HOATH IMIETSIONS

FORTH INTEREST GROUP Volume I
P.O. Box 1105 Number 3
San Carios, CA 94070 Price $5.00

NSk

35 Historical Perspective

Publisher's Column

36-89 Case Contest
Dr. Charles E. Eaker Bob Giles
Steve Munson Arie Kattenberg
Karl Bochert/Dave Lion George Lyons
Steve Brecher R.D. Perry
Mike Brothers William H. Powell
Dwight K. Elvey ' Major Robert A. Selzer
William S. Emery Kenneth A. Wilson

E. W. Fittery Wayne Will/Bill Busler
, David Kilbridge

90-91 Meeting Report

92 Meetings

93 Call for Papers

94 FORML Couference

National Convention

FOSTH IMENSIDTS

Published by Forth interest Group
Volume 1l No. 3 September/October 1980

Pubhisher Roy C. Martens

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
George Maverick

FORTH DIMENSIONS solicits editorial material, com-
ments and letters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL PUB-
LISHED BY THE FORTH INTEREST GROUP IS IN THE
PUBLIC DOMAIN. information in FORTH DIMENSIONS
may be reproduced with credit given to the author and
the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth Interest Group at $12.00 per
year ($15.00 overseas). For membership, change of
address and/or to submit material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

—=HISTORICAL PERSPECTIVE —

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radio Astronomy Observatory,
Charlottesville, VA It was created out of dissatisfaction
with available programming tools, especially for ob-
servatory automation.

Mr. Moore and several associates formed FORTH,
Inc. in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lang-
uage, and to supply application programming to meet
customers’ unique requirements.

The Forth Interest Group is centered in Northern
California; although our membership of 1100 is world-
wide. It was formed in 1978 by FORTH programmers to
encourage use of the language by the interchange of
ideas through seminars and publications.

Busy. busy, busy. That's what its been for the last
couple of months. Here are some of the things that have
been happening.

1. We've reorganized the order processing for the
mail order items listed on the last page. The volume
has increased so much this year that we had gotten
several months behind. Now, its all being handled
at one location and we even have a phone number
for checking on your orders (415) 962-8653. If you
have technical questions DO NOT CALL, write to
the box number so that your request can be routed
to the most helpful person

2. We can now take VISA and Master Charge orders
by mail and by phone, {415) 962-8653. The charge
on your monthly statement will be listed as "Mt.
View Press”. This was done because FIG isn't set
up to handle charges. We still aren‘tready to handle
purchase orders or delayed bilfings.

3. The Augustissue of Byte magazine has put FORTH
ON THE MAP. We are receiving 50-60 orders and
requests for information a day. We have a supply of
the issue and can furnish them to you (see the Mail
Order form on the last page).

4. This issue of FORTH DIMENSIONS has 60 pages
and includes all the CASES that were submitted.
Don't get your hopes up for more FD's this long.
Next month we go back to our regular size. Congrat-
ulations to all entrants!

5. Two events are coming up soon. The FORML Ad-
vanced Conference will be held November 26-28,
1980 at Asilomar Conference Grounds, CA. The
National FORTH interest Group Convention will be
held on November 29, 1980 at San Mateo, CA. See
Page 94 for more information and to register.

My thanks to the Judges and Editorial Review Board
for all the help they have given me on this BIG issue.
without their assistance, much of it done late at night,
you wouldn't be reading this issue for months to come.
Many thanks! .

Roy Martens

Page 35

FORTH DIMENSIONS II/3

==CASE CONTEST CLOSES=

This 1ssue of FORTH DIMENSIONS is
another special issue, chiefly devoted
to FIG's CASE Statement Contest. The
contest, announced in FD I/5, Jan./Feb.
1980, brought entries from sixteen
individuals and teams, showing a high
level of interest and activity among
the membership.

All the entries are published here.
They show imaginative thinking and hard
work, and illustrate the many different
ways that FORTH allows the user to
implement a single concept. Although
no one entry seemed to get it all
together, many show some very good
work.

Our panel of judges did not settle
on a single winner, but instead have
decided that the prize will be shared
among three entries. These are Dr.
Charles E. Eaker, Steve Munson, and the
team of Karl Bochert and Dave Lion.

BEach of these winners will receive a
$50 prize and a one year subscription
to Infoworld. The high interest in the
contest has justified increasing the
overall prize from the $100 announced
(including $50 contributed by FORTH,
Inc.) to $150. Infoworld kindly
donated the subscriptions.

Eaker's entry is particularly well
organized, and has a clear, readable
writeup. He implemented a keyed CASE
statement, and uses non-obvious words.
(See below for the difference between
positional and keyed CASE statements.)

Munson put so much thought into the
contest that he included several
versions, differing in the type of data
that keys the CASE statement, and in
keyed versus positional ordering of
cases,

Bochert and Lion submitted a neat
positional entry. It includes the
ability to alter the binding of cases
to case bodies after compile time.

The Jjudging was based on a variety
of factors:

1. the approach taken, including
degree of generality;

2. the success and efficiency of
the implementation, e.g., a
minimum of computation and
dictionary use should be left to
execution time;

3. FORTH-like style, including good
documentation on the screens;

4, overall prose description,
together with an evaluation of
the advantages and limitations
of the approach or implementa-
tion;

5. adeguacy and clarity of exam-
ples.

However, the judging did not involve
loading and testing the entries on a
running FORTH system,

The judges felt that most entrants
were not getting close enough to what
is possible in FORTH. They seemed to
think along narrow lines. A general
CASE implementation should be efficient
both for the positional case (where the
values tested are restricted to the
first N integers, for example, similar
to FORTRAN's computed GO-T0), and for
the general "keyed" case, where a
value, not necessarily an integer, is
tested against a sequence of explicit
values. Very few people tried to solve
both.

This collection of contest entries
make this issue of FD an excellent
source for the comparative study of
implementation techniques. Interested
FORTH students should read each entry
to pick up helpful techniques and
evaluate style. (Caution: Any entry
may also show poor technigques and weak
style.)

Forth Dimensions welcomes more
contributors.

FORTH DIMENSIONS II/3

Page 36

===JUST IN CASE

Dr. Charles E. Eaker

Even though FORTH provides a variety
of program control structures, a CASE
structure typically has not been one of
them, There is no particular reason
for this since, as we shall soon see,
it is not difficult to implement
one.

There are two different approaches
one can take to implementing a CASE
structure: vectored jumps and nested
IF...ELSE...THEN structures. Vectored
jumps provide the greatest speed at
run-time but produce enormous compiling
complications. So, taking the path of
least resistance, here is a proposal
for implementing a CASE structure for
FORTH which is really just a substitute
for nested IF structures. But, even
though the proposal is logically
redundant, there are a number of
practical benefits whicn make it worthy
of consideration.

To help this discussion, consider a
word which might appear in an assembler
vocabulary with a glossary entry as
follows:

GEN operand, opcode, mode selector —

Used by the ASSEMBLER vocabulary
to generate opcodes. 'Mode selector’
is the value which indicates which
addressing mode has been specified.
'Opcode’ is the value placed on the
stack by the preceding mnemonic, and
'‘operand' is the value to be used as
the argument of the opcode.

Here is one way of coding GEN.

: GEN O QVER =

IF DROP IMMEDIATE

EISE 10 OVER =

IF DROP DIRECT

ELSE 20 OVER =
IF DROP INDEXED
ELSE 30 OVER =
IF DROP EXTENDED
ELSE DROP MODE-ERROR
ENDIF
ENDIF

ENDIF

ENDIF RESET ;

GEN is defined to expect a 1l6-bit
number on top of the stack. For each
IF, this number, the "select value," is
copied and tested against a constant,
the "case value." 1If the select value
equals the case value the appropriate
code is executed. If all tests fail,
MODE-ERROR is executed. Notice that
GEN meticulously keeps the stack
clean.

Depending on the select value,
some action is performed on the opcode
and operand, and GEN removes them from
the stack. Consequently, before each
test, GEN must copy (OVER) the select
value, and if the test is successful,
the select value must be dropped from
the stack to expose the data values
prior to the appropriate routine being
called.

But wouldn't you rather code this
thing this way?

: GEN CASE
0 OF IMMEDIATE ENDOF
10 OF DIRECT ENDOF
20 OF INDEXED ENDOF
30 OF EXTENDED ENDOF
MODE-ERROR
ENDCASE RESET ;

It is certainly easier to see what
this routine is doing, so camments are
not as necessary, and changes and
repairs are far easier to do. Here are
the required colon definitions of CASE,
OF, ENDOF, and ENDCASE.

Page 37

FORTH DIMENSIONS II/3

TASE II0MP Jsep 3 :Cs? 4, IMMEDIATE

CF 4 ?PALRS JCMPILE QVER CCMPILE = COMPILE CBRANCH
HERE 2 , COMPILE DROP S : IMMECIATE

ENDCF S JFAIRS ISMPILE BRANCH HERE I,
SWAP 2 [JOMPLILE; SwDIF 4 ; IMIEDIATE

ENDCASE 4 TPAIRS <TMPILE DROP
BESIN 5Pd CSP 3 = (0=
WHILE 2 [COMPILE, ENDIF REPZAT
<SP i IMMEDIATE

It so happens that with these
lefinitions both versions of GEN
compile the identical code into
=ne dictionary. Let's look at the
ompiling details.

CASE makes sure that it is in a
olon definition. Then it saves the
value of CSP (which contains the
oosition of the stack at the beginning
>f this case structure) and sets CSP
aqual to the present position of the
stack. The new value of CSP will be
ised later by ENDCASE to resolve
forward references. Finally, it throws
3 four onto the stack which will be
ised for checking syntax. CASE ocom-
ciles no code into the dictionary.

OF first checks that it has been
oreceded either by CASE or an ENDOF.
If the syntax is in order, then ocode
:s compiled into the dictionary to
Juplicate the select value (OVER)
and test its equality to the current
case value (=). Next, code for a
oonditional branch is compiled into the
dictionary followed by code for DROP.
Notice that at run-time the DROP is
executed only if the select value
equals the constant for this OF...ENDOF

pair.

ENDOF first checks that an OF has
Jone before, If so, then it compiles
an absolute branch to whatever code
follows ENDCASE. However, the address
to branch to is not yet known, so a

dummy null is campiled into the address
and its location is left on the stack
sO ENDCASE will know where to stick the
address once it is known. But there is
already an address on the stack just
under the one which ENDOF just pushed.
This address was left by OF and it
points to an address that should hold a
branch address to the code which
follows the oode generated by ENDOF.
So, ENDOF swaps the addresses and calls
ENDIF to resolve the address at the
address left by OF. Finally, ENDOF
leaves a four on the stack for syntax
checking.

ENDCASE makes sure 1t has been
preceded by either a CASE or ENDOF.
Otherwise an error message 1S issued
and compilation is aborted. Code for
a DROP is compiled into the dictionary,
then all the unresolved forward
branches left by each ENDOF are
resolved. Since there may be any
number of them, including none, ENDCASE
checks the current stack position
against what it was when CASE was
executed, and performs a fixup by
calling ENDIF until the stack no longer
contains addresses left by previous
ENDOF's. Notice that all of these
branches are resolved to point to the
code after the DROP generated by
ENDCASE. In the case of GEN this is
RESET.

It doesn't take long to notice
that OF generates an enormous amount of
code (10 bytes). This is a classic
example of a situation that cries out
for a machine language primitive. If a
run-time word could be defined, let's
call it (OF), then each OF would
generate just 4 bytes two to point to
(OF) and two for the branch address.
what (OF) would have to do is pull the
top stack item (the current case value)
and test it for equality with the new
top stack item (the select value) 1f
the test for equality is true then the
next item on the stack the select
value 1is also popped and execution
continues after the (OF) If the test
is false execution branches using the

FORTH DIMENSIONS II/3

Page 38

branch value following the pointer to
(OF), and the select value is left on
the stack.

CODE (9?) A PUL o PuUL TSX
1,x 8 sts O,X A €3C ABA (=
IF INS INS ' BRANCY CEA 9 [BEX ; Il « Jnp
THEN ' BRANCH CFA 3 JMp

: CF 4 ?PA[RS COMPILE (CF) HERE 0 , 5 ; IMMEDIATE

The M6800 code listed above 1is
straightforward except that is uses
code in BRANCH and OBRANCH. (OF)
should work in any FIG 6800 installa-
tion provided BRANCH and OBRANCH have
not been altered (it doesn't matter
where they are located). Non-6800
users will have to roll their own, but
the high—-level OF should make it clear
what has to be done.

The disadvantages of this CASE
proposal are that execution is not as
fast as a vectored implementation, and
in some versions of FORTH, ENDOF and
ENDIF cannot be distingquished. These
seem minor compared to the advantages -
and there are several.

First, a CASE statement may contain
any number of OF...ENDOF pairs, and the
constants may be arranged in any order
whatever. Actually the constants need
not be constants. Between an ENDOF and
the next OF the programmer may insert
as much code as he or she likes in-
cluding code which will compute the
value of the "constant." CASE state-
ments may be nested; a CASE...ENDCASE
pair may appear between an OF...ENDOF
pair. Furthermore, there need not be
any code between CASE and ENDCASE, nor
must there be code between OF and
ENDOF. There must be ccde which pushes
a 16-bit number to the stack prior to
each OF. Finally, this proposal
follows the fig-FORTH style of handling
control structures.

fig-FORTH GLOSSARY

CASE —-- addr n (compiling)

Used in a colon definition in the
form: CASE...OF...ENDOF...ENDCASE.
Note that OF...ENDOF pairs nmay be
repeated as necessary.

At compile-time CASE saves the
current value of CSP and resets it to
the current position of the stack.
This information is used by ENDCASE to
resolve forward references left on the
stack by any ENDOF's which precede
it. n is left for subsequent error
checking.

CASE has no run-time effects.

OF —- addr n {compiling)
nl n2 --- nl (if no match)
nl n2 —— (if there is a match)

Used in a colon definition in the
form: CASE...OF...ENDOF.,..ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

At run-time, OF checks nl and n2
for equality. If equal, nl and n2 are
both dropped from the stack, and
execution continues to the next ENDOF.
If not equal, only n2 is dropped, and
execution jumps to whatever follows the
next ENDOF.

At compile-time, OF emplaces (OF)
and reserves space for an offset at
addr. addr is used by ENDOF to resolve
the offset. n is used for error
checking.

ENDOF addrl nl --- addr2 n2 (campiling)

Used in a colon definition in the
form: CASE...OF...ENDOF...ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

At run—time, ENDOF transfers control
to the code following the next ENDCASE
provided there was a match at the last

Page 39

FORTH DIMENSIONS II/3

OF. If there was not a match at the
last OF, ENDOF is the location to which
execution will branch.

At compile-time ENDOF emplaces
BRANCH reserving a branch offset,
leaves the address addr2 and n2 for
error checking. ENDOF also resolves
the pending forward branch from OF by
calculating the offset from addrl to
HERE and storing it at addrl.

ENDCASE addrl...addrn n --—- (compiling)
n —-—— (if no match)
—— (if match was found)

Used in a colon definition in the
form: CASE...OF...ENDOF...ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

At run-time, ENDCASE drops the
select value if it does not equal any
case values. ENDCASE then serves as
the destination of forward branches
from all previous ENDOF's.

At compile~time, ENDCASE compiles
a DROP then computes forward branch
offsets until all addresses left by
previous ENDOF's have been resolved.
Finally, the value of CSP saved by CASE
is restored. n is used for error

checking.
(OF) nl n2 -=~- nl (if no match)
nl n2 —- (if there is a match)

The run-time procedure compiled by
OF. See the description of the run-
time behavior of OF.

Dr. Charles E. Eaker
Department of Philosophy
State University of New York
Oswego, NY 13126

Judges' Camments -

This is an excellent development and
presentation of a key case statement
with single integer keys. The follow-
ing features make it immediately
useful:

1. The reader can easily understand
what the statement does and how
to use it. There are only four
words to learn, theilr functions
are immediately clear from the
example presented and their
names are not confused with each
other. (The ENDOF - ENDIF
similarity will go away when the
FIG model drops ENDIF in favor
of the Standards Team decision
to use THEN.)

2. One form of the statement can be
entered entirely in nigher-level
fig-FORTH, and rur immediately
on any FIG system. An optional
code word (for 6800) with
redefinition of one of the
four higher-level words saves
run-time memory and time.
Either way, the whole statement
fits easily on one screen,
including campile-time checking.

3. The narrative documentation is
excellent. The glossary defi-
nitions are detailed (appro-
priate for this forum). For
general distribution they could
be condensed to user-only
information.

~ This entry presents one kind of case
statement out of several that are
desired. We hope that this campetent
and straightforward work will serve as
a model to future development.

COME TO FIG CONVENTION NOVEMBER 29

FORTH DIMENSIONS II/3

Page 40

THE : CASE

Steve Munson

Having grown up on an ancient
version of FORTH Inc. micro FORTH, I
can appreciate the improvements ren-
dered by fig-FORTH's renames and
redefinitions. 1 was particularly
impressed by the source egquivalence of
HERE NUMBER DROP which functions the
same although in one case one is
dropping the address of the first
non-numeric delimiter, and in the other
case one is dropping the most signi-
ficant half of a double precision
number !

My one beef is why was : made
IMMEDIATE? Surely nobody wants a
header in the middle of a colon defi-
nition. By the way, as you probably
already know, this tends to mask an
error in the definition of ; on the
listing I have for the 6502 fig -
FORTH. There is no [COMPILE] before
the [which means compile mode is never
terminated. In fact, I am not sure I
see the point of the E property in your
glossary. All words ought to be
designed, at great pains if necessary,
so that they can be compiled. My
definition of CASE denies the E pro-
perty of :, and I would be rash to
assume no one would ever want to
compile CASE.

Please find enclosed a listing,
documentation, glossary entries, and a
diskette. The diskette also contains
the assembler used to generate the
code, as it may be nonstandard If the
fig-FORTH does not run on your system
as it does on mine, feel free to edit
my ideas into polished fig~FORTH (I am
a novice figger) and re-1list the
screens; however 1 believe they will
require no modification.

GLOSSARY ENTRIES

2BYTECASE

Keycase defining word, used in the
form:

2BYTECASE cccc key case | key
case, . . . keyn case (defaul%
case END-CASE. " Definef ccec as a
caseword which expects a 2-byte key
on the stack at run-time. If the
key equals keyo (a 2-byte keyj,
case (a previously defined word)
will“execute; if it matches key
case, will execute, and so On.
The]default case will execute
on no match; if no default is
specified, NOOP is assumed. Cases
may be IMMEDIATE words, but no
campile-time execution will occur
within the case structure. The
structure must be terminated by
END~-CASE. {See END-CASE, BYTE-
CASE).

BYTECASE

Keycase defining word, used in the
form:

case . key casé_ END-CASE:

Defiales ccce as'a casBword which
expects a l-byte key (most signi-
ficant byte 1is ignored) on the
stack at run-time. If the key
equals key_ (a l-byte key), case
(a previodsly defined word) wil?
execute; 1if it equals key, , case,
will execute, and so &6n. Thé
default case will execute on no
match; if no default is specified,
NOOP is assumed. Cases may Le
IMMEDIATE words, but no campile-time
execution will occur within the case
structure. The structure must b«
terminated by END-CASE. ‘Sae
END-CASE, CASE).

BYTECASE cccc key case key 1
E

Page 41

FORTH DIMENSIONS 11,3

CASE

Case defining word, used in the
form:

CASE cccce caseo case e e e
case {default case) ENJD-CASE.
Defides cccc as a caseword which
expects a l-byte key (most signi-
ficant byte is ignored) on the stack
at run-time. If the index is 0,
case (a previously defined word)
will execute; if index is 1, case
executes, and so on. NOOP case
must be inserted for unused values
of the index; index limit is 65,
535. No protection is made for
out-of-range 1indices or stack
underflow. CASE remains in compile
mode (by calling :) until termi-
nated by END-CASE. (See END-CASE).

DO-2BYTECASE P, C+

Campiles a reference to the run-time
procedure of the same name, a
two-byte "exit address", a one-byte
case count and case structure
identical to that of 2BYTECASE, all
inline within a colon definition.
Used in the form: : cccc optional
words DO-2BYTECASE key_case
key, case, . . . key case (de9
faullt caJSe) END-CASE o&ional
words ; . The keys, cases and
run-time activity are exactly as
described for 2BYTECASE. (See
2BYTECASE, END-CASE).

DO-BYTECASE P, C+

Copy glossary entry above, substi-
tuting BYTECASE for 2BYTECASE
everywhere,

DO-CASE p, C+

Campiles a reference to the run-time
procedure of the same name, a
two-byte "exit address", and a case

structure identical to that of CASE,
all inline within a colon defini-
tion. Used in the form: : cccc
optional words ; The cases ard
run-time activity are exactly as
described for CASE. (See CASE,
END-CASE) .

