FOSTH IMIEISIDS

FORTHINTEREST GROUP Volume i
P.O.Box 1105 Number 4
San Carlos, CA 94070 Price $2.00

NSt

95 _ Historical Perspective

' Publisher’'s Column

96 Balanced Tree

108 Letters

109 The Execution Variable and Array
111,118,119 Meetings

112 Project Benchmark

113 IPS — A German FORTH-Dialect

The CASE, SEL,
116 and COND Structures

FUSTH ITIESIDNS

Published by Forth Interest Group

Volume It No. 4 November/December 1980
Publisher Roy C. Martens

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
George Maverick

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP IS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth Interest Group at $12.00 per
year ($15.00 overseas). For membership, change of
address and/or to submit material, the address is:

Forth Interest Group
P.O.Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charies H. Moore in
1969 at the National Radio Astronomy Observatory,
Charlottesville, VA. It was created out of dissatisfaction
with available programming tools, especially for obser-
vatory automation.

Mr. Moore and several associates formed FORTH,
Inc. in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage, and to supply application programming to meet
customers’ unique requirements.

The Forth Interest Group is centered in Northern
California, although our membership of 2,000 is world-
wide. it was formed in 1978 by FORTH programmers to
encourage use of the language by the interchange of
ideas through seminars and publications.

PUBLISHER’S COLUMN

We're deep into the planning and arrangements for
the FIG Convention and the FORML Conference. If you
haven't made your reservations, call right away, we
might be able to get you into the FORML Conference or
the Convention Banquet. Plan on coming to the Con-
vention anyway. Remember the dates and places zre:

FORML Conference, November 26, 27, & 28
Asilomar, CA

FIG Convention, November 29
Villa Hotel, San Mateo, CA

The other big news! FORTH-79 STANDARD is
available!!! Call (415) 962-8653 or send in your order,
today! $10.00!

Many publications are printing information about
FORTH. We don't get them all, so please send in copies
so we can thank the editors and add to our collection.

FIG had a booth at the Mini/Micro show and much
interest was generated among attendees which carried
over into a number of manufacturers that were exhibit-
ing.

Membership is fast approaching 2,000. We now
have members all over the world including the People's
Republic of China and Yugoslavia. See the listings of
meetings for information about how you can form a FIG
chapter. Just a few easy steps and you’ll have a time
and place to share information.

Look forward to seeing everyone at the FORML
Conference and the FIG Convention.

Roy Martens

Page 95

FORTH DIMENSIONS II/4

BALANCED TREE
DELETION IN FASL

Douglas H. Currie, Jr.
Nashua, NH

Abstract

FASL (Functional Automation
Systems Language) 1is a derivative of
FORTH containing significant modifi-
cations. This paper discusses one of
these, the FASL tree, an implementa-
tion of the AVL (height balanced)
tree. FASL trees are a data type of
the language, and are used in the
implementation of the dictionary. An
algorithm for deletion in FASL trees
is presented, as well as a FASL
program to implement the algorithm.

Key Words and Phrases

deletion, height-balanced trees,
binary trees, search trees, FORTH.

CR Categories

3.7, 4.10, 4.20, 4.34, 5.25, 5.31

Introduction to Height-Balanced Trees

The wuse of balanced trees has
become almost commonplace 1in data
base management, and is seeing limited
use in symbol tables. Many systems
would benefit from the use of balanced
trees, but their designers could not
afford the time to develop the algo-
rithms. A case in point 1is the
extensive use of hashing in “"high-
speed” microcomputer assemblers.
Hashing techniques have significantly
improved the performance of many
assemblers, but analysis of these
routines shows a best case perfor-
mance on the order of several milli-
seconds (due to the inefficlency of
division, or pseudo-random number
generation on microprocessors). FASL
trees, on the other hand, have a

guaranteed worst case performance of
far less than a millisecond even in
fairly large (over five hundred node)
trees.

In FUNCTIONAL* systems, FASL trees
are used in a line editor, data stor-
age directories, FACT (a truth table
compiler), message routing tables,
microcomputer assemblers, as well as
the FASL dictionary. A general pur-
pose microassembler uses a balanced
tree (fields) of balanced trees (con-
tents) to describe the target micro-
instruction. The wuse of multiple
trees allows identical keys in
different contexts (e.g., label names
and macro names).

The height-balanced tree was first
proposed by two Russian mathemati-
cians, G. M. Adel'son-Vel'skiy and E.
M. Landis in 1962 (hence AVL tree).
The idea is to maintain a binary tree
so that the height of the subtrees at
any node differ by at most one. The
technique incurs a penalty of only
two extra bits per node (FASL uses an
8-bit byte), and makes it possible to
search for, insert, or delete a node
with a worst case of 0(log N) opera-
tions (where N 1is the number of
nodes) .

Introduction to FASL Trees

Algorithms for search and inser-
tion in AVL trees are presented by
Knuth (The Art of Computer Program-—
ming, Vol. 3, Section 6.2.3); these
two algorithms were implemented in
machine code and (along with Indirect
Threaded Code) became the basis for
FASL. The deletion algorithm was not
implemented at this time for two
primary reasons: Knuth didn't give
it, FASL didn't "need” it. Deletions
occur much more rarely than inser-
tions or searches; FASL 1lived for
over a year with no delete operation.

*Functional Automation Gould Inc.
3 Graham Drive
Nashua, NH 03060

FORTH DIMENSIONS II/4

Page 96

For example, when a file was deleted
from a FASL directory, the entire
directory was reconstructed without
the "deleted” node. The time penalty
incurred was not significant because
directories are small (for FASL
trees), and had to be copied anyway
to be sent to the disk. (FASL lives
in a message enviroment. The disk is
in another Cyblok*).

After an overview of FASL trees
and their use, the remainder of this
paper will deal with the development
of a FASL tree deletion program in
FASL. For an introduction to binary
search trees, see Knuth (The Art of
Computer Programming, Vol. 3).

FASL trees are composed of a number
of sixteen byte nodes (see Figure 1).
The tree 1is identified with the
address of its head node. From the
head node we may find the root node,
and thus the entire tree. The head
node contains a pointer to its root
node, a pointer to its available nodes
list, and an integer which 1is the
tree's height.

All nodes other than the head node
contain an eight byte key, a left
link, a right link, a one byte balance
factor, and three uncommitted bytes.
The key is used to access the node.
Given a key, the search routine
compares it to the key at the root

node. If it 1is less, the search
continues with the node identified
(pointed to) by the left link. If it

is greater, the search continues with
the node identified by the right link.
The search terminates when it matches
the key (success), or reaches a null
link (failure). The null 1link 1is
represented by =zero. The balance
factor is the height of the right
subtree minus the height of the left
subtree. The insertion routine always
leaves the tree balanced, i.e., the

*Cyblok 1is a registered trademark of
Functional Automation/Gould Inc.

balance factor 1is always minus one,
zero, or plus one.

SAMPLE TREE

|
AEAD 2007 ;
oL

fr———— Lo
FAEE] [] EEE
NODES L A v x -
LisT o Fa o]
r

e
[L

NS
LL

L »

FIGURE 1

The insertion routine obtains new
nodes from the free nodes list. This
list is simply a number of nodes
linked with their right 1links. A
null right link indicates the end of
the free nodes list. When the inser-
tion routine needs a free node, it
obtains 1{its address from the free
nodes list pointer in the head node,
and replaces it with the right 1link
of that node. If the free nodes list
pointer 1is null, then the tree |is
full.

The technique used by the insertion
routine to maintain tree balance is
essentially the same as for deletion.
Basically, four cases arise in inser-
tion when the tree must be rebalanced:
single or double rotation, left or
right. The discussion is postponed
until the section on deletion.

Page 97

FORTH DIMENSIONS I1/4

ves s e w T

To get a feeling for the efficiency
of FASL trees, consider a dictionary
of five hundred nodes. If this dic-
tionary was stored as a linked list,
a worst case access time of five hun-
dred compares would be incurred, with
an average access time of two hundred
fifty compares. Stored as a FASL
tree, this dictionary has a worst case
access time of nine compares, an
average of eight. The numbers become
even more convincing as the dictionary
grows in size.

FASL Tree Operations

FASL provides operations for cre-
ating trees, inserting and searching
for nodes, and accessing the uncom-
mitted data in a node. For example,
the FASL text

100 TREE SYMBOLS

creates a tree named SYMBOLS with two
hundred fifty-six available nodes (the
radix is hexadecimal). Assuming there
is a string of text in an area named
PAD which is to be used as a key to
access the tree,

PAD SYMBOLS LEAF

inserts a node in the tree SYMBOLS
with this key. LEAF leaves a boolean
flag on the stack to indicate success
or failure, and if successful leaves
the address of the new node on the
stack under the boolean.

Usually, new nodes are initialized
with some data. The following FASL
text will insert a node with the key
in PAD (as above), and initialize its
uncommitted bytes with constants:

12 3456 PAD SYMBOLS LEAF
IF F#!
ELSE DROP2 FI

Later, the data may be retrieved
onto the stack as follows:

PAD SYMBOLS FIND
IF Fi@
ELSE FAIL FAIL FI

I1f the string in PAD is the same as
was used in the preceding example to
insert the node, then the data re-
trieved will be 12 3456. 1If another
string 1s in PAD, then the data
retrieved will be 00 0000, unless a
node has been inserted with this
string as a key, in which case the
data associated with this node will
be retrieved.

From the example, it should be
clear how to use the FASL trees for a
symbol table for an assembler. Text
is read to PAD until a delimiter, and
then inserted in the tree. In the
case of labels, the node would be
initialized with the current pseudoPC,
and a flag byte to indicate “label.”
If the inserted text was a macro name,
the node might be initialized with a
pointer to the macro text and a flag
byte to indicate "macro.” Alterna-
tively, separate trees may be created
s> that identical keys may be used as
macro and label names. Later, when a
label or macro 1is wused, it may be
looked up in the tree to find its
corresponding values.

The TREE operation allocates space
for the tree in the FASL Global Area
(where code for colon-words is
placed). Another operation, TREEINIT,
is provided to initialize trees in
space that the FASL user has allocated
(e.g., in FUNCTIONAL Cybloks there 1is
a minimum of 256K bytes of "Public
Memory” which 1is accessed through
"Windows,"” and is not part of the FASL
Global Area). The TREEINIT operation
is often used in the Local Area (space
allocated on the Return Stack) or in
Public Memory.

FORTH DIMENSIONS IL/4

Page 98

The Deletion Algorithm for FASL Trees

A deletion algorithm for binary
trees, and the steps required to adapt
this algorithm to balanced trees are
provided by Knuth (The Art of Computer
Programming, Vol. 3, Sections 6.2.2
and 6.2.3). The details of the bal-
anced tree deletion algorithm are
presented here, but first a review of
binary tree deletion.

Deleting a node from a binary tree

may be decomposed into four cases
(see Figure 2). Call this node "X".
In the first two cases one of the

links of X is null, the other link is
a “"don't care” (i.e., a pointer or
null). In both cases the other link
simply replaces the link pointing to
X. In case three the right son of X
has a null left link. 1In this case
the left link of X replaces the left
link of its right son, and the right
link of X replaces the link pointing
to X. In case four the symmetric
successor of X must be found. This 1s
done by following left links starting
with the right son of X until a null
link is encountered. The left 1link
of the father of the symmetric suc-
cessor is replaced by the right 1link
of the symmetric successor. The left
and right 1links of the symmetric
successor are replaced by the respec-
tive links of X, and the 1link which
points to X is replaced by a pointer
to the symmetric successor.

