EE

HUSTH IMIEHISIOTS

T Vool FORTH INTEREST GROUP Volume I1i
P.O.Box 1105 Number 1
San Carlos, CA 94070 Price $2.00
T
/
2 Letters
4 Announcements
5 FORTH-79 Dialog
e
7 Technical Notes
e
10 Programming Aids
/
13 FORTH, Inc. News
14 Parameter Passing
I ?f
15 Compiler Security
!
I 20 Userstack
23 A Stack Diagram Utility
/ T 33 Chapters/Meetings

FORTH MTIENSIOTS

Published by Forth Interest Group

Volume IIl No. 1 May/June 1981
Publisher Roy C. Martens
Guest Editor C. J. Street

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith

John Bumgarner

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP iS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth Interest Group at $12.00 per
year ($24.00 foreign air). For membership, change of
address and/or to submit material, the address is:

Forth Interest Group
P.O.Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radio Astronomy Observatory,
Charlottesville, VA. It was created out of dissatisfaction
with available programming tools, especially for obser-
vatory automation.

Mr. Moore and several associates formed FORTH,
Inc. in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage, and to supply application programming to meet
customers’ unique requirements.

The Forth Interest Group is centered in Northern
California. Our membership is over 2,400 worldwide. It
was formed in 1978 by FORTH programmers to encour-
age use of the language by the interchange of ideas
through seminars and publications.

EDITOR’S COLUMN

The last edition of FORTH DIMENSIONS was the
beginning of many changes in editorial policy and
format. All these changes are designed to make FORTH
DIMENSIONS a practical and useful communications
tool.

This practical approach continues. In this edition
you will find a number of utility programs that will make
the task of implementing practical applications in
FORTH easier and faster. All of these utilities have
been contributed by FIG members who have found
them to be valuable tools. The editorial staff thanks
these contributors and wouild like to encourage all FIG
members to share their ideas and experience.

if you have a programming idea or tool that you have
found useful, please send it to:
Editor
FORTH DIMENSIONS
P.O. Box 1105
San Carlos, CA 94070

YOU DON'T HAVE TO BE A WRITER—the editorial
staff will provide whatever copywriting is necessary to
make your ideas publishable.

On the aesthetic side, you will find this edition con-
tains several photographs and art illustrations. This is
a FORTH DIMENSIONS' first and you can expect to see
more in the future. Photographs and art illustrations
will be chosen and published on the basis of their
educational and human interest value.

This issue also introduces the character HEX who
will be FORTH DIMENSIONS' official comic strip. You
will find the HEX comic strip in future editions of
FORTH DIMENSIONS. HEX's adventures will be a com-
bination of humor and education. Ideas for HEX comic
strips are welcome.

C. J. Street
Editor

PUBLISHER’S COLUMN

Renewals and new members are coming in at a fast
pace. We expect to climb to 3,000 members in the next
few months and to 5,000 within a year.

Both the Computer Faire in San Francisco and the
Computer Festival in Trenton, New Jersey were huge
successes. We'll be in both again next year. (I'd like to
know of any other shows where you think FIG should
exhibit.)

Good material is coming in for FORTH

DIMENSIONS. Keep it coming and send in your
comments.

Roy Martens

Page 1

FORTH DIMENSIONS III/1

LETTERS

Dear Fig:

My company 1is developing business
systems wusing FORTH and we would be
interested 1in communicating with local
FIGGIES as well as offering our input to
FST, FORML, FIG and other applicable "F"
acronyms since it is obviously in our
interest to promote the spread and
acceptance of FORTH. We're also confirmed
FORTH fanatics.

David B. Moens

BUSINESS SYSTEMS SOFTWARE, INC.
27 East Kings Highway
Haddonfield, NJ 08033

(609) 429-0229

You are our kind of fanatic and we're
happy to put the word out for you Dave! —--
ed.

Dear Fig:

Re: '"Born-again programmer' and "Born-
again FIGGER" in FORTH DIMENSIONS II/5.

My interest in FORTH as a programming
language does not envolve becoming mired
down in the morass of a religion. It
would be best to stay on rational grounds
in the development of FORTH and leave
religion to those who are unable to think
without faith.

I will not take part in a religious
group. Therefore I will not be renewing
my membership.

Larry R. Shultis
P.0. Box 218
Fontana, WI 53125

Just goes to show you that there is more
than one type of fanatic! Keep the faith,
Larry, (00PS, sorry about that! I meant:
Don't worry, Larry,) FIG is not envolving
(your spelling) into a religious group. --
ed.

Dear Fig:

Thank you for the prompt and efficient
service I have received. I realize that
you can't have much time left to look
after the rest of the world, but without
your interest it may never have reached
these shores. Spread the good WORD.

J. Huttley

UNIVERSITY OF AUCKLAND
19 Duncan Avenue
Auckland 8,

New Zealand

You are very welcome! -—- ed.

Editor's note:

At the WEST COAST COMPUTER FAIRE in
California two versions of a FORTH bumper
strip were circulated:

?FORTH IF HONK THEN
or alternately

: LOVE-FORTH
IF HONK THEN ;

Just thought you might like to know. --
ed.

Dear Fig:

TGIF 1is very interested 1in swapping
listings with other Fig-FORTH groups. Our
current listings are 2 Decompilers; Full
screen editorj; CASE statements for 8080,
Z80 and 6502; 6502 Assembler.

TGIF

FORTH INTEREST GROUP -- TULSA
Box 1133

Tulsa, OK 74103

How about sending them in to FORTH
DIMENSIONS? —-- ed.

FORTH DIMENSIONS III/1

Page 2

Dear Fig:

I was lucky enough to attend one day of
the recent West Coast Computer Faire and
to meet some of the mentors of FIG. T had
numerous questions and enjoyed talking to
Bill Ragsdale and others about them. (By
the way, for those of you who couldn't
make it to the Faire, the FIG booth was
one of the most crowded. People were
standing there like no where else even as
the 5:00 closing approached. We all owe a
thanks to the dedicated folks for their
time and effort in this endeavor,
promoting and spreading the word of FORTH
and FIG.)

One of my questions to Bill was "How can
we remote members contribute to FIG" in
ways other than articles for FORTH
DIMENSTIONS. I got a number of project
ideas, for one of which I need the help of
the whole membership. So PLEASE: NOW
HERE THIS!

I propose to assemble a book of utility
program packages for publication by FIG.
I have a list of functions which I think
should be included. This covers such
things as editors (both the current FIG
line oriented editor and a video screen
type editor), string processing, data
structures, extended math (double prec-
ision as an example), math functions (sin,
log, etc.), matrix operations, and float-
ing point routines. No doubt there are
others to be considered and I solicit your
suggestions.

The plan I propose to compile and
publish such a document is as follows:

1. Members are asked to send their
proposals for implementing utility
packages to me at the above address
(or through FIG). These proposals
should consist of well documented
(lots of comments) fig-FORTH source
code accompanied by complete instruc-—
tions for use, any known operating
limitations, and a brief technical
description or reference if appro-
priate. The programs should be as
transportable as practicable; if
system unique routines are necessary,

enough information should be provided
so as to allow them to be adapted to
a different machine.

I will compile a draft of the pro-
posed publication and submit it to a
technical review committee for review
and appropriate testing. This com-
mittee of FIG members (I am looking
for volunteers) will scrutinize the
proposals (and alternatives if appro-
priate), test them on a running FORTH
system, and make recommendations.

I will then compile the final version
and submit it to FIG for publication.

1 have set some timelines for com-
piling this compendium such that it
can be published by next year's
Computer Faire. Material should be
sent in no later then 1 September
1981 (please send them early and give
me a chance to get ahead). I will
distribute the draft for review and
testing by 15 October 1981. Finally
I will begin compiling the final
version by 1 January 1982 and have it
ready for publication by 1 February
1982.

This may seem 1like a long time
abuilding, but I want to provide
ample opportunity for the contribu-
tors to develop their ideas fully and
conduct a fair amount of testing
themselves before submission, I also
want to provide a good review by the
committee to provide the highest
quality document for FIG. Tt will be
worth it in the long run. Your con-
tributions will be sincerely appre-
ciated, and though the publication,
as are all of FIG's, will be in the
public domain, credit will be given
to the authors and coatributors. So
if nothing else, this is a chance to
get your name in print, in an inter—
national publication.

Sincerely,

George 0. Young III
617 Mark NE
Albuquerque, NM 87123

Page 3

FORTH DIMENSTIONS ITI/1

This 1is a great project. Our goals
continue to be to decentralize FIG
activities, and George's project of a
published '"Goodies Package" will be
helpful to all. Contributors should send
a brief description to George and then
prepare the full document. This will
allow co-ordination of similar material.
-- ed.

FOSTE
INTEREST GROE

Spreading the fig-FORTH at the West Coast
Computer Faire, April, 1981,

Top: (l1-r) Michel Mannoni (FORTH vendor),
Dave Boulton and Martin Schaaf (Answering
the question: What's FORTH? 10,000 times)
Bottom: (l-r) Roy Martens (FD Publisher),
Anne & Bill Ragsdale (FIG prime movers).
Order your T-shirt, like Bill's!

ANNOUNCEMENTS

FORML CONFERENCE CALL FOR PAPERS

Papers are requested for the three day
technical workshop to be held next
November 25th to 27th at the Asilomar
Conference Grounds in Pacific Grove,
California (Monterey Peninsula).

Although registration for this con-
ference is not yet open, attendance will
be limited to 60 persons. Authors will be
accepted before listeners, so if you want
to attend, the only sure way is to write a
paper. Please note: abstracts or propo-—
sals for papers or discussions must be
submitted no later than September 1, 1981
for inclusion in the conference and its
proceedings; completed papers by Sep-
tember 15, 1981.

The purpose of this workshop is to dis-
cuss advanced technical topics related to
FORTH implementation, language and its
applications. Potential authors should
write for an author's packet for detailed
instructions. Send all correspondence
regarding the conference or papers to:

FORML CONFERENCE
P.0. Box 51351
Palo Alto, CA 94303

FORTH WORKSHOPS

Beginners and advanced workshops in
FORTH are being jointly sponsored by the
College of WNotre Dame and Inner Access
Corporation both of Belmont, CA.

Beginners workshops start June 23 and
advanced workshops start July 14. Classes
meet every Tuesday and Thursday evening
from 7:00 to 9:00 P.M. Registration 1is
$135 for 3 weeks (12 hours).

For more information and registration
contact:

College of Notre Dame (415) 593-1601

FORTH DIMENSIONS TII/1

Page 4

CONTINUING DIALOG ON
FORTH-79 STANDARD

Dear Bill:

We recently obtained a copy of the
FORTH-70 Standard from FIG and are
attempting to align our version of FORTH
with it. The document is generally well
done and in most cases clearly and con-
cisely expressed. However, there are
about a half dozen or so definitions that
seem to us somewhat ambiguous.

I am writing to you in the hopes that
you can clarify the word definitions in
questionj or, that you can refer us to
someone who can. I am also interested in
knowing whether the FIG model has been
aligned yet, if not, when it will be.

My list of questions is enclosed and I
would appreciate anything you can do to
assist us in their resolution.

Cordially,

Robert D. Villwock
MICROSYSTEMS, INC.

2500 E. Foothill Blvd., #102
Pasadena, CA 91107

OPEN QUESTIONS
FORTH-79 Standard

1. For the words [/ and */ does the
terminology "rounded toward zero"
essentially mean truncated? If not,
precisely what does it mean?

2. The word SGIN is now apparently
defined to be used "outside" of the
{#, #) operators. What is the pre-
cise definition of where the minus
sign character is to be stored? Why
was this word changed from its former
function between {# and #) ?

3. The word ':' is defined as a non-
precedence word. Is this a typo or
is it intentional? If intentional,
could you explain the rationale? It
seems that the number of occasions
for which "colon" needs to be com-

piled are few and could easily be
handled by using the [COMPILE]
operator. ON the other hand, syntax
errors and typos often result in
mistaken attempts to compile ':'
which, when it's an immediate word,
can be flagged by the compiler.

The word CODE is defined as using the
form:

CODE {name) ...END-CODE

However, the word ;CODE says nothing

about the corresponding form. Our
version of FORTH rquires that code
level action routines defined by

;CODE also be terminated by the word
END-CODE. Is this compatible with
FORTH~-79?

The words FIND, ',' ':', etc., as
defined in the Standard, indicated a
search of CONTEXT and FORTH only. Is
it considered an incompatibility if
the CURRENT vocabulary 1is also
searched (if different)? The defini-
tion of VOCABULARY 1is not clear
regarding the possibility of '"sub-
vocabularies" such as ABC chained to
XYZ chained to FORTH. If this 1is
allowed, and, ABC 1is the CONTEXT
vocabulary, is not ABC, XYZ, and
FORTH searched?

What is the mnemonic significance of
the C words such as <C!, CMOVE,
etc.? Surely it doesn't stand for
"cell," does it? The term ''cell" is
defined on page 3 of the Standard to
be a 16-bit memory location. The word
MOVE is defined on page 26 to trans-
fer 16-bit words ("cells"), while the
word CMOVE on page 20 is defined to
move bytes (not '"cells"). TIf the C
does stand for '"cell" what is the
rationale? Why was the former stan-
dard's B (for byte) replaced by the
mysterious C?