DO-STRINGCASE p, C +

Copy glossary entry for DO-2BYTE-
CASE, substituting STRINGCASE for
2BYTECASE everywhere.

END-CASE P

Universal caseword delimiter. It
has no run-time activity, but at
compile-time it may fill in an "exit
address" (inline caseword), and/or a
case count (keycaseword), or termi-
nate campile mode (CASE, inline CASE
for QODE definitions).

STRINGCASE

Keycase defining word, used in the
form:

STRINGCASE cccc key case
key, case, . . . ke case_ (de-
fauit cas&) END—CPYéb. D2fines
cccc as a caseword which expects a
byte-string beginning at HERE 1+
with a count of them at HERE (typi-
cally fetched by WORD) at run-time.
If the string equals key_(any
byte-string of 1 to 255 charagters),
case_ (a previously defined word)
will” execute; if it equals key.,
case, executes, and so on. The
defaellt case will execute on no
match; if no default is specified,
NOOP is assumed. Cases may be
IMMEDIATE words, but no campile-time
execution will occur within the case
structure. The structure must be
terminated by END-CASE. (See
END-CASE) .

PORTH DIMENSIONS II/3

Page 42

Explanation of Screens by Number

100-102: To enable the loading of a
screen, delete the leftmost paren-
thesis. For all screens above 108,
109 must be loaded. Some screens
load others that they require, hence
loading all screens will cause some
to be loaded twice. If it is not
desired to load all the examples,
edit DECIMAL ;S on the same line
of any screen in which the word
(EXAMPLE) appears on a line by
itself.

103: END-CASE is an example of a
terminator (or a leader, or any
structure) that is common to all
members of some group (in this
instance, casewords). The structure
can be identical for all members of
the group only because 1t behaves
slightly differently to each of
them. END-CASE accomplishes this by
following a binary tree. At each
node a flag variable is tested and
code common to the branch taken is
executed. All members of the group
(each caseword) must set or reset
the flag variables that must be
tested to complete the execution of
all their compile-time code.

END-CASE must be expanded for each
new class of casewords that use it
as a common compile-time termina-
tor. This is done by creating a new
flag variable that is 1 only for
members of the new class. The
affected casewords are then amended
to set or reset this variable (at
compile-time) depending on their
membership in the class, and the new
variable is tested in END-CASE. So
far, I have included only two
classes: the unique, indexed CASE,
and the keycasewords. Each is
further sub-divided into defining
word and inline forms. Note that

STATE can serve as a flag for this
distinction, providing that the case
defining word executes outside of a
colon definition, and the inline
form does not. Instead of using a
binary tree (nested IF tests) with a
new flag variable required for each
branch, consider using a caseword
inside END-CASE, 1itself, to accam-
plish an n-way branch based on the
value of a single variable!

105: CASE is the simplest form of
n—way branch. It compiles a string
of consecutive codefield addresses
(CFA's) exactly like the parameter
field of a colon definition. The
on line 3 creates the header and
sets compile mode, END-CASE termi-
nates compile mode. Whereas the
CFA's in a colon definition execute
sequentially, only one CFA will
execute each time a CASE is called.
It expects an index on the run-time
stack; 1f it is 0 the first CFA
executes, if is 1 the second CFA
executes, and so on. No protection
is made for out-of-range indices.
Credit for the basic form of CASE
goes to J. B. Weems, also of Hughes
Aircraft, Fullerton.

106-107: Each caseword is presented
in three forms: a ;CODE defining
word, a <BUILDS DOES> defining word,
and an inline version. The inline
version is perhaps closest to
ordinary usage, the <BUILDS DOES>
defining casewords are machine
independent and easiest to modify,
and the ;CODE defining casewords
are, in all cases, the fastest.
This is because they take advantage
of the available system pointer W
(which is set by NEXT) in crder to
index into the parameter fieid of
the case structure; whereas the
inline casewords must move IP bewvond
the case structure after using it to

Page 43

FORTH DIMENSIONS I1/3

select a case. Note that the inline
casewords are not defining words,
and so do not require an auxiliary
name for the case structure.

The method of putting the CFA to be
executed into W and jumping to
the last half of NEXT (which fetches
the code address and puts it into
the program counter), 1s based on
the word EXECUTE as a model. The
"NEXT 6 + JMP" used here is source
truncation for space purposes. It
assumes that no insertions are made
in the beginning of NEXT (an inser-
tion in NEXT might be forgivable if
short and forbidden to execute at
run-time, or if turned on momen-
tarily by an EXEVAR). In such a
case, the safe thing (and in any
case, the fast thing) to do is to
copy the code for the last half of
NEXT (however 1t appears on your
machine), rather than jumping to
it.

108: A curious hybrid of high-level
inside a CODE definition. DO-CASE
is really a macro that compiles code
similar to that executed by the
inline version. Note that if the
stack is 0, and DO-CASE executes
one of the cases, execution will not
return to 3TEST, but to the word
calling 3TEST (that is, the HPUSH
JMP will not execute). There is no
danger of name confusion because the
two DO-CASE's are in separate
vocabularies.

109-110: A keycase is so called
because it requires a key associated
with each CFA in the case structure.
A key of the same type must be
supplied at run-time. If a matches
a key in the caseword, the associ-
ated CFA will be executed. Unless a
match 1is guaranteed, a default CFA
is required which is executed on no

match. The default may be a NOOP, a
pop of the parameter stack, or even
a link to another caseword. The
default case is optional, if none is
specified, ,CFA campiles a reference
to NOOP, automatically.

The structure of a keycaseword 1s as
follows:

COUNT KEY CFA KEY CFA
© © dlefault 1
. o s KEY CFA CFA
n n
where count is the number of cases
(default excluded), and CFA_ is the
CFA that will be executed” if the
run-time Kkey matches KEYO. The oount
is not supplied by the programmer; it
is determined automatically by ,KEYCASE
by counting the number of cases till
END-CASE at compile-time. The HERE 0
C, on line 13 reserves space for the
count, and it is filled in by END-CASE.
The 1+ after the BEGIN on line 14 is
incrementing the case count on the
stack. The compiled count will be
picked up at run-time to become a DO
[OOP index. When the index runs to
0, it indicates that the list of
cases is exhausted, and the defualt
address is to be followed.

Just under this count, on the stack,
is a flag that indicates whether the
programmer has not supplied a default
case. It starts at 0 on line 13, may
be changed to 1 by line 4, and is
tested on line 11.

All of the keycasewords, as written,
reserve only one byte for the count of
the number of cases. Hence, one is
limited to 255 cases per case structure
(0 is not allowed, either). However,
keys need not be consecutive or ordered
in any fashion, as are the indices for
CASE. Keys may be 1, 2, or n bytes
depending on the kind of caseword;
CFA's are 2 bytes.

PORTH DIMENSIONS II/3

Page 44

In addition, 1inline casewords
compile a 2-byte address in front of
the count. This "exit address"
points to the first byte beyond the
end of the case structure. This
address 1s put into IP so that exe-
cution may resume after a case has
executed, Case defining words do not
need this because IP already points
correctly; W is used to scan the case
structure.

The 1 = IF on lines 1 and 9 is
testing for NULL (alias X). NULL
cannot perform its usual function of
resetting IN, incrementng BLK, and
terminating the loading of a screen.
The reason is that ,CFA uses ' CFA ,
which is capable of compiling a refer-
ence to even an IMMEDIATE word. This
has the advantage that an IMMEDIATE
word can be called as a case, but no
ocompile-time execution is permitted in
the middle of a case structure. Lines
1 and 9 perform part of the definition
of NULL if one is detected. Not that
the test assumes 8080 byte order;
on some machines, the test for NULL
would be 0100 = IF. 1If, on your
system, a block equals a screen, all
the testing for NULL may be deleted.

+KEYCASE is designed so that one or
more keys, CFA's, default, or IND-CASE
may be on any given line. A key need
not even be on the same line as the
associated CFA. Do not skip lines in
the middle of a case definition. Keys
and CFA's must alternate, the exception
is the default CFA which has no key.

+XKEY on line 7, is a dummy which is
called by ,KEYCASE where it reserves 2
bytes which will be filled in at
compile-time when a particular caseword
executes (lines 8 and 9 on screen 111,
for example). The CONSTANT ,XKEY-ADDR
defined on line 6 is set to point to
the two bytes reserved in ,KEYCASE so

that a reference to a ,KEY appropriate
to a given keycaseword may be stored
there (by !KEY , for example). A more
elegant solution, beyond the scope of
this document, would be to make ,XKEY
an EXEVAR , a variable whose value 1s
assumed to be a CFA, and which 1is
executed rather than fetched. !lKEY ,
12KEY , etc., would then be used to set
the EXEVAR to ' ,l1KEY CFA or ' ,2KEY
CFaA.

NOWSAVE and RECOVER are needed
because by the time END-CASE is encoun-
tered, one has typilcally already
compiled the default case as a key
instead of a CFA. This is because it
breaks the pattern of KEY CFA , KEY
CFA. And in any case, 1n order to
recognize END-CASE, we must advance the
input pointer beyond it, and it i3
convenient to restore it so that
END-CASE can execute and perform 1its
compile-time activity. RECOVER is,
then, a way to un-compile and un-
interpret what has been done.

The endless loop of line 14 1is
terminated by the R> DROP on line 10
when END-CASE is encountered. This
assumes that ,KEYCASE will always call
,CFA directly.

111: Line 10: BYTECASE is a typical
8080 ;CODE defining word. "HEADER
{1KEY ,KEYCASE" is the compile-time
activity, and the macro RUN-BYTECASE
compiles the run-time code. The
run-time code must leave W pointing at
a case CFA or the defauit CFA, and then
execute that CFA,

Warning: if your ASSEMBLER does
not specifically define BEGIN as HERE
(non-IMMEDIATE), then vou will fall
through the ASSEMBLER intoc FORTH and
find : BEGIN HERE ; MMEDIATE. This
version will not work in macros,
because you want to campile a reference

Page 45

FORTH DIMENSIONS I1/3

to BEGIN that will execute when the
macro executes.

Note how simply each key is paired
with the word to execute upon matching
the key (32 TWO, for example). The
only punctuation needed is spaces (the
number of spaces 1s not important).

112: It 1s interesting that STEST does
not behave exactly like 4TEST. They
are designed so that pressing the
terminal key "0" selects ;S to be
executed. Because <BUILDS DOES> is
high-level, 1t has an extra level on
the return stack; hence, the endless
loop on line 13 does not exit, but
screen 111 returns to the terminal with
"OK".

Calling the colon definition "R> R>
DROP DROP" from 112 would have the
same effect as calling the code ;S from
111,

113: Note that the inline code is 6
instructions longer than the run-time
code of the defining word. These
instructions pick up the "exit address”
which was given space at compile time
by the "HERE 0 , "on line 7, and
filled in by END-CASE.

114: same idea as 111, but a two-byte
key is expected on the stack. The low
byte is in L and high byte is in H.
Compare the "," on line 12 with the
"C," of 111 line 8.

115-117: Self-explanatory.

118: Stringcase uses variable-length
keys (up to 255 bytes). At run-time it
expects bytes beginning at HERE 1+ with
a count of them at HERE. It will match
this string against its keys, executing
the associated CFA if a match occurs.
There is no restriction that the bytes
must be printable ASCII, but you may

find it hard to edit anything else into
a screen. Source numbers may be used
as keys, but they will be treated as
character strings; the run-time is also
a byte string, it 1s not normally
placed on the stack even if 1t 1s a
nunber .

The run-time code has two loops.
The outer one 1s counting down the
number of cases; the inner one has an
index equal to the byte-count of a key
plus one (the count, 1itself, is cam-
pared). Saved on the stack is IP and
the address of the next key in the case
structure (computed from W plus the
byte-count plus 3)

119: One application of STRINGCASE 1s
as a campact language translator. The
string key is the input word, and the
word executed by the associated CFA is
the translation. Such an association
is faster than a colon definition
equating the two, because IP is not
saved on the return stack, or restored.

The cases of a stringcase constitute
a sort of vocabulary, but the structure
is more compact than an ordinary
dictionary because it lacks 1link
fields, code fields, and terminators.
The arithmetic that advances W from one
case to the next is almost as fast as
following a dictionary 1link, and the
code for RUN-STRINGCASE compares
favorably with (FIND). It is hard to
imagine a FORTH - like language trans-
lator that would be faster or more
compact.

120: High-level version of 118. The
two nested loops are still there as DO
LOOPS, the address of the next case is
saved on the return stack between the
loops, and the two pointers to the two
byte-strings are on the parameter
stack.

12]1-122: Self-explanatory.

FORTH DIMENSIONS II/3

Page 46

123: The word called by the default
case is exactly like INTERPRET except
that is does not need to do a BL WORD
because the string is already at HERE,
and it is not an endless loop (so that
it INTERPRET's only one word}.

GERMAN 1s, then, a STRINGCASE that
will, first, attempt to translate a
word, but if it 1s not in 1its vocabu-
lary, it will INTERPRET it normally.
The endless loop taken away from
INTERPRET is given to TRANSIATE which
is then substituted for INTERPRET 1in
the definition of LOAD (1t could also
be substituted in the definition of
QUIT).

If one now loads a screen with
TLOAD, it should compile normally, with
the addition that EIN, ZWEI, and DREI
will be understood as re-names, and
executed immediately. In order to be a
true translating interpreter, the DOES>
part of STRINGCASE must obe extended to
respect compile mode by testing STATE,
and either compile the CFA or execute
the CFA, depending.

Note that ;S calls itself as a
case. This is not only a way to find
;S, the interpreter would not stop at
either ;S or NULL {it would, of course,
stop at an undefined). The reason is
that there is not an extra level on the
return stack (namely, TRANSLATE)
between the equivalent of LOAD (TLOAD),
and the equivalent of INTERPRET
(DEFAULT) . Hence, executing ;S from
DEFAULT is sufficient. to end the
execution of GERMAN, but not of TRANS-~
IATE (which will inevitably call GERMAN
again). However, calling ;S as a case,
since it is a CODE definition, will end
the execution of TRANSLATE, and return
eventually to the terminal with "OK".
But if one had used the <BUILDS DOES>
version of STRINGCASE, there would,
again, be an extra level on the return
stack, and ;S would again fail. In
this case, ;S would have to call a word
whose definition is R> R> DROP DROP
(see explanation of screen 112).

Another possible kind of keycase
might be called BITCASE, where the key
is a mask, and the associated CFA
executes if the mask AND'ed with the
value on the stack ¥ 0. The flag
variables and compile-time code would
be identical with BYTECASE; the run-
time code would simply do an AND
instead of an XOR, and a 0 = NOT
instead of 0 = . The casewords
presented here by no means exhaust
the possibilities. The structure
is deliberately left open-ended to
encourage user creativity.

Note that BITCASE, BYTECASE, 2BYTE~
CASE, and STRINGCASE all differ in
name-length to avoid confusion on
WIDTH-3 systems even when prefixed by
DO- or RUN- .

Keycases have the property that they
can be chained together through their
default addresses (the key can be
changed at this point, as well). This
makes possible complex, high-level
sturctures in which casewords feed
other kinds of casewords. This is a
tree with n brances at each node (a
pattern similar to human brain cells).

With two default CFA's one could
put keycasewords into 2-link structures
such as binary trees. Furthermore, any
CFa, including the default case, can be
an EXEVAR (see explanation of screen
109), allowing the structure of the
tree to change dynamically at run-time.

1S Steve Munson
linghes Aircraft Campany
Fullerton, CA 92634

Judges' Comments - An interesting ap-
roach to error control, by making :
IMMEDIATE a part of error control. If
a preceding ; is missing, due to mis-
editing, : will be encountered in com-
pile mode. It executes but contains
?7EXEC, which produces an error message
if compiling. A little confusing but
it works.

Page 47

FORTH DIMENSIONS 11/3

100 107
CLIRD ICFEEN LOALER FOR CATEWIRD IELECTION 9 ¢ IN-LINE CAZE WIRD ! HEX

. FORGET TAZh Thd 1
2 2 CODE DO-CASE TP N w0, IF 1+ L MV, COPID LR ZXTT ADDE

: 123 LOAD CENT-C y] M IF 1+ MOV, M INX, ™ iF My, ¢ MTE IF ZE ONT END-CAIE)

310 LDAD COWADRDE FOR P E(TAIEWORD COMFILING) fOLOADT th a XCHG, W POP. N DAD, W INX, W DJAD, CH o= W+ 2e IFFIETY
- s MW o1+ MOV, HOINY, MW MOV (CODE FIELD ADDR INTO W

S 4 101 LOAD ¢ LOAD CREEN W1) & XCHG. MEXT @ + MF ¢ JUMF TO LALT HALE OF NE'T)

T 102 LIAD CLIAD TCREEM ¥2) 7

R 3 DO-CASE ~FEYUAZE +INLIMNE ! HEFE O LEAVED)

: Q COMPILE DO-CRASE MEFE 0 . . [MMEDIATE &P END-

1 19 COFILLI DT M
3 11 (EXAMFLE
1l 12 ONE L . Twdy 2 THREE 3
i 13
‘3 14 2TEST O pO-CATE UNE TWO THFEE END-CASE 3
[1S DECIMAL 3
PIIRE LGRS RIS T IRER BT U A ISR I IR T RTS I I H AR RRR RN » FE LT EI R R R R N L R L RS LR NS4
101 1
C LIRAD ICREEM #1 FOR IATEWCRD ZELECTICM o (IN-LINE CAZE FOR SGDE JEF INITINGG HE ¢

1 1 ASSEMELER DEFIMITIONS
20 10% Wen 5 WORTH 2 . DO-CAZE MERE 0 - W LXI. (WDAD W WITH SO ZEVOND LeiT

TluA LRD ¢ CTATE CEFINING WORL) 3 H POF. H D&l W TAD ¢ BYTE OF THIT MA . aph I

4 L0T LDAD 4 o 4 MW L+ MY, H OIMYX. MW MOY, (INCEX N STwelk . FETCH IFG
< LOLTAD ¢ TODE CEFINITIONS . s XCHG, NEXT & + .MF, (JUMP T LATT “ALE IF NE-T

B & ~KEYCASE -INCIME SMUDGE 1 . SET FLAGS AHD COMPILE MOCZ

R S SE DEFINING WORDH 7 FORTH DEFINITIONS

ES CLIOLTARD L CTUILDY [E EYTEL OEFTIMING IR 2

110 LOAD IN-LIMNE ZYTETAZE WORDD ¢ LOADD 11 9 (EXAMPLE
10 ONE 1 i Twr 2 THFEE = .
113 LDAD (‘;‘vTE"A E ‘E‘:!NINI i L aTs) G & S 11 ’ 1
vl S LTAD € 12 CODE ITEST H SOF. L & ™MV, H IFE. L 0
[LlaD o Ll 13a) 12 O= IF. DJ-CAIE ONE TWO THEEE END-CASE
B H 14 DECIMAL . £
LT 15
A AR AR PR ENEEI LA EENET SIS RS R DL L2 RS AR R Sk T T LS LE] L R R R R T T e S E R R L LS EE L
1Oz 1
oAl TORESH #1 FOR TATEWDRD CIELECTION [} { WORDS FOR ¢ EYTATEWIRD COMEIL ING HE X
1 O YARIAELE OLDMERE o JARIAELE OJLDEL: 0 C/ARTABLE DIN

N LRI = 2

. LA CFINING WIFD 2 . NOWSAVE HWERE IJLOHEFE ' BULY 2 JLDELY * * CLOIN
4 LOAD < : 4 RECOVER OLOHERE 2 DF ' OLDIN 2 IN ¢ 2 ELb
PR s
H & . *NUMEER -1 UFL ' 9 O HERE DUF 1+ <2 D =
’ 7 DUF R + (NUIMEER) DROF DRICF Rl IF MIMUIT ENDIF

K 7 HMEADER CREATE 3MULGE
1o 16
H 11 * ~FIND = O TERROIR IR 1 WITHOUT LITESLL -
12 12 DECIMAL --

17 i3
14 14
[1%
ARBLABERLIDES A TN RN +rae
12O 11

o { END~CATE) WEC o (WIORDS FOR KEYCASEWIRD COMPILING. CONT. 7 HEX

LY UARIAZLE “INLINE O VARIAELE “KEYLASE t . TEY ~FIND MHEFE @ { = IF 1 3LF +' O IN! ¢ IF NULL

- 2 NOWSAVE DROF DRCF DROF —FIND ENDIF ¢ SET NEXT ELOICH, ZAVES

3 eIMUINE o “INLINE ! 3 IF DROP END~11AS! °F ¢ NEW ADDR. EMD- "

d +HErCATE o CFEYCALE 4 SWAF 1+ SWAP RECCVER ENDKF ENDIF . ¢ ET NO-DEFAULT FLAG
<

: S

: END-CASE IWEF O { UUNIVERSAL & O CONSTANT , XKEY-AODF { ADLR OF . XFEY IN FEYCAIE)

b ITATE 2 z EMIIF ELIE ¢ CASEWORD ! 7 © XEEY MNERE O . . AEY-ADDR IMMEDIATE (ET . Xi Ev-ADLR)

