HUSTH NTIEISIONS

FORTH INTEREST OROUP Volume Il
P.0.Box 1105 Number §
San Carlos, CA 94070 Price $2.00

120 . Historical Perspective
Publisher’s Column
Editor's Column

121 A New Syntax

129 input Number Word Set

132 _. Structured Programming

133 —- 147 ~ Conference Report
Letters
Meeting Reports
New Products

148 Separated Heads

1851 FORTH In Print

FOSTH MIMIEISIOTS

Published by Forth Interest Group

Volume I No. 5 January/February 1981

Publisher Roy C. Martens

Guest Editor S B Bassett

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
Henry Laxen
George Maverick

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP IS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth Interest Group

Subscription to FORTH DIMENSIONS is free with
membership in the Forth Interest Group at $12.00 per
year ($24.00 overseas air). For membership, change of
address and/or to submit material, the address I1s

Forth Interest Group
P.O.Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radio Astronomy OQObservatory,
Charlottesville, VA. It was created out of dissatisfaction
with available programming tools, especially for obser-
vatory automation.

Mr. Moore and several associates formed FORTH,
Inc.in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage, and to supply application programming 10 meet
customers’ unique requirements.

The Forth Interest Group is centered in Northern
California, although our membership of 2,400 is world-
wide. It was formed in 1978 by FORTH programmers to
encourage use of the tanguage by the interchange of
ideas through seminars and publications.

EDITOR’S COLUMN

Alan Taylor, in his speech at the FORTH Convention
banquet, pointed out that FORTH is an incredibly
powerfui tool, and not precisely a language, in the
traditional sense

FORTH works close to the "naked machine "and yet
1s as general and powerful as many High Level Lan-
guages. This makes FORTH the perfect language for
writing compiers or pseudo-compilers for other
languages

If we were to produce a compiler tor ANSI Standard
COBOL. for instance, COBOL would run on any ma-
chine which had FORTH running—which 1s easy!

A major software house 1s presently writing an Ada
compiier, and expects to have it outin 1983.

tam wiihing to bet that a working FORTH compiler
for Ada could be written in half that time—does anyone
want to take me up on the bet?

S. B Bassett

PUBLISHER’S COLUMN

1980 retropective: FORTH DIMENSIONS has
compieted a whole year with the new format and a
number of people think it gets better with each issue.
FORTH Interest Group has grown from 647 members
on July 1st to over 2,400, thanks to Byte, EE Times,
InfoWorld, ComputerWorld and other publications. The
FORML Conference and FIG Convention were great
successes. Many new chapters are being formed, how
about you forming one? FORTH vendors are increasing
aimost as fast as the membership. FORTH is being im-
plemented or more and more machines and applica-
tions are beginning to roll out. It's been a great year for
us and we hope for you.

1981 parspective: FORTH DIMENSIONS will get
better, we wiil have paid guest editors for each issue. A
number of new publications and other FIG items will be
introduced isee order form). A number of mailings will
be done to FIG members about products available (if
you don't want to receive these mailings, please drop
us a note). We'll be doing more publicity to trade maga-
zines and at computer shows. We need more aticles for
FORTH DIMENSIONS, send yours in. Happy New Year!

Roy Martens

Page 120

FORTH DIMENSIONS II/5

A NEW SYNTAX FOR
DEFINING DEFINING WORDS

William F. Ragsdale

ABSTRACT

The computer language FORTH util-
izes a syntax that is generally con-
text free (i.e., postfix, or reverse
Polish). However, deviations from
this principle are noted in the syntax
for words that themselves define
words. This paper presents an altered
form, which 1improves <clarity of
expression, and generalizes the con-
struction for compilers which generate
FORTH systems (meta-FORTH).

BACKGROUND

Compilation of FORTH programs con-
sists of adding to memory a sequence
of numerical values (addresses) corre-
sponding to source text {(words). This
period is called compile-time. These
values, called compilation addresses,
are later interpreted by the address
interpreter (at their run-time). They
specify actual machine code which is
ultimately executed, under control of
the address interpreter.

1. FORTH source syntax is close
to FORTH object code.

2, Traditional computer languages
'~ require significant processing
to convert their syntax to
object code. The syntax con-
version 1is specified using
Backus=-Naur statements or
“rail-road-track” diagrams of

N. Wirth.

3. The traditional compiler's con-
version adds complexity to the
compiler, increases complexity
and compiler size. It also
masks the results from the user

so that the use can't see or
control the object code FORTH
reduces complexity by requiring
the user to write in a direct,
simple syntax.

The espoused benefits are:

1. The programmer directly con-—
trols program flow. Ineffi-
ciency should be more apparent
to the programmer.

2. The compiler is simpler,
smaller, and more time
efficient.

3. Compiler functions may be
added by the programmer
consistent with those
previously in the system.

The arguments against having to
write in this form include:

1. God created 1infix notation.
If not so, why did we learn it
as children? God doesn't 1lie
to little children.

2. Languages are created by com-
piler writers, not compiler
users. Therefore, let these
brilliant sources have a
larger part of the pie (read
headaches for pie).

For completeness, it should be
noted that program branching requires
reference to addresses not at the
point of compilation. The compiling
words of FORTH (DO, UNTIL, IF, etc.)
use the compile time stack to hold
interim addresses which specify such
branching. The nesting of condition-
als keeps this process simple and
efficient, and obiviates the need for
backtracking or looking ahead in the
source text.

FORTH DIMENSIONS II/5

Page 121

A PROBLEM

Three exceptions to a context free
expression exist in FORTH as generally
used and formalized in FORTH-79:

1. The word IMMEDIATE sets the
precedence flag of the most
recent definition in the
CURRENT vocabulary. Location
of this bit 1is done via a
variable/vocabulary pointer
pointing backward in memory an
unknown amount. If selection
of the CURRENT vocabulary has
been altered, the wrong defini-
tion is made immediate.

2. Defining words create a dic-
tionary word header, but some
other word backtracks in the
object code to change the
execution procedure assigned
to each word created. E.g.,

: C~ARRAY CREATE ALLOT DOES> + ;
10 C-ARRAY DEMO

The word DEMO is created by
CREATE as a variable and is
proximately altered by DOES>
to execute with a much dif-
ferent role in making a run-
time address calculation.

3. ; and END-CODE make available
for use each correctly compiled
definition. This is often
determined from an alterable
pointer, sensitive to the
vocabulary specified as
CURRENT.

To display these cases together:

WWW . . .

XXX . . . ; IMMEDIATE

YYY . . . ;CODE . . . END-CODE
ZZZ . CREATE . . . DOES> . . . ;

Eacthh of the above words is quite
different in function and execution,
yet they werc all defined by : . The
user must analyze the contents of each
definition to determine what type of
word it is (i.e., colon-definition,
compiling-word, code-definer, or high-
level-detiner). Because of these
varied forms, the glossary definition
of : is only partly complete. The
other variations on : must be discov-
ered as they occur.

Creation and use of the above types
is complicated in that the resulting
functions are dependent on words
following within and outside (!) each
definition. As new words are defined
by CRFATE and assigned execution code
by DOES> and ;CODE | the compiling
function must backtrack by implicit
pointers to alter previously generated
word headers.

Added commentary is appropriate for
item 2, above. 1t is a general char-
acteristic of FORTH that a word's
function may be uniquely determined
by the contents of 1its code field.
This field points to the actual
machine code which executes for this
word. Common classes of words which
are consistent include: variables,
constants, vocabularies.

This is not the case with defining
words. These words all have the same
code field contents as any other
colon-definition which indicates that
they execute interpretively until the
concluding ; . But actually the
intervening DOES> or ;CODE terminates
execution and alters the specifica-
tion for the execution of the word
being defined. Philosophically, it
appears that this is the grossest
form of context sensitivity of any
language, due to the generality and
power of the construct.

Page 122

FORTH DIMENSIONS I1/5

But this power and generality
contains its own downfall. It
increases the complexity of compre-
hension and complexity of compilation.
When a novice competently begins to
use DOES> and ;CODE he has come of
age in FORTH.

THE GOAL

The goal of the proposed new tech-
nique is a uniform expression of
source text that may be compiled for
resident RAM execution, resident ROM
execution or target execution (from a
binary image compiled to disk for
later execution). To enable this
uniformity, a context free expression
is used.

THE PROPOSAL

The proposed syntax for defining
words uses only the compile time stack
(or dedicated pointers), generating
object code and word headers linearly
ahead. Each word type has a unique
defining word so that no later modifi-
cation of a word definition need be
made. A meta-defining word 1is pro-
posed which makes all defining words.
Each defining word is obvious because
each, 1itself, 1is <created by this
"meta-definer"”.

This meta-definer is BUILDS> .
This name is an old friend to some,
since it was the name of the word
previously used where CREATE 1is
specified by FORTH-79. This word
still has its old role of building
words which themselves build words,
but is used in a more obvious fashion.

Here 1is an example, written in
FORTH-79 for a word which creates
singly dimensioned byte arrays:

: C-ARRAY CREATE ALLOT
DOESY +)

It would be used in the form:
10 C—-ARRAY DEMO

to make an array named DEMO with
space for 10 Dbytes. When DEMO
executes it takes an offset from the
stack and returns the sum of the
allotted storage base address plus
the offset.

Using the proposed new wmeta-
definer BUILDS> the creation of
C-ARRAY 1is:

DOES> + ;
(the run—-time part)

BUILDS> C-ARRAY ALLOT ;
(the compile-time part)

And is used:

10 C-ARRAY DEMO
just as above.

It should be noted that the impact
of the use of BUILDS> is only in
defining defining words. Later use
of such defined words would be as
presently conventional.

THE NEW SYNTAX

Here is a summary of the defining
word syntax that appears at the
application level. Note that these
examples are very close to what we
commonly use in FORTH-79.

: <name> }

Define a non-immediate word
which executes by the
interpretation of sequential
compilation addresses.

FORTH DIMENSIONS I1/5

Page 123

NOW <name> ;

Define an immediate word which
executes by the interpretation

of sequential compilation
addresses, and will execute
when encountered during

compilation.
CREATE <name>

As in FORTH-79.
n CONSTANT <name>

As in FORTH-79.
VARIABLE <name>

As in FORTH-79.
VOCABULARY <name>

As in FORTH-79, but each
defined vocabulary is
immediate.

When the programmer creates new
word types, a significantly different
syntax is used, as compared to
FORTH-79.

DOES> ;

Begin the nameless run-time
high-level code for words to
be defined by <name).

BUILDS> <name> ;
<name> <namex>

Define <name> which, when later
executed will itself create a
word definition. The code
after <name> executes after
creating the new dictionary
header for <namex> to aid par-
ameter storage. The previous
run-time code is assigned to
each word <namex> created by
<name>.

When new classes of words are created
with their run-time execution
expressed by machine <code, their
defining word is created thusly:

CODE> END-CODE

Begin the nameless run—time
machine code for words to be
defined by <name>.

BUILDS> <name> ;
<{name> <namex>

Define <name> which, when later
executed will itself create a
word definition. The code
after <name> executes after
creating the new dictionary
header for <namex> to aid
parameter storage. The
previous run—time code is
assigned to each word <namex>
created by <name>.

THE METHOD

We will follow the method of the
honey bee. To propagate the colony
the bees need a queen bee. An ordi-
nary bee is fed special hormones to
become a queen bee. By regulating
this process the colony regulates its
growth.

Our queen bee will be BUILDS> .
It is originally created as a colon
definition. Then it is converted
into a new type of word that creates
words which always create. This form
uses parameters to create a dictionary
entry and then passes control to the
users code which specifies completion
of the entry.

We will break the CREATE DOES>
construct into two parts. The creat-
ing part will be called BUILDS> with
the right pointer emphasizing that
the following word 'builds' other

Page 124

FORTH DIMENSIONS II/5

words. BUILDS> is the meta-defining
word since it 1is the source of all
defining words. It must be emphasized
that the word creating function is
inherent in any word created by
BUILDS> , and need not be addition-
ally specified.

The execution procedure is begun
by CODE> (for words with a machine
code execution) or by DOES> (for words
with a high-level execution). Coupling
from these two words is accomplished
by passing an address and bit mask
from DOES> or CODE> to BUILDS> .

The precedence of a word tradition-
ally is set by declaring each such
word as IMMEDIATE In the new form,
this is declared for the defining
word, not for each word as defined.
By executing IMMEDIATE after the
CODE> or DOES> part, but before the
BUILDS> part, the bit mask on the
stack is altered to the immediate
form. This mask 1is applied to all
words as later defined, so all will
be immediate.

Usually colon—~definitions and code
definitions are created 'smudged' so
that they will not be found during a
dictionary search. When successfully
compiled, the smudge bit is reset,
making the word available for wuse.
Other words are much less susceptible
to errors of compilation, and so are
created un-smudged. The smudge func-
tion is not generally manipulated by
the user but completed by ; or END-
CODE. The smudge bit is contained in
the header count byte.

By executing SMUDGE after the
CODE> or DOES> part, but before the
BUILDS> part, every word later created
will be created smudged. It is a
system choice how the un-smudging is
performed. It is suggested that a
pointer uniquely specify the current
smudged bit address.