I note that in the reference section
of the Standard, the word DPL which
formerly used to handle both input
and output '"point" situations now
strongly emphasizes that input con-
versations should not affect 1its

Page 5

FORTH DIMENSIONS TIII/1

value. What is the reason for this
restriction? How likely is it that
this may become part of the Standard?

definition for CREATE is not
Does the gecond sentence
"When (name’) is subsequently
executed, the address of the first
byte of {name) 's parameter field is
left on the stack'” mean that the word
CREATE alone is to function this way
or only when followed by ;CODE or
DOES) ? In other words, is it
intended that CREATE work as in the
FIG model or has its definition
changed? Taken literally, FORTH-79
says that CREATE will generate an
unsmudged header with the CFA point-
ing to the run time procedure for
variables. 1Is this what is intended?

The
clear.

COMMENTARY FROM THE FORTH DOCTOR

Some computers apparently (by Stan-
dard Team comment) round quotients
and remainders to smaller magnitude
(more negative). Trucation of nega-—
tive quotients would do this. If a
correct representation 1s not possi-
ble, the result should be nearer
ZEro. Dave Boulton is more know-
ledgeable on this point.

" 5ign is to be used within <{# and
#>. The user chooses where to store
the sign. Notice that no word gener-
ates the saving of the sign. 1In fig-
FORTH the only difference is the ROT
would be explicitly done just before
SIGN, rather than in SIGN.

FIG and the Europeans make : an imme-
diate word for error control. Other
users, and FORTH, Inc. reject this
level of error control-—too bad! We
need a technical paper presenting the
trade-offs {(code needed and compila-
tion slowdown). Conversation at a

team meeting 1s insufficient to
change opinions developed over ten
years.

These topics were barely touched on
by the Team as CODE definitions are
not portable. ;CODE probably should

terminate in END-CODE. This 1is an

unresolved area.

The standard wording was painstaking-
ly done regarding vocabularies. This
is the most divergent topic among
users. all known methods can comply
with the Standard, but it does less
than all systems. The rationale is
that vyou build CURRENT but you exe-
cute only from CONTEXT (and FORTH).
No chaining is recognized, beyond
context leading to FORTH. This may
be physical links or logical (within

FIND). Again, position papers are
essential to get a common, more
advanced, construct.

Charles Moore has used C for ten

years as a character (byte) prefix.
Ignore (if you can) that a character
is defined as 7 bits in the Stan-
dard. This was a hotly disputed
point with FIG and the Europeans for
"B"yte and FORTH, Inc. and a couple
of others for 'C". Kitt Peak was
adamant before the meeting for "B"
and other wuniformity improvements.
Their representatives made no defense
of the issue. Historical precedence
wins this one.

Reference Section is just left-
overs. Only one vote of any team
member was sufficient to maintain a
Reference word on the list, The
Standard attempts to minimize system

variables. Increased usage of
special variables is unlikely.
Things like DPS are delegated to
applications.

The definition of CREATE 1is quite
clear. You have stated it and then

correctly paraphrased it. Other
defining words may be used before
DOES D which help build a parameter
field. DOES) rewrites the code field
to its own code,

: CPU CONSTANT DOES) 3
is equivalent to

: CPU CREATE , DOES)

FORTH DIMENSIONS III/1

Page 6

TECHNICAL NOTES, BUGS & FIXES

Dear Fig:

I have recently brought up FORTH on a
6800 system and find it to be a very easy
and powerful system for microcomputers.

I have a mini-computer with a cross-
assembler on it which I used to assemble
the source after keying it in. Naturally,
as soon as I got it working I wanted to
change it., I feel that the EXPECT routine
and backspace handling could be improved
significantly by incorporation of the en-
closed recommendations.

I also experimented with the GLOSSARY
routine submitted by D.W. Borden in FORTH
DIMENSIONS, Volume 1, No. 4. I modified
it to handle the wvariable length name
field and changed the format slightly.

Keep up the good work.

Toby L. Kraft
San Diego

EXPECT
001 ¢ EXPECT :: MODIFIED FOR USER DEFINED BACKSPACE CHAR)
002 26FEBS1 TOBY L KRAFT
003 EXPECT
004 OVER + OVER
005 DO
o0& KEY DUP { GET CHAR AND SAVE COPY |

{ ADD COUNT TO ADDRESS FOR LOOP LIMIT

007 OE +DRIGIN @ = { GET SYSTEM BACKSPACE AND CHECK FOR IT
o08 IF

00% DROP DUP 1 = ¢ LOSE CHAR . CHECK BUFFER BEGIN 1
oo DUPF R> 2 = + >R (ADJUST BUFFER POINTER APPROPRIATELY
o011 IF 07 ELSE BSTOF Ce ENDIF (BELL & BECINNING . BS DTHERWISE
012 ELSE

013 DUP OD = { CHECK FOR CARRIAGE RETURM

014 IF

013 LEAVE DROFP BL D { PREPARE TO LEAVE

016 ELSE DUP ENDIF

o017 IC'OT 1+ { STORE CHARACTER IN BUFFER)

018 ENDIF

015 EMIT ¢ ECHO CHAR TO TERMINAL)

020 LooP

021 DROP

o2 .

CLOSSARY
001 CLOSSARY QENERATOR ROUTINES)
002 DECIMAL
003 O VARIABLE CMD
o00a TOF CR CR 32 SPACES * CLOSSARY" CR CR (GENERATE PAGE HEADING .
00% " LEN WORD" 1% SPACES " NFA PFA" CR CR .
006 HEX
oo7 QLOSSARY TOF CONTEXT @ & CHD
008 BEGIN CHMD € IF
00% CHMD & C@ 3F AND
010 DECIMAL DUP 3 R SPaACE
011 F SWAP - CHD & ID SPACES
012 CHD @ HEX & R SPACE
013 CHD & 1| TRAVERSE DUP
014 3 =+ & R SPACE CR
013 1+ & CMD
016 “TERMINAL IF GUIT ENDIF
017 ELSE GUIT THEN AGAIN .

Modifications to the fig-FORTH boot—-up
literals:

1. Backspace Character
Character to emit in response to a
backspace entry. X'08' (control-H)
is character FORTH responds to for
backspace function. Character to
emit is terminal dependent and should
be defined in the user table.

This also allows use of a printable
character (e.g. C'\') to emit for
backspace for use on printing
terminals.

2. Form Feed Character
Character to emit to cause terminal
(or printer) to advance to top of
form. This 1s also device dependent
and should be in user table.

3. Form Feed Delay
Number of null characters to emit
after 1issuing a form feed charac-
ter. This is similar to CR/LF delay
which is already provided.
Recommendation :

Add variable 'BSTOF' to user table.

X'BBFF' - two characters of data

FF - form feed character
(X'oC' initial value)
BB - back space character

(X'08' initial value)

Add word 'BSTOF' to vocabulary to access
this variable in user table. (Similar
to 'BASE')

Modify definition of current user varia-
ble 'DELAY' to include formfeed delay in
upper byte.

Add word 'DELAY' to vocabulary to access
this variable in user table.

Modify startup parameters and cold start
accordingly.

Page 7

FORTH DIMENSTIONS I1I/1

Modify EXPECT to wuse wuser defined
backspace character and to explicitly
generate bell code (X'07'). Currently,
EXPECT tests for the beginning of the
buffer and subtracts the boolean flag
result from X'08' to generate the char-
acter to emit in response to a back-
space.

Toby L. Kraft

7822 Convoy Court
San Diego, CA 92111
(714) 268-3390

This really needs expansion and gener—
ality. How about terminals that need an
"escape sequence'" to clear screen, i.e.
form feed? Toby, HEX should be used
insteat of X'.--ed.

Dear Fig:

I wish to convey a concept which has
greatly increased the clarity of my FORTH
coding. It has to do with in-line docu-
mentation of the contents of the stack
(comments within parathesis).

Unfortunately, none of the existing
techniques (space, hyphens, brackets, or
ordinal suffix) provide the brevity and
clarity that one becomes accustomed to
with FORTH. The technique which I have
devised provides both. It revolves around
the backslash character '\', which I refer
to as 'under' and the double hyphen '--',
which I refer to as 'leaves'. Using this
terminology, the following comment:

(address\count --)

is read '"address under <count leaves
nothing," and

(NI\N2 -- N3)

is read "Numberl under Number2 1leaves
Number3."

The ‘'under' symbol imparts a clear
verbal and graphic representation of the
ordering of the stack conteats, and
provides an elegant solution to a major
problem encountered whea traunsporting
FORTH algorithms and source code.

Don Colburn

Creative Solutions, Inc.
4801 Randolph Road
Rockville, MD 20852

Dear Fig:

Some time ago I bought vour Installation
Manuai and the 6502 Assembly Listing. I
have been studying both for quite a while,
and am also a charter member of the
Potomac FORTH Interest Group (PFIG: Joel
Shprentz and Paul VanDerEijk).

I have MMS FORTH (cassette) for the
TRS80 wup, and have Jjust bought GEOTEC
FLEX-FORTH for my KIM, although I don't
have my 16K ram card installed in KIM
yet. I do like FORTH!!! The PFIG has
been fairly inactive for some time due to
lack of a meeting place, but Joel Shprentz
has been conducting some Intermediate
FORTH classes (%30 for six lessons) which
are ongoing, and very interesting - we are
well into {BUILDS/DOES), and will then go
on to disking, etc. Ask Joel for details.

I'm still planning to bring up FORTH on
the KIM from my own hand-assembled ver-
sion, just to satisfy my own curiousity
about what makes FORTH tick. I do think
I'm finally beginning to understand how
everything fits together.

In this vein, I have a few comments to
pass on from an (advancing) novice FORTH
enthusiast. The first two comments regard
the above referenced Installation Manual
and 6502 Assembly Listing. The last two
are ideas of my own which I offer for what
they are worth.

1. There is a disparity in the Instal-
lation Manual version of the 6502
memory map regarding the placement of
the Disk buffer and User Area.

FORTH DIMENSIONS III/1

Page 8

Indeed, there 1is disparity in the
6502 Assembly Listing between what is
done near the front and what is actu-
ally implemented (per the installa-
tion Manual). The Installation
Manual puts the Disk buffer at the
top of RAM with the User area just
below. Line 0051 of the assembly
manual says User area is top 128
bytes, with disk buffer next (line
0052). CREATE assumes just the
oppposite in both the Installation
Manual and Assembly Listing. (Editor
-- correct on all all points. The
author was inconsistent.)

2. In screen 49 of the Installation
Manual, I see no need whatsoever for
a dedicated word such as ID. to move
the word name to Pad and then type it

out! The first 4 words are not
needed, and neither are the words
following " - " (PAD SWAP CMOVE

PAD). Just a waste of time and space
to bring the name to PAD and then
type it out! (Editor -~ this is not
S0. If you have WIDTH set to less
than 31, ID. is required.)

3. I would suggest a word (Q) that
might be inserted into any type of
loop (DO/LOOP or BEGIN/AGAIN) to
allow a timely exit when things go
awry (as they do with Novices!).
It's very simple - : Q ?TERMINAL IF
QUIT ENDIF ; MMS FORTH has this
embedded into the code of " : " , but
I think that's overkill. But it sure
is nice to undo errors put into
loops. (Editor -- this is terrible
style. LEAVE is the correct way for
a controlled termination.)

4. This has specifically to do with the
Jump Indirect of the 6502 as used in
both the Installation Manual and the
assembly listing. Having wused the
6502 for better tham 4 years, I have
yet to use the JMP indirect after
finding out about its shortcoming of
wrapping around within a page if low
byte of address is $FF. I pretend
this opcode does not exist. (Editor
—- CREATE on 6502 systems correctly

places code field. Anymore comments
should be directed to Chuck Peddle,
designer of 6502.)

Keep up the good work.
Edward B. (Ted) Beach

5112 Williamsburg Blvd.
Arlington, VA 22207

CORRECTION ON SEARCH

by John James
(Vol. II #6)

When you are debugging or modifying a
program, it is often important to search
the whole program text, or a range of it,
for a given string (e.g. an operation
name), The 'SEARCH' operation given below
does this.

To use 'SEARCH', you need to have the
FIG editor running already. This 1is
because 'SEARCH' uses some of the editor
operations in its own definition. The
'SEARCH' source code fits easily into a
single screenj it is so short because it
uses the already-defined editing func-
tions. Incidently, the FIG editor is
documented and listed in the back of FIG's
Installation Manual.

Use the editor to store the source code
of 'SEARCH' onto a screen. Then when you
need to search, load the screen. (of
course if you are using a proprietary
version of FORTH, it may have an editor
and search function built in and auto-
matically available when needed. This
article-ette is mainly for FORTH users
whose systems are the ten-dollar type-it-
in-yourself variety).

Here 1is an example of using 'SEARCH'.
We are searching for the string 'COUNT' in
screens 39~41; the source code of 'SEARCH'
is on screen 40. The screen and line

numbers are shown for each hit. Inci-
dently, the search string may contain
blanks. Just type the first screen

number, the last screen number, 'SEARCH'
followed by one blank and the target text
string. Conclude the line with return.
The routine will scan over the range of

Page 9

FORTH DIMENSIONS ITI/1

screens doing a text match for the target
string. All matches will be listed with
the line number and screen number.

Happy SEARCHing!

39 41 SEARCH COUNT

00 VARIABIE COUNT ER 2 40
1 COUNT ER +! ~COUNIER @ 4 40
1 COUNIER +! COUNT ER @ 4 40
56)IF 0 OOUNT ER ! 5 40
12 EMIT 01 TEXT O OOUNT ER! 840 OK

SCR B 40

¢ SEARCH, DVER RANGE OF SCREENS WFR)

1 DECIMAL

2 00 VARIABLE COUNTER

3 : BUMP { THE LINE HUMBER AND HANDLE PAGING)

4 I COUNTER +! COUNTER @

H 56 » IF O COUNTER !