L CINLINE 2 IF 4EFE ZWAP ' ELIE IMULGE « DELIMITER)]

3 MEILE] € ENGIF ENDIF IMMEDIATE © . ,IFA %" MERE @ 1 = IF | LY ¢! O IM ' OROF s (FUT a)
v 1¢ EMDIF DUF © END-CASE = IF RECOVER RI DROF ORGP (IF~ I
1 1 SWAF IF < NOOF ELTE < ENDIF ENDIF OFR . . (A AIE)
2 12
v 13 .KEYCASE +KEVZAZE HERE 0 €,

4 13 ~1 BEGIN 1+ MOWSAVE “HEY L XVEY L IFA AGAIN
vs 1% DECIMAL .3
vaa . .
1D 111

' ' = DEFINING WOFD © HEX 0 (BYTECAZE DEFINING wORD. { ONE-BYTE :EY3 ° HEX

! 1 ASSEMELER DEFINITIONZ
2 CASE - EYCAZE ~IhLIN ¢ SET FLAS VARIAZLES z Ruu-»rrslny- M OFOP, W INX. W LDAK, A H MIV. W INY
2 IoOMe ILE) SLODE ¢ BEFINE CAZE : 3 SESIN, W LDAX, W INX. i« (RA, 0= NOT IF, ¢ OMALFD USED)
2 M P, M DAD, W OINY. W 6D, S WOED IR THDER a W INX, W INX. M DCR, THEN, o= END, ¢ N LINE 102
TN W ope Oy, HOINX, MW MOV BuT rFa INTO o L s XCHG, M W 1+ MOV, H ING M W MOV €% R 11D,

: (WCHE, MEXT & + UMF, { ~AET 9aLS OF NEUT) B XCHG, NEXT & =+ umF, . FORTH DEFINITIONS {LINE 3 g
K 7

B ¢ EXAMFLE S . 1LEY eNUMEER C, ¢ COMPILE A 1-EYTE 'EY)

ONE 8 . Ta 2 . TRREE % k1 V1KEY L 1IKEY FA L XKEY=ADDR ' ., ¢ PUT . IFEY IN PECRIE
LY 10 - BYTELASE HEADER ‘'1HEY . KEVLAZE , COLE RUM-BYTECAIE
il OTARE FICK DME TWO THRREZ END-CASE 1 ¢ EXAMPLE >
12 [TWO 2. THREE 3 . DEFAULT 2
o PICK 3 . D] SRINTS O 1 3 13 BYTECASE IHOW
K 1 BRINTE O 2 3 ta 31 ONE 30 , 3 32 TWD THREE DEFAILT EMT-CAZE
¢ 2 OTELT FRINTE & 3 4 1% ¢ ATEST BECGIN KEY SHOW AGAIN . DEL IMAL
AL T T * * Eal o o A 4 R * *
1O 11z

X ¢ IBUILDS DOESD CASE DEFINING WOAD « HEX 0 (<BUILDS DNESY BYTECASE DEFINING WORD * hEX
: 1 . L 1FEY #NUMEER . « COMPILE & (-EVYTE vEv)
s CAZE CEILDS - EYCAZE -INLINE] € ADD INDEX TO SFS. 2 . '{KEY ,1REY CFA , XEE?=ADDR ' . ¢ FUT . LKEY IN . HEYCRIE;
3 DDEZ> OVER + + 2 S(ECUTE . ¢ SET CFA, EXECUTES 2
2 34 BYTECASE <BUILDE '1nEY . KEYCASE DOES!

s ¢ EXAMFLE s DUF 0@ O D0 i1+ OVER OVER (@ = IF ¢ HIGH LEVEL DREd
s ONE 1, TWO 2. THREE 3 5 LEAVE ELZE I+ ENDIF LOOF € ZAME THING A%
N 7 SWAP DROP 1+ @ EXECUTE ¢ CODE ON
3 TAZE PICE ONE TWQ THREE END~CAZE s
2 ? { EXAMPLE
> ITEST D FICi & 10 i ™o 2 THREE 3 DEFALLT 4
t DECIMAL 3 1 € +SHOW
- 12 30 i3 3L TWO 3T THREE DEFAULT SND-CAsE
o 13 BEGIN KEY #SHOW AGATH
3 14 DECIMAL : %

FORTH DIMENSIONS II/3

Page 48

113= 119
2 { IN-LINE BYTECASE WIRT) o C STRINGCAZE DEFINING WORD., CONT HE X
1 111 LOAD HEX '
2 2 hrEY WERE C® 1+ ALLOT . CCOMPILE A ITRIMG E.
3 CODE DO-BYTECAZE IF H Mow. IF 1+ L MOy M [P 1+ MO, 5 CIrEY L AKEY CFA X EY~SDDR BT LI EY M L REYCATE”
4 HOINX, M OIP MOV, XCHG, FUN-EYTECASE ¢ EE MACKRO 111 3
3 5 STRINGCAZE HERDES 'SLEY . hEYCZAZE CODE RUM-3TRINGCAIE
= O-CYTECASE L3
? COMFILE DO-BYTECAZE HERE 2 TIVEY L PEYCAZE . IMMEDIATE b « EXAMFLE
8 5 ONE 1 T 2, THREE 2 CEFAINLT =
2 ¢ EXAMFLE ¢ DECIMAL {27 LOAL S
10 ONE TWa 2 . THREE = nMEFALLT 2 STRINGITATE GERMAN
it c EIN TONE 2WELD TWD DFET TNREE [DEFAAT END-CAZE
b HEY
3 .3 TESNILATE EL WORD GERMAN ¢ O TRANTLATE EINT ERINTZ 1o
13 ZECIMAL L B
-
- L2 - R Rl L L R R e R R L) BALP RIS I FRFRE I TR S P EIDPAF IR HRFT AP LTI IIL A INR ST IR A4 RRIAIII I IR 4
114 120D
a ¢ ZEYTECASE TEFIMING WORD, « TWI-LBYTE - EV: O ¢ IEMILDS DOUED: TE CEFINING IR HE X
1 ASSEMELER DEFINITIOME 1 VEY HWEKE T2 1+ ALLOT LOMEILE & STRING VE:
2 RUM-2BYTECAZE W FOF, [F FLEH. 2 CSLEY LSKEY CFA L XFET~AOIR ! ¢ oENT L ZTEY IN L KEVCATE.
i WOINK W LRAX. A IF MOV, W INX. ¢ 3
3 FEGIN, W LDAX. W IM/, L (RA, O= IF. 4 STRINGLAZE EUILEE 'S EY L LEVCASE DOES
b W LDAX, WOTNK H YR, 0= NOT IF. S . HERE WEFR 1+ ROT (@ oG (w8 OF
& W IMNX, W INY, IF [k, THEN, ELZE, 3 DUF [P (2 + 7 » PUE 22 1+ O 2 ‘
7 W OINX. WO INX. W INX. [P DCF, THEM. 7 OVER £2 QUER £@ = IF 1+ IWAF 1+ TWAF MPAFE B TS
2 Q= END, 1P POF. & ELIE UROP DROF WERE 0 LERVE ENDIF LOOF e
< ACHG MW te OV, HOINX. M9 MOy, < IF R> DRCF LEAVE ELIE ODFIF &1 ENDIF il
19 KCHG, NEAT & + IMP. FORTH DEFINITIONG 10 Lo AP DROF @ CXECUTE ‘)
1: 11 DECIMAL
12 NUMEER . ¢ COMEILE S Z-TYTE +EY 12
13 Y . JLEY CFA LT vEY 1N ErlAZE 1z
14 TECRIE HEIDER SyTEAIE 13
15 JECIMAL B 1%
LA et + Y - IR 4R T T L T L R T T T
=1
¢ ZBYTECAIE DEFTINING WiIRD, TOMT HEY 5] WORD, JGNT SE
¢ TELT FOR ICFEEN :id) 1
{ EXAMFLE Z « EXAMPLE)
3 ONE 1 TRWO 2 THREE 3 TEFAULT & 3 GME 1 Twoo 2 THREE CEFALLT 94
4 3
S IBYTECALE 7RI0) = STRINGCAZE GERMAN
o 0111 ONE 0ZIZ TWO THREE CESLT Py EIN ONE IWED TWI CORE[THREE DEFAULT ErD-C
7 7TEIT b 2 L S S 7
% DECIMAL .3 3 TRGNSLATE EL WORD OERMAN
4 * DECIMAL LR
¢ Tl
11 11
1z 1z
33 13
13 13
iz 12
» - e s
114) Qegord
2 ¢ CIBJILDE DOES> 2EYTECASE DEFINING WORD HEX Q { IN-LINE 3TRINGCASE WORD
1 . 2FEY eNUMBER . ¢ TOMPILE 3 Z-BYTE VEv) { 112 LOAD HEX
2 t2A EY » 2KEY CFA , XKEY-ADDR ' O PUT L 2KEY IN LVEVIRIE) =
3 3 CODE DO-STRINGCASE 1P H ™I IF f+ L w0V M IF 1a MO
4 ZEYTECAZE “BUILDS '2MEY L KEYD DILES: ! S THING 4 4 OINA, M OIP MOV, XCHD, BUN-ITRINGCALE ¢ IEE MACRI 3
S DUF 1+ ZWAFP 02 O D JVER QUES @ = [F ¢ ald <
& 2+ LEAVE ELTE 3 + ENDIF LOOF C COMPARRET BOTH 5 DC-STRINGCAZE
7 TWAF TROF @ EXECUTE ¢ BYTES AT ONIE ? COMFILE DO-3TRINGCALE HESE VIVEY LEYCAZE IMMEDIATE
¥ { EXAMFLE = t EXAMFLE
10 ONE 1 TWO 2 THFEE I, DEFARULT 3 10 ONE Ot THY 2. THREE 3 DEFALLT 4
i 11
1l 2BYTEZAZE ZRICK 1D TREMZLATE BL WORD DO-STRINGCAIE :
i3 OLL1 ONE ¢ THREE DEFAULT EMD-IASE 13 EIN ONE IWE] TWl DRE! THFEE DEFAULT ENL-0ais
14 STEST < 18 DECIMAL .3
1% JECIMAL .3 1%
bk s et ‘e B R N T L R L R R
117
s O IN-LINE ZBYTETAZE WiOFD o (EXAMFLE oOF A TRANILATING INTEFFFETER HE ¢
1 114 LDAD HEX 1 DEFAULT HERE CONTEXT 2 @ (FINDY TP = IF ¢ = JMTESFTET.
2 pd DRIF HERE LATEST (FIND: ENDIF COATTHGUT 2 RUM
I DOLE DO-ZEYTECASE IF M MOV, IR 1+ L MOV, M OIF 1e MO 3 IF STATE @ - IF CFA . ELIE CFA EXECUTE ENOIF e
4 HOINK, M OIF MOV, XCHG, RUN-ZBEYTECAZE (ZEE MACRD a ELZE MERE MUMEER [PL 2 1+ IF (COMPILEI TLITEFAL AL
N S ELSE DROF (COMFILE] LITEFAL TETACH LAy o
& DO-2EYTECAZE & ENDTF DL owCED -
7 COMPILE DU-IBYTECAZE KERE O . 'IHEY L REVE IMMEDTIATE T
s & STRINGCASE GERMAN
2 ¢ EXAMPLE ° EIN ONE IWE] TW3 OREL THREE Tz DEFALT
10 ONE 1 . TWO B THREE 3 [DEFALLT <) 10
it 11 TRANSLATE BEGIN DU WORD GERMAR SG-In
12 STEST 0 DO-IBYTECASE O1ll 2ME 0222 TWo 12
1z GILT THREE O % DEFAULT END-Y 3 . 13 - TLDAD ELy @ R IN 2* R ‘ '
14 DECIMAL . 3 14 D IN Y B/ECE o+ 3LK 4 '
iz 15 TRSNSLATE R IM ' R> BLr ! TEIIMAL Sof INTE E™
PRI
11
D) { ZTRINGCATE TDEFINING WORD. (STRING FEYZ HEX
1 ASSEMBLER DEFINITIONMS
I RUN-ITRIMGCALE IF Eid, WOINYX, ¢ ZAVE IF aM 3T
3 W LDRX, A IF MoV, W INx. P = OF
4 EESIM. W LDAX., A INR, A IR 1+ M), W i+ AL, Ir
s AL MOV, WA M3V, O % ADC. A H MW rOBYTE € :
> HOINX, H INX, H FUsH, COSTRCH m NEAT > COME TO FlG CONVENT‘ON
7 DP (RUNTIME HEFE) LHLD. (N = RUN-TIME =EF
E BESIN, W LDAXY, W INX. ™M XRA. H INX, 0= [F. BYTEZ = = NOVEMBER 29
4 1P 1+ DCR, WAF « AT COMPILE TIME) G= EMD. « S3AIMND
1o M FOF. HERE + UMF THEN, s THROW =Wev oDpe
11 W FOP, IF DCR, 0= END, IF FOF. (ELZE 50 NE.OT
i XCHG, M W i+ MOV, M OINY, MW MOV FICKh UF CFA
13 ACHT, NEAT & - JmMF FORTH UEFINITI JIMETOOMESTY
14 DECIMAL --0-

Page 49

FORTH DIMENSIONS II/3

A PROPOSED CASE
STATEMENT FOR FORTH=——=

Karl Bochert/Dave Lion

General Description

The CASE statement suggested here is
done in high level code for the
6800 version of fig-FORTH. It may
have to have some minor changes in
order to conform to the FORTH-79
standard. The names of the words
were chosen for descriptive value.

The word that initiates the set
of cases is:

CASE

Following that are as many sets of:

<forth code> ENDCASE

as needed to represent all the desired
cases which are to be executed. The
first set is for case 0, and each
successive set is for the next higher
case number. After the last set comes
the terminating set:

<forth code> ENDCASES

which indicates the default code to
be executed if the case number is
outside the legal limits. It also
marks the end of all of the cases,
and causes the look-up table to be
compiled. Word (CASE) , which is
the run-time word, is surrounded by
parentheses according to fig-FORTH
convention, indicating that it is
normally never typed in by the user.

At run-time word (CASE) uses one
integer parameter fram the data stack
and leaves none. The given parameter
specifies which one of many cases
will be executed. A single case 1is
defined as a set of FORTH words which
is preceded by the word CASE or END-
CASE, and followed by the word ENDCASE
or ENDCASES. Within a single case, the
usual rules of pairing still apply to
the words: DO, LOOP, IF, ELSE, THEN,
BEGIN, AGAIN, WHILE, REPEAT. That is,
they must be properly matched with each
other.

Case 0 will be executed if the
parameter is 0, case 1 if it is 1,
etc. The parameter will normally be in
the range: 0 thru (# of cases)-l.
Thus, the case function works like the
computed GOTO found in some versions of
BASIC, with the exception that this
code is in-line.

Advantages

CASE is very compactly compiled, so
the number of 16-bit words of overhead
is 2 * (# of cases +1) + 3. This
excludes the code within each of the
cases, but includes the ;S which
follows each case. The following use
of the CASE function, having 3 empty
cases and an empty default case will
oompile as 22 bytes of code:

CASE
ENDCASE
ENDCASE
ENDCASE

ENDCASES

Here, it should be pointed out that
the CASE function is only used within a
definition, and the above sample is
part of a definition.

FORTH DIMENSIONS I1/3

Page 50

More Advantages

CASE statements have little overhead
run-time code. In the FIG model this
version of (CASE) executes 41 FORTH
words, 37 of which are code words.
This may be shortened by leaving out
the two protective features, thus
executing 25 words, 22 of which are
code words. The fastest method takes
about 0.002 seconds to execute.

There 1is practically no limit upon
the number of cases that may be com-
piled. The table of pointers will
contain an address for each case plus
an address for the default case.

Two protective functions in word
(CASE) will handle negative numbers
and numbers that are too high. For
negative numbers, the equivalent
positive case 1is executed. For
numbers too high, a default case is
executed. It should also be noted
that any intermediate case that will
never be executed still needs an
ENDCASE, but the compiled code will
contain only a ;S . The default
case may be left out, and will then
compile like an empty case.

One additional feature to point
out 1is that CASE statements may be
nested much the same way as 'DO' loops
can.

Disadvantages

There is one machine dependent
factor that must be considered before
installing these words. Since we fool
around with return addresses in the
return stack, we must know whether the
return stack of the machine stacks
'return to' addresses or 'came from'
addresses. The former is the situation
where the address is not incremented
before doing the first fetch after a
:S . The latter type of machine (my
6800 version) does do a pre~increment

after a ;S . Appropriate camments for
patching are included in the definition
of (CASE) .

The way to find out which type of
FORTH machine you are using is:

: Pl R ;

: P2 Pl ;
P2 P2 - .
FORGET P1

The printout will be 0 for the 'came
from' type of FORTH machine, and 2 for
the 'return to' type.

Another thing to watch out for is
that while inside a CASE statement you
no longer have access to any loop
conter (I) which was created outside
the CASE statement. During execution
of the chosen case there is one extra
address on the return stack, covering
up what was there.

Compiled Structure

Note: Each line shows the contents of
one lé6-bit word of memory except
for the 1lines within braces:
, which signify any amount of
memory, including none, which may
contain FORTH instructions,

-] |

(CASE) (the pointer to code fleld cddress of (CASE)
pointer to end P ittt bt P
{ case ¢ 0 } [' 1
{ . } | |
:S ['
{ case ¢ 1} (mmmemcmecnanne .o
{ d } i |
43 § B Thl: part
........... | <ontains
: cas: 2 ; << ; ! | the code
;S i 1 for the
L s etc. : ¢ | | Cases
{ case ¢+ n } (lommmmmm | |
{ o i ! !
H
[
i

{default code} {Cmmnem, 1
{ .]

i
18 [
pointer to defaulr <<-, >~ |
pointer to case n !

: f 1 ete. T o3 b o 1
pointer to case 2 : Sromm——a

|

'

and does not

1 . contain any
pointer to case i | T 1
pointer to case 0 | YRS | | FORTH words
ptr to default per d>-=' ((~cc-ve-mccmcocecan= « gy

* Any case code may be left out. The
resultant case segment will have
only a ;S in it.

Page 51

FORTH DIMENSIONS I1/3

| This part is the
{ ~look up table,

tae

Definitions for 6800 Fig-FORTH

)
)

)
)
)
}
)
)
)

1CASE) { the run-time function
ABS { 9 make sure parameter 18 +
R> ¢ 9et address of pointer to tadle
2+ (delete this line for 'return to' machines (=smwas)
3 oup { get pointer to table
2+ add this line for 'return to' sachines (seswsssses)
>R { save final recturn address
SWAP 1+ DUP o { find addresses i1nto table of the
OVECR 5Swap [highest legal case,
- { and the desired case
SWAP @ (@ then choose the .
MAX (O] best one
e { read table entry for chosen case
2 - (delete this line for 'return ta' maciines <=ssame
>R ; (Stack it & 'return’ to 1t

NOTE: the lines marked ')' may be deleted to speed up executlion
while sacraificing protection.

IASE
COMPILE (CTASE} { compile the run-time executor
HERE 0 , { init table pointer & get its addr
¢ t stack & marker on data stack
INMEDIATE
LADCASE
CONMPILE ;5 { end of a case
SRRE { stack a ptr. to next case
} IMKEDIATE
ENDCASES (this word writes the look-up table
CONPILE ;S (end of default case
, { put pointer for default case into tadle
BERE R (tesporarily save addr of pntr to case(n]
oue { look for casef0]
19 4 (didn’'t find marker, so:
3EGIN
, DUP Qe (store pners to case(n]! thru case(l]
END { until reaching the marker
TRAEN
OROP (drop the macker
oup { dup the pfa
2, (store pntr to case(0)
(data stack is down to i item: the pfa
HERE SWAP | (store this addr into pfa
§> (fetch 8ddc of ptr to highest normal case
IMMEDIATE

A Test of the 'CASE' Function:

3 -4 { tey & range of parasmeters, some of which are fllegal)

élsgul . (preceed each line with the case ¢ being tried)
.* This is the case } 0 code” ENDCASE
{ ==-~case ¢l does nothing---) ENDCASE
.* This is the case ¥ 2 code® ENDCASE
.* default case*
S

[«) { do the next case on a new line)
LDOP

The Result is:

TEST-WORD { typed by human)
-4 default case

-3 default case

-2 This is the case § 2 code
-1

0 This is the case # 0 code
1

2 This is the case # 2 code
3 default case

4 default case

OK

Time Trials:

Here we find out how long it takes
to get to the proper case. The CPU
clock is set at 1.000 MHz. The word
(CASE) was defined leaving out the
protection features. Then the follow-
ing definitions for timing loops are
tried, executing null cases which do
nothing. 100,000 loops are timed:

OEC IMAL

s INNER 1000 0 DO] CASE ENDCASE ENDCASE ENDCASE ENDCASES LOOP ;

: SPEED .* X" 100 0 DO INNER LOCP .* X* ;
SPEED XX OK { this vas 210 seconds on the 6800 FORTH)

1000,000 loops are timed, leaving out
the CASE portion:

: INNER2 1000 0 DO Looe :
: SPEED 2 .® X* 130 0 00 DIMMER2 LOOP ." X" ;
SPEED2 XX OX { this was 13 seconds on the 6800 FORTH !