In all cases the essential left-
to-right order of the nodes is pre-
served. The deleted node is inserted
in the free nodes list, and the algo-
rithm terminates.

All that is required (!) to adapt
this algorithm to balanced trees is
to insure that the balance 1is wmain-
tained after the deletion. An impor-
tant observation is that the effect
of deletion on the binary tree is to
reduce the length of a single path
through the tree by one.

This path begins at the head, and
ends in cases one and two with the
node which re- placed X (i.e., the
node which is pointed to by the link
which used to point to X). 1In cases
three and four the path ends with the
node which used to be the right son
of the symmetric successor of X.
(Note that the ending node may actu-
ally be null.)

fIGURE 2
TREE DELETE

[
NEW. —eee

. O%

DON " Y DON'™ pes
caRE [I CARE

[
| CASE 1 iase 1y

;
|
x !
l

The path may be represented as a
list of pairs

(N.O , £.0) (N.1 , f£.1)
eer (Noi, f.1)

where each N.j is a node address, and
each f.j is a direction (-1 left, +1
right). N.O is the head node, £f.0 is
the +1 (since the "right 1link™ of the
head node points to the root). The
pair (N.i , f.1) is the end node minus
one, and identifies the end node of
the path (which, again, may be null).
Rebalancing may be required at each
node in the path, starting with node
(N.i , f.i), working backwards. This
is in contrast to insertion where re-
balancing is required for, at most,
one node.

Page 99

FORTH DIMENSIONS II/4

Adapting the deletion algorithm
for binary trees to balanced trees
requires that as the tree is searched
for the node to be deleted (and for
its svmmetric successor in cases three
and four), a list of pairs describing
the path is created. Once the node
is deleted, nodes are rebalanced back
along the path until a termination
condition is reached. .

The path 1is constructed on an
auxiliary stack. The operations
"Push(x,y)" to push a pair, "Pop(x,y)”
to pop a pair, and "Top(x,y)" to read
the top pair without popping are used,
as well as the capability of saving
and restoring the path stack pointer.

Using the notation "Link(-1 , M)"
for left link of node M, "Link(l , M)"
for right link of node M, "Bal(M)"
for the balance factor of node M, and
"Key(M)" for the key of node M, the
following is a detailed algorithm for
deleting the node with key K in a
balanced tree.

(1) 1Initialize 1local path stack.
Push(HEAD , +1).
Set X to Link(+l , HEAD).

(2) 1If K is less than Key(X), go to
(3) moving left.
If K is greater than Key(X), go
to (4) moving right.
Otherwise go to (5), key is
found.

(3) If Link(-1 , X) is 0, go to
(11), key is not in tree.
Otherwise Push (X , -1), set X
to Link(-1 , X), and go to (2),
keep searching.

(4) 1If Link(l , X) 1is 0, go to (1l1)
key is not in tree.
Otherwise Push(X , 1), set X to
Link(l1 , X), and go to (2), keep
searching.

(3

(6)

There are four cases:

(5a) Link(l , X) =0 ;

Top(N.k , f.k).

Set Link(f.k , N.k) to
Link(-1 , X).

Go to (7) to rebalance.

(5b) Link{(-1 , X) = 0 ;

Top(N.k , f.k).

Set Link{(f.k , N.k) to
Link(1 , X).

Go to (7) to rebalance.

(5¢) Link(-1 , Link(l , X)) =0 ;

Top(N.k , f.k).

Set Link(-1 , Link(l1 , X))
to Link(-1 , X).

Set Link(f.k , N.k) to
Link(l , X).

Set Bal(Link(1l , X)) to
Bal(X).

Go to (7) to rebalance.

(5d) Otherwise ; Push(X , 1), set

Z to Link(l , X).

Save path stack pointer in
PSP.

Go to (6) to find symmetric
successor.

Push (2 , ~1).

Set Z to Link(~-1 , Z).

Repeat this step until
Link(-1 , 2) = 0.

Finally, Top(N.k , f.k).

Set Link(-1 , N.k) to
Link(1l , Z).

Set Link(-1 , Z) to Link(-1 , X).
Set Link(l , Z) to Link(l , X).
Now swap PSP and the path stack
pointer.

Pop(N.k , f.k) ,

Top(N.k , f.k), Push(z , 1),
substituting the symmetric
successor for the deleted node
on the path stack.

Swap PSP and the path stack
pointer again to restore.

Set Link(f.k , N.k) to Z.

Set Bal(Z) to Bal(X).

Go to (7) to rebalance.

FORTH DIMENSIONS II/4

Page 100

(7

Insert X 1into the free nodes
list.

The algorithm proceeds as follows

beginning with the last pair of the

path:

(8)

(9

Pop(N.k , f.k).

If N.k = HEAD, set Height(HEAD)
to Height(HEAD)-1 decreasing the
height of the tree, and go to
{11) terminating the algorithm.
Otherwise go to (9).

There are three cases based on

-Bal(X) and Bal(B) to O.
Otherwise set Bal(A) to O
and Bal(B) to —-Bal(X).

Set Bal(X) to O.

(double rotation) -

Set Link(-f.k , A) to
Link(f.k , X).

Set Link(f.k , X) to A.

Set Link(-f.k , B) to
Link(~f.k , X).

Set Link(-f.k , X) to B.
Top(N.k , f.k), set Link(f.k
, N.k) to X.

Go to (8) taking one more
step back along the path.

the balance factor:

(%9a) Bal(N.k) = 0 ; Set Bal(N.k)
to -f.k, and go to (1l1)

terminating the algorithm. FIGURE 3
REBALANCE
4

(9b) Bal(N.k) = f.k s Set CASE | (TWO SITUATIONS - REFLECT DIAGRAM LEFT/RIGHT)

Bal(N.k) to O, and go to (8)
taking one more step back
along the path.

(9¢c) Bal(N.k) = -f.k ;
Rebalancing is required, go
to (10).

(10) There are again three cases.

(Referring to Figures 3, 4, and f |
5, A is N.k, o 1is the subtree N
containing the path the algorithm !
has been following, B is the node Y
pointed to by the opposite link
from the 1link which points to
a, Link(-f.k , N.k)):

(10a) Bal(A) = Bal(B) (Figure 3);
Set Bal(A) and Bal(B) to O. mt
(single rotation) - NEW: ~=mm
Set Link(-f.k . A) to
Link(f.k , B).

Set Link(f.k , B) to A.

Top(N.k , f.k), set Link(f.k YEW_BALANCE

, N.k) to B. : :

Go to (8) taking one more

step back along the path. MEW SUBROOT 3
KEEP FIXING...

(10b) Bal(A) = -Bal(B)
(Figure 4); If Bal(X) =
Bal(A), then set Bal(A) to

Page 101 FORTH DIMENSIONS II/4

(10c) Bal(B) = O (Figure 5);
Set Bal(B) to -Bal(A).
(single rotatiom) -
Set Link(-f.k . A) to
Link(f.k , B).
Set Link(f.k , B) to A.
Top(N.k , f.k), set Link(f.k
, N.k) to B.
Go to (l1) terminating the
algorithm.

(11) Deallocate path stack. Done!

FIGURE ¢
REBALANCE
R
CASE 11 (TWO SITUATIONS - REFLECT DIAGRAM LEFT/RIGHT)

NEW BALANCE

BAL(x) = BAL (A) OTHERWISE
A -saL(x) °
s ° -saL{x)
X [(]
NEW SUBROOT x
KEEP FIXING,,,

FIGURE s
REBALANCE

CASE 111 (TWG SITUATICNS - REFLEI™ T1AGRA™ LETT/R17wY’

<« —>

fo [Fp——
NEw: =~~~

NEW_BALANCE
A | YIRY'Y:
|] -8AL(a)

NEW SUBROCT B

CONE!

Implementing the Algorithm in FASL

A FASL program to implement the
balanced tree deletion algorithm is
relatively straightforward (see the
listing Dbelow). Some preliminary
colon-words are defined to access the
links, and to access a Local Stack.
RCRUMB and LCRUMB are defined (in
commemoration of Hansel and Gretel)
for adding pairs to the path stack;
then colon words for the three cases
encountered in rebalancing are
defined.

The main colon~word, DROPLEAF,
takes stringname and treename par-
ameters just like LEAF and FIND, but
leaves no return values since it is
always successful. The PROC...
ENDPROC pair allocate and deallocate
a Local Data Area for the path stack
and associated variables. For the
most part, DROPLEAF follows the

FORTH DIMENSIONS I1/4

Page 102

deletion algorithm presented. Nested . ROTCASE! FAIL OVER C! FAIL OVER? C!

IF statements are used to evaluate SINGLROT SWAPDROP FAIL SWAP ;
the case constx_:gcts. The string . ROTCASE3 OVER C2 NEC OVER C!
compare in the first (search) WHILE SINGLROT ;
loop tests for less—than directly, . ROTCASE2 OVERI OVER2 OVER2 OVERZ - 3 + @
and examines FASL Registers (WO, Wl) SINGLROT
: . SWAP NEG SWAP OVER2 SWAP

to resolve the trichotomy. (This is SINGLROT SWAPDROP
an efficiency measure, and has to do OVER2 C@ OVER CE -

. 1F DUP C€ NEG SROT C! PAIL SROT C!
with the fact that there is not guar- ELSE PAIL SROT C! DUP C® NEG SROT C! FI
anteed to be a string delimiter in FAIL OVER C:

SWAPDROP FALL SWAP;
the node's key.)

. MOVEIR + DUP 6 'L ' €

Empirical tests show that DROPLEAF (2,0
runs in the 50 to 100 millisecond O aommeay oame)
range for trees with about 500 30 PROC
. 8 'D4 ‘D!
nodes. For comparison, LEAF runs in SWAP OVER
the 0.1 to 1 millisecond range on the :C“U‘gu
same trees. The large difference be- wu;'f.g Du:
tween these runtimes results from the 1F OVER OVER 8 + SLT? DUF
£ h LEAF i . . IF OVER 10 + WO @ -
act that is highly optimized ELSE W1 @ 1 - C® FPI
machine code, only requires one rota- co:;i;}:‘“ FAIL F1
tion maximum, and does not require a IF LCRUMB 2
path stack. As previously mentioned, ELSE RCRUMS & F1
. . MOVELIR
DROPLEAF is used very infrequently, WHMILEND
and there has been no incentive to '5’:2;me
implement it in machine code. DUP
IF DUP RLNKE
IF DUP LLNKE
1F DUP RLNKE DUP LLNK@
IF4 'D @2 'D ! RCRIMB
(BEIGHT BALANCED) P
(TREE DELETE) REPEAT LCRUMB SWAPDROP DUP LLNX@ DUP LLNX@ ZERO®
(17Mav80) ONTIL
OVERZ LLNX® OVER LLNK!
(LOCAL DATA AREA) DUP RLNK@ OVER2 LLNER!
(OFFSET) OVER2 RLNK® OVER RLNKX!
(———-) SWAPDROP
(DUP 2 'D @ :
2 ssved path stack pointer EZLSE OVER LLNK@ OVER LLNK!
4 path stack poinoter RCRUMB
6 address of link to node to be deleted FI
8 start cof path stack : OVER C® OVER C!
. ELSE DUP ELNKE FI
ELSE DUP LLNK@ FI
. € 'D @
30 end of path stack + 1 OVER OA + @ OVER RLNK! OVER OA + !
) REPEAT
POP POP OVER2 OVER SWAP -
(1,1) IF DUP C@ DOP
: LLNK@ 2 + @ ; IF OVER2 + OFF AND
: RLNK@ & + € ; IF OVER 3 + OVER + @ DUP C€
(2,0) IF OVERZ OFF AND OVER Cf -
: LLNK! 2 + ! 1IF ROTCASE2
: RLNK! & + ! ELSE ROTCASEL F1
ELSE ROTCASE3 FI
(1,0) POP POP DUP PUSH SWAP DUP PUSH - 3 + !
T PUSB 4 'B € ! 24 'D4; ELSE FAIL SWAP C! DROP FAIL FI
(0,1) ELSE DROP C! SUCCEET FI
: POP OFFFE 4 'D+! 4 'D & @ ; ELSE 2 + +! SUCCEED FI
(1,1) UNTIL
: RCRUMB DUP PUSH OFFFF PUSE ; ELSE DROP P1
: LCRUMB DUP PUSH SUCCEED PUSH : DROP
ENDPROC
(3,2) H
: SINCLROT OVER2 LTZ? i

IF DUP RLNK€ OVER2 LLNK!
SWAP OVER RLNK!