& CR CR 15 NESSAGE 12 EMIT THENW ;

7+ SEARCH (FROM, TO --- TARGET STRING !

8 12 EMIT 01 TEXT O COUNTER !

7 1+ SWAF DO FORTH I SCR !

10 EDITOR TOP

" BEGIN 1LINE IF 0 M SCR 7 BUNP THEN

12 1023 Rd @ < UNTIL

13 LOOF ; CR ' SEARCH IS LOADED ™ ;5

14

15 TYPICAL USE TO LOCATE "HEY-WORD s 21 44 SEARCH KEY-UORD

PROGRAMMING AIDS & UTILITIES

Kim Harris
FORTHRIGHT ENTERPRISES
P.0. Box 50911
Palo Alto, CA 94303

In true ideal FORTH programming style
the definitions contained within the
screens clearly designates their use.

81 LIST 82 LIST
SCR # 81

0 (Software Development tools fig-FORTH 1.x)

1 (for LOADing)

2 :100D (serff—) DUP. 10AD ;

3 : THRRU (1lstScreen# lastScreent —)

(1LOADs range of screens)

4 1+ SWAP DO I I0AD 100P

3

6 (non—destructive stack print)

7 : DEPTH (— fStackCellsUsed) SP@
SO@ SWAP - 2/ 3

8 : .S (prints stack contents, top last;
stack unchanged)

9 DEFH IF SP@2- SO@2- MO 17
-2 +L0O0P

10 ELSE ." Empty " THEN

11

12 (which vocabulary is being referenced?)

13 ¢ .WOC (prints CONTEXT VOCABUIARY name)

14 OREXT @ 4 - NFA ID.

15

SCR # 82
0 (Tools: mumber printing fig-FORTH 1.x)
1
2: .BASE (—) (prints current radix in

decimal)
3 BASE @ DUP DECIMAL . BASE ! 3
4
5 (create base-specific stack-print operators)
6 : BASED. ({BUILDS: newBase —)
(DOES): n—)
7 BUTLDS),
8 DOES)>@ BASE @ SWAP BASE ! SWAP .
BASE !)
9

10 16 BASED. H. (print top-of-stack in hex)
11 8 BASED. 0. (print in octal)

12 2 BASED. B. (print in binary)

13

14

15

The following utility indexes 10 screens
at a time and 1is an excellent aid in
searching.

HEX : +INDEX 113 0 DO
DUP 10+ SWAP OVER INDEX
KEY 7ESC IF LEAVE THEN LOOP;

The following utility was contributed by
Sam Bassett and 1is an excellent program
development aid that shows you what the
current base is

: BASE?
BASE @
DUP -
DECIMAL

BASE !

.

FORTH DIMENSIONS ITI/1

Page 10

Here is an adaptation of George Shaw's
VIEW to use the word WHERE, which on my
system invokes a full screeen editor that
highlights the word pointed to by a block
number and displacement. It certainly
helps pick out a word in dense code.

SR # 66
0 ('VIEW' USING 'WHERE' 4/15/81 R.E.E.)
1 (ADAPTED FROM FORTH DIMENSIONS VII,
NER 6, P 162)

2 FORTH DEFINTTIONS
3:>000 BIK@, IN@ , ; (SAVE BIK AND
DISPLACEMENT)
4 3 CONSTANT »>DOC<{ [OOMPILE] CONSIANT
(REBUILD THE WORDS)
5 : VARIABIE »D0C < [OOMPILE] VARIABIE ;
(THAT BUILD WORDS.)

6:: >poc < [COMPTIE] : $

7 5KBUILDS ~)DOC[COMPIIE] BUILDS
8 : USER ;ncx:ammwsm $
9 : CREATE DoC< [(OMPTIE] CREATE
10 : VIEW [OOMPIIE] ' NFA (GET HEAD OF

THE HEADER)
11 DUP (COPY THE ATDRESS)
12 2- @ (GET THE DISPLACEMENT)
13 SWAP 4 - @ (GET THE BLOCK NUMBER)
14 WHERE (GO SHOW & HIGHLIGHT) ;
15]
HELP WANTED

Senior Level FORTH Programmers

Friends—Amis

505 Beach Street

San Francisco, CA 94133
Call: Tom Buckholtz
(415) 928-2800

Intermediate & Senior Level FORTH
Programmers for Data Entry Applications

MSI Data

340 Fischer Avenue
Costa Mesa, CA 92627
Call: Joan Ramstedt
(714) 549-6125

.PRODUCT REVIEW

by C.H. Ting, Feb. 26, 1981

Timin-FORTH, from Mitchel E. Timin Engi-
neering Co., 9575 Genesee Ave., Suite E2,
San Diego, CA 92121, (714) 455-9008.
8" single density diskette, $95.00

I was invited by Dr. Timin to compare
his CP/M FORTH (FD II/3, p. 56) with the
Z-80 FORTH by Ray Duncan, Laboratory
Microsystems (FD 1II/3, p. 54; FD II/S,
p. 145) I ran the two FORTH systems on
his home made 2Z=80 computer (S-100 bus,
6 MHz) The results of a few bench marks
were:

Program Timin Z-80
¢ LOOPTEST 7FFF 0 DO LOOP ; 2.3 sec 2.9 sec

: =TEST 7FFF 0 DO I DUP - DROP LOOP; 5.9 7.4
: *TEST 7FFF O DO I DUP * DROP LOOP ; 44.0 54.9
: /TEST 7FFF O DO 7FFF I / DROP LOOP ; 74.3 83.6
: WIPE 120 61 DO T CLEAR LOOP ; 3%.3 81.8

97 10AD (four hundred eighty 9's) 17.9 18.6
)

I was surprised that Timin-FORTH which
is 8080 fig-FORTH ran faster than 2Z-80
FORTH which uses the extra Z-80 registers
for TP and W. Dr. Timin's opinion was
that the Z-80 instructions wusing these
extra registers are slower then the
simpler 8080 instructions. The word WIPE
tests disc access time. Timin-FORTH
accesses the disc by 1024 byte blocks, and
it is twice as fast as Z-80 FORTH, which
reads/writes by 128 byte sectors, as in
the fig-=FORTH model.

The dictionary in Timin-FORTH is about
11 Kbytes, 1including an editor and an
assembler. The editor is the same as that
of the fig-FORTH model. The assembler has
all the Z-80 instructions. An interesting
word SAVE allows the whole system in-
cluding application words to be preserved

Page 11

FORTH DIMENSIONS TIII/1

as a CP/M file which can be loaded back
for execution. It maintains eight 1 Kbyte
disc buffers.

The documentation supplied with the
system is a 68 page booklet 'USER'S MANUAL
& TUTORIAL'. It is a very well done
manual introducing users to the systems
and to the FORTH language. However,
source listings are not provided.

My overall impresssion was that this is
a well rounded FORTH system suitable for
engineering and professional applications.

Editors Comment -- FORTH Dimensions
refrains from publishing timing benchmarks
as this reflects processor speed more than
effectiveness of problem sclving. How-—
ever, the above review points out that the
allegedly superior Z-80 runs these tests
slower than the 8080. Our point is that
the user should evaluate all aspects of
problem solving: hardware characteris-
tics, language implementation and appli-
cation technique. The Timin manual is
sold separatly for $20.00. This price is
not justified by the copy received for our
evaluation.

HELP WANTED

FORTH PROGRAMMER
PDP-11 RSX Op Sys On Site Contractor
Micro/Temps
790 Lucerne Dr.

Sunnyvale, CA 94086
(408) 738-4100

' s'rew»\ao WHAT
| h KIND OF AIEPL"—\N
| IS THIS 7

X N Fﬁ

J

/

||
)

FORTH TELE-CONFERENCE IS NOW OPERATIONAL

FORTH now has a dynamic, public access
data base. By dialing into the FIG
CommuniTree (tm, the CommuniTree Group)
you may access our tele-conferencing
system. It was created by Figger John
James to allow group interaction to build
upon our collective knowledge.

The number is 415-538-3580. The system
runs 24 hours a day. Use a 300 baud modem
and start with two "returns", the system
is self-iastructing. This conference
holds information on employment, vendors,
applications, announcement calendar,
inquiries, books, etc. Information of the
conference 1is organized in a tree struc-
ture, hence the name " Conference Tree'.

Our hope 1is that half of the callers
will review the available material and
then ask questions. The other half should

add answers to these questions. You
simply find a topic or message and attach
your query/response. Users maturally

organize their material in a form that
facilitates retrieval.

This system was writtem in Cap'n
Software Version 1.7. Versions for other
than Apple II are being developed.

For availability contact:
The CommuniTree Group
Box 14431
San Francisco, CA 94119

or call the original Tree: (415)
526-7733.

WHAT 1S
THAT IN
DECIMALT

FORTH DIMENSIONS III/1

FORTH, INC. NEWS

MAJOR EXPANSION PLANS

FORTH, Inc. 1is now entering a major
expansion phase, according to President
Elizabeth Rather. Appearing on a panel on
"Programming Languages for Small Systems"
at the recent NCC in Chicago, Rather
observed, "The level of excitement and
enthusiasm about FORTH in the industry is
tremendouus. We are increasing our number
of OEM'S and we have been approached by
several major silicon manufacturers
desiring to obtain marketing rights for
special versions of polyFORTH. Arrange-
ments are also being made to produce the
FORTH processor, and we expect this
project to start very soon."

LIFEBOAT REPRESENTATIVE VISITS

Masa Tasaki, Managing Director of
Lifeboat, Inc., FORTH, Inc.'s distributor
in Japan, spent two days at FORTH, Inc.
recently to discuss mutual marketing
plans. Lifeboat, Inc. is one of the few
software distributors in Japan, and
polyFORTH is the top of their product
line. Tasaki has 1installed over 40
polyFORTH systems in Japan in the past
year, and plans to sell an additional 50
polyFORTH systems by the end of 1981.

STARTING FORTH BOOK PREPRINTS AVAILABLE

STARTING FORTH, a 380-page book intro-
ducing the FORTH language and operating
system will be published by Prentice-Hall
this September in both hard and soft-bound
editions. FORTH, Inc. is offering limited
preprints to customers until then. The
preprint, numbered and signed by both
author Leo Brodie and Charles H. Moore
sells for §$50.00 (plus 6% sales tax for
residents of California). You may reserve
a copy of STARTING FORTH by calling Winnie
Shows at (213)372-8493. All orders must
be pre-paid.

RECENT FORTH COMMERCIAL APPLICATIONS

Work has just been completed for
Raytheon Corporation on a terminal cluster
(up to 32 terminals with a single concen-
trator). Each component of the system is
controlled by an 8085 processor, and all

are programmed independently, using
polyFORTH. This is a capability they've
never had before -~ to do custom program-

ming and provide extensibility. Terminals
up to two miles away can be polled at a
rate 30 times faster than the previous
protocol, which was written 1in assem~
bler. Dean Sanderson was the principal
programmer on the project.

The famous 200" Hale Telescope at Mt,
Palomar Observatory (near San Diego) has
recently installed a polyFORTH system for
data acquisition and analysis wusing a
PDP11/44 and a Grinmell display proces-
sor. The Observatory has been using FORTH
since the early 1970's, 1including a
miniFORTH system installed in 1975 and an
early polyFORTH installed in the late
70's. Barbara Zimmerman, a programmer at
Cal Tech (which operates the observatory)
said, "I am extremely impressed by the
level of polish and sophistication in
polyFORTH, and the performance of this
system is outstanding." The type of work
done involves reading data from an 800 x
800 array of CCD sensors, integrating and
recording the data, and displaying it in
the Grinnell. Charles Moore installed the
system, which features a comprehensive
math package for analysis as well as basic
image-processing functions.

A by-product of this installation is the
availability of polyFORTH in RKO05 disk
cartridges. These are available with on-
site installation.

SCHEDULE OF UPCOMING FORTH, INC. SEMINARS
AND WORKSHOPS:

Location Seminar Workshop
Palo Alto June 4 June 5
Houston July 7 July 8
Tampa July 9 July 8
Irvine July 23 July 24

Page 13

FORTH DIMENSIONS III/1

PARAMETER PASSING TO DOES>

David McKibbin
Sygnetron
2103 Greenspring Drive
Timonium, MD 21093

Often in programming one runs into the
case where several different processes
share similar structures. Not wanting to
waste time or space for redundant code,
the programmer usually creates a sub-
routine or procedure to execute the basic
structure. Then the individual processes
merely pass arguments to the prodecure to
accomplish their task. Several schemes
can be used to pass these parameters. In
simple <cases, the stack can be wused
directly. This 1is the typical act of
programming in FORTH.