Thus, it can be seen that it takes
about 2 milliseconds to vector to
the desired case if the two protection
features are left out. Putting in the
protection would increase the time to
about 3.5 mSec.

Karl Bochert
Dave Lion
Los Altos, CA 94022

Judges' Comments -

Karl and Dave were the only entry
to make provision for pre-incrementing
and post-incrementing versions of
NEXT. This refers to when the inter-
pretive pointer IP is advanced within
NEXT. They give a test to check your
system. This version uses a campiled
table of indexes to give minimum
execution time. The style and docu-
mentation is to be complimented.

FORTH DIMENSIONS I1/3

Page 52

CASE AND PROD
CONSTRUCTS

Steve Brecher

{ syntax: www CASEOF

www CASE www ESAC
- { O or more CASE/ESAC pa:irs
allowed, at least 2 patrs
. for semantic sense.]
www CASE www ESAC
OTRERWISE www
ENDCASEOF

[OTHERWISE optionall

www stands for O+ Forth words,
possibly including complete case
expression(s], these possibly still
further nested. But code represented
by www can make no net change to the
return stack, as the case selector
value is stored there. Runtime:
CASEOF pops, saves top of compute stack
as selector. CASE pops, tests top of
stack vs. selector; if =, executes
words up to next ESAC followed by words
after ENDCASEOF. If <>, executes words
after next ESAC. OTHERWISE is optional
for readability. SELECTOR used any-
where between CASEOF and ENDCASEOF
leaves the selector value, provided no
net change has been made to the return
stack since CASEOF; SELECTOR is an
alias for 'R'.)
31 CONSTANT CASSYNTX (Error
number, case construct

syntax)
: CASEQOF
(=> 04 . Proncunced “case of", after Pasxc:zl.)
COMPILE >R { to save selector for testing by CASEs)
[+] { end-of-data sigral to ENCCASEOF)
4 (Por CASE syntax check) ;
IMMEDIATE

CODE CASEBRANCH (n -> . Forth branch
to the offset
following inline if
n <> @RP, else bump
IP over offset.
Compiled by CASE.)

S)+ RP () CMP,

nL 17, { If n < 4RP,)

r (3 I[P ADD, (add inline offset to [P}

MEXT, ENDIF, { and "branch®)
1P)+ TST, (else buap IP over inline offset)
KEXT, C: (and continue there.}

: ?CASE { nl n2 -> . Compile-
time check for
nl=n2. If fail

issue syntax error)
<> IF CASSYNTX ERROR
ENDIF ; :

CASE ({ 4 -> addr 5 .
Executes ?CASE
syntax check;
campiles CASEBRANCH
with a zero offset;
pushes address of
of fset so ESAC can
fix it later; pushes
5 syntax check
signal.)

4 ?CA3E { Syntzx check}

COMPILE CASEBRANCH

ASRE (Push add:-ess of offset so ESAC can parch 1%
9, (ESAC will crarge the 0O to +offset for CJASEBRANIH)
1 { For ESAC syntax check) ;

IMMEDIATE
: ESAC (addrl 5 -> addr2
4 . Pronounced
"eesack"; "“case"
spelled backward.
Executes 7?CASE
syntax check; fixes
the offset at addrl
so the CASEBRANCH
there will branch to
the code after ESAC;
compiles BRANCH with
a O offset, pushes
the address of the O
offset so ENDCASEOF
can fix it later;
leaves 4 for syntax
check by later
word.)

S CASE { Syntax check)

° { ELSE will be checking for this)

{COMPILE] ELSE (ELSE fixes CASE offse:, pushes addr
of O offget 1t compiles with BRANCH)

2e (EL3E leaves 2, CASL/OTHERWISE/ENCCASZOF want 4)

IMMEDIATE

Page 53

FORTH DIMENSIONS II/3

: OTHERWISE (4->4. For
readability,
optionally written
after last ESAC to
identify code which
is executed if no
cases match.
Performs compile-
time checks.)

2COMP

4 2CASE

4 ;

IMMEDIATE

: ENDCASEOF (O addrl addr2 ...
addrn 4 -> .
addrx is the addr of
an inline offset
following a BRANCH
campiled by an ESAC.
Executes ?2CASE
syntax check; O on
the stack is an
end-of-data signal
which was pushed by
CASEOF; For each
CASE...ESAC, patches
the offset at addrx
so that the BRANCH
compiled by ESAC
will branch to the
R>DROP which END-

CASEOF compiles.)
4 ?CASE (Syntax check)

(thetre's a noniero offset on stack)
{ ENDIF will be checking for this)
(ENDIP will compute, emplace offset)

BEGIN -DUP WHILE
2
(COMPILE| ENDIP

REPEAT

COMPILE R>DROP ; { code drops case value from R stack)

IMMEDIATE

ALIAS SELECTOR R

{ PROOS/PROD/DCRP/CATCHAL/ENDPRODS ate aralogous to
CASEOP /CASE/ESAC/OTHCRWISE/ENDCASEOF except there
i{s no selector value: dach PROD tests for tf on stack.)

Steve Brecher
Software Supply
Long Beach, CA

Judges' Camments -

This entry supports essentially the
same syntax and semantics as the
FORTH-85 CASE statement (see FD 1/5),
but offers the following advantages:

1. Compile-time syntax checking.

2. Explicit OTHERWISE clause.

3. Case selector 1is kept on return
stack instead of in a special
variable. This allows nesting of
CASE constructs.

4. l6-bit branch offsets are used,
rather than a mixture of 16-bit
addresses and 8-bit offsets.
This eliminates the need for a
special run-time END-CASE word and
simplifies campilation.

NEW PRODUCT

Z-80

We have a 2-80 implementation of
FIG-FORTH that was derived directly from
8080 FIG-FORTH 1.1 and will run under
either CP/M or Cromemco CDOS. The code
is optomized to exploit the additional
Z-80 registers and instructions.

Although this was developed for our own
internal use we are willing to make it
available at cost to interested FIG
members. For $25.00 to cover media,
copying, and shipping, we will send two
soft- sectored single density eight inch
diskettes containing executable Z-80
FORTH interpreter, all source files, and
sample FORTH programs. Payment may be
sent by check or money order to the
address below. Please allow us 30 days
for shipment. LABORATORY MICROSYSTEMS,
4147 Beethoven Street, Los Angeles, CA

90066, (213) 390-9292.

33 CONSTANT PROSYNTX (Ertor number, production set syntax)
1 PRODS {=>06 . Compile-time setup for PROD set.)
] { end-of~-data signal to ENDPRODS)
6 { for PROD syntax check)}
IRMEDIATE
Tt 2PROD {al n2 =>.)
<> IP PROSYNTX ERROR ENDIF ;
1 PROD { 6§ ~> addr 7 }
6§ ?2PROD
6
IMMEDIATE
+ BNDPRODS (O addrl 4ddr2 ... addrn 6 ->)
6 ?PROD (Syntax check.)
BEGIN -DUP WEILE { there's a nonzero offset of stack)
2 (EMDIP will be checking focr this)
[ComPILE] ENDIP (ENDIF will compute, emplace offset)
REPEAT ;
INREDIATE

FORTH DIMENSIONS II/3

Page 54

———A CASE STATEMENT ——

Mike Brothers

Approximately a year ago I was
writing a program and needed a more
powerful branching construction than
the standard IF..ELSE..ENDIF con-
struction. Somehow I decided on
implementing Pascal's CASE statement in

FORTH, and this is the one which is
described here. This CASE statement is
also included in the standard SL5S

package, available from the Stackworks.

Some of the advantages of SL5's
CASE statement are:

1) Infinite nesting is possible.
2) The QODE is machine independent.

3) Programs are easier to read
because of its simplicity.

CASE statement definitions

: SCASE R> DUP 2 o SWAP @ 5% OR
: §e: OVER = IF

oROP B> 2 ° >R

nst > d

1w

™D H
: $;; B> DROP ;
: CASE \ $Cast
: e\ §«: RERE
s\ 855
: CASEND \ B>

Compilation

During compilation, "CASE" compiles
the address of "SCASE" and a 0 for the
address field. Every subsequent "=:"
causes "$=:" to be compiled along with
a dummy address field (to be set by
the next ";;"). The word ";;" then
campiles "$;;" and replaces the address
field of the previous "=:" with addrx.
When "CASEND" is finally processed, the
samething resembling figure 2 should be
oresent.

: NOCASE DU?
HERE 0 , ; IMMEDIATE
[/} . IMEDIATE
DMEDIATE

IOEDIATE

HERE SUAP ! |
\ 0mOP WUERE SVAP ! ;

| %casg | 1 appml |

addrA: ExpressionAl | $=: | | sddeB | exprassionA?

sddy3: ExpressicaB] | 8=: | | addreC | expressiond?

)
i

addrY: Expression?l 1 eXpreseionY2 181
efdsz: | B> | | 0ROP
addzl:

Execution

Upon entry, a number corresponding
to the case is assumed to be on the
stack. "SCASE" then places ADDR]1 on
the return stack. ExpressionAl is then
executed, and "$=:" campares the value
on the tos (top of stack) with the nos
{next on stack), which should be the
entry value. If these are equal, the
entry value 1s dropped and ExpressionA2
is executed before "$;;" sets the
interpreter pointer to ADDR1 (which is
on the return stack). If the two
values are not equal, "§$=:" sets
the IP to addrB and execution continues
until a valid case is found or the
cases are exhausted, which causes ADDRI
to be removed from the return stack and
the entry value dropped.

The word "NOCASE" always causes
the $=: to execute the following
expression, simply by setting the tos
equal to the entry value.

Examples of CASE statement usage

: EXAMPLELl BEGIN

GCH CASE
APPLE °
BLUEBERRY "

." CHBOICE? *
4] =:
42 = .

. A i3 for APPLE)

M 3 1s for BLUEBESRRY)
4) =: ,® CHERRY * C 1s for CHERRY)
46 w: " DATE * 1]
45 e: .* ELDERBERRY * £
NOCASE =: .° WRONG ° r

CASEND

ENOD

is for DATE !
is for ELDERSERPY
epeat tili valid)

O e e s

Figure 3. Exampie of CASE statement uszge

CASE statement example

The example shown above illustrates
the CASE statement's simplicity and
power. When EXAMPLEl is executed, a
character is read from the keyboard.
If the character is an "A", the string
"APPLE" is displayed. If the character

is a "B", the string "BLUEBERRY"
is shown. If none of the five are
selected, the string "WRONG" is

Page 55

FORTH DIMENSIONS 11/3

displayed and the loop is executed
again until a valid (A-E) choice is
entered.

The COND Statement

One particular advantage of the
case statement is that an additional
branching structure which executed
an expression based on a boolean
expression can be defined with a few
more words. I call this structure the
COND statement, and the extra words
needed are shown in figure 3. The
structure is much like that of the CASE
statement, as shown in the example in
figure 4.

: COND COMPLILE CASE IMMEDIATE

: CONDEND \ R> \ JDROP HERS SWA? : ; IMMEDIATE
: $:: IF
R> 2 & >R
ELSE R> @ >R
ENDIF ;
tor \ S HERE 0 , IMMEDIATE
Figure 4. COND statement definitions
: EXAMPLE] COND
DUP 0> :: T" POSITIVE" ;
ouUP 0= :1 T° ZERO" ;:
1 T* NEGATIVE®
CONDEND :

Pigure $. Examples of COND statement usage

The COND Example

The Example shown above illustrates
the similarity between the COND con—
struction and the CASE statement. Upon
entry to EXAMPLE2, an integer is
assumed to be on the stack. One of
the strings "POSITIVE", "“ZERO", or
"NEGATIVE" is displayed depending on
the integer.

Mike Brothers
The Stackworks
Bloomington, IN 47401

Judges' Comments - This is a practi-
cal method but not as portable as it
might appear. The 2+ in S$CASE and $=:
will have to be relocated for preincre-
menting 6800 systems. The COND state-
ment is a nice variation on CASE.

NEW PRODUCT

FORTH FOR CP/M

Mitchell E. Timin Engineering Co.
has an enhanced version of FIG FORTH
ready for immediate delivery. It is
supplied on an 8 in. single density
diskette, ready to run on any system
with CP/M and at least 24K of memory. A
FORTH style editor with 20 commands is
included, as well as a virtual memory
sub-system for software which is
permanently stored on diskettes, then
loaded when needed. The user may also
make permanent additions to the resident
FORTH vocabulary. A Z-80/8080 assembler
is also included, allowing the user to
create new FORTH definitions which
compile directly into machine code. All
Z-80 or 8080 instructions may be used.

The IF...ELSE..., BEGIN...UNTILL, and
BEGIN...WHILE...control structures may
be included in assembler definitions;
these will automatically compile into
appropriate machine code.

Other enhancements include an
interleaved disk format that minimizes
the time required for disk access. A
1024 byte disk block may be read or
written in as little as 1/6 second.

Eight of these blocks are maintained in
RAM for immediate access and
automatically swapped with others on the
disk as they are needed.

The price is $75 for the 8 in.
single density version, $90 for other
diskette formats. Adequate
documentation is included, suitable for
the beginner as well as the experienced
computer user.

FIG FORTH was originally defined by
the FORTH INTEREST GROUP and is very
close to the FORTH-79 international
standard.

Mitchel E. Timin Engineering Co.,
9575 Genesse Avenue, Suite E-2, San
Diego, CA 92121,

FORTH DIMENSIONS II/3

Page 56

=—=DO-CASE STATEMENT—

n
2]
=

——
OV IR NLWNTO

e g
v wn

sCR

Dwight K. Elvey

OVERVIEW OF STATEMENT:

This is a DO-CASE written in FIG
FORTH. It allows the operations of
statements on the condition of a match
of a case value and a case key. This
DO-CASE also has a range case that
allows the use of the condition to be
done on a range of case key values.
The NOT CASE and the NULL CASE concept
are also allowed in this DO-CASE.

)19

(DO-CASE ALSO COMPILE { +++J LIKE COMPILE)
L]]

1 comprLe{ ?COMP BZGIN R> DUP 2+ >R @ DUP ' J CFA = 1P DROP
1 BLSE , O ENDIF UNTIL

: DO-CASE COMPILE >R O S ; IMMEDIATE
s CASE 5 ?PAIRS COMPILE(P e OBRANCE} HERE O , 7 ; IMMEDIATE

t RANGE-CASE 5 ?PAIRS COMPILE { R SWAP - O< O= OBRANCH} HERE O ,
HERE COMPILE BRANCH HERE O ,

COMPILE CR - O< OBRANCE) HERE O ,
HERE SWAP >R ROT >R R - R> | OVER - SWAP | R> 7 ; IMMEDIATE
: END-CASE 7 ?PAIRS COMPILE B8RANCH HERE O , SWA2 HERE OVER -
SWAP | SWAP i+ S ; IMMEDIATE

1 END-DO-CASE 3 ?PAIRS -CUP IF O DO HERE OVER - SWAP | LOOP
enptr ComPILEC R> DROP Y ; IMMEDIATE ;$

29
(EXAMPLE OF DO CASE)
s EXAMPLE DO-CASE
4 CASE ." THE NUMBER WAS 4 * CR END-CASE
S 3 RANGE-CASE .* THE NUMBER IS J OR 5 " CR END-CASE
6 CASE .® THE NUMBER 1S 6 “ CR END-CASE
{ NOLL OR NOT CASE)} ." THE NUMBER ISN'T 3,4,5OR 6 " CR
END~CASES ; ;S

COME TO FIG CONVENTION
NOVEMBER 29

WHAT EACH DEFINITION FOR DO-CASE
DOES;

DO-CASE consumes the case key value to
be used later by the individual
cases. This i1s the initialization
statement for a DO-CASE field.

CASE does a comparison of the case key
value and a case value. If a
match is found the statements
between CASE and the next END-CASE
are done, then operation is picked
up after the END-DO-CASE statement;
else operation continues after
the END-CASE statement and continues
until END-DO~CASE or the next
successful case.

RANGE-CASE does a comparison of the
case key value and an inclusive
range of values set by the two case
values. The first case value on the
stack must be greater in value then
the next case value on the stack.
The operation of RANGE-CASE is
otherwise the same as CASE.

END-CASE indicates that the conditional
CASE or RANGE-CASE is ended. It
must be paired with any use of CASE
or RANGE-CASE.

END-DO-CASE is used to close a DO-CASE
®field. 1Its main purpose is to do
the cleaning of the stack and
provide an exit point for the CASE
statements. DO-CASE must be paired
with a closing END-DO-CASE.

GLOSSARY ENTRIES

CASE
n —- (run-time)
n —~- addr n (compile)
Used in a colon-definition in the
form:

n(l) DO-CASE ... n(2) CASE (tp) ... END-CASE

(fp) ... END-DO-CASE

Page 57

FORTH DIMENSIONS II/3

At run-time a comparison of n(l) and
n(2) is done. If there is a match
the true part is executed, then
execution resumes after END-DO-
CASE, If there is no match execu-
tion continues at the false part
(fp). It must be followed by an
END-CASE and an END-DO-CASE. It
must be preceded by a DO-CASE.

At compile-time CASE compiles a
branch and reserves space for an
offset at addr. addr and n are used
by END-CASE to resolve the offset
and for error testing.

DO-CASE

n — (run—-time)
-—- nl n2 (compile)

Used in a colon-definition in the
form:

n(l) DO-CASE ... n(2) CASE (tp] ... END-CASE

(fp) ... END-DO-CASE

At run-time it consumes the value on
the stack to be used later by case
statements. This is used to ini-
tialize a do case field. See CASE
for its use.

At compile-time DO-CASE leaves a
case count (nl) and a value for
error testing (n2).

END—-CASE

_— {run—-time)
nl addrl n2 --- addr? nl n4 (coapile}

At run-time it is used to terminate
a CASE or RANGE-CASE statement. See
CASE or RANGE-CASE for its use.

At compile~time it takes a value for
an error check (nl), an address
{(addrl) to resolve an offset and a
value that is the number of cases.
It leaves a value for error checking
(nd) , a value with a new case count

(n3 = nl + 1) and an offset at
address (addr2) to be used later.

END-DO-CASE

—_— (run-time)
addr(}) addr(2) ... addr(al} nl n2
--- {compille)

At run-time this terminates a
DO-CASE field. See DO-CASE or CASE
for its use.

At compile time it takes a case
count (nl) and the count number of
addresses to be used to resolve
offsets and a value to use for error
checking (n2).

RANGE~CASE
nl n2 --- (run-time)
n -—— addr n (campile)

Used in a colon-definition in the
form:

ni{l) DO~CASE ... n{2} a{)) RANGE-CASZ (tp)
. END-CASE (fp) ... END-DO-CASE

At run-time a camparison of n(l) and
the inclusive range of n(2) and n(3)
is done. If there is a match the
true part (tp) is executed, then
execution resumes after END-DO-CASE.
It must be preceded by a DO-CASE.
n(2) must be greater than or equal
to n{3) to do a successful case.

At compile-time RANGE-CASE campiles
a branch and reserves space for an
offset at addr. addr and n are used
by END-CASE to resolve the offset
and for error testing.

EXAMPLE OF (SE:

SCR # 29 is an example of the use of
DO-CASE. It shows the use of CASE,
RANGE-CASE and null or not-case. In
order to use it type in SCR # 19
first then SCR # 29. It is used by

FORTH DIMENSIONS II/3

Page 58

typing a number, then EXAMPLE. The
result will be a comparison of the
number you typed and the comparisons
done in the DO-CASE.

ADVANTAGES AND DISADVANTAGES:

The main disadvantage 1is that
DO—CASE uses the return stack like
DO ... LOOP does. This means that a
value can not be passed on the
R-stack from the outside of the
DO-CASE field to the 1inside or
vice-versa. Also this means that if
the loop value I is to be used it
must be on the operation stack
before entering the DO-CASE.

The advantages of this DO-CASE are
that it has a RANGE-CASE and the
ability to allow the concept of not
or null-case. This allows it to be
used for something like an input
entering routine for something like
an editor. The CASEs can be used
to prescan for special keys, the
RANGE-CASEs can be used as a capi-
tals only routine and the null-case
used to do the normal entry.

Dwight K. Elvey
Santa Cruz, CA 94065

Judge's Comments -

This entry performs the functions
of the FORTH-85 CASE statement. It
also provides compile-time syntax
checking, allows a range of indices to
be treated as a single case, and offers
a "none-of-the-above" case.