Some systems achieve the same
result by selectively linking words
into the dictionary. In this case
the selective linking is done by the
defining part of BUILDS> as. selected
by the bit mask associated with each
defining word.

A major problem exists for meta-
compilation (target-compilation) of
new defining words. The compile—time
portion must know the run-time compil-
ation address corresponding to each
word type. Several methods are
currently wused. In all cases the
syntax is a deviation from the usual
version suitable for testing on a
resident system. Part of the art of
target compilation is knowing how to
alter resident defining words to
operate in the target compilation
situation.

The programmer may declare byte
counts to allocate memory space and
later re-origin compilation to fill
in code fragments. Other techniques
consist of compiling the full struc-
ture and then passing address locators
to previously defined words. In poly-
FORTH, dual definitions are used. The
target compilation definition of our
C-ARRAY example is:

: C-ARRAY CREATE ALLOT ;CODE FORTH
: C-ARRAY CREATE ALLOT DOES> + ;

It is an exercise in ingenuity to
determine which parts of the above
code end up in the target system, and
which are added to the host compiler.

Here 1is a summary of the meta-
compiling of our example:

DOES> + ;
BUILDS> C-ARRAY ALLOT ;
10 C-ARRAY DEMO

First the DOES> compiles <does> +
; 1into the target system and passes

FORTH DIMENSIONS II/5

Page 125

the locating parameters to BUILDS?
<{does> 1is an in-line code vector to
machine code.

Then the BUILDS> compiles C-ARRAY
ALLOT ; into the target system with
the proper object locators for the
DOES> part and then places another
copy of C-ARRAY ALLOT ; into the
resident compiler so that C-ARRAYs
may be immediately defined for the
target system.

Finally, the C-ARRAY in the host
system executes to place a definition
for DEMO into the target system,
locate the address of DEMO for later
compilation, and finally ALLOT ;
makes the target memory allocation
and concludes the target definition.

The only source changes anticipated
are the occasional explicit change of
vocabulary to correctly select (during
target compilation) words which affect
the application memory. Again, this
is only done for selected defining
words.

The key to this method is that the
run—-time portion is known before the
compile-time portion, and the creation
of defining words is done uniformly,
linearly ahead.

CONCLUSION

A complete implementation of these
concepts follows. A six word glossary
expands the explanations given above.
This implementation is written 1in
FORTH-79, with system dependent words
taken from fig-FORTH. The source of
each word 1is identified in the
Appendix.

This construction for BUILDS> is
offered as a method to regularize the
structure of FORTH at the defining
word level. Its success will be

judged by either usage or the stimu-
lation of other methods for this
purpose.

GLOSSARY
BUILDS> addr mask ---
A defining word used in the form:
BUILDS> <name>. . . . ;

to define a defining word <name>

The address and mask (left by
either DOES> or CODE>) are placed
into the definition of <name> to
specify the header structure for
all words created by <name> and
locate the execution procedure
assigned by <name> . The text

between <name> and ; is compiled
to complete the definition of
<name>

When <name> executes in the form:
<name> <namex>

it generates a dictionary entry
for <namex> and then executes the
code following <name> to finish
compilation of <namex>

When <namex> executes, it executes
the code in the DOES> or CODE>
part preceding <name> . Refer to
DOES> or CODE> .

CODE> —-- addr mask
Used in the form:
CODE>..(assembly text)..END-CODE

to begin the nameless compilation
of a sequence of assembler code
text. The address and mask left
locate this sequence for BUILDSY
. The mask contains the prece-
dence and smudge bits and may be

Page 126

FORTH DIMENSIONS 11/5

altered by IMMEDIATE and/or SMUDGE
while still on the stack, before
being compiled by BUILDS> .

When a word with a CODE> part ulti-
mately executes, it executes the
code between CODE> and END-CODE,
at a machine code level. Execution
must ultimately be returned to the
address interpreter NEXT .

DOES> —--~ addr mask
Used in the form:
DOES>

to begin the nameless compilation
of a sequence of high-level code.
The address and mask left locate
this sequence for BUILDS> . The
mask contains the precedence and
smudge bits and may be altered by
IMMEDIATE and/or SMUDGE while still
on the stack, before being compiled
by BUILDSD .

When a word with a DOES> part ulti-
mately executes, it executes the
code following DOES> with its own
parameter field address automati-
cally placed on the stack.

IMMEDIATE addr mask -~- addr mask

Set the precedence bit in the mask
to indicate that all words later
defined by the defining word being
defined will always execute when
encountered.

Immediate words are aids to compil-
ation, such as:

IF BEGIN DO ." etc.
NOW
A defining word used in the form:

NOW <name> ;

to define <name> in the fashion of
: , but in the immediate form.
That is, <name> will execute even

when encountered during
compilation.
SMUDGE addr mask -—-- addr mask

Set the smudge bit in the mask to
indicate that all words defined by
the defining word being defined
will begin in the 'smudged' condi-
tion. This condition prevents a
word from being found in a diction-
ary search until un-smudged at the
completion of correct compilation.

APPENDIX

The example implementation of the
new BUILDS> is writtem in FORTH-79
running on a 6502 processor. When
system dependencies occur, the fig-
FORTH methods were wused regarding
error control and dictionary header
structure. Here is a tabulation of
the pedigree of each word (its origin)
used in this application.

Numbers indicate a standard defin-
ition from FORTH-79, fig indicates the
definition from fig-FORTH. Assembler
words are from a 6502 assembler.

' 122 AGAIN f1g LooP 124
1csp 313 ALLCT 154 MIN b
' 17t ASSEMDLER fig or 223
4 122 1A fig ovER 173
- 21 <] 156 QuIT 2
+ 157 <, tig ROT a2
. ie3 CFA fig SHUDGE g
- 134 COMPILE 146 SWAP 230
ir 107 CONTEXT (51 TOGGLE fig
1~ 08 CCUNT 199 VARIABLE fig
2+ 135 cs? 113 VOC-LINK fig
: 116 cuarENt 137 WORD t1g
; 196 50 142 { 125
- 123 24 tig [CoMPILE] 179
> 200 oLy 208 1 126
2CSP g HERE 188
k] 199 t 136

LOAD 02

FORTH DIMENSIONS II/5

Page 127

SCR 6
(aAdopt ‘orm af FORTH-/9
: CREATE 0 VARIABLE -2 ALLOT
1 le 1 - P =2 -

WFR-80NOVOS

: WORD w02D HERE
: 'SMUDGE SMUDGE
: END-CODE ASSEMBLER (COMPILE] C;

(rename for access to old version)

]
1
2
)
A
b
b
7 (weweawens BEGINNING OF THE NEW BUILDS) PACKAGE *wwwanwdwus)
8 T9-STANDARD (but this is not a standard program)
3 HEX
2
1
2
)
4
s

DRENN:14 4 OVER OVER
THRU 1+ SWAP 00 I LiliAD LoOP
: IMMEDIATE 40 OR
i SHLDGE 0 0k

(next word defines (zmediates
(next word defioes saudged

OECIMAL 7 1l THRY DECIMAL

SCR # 7
(META-deiiniticme of DOES> aod CCDE>
CREATE <DOES> ASSEMBLER HEX
CEX, DEX, (uake room for pfa vaiue
CLC, 2 # LDA, W ADC, BOT SIA,
TYA, W 1+ ADC, BOT 1+ STa,

9 WFR=30NCVO8
1

2

k)

o

3 SEC, FPLA, 1 7 SBC, W STA,
o

7

8

9

0

(copy the pfa

PLA, O # SBC, W le STA, (resdy for hi-level call ,

' QUIT CFA 3 nep, { aske hi-level call for DOES>)

: DOES> (rua tise of META word - cfa, count byte 2ask
1 HERE 80 (leave locators) 'CSP 'SMUDGE (compensate ;)
12 1 ¢ begin ~ompiling } 20 C, COMPILE ([¢DGES> ,]
12
13 : cope> (rua time of META word =-— cfa, count byte zask ;

ta HERE 80 (leave locatoces) !CSP 'SMUDGE
15 [COMPILE| ASSEMBLER

SCR ¢ 8
QO (META-deiinitton of SUILDS> WER-HSONOVOE)
ooes> (run-time for meta-BUILDS)> which makes headsrs)

1
2 COUNT (pfa+l, count aask)

3 BL WORD DOUP C® 1+ ALLOT (the name)

3 DP C® OFD =« ALLOT (for 6502 only)

bl DUP ROT TOGCLE HERE 1- 80 TOGGLE (name darker 2its
5
7
a

ZURRENT @ 2 CURRENT @ ! { link into vocabulary)
OUP @ |, (lay down code fleld)
2+ DR { resume the BUILDS) word)
9
10 SMUDGE
1l i BUILDS> (begins defining vords !
12 f =2 ALLOT OVER , (chaage cfa to above DOES») & CSP +!
8] ¢, , (lay down count mask, then cfa) |
14 rcse ¢, 'CSP CURRENT ! CONTEXT ! HE
13
scr ¢ 9
0 (CODE ; and NOW WER-30NOVOS
1 cooe> END-CODE SNLDGE { no executioo procedure
2 BUILDS> CODE { create a ssudged code definition
3 HERE DUP 2-) (COMPILE] ASSEMBLER :!CSP ;
4
5 ceoe> { for colou—~definitions
6 IP 1+ LDA, PHA, IP LDA, PEA, CLC, W LDA, 2 ¢ ADC,
7 IP STA, TYA, W 1+ ADC, IP I+ STA, NEXT NP, END~CODE
L]
9 2DUP SMUDGE -s CSP +! ({ use these parame tvice
10 BUILDS> { crsate vev colon-definitions till ';'
i !CSP CUMRENT @ CONTEXT ! |
12

(creates immsdiace colon-definitions

s { ' : 3+ (share coda within ':') 1] AGAIN ;
scx /10
0 (VARIABLE CREATE end CONSTANT WFR~80NOVOS
1 coor> { for variables
2 CLC, W lbA, 24 aDc, PRA,
3 TYA, & 1+ ADC, PUSH JuP, END-CODE
4
5 20up -4 CSP ! { shere run=cise code
6 BUILDS> CREATE ; { general purpose crestor
7
8 BUILDS> VARIABLE O , ; (create & vartable, oot initialized
9
10
11 ceoe> (tor coastancs
12 2 ¢ LDY, W)Y (DA, PHA,
13 INY, W)Y LDA, PUSH JMP, END-CODE
14

15 BUILDS> COWSTANT , ; (creste s constant, valus from stack

SCR f 11
0 (7OCABULARY, ARPAY
1 DOES> 2+ cCoNTEXT ! ;
Z
) DMEDIATE (note that all vocabularies will bde izmediste
4+ BUTLDS> VOCABULARY

WFR-8CNOVOR

3 AO81 , CURRENT @ CPA ,

[} HERE VOC-LINK 9 , VOC-LINK ! ;
7

¢ VOCABULARY A-TRIAL

9

10

1 \ one dimensionsl byte array, confined vithin allocacion
12 DOES> COUNT ROT MIN +

13 BUILDS> C~ARRAY DOUP 1~ ¢, ALLOT ;

le

13 1€ I-ARRAY FOR-TEST

}

)

)

)

)

)

)

)

}

FIG GROUPS

Standards--Bill Ragsdale, c/o fig,
P.0. Box 1105, San Carlos, CA 94070.

FORML--Kim Harris, P.0. Box 51351,
Palo Alto, CA 94303.

8080 Renovation Project—-cleaning
up the figFORTH 8080 implementation
--Terry Holmes, c/o fig, P.0. Box
1105, San Carlos.

figGRAPH--Howard Pearlmutter, c/o
fig P.0. Box.

£f1gSLICE~-The FORTH Machine, to be
built with bit slice technology——
Martin Schaaf, 202 Palisades Dr.,
Daly City, CA 94015.

figTUTOR--how to teach FORTH to
new people--forming--Sam Bassett, c/o
fig P.0. Box.

HELP!! MAYDAY!!

The Editors, not being "old FORTH
hands"”, need experienced LOCAL help in
testing submitted programs.

Diversity of systems (fig or not)
and terminals much appreciated.

Reply to fig P.0. Box, please!

FORTH PROGRAMMING

Inner Access can provide FORTH
programming for a variety of appli-
cations and computers. Send for
brochure:

Inner Access Corp.
PO Box 888
Belmont, CA 94002

Page 128

FORTH DIMENSIONS I1/5

INPUT NUMBER WORD SET

_Robert E. Patten

PurEose

The FORTH primitives <# # #S §
SIGN #> allow generalized numeric
output. This paper presents a gener-
alized method for numeric input.

Method

This word set, as implemented,
will convert a word placed at HERE,
terminated with a trailing blank, to
a double integer on the data stack.
The type of input converted is avail-
able in the variable TRAIT.

This word set will allow extentions
to include other number and data types
(i.e., floating point, triple preci-
sion numbers, and simple string
parsers).

Most words in this word set expect
a flag on the data stack and leave a
flag indicating success or failure of
the conversion or test performed. A
true flag indicates success. The
word CHR 1s an exception. CHR
replaces the flag with a character
from the word at HERE. If the last
conversion or test was a failure, CHR
leaves the same character. If the
last operation was a success, CHR
leaves the next character on the data
stack.