+ DELAY O DO LOOP (SPIN FOR A WHILE)

100 DELAY (COUNT PASSED ON THE STACK)

However, as the procedures get more com-
plex it gets more and more difficult to
keep track of the passed parameters espe-
cially when the procedure itself is using
the stack heavily. Also many times it is
necessary to pass not only numbers but
operators or words as parameters. One
means of accomplishing this is via {BUILDS
DOES). Parameters will be stored in the
parameter field of the newly defined word
and accessed from DOES) via a new word
{$}. 1§ will push the first parameter
on the stack, 2 $ will push the second,
etc. All parameters are 16 bits. Varia-

ble R# is used to store the parameter base
address.

t $ 1-DP+RFQ@+Q@ ; (PUSH THE N'TH

PARAMETER)
: EXAMPIE CBUILDS DOES)RF ! 1$ 2 $ EXEQUTE ;
EXAMPIE 2ZZ 90 , 'EMITCFA, (TYPEA'"Z")
EXAMPIE SPC 10 , ' SPACES CFA , (TYPE 10 SPACES)

Now that the mechanics are explained the
following example will more fully demon-

strate its usage. Both DUMP (16 bit dump)
and CDUMP (8 bit dump) share a common
structure with only a few inner words dif-
fering. DUMPS is a new defining word used
as a procedure for both DUMP and CDUMP.

: U.LR 0 SWAP D.R ;

: DMPS (BUILDS DOES) R# ! (STORE PARAMETER BASE
ADDRESS)

BASE @ R) HEX (SAVE BASE AND SET HEX)
OVER + SWAP (CONVERT TO BEGINNING
AND END ADDRESS)
BEGIN
CR DUP 4 U.R 2 SPACES (TYPE ALDRESS)
1$00D0

DUP 2 $ EXEQUTE 3 $U.R 4§+
2DUP = OVER 16 MOD 0= OR IF
LEAVE THEN

LOOP

2DUP = 7TERMINAL OR
UNTTL
DROP DROP CR
R)BASE ! ; (RESTORE BASE)
DUMPS CDOMP 16 , 'C@CFA, &4, 1,

(2-ADDRESS, 1-COUNT)
DIMPS DM 8, ' @CFA, 6, 2,

(2-ADDRESS, 1-COUNT)

What has been accomplished is akin to
passing procedures/functions as parameters
in Pascal. I expect that there are other
ways to do this FORTH beyond what has been
proposed.

FIG-FORTH UNDER 0S-65U

Software Consultants has announced the
availability of Fig-FORTH under 0S-65U for
the Ohio Scientific Line. The package
includes assembler and a terminal oriented
editor and is available now for $79.95.

This version is said to support hard-
disk, multi-user systems and may even be
run in one partition and BASIC in another.

For more information contact:

Software Consultants
7053 Rose Trail
Memphis, TN 38134
(901) 377-3503

FORTH DIMENSIONS III/1

Page 14

COMPILER SECURITY

George W. Shaw III
SHAW LABS, LTD.
17453 Via Valencia
San Lorenzo, CA 94580

How it Works and How it Doesn't (Adapted
from a section of the Acropolis A~FORTH
manual)

There is much argument about parameter
validation and error detection in FORTH.
Many problems exist with many good solu-
tions. Fig-FORTH and its derivitives have
taken one route of extensive protection in
compiler directives and their associated
words. This is not an only solution in
this area. Its extensiveness may not be
necessary. There may be better alterna-
tives. Read on, learn how fig-FORTH
works, consider the options and then
decide. Your opinion and ideas are
needed.

Fig-FORTH and its derivitives provide a
type of compiler error detection referred
to as '"compiler security". Compiler
security provides protection against
structural programming errors made by the
programmer as well as insuring the proper
machine state and, in a very few in-
stances, the wvalidity of parameters.
Though it depends on the type of program-
ming, the most common errors are struc-
tural errors* , machine state errors, and
then parameter errors, respectively.

~ (¥ structural errors may be caught
internally by detecting parameter
errors. See text.)

STRUCTURAL ERRORS

The compiler security system uses two
methods to trap structural programming
errors inside of colon-definitions.
Structural errors are those caused by
incorrect program structure; either
improper nesting of structures or not
completing a structure inside of a defi-
nition. Either of these conditions would
cause the program to compile incorrectly

and could cause disastrous effects (i.e. a
system crash) at run-time. The methods
used by the compiler security system
entail either checking a value on the top
of the stack (to verify the proper nesting
of structures) or checking that the stack
position is the same at the end of a defi-
nition as it was at the beginning of the
definition (to ensure program structure
completion). These two methods probably
trap about ninety percent (90%) of the
structural programming errors that a pro-
grammer might make.

The first in each of the paired struc-
tural compiler directives (i.e. pairs such
as IF THEN , DO LOOP , etc.) leave
on the stack at compile time a value which
is checked by the ending structure to
ensure the proper nesting of structures.
For example the word IF leaves, in
addition to the other data necessary to
compile an IF , the value of two (2) on
the top of the stack. The words ELSE
and THEN remove a value from the top of
the stack and check to see if it is a two
(2). 1If the value on the stack was not a
two (2), a Conditionals Not Paired error
(#19) results, and compilation is termi-
nated (control returns to the keyboard).
If the value is a two (2) the remainder
of ELSE or THEN executes, removing the
necessary data from the stack to finish
the structure, and compilation continues
on to the next word.

Below 1is a table of the conditional
pairs for the current structural compiler
directives, with the values placed on the
stack open and the values removed from the
stack in parenthesis. Note that UNTIL
and END as well as THEN and ENDIF
have the same effect. Only the former of
each pair are presented here for clarity.

BEGIN 1 UNTIL (1)
BEGIN 1 WHILE &4
BEGIN 1 AGAIN (1)

REPEAT (1) (&)

IF 2 THEN (2)
IF 2 ELSE (2) 2 THEN (2)
DO 3 LooOP (3)
DO 3 +LO0OP (3)
DO 3 /LooP (3)
DO 3 +/LO0P (3)

Page 15

FORTH DIMENSIONS III/1

Note that ELSE tests and replaces the
same value on the stack. Because of this
the current compiler security system
cannot detect the presence of multiple
ELSEs 1in a definition. For example, in
the definition:

: ELSE-EXAMPIE ~ flag — true or false message)
IF ." True part 1" ELSE ." False part 1"
ELSE ." False part 2" ELSE ." False part 3"
THEN 3

if compiled , (and it will compile,) and
then executed with a boolean value (zero
or non-zero) on the stack, will execute
without crashing the system. But the
execution may not be what you expected.
1f entered with a true flag (non-zero) the
"True Part 1" and the "False Part 2" will
print, while if entered with a false flag
(zero) the "False Part 1" and "False part
3" messages will print. To borrow a
phrase from Kim Harris, probably '"Not what
you had in mind!". S

This is the only case I know of where
the compiler security system plainly does
not work, but there are probably more.

How 1is this, apparently incomplete,
structure checking performed? Read on.

The values on the stack is verified by
?PAIRS . For example the words ?PAIRS ,
BEGIN and AGAIN are defined as follows:

: ?PAIRS - 19 ?ERROR ;

: BEGIN ?COMP HERE 1 ; IMMEDIATE

: AGAIN 1 ?PAIRS COMPILE BRANCH BACK
; IMMEDIATE

BEGIN first checks to make sure that it
is being executed in compile mode (inside
a definition) with ?COMP which issues an
error if it is not. It leaves the current
dictionary address on the stack (HERE)
as a branching reference for AGAIN , and
then the 1 as the first of a conditional
pair. When AGAIN later executes during
the compilation of the definition it first
checks the stack to see that a BEGIN
preceded it at the same level of nesting
by executing ?PAIRS . ?PAIRS expects
to find a matched pair of values, in this
case ones (1), as a matched set of condi-

tional pairs. If ?PAIRS does not find a
matched set, it aborts with a Conditionals
Not Paired error (#19). 1If the values on
the stack are paired, it removes them and
returns.

The above simple form of error checking
is very effective, but as structures
become more complex, manipulating and
maintaining the stack values can become
cumbersome and unwieldy. The above 1is
also not yet complete. One more check
must be executed to ensure that the
structures in the definition have been
completed. Since the above error checking
leaves data on the stack if a structure
has not been completed, the simplest check
is that of the stack position. When a
definition is entered : (colon) stores
the Current Stack Position in the user
variable CSP . At the end of a defini-
tion, ; (semi-colon) executes 7?CSP to
compare the current stack position to the
value stored in CSP . If the wvalues
differ a Definition Not Finished error
(#20) occurs indicating that either data
was left on the stack or that too much
data was removed from the stack, i.e. that
a programming structure was probably not
completed. The word "probably" is used
here because other conditions, such as the
improper or sometimes various proper uses
of the word LITERAL , will cause the same
error condition to occur.

MACHINE STATE ERRORS

The loading and execution of a FORTH
program causes the system to enter several
different machine states. Three of these
are loading, compiling, and executing.
Each of these states is defined by its own
set of parameters and some states may even
overlap. For example, while loading a
screen off the disk the machine will be
either executing or compiling. Here the
loading state has overlapped with either
the execution or compilation state. The
machine cannot be in the execution state
and the compilation state at the same
time, though the states may be inter-
leaved. An example of interleaved states
is the use inside a definition of a pro-
gram segment similar to this:

FORTH DIMENSIONS III/1

Page 16

[SCREEN 3C0]+ LITERAL
which temporarily suspends compilation to
calculate the value within the brackets
and then compiles it as a sixteen (16) bit
literal. Remember though, that to com-
pile, the machine is executing a program,
and that compiler directives (such as
LITERAL above) execute during compilation
to perform their task, but the machine
state remains that of compilation.

Certain words require that the machine
be in a specific state to execute proper-—
ly. These words are programmed to contain
one of the following words:

?COMP ?7EXEC ?LOADING
which check for their corresponding state
and issue an error message if the machine
is not in that state. Below is a descrip-
tion of each of the above words and the
parameters which determine the current
machine state.

7EXEC __or ?COMP

The execution state or compilation state
is determined by the value of the user
variable STATE which has a zero (0)
value if the machine is in the execution
state and a non-zero value the machine is
in the compilation state.

?LOADING

Loading is determined when the value of
the user wvariable BLK has a non-zero
value. A value of zero for BLK indi-
cates that input is coming from the user's
terminal and that the machine is therefore
not loading.

The above words are defined as follows:
?EXEC STATE @ 18 7?ERROR ;

7COMP STATE @ 0= 17 ?ERROR ;
?LOADING BLK @ 0= 22 7?ERROR ;

LT ITY

If the machine is not in the execution
state when ?EXEC executes an Execution
Only error (#18) occurs.

If the machine is not in the compilation

state when ?COMP executes a Compilation
Only, Use 1in Definition error (#17)
occurs.

If the machine is not in a state of
loading when ?LOADING is executed a Use
Only When Loading error (#22) occurs.

The testing of machine states as above
is necessary when words such as BEGIN
and AGAIN (see example in STRUCTURE
ERRORS above) are used. These words may
only be compiled because they must compile
something other than themselves which 1is
not known at the time they are executed.

PARAMETER ERRORS

During compiling and similar operations
there are only a few parameters which are
actually checked. In most cases, the
parameters checked are those involved in
the other areas of compiler security or
those which deal with the size or validity
of the dictionary and stack.

The words involved in other compiler
security areas are iIcsp , ?CSP
?7PATRS . These words are used to protect
against structural programming errors as
described above in STRUCTURAL ERRORS. An
explanation of each of the uses of these
words is as follows:

1Csp ?CSP

These words are used together to check
for changes in the stack position.
{CSP stores the current stack position in
the user variable CSP . ?7CSP compares
the value in CSP to the current stack
position and, if they are not the same,
issues a Definition Not Finished error
(#20). ICSP and ?CSP are currently
used in ¢ and ; respectively to ensure
that all structures in the definition have
been completed before the semi-colon. Any
structures uncompleted will leave data on
the stack and thus allow 7CSP to flag
the error. These words can also be used
to check the stack effect of user defini-
tions. For example, if a definition
should have no stack effect (leaves the
same number of items on the stack as it
removes) the following would test this:

Page 17

FORTH DIMENSTIONS TIII/1

!CSP ccece 7CSP

which would execute a definition named
ccce and issue a Definition Not Finished
error (#20) if the number of items on the
stack at the beginning and end of the
definition were different.

?7PAIRS

This word is wused when testing for
correct structure in compiler directives
(see STRUCTURE ERRORS) to check that the
value of the two numbers on the stack is
the same. TIf the value of the two compi-
lation conditionals on the stack is not
the same, a Conditionals Not Paired error
(#19) occurs. ?PAIRS can be used to test
similar situations in user programs, but
the error message given will be the same
(error #19).

The checks on the dictionary and stack
consist of testing the stack for under-
flow, the dictionary and stack for over-
flow, and the name of the dictionary entry
to be created for uniqueness (in A-FORTH
this test is optional and there is a test
to ensure that a definition name is not
null). Some of the tests are performed
during the execution of other functions by
the testing word (such as the tests per-
formed by WORD and by CREATE). Only
the testing performed by these words will
be described here.

CREATE

This word creates a dictionary header
for a new word. In the process of
creating this header a dictionary search
is performed to check that the header is
unique. The message given if a duplicate
is found is Isn't Unique (#4). This is
not a fatal error but just a warning.
A-FORTH allows the disabling of this test
(and the associated message) and performs
another test for a dictionary entry whose
name is a null. The creation of a dic-
tionary entry with a null name is not
allowed because the null is the name of
the entry interpreted at the end of the
disk or terminal buffers. If an attempt
to create a null entry is detected a Null

Definition Name! error (#9) is given. If
a dictionary entry with a null name were
created, the system would attempt to
interpret this as the end of the current
buffer with unpredictable results.