Compiling the same list of run-
time words for each case results in
excessive space overhead (about 28
bytes for each RANGE-CASE). Defining
some new run—-time words would save
space without adding much execution
time.

Also, using " - 0<" to check the
index against a range gives the wrong
result if the subtraction overflows.

FIG NORTHERN CALIFORNIA
MONTHLY MEETING REPORT

28 June 80
FORML Session -

Tom Zimmer described the product of
his last two weeks effort - tinyPASCAL
(written in FORTH, of course). Two of
his remarkable routines include the use
of Ragsdale's table structure (C.F.,
Morse code tutorial, 24 May 80 FIG Meet-
ing) in a Tokenizer and his technique
of recursion uning dummy pointer-vari-
ables. The PASCAL design came from a
"Byte" (Sep-Nov 78) series of articles
which instructed the reader to do it in
BASIC. Tom's first version of PASCAL-
under-FORTH occupies some forty blocks.

F1IG Meeting -

Three technical talks were deliv-
ered. Michael Perry described a CP/M
File System written in FORTH which gives
a 8080/Z80 version of FORTH compatibil~-
ity with and use of extant CP/M data
files.

Kim Harris spoke about arrays, i.e.
how tables are created by alloting space
to named variables and accessing array
components by manipulating an index.

Bill Ragsdale discussed database
concepts after FORTH, Inc.'s poly-
FORTH and the organization of fields
within files. Their FORTH definitions
and demonstrations of file manipulation
"How to talk to mass storage'.

Announced was the availability of
source code for FORTH on the 6809 run-
ning under SWTPC's FLEX 1.9. This is
copyrighted by Talbot and is available
from FIG for $10. See order blank.

Regarding FIG organizational busi-
ness, two volunteers were asked to step
forward - cne to organize meetings,
sequence schedules and distribute tasks
(Ragsdale estimates 3 hrs/mo effort
needed) and the other to take up the
meeting announcement effort.

;s Jay Melvin

Page 59

FORTH DIMENSIONS II/3

=A CASE IMPLEMENTATION=

william S. Emery

Yet another CASE implementation,
this for either the TI990 or the
Motorola 6800.

The objectives of this implementa-
tion were:

l. To provide a clear source
program structure when using
CASE, i.e. no compiler direc-
tives.

2. To provide a direct exit from
any executed CASE to the next
program statement.

3. To provide an ELSE (or Trap)
statement within the CASE
structure.

Please note: in both my 990 and 6800
implementations of FORTH
all compiled addresses
are 16 bits. No relative
addressing is used.

The compiling word 'CASE creates a
dictionary entry as follows:

1. The code address of (CASE).

2. The source argument to be
compared. This eliminates the
compilation of LITERAL and the
necessity of moving the argument
to the stack.

3. The branch address for I when
not true. This is the address
of the next CASE statement in
the list.

A camplete CASE statement requires
three unique words:

<CASE , pronounced "open case,"
CASE , pronounced "case," and
CASE> , pronounced "case closed.”

A sample of use is:

: TEST
<CASE 1 ." FIRST"
CASE 5 ." FIFTH"
CASE 7 ."™ SEVENTH"
ELSE . ." NOT VALID"
CASE> ;

At compile time <CASE places a
zero delimeter on the stack, campiles
to the dictionary (CASE), the source
argument, and a nul, which will become
the not true branch address. CASE
then compiles a standard ELSE, which
resolves the preceding not true, and
deposits a nul address, to be resolved
by CASE>. The address of this nul cell
is left on the stack. Finally, CASE>
resolves all addresses on the stack to
itself until the opening nul is encoun-
tered.

{ TI990 ASSEMBLER)

) € (COMPARE ARGUMENT TO STACK)

Q= 1P $ INCT I INCT (POP STACK ENTER PRCC)
ELSE 1) I Mov { SET UP BRANCH ADDR)
THEN NEXT

CODE (CASE)
I)+ s

: "ELSB \ (gL8E) 8ERE O ,
1 0, 32 WNORD MNUMBER , :

AERE ROT |

1 'CASE \ (CAse) 4, HERE O ,

t <CASE 0 'CASE INMEDIATE
1 CASE ‘ELSE 'CASE : IMMEDIATE
1 CASE> BEGIN HERE SWAP ! 70UP O= END ; IMMEDIATE

A dictionary map of the compiled
source would be as follows:

{headers omitted - addresses in hex)

1X00 (case) 0001 XX12 (.") SF IR ST (else) XX4i4
XX12 (case) 0003 XX24 (.®) SF IF TH (else) XX44
Xx2¢ (case) 0007 XX34 (.") 7S EV EN TR

X34 (else) XX44 (.") 9N OT bV AL ID

X 44 (:)

FORTH DIMENSIONS II/3

Page 60

While using byte offset addressing
for the branches would have saved one
or two bytes per CASE statement, to do
so would violate the definition of word
aligned dictionary established at the
recent Standards Team meeting.

The word incorporating the CASE
paragraph is entered with any 16 bit
value on the stack. Any CASE statement
finding the stack equal to 1its argument
pulls the entry from the stack. If no
CASE statement matches the stack
parameter the value remains for the
ELSE statement, if used, or beyond the
"case closed" point.

This procedure executes (and com—
piles) nicely on the byte oriented
Motorola 6800 by using the following
definition for (CASE).

CODE (CASE) (M6800 ASSEMBLER)
I LDX 0) LDX N STX + SAVE ARGUMENT)
TSX 0) LDX N CPX . ZCMPAPE TO STACK
Q= IF A PUL B PUL « POP STAIK
I LDX INX INX INX INX { ENTEK PROC !
ELSE I LDX 2) LDX 1 STX ¢ SET BRANCH)
THEN NEXT

Thank you for the opportunity to
submit this. I think the contest idea
is a great one. How about some future
contests on +LOOP, the Bartholdi "TO"
concept and/or Data Structures. If
publication space permits I'd also be
interested in a competition on SORT
and/or an approach to precompiled,
relocatable FORTH for virtual memory
processing.

William S. Emery
Costa Mesa, CA 92626

Judges' Comments - This entry
achieves its objectives with only 7
short and well-factored new word
definitions. The CODE word could have
been written in high-ievel. While
having to specify the case keys as
numbers at compile time is a restric-
tion, it is adequate for many applica-
tions. And it does simplify the source
code.

FIG NORTHERN CALIFORNIA
MONTHLY MEETING REPORT

26 July 80
FORML Session -

Henry Laxon presented his string
package which has been his first FORTH
programming effort. He pointed out that
this package was designed for a comput-
erized type-setting task and not text
editing. The word "string" takes a
length parameter and name and is mani-
pulated so to find, concatenate, parse,
move and so forth.

John Cassady then outlined his
string package which he fashioned after
Northstar's BASIC. He pointed out it's
file handling utility and a discussion
arose regarding screen windows, input
windows and video segmentation. Amaz-
ing how FORTH gets strung along.

FIGC Meeting -

Announcements included the report
of over 25 attendees at Kim Harris' Hum-
bolt State FORTH class.

Allyn Saroyan described the prob-
lems he's had trying to convert code
from other machines and asserted that
we ought to submit code along with
its algorithm and perhaps even assemb-
ler particulars.

Don Colburn, from Creative Solu-
tions, mentioned a FORTHcoming tutor-
ial under CP/M with stackgraphics.

Bob Smith reviewed progress and
problems of the floating point stand-
ards team effort.

John James described Cap'n Soft-
ware's Apple editor.

Bill Ragsdale spoke briefly about
the Installation Manual version editor
and code was shown on how to extend
FORTH, Inc.'s editor.

A preview copy of the August 1980
Byte magazine was passed around. See
the order form to get your copy.

;8 Jay Melvin

Page 61

FORTH DIMENSIONS 11/3

————APPLE - 4th CASE——

V.w, Fittery

Here 13 a select case for Apple-4th.
The Apple works so-far and allows any
level of nesting of any of the allow-
able structures plus more BEGIN-CASES,
END-CASES., You will get a lot of
failures 1t vou do not balance your
(BEGIN-UASES==END-CASES | and your
(CASE==END—CASE). Alsc be aware the
the tor of stack 1§ still available if
none of the case statements are exe—
cuted. Otnerwise the top of stack is
eaten up by the case statement. When
BEGIN-CASES 15 encountered 0 1s placed
on the stack for END-CASES. When
CASE 1is ercountered at compile time
OVER = JERC-BRANCH O , DROP is compiled
inline. when END-CASE is encountered
the ZERO-BRANCH for the matching case
is patched to the proper jump point.
When END-CASE is found all forward
jumps set-up by END-CASE are resolved.
This 1s done with a BEGIN END looking
for the € put on the compile time stack
by BEGIN-CASES. Good luck.

Note: The general approach of the CASE
statement 1s:

:TEST 5 OVER = IF DROP ." FIVE " ELSE
6 OVER = IF DROP ." SIX " ELSE
7 OVER = IF DROP ." SEVEN" ELSE

DROP ." BAD INPUT"
THEN THEN THEN ;

Generates the same code as:

: TEST
BEGIN~CASES
34 CASE 34 . END-CASE
35 CASE 35 . END-CASE
36 CASE 36 . END-CASE
DROP ." BAD INPUT"
END-CASES ;

Note: You must use up so if no case is
executed as if is left on the
stack.

Case Documentation

The CASE statement format 1is
as follows:

The result of trne BEGIN-CASES,
END-CASES i5:

1 0 ix a CASE ortion 1s executed
1 1 1f no CASE opticn is executed

Tf no CASE opticn 1s executed the
flow of execution starts after the last
END-CASE. Because of this and the fact
that the top of stack passed to the
BEGIN-CASE is still on top of the stack
you may drop the parameter or you may
use it to do a calculation which is
done only when none of the case options
are selected:

Note: Though the code executes exactly
the same code the format 1n
Figure 1 1s much easler to
understand than that in Figure
2. It is alsc much preferable.

Case Statement

Figure 1[.

ESC-ESC ." ESC-ESC" ;
NEC ." ESC-CTL-N"
LEC ." ESC-CTL-L"
SEC ." ESC-CTL-S"

as ¥e ee ws e
s we we

ESC KEY

BEGIN—-CASES
27 CASE ESC-ESC END—CASE
14 CASE NEC END-CASE
12 CASE LEC END~CASE
19 CASE SEC END-CASE

END-CASES ;

: ourpur
BEGIN-CASES
27 CASE ESC END-CASE

14 CASE 91 DOT END-CASE
12 CASE 92 DOT END-CASE
19 CASE 95 DOT END-CASE
poT

END-CASES ;

FORTH DIMENSIONS II/3

Page 62

: MONITER BEGIN KEY DUP OUTPUT
32 = END ;
:S

Figure 2.

: ESC-ESC ."™ ESC-ESC" ;
: SIC ." ESC-CTL-S" ;
: LEC ." ESC-CTL-L" ;
: NEC ." ESC-CTL-N" ;

: OUTPUT
BEGIN-CASES
27 CASE KEY

BEGIN-CASES
27 CASE ESC-ESC END-CASE
14 CASE NEC END-CASE
12 CASE LEC END~CASE
19 CASE SEC END~CASE

END-CASES

END-CASE

14 CASE 91 DOT END-CASE
12 CASE 92 DOT END-CASE
19 CASE 95 DOT END-CASE
poT
END-CASES ;

¢+ MONITER BEGIN KEY DUP OUTPUT

32 = END ;
;S

Support Words

: /2 WORD

BACKSLASH .PFETCH 2 -, ;
BRANCH R> 2 + @ >R ;
ZERO-BRANCH 0= IF R> 2 + @ >R

ELSE R> 2 + >R THEN ;
: BEGIN-CASES 0 ; IMMEDIATE

OVER= OVER = ;

CASE BACKSLASH OVER=

BACKSLASH ZERO-BRANCH HERE O ,
BACKSLASH DROP ; IMMEDIATE

END-CASE BACKSLASH BRANCH HERE 0 ,
SWAP HERE 2 - SWAP ! ; IMMEDIATE
END-CASES BEGIN -DUP IF HERE 2 - SWAP
! 0 ELSE 1 THEN END ; IMMEDIATE

PRINT-OFF
85 85 PLIST

(
(
{

4

GENERAL 8-BIT SELECT CASE COBE)
NEEDS BACKSLASH (\)} TO WORK)
FOR 16 BIT VERSION SEE ¢ S 1,2,3)
XXX IF ELSE THEN ;

XXX DUP @ SWAP 2 + @

(#1: 2 BECOMES 1 IN THE ABOVE .LINE)

o~ e

FORGET XXX

CONSTANT BRANCH

CONSTANT ZERO-BRANCH

BEGIN-CASES 0 ; IMMEDIATE

OVER= OVER = ;

CASE BACKSLASH OVER=

ZERO-BRANCH , HERE 0 ,

BACKSLASH DROP ; IMMEDIATE

END-CASE BRANCH , HERE O ,

SWAP HERE 2 - SWAP ! ; IMMEDIATE

$2: 2 BECOMES 1 IN THE ABOVE LINE)
END-CASES BEGIN -DUP IF HERE 2 - SWAP
$3: 2 BECOMES 1 IN THE ABOVE LINE)
! 0 ELSE 1 THEN END ; IMMEDIATE

E. W. Fittery
International Computers
Mount Arlington, NJ 07856

Judges' Comments - Interesting but
rather limited.

COME TO FIG CONVENTION
NOVEMBER 29

Page 63

FORTH DIMENSIONS 11/3

(B

=——DO-CASE EXTENSIONS—

Bob Giles

Upon using the DO-CASE structure
offered by Rick Main in the Vvol. 1,
No. 5 1ssue of Forth Dimensions, I
came across several instances where
the power of this tremendously useful
construct can be improved. The first
is where several options are defined
using the CASE and END-CASE structure,
but all remaining cases have a common
option. The other feature is where the
DO-CASE variable is to be tested within
a certain range of values instead of
strict equality to one value per CASE.
In order to maintain symmetry, some
renaming of the keywords was neces-
sary. The old structure looks like
this:

DO-CASE
W CASE..cceueeeess END-CASE
X CASE.vvvveeeees..END=CASE

Z CASE:..-...--...-EI‘ID_CASB
END-CASES

Hy structure looks like this:

DO-CASE
aCME..l.O........mD—CME
b ¢ CASES...¢¢eeese..END-CASES

J CASEe¢veveessees.. END-CASE
k 1 CASES....ee0e....END-CASES
mCASE..cseeeeees...END-CASE
OTHERWISE....eev
END-DO-CASE

The lower case letters indicate
operations that leave a 16 bit value on
the stack. DO-CASE is symmetrical with
END-DO-CASE, CASE is symmetrical with
END-CASE, CASES is symmetrical with
END-CASES and OTHERWISE, well....

OTHERWISE is useful when there
are several courses of action for

certain values of the DO-CASE variable,
and a common routine for all the other
cases. This closes any "loopholes" for
erroneous values that can occur. This
is easily implemented by putting the
common routine after the last END-CASE
and before the END-CASES in Rick's
DO-CASE structure, However, for
readability and documentation, I
definel a dummy word, OTHERWISE |,
(i.e. : OTHERWISE ; IMMEDIATE), to mark
the action. Making this work an
IMMEDIATE word assures that run time is
not affected. OTHERWISE must be used
at this particular point in the DO-CASE
structure, and has no meaning or usage
anywhere else.

The need to test for equality to a
value within a range leads to the
CASES structure. whereas x CASE tests
the DO-CASE variable (VWCASE) for x =
VCASE, lo hi CASES tests WASE to see
if it satisfies lo < WASE < hi. If
VCASE is within the range of the lower
boundary, lo, and the higher boundary,
hi, then the appropriate statements are
executed within the CASES...END-CASES
statement (this is the newer word -
don't confuse it with Rick's END-
CASES) . If VCASE is out of range,
these statements are skipped and
execution resumes after the END-CASES
(new word) statement.

The listing of the structure is in
the figure (see enclosure). The minor
changes include - changing the name of
END-CASES, making a dummy word called
OTHERWISE, and defining the new word
CASES.,

The simplicity of CASES does not
reflect the time it took to get it
working. (A fairly lengthy interactive
Forth debugger was written to help with
the develoment). The basic idea is to
subtract the upper limit from VCASE
minus one and see if the result is zero
or positive (i.e., the carry flag IS
set). If the carry flag IS set, then
the result is out of range and the
Forth instruction pointer (kept in

FORTH DIMENSIONS II/3

Page 64

the BC pair) has to be incremented so
that the next "instruction" executed
will be the one after END-CASES. The
action is the same as when VCASE does
not match in the CASE statement. If
the carry flag is NOT set, then VCASE
is less than or equal to the upper
bound and possibly in range. If
VCASE is less than the upper bound, the
lower bound 1is subtracted from VCASE.
If the result is negative (i.e., carry
is NOT set), then WASE is out of range
and IP is incremented to resume after
END-CASES. If the result is positive
or zero (i.e., the carry flag IS set),
then WCASE is between or equal to the
upper and lower boundaries. In this
case, the statements between CASES and
END-CASES are executed. At END-CASES,
execution jumps to after the END-DO-
CASE statement and continues.

Two 1interesting concepts were
included in this implementation. The
first was the use of the assembly
language CALL. The ' (tick) causes the
code field pointer of the next word to
be placed on the stack. The Forth CALL
takes this address from the stack ard
assembles the CALL opcode and the
address into the dictionary. At run
time, the call to the -TOP subroutine
is executed, and the 8080 program
counter is pushed on the top of the
stack. Within -TOP, the H POP takes
the return address to HL, and then
exchanges it with the top item (the
boundary) so that the return address
will be on top of the stack when RETurn
is executed.

' APTER-END-CASES leaves an address
on the top of the compile time stack
which is assembled into the dictionary
by the JMP in code CASES. At run time,
this AFTER-END-CASES segment serves as
an extension to machine code in code
CASES. Although this type of program—
ming is a GOTO type of construct, it is
used here to keep the definition of
code CASES short. It also adds insight

as to the intent of extended segment by
the use of a name. My advice to other
programmers is to use this jump around
feature very sparingly, so as to remain
in keeping with the concepts of struc-
tured programming.

The TEST for the new DO-CASE is
listed on screen 153. It differs from
the program that Rick submitted in that
the various variables are to be entered
on the stack before executing TEST.
This way, all 65,536 possibilities can
be tried instead of only the 128
available from an ASCII keyboard.

All of the following was done using
Zendex SBC~-FORTH V 1.0 for an 8080
processor.

A final note is in order. The
earlier DO-CASE had a bug in it per-
taining to the address used to store
VCASE. HNotice that my routines deleted
the ' (tick) which preceded VCASE 1in
lines 3 and 4 of the first screen that
Rick sent (see Vol. 1, #5 of Forth
Dimensions, pg. 51). This is because '
VCASE causes the address of the para-
meter field to be put on the stack,
rather than the location of VCASE in
the RAM area. Although the earlier
DO-CASE works, fetching VCASE always
yields a zero.

Bob Giles
Magnetic Media, Inc.
Tulsa, OK

Judges' Comments -

More of an extension of previous
work than a new CASE.