ELSE DUP LLNK@ OVER? RLNK!

SWAP OVER LLNK!

Fl ;

Page 103 FORTH DIMENSIONS II/4

AVL Tree Currie FORTE
Kngyth: Communications Punctional Frey Associates, CYDOS
Apsurdily of Jashing

A . \/

Salanced Tree Syntax, Indirect
<

' Threaded Code
Concept, Eipertise
i
FASL

FASL Credits

FASL arose in response to a need
within FUNCTIONAL for a simple and

efficient interpreter for system
software development. An early FASL
Manual (1977) was written with

contributions from Eric Frey, Michel
Julien, Roland Silver, and Ron Lebel.
The idea of implementing the dictio-
nary as a height balanced (AVL) tree
came a year later, and with it the
FASL TREE data type.

FASL was also made possible by the
unselfishness of G. M. Adel'son-
Vel'skiy and E. M. Landis, Donald E.
Knuth, and Charles Moore.

The author has recently learned of
two language processors which use AVL
Trees for symbol tables, but not as a
data type of the language: a MUMPS
system (Dave Bridger for Tandem), and
the IBM FORTRAN H Compiler. The cur-
rent status of these language systems
is not known by the author.

Special thanks to Kit Andrews for
typing the manuscript on Functional's
Wang Word Processor, and patiently
illustrating the final versions of
the Figures.

Assembler Listings for Search and

Insertion

The following pages contain
exerpts from the FASL 1listings
pertaining to tree search and
insertion for the 6800. Referring to
these listings:

(1)

(2)

(3)

(4)

(5)

(6)

The names used in the comments
correspond to those wused in
Knuth's Algorithm 6.2.3A.

The routines use variables HEAD
and AVAIL to identify the tree
and free nodes list on each
invocation; the key should be in
the eight byte area K.

The variable VIV may be initial-
ized to point to the default
subroutine DEFNOT which causes a
"failure” return on an insertion
attempt to a full tree, or to a
user supplied subroutine which
allocates a new free nodes list
(with at least one node) by
placing the address of the list
in AVAIL.

Trees are initialized by placing
a starting address in HEAD, an
ending address in AVAIL, and
calling the routine BTSIUP. On
entry, AVAIL-HEAD should be
greater than thirty-two, and
zero mod sixteen. On exit, HEAD
will not be modified and will
point to the head node, and AVAIL
will point to the free nodes
list.

All tree routines are object code
relocatable.

Quickie symbol table for these
listings:

tree initial-
ization

tree search

tree insertion
default tree
overflow sub-
routine

key for search &
insertion, 8
bytes

pointer to tree
pointer to free
nodes list
overflow transfer
vector

BTSIUP El51
FINDIT E168

BTSI E17D
DEFNOT E660

K DO

HEAD c2

AVAIL (o

VIV co

FORTH DIMENSIONS II/4

Page 104

R BALANCED SEAR S
56 i BALANCID TAEE SEANCE AND INSZET ;:; i aTST n CA AND INSEZRT
s7 R awan o >
. ; DIAECT MRNORY DATA DECLANATIONS ;:z ::;: :: g 2:38 g z H T
59
I
60 0000 ev: 0 00 : TRER OVERYVLOV TRANSFIR VICTOR TO SUSR ERROR WANDL! 08 i RQEEAD> -> § . $ POINTS TO REBALANCE
61 002 READ: RQU VIV ; PODNTER TO TAKE DRKSCRIPTER NODE §:§ :i:; : : ;-: 1 i .
62 00Cs AVAIL: QU KEAD¥?2 : POINTER TO ROOT OF AVAILAMLE NOOES LIST 34 183 20 21 A SKARCE
(3] B
s THE ABOVE TERIE ITIMS AKE INPUTS TO TSI .
65 VIV (- ADDEESS OF TRROR WANDLING SUBMOUTINE ::; g:z g gg OTRILV: g ;Tzo ; TREZ OVIRFLOV TRANSFER VECTOR
o . POR OVERPOV OF ALLOTTED NODES
- 98
6 D < romumnnmmlM.?‘“l::f 399 213 DR C4 ALLOCT: LOX AVARL i ALLOCATE & PREEZ BODE TO THE TREZ
Py OF FREX SPACE POR INITIALIZATION “BTS. il g ! GO o8 DETT FREE LisT
Py AVAIL ¢- POINTER TO LISY OF FREE WOOES, OR RMD OF ‘g‘: El120] ;
10 JORUIIUON o ot W TR “FTaIDE® :oz sy oF cc s @ : Q- VAL
n oxzare BALANG 403
4 TR SERS A0 Aj Avall T s 404 E191 EX 04 L0 X 04 i BAVALLY -> AVALL
3 TETOr e 113 008 LIST- AVALL IS MOBLPLID ¥ 405 1193 D Ck STX AvALL
z; : : 406 £195 DR T ux ? ; SETUP PARACETERS FOR CALLER
4 407 E197 96 € 1Daa Q
76 00Cs T EQU AVAIL+Z 408 LI99 D6 D Lba» g+1
14 i - :: 409 2193 39 ars
78 00CA r: 0o al0
e & g:g 411 E19C 46 00 COWOV: LDaa 1 00 ;| L WALANCE FACTOR
ooce : rDoew
8 000 G U M2 ; KEY, TICET sYTES Ty e bl
e2 416 BLAO DY C8 s s ie=>s
83 :mmo)uu-al a5 B2 DT wx r REE]
ot : »oOR(1) PG 1 416 ELaé DF Cb st
85 : ooz 2 417 £lab DL CC FORwV: @ Q i Q
:‘; : NOOL(4) MICTLINE 2 :}: T1AS P CT SEARCNs SIX P >r
" : NODE(6) VALE 2 posd :
" ; nooe(s) 0 421 oaa w12 1 e it -
422 T1AC 22 4D I o
ns i PLNDING AND INSERTING 42) MAP 26 3D pregpinday
36 E1lY 96 C8 NOXT: LDAA § R Y o2 TIBO 38 s ; sveczssiit
17 Tl ok cc Lot Q 425 P ETHN VITE CC Z = 1
318 E12) A7 04 STAA X 04 be+
319 B128 E7 O STAS X 03 o
320 428 7131 8D 00 SAXSI: ISR SAI4I
321 m27 e o ux s i+ INCREWENT S BT 16. 429 E133 8D 00 SaXel: 3SR SAL2D
312 £129 DY € DNLN: SmQ i Q18 PARENT OF S 430 TIR5 &b 00 SAT2I: 352 SARDX
323 1128 6 ©Y LBAD $+1 431 X187 A7 00 SAXIRI: STAA X 00 : STORE ACCUMILATORS INDEXED
324 K120 €3 10 4308 10 ; THIS IS TNE SIZE OF A WODR 432 mpe @ 01 sTa3 X 01
325 K127 24 03 3CC 30K X 433 103 08 m
326 1131 7C 00CE me s 434 18C 08 e i POST INCEEMEWTED
377 B34 D7 € SOK: STAR 541 i WOTR TRAT ¥ ALMATS WAS 341 435 E1BD 3% s
B+
329 I M A ux s ; CHRCL AGAINST LDNMIT 7
330 £138 9C Co PR avALL ey : KEY COMPARE SUBROUTLNE
131 na 26 B e MExr et
n 440 EIBE 9% D0 DO 10ah K i K- KIan
333 3¢ DR cC 2 @ ; SIGEAL TMD OF LIST a4l K1CD Al 08 Ors 1 08
3% TLIE 67 04 ax x o w2 mc2 26 28 [y] | RETURN 17 WOT TQUAL
335 2140 67 05 aa x 05 o
36 444 21CA 96 D1 j5-Yvy 0%
337 7142 96 % 1hAA T i T <> RCEEAD> , SAVE POINTEIR TO ROOT 443 T1CH Al 09 QA 1 09
138 2144 D6 C7 Lbaa ™1 446 RICS 26 22 e
339 Ee6 DR Q2 LY NEAD poey
340 L1438 A7 O4 STAA X 04 448 E1CA 96 D2 LDAA K#2
341 D4a £? 05 STAB X 05 449 TICC AL 04 s I 04
M2 3 X 26 i T ATH
34) QI4C DE Ca e ;L -> AVAIL , SAYEZ POINTER TO FEEE LIST l:n
34 DAE DP Ch ST VAL 432 M0 9% 03 1044 K43
345 2150 39 aTs i END OF 3TS1 INITIALIZATION OF PREE LIST 433 TD2 A1 OB s x OB
34 i AND NOLL TEEE 434 ZLDA 26 16 LR
ass
Jee 456 E1D6 %6 DA LDas T+4
349 5 BISL INTTIALIZATION 457 E1D8 AL OC Qs T 0
150 438 ma 26 10 L
151 1131 4 MIWP: cLaa 45y
352 1152 5y ass : WAREZ A TRERE . & WOLL ROOT 460 I1DC 96 DS 1Das £+5
UK LDZ NEAD i & FEEE LIST MASED ON 461 MDE Al OD afa X 00
334 E155 8D SA 58 SAXSI : BRAD START OF FREE SPACE 462 Z1E0 26 OA . e
355 £187 OF o8 st : AVAIL END OF FREZ SPACE P 483
356 Z139 8D 36 BSE SAXST i SAISI CLEARS A NOOE SIACE a=B=0 464 YIE2 96 D6 1.7V 21
W nra ST s 465 E13A Al O Ofa X 0T
ssuworaa s ; POINTER TO %OOT IN T 466 TIZS 26 06 B XM
359 ; POINTER 70 AVAIL IN R 467
360 157 20 €8 wa 1eTR 468 TIES 96 D7 oAk :o;'
361 469 E1LA AL OF A
367 K161 £ 02 WOWLF: DX I 02 i ALONG LEPTLINK 470 B1ZC 39 e s : DONE COWPARER OF EKICNT STTRS
363 163 26 0D uy rIR
36 W12
363 2163 4r mOD: CLRA 473 EIZD EE 02 wWowL: X 1 02 P K-> @
366 T166 AC mea ; PALLDRE 11 CCZ =0 74 MY DP CC s Q
367 1167 39 s «75 BIN 26 A9 MR COMOY ; CONYIWUZ DOMN THE LEFT LDNK
368 476
36 ; LPrC —> 477 P 8D 96 332 ALLOCT ; DEAD IMD , ALLOCATET WEV NODE
370 A78 TIPS A7 02 STAA X 02 ; LI TO P
371 E188 DE 2 TDOTIT: LDX ERAD a0 STAR £ 03 HRE TR U - 24
372 £16A XX G4 1 X 04 : ROOT OF TRER 480 L179 20 OC 24 INSET
373 M4C 20 04 o iy
o W2mrIIZOL OV LT X 06 i o q
7S EISZ L O4 NOVEP: LDR X O4 483 E1D OF CC ;& Q
wemmwn 310 BOTTRD 3 MOVL ALOWG RICETLDE 484 ZiPP 26 93 WE oMY 3 CONTINUE DOUN TNR RIGET LINK
2] a8
snmmnera o SEe 486 2201 6D 88 3SR ALLOCT ; DRAD END , ALLOCATY MEV NODE
379 1174 8D 48 m e 487 E203 A7 04 STAA X 04 i R.LIK TO P
Bonmnsumn I WovRY 488 £205 27 05 STAS X 05 : 1.8 Q@ =) RO
381 W 26 27 o NovLy a8y
382 WA 39 s ; SOCCESS 11 CC 2 =1 490 £207 DX CC ISRY: WX Q ; INITIALIZE TER MEV WODE
383 491 1209 47 cxa
R NS Ama forr ; wore 492 £204 SY axs : CLEAR KO, WD, KO, DQ, <D
493 120D 8D A6 R saxel
494
495 £200 96 1O 1Das €
496 1207 Dé DI 1DAN K91 FR 0 U3
497 E211 8D a4 BSR SAXINX
i9e
499 2213 96 D2 1DAA B41
500 £215 D6 D3 LDas ¥+3
501 @17 8D 9L SR SARINX
502
503 I219 96 Dé LDaA K+
304 Z218 D6 DS LDAD ¢S
505 210 8D 9% SR SAXINK
507 E217 96 D6 DA Kot
508 £221 D6 D7 LDAB k#7
509 2223 8D 92

