' t obvious until the
implementation began that operators would
require concatenation of their identifying
strings . It was also decided that
parenthesis would be placed around each
level of expression nesting so that
ambiguity could be eliminated without
rearranging expressions for precedence.
This occasionally leads to expression such
as ((array+2)+2). This is unavoidable
since even the constants within the
expression are treated as strings rather
than numbers. Thus, the example cannot be
reduced to (array+4).

Error recovery is not nearly as good as
I'd like it to be. Stack underflow in the
diagramming session is generally fatal.
Due to the amount of bookkeeping already
being done, there is no provision for
retracting answers after wrong data has
been put on the diagram stack. This is
inconvenient in a first pass through a
function, but has not proved to be a
problem once a feel for the tool and the
function being diagrammed has been
acquired.

Provision is left for user defined
functions in the last two screens of the
diagram source, This allows commonly used
functions to be handled in an automated
fashion. This makes it very easy to
define composite functions such as, 1- as
the sum of its component parts. For out-
side of functions, constant and variable

FORTH DIMENSIONS 111/1 Page 26

have been redefined to put their own name
on the stack. Before this facility was
added, I always retyped the variable name
manually when it came up.

The spool function and some of the
source reading routines such DOC assume
that screen blocks are contiguous 1,024
byte areas. Those functions using BLOCK
will have to be rewritten if this is not
the case in your system. I recommend that
you instead generate a new system with lk
buffers as that is faster and more
flexible.

WEAKNESSES AND PROPOSED FUTURE EXTENSIONS

The diagrarnmer presently does not keep
track of the contents of the return
stack. This requires uses of R> and I go
to the operator for clarification. Try a
pencil for now. This could be added in a
similar fashion as IF. ,ELSE. .THEN by an
additional stack.

The area of error recovery is ripe for
suggestions. Perhaps some duramy buffer
area could be added and tested in PSTAK.
This would allow detection prior to
destruction on stack underflow. Backing
up by reading backwards would be nice but
also very difficult to implement.

CONCLUSION

Now that the tool has been built, its
real function is more evident. It is
still used for documenting words as origi-
nally intended, however, its primary usage
is debugging and validating code. It has
also proved to be very useful as a
teaching aid to explain what is going on
within the stack. I hope it will be as
useful to you as it has been to me.

A STACK DIAGRAM GLOSSARY

VARIABLES

: BK The base block number for spooled
stack diagram.

: LN
for page
: SC
spooled.

Line number being printed. Used
headings.
Current screen number being

IFPTR The address of top of IF stack.
Used to restore values on stack for
IF...ELSE...THEN construct.

IFST The area reserved for pointers to
previous stack contents. It is used to
restore the stack on ELSE and THEN
clauses.

SPL A temporary variable used by :NFD
to retreat the spool file to erase the
unknown stack prior to operator specifi-
cation of what is added or dropped.

SPOOL Offset into spooled print file.

SUM The sum of differences in two
strings. Used in -TEXT. Value is 0 for a
text match and nonzero if different.

T 1 Pointer to current input word in
memory (type format 1.

CONSTANTS

LLIMIT The limit address for dictionary
search to keep from using standard FORTH
words from within the STACK diagrammed
words.

FUNCTIONS

'FIND pfa length true (found)

'FIND false (not found)

This is the same as -FIND except that
the true condition is set only if the work
is found above LLIMIT. This restricts the
search to stack vocabulary words.

A string constant used for building
expressions when arithmetic or logical
operations are encountered in the dia-
grammed input string.

Page 27 FORTH DIMENSIONS 11111

Defined back to its original state
after being used as a con catena ti or^ token,
this marks the beginning of a comment.

All text following it is ignored
until the next) .

Tests two strings for not equal.

A srring constant used for building
expressions when arithmetic or logical
operations are encountered in the dia-
grammed input string.

st1 st2 -TEXT cond

True if the two strings differ.

Decrements the top of stack value by
one.

Drops the top 2 elements off the
stack and discards them.

This is the stack diagram
redefinition of colon. It diagrams the
word following it instead of compiling.

It is invoked by colon as the very
last definition from within this package.

Concatenates two strings into a
single combined string. It is used to
build expressions when operators are en-
countered in the screen to be diagrammed.