The defining word N: may be used
to create a word to convert the word
at HERE to a double integer. A
successful conversion will leave a
double integer and a true flag. A
failure will leave only a false
flag. If words defined by N: are
used to define a word created by
UNTIL: then this new word will, when
executed, try each N: created word on
the word at HERE until one 1s success-

ful, leaving only a double integer on
the stack. If none of the words are
successful then nothing is left on
the data stack. This outcome is not
acceptable because no number was put
on the data stack. Because of this,
the last word in the UNTIL: defined
word should cause a “"Word not defined”
error.

INPUT NUMBER WORD SET
(<N) --- flag d flag

Leave a plus sign, a double number
zero, and a true flag on the data
stack 1in preparation for number
conversion.

(N>) sign d flag ——— d true
——= false

If flag is true apply sign to
double number and leave number and
true flag else leave only false
flag.

N dl flag --- d2 flag

Substituting zero for blank, con-
vert CHR into double number beneath
leaving true flag if ok, else leave
false flag.

>CHR ~=- addr

Leave the address of a variable
which contains a pointer to the
last character fetched by CHR.

?,NNNS dl flag -—— d2 flag

Allow groups of comma and three
digits to be converted to double
number beneath. If no comma return
true flag. If no three digits
following the comma then return
false flag.

?. flag --—- flag

FORTH DIMENSIONS II/5

Page 129

If CHR is a period then set DPL to
zero and leave true flag else leave
false flag.

7ASCII flag ——- flag

If CHR equals character following
?ASCI1 then 1leave true flag else
leave false flat.

?BOTH flag -—- flag

If flag 1s true and CHR is a blank
then leave a true flag else leave
a false flag.

?END flag --- flag

If CHR is a blank then leave a true
flag else leave a false flag.

?5IGN false d flag --- sign d flag

If CHR equals - change false flag
to a true flag and leave true flag
on top else leave false flag on
top.

?SKIP flag --- flag

Make flag true. Used to skip past
character if flag was false.

ASCII -~= char

Place following character on data
stack as a number.

CHR flag -— char

Add flag to >CHR and fetch char-
acter at >CHR to data stack.

N: A definining word used in the
form:

N: <name> . . . ;
-~- d true
-—— false

Convert word at here leaving double
number and a true flag on the data
stack. If word does not convert
leave only a false flag on the data
stack.

N dl flag ——— d2 flag

Convert digit at CHR into double
number beneath. If successful
leave true flag else a false flag.

NNN dl flag -—- d2 flag

Do three N leaving true flag if
successful else false flag.

NS dl flag --- d2 flag
Do N until failure, leaving a true

flag on top of data stack with >CHR
pointing to last character accepted

(N) dl digit --- d2
Convert binary digit into number
beneath.

REQUIRED flag ~—- flag

If flag 1is false exit this word
leaving false flag. If flag is
true leave true flag and continue.

TRAIT -—-= addr

A variable containing the word
count from the last UNTIL: defined
word.

UNTIL:
A defining word used in the form:
UNTIL: <name> . . . ;

Words created by UNTIL: are like
colon-definitions except the run
time function is to execute words
in the definition until there is a
true flag on the data stack, then
exit the word 1leaving the word
count of the words executed in the
variable TRAIT.

Page 130

FORTH DIMENSIONS II/5

¢ ASCII IO BINARY WORD SET REP) 3ASE 7 DECIMAL
O VARIABLE >C¥R
DO(KNY ¢ === f gef) 00,01 -1 DPL ' 4ERE >CHR !

© CHR (£ — character } DCHR +! “CBR ¥} <&,
DAND) (£ 31 f —= 42 tf good number
-~ ff bad aumber
TRORT IF CMINUS THEN R JF . ELSE DROP OROP O THEN

¢ JOLCN . Butld : fef. with security.)
"EXEC !CSP CURRENT 7 ZONTEXT ! <BUILDS ! SMUDGE ;

cNT o ~— 3t —)

COLON DQES> ' UWD) PR (EXECUTE AFTER)
SR EXECUTING PARAMETER FIELD (<a) { SET UP STACK) ;
G VARTABLE TRAIT
¢ UNTIL: COLON 90ES> DR -1 TRAIT !
3EGIN LOTRAIT R ¢ EXECUTE % 2+ >R UNTIL
(EXECUTE WORDS UNTIL TRUE) &> DROP (THEN EXIT.) ;
i (N) (dl dfgit -— d2) SWAP BASE 2 U* DRCP ROT 3ASZ & U* O+

SPL 2 i+ IF 1 CPL 4! THEN
PN (dl f —= ¢l £) CHR BASE ? DIGIT IF (N) L ELSZ O THEN ;
PONNR (dl f ——d2 £) NNN

NS (4l £ —— 42 rf) N BEGIN ODUP WHILE N REPEAT

Jw =i JCHR +'
© REOUIRED (¢ ~— f : 1f false exir else countinue)
DUP 7= iF R> DROP THEN ;
t ASCII 8L WORD HERE .+ (2 {COMPILE] LITERAL ; DMEDIATE

© TASCII (f =~ £) COMPILEZ CHR (COMPILE] ASCII
COMPILE = ; IMMEDIATE
: 'SICN { ff 4 ¢ —— £ 4 F) ASCIT - DUP
1F *R ROT O= ROT RCT R> THEN ;
O 7LNNNS (4l f -==d2 f) BEGIN TA5CII , DUP
WHILE NNN RECUIRED REPEAT 0= -1 MCHR +!
Yo £ == £) TASCIX . DUP IF C DPL ! TMEN ;
P OISKIP (f -~ tf) CROP L ;

t7END (f —— £) CHR BL v ;
$?8QTH { ¢ ~~ £) DUP IF “END THEN ;
©.N(d} £ —— 42 ¢ ALTOSCALE)
N DUP u= ZF TEND IF 3 (X) 1 ZLSE O TUEN THEV ;

N: INTECER 'SICN NS 1,WN§ RECUIRED “END ;

Nt REAL SUGN NN *,XNNNS RELUIRED 7. NS TEMND

;NN 'ASCID : REQUIRED 6 SASE ° N REQUIRED SECIMAL X

N: TIME (HH:0:SS ; DECIMAL N N DRCP CVER 14 < O= O
REQUIRED NN REQUISED :NX ?80TH REQUIRED) DPL !

¥: SSN DECTMAL NMN REQUIRED ASCII - N N REQUIRED TASCII - NN &
Y3CTH REQUIRED @ OPL ' N: ZERO ;
¥: AREA-CODE YASCII (REQUIRED VNN REQUIRED 7ASCIL) ?BOTE ;
¥: PHONZ NNN REQUIRED 7ASCII - REQUIRED NNN N ?BOTE REQUIRED
O DPL!
N: DOLLAK DECIMAL ASCII § REQUIRED 7SIGN NN ? NNKS ’, N .N
0 oPL !t 3

¢ (3AD) O ERROR ;

UNTIL: (NUMBER) INTEGER REAL DOLLAR TIME S5K PHONE AMEA~CODE
[2AD)

1 NUMBER DROP BASE ? DR (NUMBER) RO BASE ! ;
' NUMBER CFA ' INTERPRET 26 + !

BASE ! ;s

TEST (NUMBER) 14 LOAD
¢ GET-NMOMBER QUERY BL WORD HEREZ NUMBER D. TRAIT ? ZPL ?

i NUMBER-TEST BECIN CA GET-NUMBER *TERMINAL UNTIL ;
X IF D, DFL Y . ILSE .7 BAD " THEN ;

¢ TEST-N: [COMPILE! ° QUERY 8L WORD CFA IXECUTE X

© CN (<N} QUERY 3L WORD ;

PN (D) X .S,
]

ATARI DISKETTE

Diskette and documentation for fig-
FORTH on ATARI computers. Runs on
one disk drive and 16K RAM. Has full
screen editor and extensions. $50.00

Bob Gonsalves

c¢/o Pink Noise Studios
1411 Center Street
Oakland, CA 94607

NEW PRODUCTS

FORTH for OSI
by Forth-Gear

Forth-Gear is pleased to announce
the release of a complete FORTH soft-
ware package for several models of
Ohio Scientific Instruments computers.
The Forth Interest Group model lan-
guage runs under O0SI's Disk Operating
System 0S65D-3.2, but high level FORTH
DOS words are implemeted in FORTH for
full compatibility with fig-standard
extensions. A line editor is included
for the creation and disk storage of
FORTH programs. A 6502 assembler per-
mits the use of machine code routines
as FORTH definitions. The editor and
assembler may both be extended by the
creation of new definitions in high
level FORTH.

Included with the package are
several utility programs in FORTH,
including a RAM Dump, video graphics,
data disk initializer (may use all
tracks except track zero), a sample
machine code routine (screen clear),
and a system disk optimizer.

Minimal system requirements are 24
Kilobytes of RAM and one disk drive.
System attributes beyond the minimal
requirements may be fully utilized by
regenerating the system disk with the
optimizer program. Two systems are
currently available: The 5 1/4" disk
version works on all C2-4P and Cé4
models. The 8" disk version works on
all c2-8pP, C8P, C2-OEM, and C3 models
with either the polled keyboard or a
serial terminal. Superboard, ClP, and
C2 versions will be available very
soon.

A single-user system consisting of
a disk (specify size) and fifty page
user manual is available from Consumer
Computers, 8907 La Mesa Blvd.,
La Mesa, California 92041, for the
introductory price of $69.95 prepaid.
Telephone (714) 698-8088 9 to 5 PST.

FORTH DIMENSIONS I1/5

Page 131

STRUCTURED PROGRAMMING
BY ADDING MODULES TO FORTH

Dewey Val Schorre

Structured programming is a strong
point of FORTH, yet there is one lan-
guage feature important for structured
programming which is currently absent
in FORTH. This feature 1is called a
module in the programming language
MODULA, and appears under other names
in other languages, such as procedure
in PASCAL. It can, however, be easily
added by defining three one-line
routines.

The names of these routines are:
INTERNAL, EXTERNAL and MODULE. A
module 1is a portion of a program
between the words INTERNAL and
MODULE. Definitions of constants,
variables and routines which are
local to the module are written
between the words INTERNAL and
EXTERNAL. Definitions which are to
be used outside the module are
written between the words EXTERNAL
and MODULE.

One of the most common uses of
modules 1is to create local variables
for a routine. These variables are
defined between INTERNAL and EXTERNAL.
The routine which references them 1is
defined between EXTERNAL and MODULE.
Notice that this module feature is
more general than the local variable
feature of other programming lan-
guages, in that several routines can
share local variables. Such sharing
is important, not so much from the
standpoint of saving space, Dbut
because it provides a means of
communication between the routines.

If you have written any local rou-
tines between the words INTERNAL and
EXTERNAL, then in order to debug them,
you will have to delete the word
INTERNAL and put a ;S before the word

EXTERNAL. Since debugging in FORTH
proceeds from the bottom up, once you
have debugged these local routines,
you will have no further need to refer
to them from the console. They will
only be referenced from the external
part of the module. Modules can be
nested to arbitrary depth. In other
words, one module can be made local
with respect to another by defining
it between the words INTERNAL and
EXTERNAL.

Now let's consider matters of
style. The matching words INTERNAL,
EXTERNAL and MODULE should all appear
on the same screen. When modules are
to be nested, one should not actually
write the lower level module between
the words INTERNAL and EXTERNAL, but
should write a LOAD command that
refers to the screen containing the
lower level module. The screens of a
FORTH program should be organized in
a tree structure. The starting screen
which you LOAD to compile the program
is a module which LOAD's the next
level modules.

Screens are much better for struc-
tured programming than the conven-
tional character string file because
they can be chained together in this
tree structured manner. You will
write a module for one program, and
when you want to use it in another
program, you don't have to edit it
into the new program or add it to a
library. All you have to do 1s to
reference it with a LOAD command.

There is an efficiency advantage
to the use of modules. One minor
advantage is that compilation speed
is improved because the dictionary
that has to be searched is shorter.
The more important advantage of
saving dictionary space is not
realized with this simple implementa-
tion, which changes a 1link in the
dictionary. To save space, one would
have to implement a dictionary that

Page 132

FORTH DIMENSIONS II/5

was separate from the compiled code.
Moreover, this dictionary would not
be a simple push—-down stack, because
the storage freed by the word MODULE
is not the last information entered
into the dictionary.

The words needed to define modules
are as follows:

: INTERNAL (--> ADDR) CURRENT @ @ ;
: EXTERNAL (--> ADDR) HERE ;
: MODULE(ADDR1 ADDR2 -->)PFA LFA ! ;

FORML CONFERENCE

A Report on the
Second FORML Conference

The Second Conference of the Forth
Modification Laboratory (FORML) was
held over Thanksgiving, November 26
to 28, 1980, at the Asilomar Con-
ference Center, Pacific Grove,
California (some 120 miles south of
San Francisco).

The weather was unseasonably beau-
tiful, as the rainy season, normally
starting in November, was late. Most
conference attendees managed to find
some free time to enjoy the beach and
wooded areas.

With the way smoothed by a core
crew who showed up Tuesday, the major-
ity of participants arrived for lunch
Wednesday, and launched right into a
full schedule of technical sessions.