Page 105 FORTH DIMENSIONS I1/4

" 017 i seusen
511 . ADJUST BALANCT FACTORS ... s18 7280 El 00 BALY: cwrs 1 00
514 @225 DE CB ADJO: E $ P K- KK 519 252 26 34 3 DT ; CHECKX BALANCE FACTOM OF &
S13 2227 4D 93 st e 620
516 £229 22 06 81 ADJY 621 . SINGLE ROTATE RIGHT ...
517 621 L34 DY (X BROTR: STX P Sxr
s 130 Y 1Das fory PLAG LY (<L <> A} 41) 23 4F 00 ca 1 %0 0> KR
519 £220 EX C2 Lox 1 02 IR S > B 14 EIM8 A6 04 DA L 04
520 1227 20 04 A A2 633 Gh B 03 tbad 1 0% AR YT SIS 3
521 e c X s
322 r231 o6 O1 ADJ1t LDAB #01 P TLAG GE (1 -2 A) T I WV 02 $TAA £ 02
523 ¥233 EX O4 LoX X 04 Pl 14 >N 418 E200 £7 03 STAR X O)
324 §29 1202 6F 00 ax 1 00 P 0> KD
515 E238 DF Ca ADJ2: s R HIETTIR 2 630
526 T2y’ 20 10 BRA ADJSS ; ENTER LOOP 631 RCh % O 1bas S P 8-> KD
527 §32 1206 D6 O 1Dap 41
520 239 67 00 ADJ): QR 100 ;0> W 633 2O 08 CA w1
329 £33 @D 31 n e R R 3 24 TICREI!IN) 634 R2CA A7 O4 STAA I O4
530 @D 22 08 BRI ADJS 639 B2CC 27 03 STAB X 03
531 636 T2CXT 20 62 A TOCEDP
5323 E23F 6A 00 DEC X 00 H - K 637
5§33 2241 X 02 X X 02 PRS2 BN 38 ; SDIGLL BOTATE .
534 E24) 20 04 BRA ADJS 639 200 OF X SROTL: sz P L2 4
333 640 202 6P 00 ax 100 R 3
536 L2438 6C 00 ADJ&: m X 00 PR R 1 24 641 E2DA A6 02 1Daa X 02 .
$37 1247 KX 04 LI X 04 P R ... 562 E2D6 26 Q3 1DAB X O3 P LA <> KD
530 €43 208 08 3 ux s
39 b4 EIDA A7 04 STAA X 04
SA0 D249 DF CT ADIS: ST P S 643 E2C K7 08 $TAB 1 03
Skl E243 9C CC @2 qQ ; UWTIL VR ARACH Q 46 R2DE OF OO aax o 2 0" KD
542 E24D 26 TA RRE ADJ3 647
343 j eewweveteces 648 250 % CB 1oAA § RS RT.
€9 212 D6 CY LS 31
545 550 B2B4 DX CA Loz %
546 ; BALANCING ACT ... 651 E2E6 &7 02 S$TAA 1 02
547 LAP DE CB MALD: x § : CEECE BALANCE FACTOR OF § 652 1238 17 03 $TAB 1 03
SAB £251 A6 00 Waa X 00 653 E20A 20 46 TOFLL: FRA TOCMOP
549 £233 26 07 RN *
550 65S EIEC 20 42 TUPLLL: WA TOM
351 2253 %7 00 STAB X 00 P A KD
532 637 : DOUBLEZ ROTATE RIGHT ...
553 1257 D2 2 LOE EEAD ; 1NCADMNT WICET OF TRAT €50 EZEX EE 04 DROTR: LB2 X 06 PR
354 £25% 4C 03 ¢ X 03 659 L2090 DF CT sxr
553 1238 39 153 i FALLITY “
556 i mTER CC 2 -0 o1 P2 M6 02 LDas X 02 P LD >
587 61 2. 16 03 LDAS X 03
538 K25C £1 00 MLL; QB X 00 ; CERCK BKS> AGAINST A 463 5276 Dk CA LOX &
359 L3¢ 27 0% 38Q L2 64 L2786 &) O4 STAA 1 04
560 665 E2PA 27 03 STAB 3 05
561 L6047 an 466 £20C 67 00 o X 00 ;0> KB
s61 1261 &7 00 STAL X 00 10 KD 47
563 2263 4C NCA 668 27X 96 CA Lhad & ;- LD
Se4 I364 3P TS i PAILITNY 669 £300 D6 C3 LDAS Mol
ses i MTORN CC 2 % 0 shopmrea L
Sob 471 B304 &7 02 staa 1 02
567 E263 DS CA RALZ: LR i TRER WKXDS RALANCING 72 06 £7 03 sTad X 03
S68 £267 5D 23 73
569 268 13 46 a3 676 D08 a6 04 LDAA X 04 L1 D KD
570 675 304 86 03 1Das 3 03
$71 1264 B1 00 oes x 00 ; CHECX RALANCE FACTOR $76 £30C D& & el
572 £26¢ 27 62 3 SEOTL ’ orr 677 TR A7 02 STaa I 02
<73 ; seveswsvmeosescsssenee 678 1310 X7 03 STAS X 03
479 D12 67 00 cLx X 00 $ 0= KD
573 ; DOUNLZ ROTATE LEFT ... 80
$76 126 T 02 DROTL. X X 02 HI % S 4 6l DIl4 M B 1Dad § R T 24
577 1270 OF C2 s 682 D316 D6 O LDAB %41
578 643 T310 D8 CX wx ?
579 1272 a6 04 DAL T 04 ;A > L 644 D3LA A7 Ok STAM X 04
530 1274 38 05 LDaS X 0 83 E3)C 27 05 $TAS I 05
S81 2376 DR CA Lox 1 o
582 1278 &) 02 STAM X 02 87 £313 26 00 L4 X 00 ; GERCK BALANCE FACTOR OF 7
583 £27a 17 03 STAB X 03 8 D20 27 10 30 TOCKD?
584 £27C 67 00 ax x 00 i 0= K 689 T322 73 08 a DAl
s8s %0
386 BT 96 CA 1044 B RN A 91 DI24 67 00 a3 00 30 -
387 1200 D6 C3 10a8 el 692 326 X CA i3 v el KD
588 L282 DX 3 wt r 693 320 6A 00 TOYO: DRC X 00
389 E284 A7 04 STAL X 04 694 2324 20 06 Ma TOCK?
590 2206 17 03 STAB X 03 95
91 96 E32C 6700 DAL: LA X 00
592 K288 a6 02 LDAs X 02 P LAY - KB 697 E328 OB OB iz s
593 L2804 B 03 1Da3 1 03 #98 1330 C 00 ™e: INC X 00
5sa R2C D2 OB X s
595 BT A7 04 STAA X 04 700
39¢ £290 E7 0% STAB I 03 0t i TOUCHOY ...
387 292 o1 00 asz 00 L0 B 702 [332 % CE TOCNP: iDAA P ; PREPARATION ...
398 703 ©% B & LoaB M1
399 1294 % <8 waa $ R RY- 704
600 £296 06 O3 LDAS 8+ 703 £33 DB CS wx T
601 I298 DR CX Lox ? 706 £330 X 04 LIX X 04 ; ACD - 3, COWPARR
602 294 &7 02 STaa X 02 707 B3 ¢ B a3
03 m2%¢ B 03 STaB 1 03 ;:U’C"" R TUPA
§05 29T 56 00 LbaB T 00 . 710 £338 DR O 1t PP KD
06 5240 27 &8 it CEECK MLANCE FACTOR OF P 711 £340 a7 02 sTaa X 02 .
§07 I2a2 2B 06 Na som 712 B2 1 03 STAB X 03
08 NI 4L Arr onas fory
609 Z2ak 67 00 sz 00 ;0w M 14 1346 39 x1s i FAIL 114
610 £246 DE CB X s ;:: i RETUKB CC 2 - O
611 I248 20 7T PR S]
o2 4 TP it v TIGT NTpaT e TR XY ;P D
613 E2aa 47 00 SOWL: CLR X 00 ;0> K 718 D349 A7 04 STas X 04
614 Z2AC DT Ca T 2 719 D348 E7 03 STAB X 03
515 TA% 20 3 B TOPLK i1 720 13D G4 1Y oras forr
721 347 39 ars i OPAIL M1
m ;MR CC Z - 0
73
724 B
()
904 260 0BG OR660
s
966 3660 31 bgrmot: 1IN
987 £s6l 3 ™s
988 1662 31 s
989 1663 11 ms
990 B664 4T =5 7Y ; WO MORS BOOW IN TREZ =) FALL!
91 2665 38 s
L2
993 3664 01 nor
994 £667 O1 wor

FORTH DIMENSIONS II/4 Page 106

FASL HANDY REFFRENCE

e I TUOKE

PREDEFINED DATA TYPES COMP, " 4 tL one) if:
name LT? £ Less than 3e10 (3 <0 }?
= Lize 1ERO? t) ZTero (n = 0 j?
A LT Gre? £ ter than Tero [&3 0 17
res | L ero to n bytes LT? -t} Less than (81 < 82)? é
s o L1 one 0 0 sy i 4 A
Integer _* « NE?) Rot Bqual nl # n2)?
o bytes ce? £ Greater then or Equal (sl s2 ;7
Character l—-oD one byts GT? -t Greater than (sl > #)7
| ADDRGT? [Address Grester than? (ul?® ul }?
Tree — head thirty-two to n bytes sLT2 .d‘n -0 s‘:é:?;‘:':::?::’.é :;;t;‘q);(
1 . ddr2 --) Stri 17 t addri
o 4.3 J— {each node is sizteen bytes) sEQ? sade o : :2:,::“:,_ .d(d:;.r)n;g e s ¢
(balance i3 one byte)
r— avpil. (sach link is two bytes) MEMORY
- - (key is wi1ght dytes) —_
| —— (three vesr detined byces)] { 28dr == p) Replace address by contents.
N bll " baj root (typical node) ! (n addr -) stg:; second 1tes at sddress on
availa e N ——— i M
‘“. Tinred ":; o laink | ce (addr == b) Replace address by contents. one

rlink}

L..LLm.L“ byte only (nqni Justify zero
padded) .