Prints the header for a line of
output to the console and also the spool
file.

Removes and discards the top of the
IFST.

addr

This is called when the word being
analyzed is not in the special stack
vocabulary. It checks for valid
numbers. If this test is passed, it
returns a pointer to that string.
Otherwise, it invokes SKBD to get user
help,

adr : PSH

Pushes the address of a level of the
stack values onto the separate IF stack.
This is used for IF..ELSE..THEN stack
restoration and checking.

adr : RST ell el2 etc

Restores the stack from the IFST
stack. Does not affect the IFST.

adr : SAV

Saves current stack element list on
the IFST. Does not affect the parameter
stack.

Marks the end of the spool file with
a zero.

adr cond

Checks current word to determine
whether it qualifies as a legal
hexadecimal number.

CONSTANT ---
A defining word which causes the name

of the defined word to be put on the stack
when that word is encountered.

DEPTH depth

Computes the depth of the stack in
i tems .

DOC

FORTH DIMENSIONS 11111 Page 28

Searches for a colon followed by the
word whose name follows this invocation on
the specified screen. It aborts if the
definition is not on the specified
screen. Otherwise, it commences to gen-
erate the diagram for the word specified.

ELSE ell el2 etc

Clears the stack and then restores it
from IFST.

ESC

Aborts the package if an escape key
was the first key pressed in answer to the
"PUSH?" prompt. The vocabulary reverts to
FORTH; however, the stack diagram package
is still loaded and ready to go.

G-HERE adr cond

Moves a string from PAD into the dic-
tionary. It allots the space and leaves
the address of,tbe item and a true cond if
successful. It leaves only a false cond
if no valid string was found.

expr

Builds an expression from a simpler
expression. At execution time of the
following word, the top of the stack is
enclosed in parenthesis and preceded by
the operation symbol. It is used for
unary operations, eg. -(name)

expr

Similar to G(1) except that unary
operation is also enclosed within the
parenthesis. eg. (name*2)

espr ~ (3) op(expr)

Similar to G(1) except that binary
operation is also enclosed within the
parenthesis. eg. (vall+val2)

inadr GBLD

An auxiliary word used to build a
named string in the dictionary from the
word following GBLD. This is used at

compile time sf the stack diagram package.

--- GWRD ---

A defining word for building strings
into the dictionary at compile time of the
stack package. On invocation of the new
word, the address of the string displaying
its own name is put on the stack. The
word that follows GWRD is read twice at
compile time, once for the name of the
function, and a second time to be placed
in string format into the dictionary.
This is used to build up constant words
for the diagramming package.

cond

Drops the condition flag from the top
of the stack without evaluating it. It
then invokes :SAV for ELSE restoration and
THEN error checking.

adr cnt MTYP

Types the message to the screen and
also passes the parameters to STYP for
spooling.

src dst Ten MVB dst len src+l src

1.ntermediate function to set up for
MVDEL .
src dst delim MVDEL adr

Move a string from the source to the
destination address until the specified
delimiter is encountered. This is used to
build data strings within the dictionary.

PDOC ---

Prints the latest generated diagram
from the default spool file blocks.

Prints the top of page heading and
sets the lines per page count. Used by
PRTDOC .
blk# PRTDOC

- -
Page 29 FORTH DIMENSIONS 111/1

P r i n t s the s t a ck diagram from the
spool f i l e whose s t a r t i n g block i s t h e
spec i f i ed blk#.

PSTAK

P r i n t s a l l words from the s t r i n g
addresses on t he s tack . The top element
i s p r i n t ed t o the r i g h t of previous
elements. The s t a ck i s unchanged.

adr cn t PWRD

P r i n t s one word v i a MTYP. Used by
PSTAK.

REPEAT

Func t iona l ly i d e n t i c a l t o t he re-
def ined THEN.

SCRST

Resets the spool po in te r and p laces
t he sc reen number i n t o t he beginning of
t he ou tpu t spool t o be used i n t o p of page
headers by PDOC.

SDOC

Documents one whole sc reen by exe-
cu t ing it, using t h e diagram d e f i n i t i o n s .