?7STACK

This word checks that the parameter
stack is within bounds. It compares the
current stack position (by executing SP@)
against the base stack position in user
variable SO0 to check for a stack under-
flow. It also checks that there are at
least 128 bytes of dicticmary space left
(to leave room for PAD and stack work).
If the stack underflows an Empty Stack
error (#1) is given. If the stack comes
within the 128 bytes of the dictionary a
Full Stack error (#7) is given. ?STACK
is not executed at runtime unless compiled
by the programmer, though it is executed
frequently during compiling and text
interpretation.

WORD (A-FORTH only)

This definition moves text from the
current input buffer to the head of the
dictionary. The error test performed
checks that there is enough space between
the head of the dictionary and the top of
the stack for the text about to be
moved. If there is not enough space a
Dictionary Full error (#2) is given. This
prevents the system from crashing by
writing over its own stacks.

DO WE NEED IT?

Should we have all this security all the
time? Or just when we think we need it?
Fig-FORTH currently does not give us a
choice on the matter. Sure, we can com~
pile on top a new set of compiler direc-
tives which don't have the tests, but we
have then already wasted all the memory
for the secure directives, the ?XXX words,
and the lot. The reverse course I con-
sider more appropriate. The kernel system
should have as little protection as pos-
sible. The system should not suffer the
overhead for those who do not desire it.
If security is desired, a 'Novice Pro-
grammer Protection'" package could be

FORTH DIMENSIONS III/1

Page 18

compiled into a user's area which would
include all the words necessary to protect
him or her (and the other users) from him
or herself. This would allow protection
even for the words such as ! (store),
FILL and CMOVE when desired.

Something as simple and extremely effec-
tive as the ICSP and ?CSP in : and
; respectively may be left in the kernel
system to give warning to even the best of
us when necessary. Definitely, also the
stack checks at compile time and possibly
the uniqueness (though it should be
optional) and null definition (currently
A-FORTH only) checks should be left in,
but the structure and state testing is
often incomplete and annoying. Anyone who
has tried to write and secure a good
general CASE structure, or a BEGIN
WHILE REPEAT loop which allows mul-
tiple WHILEs will know what a pain it is
to try to secure them in a reasonably
complete fashion. For these people
compiler security dosn't work. Addition-
ally, new structures transported from my
system to another may not remain secure
because the same conditional pair numbers
used in my structure on my system may have
been used in a different structure on the
other system. Again, the compiler secur-
ity dosn't work.

The same method used in high level struc-
ture testing is also used in one known
assembler, which the author considers
totally inappropriate. If one is program-
ming in FORTH assembler one is doing so
for speed, which may require not being
structured at all.

Currently, the matter of compiler security
is being studied by the group writing the
next 8080 fig-FORTH version (which could
possibly outline a new model). Should we
have all the protection all the time, or
just some of it and a programmer protec-
tion package? Or maybe there is a better
alternative. Your input 1is wanted and
needed. Write to the 8080 group at FIG,
PO Box 1105, San Carlos CA 94070 and tell
us what you think.

NEW PRODUCTS

POLYMORPHIC FORTH NOW AVAILABLE

FORTH is now available for the Poly-
Morphic Systems SSSD 5" systems (8813 &
8810). The PolyMorphic disk operating
system has been patched in and the system
is interfaced to the PolyMorphic operating
system. PolyMorphic FORTH includes a
modified systems disk, and brief documen-
tation on changes to interface to the
PolyMorphic SSSD 5" disk operating system
~- based on 8080 Fig-FORTH. Price is
$50.00. For more information contact:

Ralph E. Kenyon, Jr.
ABSTRACT SYSTEMS, ETC.
145-103 S. Budding Avenue
Virginia Beach, VA 23452

FORTH FOR HP83/HPS85

A disk based FORTH is now available for
the HP85/HP83 personal computers. The
implementation is the FIG FORTH 1978
standard with some machine dependent util-
ities. User receives both 16k and 32k
versions with user space being 2k and 18k
respectively. Both versions require a
disk., 1Included is an assembler, a FORTH
decompiler and editor. This is not an HP
supported product but available through
the user's library. FORTH, in object form
(no source), an assembler, decompiler and
editor, 1in source, are sent on a disk.
This product recommended for experienced
users only! Those familiar with FORTH
should have no trouble using this system
(i.e. there is no manual inluded).
However, sufficient references are
aiven. Current cost is $50.00. For more
ianformation contact Nany Reddington at
{5033 757-3003.

FORTH PROGRAMMER AVAILABLE

3 mos. experience with FORTH (also know
BASIC & COBOL) Active member of F.I.G.
Contact: Martin Schaaf, PO Box 1001, Daly
City, CA 94017 (415)992-4784

Page 19

FORTH DIMENSIONS III/1

USERSTACK

Peter H. Helmers
University of Rochester
Department of Radiology
Medical Center, Box 648

Rochester, NY 14642

INTRODUCTION

One of the advantages of FORTH is its
use of a stack oriented architecture. In
conventional FORTH implementations, one
has available two kinds of stacks: the
return stack and the parameter stack. In
general, the return stack is used to keep
track, at execution time, of the path of
invocation of nested FORTH words while the
parameter stack is used to manipulate data
used within and/or passed between FORTH
words.

Unfortunately, in the real world, such a
clean segmentation between parameter data
and execution nesting data tends to break
down. For example, DO...LOOPs are imple-
mented by using the return stack to keep
track of the loop count and associated
data. The motivation for this violation
of the sanctity of the return stack with
DO...LOOP parameters 1is the desire to
separate the DO...LOOP data from any
parameters being used by the programmer
within the loop. Failure to do so would
allow confusion of loop parameters with
actual user data -- causing a consequent
abnormal execution of the DO...LOOP
arising from an unwarranted modification
of loop parameters.

In addition to the above saving of
DO...LOOP parameters on the return stack,
it is not uncommon practice for a program-
mer Eto want to save some parameter stack
data in order to be able to first calcu-
late using data beneath it. One previous-
ly employed method to do this was to
temporarily push the parameter stack data
onto the return stack, and then later

Editor's Note: Mr. Helmers uses URTH, a
dialect of FORTH.

retrieve it when subsequently needed.
Admittedly, this is an easy -- lazy! --
way to achieve tranisent data storage.
But woe unto those who forgot to pop the
return stack of this temporary data...!

USER STACKS

The "user" stack concept allows a FORTH
program to retain the convenience of an
auxiliary stack, but in such a way as to
avoid mixing temporary data with execution
time return information. As an added
convenience, this concept allows creation
of multiple, named, stacks which can be
typed according to the number of (two
byte) words per stack element.

A user stack can be thought of as an
array (integer, double precision, or real)
of data which has implicit addressing.
Consider, by way of analogy, a conven-
tional array such as:

100 ()DIM MY-ARRAY

One would store the 53rd integer element
by explicitly stating the index:
52 MY-ARRAY ! (ZERO ORIGIN...)
This would take data from the top of the
parameter stack and store it in MY-

ARRAY. Alternatively, one would access an
integer from this array by:

27 MY-ARRAY @

The disadvantage of arrays is that they
require both an explicit index, and an
explicit load (@) or store (!) operator.
While an array could be used for temporary
storage of parameter stack data, such
programming practice 1is not neccessarily
clear or efficient.

So how does a user stack help us?
Consider the integer user stack defined:

100 STACK MY-STACK

MY-STACK would, in this case, have a
size of 100 integer elements. Data can be
put into this user stack from the top of
the parameter stack by:

FORTH DIMENSIONS III/1

Page 20

PUSH MY-STACK

while it can be retrieved back to the
parameter stack by:

POP MY-STACK

Note that addressing is implicit-- there
are no indices and that the direction
of data transfer is set by the PUSH and
POP words.

USER STACK WORDS:

types of user stacks
STACK, DSTACK, and

In practice, three
have proved useful;
FSTACK. While stack variables created by
these three defining words all use the
PUSH and POP words to save and retrieve
data, the amount or type of data
pushed or popped differs. As discussed
earlier, STACK deals with integer (two
byte) words. DSTACK consists of elements
of double precision integer words (four
bytes) while FSTACK elements are floating
point numbers (six bytes). All three of
these words are defined in terms of an
arbitrary n-precision NSTACK word which
allows specification of any number of two
byte words per stack element.

Two other words are also useful with
user stacks. There are EMPTY-STACK and
?7STACK. Note that both of these cannot
(presently) be used within colon
definitions. The line:

EMPTY-STACK MY-STACK

will, for example, reset the stack pointer
for the user stack: MY-STACK so that it
will be empty. Again using the MY-STACK
example,

?STACK MY-STACK

-will dump out the contents of the stack
from the top of the stack through the
bottom of the stack. ?STACK is intended
purely as an aid in debugging.

IMPLEMENTATION:
As was previously mentioned, STACK,
DSTACK, and FSTACK are all defined in

INCREASING
Mmemogy ADDRESSES

terms of a more general NSTACK defining
word. A line such as:

22 4 NSTACK WIDE-STACK

will define a 22 element stack with eight
bytes (four words) per element. NSTACK
has two primary parts. The first part,
executed when a new stack is defined,
builds a FORTH word header, stores some
stack definition parameters into the dic-
tionary, and finally allocates the actual
dictionary space for the stack, The
second part, written in 8080 assembly
language for speed, defines the execution
time actions taken by the stack wvaria-
ble. Both of these defining parts will be
explored in greater detail below.

The format of the user stack in the
dictionary is shown in Fig. 1. It con-
sists of a normal FORTH header, followed
by the following four stack definition
parameters:

a) current stack pointer (two bytes)
b) #words per stack element (one byte)
c) maximum stack pointer address (two
bytes)
d) minimum stack pointer address (two
bytes)
#BYTES FIELD COMMENTS
1 CHAR. COUNT
n CHARACTERS i# characters saved
for word name
2 VOCAB LINK
OODE ATDRESS Points to j;C0DE part
of NSTACK def.
2 CURRENT STACK PTR
1 {ACRDS /STACK ELEMENT
Y 2 MAX STX PTR ADDRESS
2 MIN STK PTR AIDRESS
m STACK DATA ARFA i bytes needed to
contain specified #
of stack elements
Figure 1 -- Dictionary Layout

for a Stack Type Variable

Page 21

FORTH DIMENSIONS III/1

wew BLOCK ® 150

STACK DATA TYPES -- PHH 23 OCT 80)
CAELEMENTS L BWORDS/ELEMENT) NSTACK NNMN CREATES THE STACK)

CALLED NMNNN WITH THE GIVEN NUMBER OF ELEMENTS. STACK DATA)

STACK)

{
L]
(
{ TYPES MAY BE PUSHED OR POPPED TO OR FROM THE PARAMETER)
{
L]

NSTACK <BUILDS SWAP OVER [P + « DUP (#BYTES IN STACK)
i

HE

E + DUP . (SET UP CURRENT STK PTR }

ROT C, (WWORDS/STK ELEM)} o (MAX SP ADDR)
HERE . (HIN SP ADDR } 10 + ALLOT (SPACE FOR STACK

1CODE WPARAM Z + B LX

E DAD, H PUSH.
RF LHLD. H DCX. D M MOV, H DCX.
H POP. B POP, { PUSH/POP FLAG) C A MOV,

{ HL PTS TO WWRDS/ELE)
E M MOV, RP SHLD.

IF., { POP DATA FROM NSTACK TO PARAMETER STACK |

M A MOV, [WHRDS/ELE) H DCX.

{ CSP IN BC)

#ss BLOCK # 131

{ NSTACK DEFINITION CON‘T)

H B HOV. H DCX.

i SAav IP)
E ORA. O=,

M C nOV.

BEGIN. { HOVING DATA. WORDS AT A TIHE)} PSW PUSH.
« A E MOV, B LDAX. B INX. A D MOV,
PSH POP, { COUNT } D PUSH. (DATA FROM NSTACK)

B LDAX. B INX

A DCR, O=,

END.
ELSE, [PUSH PARAMETER STACK DATA TO NSTACK)
M B MOV, H DCX,

M A MOV, H DCX.

ENDH.
THEN.

C M MOV, H INX. B H MOV,
RP LHLD, M E MOV, H INX,

-—>

&8 BLOCK # 132

[F18
oK
0K
OK
OK
0K
Ok
0K
OK
OK
OK
oK
QK
oK
oK

{ SAVE NE
M D HOV.

{ STACK TYFE VARIABLES CON‘T)
CODE POP 0O H LXI., PUSH JMP,
CODE PUSH -1 H LXI. PUSH

STACK 1 NSTACK 1

H C HOV,

BEGIN. { TO PUSH DATA)} D FOP. PSH PUSH.
B DCX, [A MOV, B STAX.
PSH POP, A DCR. O=,

W
H

USER AIDS WHICH CANNOT BE COMPILED ...
EMPTY-STACK NNNN -— EMPTIES THE USER STACK "NNNN" BY
RESETTING 175 STACK POINTER)
EMPTY-STACK 1“0 DUP 3 + & SWAP '
PSTACK NNNN -- PRINTS OUT THE CONTENTS OF THE USER STACK)
TSTACK 1°0 DUP 3 + & OVER & - DUP O3> IF 1| ->L SWAP B DUMNP

CsP)
INX, RP SHLD,

JHP .
{ INTEGER ELEMENTS)
DSTACK 2 NSTACK 1 (DOUBLE PREC INTEGER ELEMENTS)
FSTACK 3 NSTACK 1 (FLOATING POINT ELEMENTS)

ELSE ZDROP T USER STACK EMPTY * THEN 1

5

100 STACK MY-STACK
35 STACK YOUR-STACK -

11 22 33 44 S5 &6 77 88 99

PUSH MY-STACK
FPUSH MY-STACK
PUSH YOUR-STACK
PUSH MY-STACK
PUSH MY-STACK
PUSH MY-~-STACK
PUSH YOUR-STACK
+ POP MY-STACK -

-11 0K
0K POF YOUR-STACK FOF YOUR-STACK 2ZDUP . .
77 33 110 0K

OK POP MY-STACK .