3 v] (b addr —) Store right bDyte of second ites

ey j . M;t address on top. ¢

+1t (n addr -=) sgcond itew to contents o
—_— ' address om top.

CSWAP { addrl addr2 —) Swap contents of addrl and addr2.
CHMOVE (from to u -- } Hov ¢ bytes in memory.
MOVE { from to u — } u doubln—by:n An nenory.
SMOVE { from to —) !ov- string in
LEAY { addrl addr2 - a8d:z? f) A48 xey lstring) n mu to tree

Stac« inputs and ocutputs are shown;
Operand Key: n
s

top of stack on right.
twe byte number

two byte signed number
u,addr, to, froe two byte unsigned number

-] one byte number or character

at addr2. If f = true, then key
was ingerted ac addr?,

the kxey was already
(or tree is fu .

Xey (string) at addrl in

FIND

8ddrl addr2 -- addr? £)

£ two byte boolean flag (zefo or on -

2ddr? conditionally present addr ::; 1:‘.:“.;:;:.!0:!:-::;:: :::n

a4 four byte signed number tound.

(Digit aed = a Fée { addr == b n) Read data from tree node 8t addr.
G1ts are sometimes appanded o these operand names.) rel { bn addr -~) Store data in tree node at addr.
{Onless unsigned operands are indicated, arithmetic " { s ~— addr } owpute address of nth byte in

operations are twos cosplement.) current Local Area.
STACK MANIPULATION CONTROL STROCTURES
pup (n=~nn) Duplicate top of stack. Do, . . LOOP do: { andel start -- Set up loop, g9ive index rangs.
DROP {n ==) Throw away top of stack. 1 { index) Place current index value on
SWAP {nl n2 == n2 nl) n-"u- top two stack items. stack.
OVER (nal n2 - nl a2 nl), of second item on top. DO. ..+LOOP +loopt(n — } Like DO...LOOPF except adds stack
OVER2 (al a2 n3 — al a2 nd al) l\n copy of third ftem on top. valus (rsther than one) to
SROT (nl n2 n3 ~= n2 nd nl) Rotate third item to top. indes.
SWAPDROP {al n2 == n2) Throw avay Second item on top. IF...(teue)...PY if: (£ -=) It !°P Of Stack true (nom-3ero},
DROP2 {an—) Throw away top two.
DROPI (nnn-=) Throv away top thres. IF...(true) ...ELSE... (false) lno. bu: it talse, sxecute ELSE
RPOSE {n == Move top item to return stack. clause.

P (-—n) Retrieve top item from return DO...Ir... {true)...LOOP The RXIT in KLSE clause terminates
stack, o se)... T 1 Tematutely.
‘R (s ~ addr) Compute address of sth byte on eLse (false} X1 baidlls Y
return stack.

'S (8 ~ addr) Computs adér words Bsy be reversed.

of sth byte on
s OVER).

top { 2 'S REPEAT...UWTIL untils (£ -~) Loop back to REPEAT until true at
UNTIL.
WRILE...
ARITHMETIC AND LOGICAL CONTINUE... (true}... Continge while tru. n coNTINGE,
WEILEND... (tals s othervise leave
+ { sl 32 — sum) Add. continve: (£ «—) ILEMD loops unccndiuonnly.
- { 8l 82 -~ difference) Subtract (sl - 82 }.
- { 81 32 -- product) Multiply. N O0T!
/ { 81 $2 « quotient) Divide (sl + 82).
MOD { sl 82 ~~ modulo) Module (sl mod 82). MESS { addg -~) TYPe message (string) at addr.
MULE (81 82 -- 4) Multiply extended. TYPE (addzr b ==) TYpe message st addr terminsted
DIVE (d s -~ quot mod) Divide extended. by byte b.
DIVMOD { 81 82 -- quot mod) Divide wodulus. - (s — } Type number on top of stack.
SEXT (s =-4) Sign Extend. cs (b~ TYPe one byte number on top.
(8 — pegation) Negate CRLP { -) Type a Carriage Return, Line Feed.
ABS { 8 -~ sbsolute } Absolute Value. 8P { -) TYpe a Space.
MIN { 8) 82 — ain) Minisum. ol d { addr v —) TYPe u bytes starting at addr.
MAX (8l 82 -- max) Mazimum. PRTREE L addr --) Type tree at adds
AND { ul u2 -~ intersection) Bitwise And. GETKEY (=) Read cnu.ctuxl untﬂ delimiter
OR { vl w2 -~ conjunction) Or. to Global Ar K.
XOR { ul u2 ~=- disjunction) Exclusive Or. CBECKKEY { == 2 True if K 183 nol
NOT { u ~- complament) Inversion. CO! { — n) Converts string at K to number.
SUCCERD { - 11 Y ASX { addr deliim count —) Read characters to addr until
FAIL { -0 lero (false). delimiter or count.
SBL (B u==m)] Shift Left (n, u time: WORD { =d4r delim —) Read characters to addr until
SHR (A Yy = n) Shift Right (n, u ti delimiter.
ROL (nwu n) Rotate Left (n, u tim .
ROR (nuy=--mn) Rotate Right (n, u times).

Page 107

FORTH DIMENSIONS II/4

DEPINING WORDS

- Begin colon-word definition of
IXR.

© KXX {

L=) End colon-word definition.

. XXX { agdr —) Used to name machine langquage
operation.
GLOBAL sxx tn =) Craate Global Variable xxx with
1x3: ' ~-- addr ! initial value ni returns address
when executed.
CONSTANT xx1 [el | Create Constant Variable xxx with
xxx: | -= n) value ni returns value when
executed.
AREA xxX -t Creace Giobal Area 333 of 8128 n,
2xx: (-- addr) with no i1nitial value; returns
address vhen exscuted.
* xx3x ... « - Create Giobal String xzx with
xxx: { — addr ! initial value of text typed in
after xxz delimited oy quote (°):
returns address when executed.
TREE XXX Ln -) Creste Global Tree xxx of size
xxx: { - addr } n nodes, and initialize; returns
address when executed.
TREXINIT { addrl addr2 —) Initialize Tree from addrl to

2ddr2-1 (used for Local or
guauocltod Trees).
PROC. . . ENDFROC proc: (n —~) Allocate/Dealiocate n bytes of
Local Ares on recucn stack tonaly
used inside colon-words).

SYSTEM & MISCELLANEODS

LOAD...:§ losd: { addrl addr2 —) LOAD wodifies curtent Input pointers
(addr 1 is address of input string,
4ddr2 is address of machine level
input subtoutine), :§ restores
previous values {uses return
stack...be carefuly.

v (== Begin Comment, delimited by right

paren. (up to 8K characters are
allowed).
PGMOVE (ul ul -~ '} Block Move of 8Kbytes from page ul to
page u2.
INTO [L 8lock Move from Inbox to page u.
ouror {0 =) Blaock Move from Page u to Outbox.
PEREAD (== nu;oos Read from Outdox of Cyblok u to
nbox.,
DUMBWAIT (--) Wait tor DOMBOS command slot
acxnowledge,
PEMESS { addr u -~) Send message st addr to Cyblok u.
PEWALT (addr u ==) Receive message from Cyblok u to addr.
PESLOT { v~ addr } Compute inslot address for Cyblok u.

LETTERS

I would 1like to point out a pos-
sible misconception that 1 noticed in
one of the judge's comments on page
54 in the special FD on Case Struc-—
tures. The third itemlisted as an
"advantage"” states "(The) case
selector is kept on (the) return stack
instead of in a special variable.
This allows nesting of CASE con-
structs.” 1I'd like to point out that
the FORTH-85 CASE structure, which
uses a variable (VCASE), is also
nestable. The reason for this is that
once a match has been made and execu-
tion 1s 1in progress between, CASE
« + .END-CASE the contents of VCASE
have served their purpose. Further
nesting at this point can alter the
contents of VCASE without problems.
When the unnesting occurs, END-CASE
shoots the Forth instruction pointer
to the words after the end of the
case structure. END-CASE does not
need the older contents of VCASE. If

the programmer would 1like to retain
the selector value, a simple "VCASE @"
directly after CASE will preserve the
contents of the stack. Then, for any
following Forth words having nested
DO-CASE structures, the problem of
overwriting is solved. The variable
storage method takes a little longer
to retrieve the current selector value
(i.e. VCASE @ versus DUP, or versus
I), but retrieving VCASE has not been
very common in my experience. To me
VCASE @ is more self-explanatory in
the context of the program than either
DUP or I. In addition, my feeling is
that messing up the return stack so
the normal index values (I & J)
cannot be used within a CASE. . .
END-CASE phrase, is a definite disad-
vantage. To solve return stack
problems 1like this, advanced Forth
Systems, such as the one now at Kitt
Peak or STOIC, have three stacks. The
extra stack 1is used explicitly for
LOOP indices while the rturn stack is
used for return addresses and tempo-
rary storage. In lieu of a third
stack, the VCASE variable presents a
clear way of handling this situation.
The variable storage method would
need to be changed to user variable
storage 1f multi-tasking was to be
implemented. This 1is only slightly
more complicated than the current
version. In my extension, I tried
both return stack and variable
methods. I selected the variable
storage due to speed improvements as
well as the aguments above. Also, in
regards to speed, the CALL's and JMP's
within the code statement for CASES
are weak in style snce the objective
in code statements is speed. These
really should be expanded out (i.e.
MACRO'd!). My original intent was to
make the article do double duty be
demonstrating these techniques as a
stepping stone to some debugging
methods I came up with.

Bob Giles
Tulsa, OK

FORTH DIMENSIONS II/4

Page 108

THE EXECUTION
VARIABLE AND ARRAY:

Michael A. McCourt
University of Rochester

A useful programming construct is
the jump table or 'COMPUTED GO TO'
type of structure. In Forth the exe-
cution variable and array can be used.
The Forth word EXECUTE executes the
code address on the top of the stack.
If one defines:

: XEQ <BUILDS , DOES> @ EXECUTE;

a word containing a code address as
its parameter can be created. As an
example

: TEST ." THIS IS A TEST" CR ;
0 XEQ FRED ' TEST CFA ' FRED 2+ !

The word TEST can now be executed by
typing FRED. You might ask--why not
type TEST to execute TEST? The reason
is that FRED is now a variable—-of
sorts. By changing the contents of
the parameter stored in FRED the
action of FRED can be changed. Execu-
tion arrays are similar, however, here
several code addresses can be stored
and later accessed by index number.
In our Forth system (an updated URTH
system to Forth-79 running on a
PDP-11) the Forth code address of zero
is disallowed and will cause execution
of the current ABORT procedure which
itself is contained in a wvariable,
i.e.

: ABORT ABEND @ EXECUTE ;

All execution variables and arrays
are initialized to zero so that they
will have predictable results.

Three words shown in block 502
listed below are used to change the
contents of execution variables and
arrays.

INSTALL <name>

returns the code fie{d address of
<name>.