Page 65

FORTH DIMENSIONS 11/3

SCREEN 150

0 (DO-CASE STATEMENTS 4-4-80 BG)
1 BASE Ce
2 VOCABULARY FORTH+ FORTH+ DEFINITIONS
3
4 (DO-CASE CASE END-CASE CODE DEFINITIONS)
5 0 VARIABLE VCASE
6 CODE DO-CASE H POP VCASE SHLD I INX I INX NEXT JM?
7 CODE CASE W POP VCASE LHLD L A MOV W 1+ CMP
8 0= NOT IF I LDAX I 1+ ADD A I 1+ MOV NEXT JNC
9 I INR NEXT JMP THEN H A MOV W CMP
10 0= NOT IF I LDAX I 1+ ADD A I 1+ MOV NEXT JINC
11 I INR NEXT JMP THEN I INX NEXT JMP
12 CODE END-CASE I LDAX A L MOV I INX I LDAX A H MOV
13 H PUSH I POP NEXT JMP
14 BASE C! ;8 { END CODE DEFINITIONS)
15 (COPIES FROM FCRTH DIMENSIONS V1-5 pg 50/51 BG 4-4-80)
SCREEN 151
0 (DO-CASE EXTENTIONS 6-2-80 BG)
1

2 CODE -TOP H POP XTHL XCHG E A MOV CMA A E MOV D A MOV
3 CMA A D MOV D INX D DAD RET

4 (NOT TO BE CALLED FROM HIGH-LEVEL)

S5 CODE AFTER~-END-CASES B LDAX C ADD A C MOV NEXT JNC

6 B INR NEXT JMP

7

8

CODE CASLS VCASE LHLD H DCX XCHG ' -TOP CALL
9 ¢S IF D POP ' AFTER~END-CASES JMP THEN
10 VCASE LHLD XCHG ' -TOP CALL
11 CS NOT IF ' AFTER-END-CASES JMP THEN B INX NEXT JMP
12
13 CODE END-CASES I LDAX A L MOV I INX I LDAX A H MOV H PUSH
14 I POP NEXT JMP
15 ;S
SCREEN 152
0 (CASES&OTHERWISE EXTENSIONS 5-22-80 BG)
1 (FORTH+ DEFINITIONS - COMPILER DO-CASE STATEMENTS)
2
3 : DO-CASE COMPILE DO-CASE HERE 0 0 , ; IMMEDIATE
4 : CASE COMPILE CASE SWAP HERE 0 C, ; IMMEDIATE
S : END CASE COMPILE END~CASE HERE 0 , SWAP HERE
6 OVER - SWAP C! ; IMMEDIATE
7 (COPIED FROM FORTH DIMENSIONS V1-5 pg 50/51 BG 4-4-80)
8
9 : CASES COMPILE CASES SWAP HERE 0 C, ; IMMEDIATEL
10 : END-CASES COMPILE END-CASES HERE 0 , SWAP HERE OVER - SWAP
11 Cci{ ; IMMEDIATE
12 : OTHERWISE ; IMMEDIATE { NULL DEFINITION)
13 : END-DO-CASE BEGIN HERE SWAP ! -DUP 0 = END ; IMMEDIATE
14 FORTH+ ;S
15
SCREEN 153
0 (TEST FOR EXTENDED DO-CASE 5-22-80 BG)
1 BASE C@ HEX
2 : MONITOR DO~CASE
3 40 CASE QUIT END-CASE
4 41 CASE ."™ AAAA " END-CASE
5 42 CASE ." BBBB " END-~CASE
6 43 CASE ." CAT " END-CASE
7 30 39 CASES ." NUMBERS " END-CASES
8 OFE 102 CASES ." CROSS * END-CASES
9 OTHERWISE ." NOT TESTED *
10 END-DO-CASE ;
11
12 : TEST BEGIN DUP MONITOR 0 = END ;
13
14 BASE C! ;
15

FORTH DIMENSIONS II/3 Page 66

ENTRY FOR THE
FIG CASE CONTEST

Arie Kattenberg

An Overview of the CASE Statement

Externally the CASE statement looks
like:

m n CASE eees. ESAC
k CASE .seceves ... ESAC
1 CASE .v.veeeese. ESAC

ENDCASE

- If a comparison is not ‘true'
(m#n) the m stays on the stack and
is tested against the next CASE.

- If a CASE is met the m is dropped
and after the case body is executed,

the ESAC transfers control to words

following ENDCASE.

- If none of the CASES is met, ENDCASE
has compiled a DROP that now drops
the m instead of one of the CASES

doing that.

If we want explicitly some (stack)
operations to be done when none of the
cases is met, the m that remains on the
stack there would be bothering. We

then use:

m n CASE 6 8000 ¢0 00 E‘SAC
k CASE seo s e N OO PSS ESAC

1 CASEcc0.... ESA
OTHER ..v.ee.... ENDCASE

Now the ‘OTHER' has compiled a
drop for the m and ENDCASE does not
compile a drop.

In both the above examples we can
nest other case structures in any of
the case bodies. This is another
reason for using 'OTHER' sometimes.

Though this is in no way essential
to the above structures I have chosen
a high level branch in the condi-
tional branch that is compiled by
CASE (i.e. (CASE) manipulates the
return stack contents to effectuate a
branch). Now it is simple, machine
independent and self explaining to make
words like:

>CASE <CASE CASES ODDCASE etc.

that can take the place of CASE in the
above examples. (Of course this can be
done using machine language conditional
branches for these elements just as
well.)

By the way: The m, n, k and 1 in the

examples may be any amount of FORTH
that puts a number on the stack.

Internally making a picture of a
compiled CASE structure: (e.g.)

address contents (at compile tize...)

increasing .
senoty lic
sddresses n

lit

n
(case)
~-$ CASE

bzanch ESAC
ee-$
xx 3 lit
k
(case) CASE
yy-$

branch
ee-$ ESAC
yy ¢ lit

N 4
{case)
z32-$
eses CASE

b;;;éh ESAC branch ESAC

ee-$ ot we ce-$

3z : drop eNOCASE Find 2z : drop OTHER

et 3 ... here:

Page 67

e : ..o ENDCAST

ﬁ'tnra.- LR R N Ve

'EB.... 1M ewNrE l

5
L]

[F 2RI TR TR

1

e i bt b

Instead of the (CASE) cfa's we may find
examples of:

(>CASE), (<CASE), (CASES) etc.
there in a more advanced exanmple.
The m, n, k, p here are compiled

literals, but there may be all sorts of
FORTH compiled there.

Source definitions in fig-FORTH words

£2 .00

CASE control structure
BRAM

pid} 2+ SWAP

IF SWAP DROP 2 ELSE OUP & €@ THBEN SWAP ¢+t ;

{ Complete a pending forward branch *)

OVER - SWAP 1 ;
(Compiled by CASE, do a test and conditionally branch *)
OVER = IBRAN ; ~

(Execute until ZSAC if Key-2 equals Case-1 *)
7COMP COMPILE (CASE) HERE 0 , S ; IMMEDIATE

{(Close @& CASE; Key is left if case not done*)
S ?PAIRS 0
COMPILE BRANCA HERE 0 , SWAP COBR & ; IMMEDIATE
ITHER (After last ESAC, if stack or nested CASES used thece *

4 7 PAIRS COMPILE DOROP 6 ; IMMEDIATE

AK-00Peb29 }
(Bi-level branch if BOT is zero, used Dy CASE *)

OBk
SERE
CASE)
SASE

ESAL

=3 4.0

IASE control structure AK-80redb 29)
CNDCASE (Close a CASE control structure *)}
OUP 4 = IP COMPILE OROP ELSE 6 ?PAIRS 4 THEN
BEGIN DUP 4 « SPe CSP & < AND
WBILE DROP COBR
REPEAT ; IMMEDIATE

COME TO FIG CONVENTION
NOVEMBER 29

An 'English' explanation of how
the words work:

ZBRAN
Finds 'true' or 'false' on the
stack. It fetches the address of the

second return stack number which 1s the
pointer (stored IP) in the list where a
branch can occur.

- If 'true' was on stack, the pointer
is incremented by 2 (making next
skip to the CFA following the
branch) and the second stack number
is dropped. (It was the 'key' to
the 'case'.)

- If 'false' was on stack, the pointer
is incremented by the value that is
found in the location where it is
pointing to (making NEXT to resume
interpretation of the list where
the branch was compiled at a new
location).

COBR

Finds an address on stack; a dis-~
tance from the actual DP value to that
address is compiled in the address.

(CASE)

Finds two numbers on stack, compares
these and leaves the 2nd on stack.
Then control is transferred to ZBRAN.
The CFA of (CASE) appears in compiled
lists as a relative branch (the rela-
tive jump following it in the 1list).

CASE

Has precedence and checks whether we
are compiling when we use it. It
compiles (CASE) and puts the address
following (CASE)'s CFA in the list,
on stack. It stores a temporary #
in that location and puts a 5 for
pair checking on the stack.

PORTH DIMENSIONS I1/3

Page 68

ESAC

Does a pair check on the 5 it
expects from CASE. It compiles a
BRANCH, puts a temporary @ in the
location following that BRANCH and puts
the address of that location on stack.

The branch that is half made by the
previous CASE is completed. For pair
check by the following ENDCASE a 4 is
put on stack; the change of check digit
(from 5 to 4) makes the nesting of
other case structures in CASE ESAC
possible. (ESAC has precedence.)

OTHER

Has precedence, it does pair check
on the 4 it expects from ESAC. It
compiles a DROP for the key (for the
CASES that are all not fulfilled when
this point is reached). The check
digit 6 is put on stack. The change
from 4 to 6 as a check digit signals to
ENDCASE that the 'OTHER' is used and it
makes nesting of other case structures
in OTHER ENDCASE possible.

ENDCASE

Checks for a 4 on stack; in case
there is a 4 the "OTHER" is not used
and we must compile a DROP here. If
there is not a 4 there must be a 6
(which is checked); it is replaced by a
4,

The rest of ENDCASE looks for
4's on stack that are placed there by
the previous ESAC's (since there may
be 4's on stack already before the
definition that contains the case
structure. ENDCASE also checks SP@
against CSP contents).

The incomplete branches from the
ESAC's are completed until none is
left.

Clossary entries for each word
in sheet B

ZBRAN mf -—— (if £ is true)
mf —~m (if f is false)

Procedure to perform the branch for
a high level run time conditional
branch in a CASE control structure.

If f 1s false (zero), the in-line
parameter following the compiled
reference to the run time conditional
branch is added to the stored inter-
pretive pointer (second word on the
return stack) to effectuate a branch.

If f is true, 2 is added to skip the
in-line parameter and m 1is dropped.
Used by (CASE), {(>CASE), (CASES)
etc.

COBR addrl —-

Calculate the branch offset from
addrl to HERE and store in addrl, thus
resolving a pending forward branch.

(CASE) m n ——— (if m equal n) Cc2
mn-—m (if m unequal n)

The run time procedure to condition-
ally branch in a CASE control struc-
ture.

If m equals n, no branching occurs
and NEXT interprets the words following
the branch offset in the dictionary
after the CFA of (CASE).

If m is unequal to n, m remains on
stack and NEXT resumes interpretation
with a new interpretive pointer value
according to the branch offset.

Compiled by CASE. For branching,
2BRANCH is used.

Page 69

FORTH DIMENSIONS 11/3

CASE m n —— (run-time, if
m equal to n) pP,C2
mn-—m (run-time, if

m unequal to n)
—- addr c (compile)

Occurs in a colon-definition in
the form:

CASEc.... ESAC
ENDCASE

or:
CASE ESAC
CASE .e.vvesesss ESAC

At run-time CASE selects execution
pased on an equality test of the two
numbers on stack. If m equals n the
part until the next ESAC is executed
and then control is passed to after
ENDCASE. If m is not equal ton, m
remains on the stack and ocontrol passes
to after the following ESAC. The use
of OTHER and its 'other' part are
optional. ENDCASE, or (if present)
JOTHER, drops the remaining m.

At compile time CASE compiles
{CASE) and reserves space for an
>ffset at addr. addr and c¢ are
ised later for resolution of the
offset and error testing.

ZSAC addrl ¢l — addr2 2
(compiling) pP,C2

Occurs within a colon-definition
:n the form:

CASE 4B OB sONNOSDS EAC
CME ®® 000000 Em
CASE & 9000800 mm
ENDCASE

cre

CASEc0es0.e ESAC
CASE ..e.ees... ESAC

CASEe..... ESAC

At run-time ESAC executes after the
part selected by the CASE it pairs to.
ESAC branches over the following cases
and resumes execution after ENDCASE.

At compile time ESAC compiles a
BRANCH, reserving room for a branch
offset at addr2, leaving addr2 and c2
for later resolving of the offset and
error checking. ESAC also resolves the
pending branch from the previous CASE
at addrl, storing the ofset from addrl
to HERE.

OTHER m ——— {run-time) c,P
cl — 2 (campiling)

Occurs within a colon definition
in the form:

CASE ..esces0see ESAC
CmE o &0 0 00 000 ESAC
CASE ..evvsevese ESAC
OTHER ...¢¢..... ENDCASE

At run-time OTHER executes when
none of the cases is met. OTHER drops
the m against which the cases were
tested.

At compile time OTHER compiles a
DROP. OTHER also checks the cl fram
the last ESAC for error testing and
puts c2 on stack to signal ENDCASE that
OTHER has been used and to make nesting
of new case structures possible between
OTHER and ENDCASE.

ENDCASE addrl cl addr2 cl
addrn-1 cl addr-n c2 —-
(compiling) p,C
m -—— (run-time, no OTHER used)

Occurs in a colon-definition 1in
the form:

PORTH DIMENSIONS II/3

Page 70

CASE

ENDCASE
or:

CASE s.ceveessss ESAC

CASE ..ccveenese ESAC

CASE

ESAC

ESAC
ENDCASE

At run-time ENDCASE serves as the
destination of all forward branches
from the ESAC's in the case structure.
If OTHER does not occur, ENDCASE drops
the m that remained on stack when no
case is met.

At compile time ENDCASE compiles
a DROP if OTHER was not used in the
case structure, which can be known from
the value of C2. ENDCASE resolves all
the pending forward branches from the
ESAC's by storing the offset from addri
to HERE in addri for addrl thru addrn.
The Cl's indicate the presence of such
an unresolved branch as long as the
control stack pointer is not passed.

Exanples of the use of this statement

SCR #i02

0 (Examples of CASE control structure

SCR $103

4 (Czamples of CASE control structuce

1 3 EXAMPL (3ome tex% is printed, selected by numbaer -1 & nuaber -2 ¢}
2 S CASE 12 CASE ° This* ESAC

3 J Case PR Y i ESAC

4 OTHER ."° only* ENDCASE ESAC

S 18 CASE 2 CAsSE . a very® ESAC

[7 CASE .* silly*

7 OTEER .° example” ENDCASE ESAC

8 OTHER 2 CASE .* of the use" ESAC

9 9 CASE ." of nested” ESAC

10 QTHER .* <cases” ENDCASE EIDCASE ;

AK-80feb 29)

1+ SEL (Write nuasber -1 between 0 and 9 as text *)
2 0 CASE ® Zero® ESAC
k 1 CASE ¢ One" ESAC
4 2 CASE * 1Two" ESAC
S 3 CAst * Three" ESAC
[4 CASE .* rour*® ESAC
7 5 CASt ¢ rive" £SAC
[] 6 CASE .* sSix”® ESAC
9 7 CASE ® Seven" ESAC
10 8 CASE .° Eight* ESAC
11 9 CASE * NINE® ESAC

.* Outside range 0-9° ENDCASE ;

Short discussion on the case
statement presented here

The history of this case stategent
is outlined below:

A first try for CASE was a replace-
ment of IF so we could produce case
structures like:

Ia. ... CASE THEN ...

«eo CASE THEN ...

«so CASE THEN DROP ...
or
ib. ... CASE ELSE

... CASE ELSE

+e» CASE ELSE DROP

THEN THEN THEN

At run-time, Ib is the faster
one since no other cases are tested
once a case is cone. A disadvantage
however is the necessity to write the
THEN ... THEN ... THEN series.

An improvement on Ib was to organize
the DROP THEN THEN ... THEN by a new
compiler word:

«es CASE ELSE

ees CASE EISE

«oo CASE ELSE
ENDCASE

II.

Page 71

FORTH DIMENSIONS 11/3

AK-8UFen29%)

]

But since ENDCASE can only see
by the 2's for ?PAIR on stack how
many branches have to be completed this
structure II cannot be nested inside
... IF ... ELSE ... THEN or inside an
other CASE ... ELSE.

This could be avoided by making a new
"ELSE" and then using other numbers
for ?PAIR checking in the structure.

By changing the number for pair
checking in the new "ELSE" (ESAC), also
nesting in other case structures 1is
possible:

I.II. ... CASE 7 PAIRS "a* ZSAC “?PAIRS °“b"

.. CASE ESAC
. CAsE EZSAC

?PAIRS *b* ENDCASE

Now, a remaining problem is the
part between ESAC (the last) and
ENDCASE. There the number against
which the cases are checked is still on
stack, so we cannot easily manipulate
the stack there; also, at compile time
we have the "b"'s for ?PAIR checking on
stack so we cannot nest a new case
structure there.

To solve these two problems we made
the optional "OTHER" that performs the
DROP at run time and that at compile
time changes again the "check number"
to inform ENDCASE that the DROP already
has been compiled and to make nesting
of other case structures possible.

Of course the nesting problem could
have been solved by using an opening
word like is done in the example on
page 50 and 51 of Forth Dimensions,
Vol. 1, No. 5. But this forces the use
of an extra word at compile time. This
opening word obuld e.g. store the top
stack word on the return stack (mot in
a variable as is done in the example!,
since this prohibits nesting of case
structures). But I doubt whether it is
an advantage to remove the number
against which the cases are checked
from the stack: This costs (run) time,
makes it difficult to change that
number between an ESAC and the next

CASE (after all, why should one not be
allowed to do this) and the number is
not in the way as far as I can see.

The use of a high level (CASE) and
the use of the separate ZBRAN there are
not mandatory.

To have a fast executing case
structure one may rewrite (CASE) in low
level without affecting the essence of
this case structure.

However, as presented here the
structure 1is machine independent for
standard fig-FORTH's.

Also this high level (CASE) makes it
easy to extend the possibilities,
e.g':

3 (>CASE) OVER < ZBRAN ; (JRANCE IF SMALLER THAN)
1 DCASE COMPILE (>CASE) HERE 0 , 5 : IMMEDIATE

and we have a new type of case.

or:

¢t (CASES) ROT >R R < SWAP R > AND R>
SWAP IBRAN ; (BRANCH IF NOT IN RANGE)
: CASES COMPILE (CASES) BERE 0 , S ; IMMEDIATE

etc. Any odd case you expect to use
more than once can be incorporated in
the set and used just like CASE.

S

P.S. In re-reading all this I notice
that "?COMP" is not needed in the
definition of CASE; please omit.

P.P.S. My native language is Dutch;
please forgive me any errors in the

language.

Arie Kattenberg
Utrecht, Netherlands

Judges' Comments - This entry has a
number of interesting ideas in it and
could be useful to developers. The
presentation is a bit hard to follow in
places. A plus is the short history of
the development of this CASE structure
through several earlier forms.

FORTH DIMENSIONS II/3

Page 72

=CASE CONTEST STATEMENT=

George Lyons

This entry submitted to the FIG
Case Statement Contest 1s 1limited
to providing a compiler syntax for
writing equivalents of ALGOL "case" and
"switch" statements in FORTH and some
additional words to use in conjunction
with ALGOL style case expressions. As
such it does not solve all the problems
posed in the contest announcement.

In formulating a case expression
syntax the first decision was to treat
case lists as in-line or literal
expressions within : definitions rather
than provide a special defining word
creating words of a case list type.
This increases flexibility of use at
the expense of storage saving otherwise
obtainable by exploiting the code
address field of a case-type word. A
second decision was to allow use of a
list either to execute a case selected
at run time or to compile the execution
address of the case--for use in more
complex compiler features. Storage for
a list which was to be only executed
turned out less than when compiling so
different commands are provided for
these two circumstances. A third
decision was to include in the compiled
cade for a case list no number-of-cases
parameter; hence no checking of the run
time inputsubscript's validity is done
in executing the cases. Instead
separate words ?INDEX and EXCEPT are
provided to do this checking, taking
more storage when used than if their
functions were built into the case list
code, but saving time and space when
they are not needed, as when the
validity of the input is established
elsewhere in a program.

The in-line case lists are handled
as one instance of a general approach
to in-line list functions in which a
list is represented in the form ccc(
...list data...). cc(is a Word which

begins compiling the list and) is
introduced as a word, in addition to
its role in comments, to terminate the
list. Different words ccc(perform
different functions involving data
or code stored 1in the list. The
parenthesis was defined as a word
because of the similarity of the run
time process of skipping around data
embedded within a definition and the
campile time skipping past a comment in
source code. The general approach
compiles all 1lists with an execution
address at the front which processes
the data and returns controls to
the point following the 1list; the
address of this return point 1s stored
immediately following the execution
address at the beginning, and it has
more uses than just returning control.
When a list contains variable length
elements a vector of addresses of the
elements is appended to the end of the
list in reverse order. The case lists
are an example of this structure in
which the data is a list of variable
length code segments, written for
instance using EXECUTE(CASE case 0
code... CASE casel code... CASE ...).
The case compiling words such as
EXECUTE(are written using utility
Words available for building additional
functions along the same lines.

Examples of the latter are some
Words that might be used in conjunc-
tion with EXECUTE(...). These are
mentioned briefly here, and some are
implemented in the glossary and code
section.

[n] EXCEPT EXECUTE(...)
(compile time source)

At run time EXCEPT will check the
subscript on the stack intended to
select a case in EXECUTE(...} and
replace it by zero if negative or
greater than n. Case zero can then be
especially written to handle these
exceptions.

W+ addr n --- addr+2*n

Page 73

FORTH DIMENSIONS II/3

Address arithmetic operation for
byte addressable computers. Increments
an address adr by n words. Can be
implemented in machine code using shift
operations instead of multiply.

W+ 2 %+
W- addr n --- addr-2*n

Address arithmetic operation for
byte addressable computers. Decrements
an address adr by n words. See W+.

COMPILES —- addr n pP,C

Used in conjunction with EXECUTES in
a : definition to combine a procedure
performing compiler operations with run
time code for the procedure compiled,
in a single definition. In the form :
cec ... COMPILES ... EXECUTES ... ;
IMMEDIATE, ccc performs the operations
up to EXECUTES at compile time; these
compile time operations include OOM-
PILES which compiles the address of the
code following EXECUTES. EXECUTES
places at that address a pointer to the
code for : definitions, so that the
code following EXECUTES is in effect a

definition without a name field.