55 0K

OK POP MY-STACK .
&6 0K

‘OK POP MY-STACK .
8 0K

OK POP MY-STACK .
99 OK

oK

OK

OK

OK

oK

OK

0K ?STACK MY-STACK

USER STACK EMFTY OK

OK 11 PUSH MY-STACK 22 PUSH MY-STACK ?STACK MY-STACK

.BATA 0016 0OOOB
oK

MW
UK EMPTY-STACK MY-STACK ?STACK MY-STACK
USER STACK EMPTY OK

0K
oK
0K
oK

{ CSF IN BC)
{ COUNT)
B DCX. E A HOV. B STAX.

NEXT P,

+ .

Note that the stack, consistant with the
8080 avchitecture, grows down in memory.
Following these stack parameters is the
actual stack area which is allocated in
the dictionary.

The PUSH and POP words are code defini-
tions (for speed) which push a 0 or -1
flag wvalue to the top of the parameter
stack. Thus, when the stack variable is
subsequently executed, this flag is used
to differentiate between popping from the
user stack (flag=0) and pushing to the
user stack (flag=1). The assembly code is
thus separated into two very similar exe-
cution loops which move stack data one
word at a time until the proper number of
words for the stack element have been
moved; these two loops differ only in the
direction of the data transfer. 1In both
loops, the A register contains the current
word count which is intially set to the
number of words per stack element and
decremented each time through the loop.
The BC register pair contains the current
user stack pointer while the HL register
pair contains the address of the stacks
parameter field so that the new user stack
pointer value may be saved after all words
within the stack element have been trans-
ferred.

CONCLUDING REMARKS

These user stacks have been optimized to
provide rapid execution speed at the
expense of high level transportability and
error checking for a stack pointer out of
bounds. It is felt that the concept, in
whatever realization, 1is important since
it provides a very readable and structured
method to temporarily store and sort data
without having to resort to such '"unclean"
practices as using either explicitly
addressed arrays or the return stack.
It's the type of FORTH word that, once you
have it, prompts the question: "it's so
obvious, why didn't someone think of it
before?"

FORTH DIMENSIONS III/1

Page 22

NEW PRODUCT

STAND-ALONE FIG-FORTH FOR OST

FORTH Tools has announced stand-alone
Fig-FORTH for all OSI mini-floppy com~
puters that combines Fig-FORTH with stand-
alone machine drivers by FORTH Tools.
With this system OSI-65D is superfluous——
with FORTH booting up directly, vyet the
disk is 0S-65D compatible.

Since FORTH Tools FORTH dispenses with
the OSI operating system, FORTH Tools has
developed disk, display and kevboard
drivers for the 0SI hardware.

FORTH Tocls FORTH for OSI 1is strictly
compatible with Fig-FORTH. All words in
the Fig model, including disk support,
work correctly. Portability to other
machines is also claimed.

Stand-alone Fig-FORTH for O0SI is avail-
able on one 5-1/4" disk for €1 (Super-
board), €2 and C4 machines with 24K.
Product includes a structured 6502 macro-
assembler and disk utilities designed by
FORTH Tools and the FIG portable 1line
editor. Complete technical documentation
and the fig~FORTH glossary are also
included. The complete price is $49,95.
For more information contact:

FORTH Tools
Box 12054
Seattle, WA 98102

P.S- MR. FRE- THO---- IS NQOT AN EMP---=-- OF

FOR-- INC-

A STACK DIAGRAM UTILITY

Barry A. Cole
3450 Sawtelle Blvd. #332
Los Angeles, CA 90066

INTRODUCTION AND CONCEPT

A year and a half ago, when I was still
fairly new to FORTH, I spent a lot of time
drawing pictures of stacks as I made up
programs. I crumpled them up and started
over each time I changed them. As
sections were debugged, I drew up another
copy to document the code. When I found
an error, I would have to redraw whole
series of stacks, just as a cartoonist
would have to change a whole series of
frames. 1t soon became clear that I was
expending time to do rather tedious
work. I came up with an idea for an
automated tool to update these diagrams.
I thought up a way to represent the stack
data easily and an approach to implement
the tool. The original implementation was
done in 8080 polyFORTH by my co-worker
Greg Toussaint. We collaborated in the
initial debugging and then passed it back
and forth over the next four months.
After nearly a year in active use, I
converted it to fig-FORTH and updated
several messy areas to be more straight-
forward. The results of these pursuits
are detailed in this paper for more
general consumption.

ORIGINAL IMPLEMENTATION

The original program was going to take
push and pop information from the keyboard
to generate pictures of what was on the
stack. It became immediately clear that
the stack could more easily be represented
horizontally than down the page. We chose
to put the stack to the right so that the
size of the stack could be read like a bar
graph. I figured that if 1 represented
each item on the stack as an address
pointing to a count and printable string,
that many of the stack diagram words would
be identical to the FORTH word equiva-
lent. Thus, DUP, OVER, DROP as well as
many other primitives would be coded
before I started. Even as it was being

Page 23

FORTH DIMENSIONS III/1

built, the tool grew to get the source
codes directly from disk and then to
generate a printer format spool file also
onto FORTH screens. Keeping track of
values when an IF was encountered and
restoring them on ELSE and THEN was
added. This generates a warning message
if the two paths leave different numbers
of parameters on the stack. Finally,
concatenation of strings for algebraic and
logical expressions was added.

USAGE AND OPERATION
The main routines called by a user are:

screenff DOC defname to document 1 definition

screendt SDOC to document a whole screen
screenif PRTDOC to print from given screen
PDOC to print last documentation

The program clears the display stack
before each colon definition. A search is
made for the first colon on SDOC or the
specified name following a colon on DOC.
The name of the function 1is displayed
along with the currently empty stack con-
tents. It requires user input to continue
since the entry conditions of the routine
are unknown. It prompts "DROP?" to see
how many excess elements should be dropped
from the stack, A carriage return suf-
fices to leave it alone. It continues
with the prompt , "PUSH VALUE?". For each
symbolic name of a value on the stack, a
free form name should be typed followed by
a carriage return, The prompt will be
repeated until a line consisting of only a
carriage return is typed. There are no
limitations imposed on the input, however,
it is advised that nulls and tabs should
not be included as this will detract from
the clarity of the final output. The
program will then continue reading words
from the source screen and generating

output 1lines to the console and spool
file.

In a typical sequence, up to about a
dozen lines will be handled without inter-
vention. For example, occurences of DUP,
DROP, and numeric literals will be pro-
cessed automatically. When a @ is encoun-

tered, it will revert to the prompts since
it is not known what a symbolically appro-
priate name is for the fetched value.

Processing will terminate with an "OK"
for sucessful completion of the screen or
colon for SDOC or PDOC, respectively. If
stack underflow occures, it will abort.
It is good practice to do a FORTH after an
abort condition to insure that the stack
vocabulary is properly exited. A user
abort is also provided. This 1is accom~
plished by typing an escape key followed
by a carriage return in response to the
"PUSH VALUE?" prompt.

SAMPLE DIALOG

The package creates a special stack
vocabulary as well as the wuser entry
points. The use of the package is best
seen by example. Figure 1 is a sample
dialog. Notice how little intervention 1is
required and how the ELSE restores the
stack values. Figure 2 is the source that
was used in the examples. Figure 3 is the
printer output as displayed by PDOC.

FIGURE 1

100 sbocC
ANALYZE |
DROP?

PUSH VALUE? addr
PUSH VALUE? len
PUSH VALUE?

ANALYZE | addr 1len
SWAP | len addr
INCH |

DROP?

PUSH VALUE? char
PUSH VALUE?

INCH | len addr char

DUP | len addr char char

1F | len addr char char 7F
- | len addr char (char-7F)
IF | len addr char

DUP | len addr char char

0D | 1len addr char char 0D
- | len addr char (char-0D)
IF | len addr char

DUP | len addr char char
OUCH |

DROP? 1

PUSH VALUE?

FORTH DIMENSIONS ITI/1

Page 24

FIGURE 1 (cont.)

FIGURE 3

QUCH | len addr char PDOC STACK DIAGRAM -~ SCREEN # 100
OVER | len addr char add:
c! | len addr R
1+ | len (addr+l) SwRp T | fem adar
SWAP | (addr+1) 1len ;5gn E ien agg- c:a[:
i en al r [1 4 char
1= | (addr+l) (len-1) TP | len add: Ch:l char 7F
ELSE | len addr char - | len addr char (chat-7F)
(N AOAK Bi oUP | Shn o Ghan s
DROP | len addr 0D | len add: char char 0D
SWAP | addr len - | len addr char (char-0D)
a r en a 14 char
DROP l dd ;:P }ien aggr c:a: char
20 i addr 20 QUCH | len addr char
OUCH | QVER Hen agg: char addr
DROP? 1 en add:
1+ | len (addi+l)
gggg VALUE? E— swap | (addr+1) 1len
addr = | (addr+l) (len-1)
0 | addr 0 ELSE : i:n ‘aggt C::l
(en addr char
OVER | addr 0 addr DROP | len addr
c! | addr SWAP : agg; len
0 | addr 0 DROR aagk
20 | add: 20
THEN | addr 0 StcH [add:
ELSE len addr char 0 | addr 0©
(len addr char OYen :addr 0 addr
dd
DROP t ien agdr = 0 !:d£ 0
8 e dr THEN | addr 0
OUCH I = e ELSE | len addr char
DROP? 1 on ion ekl
{8} 4 en addr
PUSH VALUE? e :ien addr 8
OUCH | len addr ! | len nga-l:
1- | len (addr-1) SWAP | (addi-1) 1len
SWAP | (addr-1) len ;;EN ::ag?-ii :%nﬁii
i- +
1+ | (addr-1) (len+l)) | (addr-1) (len+l)
THEN | (addr-1) (len+l) OK
i | (addr-1) (len+l)
OK
FIGURE 2
OK
100 LIST
SCR # 100
0
1 : ANALYZE SWAP INCH DUP 7F - IF DUP 0D - IF
2 DUP OUCH OVER C! 1+ SWAP 1-
3 ELSE (CR) DROP SWAP DROP 20 OUCH 0 OVER C! 0 THEN HELP WANTED
4 ELSE (DELETE) DROP 8 OUCH 1- SWAP 1+ THEN 3
5
ZK FORTH PROGRAMMER

Entry Level - Will Train

John Sackis
Data Breeze
2625 Butterfield Rd. Suite 112E
Oakbrook, IL 60521
(312) 323-1564

Page 25 FORTH DIMENSIONS ITII/1

CONDITIONALS

The IF...ELSE...THEN construct
automatically saves and restores the stack
values. A mismatch in number along the
two paths produces a warning message,

"STK ERROR, ELSE -m THEN -n"

where m is the number of parameters left
on the stack at the end of the IF clause
and n is the number left when the THEN is
encountered. The DROP/PUSH prompts are
presented for the user to attempt
recovery. A known cause of this message
is a -DUP preceding the IF, as this is
not handled.

SPOOLING TO DISK

To be useful, a hard copy of the output
without all the intermediate operator
conversation is useful. It is also quite
possible that a machine readable version
would be handy to facilitate distribution
of the documentations. A spool file is
generated to satisfy these requirements.
It may later be displayed or printed by
PDOC.

The spool file contains the encoded
screen from which the diagram was made
followed by variable length lines
separated by carriage return characters.
The file is terminated by an ascii null
character. It resides on a set of
consecutive screens. The first screen and
maximum number are determined by literals
in SPIT and PRTDOC. I use 10 screens
starting at 230. These may be copied
elsewhere and printed by PRTDOC. Failure
to copy them will cause the listing to be
lost the next time a function or screen is
diagrammed.

IMPLEMENTATION PROBLEMS AND SOLUTIONS

It 1is important not to search the
standard vocabularies when diagramming
stacks. This 1is because actions are
different for the same name, depending
upon state. By way of example, for the
operator + must concatenate the symbolic
name strings representing these elements

with an embedded plus sign, rather than
adding the top two elements on the
stack. Also, mnot all operators are
defined. On detection of this case, the
diagrammer must shift control to the
operator prompt section. In polyFORTH,
this was accomplished by defining a new
vocabulary and having it be the only one
searched. in fig-FORTH, this option 1is
not directly available since the FORTH
vocabulary is searched after the current
vocabulary. This may be solved by
carefully breaking links with zero
entries, or alternatively by defining a
special dictionary search routine that
stops at some fence value. I chose the
latter.

It wasn't obvious until the
implementation began that operators would
require concatenation of their identifying
strings. It was also decided that
parenthesis would be placed around each
level of expression nesting so that
ambiguity could be eliminated without
rearranging expressions for precedence.
This occasionally leads to expression such
as ((array+2)+2). This is unavoidable
since even the constants within the
expression are treated as strings rather
than numbers. Thus, the example cannot be
reduced to (array+4).