SKBD

This scans the keyboard f o r u se r
i n t e r a c t i o n . It genera tes t h e "DROP?" and
"PUSH VALUE?" prompts. It i s invoked
whenever i n t e rven t i on is requ i red i n t he
diagramming process.

char SPIT

Writes charac te r ou t t o d i s k spool
f i l e .

STACK

This i s the name of the vocabulary
con ta in ing t h i s package.

adr cn t STYP

Simi la r t o TYPE bu t spools t o d i sk
r a t h e r than typing t o t he screen. Outputs
an a d d i t i o n a l two blanks a f t e r t he
message.

adr T; cond

Tes t s the cu r r en t s t r i n g f o r a match
t o t h e FORTH word semicolon. This i s used
t o e x i t DOC.

THEN

Re-def ined i n t he s t a ck vocabulary,
t h i s c l e ans up t h e IFST. I f t h e depth of
t he s t a ck has changed from before the
ELSE, i t i s sue s a warning and c a l l s SKBD
t o a l low the user t o c o r r e c t a s t a ck depth
d i s p a r r i t y between t he IF and ELSE
c lauses .

--- VARIABLE

A de f i n ing word which causes t h e name
of t he def ined word t o be put on t h e s t a ck
when t h a t word i s encountered.

S C h 1 1 0 2
0 (s t a c k diagram package 1 o f 1 4 6. A. Cole 8 1 0 3 2 6)
1
2 : 1 - 1 - -
3 : ZDHOP D ~ O P ' U H O P ; -->

5 C a l l i n g sequences:
6 screen UOC def'name
7 screen SDOC
8 PDOC
9

1 0 DOC b u i l d s s t a c k diagram f a r one d e f ' i n i t i o n .
11 SDOC b u i l d s s t a c k diagrams f o r e n t i r e s c r e e n .
12 PDOC p r i n t s s t a c k diagram b u i l t by DOC o r SDOC.
1 1

SCH 1 1 0 3
0 (s t a c k diagram package 2 of 1 4 8. A . Cole 8 1 0 3 2 6)
1 0 VARIAbLE SPOOL (o f f s e t i n t o s p o o l e d p r i n t f i l e)
2 0 VAKZABLE S P L)
3 0 VAHIABLE T I p o i n t e r t o c u r r e n t i n p u t word
4 o VAB:ABLE sun (i n -TEXT : t r u e f o r d i f f e r e n c e)
5 0 VAR:ABLE :LU (l i n e number b e i n g p r i n t e d 1
6 0 VARIABLE :BK (base b lock* f o r s p o o l e d diagram)
7 0 VARIABLE :SC (c u r r e n t s c r e e n I spooled)
8 0 VARIABLE I F P T R (address o f t o p o f I F s t a c k)
9 0 V4HIABLE I F S T 20 ALLOT (d e f i n e I F s t a c k)

1 0 A F S T IFPTR I (and i n i t i a l i z e t o empty
1 1 -->
1 2

:i
15

SCH I 1 0 4
0 (Stack diagram package 3 o f 1 4 8. A. Cole 8 1 0 3 2 6)
1 : S P I T SPOOL @ 1 0 2 4 /MOD 9 MIN 2 3 0 r
2 BLOCK + C I 1 SPOOL + I UPDATE ; (s p o o l one c h a r a c t e r)
2

4 : :SP SPOOL e o SPIT SPOOL I ; (mark s p o o l f i l e end)
5
6 : DEPTH SO e s p e - 2 / 1 - ; (compute s t a c k depth)
7
8 : S T Y P SWAP DUP ROT + SWAP DO (s p o o l word
9 : e SPIT LOOP 3 2 SPIT 3 2 SPIT ;

1 0
1 1 : HTYP 2DUP STYP T Y P E 2 SPACES :SP ; (t y p e and s p o o l word) , > . &

1 3 : PYRD DUP C@ 7 2 >
1 4 I F ." ERR * A8OHT (p r i n t encoded vord I
1 5 ELSE COUNT HTYP THEN : -->

SO*.* prom: Barry A. Cole Los Angeles . CA 2 1 3 - 3 9 0 - 3 8 5 1 *****
OK

FORTH DIMENSIONS III/l Page 30

1 1 4 THIAU

SCH # 1 1 4
0 (s t a c k d i a g r a m package 1 9 ol' 1 4 I. A. Cole M l O 4 2 5)
1