There were 65 conference atten-
dees, with enough of them bringing
family to raise the count to 96 people
at Asilomar in connection with FORML.

The rooms were in scattered well-
landscaped buildings. Meals were
provided in a central dining building,
and were generally praised. Thanks~
giving noon dinner, a deluxe buffet
meal, was a special treat.

The evening meetings, both
Wednesday and Thursday, had formal
technical sessions which evolved into
quite open, informal, and productive
discussions. The participants had to
be persuaded to break up to move to
the scheduled social gatherings over
wine and cheese.

SUMMARY OF SESSIONS

The number of people presenting
papers was so great (almost 40) that
sessions were scheduled from Wednesday
afternoon all the way to Friday after-
noon. Topics of sessions, together
with their chairmen, were:

FORTH-79 Standard
Bill Ragsdale

Implementation Generalities
Don Colburn

Implementation Specifics
Dave Boulton

Concurrency
Terry Holmes

FORTH Language Topics
George Lyons

Other Languages
Jon Spencer

MetaFORTH
Armand Gamberra

Programming Methodology
Eric Welch

Applications
Hans Niewenhuijzen

In addition, Kim Harris, the Con-
ference Chairman, opened the Confer-
ence with a welcome and a review of
FORML-1, London, January 1980. Kim
also closed the final session.

FORTH DIMENSIONS II/5

Page 133

As one example of a conference
paper, "Adding Modules to FORTH" by
Dewey Val Schorre, gave a mechanism
for setting up words which are local
to a "module"--a sequence of FORTH
code. His mechanism involves only
three FORTH words, two of which
already exist in FIG-FORTH. His
novel but straightforward way of
using these three simple words pro-
vides many of the benefits of VOCABU-
LLARY with 1less overhead, and by
focusing on modularity, it can lead
to clearer prograums.

Another item of particular interest
was George Lyons's paper on Entity
Sets. His proposal 1is very econom—
ically implemented, and allows, at
compile time, selection from lists of
identically~named operators, such as
@ ! + , based on data type.

These and other wonders will be
published in the Proceedings of the
Conference. This should be ready by
the end of February, and will be sold
by FIG.

LESS FORMAL OBSERVATIONS

At the Wednesday evening technical
session an informal discussion on
various topics included "Notes on the
Evolution of a FORTH Programmer” by
Charles Moore, in which he described
how his own programming style had
matured.

On the final day the question was
brought up of whether FORTH was a
programming language or a religion.
The consensus was: Yes! In the same
discussion the expression "born-again
programmer” appeared. (It is in com-
petition for catch-phrase of the year
with "black-belt programmer”, which
was heard at the FIG Convention in
San Mateo the following day.)

38 G. Maverick

LETTERS

J. E. Rickenbacker pointed out that
the JMP ($xxFF) of the fig-FORTH inner
interpreter does not work on a 6502.

That is right, but the fig-FORTH
compiler automatically tests for this
condition and aveids ending a CFA in
FF.

The only problem occurs during
initial installation when a hand
assembly is required. Since 6502
assemblers, unlike FORTH, are inflex-
ible you just have to sit there help-
less watching them make the same dumb
mistake at each new assembly and then
add a correction when the assembler is
finished. Since fig-FORTH has about
210 definitions, the chances are
pretty good (about 210 out of 256)
that a CFA will end in FF.

My advice would be to leave the
patch in until the system is pretty
well debugged and then install the
jump indirect scheme of the fig-FORTH
model. It would be a shame to
permanently slow down the system
unnecessarily because of an initial
installation inconvenience which is
primarily the fault of the inflexi-
bility of the 6502 assembler.

As to Mr. Rickenbacker's query on
a FORTH assembler vocabulary, he may
find Programma International's version
of APPLE-FORTH helpful. The system
isn't FORTH, it 1is something like
FORTH. However they have a FORTH-
like assembler in their system which
may be helpful. The op-codes have
been analyzed for postfix operation,
etc.

FORTH is beautiful.

Edgar H. Fey Jr.
La Grange, IL

Page 134

FORTH DIMENSIONS II/S

LYONS’ DEN

In the course of implementing the
FIG model on my computer I have
noticed that the word NOT is in the
assembler vocabulary but not in the
high level glossary. Instead O= is
used for 1logical negation 1in high
level code. Defining NOT as a
synonym for 0= in the main kernel
glossary might be useful. Code would
be a little more readable by disting-
uishing between the operations of
testing whether a number on the stack
from a mathematical formula is zero,
and logically negating a boolean flag
left on the stack by a relational
operator, even though the code used
to perform these two operations is
the same. But a stronger need for a
high level NOT occurs when floating
point or other data types in addition
to the standard integer type is imple-
mented by a vocabulary containing
redefinitions of the mathematical
operators. In that case a new O=
would be defined to test, say, whether
a floating point number were zero, and
this new 0= could not be used for log-
ical negation. Of course, the exist-
ing practice seems to be to define
new operators with unique names such
as FO= instead of redefining the
kernel names, avoiding this problem.
Also, a user can always add a synony~-
mous NOT to the FORTH vocabulary
before redefining O= and the other
operators in the vocabulary for a new
data type. Once using NOT in code
written in the terminology of the new
vocabulary, however, one might as
well use it for code in the kernel
terminology as well, and then such
could not be compiled by the standard
kernel. So, why not add a NOT?

George B. Lyons
Jersey, City, NJ

EMPLOYMENT WANTED

Chairman of the FORTH Bit Slice Imple-
mentation Team (4th BIT) desires a
junior programmer position working in
a FORTH environment. (Also know
COBOL & BASIC.)

Martin Schaaf

202 Palasades Dr.

Daly City, CA 94015
(415) 992-4784 (eves.)

Contact:

HELP WANTED

HELP 4TH BIT

With the implementation of a FORTH
machine in AMD bit slice technology.
If you're a hardware or microcode
expert we can use your help. (This
is a volunteer FORML project.)

Martin Schaaf
Chairman, 4th Bit
202 Palasades Dr.
Daly City, CA 94015

Contact:

MEETINGS

LA fig User's Group
October 1980

The LA group continued to experi-
ment with format on its second
meeting. It will continue to meet on
the fourth Saturday each month at the
Allstate Savings and Loan located at
8800 S. Sepulveda Blvd., 1/2 mile
north of the LA airport.

The agenda this month called for a
FIG meeting at 11, lunch at noon, and
a FORML session at 1 patterned after
our northern neighbors.

AREYOUA — — — ----FIGGER?
YOU CAN BE!
RENEW TODAY!

FORTH DIMENSIONS II/5

Page 135

At 11, a 20 minute random access
was followed by an introduction by
each of the 40 people present. The
remaining half hour before lunch was
evenly divided between a summary of
the FORTH '79 document given by Joun
Spencer, and a series of short
announcements. These included a
reminder about the Asilomar happen-
ing, a query about target compilers
for the figFORTH environment, a
suggestion that the LA and northern
CA group exchange copies of notes or
handouts from the meetings, a brief
interchange of thoughts on program
exchange leading to the idea of a
uniform digital cassette standard,
requests for assemblers and model
corrections, and finally a parallel
was drawn between the science fiction
group's wuse of an “Amateur press
association” as a potentially useful
distribution channel.

From 1:15 to 4, Jon Spencer
presented a FORML section which
covered 3 topics:

1. Language processing.

2. Address binding and examples
of a FORTH linker.

3. A continuation of his talk of
last month on an algebraic
expression evaulator for FORTH.

We all offer our thanks to Phillip
Wasson who has organized the LA group.
He is available at 213-649-1428 for
details of the coming meeting. To
get things rolling as far as program
and information exchange, I volun-
teered as the LAFIG librarian. In 2
sessions, this has already expanded
to writing a review for FORTH Dimen-
sions and keeping track of spare
copies of the handouts. I can be
reached evenings from 7 to wmidnight
at 213-390-3851.

;s Barry A. Cole

L.A. fig Meeting
November 1980

The November meeting was slightly
smaller and less formal than the
preceding meetings. After a short
round of introductions, we were
treated to a demo of a new set of
FORTH system/application tools by the
author, Louis Barnett of Decision
Resources Corp. He has an Advanced
Directory, File, and Screen Editor
system which fits on top of fig-FORTH.
I bhave looked at implementing a
similar system in the past. He has
thought out the tradeoffs of flexibil-
ity, speed, and keeping compatible
with existing FORTH block formats.
He allows the blocks to be interpreted
in the traditional manner (by block
#), as well as by file name and rela-
tive block number. He uses buffer
pools and bitmaps to use all available
disk space. It keeps a list of block
numbers within a named file. Best of
all, it allows editing, printing, and
compiling by named file. I was suf-
ficiently impressed to buy a copy on
the spot.

After lunch, I presented an intro-
duction to a tool I have been working
on. It is used to build stack dia-
grams interactively for screens or
colon definitions from the source
screen coupled with symbolic element
names entered from the console. 1
will write it up for a future issue
of F.D.

3§ Barry A. Cole

RENEW NOW!

RENEW TODAY!

Page 136

FORTH DIMENSIONS II/5

LA MEETING

The next meeting of the "L.A. FORTH
Users Group” will be

at: Allstate Savings & Loan
Community Room
8800 S. Sepulveda Blvd.
Los Angeles, CA
(1/2 mile north of LAX)

January 24, 1980 (“FORTH" Saturday)
11-12 AM General session
12- 1 PM Lunch break

1- 3 PM FORML Workshop

Info: Philip Wasson (213) 649-1428

FORML
October 1980

Henry Laxen opened with a discus-
sion session on the problems of teach-
ing FORTH. This produced a number of
ideas ranging from subglossaries and
reorganizations of glossaries, to
comments on style and the categoriza-
tion of tools. An anecdote by Kim
Harris described a class of experien-
ced FORTH programmers all FORTHing a
traffic intersection problem only to
be startled to discover that Charles
Moore's solution used no IFs (the
dictionary already is a link of IFs !)

Northern California
November 1980

FORTH-79 STANDARD: Bill Ragsdale
summarized details of the Jjust-
published standard which had been
worked out last year at Catalina
Island. Handed out was a FORTH-79
Standard HANDY REFERENCE card and a
two-page FORTH-79 Standard Required
Word Set and requirements sheet with
system errors and errors of usage
specified. About vocabulary chaining,

Bill mentioned the European approach--
dynamic and oneway. In contrast,
FORTH, INC. has a 4 1level chain and
the FORTH-79 Standard uses explicit
chaining by vocabulary-name invoca-
tion.

Handouts 1included a FORTH machine
proposal by Martin Schaaf, Ragsdale's
CASE statement, a workshop announce-
ment (for December) and Product
Reviews of Laboratory Microsystems'
Z2-80 fig-FORTH and SBC-FORTH from
Zendex Corp., by C.H. Ting. Introduc-
tions included:

- Sam Bassett 1s writing a text
on FORTH For Beginners.

-~ Kim Harris' Humbolt State Univ.
class will be held the week of
23-27 March.

- Ron Gremban offered a 4th
programming job.

- FORTH will be mentioned in the
next WHOLE EARTH CATALOG.

- Bi11 Ragsdale had been elected
to the Board of Directors of
FORTH, INC.

- Future fig meetings will be
held underneath Penneys just
East of Liberty House, Hayward.

;8 Jay Melvin

FORML
November 1980

FORML - Klaus Schleisiek spoke
about his FORTH implementation of an
audio synthesizer which we heard on a
cassette recording. The input device
has a2 lightpen and output was by 64
speakers. Digital counters were
organized in a linked list of reglis-
ters comprising a table of sounds
searched by NEXT. The structure of
Klaus' program was depicted in discus~
gion and on a half dozen xeroxed
screens.

FORTH DIMENSIONS I1/5

Page 137

Northern California
October 1980

Bok Lee described STOIC, "A baroque
elaboration of FORTH". This dialect
differs from figFORTH by virtue of its
third stack (Loopstack for 1 para-
meters) and its 4th stack which
handles up to four vocabularies used,
a compile buffer (which can be simu-
lated by definitions in FORTH) and
by its file system which 1is not
screen—dependent but of indefinite
length., The STOIC presentation was
followed by a panel debate consisting
of Kim Harris, Bob Fleming, Dave
Bolton, Bill Ragsdale and B.W. Lee
where it was unanimously decided “to
each his own". General agreement was
made about STOIC or FORTH's ability
to simulate features of each other.
The following differences seemed
noteworthy:

- STOIC has some old style
(FORTRAN?) mechanisms reflect-
ing author Sack's incomprehen-
sion of some of author Moore's
concepts.

- STOIC is conceptually not
verbal, as is FORTH.

- STOIC is very well documented!

- STOIC 1s not supported by a
group (like fig) and, conse-
quently,

= STOIC is not portable.

Mr. Bok's handouts included a
(sample) DUMP program, NORTHSTAR and
CP/M memory maps for STOIC and a
decompiler. Other meeting handouts
included a structured (FIND) by Mike
Perry (which appears to be 8080
coded), a 6502 assembler with heavy
commenting by Tom Zimmer as well as
Zimmer's ad for tiny PASCAL, ROM and
disk based OSI FORTH and Asilomar
FORML details. C.H. Ting introduced
his just published FORTH SYSTEMS

GUIDE, which 1is enlightening. Sam
Daniel volunteered to take on my
scribeship abandoned due to marriage
and relocation in L.A.