{code addr> IN <XEQ var name>

stores the code address in the
parameter field of XEQ name.

{code addr><array offset> OFFSET.IN
< ()XEQ array name>

stores the code address at the
offset in the ()XEQ array.

Thus the previous example could be
written as

0 XEQ FRED INSTALL TEST IN FRED
Note that INSTALL and IN work within
a colon definition, e.g., ’

: DUMMY ;
: TURN.ON INSTALL TEST IN FRED;
: TURN.OFF INSTALL DUMMY IN FRED;

Execution variables are useful for
a variety of functions such as crea-
ting forward references, switching
output and/or input routines among
several terminals, debug routines and
of course implementing a jump table.

Examples
1. JUMP TABLE
Problem:
Define a function that will per-
form one of 26 operations depending

on which control key was typed.

Possible Solution:

26 ()XEQ CTRL.KEY

Page 109

FORTH DIMENSIONS I1/4

INSTALL 1FUNCTION 1 OFFSET.IN CTRL.KEY
INSTALL 2FUNCTION 2 OFFSET.IN CTRL.KEY

INSTALL 26 FUNCTION 26 OFFSET.IN
CTRL.KEY

: OPERATOR? BEGIN KEY DUP 27 <=
IF CTRL.KEY ELSE DROP THEN AGAIN;

One could implement the above with a
case or select statement, but the
execution array has less overhead in
execution speed and memory usage.

2. MULTITERMINAL DRIVERS
Problem:

One has a video terminal with
addressable cursor and a 'dumb' hard-
copy terminal. The 1latter terminal
does not accept cursor control charac—

ters gracefully.

Possible Solution:

One solution which alleviates this
problem is shown listed below in block
500. (Publ. note: we're not printing
block 500.) The word CTRL is an exe-
cution variable. When the video ter-
minal is operating (TTl1l) all control
characters are EMIT'ed; however, when
the printer 1is installed (TTO) the
control characters are DROP'ed.

The words EMIT and KEY are defined
as state variables as is ABEND (user
variables might be a familiar name to
some) and are addressed for multi-
tasking. They permit each task access
to its own terminal driver.

: TEST2 0 O TPC ."” TESTING" ;
(POSITION CURSOR AND PRINT)

TT1 TEST2 ('TESTING' WILL START AT
POSITION <0,0>)

TTO TEST2 (CONTROL CHARACTERS FOR
0 0 TPC HAVE NO EFFECT)

22 LIST (LISTING SENT TO PRINTER)
TT1 (BACK TO DISPLAY)

3. FORWARD REFERENCE

At times early in an applicarion
program one needs to define an error
handling routine. However, since none
of the higher level words have been
defined the error handling is rather
primitive. Execution variables allow
one to 'leave a blank' for the error
routine.

Suppose one has
0 XEQ DERROR

{device function code>
: DIO GO.BIT OR DEVICE.CONTROL !
WAIT .FOR.DEVICE .DONE
DEVICE.STATUS @ 0< IF DERROR THEN ;

Assume DIO is for control of a mag
tape drive. At this point in the
application program DERROR would nor-
mally be able to do only an ABORT.
With a tape drive one would prefer to
have some sort of recovery procedure
on write errors to either delete the
last file or at least write an End of
File mark. With the execution vari-
able one can install such a high level
routine at a later time after all the
necessary words (such as skip record,
read record, and write EOF) have been
defined. DERROR could also be defined
as an ()XEQ array and each error would
have its own associated error hand-
ling.

The previous examples demonstrate
the power of the <BUILDS ... DOES>
Forth constructs. XEQ and ()XEQ are
just two examples of defining words.
It is possible to build a wide range
of such defining words from words that
build simple 1linear arrays to ones
that define complex relational data
bases. In all cases one is associ-

FORTH DIMENSIONS II/4

Page 110

ating a data structure (here, a simple
code address) with an algorithm for
using the data (here, EXECUTE the code
address) and as Wirth has written
DATA STRUCTURES + ALGORITHMS =
PROGRAMS*

*Wirth, Niklaus, "Algorithms + Data
Structures = Programs,” Englewood
Cliffs, Prentice-Hall, Inc. 1976.

vereresn LUK 1), sedsmans
IMECCTUN CARTABLES WD a33ArS

Soned TN IQ ROUTINE ¢
LI 00F VESTIRSI=CD, XEQ AMRAY DEFING WORD)
<M LLDS WP . YIRST PARAMWMAX ¢ OF JECTORS
It DUP MERE SWAP) FILL ALLLT INTY ALl /ECTORS 200
0e8> P) X > © CHECX FOR MAX > INDEX
3 PIX e {OAND TCROINDEX Y=g)
AND 1F 24 SuA? 2¢ - P oEXECUTE

ELSEZ 2DR0P 3} ABORT
THEN |

. EQ W

s { ¢CODE AODRO=<>, CREATE IXECUTION VECTOR
20E5> 9 ZEQTE

..... we BLOCK 502 wwsevass
EXECUTION “ARLABLES AND ARRAYS CONT'D
{ FOR INSTALLATION: (NSTALL CROUTINE NAME> (n <XEQ NAME>)
: INSTALL (INSTALL <NAME> 1§ 'XEO' VARIABLE -- SET YECTOR ADDR)

1'{ STATE ® IF ZOMPILE CFA SLSE CFA THEN ; IMP INSTALL

© LN (CXEQ ADOR>=<)>, [N <XEQ VAR NAME>=-$TORE ADOR IS XEQ “AR)
it STATE & 1F COMPILE ! ELST ! THEN ; IMP [N

: OFFSET.IN (OIEQ ADR>CXEQ ARRAY WORD OFPSIT+LI~C>,)
SUP O>e IF 1+ 28 j'0 + ' | ZA¥'T USE IN COMPILE STATE ©
ILSE ICROP THEN |

MEETINGS

NORTHERN CALIFORNIA

8/23/80

Ray Dessey, a chemist from Vir-
ginia Polytechnical Institute in
Blacksberg, was visiting and he des—
cribed his recent trip to China.
FORTH accompanied him embodied in an
AIM and students at Futan University,
Shanghai, got a taste of FORTH. Dr.
Dessey said the University already
had 3 LSI-1l1's with Pertec floppies.
He also described Virginia Tech's
teaching/research machine which 1is a
network with 3 three terminal hosts

each having 15 satellite processors.
FORTH runs under an RT-11 operating
system. Instrumentation simulation
(a function generator + noise) is one
use.

Bill Ragsdale announced the Asilo-
mar FORTH retreat (cf., FD Vol. II
No. 3 for details).

Kim Harris described OPTIMIST, a
program which reminded me of a
cantankerous ELIZA. This FORTH
program, originally written in PL/1
by Kildall, exemplifies a SECURED
vocabulary as part of Kim's tutorial
on PRIVATE VOCABULARIES. He showed
how they are produced, tested and
sealed.

Howard Pearlmutter discussed
FIGGRAPH and the "human interface” of
FORTH. The FIGGRAPH committee is to
generate and articulate hardware
specs, goals, and a vocabulary.
Howard advised us to attend the HOME
BREW COMPUTER CLUB's showing, via a
G.E. LIGHT VALVE, of computer
graphics. (I saw it and it was as
entertaining as LASERIUM).

Handouts included:

- Harris' OPTIMIST and PRIVATE
VOCABULARY support

~ Zimmer's TERMINAL, a program to
teach a FORTHed Ohio Scientific
Instruments 0S-650v3 to act dumb

- FORTH MODIFICATION LABORATORY's
CALL FOR PAPERS: (Programming
methodology, Virtual Machine
Implementation, Concurrency,
Language & Compiler, Applica-
tions, and Standardization.

HELP WANTED

SENIOR PROGRAMMER to produce new poly-
FORTH systems and applications.
Contact: Carol Ritscher
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254

Page 111

FORTH DIMENSIONS I1/4

PROJECT BENCHMARK

A small, informal group of micro-
computer enthusiasts here in Albu-
querque read with interest "Project
Benchmark” in the June issue of the
magazine "INTERFACE AGE.” We have
amongst us a variety of systems and
languages, including 8080, 6800, and
the AM-100, interpreter and compiler
versions of BASIC, and fig-FORTH on
the three system types. We ran the
benchmark program all around and have
attached the results of our testing.

We found the results to be most
interesting and offer them to the
members of the Forth Interest Group.
In addition to the timing results,
there was also a significant advan-
tage in memory for the FORTH programs.
The compiled AlphaBasic program size
was 192 bytes while the FORTH bench~
mark program size was 166 bytes. All
three implementations of FORTH were
based on the fig model, and the pro-
gram ran without modification on all
systems demonstrating the transporta-
bility achievable with FORTH.

I have attached a listing of the
FORTH program. The implementation of
the language for the 8080 and the 6800
were from fig, while the Alpha Micro
version was provided by Sierra Com—
puter Co., Albuquerque, NM.

George O. Young III
Albuquerque, NM

PUN.BENCH ° X
GO0 RUN.3ENCH
STARTING
IO A | 7M1 U3 U7 L9 23 29 3L 37 4l e} &7 51 39 8L &7
L7379 83 39 97 101 103 107 109 113 127 131 137 139 149 LS1 i57 163 157
173 179 181 191 193 197 199 211 223 227 229 233 139 241 231 257 263 269 271 277
I51 183 293 307 111 313 317 331 337 347 349 353 339 367 373 379 363 189 397 W01
w09 $19 421 431 433 439 443 449 357 461 463 &7 79 S97 491 699 301 509 521 323
541 S47 557 S63 569 3TL 577 SB7 593 599 601 607 613 417 619 61 6L 643 647 653
559 561 471 677 68 631 701 709 T19 727 733 739 T3 731 TST Y6l 769 771 787 197
$09 811 321 823 827 829 839 853 857 859 263 877 881 883 887 907 11 919 929 337
941 947 951 967 371 977 983 991 997
FINISHED

LITIRPACE AGE Bencrmsrk Program
Rasuics {Tom che Albugquecque lroup

g/ Sveces Clock Laagusge £xecution Ties

4800 ‘9 e FORTY LY i

3080 1.86 ang roRTR PR
Moreh Scar OUS

A-100 1 ahe roem P 3 0

AN-100 v/ 2 w2 Alphabasic LIS Pad
polled sertal 1/0

2080 2.2 wne Bacton Harbor Rasic o2
Heath W8

2080 1.86 shg MicroSoft Basic ' 8"
Nocth Ster 008

0080 1.84 she KicroSofc Compiler 8 a1
¥orth Stac DOS Basic

8080 1.86 mhz Yorth Scar Sasic LISERE i
North Scar 008

4080 1.84 wha C-asic V1.01 7
North Scer 0OS

1-80 ’ C-Basic 31
Superdrain

6302 2 whe MicroSafr Basic a2y
Inte Sclentific

2-80 “ mhz Sorth Scar Basic 19’
North Star

2-80 4 hz North Scar 28t
March Star w/
Floattag Poinc Board

4800 -9 wht PERCOM Super Basic 73

4800 <9 mhe SWT? V1.3 %k Bastic 8L’

ceaer 176 FORTRAN 190 ms

CYBER W7 PASCAL 260 as

£DC 2600 FORTRAN 1009 as

<OC 5000 PASCAL 1500 38

SOTE: Altnough speed improvesents 3av be aade to the basic alcriiom s
published (n INTERFACE AGE. the »ngrams osed :a cre above ‘est reaaived 2
ifue Tepressatation of the algori< @ pubiished tn the June issud of INTEIFATE
ASE wgazine.

crcmrs
cuwrun-ol GECEEScevewscnmol

Cowm-

13
1%
is

4
«rer FOR TR ALPNA AICRO SYSTEM ***=
£1g-FORTR V | .1
AM-PORTY VEASION 4.3
Property of SIZARA COMPUTER COMPARY
617 Merc ¥
Alboquarque, Bt 87123
12 luly 1980

INTERFACE AGE BENCHMARK PROGRAM ENTER U/ UPPER LIMIT-L »)
OUP 2 / L4 SuAP .7 STARTLMG " CR
1 %0

i3
17 OROP DRO? 1 LEAVE
TLST 1 = 1F DROP 1
KLSE DUP 0 > 17 DROP |
ELSE 0= IF O LEAVE

eoLr
[
ooty
ooty
i 4 .R ELSE OROP EWDLF
LOOP DROP CR .~ FINISWED. °
-—>
’9
(INTERPACE AGE BENCHMARX PROGRAM, CALLING ROUTINE L

: RUM.BENCE TIME SWAP BENCH TDME
SUAP ~ 60 / 60 /0D
CR ." ELAPSEID TIME:
»C MINUIES, T
. ." SECOWDS.