Error recovery 1is not nearly as good as
I'd like it to be. Stack underflow in the
diagramming session 1s generally fatal.
Due to the amount of bookkeeping already
being done, there is no provision for
retracting answers after wrong data has
been put on the diagram stack. This is
inconvenient in a first pass through a
function, but has not proved to be a
problem once a feel for the tool and the
function being diagrammed has been
acquired.

Provision 1is left for user defined
functions in the last two screens of the
diagram source. This allows commonly used
functions to be handled in an automated
fashion. This makes it very easy to
define composite functions such as, 1- as
the sum of its component parts. For out-
side of functions, constant and variable

FORTH DIMENSIONS ITII/1

Page 26

have been redefined to put their own name
on the stack. Before this facility was
added, I always retyped the variable name
manually when 1t came up.

The spool function and some of the
source reading routines such DOC assume
that screen blocks are contiguous 1,024
byte areas. Those functions using BLOCK
will have to be rewritten if this is not
the case in your system. I recommend that
you instead generate a new system with 1k
buffers as that 1is faster and more
flexible.

WEAKNESSES AND PROPOSED FUTURE EXTENSIONS

The diagrammer presently does not keep
track of the contents of the return
stack. This requires uses of R) and I go
to the operator for clarification. Try a
pencil for now. This could be added in a
similar fashion as IF..ELSE..THEN by an
additional stack.

The area of error recovery is ripe for
suggestions. Perhaps some dummy buffer
area could be added and tested in PSTAK.
This would allow detection prior to
destruction on stack underflow. Backing
up by reading backwards would be nice but
also very difficult to implement.

CONCLUSION

Now that the tool has been built, its
real function is more evident. It is
still used for documenting words as origi-
nally intended, however, its primary usage
is debugging and validating code. It has
also proved to be very useful as a
teaching aid to explain what is going on
within the stack. I hope it will be as
useful to you as it has been to me.

A STACK DIAGRAM GLOSSARY
VARTABLES

:BK The base block number for spooled
stack diagram.

:LN Line number being printed. Used
for page headings.

:SC Current screen number being
gspooled.

IFPTR The address of top of IF stack.
Used to restore wvalues on stack for
IF...ELSE...THEN construct.

IFST The area reserved for pointers to
previous stack contents. It is used to
restore the stack on ELSE and THEN
clauses.

SPL A temporary variable used by :NFD
to retreat the spool file to erase the
unknown stack prior to operator specifi-
cation of what is added or dropped.

SPOOL Offset into spooled print file.
SUM The sum of differences in two
strings. Used in -TEXT. Value is 0 for a

text match and nonzero if different.

Tl Pointer to current input word in
memory (type format).

CONSTANTS

LLIMIT The limit address for dictionary
search to keep from using standard FORTH

words from within the STACK diagrammed
words.

FUNCTIONS

-— 'FIND pfa length true (found)

——— 'FIND false (not found)

This is the same as —-FIND except that
the true condition is set only if the work
is found above LLIMIT. This restricts the
search to stack vocabulary words.

f—— (1(1

A string constant used for building
expressions when arithmetic or logical
operations are encountered in the dia-
grammed input string.

Page 27

FORTH DIMENSIONS 1II/1

Defined back to its original state
after being used as a concatenation token,
this marks the beginning of a comment.

All text following it is ignored
until the next) .

Tests two strings for not equal.
oy) |)|

A string constant used for building
expressions when arithmetic or logical
operations are encountered in the dia-
grammed input string.
stl st2 —-TEXT cond

True if the two strings differ.

val 1- val-1

Decrements the top of stack value by
one.

vl v2 2DROP —

Drops the ¢top 2 elements off the
stack and discards them.

This is the stack diagram
redefinition of colen. It diagrams the
word following it instead of compiling.

It is invoked by colon as the very
last definition from within this package.

stl st2 :C st3

Concatenates two strings into a
single combined string. It is used to
build expressions when operators are en-
countered in the screen to be diagrammed.

== :HEAD ——-
Prints the header for a 1line of
output to the console and also the spool

file.

- :KILL ~ ——-

Removes and discards the top of the
IFST.

- :NFD addr

This 1is called when the word being
analyzed 1is not 1in the special stack
vocabulary. It checks for wvalid
numbers. If this test 1is passed, it
returns a pointer to that string.
Otherwise, it 1invokes SKBD to get user
help.

adr :PSH ———

Pushes the address of a level of the
stack values onto the separate IF stack.
This 1is wused for IF..ELSE..THEN stack
restoration and checking.

adr sRST ell el2 etc

Restores the stack from the IFST
stack. Does not affect the IFST.

adr : SAV ——
Saves current stack element list on

the IFST. Does not affect the parameter
stack.

Marks the end of the spool file with
a zero.

adr 7NUM cond

Checks current word to determine
whether it qualifies as a legal
hexadecimal number.
e CONSTANT -——-

A defining word which causes the name
of the defined word to be put on the stack
when that word is encountered.

=== DEPTH depth

Computes the depth of the stack in
items.

scri DOC PR

FORTH DIMENSIONS III/1

Page 28

Searches for a colon followed by the
word whose name follows this invocation on
the specified screen. It aborts if the
definition is not on the specified
screen. Otherwise, it commences to gen-
erate the diagram for the word specified.
———— ELSE ell el2 etc

Clears the stack and then restores it
from IFST.

--- ESC -

Aborts the package if an escape key
was the first key pressed in answer to the
"PUSH?" prompt. The vocabulary reverts to
FORTH; however, the stack diagram package
is still loaded and ready to go.

—— G-HERE adr cond

Moves a string from PAD into the dic-
tionary. It allots the space and leaves
the address of the item and a true cond if
successful. It leaves only a false cond
if no valid string was found.
expr G(1) op(expr)

Builds an expression from a simpler
expression. At execution time of the
following word, the top of the stack is
enclosed in parenthesis and preceded by
the operation symbol. It is used for
unary operations. eg. -(name)
expr G(2) op(expr)

Similar to G(1) except that unary
operation 1is also enclosed within the
parenthesis. eg. (name¥*2)
espr G(3) op(expr)

Similar to G(1) except that binary

operation 1is also enclosed within the
parenthesis. eg. (vall+val2)

inadr GBLD s
An auxiliary word used to build a

named string in the dictionary from the
word following GBLD. This 1is used at

compile time of the stack diagram package.

- GWRD -

A defining word for building strings
into the dictionary at compile time of the
stack package. On invocation of the new
word, the address of the string displaying
its own name 1is put on the stack. The
word that follows GWRD 1is read twice at
compile time, once for the name of the
function, and a second time to be placed
in string format into the dictionary.
This is used to build up constant words
for the diagramming package.

cond IF ——

Drops the condition flag from the top
of the stack without evaluating it., It
then invokes :SAV for ELSE restoration and
THEN error checking.

adr cnt MTYP

Types the message to the screen and
also passes the parameters to STYP for
spooling.

src dst len MVB dst len src+l src

Intermediate function to set up for
MVDEL.

src dst delim MVDEL adr

Move a string from the source to the
destination address until the specified
delimiter is encountered. This is used to
build data strings within the dictionary.

- PDOC -

Prints the latest generated diagram
from the default spool file blocks.

-— PHDG _—
Prints the top of page heading and
sets the lines per page count. Used by

PRTDOC.

blkit PRTDOC —

Page 29

FORTH DIMENSIONS III/1

Prints the stack diagram from the
spool file whose starting block is the
specified blki.

== PSTAK ===

Prints all words from the string
addresses on the stack. The top element
is printed to the right of previous
elements. The stack is uanchanged.

adr cnt PWRD s

Prints one word via MTYP.
PSTAK.

Used by

e REPEAT -

Functionally identical to the re-
defined THEN.

scri SCRST scri

Resets the spool pointer and places
the screen number into the beginning of
the output spool to be used in top of page
headers by PDOC.

scrit SDOC -

Documents one whole screen by exe-
cuting it, using the diagram definitionms.

--- SKBD -

This scans the keyboard for |wuser
interaction. It generates the '"DROP?" and
"PUSH VALUE?" prompts. It is 1invoked
whenever intervention is required in the
diagramming process.

char SPIT ——

Writes character out to disk spool
file.

— STACK -—-

This is the name of the vocabulary
containing this package.

adr cnt STYP ———

Similar to TYPE but spools to disk
rather than typing to the screen. Outputs
an additional two blanks after the
message.

adr T3 cond

Tests the current string for a match
to the FORTH word semicolon. This is used
to exit DOC.

~-- THEN e

Re-defined in the stack vocabulary,
this cleans up the IFST. TIf the depth of
the stack has changed from before the
ELSE, it issues a warning and calls SKBD
to allow the user to correct a stack depth
disparrity between the IF and ELSE
clauses.

--~ VARIABLE -—-

A defining word which causes the name
of the defined word to be put on the stack
when that word is encountered.

<
[

2 ThIAD

13
s]
x

¢ 102
{ atack diagram package 1 of 14 B. A, Cole B10326)

: 1= 1 -3
: 2DROP DkOP LHOP -

Calling sequencesa:
screen DOC defname
acreen SDOC

PDOC

O 0D R B R e

10 DUC builds stack diagram for one definition.
11 5D0C builds stack dlagrams for entire screen.
12 PDOC prints stack diagram built by DOC or 3DOC.

SCKE # 103
{ atack diagram package 2o
0 VARIABLE SPOOL
0 VARIABELE SPL
0 VAHRIABLE T1
0 VARIABLE 3UM

0 18 B, A. Cole B10328)
1

2

3

a

2 0 VARIABLE :LN

T

8

9

offset intoc spooled print file

1

]

pointer to current input word)

in -TEXT : true for difference)

line number being printed]

0 VARIABLE :BK nase block? for spooled diagram)

0 VARIABLE :35C)

0 VARIABLE IFPTR)

0 VAKRIABLE IFST 1
10 IFST IFPTR 1 b

current screen # spooled
address of top of IF atack
define IF stack

and initialize to empty

20 ALLOT

11 ==3

12

13

14

15
SCH # 104

0 { stack diagram package 3 of 14 B. A. Cole B10326)

1 ¢ SPIT SPOOL @ 1024 /HOD 9 MIN 230 « :

2 BLOCK + CI 1 SPOOL +! UFDATE ; (spocol one character)

El

8 : :5F SPOOL @ 0 SPIT SPOOL 't ; { mark spool file end)

5

6 : DEPTH S0 @ SF@ = 2 /7 1 = ; { compute stack depth)

H

8 : STYP SWAP DUP ROT + SWAP DO { spool word)
‘g I & SPIT LOOP 32 SPIT 32 SPIT ;

:21‘ : MTYP 2DUP STYP TYPE 2 SPACES :5P ; (type and spool word)
13 : PWRD DUP C& 72 >

14 IF ." ERR ™ ABORT { print encoded word

15 ELSE COUNT MTYP THEN ; =-=>

;"" from: Barry A. Cole Los Angeles, CA 213-390-3851 seaae
K

FORTH DIMENSIONS III/1

Page 30

105 THIAD

SCR 9 SCE # 110
0 (stack diagram package 4 of 14 B. A. Cole £10320) 0 (stack diagram package ¢ of 14 E. A. Cole 810326)
1 : PSTAK DEPTH IF SP8 2 - SO # 2 - (print all words on stack) 1 : -TEXT C SUM | SWAP O (true if 2 strings oiffer)
2 BEGIN DUP @ PWkD 2 - 2DUP = END 2 DO OVER I + Cé OVER I + CE& - SUM +) LOCP
3 DROP DROP THEN ; 2 2DROP SUM @ ;
Ll
5 HEX : T; @ 3BOY - DECIMAL (test for not semicolon) Z : WTEST OVER DUP C@ 1+ SWAP -TEXT ; { test 2 words for <)
6
7 : :C SWAP COUNT DUP ROT SWAP 7 ¢ DOC SCRST HERE 32 WORD DUP C@ 1e ALLO‘!‘ (document 1 gef)
8 HERE 1+ SWAP CMOVE DUP HERE 1+ + 8 BLK & >R IN 8 >R 0 IN ! SWAP BLK
9 no‘r COUNT ROT SWAP DUP >n CMOVE 9 BEGIN S8 WORD 1IN € >R 32 WORD o find colon,word)
10 R> + DUP HERE DUP ROT SWAP) :? ﬁi'}f;gsfou
: concatenate 2 words I =
13, CF SHABISALLOTS ¢ 1z IF ." KOT FOUND" ABOKT THEN KEPEAT
13 -=> 13 DROP B> IN 1 STACK :: { now go from here)
1 1% [COMPILE) FORTH R> IN I R> ELK I ;
15 15 -=>

#6088 from: Barry A. Cole Los Angeles, CA 213-300-3851 seser

SCR # 106 ; OK
(stack diagram packuga 5 of 1% B. A. Cole 810326)
i 7NUM DUP 1+ C! a5 = (test ir input is numbder)

BEGIN 1+ DUP C@ 16 DAGIT
WHILE DROP REPEA‘!’ ce 32 = ;