38 Jay Melvin

FORTH COURSE

PEOPLE, COMPUTERS, AND
FORTH PROGRAMMING

DATE
March 23-27, 1981

COURSE

The course 1s an intensive f{five
day program on the use of FORTH.
Topics are to incluse usage,
extension and internals of the
FORTH 1language, compiler, assem-
bler, virtual machine, multi-
tasking operating system, mass
storage, virtual memory manager,
and file system. Computers will
be wused for demonstrations and

class exercises. Due to class
size limitations only twenty
participants will be permitted.
Please register as soon as

possible but no later than March
1, 1981. The cost will be $100,
or $140 with 3 units of credit.
The manual "Using FORTH" will be
available for an additional $25.

Send payment to:

Barbara Yanosko

Office of Continuing Education
Humboldt State University
Arcata, CA 95521

LOCATION

Humboldt State is located in
Arcata, California, six miles
north of Eureka and about 300
miles north of San Francisco.
Arcata has bus and plane service
from San Francisco and Portland.
Motels are available for lodging.
Transportation will be available
from the local "Motel 6". Other
motels are within walking distance.
For reservations, contact:

Motel 6
4755 Valley West Blvd.
Arcata, CA 95501

Page 138

FORTH DIMENSIONS II/5

INFORMATION
Yor other information contact:

Professor Ronald Zammit
Physics Department
Humboldt State University
Arcata, CA 95521

(707)826-3275
(707)826-3276

FIG CONVENTION

The second annual FIG Convention
was a big success with 250 FORTH
users, dealers, and enthusiasts
attending a full day of sessions on
FORTH and FORTH-related subjects.
The Villa Hotel in San Mateo, CA
provided the setting this year.

In the annual report, Bill
Ragsdale mentioned some of the
milestones passes by FIG in 1980:

1. Total membership is now 2,044.
About 1200 new members joined
this year, primarily due to
the BYTE issue devoted to the
FORTH language.

2. Roy Martens was hired this
year as the full-time publisher
of FORTH DIMENSIONS, and is
also taking over responsibility
for all mail-order and tele-
phone inquiries.

3. The first college-level course
in FORTH was taught by Kim
Harris in 1980. Another
course, to be offered in 1981,
will give college credit for
completion.

4. The FORTH-79 Standard was
approved just prior to the
convention, and copies are
available through FIG wmail
order.

5. Regional groups are springing
up all over the U.S. New
groups are now meeting in Los
Angeles, Boston, Dallas, San
Diego, San Francisco, and
approximately 20 other cities
across the country.

Following a panel session on the
FORML conference at Asilomar, Charles
Moore of FORTH, Inc., closed the morn-
ing session with a reminder that it
is the very flexibility and versatil-
ity of FORTH which will cause more
problems as more people become ac-
quainted with it. In particular, we
must be able to demonstrate to large
mainframe users that FORTH is also
applicable in their environment.

The afternoon session was high-
lighted by two very interesting pre-
sentations. The first was on software
marketing, pointing out very clearly
the differences in professional and
amateur approaches to selling of
software. The second presentation
was by Dr. Hans Nieuwenhuizen, of the
University of Utretch in Holland,
regarding the implementation of High
Level Languages in FORTH. Dr.
Nieuwenhuizen reported running BASIC,
PASCAL, and LISP systems, written
entirely in FORTH, at the University
of Utretch. (Please do not write Dr.
Nieuwenhuizen concerning availability
of this software. When it is ready
for distribution, an announcement
will be made through FORTH DIMEN-
SIONS.) .

The formal part of the convention
concluded with presentations from
some of the many vendors of FORTH
systems and software.

After a short interlude for infor-
mal discussion and attitude adjust-
ment, Mr. Allen Taylor, author of the
Taylor Report in ComputerWorld, was
the guest speaker at the now-
traditional evening banquet.

3s S. Daniel

FORTH DIMENSIONS II/5

Page 139

MORE LETTERS

Since 1 seem to be the first O0SI
user to have the FIG model installed
and fully operational, I thought that
you might add my company name to your
list of vendors. I have been extreme-
ly faithful to the model, changing
only the I/O0O and -DISC. Everything
works just fine, and by that I mean a
lot better than 0SI's standard system
software. 1 did find a miscalculated
branch (forward instead of backward)
and the address of ;S was left off of
the end of UPDATE (with lethal result)
in case you are interested. Unfortun-
ately, I couldn't use the ROM monitor
for MON since it blows out the O0SI
DOS. Instead MON jumps to the DOS
command interpreter, which is more
useful than the O0SI ROM monitor,

anyway.

I feel that T am in a position to
fully support the system, since 1
know OSI's hardware and DOS inside-
out, and also it appears that 1 may
have their (0SI's) cooperation and
even mention in future advertisements.

I have enclosed a press release
which describes system requirements,
ordering information, and price.

Guy T. Grotke
San Diego, CA

Dear FIG (Whoever you are),

Just a little note to let you know
that I received all the FIG material
that T ordered. 1 would like to know
if the 8080 listing is available on
IBM formatted single density 8" disk-
ettes and if the (fig~FORTH model
listed in the Installation Manual,
i.e., Screen Nos. 3-8, 12-80, 87-97,
is also available on an IBM format 8"
single density diskette? I don't
relish having to type in all that
material, to get fig-FORTH up and
running.

I have taken the liberty to spread
the word about fig-FORTH in my compu-
ter club and have attached copies of
two of our newsletters, in which
reference to it has been made, see
VCC NL 1Issue 109~ bottom p. 3 and
Issue 112- middle p.2.

S. Lieberman

Valley Computer Club
P.0. Box 6545
Burbank, CA 91510

(An 8080 figFORTH system on 8" disk-
ette for CP/M systems 1is available
from Forthright Enterprises - P.0. Box
50911, Palo Alto, CA 94303 —- Ed.)

We are soliciting comments, sugges-
tions and bug reports concerning the
fig-FORTH 8080 source listing. Work
on converting this to the 1979
Standard will begin in early Februry,
1981, so please make submissions as
soon as possible to:

8080 Renovation Project
c/o FORTH Interest Group
P.0. Box 1105

San Carlos, CA 94070

Terry Holmes

Here is a program you are welcome
to publish in FORTH Dimensions.

Lyall Morrill
San Francisco, CA

3C8 ¢4 222

{ ENIUQ A ‘Self-Rep’ after Douglas 2. Jofstadter 17 ALG 80)

FORTH DEFINITIONS OECIMAL
loaded, types a copy of iteelf. Note the l28th charscter.)

CR

9

i

2

3

4 (Self-reproducing source coda in tvo lines of fig-FORTH. whea
5

(]

7

8 : ENILQ CB J4 WORD HERE COUNT 2DUP TYPZ CR TYPE lé EMIT : ENILQ
9 : ENILQ CR 14 WORD HERE COUNT 2DUP TYPE CR TYPE 34 EMIT : ENIUQ®
10
1 .
12 (See "Godel, fecher, Bach: An Etermal Solden Braid,

13 by Dougias R. Hofstadter, Basic Bocks, Iac., 1979, pege 498.)
14

3 [R

Page 140

FORTH DIMENSIONS II/5

Just a line to let you know of a
couple of FORTH activities at this
end of the country. Here at Temple U
we have a lab equipped with 25 AIM
systems. Microprocessor Systems is a
56-hour 1lecture / 28-hour hands-on
course of which about 12/6 hours are
allotted to AIM Assembler.

1 am now testing both Rehnke's V
1.0 FORTH cassette and Rockwell's V
1.3 FORTH ROM chips. I expect to
teach one or the other in place of
the AIM Assembler this term.

On March 21st the IEEE UPDATE
Committee is running an all-day tu-
torial on FORTH. At that time I hope
to demonstrate FORTH transportability
between, say, AIM and PET or Apple.
I wonder whether anything has been
published on this sort of demonstra-
tion.

Karl V. Amatneek

Director of Education

Committee for Professional
UPDATE

Wyndmoor, PA

(No, but if you'd 1like to write
one... Ed.)

I get a great deal of your mail.
I work for GTE LENKURT, 1105 0ld
County Road, San Carlos. Those idiots
in the post office can't distinguish
that from P.0. Box 1105 and our names
are not that dissimilar, I guess.

Please get another box number.
M. Mohler

San Carlos, CA

(Guess we're TOO popular —— Ed.)

The video editor presented as an
example of CASE use by Major Robert
Selzer in FORTH DIMENSIONS v. II/3,
p. 83 is super.

Enclosed is a direct extension of
Major Selzer's work to edit ASCII
files over several consecutive
screens. It is used in the form:

nl n2 FEDIT

where nl is the first screen in the
file and n2 is the last.

FEDIT contains all the commands of
Major Selzer's VEDIT and works in the
same manner. ESC exits the editor and
the cursor position is controlled by
the single keystrokes LEFT, RIGHT, UP,
DOWN AND RETURN. When the top or
bottom boundary of the display is
reached a new display of either the
next or the previous 24 lines in the
file is presented for editing.

The added commands are RUB which
deletes characters and two double key-
stroke commands HOME and TAB.

HOME followed by DOWN or UP
produces a display of the next or
previous 24 lines respectively
independent of the position of the
cursor. Two successive strokes of
HOME produce a new display with the
line containing the cursor in the old
display at the center of the new
display. These commands provide
rather rapid traversal of a file and
positioning of the file on the
display.

At the end of a file, additional
numbered but blank lines may be dis-
played. Text written into this area
will not be put into the buffer.
Similarly if the first 1line of the
file ends up in the middle of a
display, the area above the first
line is protected.

FORTH DIMENSIONS II/5

Page 141

The TAB key 1is wused to erase,

delete and replace lines from PAD. SER\'AgEu FILE EDITOR SCR 5« TO 68 £ 8 FEY Corr 1./2/80)
TAB followed by E eraSES the line ; O VARIABLE CUR O VARIABLE COFF O VARLIABLE N2 0O VARIABLE N1
containing the cursor. TAB followed SR LT et ar) ¥ b 0 AP 4+ sup vECON
by D erases the line and holds the i) e e L
line in the text output buffer PAD. P e
The cursor may then be moved to any 335gﬁﬂéﬁﬁﬂgﬁyﬂ;iﬁféfﬂkmun
position in the file, including other S T o
screens, and the contents of PAD may LR W RS A
be put on the new line by the key- e e .
StrOkes TAB then P. TAB fOIlowed by ;‘? : .NL (n lb ...) { Print n lines ‘ros line . relative to lin)
H places the cursor's line in PAD By Rt) rere san e e (et vemiis
without deleting the 1line. These o o Lo fm

22 2 (o lines) (vo.rel)

commands use the fig-FORTH 1line

23 CR I 3 .R SPACE OUP 5C2 @ .18 i+ /MOD SCR 4! LOOP DROP ;

editor definitions E, D) R (REPL in 25 0 ACLR { ... scur } (Abs cursor sddr to file) CUR 2 COFF @ » ¢
6 (+LIN sevocur) owputer N B 66/ + be v,
the listing) and H. z? : .(\o‘;vz E.‘?a:umxr) x.s. g :1 [i - :E‘:}:ur Sn; ’ :
23
29 : HOME (o ...) (New dlsplay, line of old cursor st line n }
s PRI 30 ACUR 64 / OVER - 24 OVER NI ¢ AL
MaJOI' Selzer's definition of CASE 51 :f- . io‘r)r T OHOM 6w ¢ mcn? —->
does mnot work in fig-FORTH with its SCR # 86
. 52 : .T0P { ...) COFF 9 Ow IF DROP ELSE +CUR 11 .HOME THEN ;
compiler security features. An appro- 3
36 1 +.ACLR { b ...) { ADD n to abe cursor. Display cutsor)

priate definition of his CASE word

35 DUP CLR T+ DUP . a aveur £)

(
3% IF (CFF top) DROP .TOP o)
for fig—-FORTH is shown on line 10. 3 ELSE (ot off cop) 1515 » (...n nveur>1535)
18 IF { Off boctom) ~CUR ACUR ACMX < IF O .HOME THEN
The word OFF on line 68 controls a » ELSE (In ¢iaplay } +.CUR THEN THEN ;
switch in my EMIT to stop output to T M I L T T
43 £ 80X (...f 0 (T { tn {1l) AQHK ACUR D ACLR =1 > ANT ;
my printer * All Other words Should “a : 'ABLK { c...) (n;:n:i 12:1& cmr’\in b:ffer)ABOX IF (I flle)
- .3 ACUR B/SUF MOD N1 2 = 8LACK » C! CPLATE . +.ACUR THEX ;
be standard fig-FORTH. The terminal Rt kalk -2 AR L el scar. fetrent urs)
dependent cursor position sequence W7 5 ALY (...l) { Cet varsers icr and line -
- Sc2 ¢ of
used by Selzer for his ADM-3A terminal St O arSiD M0D KL @+ SCR ¢ s ¢
49 i E (... { spiay tlank line)

(YXCUR, line 3) also works on my SOROC
IQ 120 terminal.