STACK D E F I N I T I O N S
32 WORD HERE DUP CQ I+ ALLOT ;

DUP DUP ; : ROT HOT ; : SWAP SWAP ; : OVER OVER ;
R> DROP ; : DROP DROP ; : . DROP ; : HEX HEX ; : MSG ;
DECIMAL bEC:MAl. ; : 2DUP 2DUP ; : I DROP DHOP ; : C I I ;
+ I I ; : . DROP ; : SPACE ; : I ; : I ;
2 1 1 DROP ; : ? DROP ; : ALLOT DROP ; : BLANK I ;
C. DROP ; : DO I ; : DUMP I ; : E M I T DROP ; : -DUP DUP ;
END DROP ; : EHASE I ; : +LOOP DROP ; : /LOOP DROP ;
EXPECT I . : MOVE I DROP : : LEAVE ;
S P A C E S D R ~ P ; : TYPE I ; : BEGIN ; : LOOP ; : \ ; : CH ;
ENDIP' THEN ; : REPEAT THEN ; : Y H I L E I F ;
AGAIN ; : U N T I L I ;

SCH I 115
0 (stack diagram package
1 GYRD 0 GYRD 1
2 G (1) - ; MINUS - ;
3 G (3 1 & : AND 6 ;
4 G (2) + 1 : 1 + + 1 ;
5 C (2) .2 : 2. a 2 ;
6 U (0 NOT
7 GWRD here : HERE here
8 : r ZDROP cond ;
9 : VARIABLE DROP CURD ;

l o : < = ;
1 1 : ;S Q U I T ; : --> Q U I T
1 2 FORTH D E F I N I T I O N S ;S
1 7

1 4 of 1U B. A.
GWHD 2

G (3) - C (3) +
G (3) I : OR I ;
G (2) - 1 : 1- - 1 ;
C (2) 1 2 : 2 1 1 2 ;
CURD I
; GWRD pad

: ALLOT DROP ;
: CONSTANT VAR
: > = ;

; : ." 3 4 WORD ;

Cole 8 1 0 4 2 5)
CURD 3

G (3) . G (3)
G (3) l : XOR
G (2) + 2 : 2 +
G (2) -2 : 2-
GYHD cond
: PAD pad ;

Date:

FORTH CLASS

June 22 - 26
Where: Humbolt State University

Arcata, CA 95521

Who :

What:

Cost:

How:

SCH 1 1 1 6
0
1
2

2
5
6

8
9

1 0
11
I 2
1 3
1 4
1 5

***** from: B a r r y A . Cole L o s Angeles, CA 2 1 3 - 3 9 0 - 3 8 5 1 '**"
OK

Kim Harris and Henry Laxen

Intensive 5-day course on the use
of FORTH

$100 - $140 plus room and board
Call Prof. Ron Zanrmit
(707) 826-3275

MMS-FORTH FOR STRINGY FLOPPIES

Kalth Microsystems will make available
to all licensed MMS-FORTH users a modified
version that runs on the TRS-80 with an
EXATRON stringy floppy. This modification
is said to make MMS-FORTH operate as it
would on a disk except for the speed.
Users retain the capability to switch back
to cassette operation with a single com-
mand. Implementation includes the normal
readlwrite block commands plus a number of
new utility words. The modification is
available on ESF wafer for $14.95 includ-
ing shipping. For more information
contact :

Kalman Fejes
KALTH MICROSYSTEMS
P.O. Box 5457, Station F
Ottawa, Ontario K2C 351
Canada

FORTH DIMENSIONS III/l Page 32

How t o form a PIG Chapter:

1. You decide on a time and place for
the first meeting in your area.
(Allow about 8 weeks for steps 2
and 3.)

2. Send to FIG in San Carlos, CA a
meeting announcement on one side
of 8-1/2 x 11 paper (one copy is
enough). Also send list of ZIP
numbers that you want mailed to
(use first three digits if it
works for you).

3. FIG will print, address and mail
to members with the ZIP'S you want
from San Carlos, CA.

4. When you've had your first meeting
with 5 or more attendees then FIG
will provide you with names in
your area. You have to tell us
when you have 5 or more.