:COMPILES ?CCMP COMPILE COMPILE BERE n 2 ALLOT ; IMMEDIATE

EXECUTES addr n -—- pP,C

See COMPILES. Compiles ;8 to
terminate the compile time part of a
dual definition, and stores the address
of the next dictionary location in
the space reserved by COMPILES.
Compiles the address of the code for :
definitions to begin the run time part
of the wWord.

+ EXECUTES ?COMP | HERE 2 -] COMPILE 1S n 7PAIRS HERE
SWAP | COMPILE { € , | ; IMMEDIATE

[n] ?INDEX EXECUTE(...)
{caompile time source)

At run time ?2INDEX will issue a
system error message if the subscript
on the stack intended to control
EXECUTE(is invalid, instead of writing
a special case zero in the case list.

PIND(nl , n2 , n} , ...) EXECUTE(...)

FIND(is another example of the
in-line expression approach which
performs the inverse of a simple
vector. It searches at run time for a
match to the stack item in the list,
returning either its subscript or zero
if not found. Again, case zero can be
written to handle the exceptions.

INTERVAL(nl , n2 , n3 , ... nk)
EXECUTE(...)

Another in-line expression type,
INTERVAL(contains a vector of values
in ascending order dividing the number
domain into the intervals between
them. At run time a subscript is
returned identifying the interval in
which the stack item falls, and the
item itself is preserved for processing
by the selected case.

RANGE(nl , ml , n2 , m2 , ...)
EXECUTE(...)

FORTH DIMENSIONS I1/3

Page 74

Similar to INTERVAL(except that
each n,m pair defines a separate
range, and a subscript is generated
identifying the first range found which
embraces the stack item, or a zero if
outside all of the ranges.

n MENU ccc EXECUTE(...) ;

MENU is a defining Word to create a
menu—driven application named ccc which
at run time will present screen n to
the user, who will select options by
entering a number, which is finally
processed by the case list compiled
within ccc.

Glossary and Code

The implementation below is written
entirely in high level code assuming a
byte addressing machine. Literal "n"
used with ?PAIRS is left unspecified
for consistent specification of all
?PAIRS values.

BEGIN(=== addr n ff n

Used in certain compiling words to
begin compilation of an in-line, or
literal data structure within a
definition. The next word in the
dictionary is reserved for the address
of the location following the entire
structure, to be filled in by) at
address addr. n is for compiler error
checking. ff marks the stack so that
other compiling words may push pointers
to internal parts of the data block, to
be appended to the end of the block by
). See).

: BEGIN ?COMP HERE n 0 2 ALIOT . ;

) addr n ff addr0... n ——-
(when used as a Word)

Has two entirely different uses.
One terminates a comment begun by (, in
which case it is not processed by the
compiler. When used outside of a
comment it completes compilation of

an in-line data structure begun by
BEGIN(. addr0... 1is a possibly empty
list of addresses of points internal to
the data block left by other campiling
Words; if present it is appended to the
data in reverse order. The address of
the location following the data is then
stored back at 1ts beginning point
addr. Also resumes compilation mode.

)} n TPARIS BEGIN - DUP WHILE , RIPEAT n ?PARI5 HZIRE SWAP
I} 1 IMMEDIATE

LIT(---

Used in Words processing in-~line
data structures to set up the return
and computation stacks for accessing
the data and branching around it. The
Word in whose definition LIT(appears
must be used immediately in front of an
in-line data block, so that the address
of the location at which to resume
control 1is found in the following
location; see BEGIN(. Conseqguently on
entry to LIT(the return stack contains
the address of the code following LIT(
itself on top and the address of the
data block just below. LIT(replaces
the second return stack item by the
address of the code following the data,
and pushes the address of the first
data item onto the camputation stack.
Also see)LIT.

: LIT(R R> DUP @ >R 2+ SWAP >R ;

JLIT —-

Similar to LIT(except returns on
the computation stack the address
of the last word in the data structure
instead of the first word, for access-
ing any address vector stored there in
reverse order by).

: JLIT R> R> @ DUP >R 2 - SWAP >R ;

EXECUTE(--- addr n ff n (compile) P,C

n ——— (run time)

Used within a : definition to define
a list of routines, cr cases in high
level code in the form:

Page 75

FORTH DIMENSIONS II/3

(S. 1 T N O O

W]

EXECUTE(CASE case0... ;5 CASE casal... 18 ... ;5)

At run time case n is executed and
control returns beyond the 1list.
Unpredictable results occur if n is
not a valid subscript at run time.
Executes BEGIN(at compile time.

EXECUTE(?COMP COMPILES BESIN(EXECUTES JLIT W- 9 >R ; IMMEDIATE

CALL{ --— addr n ff n (compile) p,C
n —- (run time)

Similar to EXECUTE(except the case
routines are in assembly language 1in
the form CALL(CASE case0... CASE
casel... ...). Invokes the assembler
vocabulary and suspends compilation.

CALL(?COMP COMPILES BEGIM({COMPILZ! ([COMPILE] ASSEMBLER
CXECUTES)LIT W- @ SP? 2 - SWAP DROP EXECUTE: IMMEDIATE

CASE addr n ff addr0... n -—-
addr n ff addr0...addrl n P

Used to begin each cae in a case
list defined by EXECUTE(or CALL(.
Adds the address of the next case addrl
to the list of case addresses addrO...
on the stack, using n for error check-
ing.

: CASE n ?PAIRS HERE n ; IMMEDIATE

COMPILE(—- addr n ff n (compile) P,C
n —- addr (run time)

Used within a : definition to
jefine a list of routines, or cases in
either machine code or high level code
:n the form COMPILE(:CASE ... ;S ...
CODECASE ...) which returns at run
time the execution address of the case
~whose subscript is on the stack. The
input subscript must be valid or
inpredictable results will occur. To
actually compile the execution address
returned use ,. See also EXECUTE(and
_ITERAL(. Compiles using BEGIN(.

SMPILE(?COMP COMPILES BEGIN(EXECUTES)LIT W- & ; IMMEDIATE

:CASE addr n ff addr0... n -—-
addr n ff addr0... addrl n P

Used to begin each high level
code case in a case list defined by
COMPILE(. Executes CASE and compiles
the address of the code for executing :
definitions. The routine begun by
:CASE should be terminated by ;S as in
EXECUTE(expressions.

:CASE (HERE 2 -] {COMPILE) CASE | COMPILE [@ ,]| ; IMMEDIATE

CODECASE addr n ff addr0... n —-—-—
addr n ff addr0...addrl n P

Used to begin each assembly code
routine in a case list defined by
COMPILE(. Executes CASE and campiles
the address of the next dictionary
location (as in the code field for a
cobe definition). Compilation is
suspended and the assembler vocabulary
invoked as in CALL(. A jump to NEXT
within a machine code case will resume
high level execution following the case
list.

: CODECASE [COMPILE] CASE 2 ALLOT HERE DU? 2 - !
{COMPILE] ([(COMPILE] ASSEMBLER ; IMMEDIATE

LITERAL(--- addr n ff n (compile)
nt —- n2 (run time) P,C

Used within a : definition to define
a vector of 16-bit values. These
values may be made Word execution
addresses using the form

LITERAL(Word0 Wordl Word2 ...)

or may be made literal numbers using
the form

LITERAL([n0 , n1 , n2, ...])

At run time the element whose sub-
scription is on the stack is returned
{(without checking the validity of the
stack value). When used with EXECUTE
in the form LITERAL(...) EXECUTE the
same result is achieved as using
EXECUTE(...) except that storage
requirements are less because no extra
addresses are needed at the end of the
vector. Uses BEGIN(to compile the
list.

FORTH DIMENSIONS I1/3

Page 76

‘LITERAL(?COMP COMPILES BEGIN{ EXECUTES LIT{ W+ 3 ; IMMEDIATE

EXCEPT n -—-
1 ---n

{compile)
{(run time) P,C

Used before an in-line case list or
literal vector defined by EXECUTE(...)
or similar Words, in the form [n]
EXCEPT. Compiles an execution address
and the value n, presumed to be the
number of caes or vector elements in
the subsequent in-line expression. At
run time replaces any input value that
is negative or greater than n by zero,
allowing case or element zero to
represent the "exceptions." This may
be an error message or other explicit
operaticn, or may simply bypass the
entire case list by leaving case zero
empty, i.e. compilinjy high level cases
as ;S and machine code cases as a jump
to NEXT. The EXCEPT function is not
built into the case list expression
code itself to allowing saving the
storage when it 1s not needed.

: EXCEPT >R COMPILES R> , EXECUTES R> DUP 2+ >R OVER 0< IF
DROP DROP 0 ELSE ¢ OVER < IF CROP 0O ENDIF ENDIF ; IMMEDIATE

FIND(--- addr n ff n (compile)
nl —- n2 (run time) P,C

Used in a : definition to define an
array similar to LITERAL(but to
perform the reverse operation at run
time, 1.e. the value is on the stack
and the subscript is returned, or zero
if not found.

+ PIND(COMPILES BEGIN(2 ALLIT { eiement zero reserved)
{ for copy of input) [COMPILE| ! ©RECUPED LIT{

OVER OVER | SWAP OVER R 2 ~ DO DUP I @ = [F DROP I LEAVE
ENDIP -2 +LOOP SWAP - 2 / ; [MMEDIATE

INTERVAL(—- addr n ff n (compile) P,C
nl --~ nl n2 (run time)

Used in a : definition to define a
literal vector of interval boundary
points in increasing order; at run time
the subscript of the smallest boundary
above nl is added to nl already on the
stack, to control a subsequent case
list processing nl. Compiles using
BEGIN).

: INTERVAL COMPILES BEGIN((COMPILE) ([EXECUTES | LIT(

OVER OVER R 2 - DO I OVER I @ < IF LEAVE ENDIF
2 +LOOP SWAP DROP SWAP - 2 / ; IMMEDIANTE

Case Contest Entry
George Lyons

APPENDIX

The words COMPILES and :CASE above
share a common function which might
preferably be in a separate Word by
itself. That function is compiling
into the next dictionary location the
code address used in definitions.
Rather than define a new Word, however,
this function may be added to the
existing definition of the : operator,
as the function tc be performed when
STATE is the campiling mode, in con-
trast to the reqular function performed
when STATE is the execution mode, as
it is when a definition is begun using
:. Similarly, the word CODE can be
expanded to include a function to be
performed in the compile state which
consists of campiling the code address
of a (QODE definition (the address of
the following location...), setting
STATE to execute and invoking the
ASSEMBLER vocabulary for beginning
assembly language programming immed-
iately following. Revised definitions
from the case statement glossary above
would then be:

: EXECUTES ? COMP COMPILE :S n ?PAIRS HERE SWAP ¢
{COMPILE ! : : IMMEDIATE

The Words :CASE and CODECASE are
eliminated and the syntax for COMPILE(
is:

COMPILE(CASE : ...high level case...:S ... }
COMPILE(CASE COQE ...zachine c3de case... .. }

[14.1.7-7 .

George Lyons
Jersey City, WJ 07302

Judges' Camments -~ George got off to
great start but went on to solve
more problems than CASE, i.e. compili
in-line machine code by CODECASE,
There are numerous ideas here, dese
ing of further analysis and examples
CASE.

L P LTI T '

Page 77

=A FORTH CASE STATEMENT=

R. D. Perry

The Case Statements presented
here are an extension of the FORTH IF
Statement. The structure of the CASE

SCR § 83
Statement is such that it allows an o (mORE CASE roP 800322)
N-way branch as contrasted to the IF] : BEGIN-CASES 7COMP 0 4 ; IWMEDIATE
statement two way branch. This version 3 : CASE 2COMP (EL.4) 4 ?PAIRS (EL)
: 4 COMPILE N®BRANCH HERZ 0 , (EL,NBL)
allows a CASE to be tested against a s S ; INMEDIATE { EL, NBL,S5)
: [
single value or a range of values. It 7 : RANGE-CASE ?COMP (EL,4) 4 2PAIRS (EL)
4 \ 3 8 COMPILE NRANGE=BRANCH HERE 0, { EL,NBL)
' does not require contiguous values fo; 3 SV iweiaze (eLws)
0
- the tests. The valug or range o 11 : ELSE-CASE 7COMP 4 2PAIRS (EL)
- values to be tested against are deter- g [CONPILE DROP 0§ ; INAEDIATE (£L.0,5)
- mined at run-time, this allows vari- 14
: ables to determine CASE selection. No 1
; preprocessing is required as with the
. vector selection approach. It will
r execute faster than an IF statement
; preceeded by preprocessing (Example: = scr 0 24
s IF) assuming code implementation of 0 (MORE CASE ROP $00322)
-] =] 1 LUD~-CASE WCOMP % ?PAIRS COMPILE BRANCH (EL,BL)
- N=Branch and NRANGE=BRANCH. 2 ' " DoP { EL.SL.BL.)
= 3 IP BERE 2+ OVER - SWAP ! (EZL)
e , . ‘ TLSE DROP
I became interested in the CASE : TEZN WERE SWAP , 4 (NEL,4) : IMMEDIATE
c \ , .
2 Statement while implementing a CRT]+ EKD-cAsES 7§°';;A;l;'?‘:;m; Ir b0 CASES)
- : .2, - 0n H
- Screen Editor for FORTH Editing and 9 CoNPILE DROP
A3 10 SEGIN DUP
, Word Processor use. 11 WSILE DUP § SWAP HERE OVER - SWAP !
€ 12 REPEAT DROP ; IMMEDIATE is
13 (NMANES OF STACK ITEMS)
14 EL => END LINK NEL => NEW END LINK
15 BL -> BEGIN LINK MBL ~-> MNEW BEGIN LINK
SCR § 81
O (CASE STATEMENTS RDP 800322)
1 HEX
2 CODE N=BRANCH { IF BOT NOT EQU SEC BRANCH FROM INLINE LITERAL)
- 3 INX, INX, PE ,X LDA, BOT CMP, 0=
=) 1P, F? ,X LDA, BOT 1+ CMP, 0=
- S IP, INX, INX, " OBRANCH 8 o (BUMP) JNMP,
- [ENDIE,
7 ENDIP, ' BRANCHE JNP, C; SCR ¢ 8%
[0 { CASE STATEMENT TEST RDP 800320)
9 CODE NRANGE=BRANCE (IF THIRD<SEC OF THIRD>BOT BRANCH FROM LIT) 1 &t TEST BEGIN-CASES
10 INX, INX, INX, INX, SEC, PFC ,X LDA, BOT SBC, 2 1 CASE ° ONE® END~CASE
11 PD ,X LDA, BOT l+ SBC, 0< NOT 3 2 CASE ° TWO® END-CASE
12 Ir, SEC, BOT LDA, FE ,X SBC, BOT 1+ LDA, FP ,X SBC, 0< NOT 4 «9 9 RANGE-CASE " > NEG. TEN AND < TEN® END-CASE
13 IP, INX, INX, ‘' OBRANCH 8 o (BUMP) Jnup, ENDIP, [ELSE~CASE " OTHER® END-CASE
Y ENDIF, ' BRANCB Jmp, C: [4 ENRD-CASES CR ;
15 DECIMAL --> 7 ;8
]
9 TYPE A NUNBER POLLOWED BY °TEST®, OUTPUT WILL BE
}: ACCORDING TO CASE ABOVE .
SCR ¢ 92 i;
¢ (CASE STATEMENTS RDP 600322 };
1 == { REMOVE 7H1S LINE IF CODE VERSIONS NQT USED)
3 2 DECIMAL (R IS POINTING TO NEXT LOCATION)
3 : RsBRANCH
4 OVER =
ny S I? &> 2+ >R DROP
a § ELSE R> DUP @ + SR
- 7 TREN
E. '
9 : NRANGE=BRANCH
V- 10 ROT DUP ROT (L,V,V,H) >
~& 11 IP SWAP CROP R> DUP @ + >R (OVER RANGE)}
i 12 ELSE DUP ROT (V,V,L) <
L) IF R> DUOP § © >R (UNDER RANGE)
14 ELSE R> 2+ >R DROP (IN RAKGE)
18 THEN THEN ; -->

FORTH DIMENSIONS II/3 Page 78

N=BRANCH nl n2 ——- (run-time, nl=n2)
nl n2 —— (run-time, nl<>n2)

The Run-Time procedure to conditionally
branch. If nl does not equal n2 the
following In-Line parameter is added to
the interpretive pointer to branch
ahead (or back) and n2 is dropped. 1If
nl equals n2 the interpretive pointer
is advanced passed the in-line para-
meter and both nl and n2 are dropped.
Compiled by CASE.

NRANGE=BRANCH nl n2 n3 --—-

(run-time, nl>=n2 & nl<=n3)

nl n2 n3 -—-nl
(run-time, nl<n2 or nl>n3)

The Run-Time procedure to conditionally
branch. If nl is less than n2 or nl is
greater than n3 the following in-line
parameter is added to the interpretive
pointer to branch ahead (or back) and
both n2 and n3 are dropped. If nl is
greater than or equal to n2 and nl is
less than or equal to n3 and nl, n2,
and n3 are dropped and the interpretive
pointer is advanced passed the In-Line
parameter, Compiled by RANGE-CASE.

BEGIN-CASES --- nl n2
(compile time)
Occurs in a colon-definition in the
form:
BEGIN—-CASES
... CASE ... END-CASE
.+« RANGE-CASE ... END-CASE
ELSE~CASE —~ END-CASE
END-CASES

At compile-time BEGIN-CASES places nl
and n2 on the stack. nl will later be
used by END-CASES to signal that there
is no prior END-CASE to link to. n2 is
used for error testing.

CASE nl n2 --- nl (routine, N1<>n2)

nl n2 --- (routine, nl=nl)
addrl N1 -— Addrl Addr2 N2
(compile time)

At Run-Time CASE selects execution
based on equality of the bottom two

values on the stack. If they are
equal signalling that the CASE is to be
executed, both nl and n2 are dropped
and execution proceeds through CASE.
CASE. If they are not equal only
N2 1is dropped and execution skips
to just after END-CASE. (See BEGIN-
CASES)

At Compile-Time CASE compiles N=BRANCH
and reserves space for an offset value
at addr2. addrl is the address for the
offset value of the last END-CASE. nl
and n2 are used for error testing.

RANGE-CASE
N1 N2 —- N1 (Run-Time, N1<N2) P,C2
Nl N2 —- (Run-Time, N1=N2)

addrl N2 —- addrl addr2 N2 (Campile-Time)

At Run-Time selects execution bases on
whether nl is in the range n2 to n3
(n2<n3). If in range execution pro-
ceeds through RANGE-CASE. If not in
RANGE execution skips to just after
END-CASE., (See BEGIN-CASES)

At Compile~Time RANGE-CASE compiles
NRANGE=BRANCH and reserves space for an
offset at addr2. addrl is the location
for the offset value of the last
END-CASE. nl and n2 are used for error
testing.

ELSE-CASE
nl — (run-time)
addrl nl ——- addr n2 n3

(compile-time)

At Run-Time nl is dropped and execution
continues through ELSE-CASE. (See
BEGIN-CASES)

At Compile-Time ELSE compiles DROP.
ADDR is the location for the offset of
the last END-CASE. n2 is used by
END-CASES to signal that the last case
was an ELSE-CASE. nl and n3 are used
for error testing.

ELSE-CASE —- (run~time)
addrl addr2 nl ---
addr3 n2 (compile time)

Page 79

FORTH DIMENSIONS II/3

At Run-Time causes execution to skip
0 after END-CASES. (See BEGIN-
CASES)

1z Compile-Time uses ADDR2 to set the
2itset of the last CASE or RANGE-CASE
<> point to after this END-CASE.
-onolles BRANCH with an offset to be
Czlculated later by END-CASES. The
.ocation for the offset of the last
IND-CASE 1is temporarily stored in this
offset location and the new offset
location is put on the stack. N1 and
N2 are used for error testing.

END—-CASES
——- (run-time with ELSE-CASE)
n --- (other run-time)
addrl nl —- (compile-time)

At Run-Time drops a stack value if no
ELSE~CASE exists., Any END-CASE will
continue execution just after the
DROP. (See BEGIN-CASES)

At Compile-Time DROP is compiled and
all of the offsets from an END-CASE
are calculated and stored in their
proper locations. ADDR is the location
for the last offset for an END-CASE.
That location holds the address for the
prior offset and so on. The first
offset location holds a value (0) which
tells END-CASE that there are no more
offsets to calculate.

R.D. Perry
San Diego, CA 92106

Judges' Comments =~ This is quite a
complete and well documented entry.
The range-of-cases feature is well
done. Note that high level alterna-
tives are given for the 6502 machine
CODE words.