S0 O + ALIN 44 T DC 32 EMIT LOOP O +ALIN ;
81 : .P { ...) { Replace line from PAD at cur line & display
$2 ALIN REPL O +ALIN ALIN 5CR ¢ LB O «.ACTR ;

53
54 : TAB2 { ...) (lnd key “miu_for choice of TAB)

I have found FEDIT to be a conve- B TOIOENNE T RS resora curs iine ae 7D)
nient editing tool which I use along A v R o P v
Wi th the fig—FORTH editor Eventu— 59 DROP © +ALIN THEN THEN THEN THEY ; (Dafsult CR no LF)

. 60
ally, I suppose, my entire fig~FORTH 0 R 303 S o e BLSE{ Sovamsceoll aert)
editor will find its Way into FEDIT. 63 11 CASE -1535 +CUR 23 .HOME ELSE (Upe=scroll prev) ->
I hope your readers will also find it 5 0t 1 O ELSE (tomemcenter cursor)
convenient. I also hope FEDIT lays g CMOTD AN TENTENTEN:D (il @ e)

to rest some of the recent criticism

67 : FEDIT (nl n2...) (Edit file in bdlocks al to a2 famcl. }
68 N2 ' N1 ! OPF O COFF ! HOM O .HOME SECIN

69 KEY 27 GASE O 23 YXCUR QUIT ELSE (ESC)
of FORTH (in BYTE) concerning its 70 3 CASE -1 +.AcR TLSE (LEFT)
. 1 10 case 56 +.ACCR ELSE { DOWN)
rudimentary editing facilities. My 7T 1L CGASE -6k +.AC ELSE (P)
hanks to all of o i FIG f ;i g 3:: : :Aﬁ:‘ 53: E :;Tcgl))
than you 1imn or your 75 121 CasE s ELSE (20B)
76 9 CASE 7 EMIT TAM ELSE (TAB, Next key picks)
efforts in promotion FORTH. 17 2GSt 7 it HorEz TLSE (OME, Next sey picks)
78 CUP EMIT !'ABLK THEN THEM THEN THEN THEN TMEN THEN THEN THEN
79 AGAIN ¢ s

Edgar H. Fey
LaGrange, IL

THE FORTH SOURCE

A wide variety of FORTH print

material, both public domain an
copyrighted, is available. Send fo
list:

Mountain View Press
PO Box 4656
Mt. View, CA 94040

FORTH DIMENSIONS II/5

Page 142

NEW PRODUCTS

6800 & 6809 FORTH

t FORTH
FORTH System $100

t FORTH+
plus Assembler, CRT Editor $250

firmFORTH
produces compacted
ROMmable code $350

Kenyon Microsystems
3350 Walnut Bend

Houston, Texas 77042
Phone (713)978-6933

CRT EDITOR AND
FILE MANAGEMENT SYSTEM

The Decision Resources File Manage-~
ment System (FMS-4) for the FORTH
language has extensive vocabulary for
creating, maintaining and accessing
name files.

Disk space is dynamically allocated
and deallocated so there 1is never any
need to reorganize a disk. From the
user viewpoint, access is to logical
records; FMS~4 performs the mapping to
physical screens.

Files may be referenced by name
without concern for the physical
location of the file on disk. FMS-4
supports sequential and direct access
while preserving FORTH's facilities
for addressing screens by number.

FMS-4 maintains a file directory of
up to 47 entries. Each file may con-
sist of from one to 246 records (1024
bytes per screen) in a single volume
(single density diskette). It is also
possible to extend FMS to control
multiple volume files and to support
larger dire-tories.

In addition to an extensive command
set, there are many lower level primi-
tives which may be combined to define
a virtually unlimited set of commands.

Computer system hardware should
include:

One or more 8" IBM compatible
floppy disk drives

Encugh memory to support 6K
bytes (on an 8 bit processor)
for FMS-4 in addition to the
FORTH nucleus and any other
concurrently resident applica-
tions.

An 8080/8085 or 280 cpu.

A CRT or vprinting terminal
which supports upper and lower
case.

System software should include:

fig-FORTH compatible nucleus
or equivalent.

An assembler for the target
cpu. DRC can supply an 8080
assembler at additional cost.

FMS-4 source code is delivered
ready to run (on compatible systems)
on a single density 8" soft sectored
diskette (IBM 3740).

A complete user manual describing
all facets of FMS-4 operation 1is
provided. The manual includes an
extensive glossary which defines and
documents the usage of each word in
the FMS vocabulary.

Wordsmith is a CRT screen editor
which 1is {integrated with Decision
Resources' File Management System -~
FMS-4. The combination is an espe-
cially powerful file oriented editor
which combines the extensive disk
space management facilities of FMS-4
with the flexibility and immediacy of
on-screen editing.

FORTH DIMENSIONS II/5

Page 143

The full record being edited is
continuously displayed on the CRT and
all changes are immediately visible.
There are 41 editing commands includ-
ing: multidirectional cursor move-
ment, record to record scrolling,
record insert and delete, string
search and replace, text block move-
ment and many more.

The FMS~4 and Wordsmith
Packages

Wordsmith and FMS-4 source code is
delivered ready to run (on compatible
systems) on a single density 8" soft
sectored diskette (IBM 3740).

Complete user manuals for each
system are provided.

Pricing
Single noncommercial user license:
FMS-4 $50
Wordsmith (with FMS-4) $95
Manual only:
Wordsmith $15
FMS~4 $15
Both $25

(credited toward purchase of full
package)

California residents add 6% sales tax
Shipping and handling: $2.50

Commercial Purchasers should contact
Decision Resources.

Decision Resources Corporation
28203 Ridgefern Court

Rancho Palos Verdes, CA 90274
(213) 377-3533.

AREYOUA — — —

TRS-80 DISKETTES

Advanced Technology Corp. of Knox-
ville, TN, 1is presently distributing
its fig-STANDARD FORTH version
(TFORTH) customized for the Radio
Shack TRS-80. Included in this
package are: assemblers, 'TRACE'
function for generating minimum
system /CMD files, POINT, SET, CLS
commands for graphics use, Floating
point package, I/0 package (LPT Out-
put) and variable number base to base
32.

The language 1is supplied on either
80 or 40 track 5-1/4" diskette for
$129.95 and the manual 1s also
included.

This product may be purchased from:
Sirius Systems
7528 Oak Ridge Highway
Knoxville, TN 37921
or

QC Microsystems
P.0. Box 401326
Garland, TX 75040

or directly from us,
Advanced Technology Corp.
1617 Euclid Avenue

Knoxville, TN 37924
(615) 525-1632

— -~ FIGGER?

YOU CAN BE!
RENEW TODAY!

Page 144

FORTH DIMENSIONS II/5

PRODUCT REVIEWS

by
C.H. Ting

Z2-80 fig-FORTH by Ray Duncan of
Laboratory Microsystems, 4147
Beethoven St., Los Angeles, CA 90066
(213) 390-9292.

Two 8" single density diskettes,
$25.00.

The first disc is a CP/M disc con-
taining Z-80 assembly source codes,
hex object codes, user instructions,
fig-FORTH 1Installation Manual, and
fig-FORTH Glossary. The second disk
is in FORTH block format containing
system configurations, a line editor,
a poem 'The Theory That Jack Built'
by F. Winsor, Eight Queens Problem by
J. Levan, Towers of Hanoi by P.
Midnight, Breakforth by A. Schaeffer,
and some utilities.

I do not have a system that can run
the Z-80 codes. However, the source
codes seem to be carefully done and
follow faithfully the fig~FORTH 8080
model. Lots of typing was put in to
have the entire Installation Manual
and Glossary entered on disc. The
games were published in FORTH Dimen-
sions. The amount of information
offered at this price is unbelievable.
I just wish that 1 had a machine that
could run it.

SBC-FORTH from Zendex Corp., 6398
Dougherty Rd., Dublin, CA 94566
(415) 829-1284.

Four 2716 EPROM's to run in an
SBC-80/20 board with SBC-201 single
density disk. $450.00.

I had the PROM's installed in a
System 80/204. It ran only after I
jumpered the CTS/ and RTS/ pins of
the 8251 serial I/0 chip. Obviously

the chip uses some interrupt scheme
to drive the terminal. I was not
able to get the detailed information
on how the interrupts were supposed
to go from Zendex. 1 do not have a
disc drive in the system to test out
the disc interface. Other things ran
satisfactorily. 1 was able to talk
to the parallel 1/0 ports using the
assembler.

This type of ROM based FORTH
machine can be very powerful for
programmable controllers and low cost
development systems if some non-
volatile memories like core or
battery-backed CMOS were added.

A very nice thing they did in the
manual was to include the code or
colon definitions in the Glossary,
making it infinitely more useful as a
reference.

NEW PRODUCTS

APPLE figFORTH

Including an Assembler, Screen
Editor, Source Code and associated
compiler, with some documentation on
disk. No other documentation, support
or instruction. Source listing will
be available from fig in mid-81.
Apple format disk - $30.00.

George Lyons, 280 Henderson St.,
Jersey City, NJ 07302.

CROMEMCO DISKETTE

A fig-FORTH 5-1/2" disk with 280
assembler for Cromemco machines.
$42.00

Nautilus Systems
PO Box 1098
Santa Cruz, CA 95061

FORTH DIMENSIONS 11/5

Page 145

NEW PRODUCTS

"Systems Guide to fig-FORTH"

Author: C.H. Ting
156 l4th Ave.
San Mateo, CA 94402

132 pages, $20.00

This book is meant to be a bridge
between "Using FORTH" and the "fig-
FORTH 1Installation Manual”, and to
serve as a road map to the 1latter.
It might also be used as a collection
of programming examples for those
studying "Using FORTH".

In it, I have tried to arrange the
fig-FORTH source codes into logical
groups: Text Interpreter, Address
Interpreter, Error Handler, Terminal
1/0, Numeric Conversions, Dictionary,
Virtual Memory, Defining Words, Con-
trol Structures, and Editor. Exten-
sive comments are thrown in between
source codes at the risk of offending
the reader's intelligence. Occasion-—
ally flow charts (horror of horrors!)
are used to give graphic illustra-
tions to some complicated words or
procedures.

There is a very wide gap between
the front page and the back page of
the FORTH Handy Reference Card. It
is relatively easy to manipulate the
stacks and to write colon definitions
to solve programming problems. The
concepts behind words of system func-
tions, like INTERPRET, [,] , COM-
PILE, VOCABULARY, DEFINITIONS are
very difficult to comprehend, not to
mention <BUILDS and DOES> . One
cannot understand the FORTH system
and how it does all these wonderful
things by reading the source codes or
by searching the glossary. These
documents are vehicles to define the
FORTH system, not to promote under-
standing of them.

0S1 DISC

Tiny PASCAL written in fig-FORTH.

Machine Readable for 0S1-C2-8P.

Single or Dual Floppy System 8" disc.
Cost: $60.00

This 1includes fig-FORTH with fig

editor and assembler for FREE!

0SI C2 or C3 fig-FORTH on 8" disc.
Cost: $45.00
Includes assembler and fig editor

Tom Zimmer

292 Falcato Dr.

Milpitas, CA 95035

(408) 245-7522 ext. 3161 or
(408) 263-8859.

tinyPASCAL

Printed 1listing of tinyPASCAL in
f1g-FORTH.

$10.00 US/Canada, $14.00 Overseas.
Check (US bank), VISA or Master
Charge.

Mountain View Press
PO Box 4656
Mt. View, CA 94040

FORTH Version 1.7

Cap'n Software FORTH Ver. 1.7 for
Apple II (TM) or Apple II+ computers
is the FORTH Interest Group (FIG)
language, plus extensive program
development tools and special Apple
options. $175.00.

Cap'n Software
P.0. Box 575
San Francisco, CA 94101.

Page 146

FORTH DIMENSIONS II/5

SEPARATED HEADS

Klaus Schleisiek

Memory in RAM-based systems can be
used more efficiently by means of a
“Symbol Dictionary Area,” which allows
words and/or name and 1link fields
which are needed only at compile time
to be thrown away after compilation.
Incremental use of these techniques
will result in more efficient memory
usage and will also encourage the use
of more and shorter definitions
because there is no longer the need
to pay the penalty of taking wup
memory space with numerous name and
link fields.

In the «course of a two-year
project I developed some tools which
allow a significant compression of
code 1n RAM-based systems. I also
feel these methods will have a sig-
nificant impact on programming style,
particularly because they will encour-
age the use of more and shorter
definitions. The following is an
explanation of these various functions
in a somewhat historical order.

My programming task was to develop
a lightpen~operated sound system,
which would allow control of a number
of small sound synthesizers by point-
ing a lightpen to various dots, light
potentiometers, and the 1like on a
video display. There was to be no
keyboard intervention. A “dot" was
put together by compiling a word

C) As an option, either a text
string or a string of program-
mable graphics characters to
be displayed above, below, or
to either side of the dot.

Thus, every "“dot” served a double
purpose. On the one hand, it des-
cribed a portion of the display
itself which had to flash on the
screen. Secondly, it supplied the
key to a large keyed CASE statement
which associated the dot with the
function to be performed when the
lightpen was pointed to it. In other
words, the definitions of the dots
themselves were only needed at
compile time.