Northern California
4th Sat FIG Monthly Meeting, 1:00

p.m., at Southland Shopping
Ctr., Hayward, CA. FORML
Workshop at 10:OO a.m.

Southern California
Los Angeles
4th sat FIG Meeting, 11:OO a.m.,

Allstate Savings, 8800 So.
Sepulveda, L.A. Call Phillip
Wasson, (213) 649-1428.

Orange County
3rd Sat FIG Meeting, 12:00 noon,

Fullerton Savings, 18020
Brockhorst, Fountain Valley,
CA. (714) 896-2016.

San Diego
Thur FIG Meeting, 12:QQ noon. Call

Guy Kelly at (714) 268-3200,
x 4784 for site.

Massachusetts
3rd Wed MMSFORTH Users Group, f : O O

p.m., Cochituate, MA. Call
Dick Miller at (617) 653-6136
for site.

Seattle

Potomac

Tulsa

Texas

Phoenix

New York

Detroit

Eng 1 and

Japan

Canada
Quebec

Chuck Pliske or Dwight
Vandenburg at (206) 542-7611.

Paul van der Eijk at (703)
354-7443 or Joel Shprentz at
(703) 437-9218.

Art Gorski at (918) 743-0113.

Jeff Lewis at (713) 719-3320
or John Earls at (214) 661-
2928 or Dwayne Gustaus at
(817) 387-6976. John Hastings
(512) 835-1918.

Peter Bates at (602) 996-8398.

Tom Jung at (212) 746-4062.

Dean Vieau at (313) 493-5105.

FORTH Interest Group, c/o 38,
Worsley Road, Fr iml ey ,
Camberley, Surrey, GU16 5AU,
England

Mr. Okada, Presdient, ASR
Corp. Int'l, 3-15-8, Nishi-
Shimbashi Manato-ku, Tokyo,
Japan.

Gilles Paillard at (418) 871-
1960.

West Germany Wolf Gervert, Roter Hahn
29, D-2 Hamburg 72, West
Germany,(040) 644-3985.

Publishers Note:

Please send notes (and reports) about
your meetings.

Page 33 FORTH DIMENS IONS 1111 1

FORTH INTEREST GROUP

MAIL ORDER

Membership in FORTH INTEREST GROUP and Volume 111 (6 issues) of
FORTH Dimensions. Check one: . N E W orRENEWAL

Volume II of FORTH DIMENSIONS (6 issues)

Volume I of FORTH DIMENSIONS (6 issues)

fig-FORTH Installation Manual, containing the language model of
fig-FORTH, a complete glossary, memory map and installation
instructions

- Assembly Language Source Listings of fig-FORTH for specific CPU's
and machines. The above manual is required.for installation. Check
appropriate box(es. Price per each.

-1802 6 5 0 2
8080 - 808618088

__ PACE --ALPHA MICRO

- 6809
A P P L E ll
N O V A

PROCEEDINGS 1980 FORML (FORTH Modification Lab) Conference

FORTH-79 Standard, a publication of the FORTH Standards Team

Using FORTH, by FORTH, Inc. This is the best users manual.

Kitt Peak Primer, by Stevens. An indepth self-study primer.

BYTE Magazine Reprints of FORTH articles, 8/80 to 4/81

FIG T-shirts: S m a l l M e d i u m L a r g e X - L a r g e

Poster/l981 Calendar, Aug 1980 BYTE cover, 18 x 22"

FORTH Programmer's Reference Card. If ordered separately, send a
stamped, addressed envelope.

TOTAL

USA

$12

FOREIGN
AIR

$25 $35

$1 0 $1 3

$25 $32

$25 $35

$ 5 $ 8

$1 0 $1 2

$ 5 $ 8

FREE

NAME MAIL STOP/APT

ORGANIZATION (If company address)

CITY. S T A T E L I P COUNTRY

VISA # MASTER CHARGE #

(Minimum of $1 0.00 on charge cards)

Make check or money order in US Funds, payable to: FIG. All prices include postage. Nopurchase
orders

FORTH INTEREST GROUP PO BOX 1 105 SAN CARLOS, CA 94070