HELP WANTED

.FORTH PROGRAMMERS (or ASSEMBLY program-
mers who want to learn FORTH).
Contact: Gary Osumi (714) 453-2345
Hydro Products, San Diego, CA

FORTH DIMENSIONS II/4

Page 112

IPS
A GERMAN FORTH-DIALECT

Dr. Karl Meinzer
Marbach, W. Germany

The AMSAT-Phase III communication
satellites for radio-amateurs utilize
a computer on board for a variety of
tasks. In order to simplify the
programming and to allow a simple
dialogue with the spacecraft the
language IPS was developed (in 1976).
It is a Forth-derivative geared very
strongly towards engineering applica-
tions (real-time control) and by now
it is also used in a variety of
control-related areas. The following
lines describe the rationale of the
system and its main differences as
compared to FORTH.

Area of Application

The IPS development was aimed in
particular towards the "low"” end of
computers. Most control applications
do not justify a larger computer for
cost reasons. On the other hand,
these applications profit most from a
powerful language processor since the
common techniques are very clumsy to
use. The computer I had in mind when
I designed IPS was at about the level
of the TRS-80 with 16K bytes of RAM
(integral video memory and cassette
for mass storage). For real-world
interactions control-I1/0 and a 20ms
interrupt must be added to complete
the system.

The IPS Language

An introduction to IPS was given
in BYTE, Jan. 1979, pp. 1l46; so here
I want to explain the difference to
FORTH. First: for the names 1 tried
to find words which are more logical
in a postfix environment. Take the
IF ELSE THEN construct, e.g., in IPS
it is replaced by YES? NO: and THEN.
This seemed more logical since the IF

implies a test following. But with
the preceding test YES? is more appro-
priate. Of course these fine points
may not be very important. Others are
more SoO: numbers wused an truth-
variable on the stack use only the
least significant bit. This allows
the 16-bit 1logic operators like AND
OR or XOR to be used consistently with
truth-variables.

A major difference is the way names
are encoded. I did not like the limi-
tations coming from the 3 characters
plus length codes; but then neither
did I want to use more than 4 bytes
for the code. The following technique
was adopted: from all characters of
the name (up to 63), a division
remainder using the polynomial X24 +
X7 + X2 + X1 + 1 is computed (3 bytes)
and stored with the 1length of the
name. This technique allows abitrary
names; e.g., MACHINE-Al and MACHINE-A2
are distinct and not confused by the
system.

Theoretically there is a small (10
to the -7) probability of a collision
--in practice I never yet encountered
one. In any case, no harm can come
from this because in IPS the system
does not allow the redefinition of
names. This "advantage” of FORTH was
dropped very early because from our
user—feedback it soon became clear
that it was—--directly or indirectly--
one of the major causes for program—
ming errors.

Other plausibility checks were
added to make the system more for-
giving against the typical program
ming blunders. (I do not believe in
the FORTH-assumption that the pro-
grammer can be perfect~—~I am a good
example to the contrary). In fact, a
few checks can make the system vir-
tually crashproof. Of course, one has
to be careful not to get carried away
with this—-1if the integrity of the
system is reduced, much of the power
of a FORTH-like language goes away.

Page 113

FORTH DIMENSIONS I1I/4

Three examples within IPS:

During definitions the colon puts
an unused address on the stack.
The semicolon checks for this
number: 1f 1t finds a different
number, most likely a structuring
error has occurred. The defini-
tion 1is removed and an error
message is written.

. Each word has a wunique 2-bit
identification in the name field
defining its use in the interpre-
tive mode. Words like YES?, for
example, are not executed outside
definitions—-so no "magic effects”
can result.

. The number of interpreter states
the programmer has to keep in mind
is minimized. The base for number
conversions 1is set explicitly.
Numbers 1like 40 or -721 are
treated as decimal, #03 or #AFQ7
as hexadecimal numbers.

Real-Time Multiprogramming

The typical situation with real-
time control has the processor waiting
for some event, then executing a task
~—usually very fast-—and then again
waiting for other events. In prac-
tice, typically the computer must
attend to a number of such tasks.
This allows for a fairly simple multi-
programming concept. The tasks are
put in a cyclic "chain,” an array con-
taining the addresses of the tasks to
be executed. The system executed them
periodically in a roundrobin fashion.
Provided that none of the tasks
“"grabs” the processor this results in
a reasonably fair arbitration of pro-
cegssor time and was found sufficient
for most control applications. Two
operators are provided to allow
dynamic and static task allocations:
INCHAIN and DECHAIN.

The interpreter/compiler 1is also
a task in this sense~—it executes one

word at a time before it returns to
the chain. This keeps all the
debugging capability of the inter-
preter a hand while other tasks are
executing.

The system is augmented by the
concept of "pseudo—interrupts.” The
address interpreter (NEXT) is effec-
tively a stack-machine which has ideal
properties for interrupting it--no
saving is required. If the address
interpreter can accept these pseudo-
interrupts between the execution of
code-routines, a very powerful high-
level interrupt—concept 1is possible.
In IPS such a pseudo-interrupt is exe-
cuted every 20ms to keep the keyboard
alive and for timekeeping purposes.
Other pseudo—-interrupts may be added
as required.

Signalling to the address inter-
preter the pseudo—-interrupt request
without creating additional overhead
is a bit 1involved with most pro-
cessors. Only with the CDP 1802,
this is straightforward-—-the address
interpreter contains a jump that can
be made conditional on an external
signal (External flag). With the
other processors a real interrupt is
used to modify the code of NEXT;
admittedly a less than desirable way
of programming. Since this occurs
only at a single point, it was con-
sidered to be the lesser evil over a
possibly increased duration of NEXT.

Handling and Testing

IPS is strongly TV-screen
oriented. This allowed the stack to
be continuously visible by putting a
display-program into the chain. For
debugging it 1is a great help not
having to request the stack-content,
but seeing it continuously. During
the operation of chain-operators the
system remains "live,” you always can
go after problems and investigate.

FORTH DIMENSIONS 11/4

Page 114

Typically, programs are first
written on cassette with the integral
text-editor as blocks of 512 bytes
each. Then the blocks are compiled
and tested. If necessary, blocks may
be edited on the cassette and recom—
piled to solve bugs. Eventually a
binary dump of the whole program (IPS
plus application) 1s produced to
facilitate fast reloading.

Experiences So Far

Primarily, the system was
developed for the Phase 111 space-
craft that was launched in May 1980,
It gave the handling of the satellite
an unprecedented degree of flexibility
and at the same time helped to solve
the rather complex attitude control
problems with a minimum of pain. The
spherical trigonometry of the satel-
lite was solved very elegantly by
Cordic-type rotation operators rather
than the conventional solution using
sines and cosines. This allows a
geometrical analysis of the problems
rather than the much more complicated
alebraic analysis.

Unfortunately the launcher (ARIANE
L02) failed and the spacecrafr was
destroyed--a repeat is scheduled for
early 1982. The ground equipment also
uses IPS. An English version for the
8080 using an S-100 bus computer was
used for the safety surveillance
computer.

Furthermore, a large number of
COSMAC based computers within the
University of Marburg utilize IPS for
a number of research-data—acquisition
tasks. All in all, our experience
with the system has fully met our
goals—--to simplify real-time control.

The Problem of Distribution

With the real-time capabilities
of IPS, portability of the system is
much more difficult to achieve than
with more common language processors—-

the hardware configurations have much
more connections with the system than
say with a BASIC interpreter. Typ-
ically we wmodify the IPS meta-source
to match the hardware at hand and then
run the scurce through a meta-compiler
producing the new system. The lack of
suitable “srandard-computers” having
the required real-time hardware exten—
sions so tar has prevented a very
widespread distribution of IPS. Now
we have a version running on the
TRS-80 with a few restrictions; by
adding some hardware these restric-
rions go away. As 4 next step we
intend to build a meta-compiler run-
ring on an unmodified TRS-80. Hope-
fully this way we can get “out of the
cvcle” and thus enable a widespread
distribution of [PS. The large number
of letters I received after the BYTE
paper convinced me that the need for
such a system is very real. I should
be pleased if this letter also pre-
sents a stimulus to FORTH programmers
to add some of the IPS concepts to
enhance its usefulness for real-time
centrol.

AUTHORS WANTED

Mountain View Press, the source
for printed FORTH, will publish,
advertise and distribute your FORTH
in printed form. Substantial royalty
arrangement.

Contact: Roy Martens
Mountain View Press
PO Box 4656
Mt. View, CA 94040

HELP WANTED

PROJECT MANAGER to supervise applica-
rions and special systems projects.
Contact: Carol Ritscher
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254

Page 115

FORTH DIMENSIONS II/4

in th sd it m

o |

THE CASE, SEL,
AND COND STRUCTURES:

Peter H. Helmers
University of Rochester

The following is a description of
the three "case~like" structures which
have been added to URTH for the
Ultrasound Lab in the Department of
Radiology at the Unjiversity of
Rochester. These three structures
were evolved from a simpler prototype
CASE statement developed by Rich
Marisa at the University's Towne House
Computer Center and by Larry Forsley
at the University's Laboratory for
Laser Energetics.

Execution Time Operation

The three structures to be des-
cribed are the CASE, SEL and COND
statements. Referring to the examples
given in figure 1, it can be seen that
each of these structure types consists
of a series of one or more clauses
delimited by the << and >> words, and
enclosed within the appropriate struc-
ture defining words:

CASE ... ENDCASE
SEL ... ENDSEL
or, COND ... ENDCOND

Each can have an optional OTHERWISE
clause which is executed if none of
the other clauses is executed.

These structure types differ in
how a given clause 1is selected for
execution; thus the description of
each type which follows will try to
elucidate their difference.

The COND structure 1is a more
readable syntax for a series of
nested IF...ELSE...THEN statements.
The COND structure consists of a
series of clauses with explicitly
specified conditions and associated

actions which are executed if the
condition 1s satisfied. Only the
first clause whose condition is met
is executed in a given execution of
the structure. The integer on the top
of the parameter stack is destroyed
after execution. The TEST-COND
definition shown in figure 1 1is an
example of the syntax of this
structure.