The dot definitions were used to
create a densely packed "image” defin-
ition to flash the picture on the
screen, while the addresses of the
dot locations were used as keys in
the CASE statement. So, to be memory
efficient, I wanted to set up some
mechanism which would allow the pre-
sence of "symbols"” at compile time
that could then be thrown away after
compilation to free memory. By
“"symbol” I mean any legal FORTH
definition that 1is only needed at
compile time. This led to the idea
of dividing the dictionary into "main
dictionary” and " symbol dictionary.”

Figure 1 shows the arrangement of
this scheme based on the 6502's unique
memory mapping.

which associated the following Hescoy Mus
information: “Haii-0ie frete” f Yeynibal e Moo
1
I P
A) The shape of the dot itself as posrem 1 ms |
an address of some programmable oy ! s
h TDLSYIACLS —* PIY) o€ tywrte e
character. BCTIVIRELS Betiruery _/‘ ! sersynacs) othruery P r
e roc W Tro I rer0rc
B) The dot's location on the 'T“ o I ?“ T
P broue Octheiar e
screen as an address relative i ! 4
to the upper left hand corner Dy : P
stk ST sp sk 1s8
of the screen. P) PPy
Stack Cluch
[}
1
t
Figure 1
FORTH DIMENSIONS 11/5 Page 147

]

I soon realized that most of the
words defined in my programs would
never be used again after compilation
and started thinking about putting the
name and linkfield (head) of a defini-
tion into the symbol dictionary, and
compiling the code field and parameter
field only into the main dictionary.
I wanted to do it in a fashion similar
to SYMBOL DIC and MAIN DIC .

This would mean switching back and
forth between one state which compiles
the heads into the symbol dictionary
and another state which compiles the
heads as wusual. This switching is
done by the variable HEADFLG (SCR
#23) which 1is respectively set and
reset by DROP-HEADS and COMPILE-
HEADS (SCR #23). The state of
HEADFLG in turn changes the behavior
of CREATE (SCR #24).

One complication is that the use
of HEADFLG interferes with the
symbol dictionary mechanism: If you
are compiling into the main diction-
ary, you want the dropped heads to be
compiled into the symbol dictionary,
but if you are compiling into the
symbol dictionary anyway, you want
the heads to go there too.

In other words, in the first case
the body of a definition would be
separated from the head, while in the
second case, body and head would not
be separated. This requires the
redefinition of CREATE (SCR #24)
and the use of three values for
HEADFLG. The first two states are
set explicitly by COMPILE-HEADS and
DROP-HEADS, but the third state is
recognized and handled by CREATE .

When a word is compiled, its name
field and 1link field are compiled
into the symbol dictionary and the
word is made immediate and (CFA) is
compiled as its code field, followed
by the address of the next memory
location in the main dictionary. The
remainder of the current definition
(the body) will then be compiled into
the main dictionary. When references

are made to the word, its CFA 1is
contained in the memory location next
to the code field address of (CFA) .

The function of (CFA) (SCR #23)
is either to compile the execution
address of code into the dictionary
(when the word is subsequently used
in a definition), or to execute the
definition, depending on STATE,
before forgetting the symbols. The
implementation described here deals
with the 6502 and has to deal with
the idiosyncrasy that no CFA may be
located at XXFF, which in turn makes
the definition of (CFA) and CREATE
somewhat mysterious!

FORGET-SYMBOLS (SCR #22) is the
word which "rolls™ through every
dictionary and "unlinks" every defini-
tion which was placed in the symbol
dictionary, thereby freening it
(Figure 2). It is somewhat slow and
it is assumed that no symbol exists
below FENCE @ . Before forgetting
anything in the wmain dictionary,
however, you must FORGET-SYMBOLS .
Otherwise links may be broken and the
interpreter won't work anymore.

Yliuk " Sihuatiou

bajfore alifen
iuuiay FORGET ~SVNEOLS

Sovermt

Dadwmitramy
Sdot /'
Ferwany / savemil

P]
i
t
\

!

DPIAVE

D7

!
!
i
|
i .
i R dPsavE
fl‘ mBOLE E /
sorsy :
L f
i
}
!
!
|
'

e Fogms
; &
i/
Mave
Oratroumry|
‘ -—pr
I AN Sarat st
Bafe'ne Tty //&Lﬂ»’z:r d Dajmus Nous
~ pr
Seva,w(/ Savaral
Oupens s ony V) Dagesas Nous
Demtr varsm shetiy GL'
Phe late,F chop-laboe
i
|
i
|
Figure 2

Page 148

FORTH DIMENSIONS II/5

The next step was to make the
defining words work as well in the
DROP-HEADS mode, which meant that
(;CODE) had to be redefined (SCR
#25). It now uses the subdefinition
(;COD) and depending on the state
of HEADFLG, determines the location
of the code field to be rewritten and
rewrites it.

A problem might arise in the rare
case where a definition whose head is
to be thrown away is supposed to be
immediate by itself. The "solution”
to this problem was to simply declare
such a case 1illegal. There 1is a
reason, however. The only situation
where one might want an immediate
definition to be placed in the main
dictionary would be in coincidence
with [COMPILE] within some definition.
Otherwise, one would want to compile
it entirely into the symbol dictionary
anyway. Such a case is so rare that
it did not seem worth the effort to
redefine IMMEDIATE and [COMPILE] .

To use a word whose head has been
compiled in to the symbol dictionary
immediately within a definition, one
has to use [XXXX] !

Finally, I observed that 1 was
generating <BUILDS ... DOES> and
sCODE constructs with big compile
time definitions, which do nothing
but take memory space at execution
time. But dropping the heads of
<BUILDS ... DOES> means that the
compile time parts of these defini-
tions won't ever be used at compile
time either. Thus, if the heads of
<BUILDS ‘e DOES> are dropped,
everything prior to DOES> wmay be
dropped as well. It will, however,
be necessary to redefine DOES> and
;CODE to do this (SCR #26 and SCR
#27).

At compile time, the situation of
a <BUILDS ... DOES> construct is
as follows: While in the DROP-HEADS
state, the name has been put into the
symbol dictionary and subsequently

<BUILDS ... has been compiled into
the main dictionary. When we come
to DOES> everything which had been
compiled into the main dictionary,
including the code field, must be
moved into the symbol dictionary.

This is done by MOVE-DEF? (SCR
#25), which is used in DOES> and
;CODE . Depending on the state of
HEADFLG , MOVE-DEF? either compiles
(;CODE) or moves the previous defin-
ition into the symbol dictionary and
compiles ((;CODE)) . ((;CODE))
has to be one step more indirect than
(;CODE) and resembles the function
of (CFA) 1in ordinary definitioms.

A final note: The definitions for
GOTO and LABEL, which allow multi-
ple forward references (e.g., several
GOTO's) may precede as well as follow
"their" label. Even though I imple-
mented this because it seemed more
convenient than restructuring, there
is some question as to its true value
because it takes 318 bytes!

ey
AR
{ewome> Jur Jeerel] y |
S, i

I

Noik //////////
pitrieary

[LF l FParpuiater]

Figure 3

GLOSSARY

ToPDIL
° A GONSTANT THAT LEAVES THE NEXT 3UT LAST ADDRCSS
TO BE USED AS MAIN DICTIONARY ON THE STACK,
30T3YMBOLS
A CONSTANT THAT LEAVES THE FIRST AODRESS TO 3¢ YSED
AS THE SYMBOL DICTIONARY CN THE STACK.
TOPSYMBOLS
A CONSTANT THAT LEAVES THE NEXT SuUT LAST ADDRESS
70 BE USED AS SYMBOL DICTIONARY ON THE STACK.
arsave A VARIABLE THAT CONTAINS THE 01CTIONARY PQINTER OF THE
CURRENTLY INACTIVE JICTiONARY PARTITION.
TOD { TNP=QF=DiCTINNARY)
A VARIABLE THAT GONTAINS THE CURREMT HEXT 8uT LAST
MEMORY LJCATION T2 8E US:® FOR SOMPILING DEFI'IITIONS.
MAIN-01C
4 RESETS DP TO AOINT TO THE NEXT FREE JIEMORY-LOCATION
IN THE HAIN D1CTIONARY.
i.E. THE FOLLOMING CEFINITIONS ARE PERMANENTLY
COMPILED INTQ THE “AIN J1CTICNARY.
1F DP WAS ALREADY POINTING INTQ THE H4AIN JICTIONARY,
1T DOESN'T DO ANYTHING,
ZOUNTERPART: '"symsoL-31¢"

FORTH DIMENSIONS I1/5

Page 149

e

Tre30L-20C
SE™S 3P YO POINT TO THE NEXT FREE “EMORY LOCATION
IN THE SYMBOL 2I1CTIONARY,
1LE. THE FOLLONING JEFINITIONS UtLL BE Z0MPILED INTO
THE SYMBOL O17TIONARY AND MAY 9E FORSOTTEM JSING
"FORGET-SYMBOLS" WITHOUT AFFECTING THE *AIl JICTIOMARY,
1F 1P WAS ALREADY POINTING INTO THE SYMBOL JICTINMARY,
1T SDESN'T DO ANYTHING.
COUNTERPART: '"4AIN-0}C"

-JRGET-SYMBALS

1S "JSEJ SIR UNLINKING THOSE DEFIMITIONS WHICM HAG
BEEN ZOMPILED INTO THE SYMBOL DICTICHARY FaoM
THE MAIN OICTIONARY JEF!MITIONS.
RESETS THE SY!NBOL J1CTIONARY POINTEN TO "SOTSYMBOLS .

WARMING: IF ANYTHING WAS BEEN COMPILED INTO THE
SYMACL JICTIGNARY, YCU RAVE 7O ' FORAET-SYNRAOLS"
3EFCRE FCRGETTING ANYTHING Y THE natr D1CTiQHARY,

<“EADFLG
A VARIABLE THAT COMTAINS THE “HEADR-STATE" t.Z.
HEADFLG = O -> ZOMP!ILE-HEACS MAD 2EEIN I5SUED
HEANFLS & 1 «> JROP-HEADS AND NAIN-DIC HAD 3EEN 15SUET
HEADFLG e I -> DROP-SEADS ANT CYNBCL-NIC AN BEEN

I CSUED,

CUMPILE-HEADS E
COMAILE THE MEADS (NAME & LINKFIELD) OF TME
FOLLCWENG DEFINITIONS INTO THE MAIN DICTIONARY.
COUNTERPART: JROP-HEADS

JROP-HEADS E
THE HEADS (NAME & LINKFIELD) OF THE FOLLOWINA

DEFINITIONS WILL BE COWPILED INTO THE SYNBOL D1CTIONARY,

THE 300Y (CONE- & PARAMETERFIELD) 14T THE HAIN
OICTIONARY, FURTHERMORE, THE COMPILE TIME PARTS

OF DEFINITIONS IN TERMS OF <BUILDS ... JOES> AND
v.. ;CODE will BE COMPILED INTO THE SYNS8QL DICTIONARY
TOO, . 't.E. EVERYTHING PRECEEDING ... DOES> On

. ;CODE RESPECTIVELY WITHIN THE CURREMT NEFINITION)
THE PARTS wHICH ARE LOCATED IN THE SYN30L DICTIONARY
MAY RE FORGOTTEN 8Y [ISSUING "FORGET-SYMBOLS" WHITH
EFFECTIVELY DISCARDS THE HEADS / COMPILE TIME COJE,
BEFCRE ISSUING “FORGET-SYMBOLS® THESE WORDS MAY 3E 1SED
IN THEIR USUAL “ANNER FOR EITHER CCOHPILATINN INTO
HIGHER LEVEL _EFINITIONS OR EXECUTION,

WARNING: DROP HEADS MAY NOT BE USED 701 1'MEDIATE
DEFINITIONS, NO €RROR CHECKING 1S 2ERFOINED |

3R o220
3 { SYMBOLN!CTIONARY XS 10+-5-40)
1 ~GRTH DEFINITIONS NEX

»
O

¢ s
T NEW CREATT XS 10-5-83)
CREATE HMEADFLG 3
iF AIN=NIC
tr 2 ELSE SYMBOL-D1Z 1 THEN
HEAOFLG !
THEN
TOD 1} RERE JA0 » U< 2 ?ERRCR
~FIND |F TROP WFA 10, 4 MESSAGE IR TuEy
HERE JUP C? WIDTH 2% MIN le ALLOT
0P C} OFD = ALLGT
OQUP OAQ TCGGLE HEAE 1 - 280 TOGGLE
CATEST , ZURRENT 3 ! HEADFLG 3 1 »
1F 3 HEASFLS ! WFA) 1 HEADF(S !
MAIN=O1C 3P CY JFF = ALLCT HERE 3S1AP !
TOD 1 HEE 0AO0 + U< 2 ?ERRQR
THEN HERE 2+ , ; ==>

TIMOGOBP LM UG W E WS D

TMMUNE PR D OV & s e A

14

o

25
'MOVE=-IEF? 1. E. THRCH AWAY THE <(3UILDS-PART XS 13-5-83)

LATEST PFA HMEADFLG Y L = IF Y SLIE CFR THEN 1

(, 200E) R> Y230y 1
: F{;CODEY) R> 2 L:con; i

MOYVE-DEF? [
HEADFLS ! 1 @ .
tF $7+80L-DIC LATEST °FA TUP ZFa 3P ! re

3 IPSAVE 7 >R JUP IPSAVE ! R> 3VER - PR)

SIRE SUAP CMCVE 2> ALLOT CONPILE ((;20DE}) Sti

HURE 2 ALLOT MAIN-DI1C HERE Ssuap |
ELSE CCMRILE (;20CE)