0
1
H
4 : :HEAD CR 13 SPIT 10 SPIT DUP (print line header)
S ' COUNT 10 MIN SWAP OVER MTYP 11
6 SWAP - 0 DO 32 SPIT SPACE LOOP
7 .7t ™ 124 SPIT 32 SPIT :SP ;
8 : MVB ROT DUP 1+ SWAP ; (setup for MVDEL)
9 : MVDEL BEGIN MVB C@ DR HVB I SWAP C! (src dst len --
10 ROT DUP R> = END ROT 2DROP ; (move s to d til delim)
11 : G-HERE HERE PAD HERE 1+ 0 MVDEL (string inte memory) .
12 HERE -~ 1- DUP 1- DUP ROT SWAP DUP 111 TRIAD
13 IF HERE C! ALLOT
14 ELSE 2DRCP 2DROP_Q THEN ; . . SCR # 111
15 : ESC PAD C6 27 = IF .» £SC " ABORT THEN ; (escape) > 0 (stack diagram package 10 of 14 B. A. Cole 810425)
1 ¢ :PSH 2 IFPTH +! IFPTR @ | ;
SCR ¢ 107 2 ¢ :SAV HERE :PSH SP@ DEPTH 1 - DUP ,
0 (stack agiagram package 6 of 14 E. A. Cole 810326) 3 DUP + HERE SWAP DUP ALLOT CMOVE ;
1 VOCABULARY STACK O CONSTANT LLIMIT (filled in later) 4 ; :RST 1IFPTR € & DUP € DUP 2 ®* ROT + SWAP -DUP IF
2 5 0 DO DUP @ SWAP 2 - LOOP THEN DROP ;
3 : SKBD CR .™ DROF? " KEY DUP EMIT (scan kbd for drop,pushes) 6 : iKILL -2 IFPTR +1 ;
4 48 XOR DUP § < r .
5 IF DEPTH 1 - WIN 0 DO DROP LOOP g STACK DEFINITIONS HERE ~ LLIMIT 1
6 ELSE DROP THEN
7 BEGIN CR ." PUSH VALUE? ™ PAD 80 9 -=>
8 EXPECT ESC G-HERE 0= END ; 10
9 11
10 : :NFD T e 7NUM (handle word not found) 12
1 IF T (number) 13
12 ELSE sxnn SPOCL € SPL ! (undefined) 14
13 T1 @ :HEAD DROP SPL & SPOOL ! THEN ;
[15
15
*se80 from: Barry A. Cole Los Angeles, CA 213-390-3851 wesns SCH # 112
0K 0 (stack diagram package 11 of 14 B. A, Cole 810425)
1
2 : THEN DEPTH IFPTR 6 6 1+ C& -DUP
3 IF 128 - 2D
4 IF CR ." STK EKROR, ELSE -" .
5 ." THEN -" . SKBD
6 ELSE 2DROP THEN
108 TKI1AD g ELSE DROP THEN :KILL ;
SCH ¢ 108 9 : ELSE DEPTH 128 + >R SP! :RST K> IFPTH € 6 1+ C1
0 (stack diagram package 7 of 14 B. A, Cole ¥1G3c0) 10
1 : "FIND -FIND LUP IF 20KOP DUF LLIMIT > 11 : IF DROP :SAV ; FORTH DEFINITIONS ==>
g IF 1 ELSE 0= THEN THEN ; 12
4 : 32 stack diagram redef of i) :3
5 BEGIN “FIND HERE DUP DUP T1 ! word to mem and printec)
6 C8 1s ALLOT :HEAD T; \ 15
7 WHILE IF CFA EXECUTE ELSE' :NFD THEN (execute each word and)
8 2?5TACK PSTAK KEPEAT (print stack)
‘g DROP PSTAK CK 13 SPIT 10 SPIT :SP SP! ; SCR # 113
11 : SCHST O SPC ! DUP 256 /MUD { reset spool ptr and place) (stack diagram package 12 of 14 B. A. Cole 810326)
4SS e SEiT SPIT T (screens in spool) 1: GBLD 1IN ! 32 WORD HERE CE 1+ ALLOT ;
13 2 : GWRD 1IN 6 <BUILDS GBLD
14 : SDOC SCKST STACK LOAD (document 1 screen) 3 DOES> ;
15 [COMPILE] FORTH ; =-> 4 GWHD) GWRD (
5 : G(1) IN @ <BUILDS GBLD
SCH # 109 6 DOES> SWAP) { SWAP :C :C ;
0 (stack diagram package B8 of 14 B. A. Cole B10326) g i G(2) IN @ <BUILDS GBLD
1 : PHDG 12 EMIT (print neading on top of page) DOES>) :C :C (SWAP :C ;
2 " STACK DIAGKAM - SCKEEN & " 9 : G(3) IN @ <BUILDS GBLD
E i5C7 CH CH 5% :LN 1 ; 10 DOES> SWAP) :C :C :C (SWAP :C ;
5 : PRTDOC DUP :BK ! BLOCK 8 (print diagram from spec scr) :; # (41 WORD ; IMMEDIATE -=>
6 :SC 1 PHDG 10240 2 DO
7 I 1025 /MOD :BK 6 + BLOCK + C€ -DUP 13
8 I bup EMIT 10 1
9 L!I-bvi' (LNt 0= 15
:0 HDG THEN THEN
, A
l; ELSE LLAIIE HEN LOOP ; #mer® from: Barry A. Cole Los Angeles, CA 213-390-3851 wwsns
13 : PDOC 230 PRTDOC ; (print last generated diagram) OK
1%
15 -->

Page 31 FORTH DIMENSIONS III/1

114 THIAD
SCR # 114
0 (stack diagram package 13 ol 18 H. A, Cole #1042%)
1
2 STACK DEFINLTIONS
3: 7 32 WORD HERE DUP C@ 1+ ALLOT ;
4 ; DUP DUP ; : ROT ROT ; : SWAP SWAF ; : OVEKR OVER ;
5 : R> DHOP ; : DROP DROP ; : . DROP ; : HEX HEX ; : MSG ;
6 : DECIMAL DECIMAL ; : 2DUP 2DUF ; : ! DROP DROP ; s Ct 1 3
T s+t 1 ; : . DROP ; SPACE ;] H F
8 : 2! | DHOP ; : ? DROP ; : ALLUT DROP ; : BLANK ! ;
9 ;3 C, DROP ; : DOt ; : DUMP 1 ; ; EMIT DROP ; : -DUP DUP
10 : END DROP ; : ERASE 1 ; : +LOOP DROP ; : /LOCP DROP ;
11 : EXPECT I ; : MOVE | DROP ; i LEAVE ;
12 : SPACES DROP ; : TYPE | ; : BEGIN ; : LOOF ; : v ; : CR ;
13 : ENDIF THEN ; : REPEAT THEN ; : WHILE IF ;
14 : AGAIN ; i UNTIL 1t ;
15 ==>
SCh # 115
0 { stack dlagram package 14 of 14 B. A. Cole H10425)
1 GWHED © GWED 1 GWRD 2 GWHD 3
2 G(1) = : HINUS - ; G(3) = G(3) G(3) * G(3)/
3G(3) & : AND & ; G(3) t : OR | ; G{3) 3 : XOR % ;
4 G(2) +1 1 1+ +1 GE2) =1 ¢ 1= =1 G(2) +2 1 2+ 2
5 G(2) "2 ¢ 2% #2 3 G(2) 72 3 27 /2 ; Gl2) =2 1 2= =2 ;
6 G(1) NOT GWRD T GWRD cond
T GWRD here : HERE here ; GWRD pad : PAD pad ;
8 = ZDROP cond ; : ALLOT DKOP ;
‘3 : VARIABLE DROP GWRD ; : CONSTANT VARIABLE ;
i€ s ir o=
11 & ;8 QUIT ; : -=> QUIT ; & .™ 34 WORD ;
12 FORTH DEFINITIONS
13
14
15
SCR # 116

NG N - OO =T B R =D

wass® from; Barry A. Cole Loa Angeles, CA
0K

213-390-3851 sewse

FORTH CLASS

Date: June 22 - 26

Where: Humbolt State University
Arcata, CA 95521

Who: Kim Harris and Henry Laxen

What: Intensive 5-day course on the use
of FORTH

Cost: $100 - $140 plus room and board

How: Call Prof. Ron Zammit

(707) 826-3275

MMS-FORTH FOR STRINGY FLOPPIES

Kalth Microsystems will make available
to all licensed MMS-FORTH users a modified
version that rumns on the TRS-80 with an
EXATRON stringy floppy. This modification
is said to make MMS-FORTH operate as it
would on a disk except for the speed.
Users retain the capability to switch back
to cassette operation with a single com-
mand. Implementation includes the normal
read/write block commands plus a number of
new utility words. The modification is
available on ESF wafer for $14.95 includ-
ing shipping. For more information
contact:

Kalman Fejes

KALTH MICROSYSTEMS

P.0. Box 5457, Station F
Ottawa, Ontario K2C 371
Canada

FORTH DIMENSIONS III/1

Page 32

How to form a FIG Chapter:

1. You decide on a time and place for
the first meeting in your area.
(Allow about 8 weeks for steps 2
and 3.)

2. Send to FIG in San Carlos, CA a
meeting announcement on one side
of 8-1/2 x 11 paper (one copy is
enough). Also send list of ZIP
numbers that you want mailed to
(use first three digits if it
works for you).

3. FIG will print, address and mail
to members with the ZIP's you want
from San Carlos, CA.

4. When you've had your first meeting
with 5 or more attendees then FIG
will provide you with names in
your area. You have to tell us
when you have 5 or more.

Northern California
4th Sat FIG Monthly Meeting, 1:00
p.m., at Southland Shopping

Ctr., Hayward, CA. FORML

Workshop at 10:00 a.m.

Southern California

Los Angeles

4th Sat FIG Meeting, 11:00 a.m.,
Allstate Savings, 8800 So.
Sepulveda, L.A. Call Phillip
Wasson, (213) 649-1428.

Orange County

3rd Sat FIG Meeting, 12:00 noon,
Fullerton Savings, 18020
Brockhorst, Fountain Valley,
CA. (714) 896-2016.

San Diego

Thur FIG Meeting, 12:00 noon. Call
Guy Kelly at (714) 268-3100,
x 4784 for site.

Massachusetts

3rd Wed MMSFORTH Users Group, 7:00
p.m., Cochituate, MA. Call
Dick Miller at (617) 653-6136
for site.

Seattle Chuck Pliske or Dwight
Vandenburg at (206) 542-7611.

Paul van der Eijk at (703)
354~7443 or Joel Shprentz at
(703) 437-9218.

Potomac

Tulsa Art Gorski at (918) 743-0113.

Texas Jeff Lewis at (713) 719-3320
or John Earls at (214) 661~
2928 or Dwayne Gustaus at
(817) 387-6976. John Hastings
(512) 835-1918,

Phoenix Peter Bates at (602) 996-8398.

New York Tom Jung at (212) 746-4062.

Detroit Dean Vieau at (313) 493-5105.
FORTH Interest Group, c/o 38,
Worsley Road, Frimley,
Camberley, Surrey, GUl6 5AU,
England

England

Japan Mr. Okada, Presdient, ASR
Corp. 1Int'l, 3-15-8, Nishi-
Shimbashi Manato-ku, Tokyo,
Japan.

Canada

Quebec Gilles Paillard at (418) 871-
1960.

West Germany Wolf Gervert, Roter Hahn

29, D-2 Hamburg 72, West

Germany, (040) 644-3985.

Publishers Note:

Please send notes (and reports) about
your meetings.

Page 33

FORTH DIMENSIONS ITII/1

FORTH INTEREST GROUP

MAIL ORDER
FOREIGN
USA AIR
_ Membership in FORTH INTEREST GROUP and Volume Il (6 issues) of $12 $24
FORTH Dimensions. Check one: __NEW or__RENEWAL
. Volume Il of FORTH DIMENSIONS (6 issues) $12 $15
o Volume | of FORTH DIMENSIONS (6 issues) $10 $14
— fig-FORTH Installation Manual, containing the language model of $10 $14
fig-FORTH, a complete giossary, memory map and installation
instructions
_ Assembly Language Source Listings of fig-FORTH for specific CPU’s
and machines. The above manual is required for installation. Check
appropriate box(es. Price per each.
1802 ___ 6502 ___ 6800 _...6809
8080 ___8086/8088 —.9900 —_APPLE Il
__PACE ——ALPHA MICRO ____PDP-11 . NOVA $10 $14
—_— PROCEEDINGS 1980 FORML (FORTH Modification Lab) Conference $25 $35
- FORTH-79 Standard, a publication of the FORTH Standards Team $10 $13
- Using FORTH, by FORTH, Inc. This is the best users manual. $25 $32
. Kitt Peak Primer, by Stevens. An indepth self-study primer. $25 $35
— BYTE Magazine Reprints of FORTH articles, 8/80to 4/81 $ 5 $ 8
— FIG T-shirts: __Small _Medium __lLarge ___X-Large $10 $12
_ Poster/1981 Calendar, Aug 1980 BYTE cover, 18 x 22" $ 5 $ 8
— FORTH Programmer’'s Reference Card. If ordered separately, send a FREE
stamped, addressed envelope.
TOTAL $
NAME MAIL STOP/APT
ORGANIZATION (If company address)
ADDRESS
CITY STATE ZIP COUNTRY
VISA # MASTER CHARGE #

(Minimum of $10.00 on charge cards)

Make check or money order in US Funds, payable to: FIG. All prices include postage. No purchase
orders

FORTH INTEREST GROUP POBOX 1105 SAN CARLOS, CA 94070

FORTH CLASSES
June 22-26

Humboldt State
Eureka,CA
See Page 32

June 23 & July 24

College of Notre Dame
Belmont, CA
See Page 4

LEARN FORTH!

FORTH INTEREST GROUP
P.O.Box 1105
San Carlos, CA 94070

BULK RATE
U.S. POSTAGE
PAID
Permit No. 261
Min, View, CA

Address Correction Requested