The SEL structure is similar to
the COND structure except that it uses
an implicit test for equality to an
explicitly specified integer value.
Thus when the top of the parameter
stack value matches that used within
the SEL clause, the associated action
is taken. As with the COND statement,
only the first clause selected will
be executed in a single pass through
the structure. Additionally, the
integer value tested is removed from
the top of the stack after execution.
An example of this structure is the
TEST-SEL definition shown in figure 1.

The CASE structure is in turn
similar to the SEL structure except
that it uses both an impliclit test
for -equality, and an implicit number-

ing of the case clauses, starting with

1 for the first clause. Thus an
explicit test value does not have to
be specified. In operation, for
example, a value of three on the top
of the parameter stack would cause
execution of the third clause in a
CASE statement, if it exists. Note
that the CASE value on the top of the
parameter stack is dropped after each
pass through the structure.

Compiler Operation

The words <<, WHEN, and >> are
used in common by all three types of
structures; thus these words' com-
piling operations are dependent on the
type of structure being used. This
“"type” information is determined by
the integer on the top of the para-
meter stack at compile time-—which is

FORTH DIMENSIONS 1I1/4

Page 116

set in turn by the words: CASE, SEL,
or COND. These structure defining
words each put two integer values on
the stack. The next to top of the
stack value 1is a flag value of zero
which is used by the structure termi-
nating words (ENDSEL, etc.) when they
link up branch addresses. The top of
stack value reflects the type of
structure being wused as summarized
here:

-2 COND structure

-1 SEL structure

ZQ CASE structure; this integer
is actually the value of
the previous CASE clause
which was compiled.

The <<, WHEN, and >> words thus
analyze the top of stack value to
determine what words are to be com—
piled into the new word's parameter
list. For example, WHEN for a SEL
structure compiles the words OVER =
and IF into the new word's definitionm.

The examples of the structures in
figure 1 illustrate their respective
syntaxes. Figures 2 through 4 are
outputs from a FORTH debugger (de-
compiler) which emphasize the dif-
ferent compilations of <<, WHEN, and
>> for each type of structure. (Note
that the results of the compilation
process are listed to the left, while
the corresponding high level compiler
words are at the right.) By studying
the definitions of these structural
words in figure 5 in conjunction with
the examples and the debugger outputs,
operation should be easily adapted to
other FORTH systems.

OK DEBUG TEST~COND
TEST-COND LINKED TO 332D

: DEFINITION
3376 1439 DUP ————m-mmmmmmm—mee <«

3378 OL11 LIT FFFE

337C 17DB <

337E O7FD $1F 3388 ———--—emmee=e WHEN
3382 3287 LESS-THAN-NEG-TWO

3384 0810 $ELSE 339A ——=-=—=-- »

3388 1639 DUP ———=mwrmmmmm—m— (K

3384 1361 2

338C 1806 >=

I3BE OTFD §IF 3398 ——~=w-re==== WHEN
3392 32CF GREATER-THAN-ONE

3394 0810 SELSE 339A ———-——- »

3198 168 R

339A 13BB DROP ==mwm=mmmmmemeaee ENDCOND
339C 01¢8 §;

ok FIGURE 2

(STRUCTURE EXAMPLES - PHH - 8 22 80)
: PIRST ;

: SECOND ;

: THIRD ;

: WHO-KNOWS? ;

: ONE ;

: NEG-THIRTY-THREE ;

: FIVE ;

¢t LESS~THAN-NEG-TWO ;

: GREATER-THAN-ONE ;

(STRUCTURE TESTS - CON'T ~ PHH - 8 22 80)
: TEST-CASE
CASE
<< FIRST >>
<< SECOND >>
<< THIRD >>
OTHERWISE WHO-KNOWS?
ENDCASE ;

: TEST-SEL
SEL
<< 1 WHEN ONE >>
<< <33 WHEN NEG-THIRTY-THREE >>
<< 5 WHEN FIVE >>
OTHERWISE WHO-KNOWS?
ENDSEL ;

: TEST-COND
COND
<< =2 < WHEN LESS-THAN-NEG-TWO >>
<< 2 >= WHEN GREATER-THAN-ONE >>
OTHERWISE CR
ENDCOND

FIGURE 1

OK DZBUG TEST-SEL
TEST-SEL LINKED TO 32E3

: DEFINITION

332D 07p4 1

332F 142C OVER)

3331 17BE = y==--— WHEN
3333 07¢D SIF 333D)

3337 327a ONE

3339 0810 $ELSE 3363 ———————— D>
333D 0111 LIT FFOP

3341 142C OVER)

3343 17BE =)-~-=== WHEN
3345 O7FD $IF 334F)

3349 3292 NEG-THIRTY-THREE

334B 0810 $ELSE 336 =rmww——==)
334F 0111 LIT 0005

3353 142¢C OVER)

3355 17BE =)——— WHEN
3357 07FD $IF 3361)

3358 392E FIVE

335D 0810 $ELSE 3363 ———-——=— D>
3361 326F WHO-KNOWS?

3363 13BB DROP —————wr—ewm—eaem ENDSEL
3365 01C8 §;

oK

FORTH DIMENSIONS II/4

OK DEBUG TEST-CASE
TEST-CASE LINKED TO 32D2

: DEFINITION

32E3 0111 LIT 0001)

32E7 142C OVER)

32E9 1TBE = Y- «

32EM O7FD SIF 32F5)
J2EF 3242 FIRST

32F1 0810 SELSE 331B —=-=———= >
32F5 0111 LIT 0002)
32F9 142C OVER)
32F8 17BE = Yo K
32FD O7FD $IF 3307)
3301 3250 SECOND
3303 0810 SELSE 331B —~=—=—- — »
3307 €111 LIT 0003)
3308 142C OVER)
330D 17BE = Y
3307 O7FD SIF 3319)
3313 325D THIRD
3315 0810 SELSE 331B ==w=————- D>
3319 326F WHO-KNOWS?
3318 1388 DROP —=—=—=—=~==—==- ENDCASE
331D O1CB §;
oK

FIGURE 4

(FORTH CONTROL STRUCTURES) BASE @ HEX
: 1CADR WPARAM -~ , ;
: NOT

IF O ELSE 1 THEN ;

¢ WHILE
HERE ; IMP WHILE
: PERFORM
' DUP !CADR
' <R !CADR ' $IF !CADR
HERE O . : IMP PERFORM
: ENDWHILE
HERE SWAP ! ' B> !CADR
' NOT 'CADR ' SIF !CADR , ;
IMP ENDWHILE
BASE ! :8

(FORTH CONTROL STRUCTURES) BASE @ HEX

UNTIL ; IMP UNTIL
: CASE 0 0 ; IMP CASE
: SEL 0 -1 ; IMP SEL
: COND O -2 IMP COND (DO CONDITIONAL BRANCH)
: >
! SELSE !CADR 0 , HERE
SWAP ! HERE 2 - SWAP ; IMP >>
: ENDSEL DROP (CASE#/FLAG)
HERE

WHILE OVER PERFORM
DUP ROT ! ENDWHILE
2DROP ' DROP !CADR ;

: ENDCASE ENDSEL ; : ENDCOND SEL :
IMP ENDSEL 1IMP ENDCASE IMP ENDCOND
BASE ! :§

(PORTH CONTROL STRUCTURES) BASE @ HEX
: WHEN

DUP -2 =

IF ' OVER !CADR

' = ICADR

THEN

' SIF ICADR

HERE O , ;
: << DUP OC IF

DUP -2 = IF ' DUP !CADR THEN (COND)

ELSE ' LIT !CADR l+ DUP , WHEN THEN ;
IMP << IMP WHEN
: OTHERWISE ; IMP OTHERWISE
BASE !]

FIGURE 5

MEETINGS

NORTHERN CALIFORNIA
9/27/80

Dave Lion announced availablility
of his 6800 assembler in FORTH occu-
pying 1.5 Kbytes of 4 screens.

Tom Zimmer annonced availability
of his Tiny Pascal in FORTH; Ragsdale
again lauded Tom's effort as a bench-
mark (cf., MEETING REPORT, FD vol. 11
No. 3, p. 59).

Martin Schaaf announced committee
formation for specifying a FORTH
machine's hardware.

Henry Laxen of ORTHOCODE Corp. made
freely available a FORTH "WORDSTAR"-
styled Editor and announced sale of
GOING FORTH, the tutorial package on
8" disk by CREATIVE SOLUTIONS.

Eric Welch, the FORTH Programming
Team Manager for FRIENDS-AMIS' pocket
computer project, gave an in-depth
description of his job. A philosophy
of team organization and control was
graphed and an iterative planning
strategy delineated. Some problems
encountered and solved by this manage—
ment strategy included:

- wheel-reinvention, duplication and
redundancy prevention

- tool development (much effort was
spent on tracers, patches, simu-
lators, target compiler, break-
points and documentation and its
maintenance)

- style adherence (readability and
maintainability) in development
and documentation

- programming environment (which, in
FORTH, is relatively worse due to
newness and 1inexperience)-—here
the solution entails the project
manager's close involvement and
intense team interaction

-~ accountability of time spent at
each level of the plan

FORTH DIMENSIONS II/4

Page 118

How to form a FIG Chapter:

1.

You decide on a time and place
for the first meeting in your
area. (Allow about 8 weeks for
steps 2 and 3.)

Send to FIG in San Carlos, CA
a meeting announcement on one
side of 8-1/2 x 11 paper (one
copy 1is enough). Also send
list of ZIP numbers that you
want mailed to (use first three
digits if it works for you).

FIG will print, address and
mail to members with the ZIP's
you want from San Carlos, CA.

When you've had your first
meeting with 5 or more atten—
dees then FIG will provide you
with names in your area. You
have to tell us when you have
5 or more.

Northern California

4th Saturday

FIG Monthly Meeting,
1:00 p.m., at Liberty
House Department Store,
Hayward, CA. FORML
Workshop at 10:00 a.m.

Southern California

4th Saturday

FIG Meeting, 11:00 a.m.
Allstate Savings, 8800
So. Sepulveda, L.A.

Call Phillip Wass,
(213) 649-1428.
FIGGRAPH
11/15/80 FORTH for computer
12/13/80 graphics. 2:00 p.m.
at Stanford Medical
School, #M-112 at Palo
Alto, CA.
Massachusetts

3rd Wednesday

MMSFORTH Users Group,
7:00 p.m., Cochituate,
MA. Call Dick Miller
at (617) 653-6136 for
site.

San Diego
Thursdays

Seattle
Various times

Potomac
Various times

Texas
Various times

Arizona
Various times

Oregon
Various times

New York
Various times

Detroit
Various times

Japan
Various times

FIG Meeting, 12:00
noon. Call Guy Kelly
at (714) 268-3100
x 4784 for site.

Contact Chuck Pliske
or Dwight Vandenburg
at (206) 542-8370.

Contact Paul van der
Eijk at (703) 354-7443
or Joel Shprentz at
(703) 437-9218.

Contact Jeff Lewis at
(713) 729-3320 or John
Earls at (214) 661-2928
or Dwayne Gustaus at
(817) 387-6976. John
Hastings (512) 835-1918

Contact Dick Wilson at
(602) 277-6611 x 3257.

Contact Ed Krammerer
at (503) 644-2688.

Contact Tom Jung at
(212) 746-4062.

Contact Dean Vieau at
(313) 493-5105.

Contact Mr. Okada,
President, ASR Corp.
Int'l, 3-15-8, Nishi-
Shimbashi Manato—ku,
Tokyo, Japan.

Publishers Note:

Please

send notes (and

reports)

about your meetings.

Page 119

FORTH DIMENSIONS II/4