THIN w¢

“©
(2]

MMOO WP QEunNE W WD
-~

28
REJEFI{NITION QF <BuIL0S COES> SBL, XS 10-5-80) Vel

<BUILDS
CREATE SIfUDGE ; pe

20ES>
HCVE-DEF> 320 ¢, £ HERE 8 + 3 LITERAL , ; DMEDIATE [~}
ASSEMBLER
PLA, TAY, PLA, N STR, INY, Qe T
1B, 1 INC, THEN,
1P 1e LDA, ™A, 10 LDA, PHA, T
1P STY, o LDA, P 1+ STA, _
2 0 DA, CLT, W AQC, PMA, .
0 ¢ LOA, W i+ ADC, PUSH JUMP, [
oY

¢

2
3 3809 CONSTANT TOPSYM SCR ¢ 27 [
4 ;aog can?r;ur agrsvu:gtz 3. VREDEFINITION COF ;C30€ KS 15-5-80) Ic‘i
1
; 3000 CONSTANT TOPCIC Y eane e an
i VARLA 3 TCSP MOVE-DEF? [TSMPILE SHMUDGE -
3 3900 VARIABLE Dpeave 4 1CSP BCOMPILED ASSEMBLER ; LMEdiaTe ton
K . tra;
A : SWITCH-DIR 6 ;5 ;
n HERE OPSAVE DUP 3 DP | ! ; ; pu
¢ i
D : MAIN-DIC { === F-] } " the
E 3YM UC TGPSYM RE UC OR ;
E __)uzn: BOTSYMBOLS UC TGPSYMBOLS WERE U st o 23 bas;
0 (GOTO XS 10-7-30) T
scr ¢ 21 § ;on;u :EFIN!TIONS HEX
o -5 DROP-HEADS
g\ SYNBOLD! CTIONARY KS 10-5+30) 2 ongpowen dev
2 : MAIN=DIC) DODES> DUP 3 BEGIN -0UP ter
3 TOPGIC TOO | ?MAIN=DIC O (F SWITCH-01C THEN ; 5 WHILE DUP 3 SWAP n
. 6 HERE OVER = SWAP ! H
5 : SYMBOL-0(C ? REPEAT WERE OVER ! . ea
6 TOASYMBOLS TOD ! ?MAIN=OIC |F SWITCH-DIC TMEN ; ; CFA € " 0 CFA 3 J LITERAL SuaP ! ; Inc
7 .
3 : 75YMBOL (N=l === N=2,FLAG-1) A : MOVE-HEAD (=== HERE IN MAIN-DIC-1 Am
TSYM < OVER TOPSYMBOLS U< AND ; [WERE SWITCH~01C DUP HERE
2 #OTSYHBOLS OVER 1+ U ER TopsyneaLs ¢ OVER €3 HIDTH C3 MIN 1e JUP >R CMOVE prec
B : PEENCE (N-1 === N-2,FLAG-1) 0 HERE OUP 080 TOGGLE R ALLOT 0P €3 OFD = ALLCT
¢ QUP FENCE 3 UC ; € HERE 1 = G80 TOGGLE LATEST PFA LFA DUP 1, ! ; sult
3 Foee>
2 with
Foem> ser ¢ 23 \
9 (Gato kS 10-7-80) leadi
scit ¢ 22 1 COMPILE-HEADS
0 (SYMBGLD!CTIONARY kS 10-5-80) § : Gg;g"LE SRANGH -F1NO grou
B T~ SYNIA -
e R 4 IF OROP TP CFA 3 L ' 0 CFA 73 LITERAL = tens
€GIN JUP 2 >R 2 = DUP DR 5 IF 3 WERE -
5 se BEGIN BEGIN 25YMBOL ! [ELSE T ' (GOTO) 2+ 1 7 LITERAL OVER CFA 1 » Com
3 WHILE PFA LFA 2 7 IF BEGIN DUP 3 WHILE 3 REPEAT 3
6 REPEAT DUP RD ! 3 HERE SWAP | 0 , j{1]
? BEGIN PFA LFA DUP 3 9 ELSE 4 ERROR to
a ISYHSGL SWA® ?FENCE ROT OR 0= A THEN THEN P
3 WHILE SWAP OROP 1 ELSE MOVE-HEAD £ ' (50T0) 2+ 3 3 UITERAL , , SUITEM-DIC O,
A QEPEAT SWAP DR FENCE ¢ THEN ; IMMEDIATE
8 UNTIL 0 ==
¢ DROP 2> DRCP %) =OUP 0= 4 i
5 UNTIL £
2 Wipr=31€ 33TIYMECLS DPSAVE ¢
F oo sCit ¢ 2A
¢ ¢ coTo XS 10-7-80) 1
“Men XS 10-5-80) % LABEL ~FIND
3 ¢ SYMBOLD!CTIONARY -5 : - P
1 3 IF DROP CFA OUP 2 L ' (GOTO) 2+ 33 LITERAL = c
0 YARIABLZ HEADFLG B IF EXECUTE ELSE & ERROR THEN
§ ¢ 5 ELSE MOVE-HEAD [' 0 CFA 2 3 LITERAL , , SIHTCH-NIZ d
W i COMPILE-HEADS TEXEC 0 HEAOFLG ! ; ; THEN ; IPMMEDIATE a
5
6 : OROP=HEADS ?EXEC 1 MEADFLG ! ; : FZRGET-GYHBOLS b
7 ;
2 (“FA A
; (o ,)HERE 0, IMMEDIATE B (28 - 2A TAKES 318 BYTES) p
A J0E3> d STATE 3 [P
8 1F . ELSE EXECUTE THEN ; o t
¢ z
0 -~> 3 ‘r
: et
Page 150 FORTH DIMENSIONS II/5 FORTI

FORTH IN PRINT

THE TAYLOR REPORT/Alan Taylor

Alternative Software
Making Great Strides

Imagine liaving your own private
Cobol compiler -~ with special security
teatu-es and your user application
statements — that you could develop
and keep 1unning on your future as
well as cur,ent hardware. That would
be a change indeed for any user, and as
vetitis ctl just a dream But there ap-
pear to be no technical reasons and few
practical reasons to expect that such a
compiler won't be generally available
‘N ayear or two.

The Forth Interest Group's (FIG) re-
cent conference showed continued
breakthroughs in really opening up
software capabilities to users on at
least six dictinct fronts — hardware,
languages, environments, cross-
compiling, research targets and user
trainir.g. This, only a year after the
publication of the first FIG models of
the Forth language, showed how some
basic knowledge can bear fruit.

The power behind these and other
developments has been a growing in-
ternational group of people and firms.
Headed by Chuck Moore's own Forth,
Inc., independent user groups in
America, Europe and Japan who ap-
preciated the power of Forth have re-
sulted in small commercial ventures
with Forth compilers on micros. (The
leader here, with more than 100 user
groups of its own, is Miller Mi¢rosys-
tems, located just a mile from
Computerworld’s headquarters!)

From this base of people. FIG is able
to produce a technical journal, Forth

FIGFORTH, TOO

Dimensions, which is imnproving all
the time.

Since Forth is extendable - that is
any user car. add new statements (ei-
ther because the language is becoaiing
more appreciated or else because the
particular application or installztior
wants a different vocabulary) the
journal’s emphasis is or. comparing
different methods cf uaaplementing
language elements. This ‘ocus allwe
the community to see how to aeep the
language cfficient.

The journal also promotes the cun-
tinued development of the Fortl: s!an-
dard, annual conferences, and gencral
communication among the many
groups.

All this, however, is only as impor-
tant as what 15 actually m.de with the
FIG Forths. And that was wh: the
1980 conference was particularly im-
portant.

Outside Language
Forth, before now, nad an out-ide
language which, while somcvenet

Pascal-like, was distinctly forb:tding
and, because of the rareness of torth
programmers, something thet uscrs
hated to use.

However, other more popula: .nd
conventiona! languages includ ny 'e-
cal, Lisp, Basic and (poter.tiallyt (vl
can be written in Forth, thus relrac: g
the employment problem, while a2d-
ing for their users the extend:ny i ::

(Continued cn Puge 3 1)

If you have had a long wait for delivery of an order from the FORTH
Interest Group (again in October 13's “Data Files”), it may be the post
office’s fault. I, too, ordered copies of the figFORTH manuals and source
code for FORTH. It took 22 days for our super-efficient postal service to

deliver my copies. Also received from the

ORTH Interest Group were

copies of FORTH Dimensions, its bimonthly publication. The Septem-
ber/October 1980 issue, larger than normal with over 90 pages. was
professionally prepared and made good reading. The reason for this
extra-size issue (regular issues seem to run about 35 pages) was publica-
tion of the source code for entries in a “CASE” statement contest.
FORTH Dimensions is sent as part of membership in the FORTH Inter-
est Group. The current membership eost is $12 per year in the U.S. and

Canada, and $15 per year overseas.

RENEW NOW!

Forth for Alpha
Micro’s AMOS

PALO ALTO, CA — Professional Man-
agement Services' (PMS) Version 3.2 of
uA/Forth, a fig-Forth (Forth Interest
Group) product, is aligned with the 1978
standard of the Forth Internanosal Stan-
dards Team and allows complete access to
Alpta Microsystems’ multitasking operat-
ing sytems, AMOS.

%k)ﬂh was developed for control appii-
+ L. data bases, and general business.
&A/Forth implements full-length names
up i 31 characters, extensively checks
code &: - ompile-time with error reporung,
contais;s string-handling routines and a
string-w2arch editor, and permits scaled
vocabulanes to control user access. In-
cludzd is a Forth asserobler, permutting
struciured, interactive development of
device handlers, speed-critical routines,
and linkage to operating systems or to
package: written in other languages.

As an extensible, threaded language
Forth words (commands) may be created
from previously defined words, and cven
the onizinal words supplied with the sys-
temn (sbout 100) can be redefined if de-
sired, adapting the language for special
circumstances.

The distribution disk is in single dens-
ity. AMS format, and includes all source
code. The diskette includes an editor, a
Forth assembler, and string package m
Forth source code. This complete sysiem

' is available for $130.

For additional information, contact Pro-
fessional M Services, 124
Arastradero Rd., Suite 109, 94306, (408)
252-2218. Circle 202.

RENEW TODAY!

FORTH DIMENSIONS II/5

Page 151

MEETINGS

How to form a FIG Chapter:

1. You decide on a time and place
for the first meeting in your
area. (Allow about 8 weeks for
steps 2 and 3.)

2. Send to FIG in San Carlos, CA
a weeting announcement on one
side of B8-1/2 x 11 paper (one
copy 1is enough). Also send
list of ZIP numbers that you
want mailed to (use first three
digits i1f it works for you).

3. FIG will print, address and
mail to members with the ZIP's
you want from San Carlos, CA.

4., When you've had your first
meeting with 5 or more atten-
dees then FIG will provide you
with names in your area. You
have to tell us when you have
5 or more.

Northern California

4th Saturday FIG Monthly Meeting,
1:00 p.m., at Southland
Shopping Ctr., Hayward,
CA. FORML Workshop at
10:00 a.m.

Southern California

4th Saturday FIG Meeting, 11:00 a.m.
Allstate Savings, 8800
So. Sepulveda, L.A.
Call Phillip Wass,
(213) 649-1428.

FIGGRAPH
2/14/81 FORTH for computer
3/14/81 graphics. 1:00 p.m.
at Stanford Medical
School, #M-112 at Palo
Alto, CA. Need Info?
I.. Pearlmutter
415/856-1236
Massachusetts

3rd Wednesday MMSFORTH Users Group,
7:00 p.m., Cochituate,
MA. Call Dick Miller
at (617) 653-6136 for
site.

San Diego
Thursdays

Seattle
Various times

Potomac
Various times

Texas
Various times

Arizona
Various times

Oregon
Various times

New York
Various times

Detroit
Various times

Japan
Various times

Quebec, Canada
Various times

FIG Meeting, 12:00
noon. Call Guy Kelly
at (714) 268-3100
x 4784 for site.

Contact Chuck Pliske
or Dwight Vandenburg
at (206) 542-8370.

Contact Paul van der
Eijk at (703) 354-7443
or Joel Shprentz at
(703) 437-9218.

Contact Jeff Lewis at
(713) 729-3320 or John
Earls at (214) 661-2928
or Dwayne Gustaus at
(817) 387-6976. John
Hastings (512) 835-1918

Contact Dick Wilson at
(602) 277-6611 x 3257.

Contact Ed Krammerer
at (503) 644-2688.

Contact Tom Jung at
(212) 746-4062.

Contact Dean Vieau at
(313) 493-5105.

Contact Mr. Okada,
President, ASR Corp.
Int'l, 3-15-8, Nishi-
Shimbashi Manato-ku,
Tokyo, Japan.

Contact Gilles Paillard
(418) 871-1960.

Publishers Note:

Please send notes (and reports)
about your meetings.

Page 152

FORTH DIMENSIONS II/5