NEW PRODUCT

pico FORTH

HERMOSA BEACH, CA, JUNE 24, 1980
picoFORTHTM, a new subset of
polyFORTHTM is available for 1802 (disk
or PROM) and 8080 micro- processors.

Designed for interactive evaluation,
picoFORTH includes all the essentials
for programming, debugging, and testing
a single-task application. This
complete operating system features the
polyFORTH assembler, compiler, text
interpreter, editor, disk utilities, and
basic documentation. picoFORTH can be
upgraded at any time, either for a
single purpose (with one or more of
three g;ckages: Source, Target
CompilerTM or Mulititasker) or to full
polyFORTH. A File Management Option
package is also available. In addition
to the current versions, picoFORTH will
soon be implemented on the 8086, 6800,
and LSI-11 processors. Price for
picoFORTH is $495. Write or call Tom at
FORTH, Inc., 2309 Pacific Coast Highway,
Hermosa Beach, CA 90254 (213) 372-
8493,

NEW PRODUCT

ALPHA MICRO FORTH

This system implements the Forth
Interest Group language model, with
full-liength names to 31 characters, and
extensive compile-time checks.

In addition, the diskette includes
an editor, a FORTH assembler, and a
string package, in FORTH source. The
PDP-11 FORTH User's Guide, which

includes extensive annotated examples of
FORTH programming.

This FORTH system runs under AMOS.
The distribution disk is single
density. The complete system price is
$190: Professional Management Services,
724 Arastradero Road, Suite 109, Palo
Alto, California 94306, (408) 252-2218.

FORTH DIMENSIONS II/3

Page 80

——=CASE STATEMENT ——

william H. Powell

The case structure by R.B. Main
looks very powerful and flexible, but
it seems to me to be unnecessarily
complicated. My suggestion is for a
word that does OVER = IF for his word
CASE. This fits the existing FORTH
compiler very well. The example by
Main would read

: MONITOR

41 CASE ." ASSIGN " THEN

44 CASE ." DISPLAY " THEN

46 CASE ." FILL " THEN

47 CASE ." GO " THEN

53 CASE ." SUBSTITUTE " THEN
ELSE ." INSERT " THEN
DROP ;

You will note that I have made the
'insert' message unconditional. This
illustrates just how little need be
added to the present FORTH structure
and also how use of the present FORTH
conditionals can be harnessed to the
simple case structure as above. The
normal FORTH syntax holds, and can be
relied upon if case structures are
nested into other structures, or into
another set of case conditions.

This structure is neither the
optimum for speed nor bytes. On the
other hand we should avoid adding
to FORTH in such a way that the
nucleus and compiler grow any more
than necessary. 1 favor a CASE
structure that makes the program
clearer, encourages sound software
design and adds power to the language
without adding significantly to the
system software overhead.

Using the fig-FORTH model I need
ideally one more nucleus word, and one
for the compiler....

CODK /=BRANCH
X, INX, (Drop BOT only)
SEC, PE ,X LDA, 0 ,X SB8C, ' BRANCE 0= END,
r ,X LDA, 1 ,X S8C, ' SRANCH 0= EXD,
BUNP: JNP,

(Branch if SEC - BOT non-zero)

s CASR { nl n2 --- nl Case is executed if al = n2)
COMPILE /=BRANCH HEREZ 0 , 2 ; IMMEDIATE

You will see that /=BRANCH does the
same as OVER = IF and the case struc-
ture could be implemented without
introducing /=BRANCH but I think speed
and clarity better if one adds a cod-
word as I have.

W.H. Powell
Sawbridgeworth
Herts. (M21 9NB
ENGLAND

Judges' Camments - Bill Powell didn't
submit this as a contest entry, but it
appeared in our mail just as the
contest started. We took the liberty
of including it as a mini-Case appro-
priate for the 6502.

»

-—-- HELP WANTED ----

PROGRAMMER FOR MAJOR PROJECT
Orange County, CA Location

Call or write: ANCON
17370 Hawkins Lane
Morgan Hill, CA 95037
(408) 779-0848

Page 81

——=A CASE STATEMENT—

Major Robert A Sel:zer
OVERVIEW OF THE STATEMENT

CASE - The "CASE" statement is a
special form of the IF-ELSE-THEN that
permits the selection of one of many
cases depending upon the top word on
the stack being equal to a specified
word (the value that precedes "CASE"),

u (stack value) ul (case value)
CASE (true action) ELSE (false
action) THEN

u (stack value) ul (case value)
CASE (true action) THEN

If u = ul, drop u,ul and execute true
action following CASE until ELSE or
THEN. Otherwise, drop ul but leave u
on stack and execute ELSE (false
action) or THEN if no EISE. Imple~
mentation is the same as IF-ELSE-THEN,
however each subsequent use of "CASE"
will save 2 words (4 bytes) over the
explicit use of OVER = IF DROP. CASE
use also improves the readability of
the source and if used often, will save
code as well as being more convenient
to the user.

SOURCE DEFINITIONS

See attached source listing. Note
that £fig-FORTH word COMPILE should
replace FORTH, INC. word { back-
slash) or X (in later FORTH, INC
versions) and a 16 bit emplace word ,
(conoma) replaces the 8 bit emplace
C, (C-comma). So, for SCR § 198,
line 6. The fig-FORTH definition for
CASE would be:

: CASE COMPILE (CASE) COMPILE OBRANCE JHERE 00

7 IMMEDIATE

ENGLISH EXPLANATION

Only two new words need to be
defined to use the CASE statement.
(CASE) is the execution version that
duplicates (OVER) the top of stack
value then compares (=) 1t to the
case value, If they are equal, the
true action through the IF statement is
taken and the stack value u 1s dropped
(DROP). As part of the true action
a flag (1) is pushed on the stack
for OBRANCH to test when CASE 1is
executed., If the stack and case values
are not equal the false action (ELSC)
is taken and a false flag (0) is
pushed on the stack over the original
stack value tested (u). Both actions
exit with THEN. CASE compiles the
address of (CASE) and the address of
the run-time IF called OBRANCH
A 16 bit zero is compiled (,) at
HERE in the dictionary, by HERE 00
, to reserve space for the branch to
EISE or THEN. The precedence bit of
CASE is set so that CASE compiles 6
bytes whenever it is executed. Like
IF, CASE must be used inside a colon
definition and each use of CASE
requires a corresponding THEN (or
ELSE) to complete the structure.

GLOSSARY ENTRIES
(CASE)

The run-time procedure that is used
by CASE, Equivalent to OVER = IF DROP.
(CASE) is campiled by CASE.

CASE u ul --- u p,C2+

u ul CASE true action for u=ul
EISE u false action THEN

If u=ul, drop u and ul and execute true
action following CASE until next ELSE
or THEN. If u is not equal to ul, drop
ul but leave u and execute false action
following ELSE or drop ul but leave u
if no EISE and exit to THEN.

FORTH DIMENSIONS II/3

Page 82

u ul CASE true action for usyl ELSE

@ u2 CASE true action for usmul ELSE
u un CASE true action for u=un ELSE
u false action THEN THEN...THEN

EXAMPLES
See screens #199 and #200.

SCR #199 1is used to demonstrate
simple CASE use in the same application
of the example published in FORTH-
DIMENSIONS v 1/5, p. 51 to show
conformity to an existing structure.

SCR #200 is a simple, but elegant
example of CASE use in a video editor
which occupies about 355 bytes of
dictionary space for the COMPLETE
editor. This is a good example of the
CASE structure in fig-FORTH used to
save code space and provide clarity of
structure. While the editor is written
for the ADM~3A terminal, line 1 defines
a word which controls the cursor
position sequence, so that any terminal
can be used by making appropriate
changes to the word YXCUR . The
integer values in line 2 (2 amd 4),
determine the initial Y,X offset of the
cursor in the HOME position (upper
left corner + Y,X offset). This
allows for adjustment of different LIST
formats and edit screen positions. The
vertical line at the right margin of
the screens is generated by a 7C EMIT
campiled in LIST. This vertical line
gives the video editor user a positive
indication of the editor limits of the
right margin by setting up a window
in which to edit. The ESC ($1B) key
is used to exit the video editor VEDIT
when finished. In fig-FORTH, use
EMIT in place of ECHO in line 1.
pon't forget to FLUSH .

DISCUSSION

This implementation of CASE in this
form is fig-FORTH transportable to
different machines {(ie., 6502, 8080,
6800 etc.), however there is a 6 byte
requirement for each use of CASE versus
only 4 bytes for each use of IF. 1In

Copyright 1977, RCS Associates

oK

{

FORTYH DEFIMNITIONS

{

applications like the example shown
in SCR #200, the 2 byte overhead in
CASE (6 bytes vs. 4 bytes for IF)
saves 4 bytes for each use in lieu of
OVER = IF DROP { 10 bytes). More
importantly, 1its use significantly
enhances the readability and structure
of the source code at the minimum cost
of only 2 new FORTH words.

SCRe 198

CASE DEFINITION RAS~09FEBBO)

BASE @ HEX FORGET TASK TASK

(CASE) OVER = IF DROP 1 ELSE O THEN ; (EXECUTION CODE)

: CASE (CASE) OBRANCE HERE 0 C, IMMEDIATE
BASE !
SCRe 199
TEST ° CASE * STRUCTURE) BASE @ 8EX
MONITOR
41 CASE .° ASSIGN ° ELSE
44 CASE .* DISPLAY * ELSE
46 CASE .° pILL ° ELSE
47 CASE .* GO * ELSE
49 CASE .° INSERT * ELSE
53 CASE * SUBSTITUTE * ELSE

THEN Tﬂtl; THEN THEN THEN THEN

: KEYBCARD BEGIN KEY 7P AND DUP MONITOR 20 = END

BASE ! 15

(

: YXCUR 1B ECHO
: .CUR CUR @ 40

H

: IBLK SCR @ 8 ® CUR @ 80 /MOD ROT + BLOCK + C!

SCR$ 200

00 VARIABLE CUR
{ ADM-3A)

VIDEO EDITCR, COPYRIGHT RCS 1978) REX
30 ECRO 20 + ECHO 20 + ECHO ;
/MOD 2 + SWAP 4 + SWAP YXCUR : : ICUR 0 MAX
IFF MIN CUR | ; 3 +CUR CUR & + ICUR ; : +#.COR +CUR .CUR
+LIN CUR @ 40 / (LINE §) + 40 ® !CUR ; : HOM 00 CUR !
UPDATE 1 +.CUR ;

: VEDIT LIST CR CR CR CR CR HOM .CUR BEGIN

KEY 18 CASE 0 12 YXCUR QUIT ELSE (E£SCAPE)
0B CASE -1 +.CUR ELSE (LEFT CURSOR}
QA CASE 40 +.CUR ELSE (DOWN CURSOR)
0B CASt -40 +.CUR ELSE (UP CURSOR)
0C CAst 1 +«.COR ELSE (RIGHT CURSOR)
0D CAST 1 +~LIN .CUR ELSE (NEW LINE)
1E CASE BOM .CUR ELSE (BCME CURSOR)

DUP ECHO (BLK

THEN THEN THEN THEN THEN THEN TBEN AGAIN : DECIMAL :5

Major Robert A. Selzer
APO San Francisco, 96301

Judges' Camments - This entry has the
unfortunate need for closing the CASE
by a correct number of THENs. It is
written for microFORTH. The example of
a screen text editor is outstanding and
should be carefully read by all.

Page 83

FORTH DIMENSIONS 11/3

PORTH-65 Ves

TN M W

o

e WMPAUI MW

—=—A CASE STATEMENT ——

Kenneth A. Wilson

CASE STATEMENT CONTEST

1.0 Description of the entry (coded in
microFORTH)

1.1

1.2

1.3

Screen 338 defines the 4 words
needed to generate a complete
CASE statement.

Screen 339 contains a CASE test
example.

The next 2 pages contain the
printout obtained by executing
the word TRIAL.

2.0 Definition of CASE words

2.1

2.2

2.3

stack

word vocabulary block in out

<CASE FORTH 338 1 0

A defining word which creates a
named array of n + 1 cells.
Example: n <CASE name.

-> FORTH 338 0o 1

A redefinition of for visual
clarity. Pushes onto the stack
the address of the parameter
field of the word that follows
in the current input stream.

=CASE FORTH 338 3 0

Puts the address of a word (Sl)
into an array (S0) at cell n
(s2).

Example: n word array =CASE
Read as: "n" becomes "word" in
"array” case.

2.4 CASE FORTH 338 2 0

Executes the word whose address
is contained in the array (S0)
at cell location n (S1).

Example: n name CASE

3.0 Explanation of the Example in
Screen 339.

3.1 Line 1 defines 3 Cases:

1 FIRST is a Case of 4 cells
.2 SEC is a Case of 4 cells
.3 THIRD is a Case of 4 cells

3.2 Lines 2 thru 5 define "print-
ing" words as follows:

1 Pronouns: I, YOU, WE, THEY
2 Verbs: RN, WAL, SIT, JOG
3 Adverbs: HOME, BACK, DOWN
UpP

'3. 20
3. 2.
3 2.

3.3 Line 6 thru 9 define the
contents of the three Cases as
follows:

3.3.1 FIRST Case contains 4
Pronouns

3.3.2 SEC Case contains 4
Verbs

3.3.3 THIRD Case contains 4
Adverbs

3.4 Lines 10 thru 14 define the
word TRIAL which when executed,
will cause the three Cases to
be executed in sequence for
each different possible com-
bination of the index. i.e.:

111 FIRST CASE SEC CASE THIRD CASE
112 FIRST CASE SEC CASE THIRD CASE

554 FIRST CASE SEC CASE THIRD CASE
555 FIRST CASE SEC CASE THIRD CASE

FORTH DIMENSIONS II/3

Page 84

An Overview TRIAL

Cell number O 1 1 n

I RUN HOME
MAME I RUN BACK
I RUN DOWN
Reserved for I RUN UP
WORD1 YO RUN HOME
WORD2 YOU R{UKN BACK
YOU RUN DOWN
WORDR YO RUN UP
Figure 1 WE RUN HOME
A Case Arcay NAME of n+l Cells WE RUN BALK
WE RUN DOWN
WE RUN UP
THEY RUN HOME
Cell number 0 1 2 n THEY kUN BACK
NAME THEY RUN DOWN
THEY RUN UP
I WALK HOME
I WALK BACK
NAME 2 2° + (points to) ¢ EXECUTE (executes WORD.) I WALK DOWN
I WALK UP
figure 2

YOU WALK HOME
YOU WALK BACK
YOU WALK DOWN
YOU WALK UP

Storing and Executing Cell 2

338 LIST WE WALK HOME

0 (CAST TEST WORDS) WE WALK BACK

2 Tiease O VARIABLE 20 o1 4 WE WALK DOWN

©) oAsE ROT 20 e 1 WE WALK UP

: 1 CASE SWAP 2* + @ EXECUTE

z THEY WALK HOME
1: THEY WALK BACK
E THEY WALK DOWN
13 THEY WALK UP

i; DECINAL ;S KAW 2-18-80
* I SIT HOME
139 LIST I SIT BACK

0 (CASE TEST EXAMPLE) DISPLAY DEFINITIONS DECINAL I SIT DOWN

1 4 (CASE PIRST 4 <CASE SEC 4 <CASZ THIRD

2 :II [T) :YOU {YOU] ; :ME {WE] ; : THEY (THEY] ; I SIT (P

3 s MUN [ROW | ; :t WALK [WALK] ; : SIT (SIT] 3

A T el

f 1T I e, e e YOU SIT BACK

-> IRST = -> WAL -

§ 3> We rInst = CASE 3 - SIT SEC =<CASE 3 -> DOWN THIRD <CASE YOU SIT BACK

3 45 THEY PIRsT OhsE ¢ o> JOG SEC =CASE 4 -> UP THIRD =CASE YOU SIT DOWN

1n 51001 YOU SIT UP

12 S 1 DO OVER OVER I ROT ROT

13 PIRET CASE SEC CASE THIRD CASE CR

14 LOOP DROP CR LOOP DROP CR LOOP ;
o:s DEC IMAL i8 AN 2-28-30

Page 85 FORTH DIMENSIONS II/3

WE SIT HOME
WE SIT BACK
WE SIT DOWN
WE SIT UP

THEY SIT HOME
THEY SIT BACK
THEY SIT DOWN
THEY SIT UP

YOU JOG HOME
YOU JOG BACK
YOU JOG DOWN
YOU JOG UP

WE JOG HOME
WE JOG BACK
WE JOG DOWN
WE JOG UP

THEY JOG HQME
THEY JOG BACK
THEY JOG DOWN
THEY JOG UP

CK

Kenneth Wilson
Waltham, MA 02154

Judges' Comments - This is a very
simple positional (jump table) type of
CASE. The whole thing can be defined
in three short lines of code. At first
glance, however, the presentation looks
more difficult than it is. Part of the
problem is that the notation - the word
names - does not suggest, very well,
what is going on. This entry looks
like a good complement to Eaker's.
Both are simple mechanisms for doing a
single job and the jobs that they each
do are very different. Work is needed
on integration and further development
of these models.

NEW PRODUCT
68000

CREATIVE SOLUTIONS, INC. announces
the availability of the FORTH
programming approach for the Motorola
68000 16-bit Microprocessor.

Featuring: FORTH Interest Group
Model and FORTH-79 Standard
Compatibility, Virtual Disk Operating
System, Text Editor, Inline Macro
Assembler, Computer Aided Instruction
Course on the FORTH Proramming Approach.

Also Available: Customized 1I/0
Drivers for Non-Standard configurations,
Suitable Hardware Configurations,
Complete Source (written in FORTH), Meta
Compiler, Multi-tasker, Extended Data
Base Management and File System.

The standard software product,
available for configurations utilizing
the Motorola MEX68KDM (D2) 68000
evaluation model with Persci 1070
controller and compatible floppy disk
drives retails for between $1500 - $5000
(depending upon options) for single user
systems.

For further information please
contact Creative Solutions, Inc., 14625
Tynewick Terrace, Silver Spring,
Maryland 20906, Phone: (301) 598-5805.

NEW PRODUCT

AVAILABLE FROM ANCON

The following manuals and other infor-
mation is available from ANCON, 17370
Hawkins Lane, Morgan Hill, CA 95037.
Write for detailed list.
FORTH Systems Reference Manual
The FORTH Language
FORTH-11 Reference Manual
Indirect Threaded Code Reprints
FORTH, a Programmers Guide
PDP-11 FORTH Users Guide
PH21-MX FORTH Manual
CYBOS Programmers Manual
Program FORTH, A Primer
The JKL FORTH Manual

FORTH DIMENSIONS II/3

Page 86

==—=CASE STATEMENT

4

BUAVEWN O

2 CODE I! Y' PULO

WAYNE WITT/BILL BUSLER

Overview

The CASE word provides the capa-
bility to vector to a particular word
based on an input parameter, similar to
the FORTRAN computed go~to. The CASE
word also provides automatic limit
checking on the input parameter with an
optional out-of-range capability
(OTHERCASE) .

49

{ NEW CASE -~ CODE CASE WW & WB 2/13/80) HEX

NEXT (IP = TOP OF STACK)
s (CASE)
1 & 7rPr AND OVER SWAP <<

IF 2* 1 ¢ 2+ @ 2+ EXECUTE
ELSE DROP I @ O< (TRUE 1F OTHERCASE SPECIFIED

IP £ @ 7rPPP AND 2° I + 2+ @ 2+ EXECUTE (OTHERCASE
THEN THEN { MOW TO CONTINUE EXEC. AT DONE
I DUP € DUP 0«¢ (" GET ADDR. AND VALUE OF CASE-INDEX
1P 7FFP AND 1+ THEN (INCR INDEX IF OTHERCASE SPECIFIED
2* 2+ + R> DROP ! ; { CONTINUE EXECUTION AFTER DONE

(CODE CASE -~ CASE PARAMETER N -l
{ TRUE IF N IN LIST RANGE
{ EXEC. LIST MODULE N

(NOTE: INTERPRETER POINTER NOVED TO END OF LIST OR)
{ AFTER TBE DONE) DECIMAL S

S0

(NEW CASE - OTHERCASE - DONE Wi o WB 2/15/80) HEX
(PUT CODE CASE ADDRESS IN DICTIONARY ,

(PUT B ON STACK ,

1 CASE (CASE) BERE O , ;7 IMMEDIATE (CREATE CASE-INDEX
(1K DICTIOMARY AND ZERO IT

: OTHERCASE DUP $000 SWAP | ; IMMEDIATE (SET OTHERCASE BIT
(IN CASE-INDEX

: DONE DUP BERZ SWAP - 2 /1 - { CALC. CNT FOR CASE-INDEX

SWAP DUP @ (GET THE CASE-INDEX TO TEST POR OTHERCASE
ROT DUP 0= (TRUE IF MO ITEMS IN LIST
IF DROP DROP 0 (SET CASE-INDEX TO ZIERO
ELSE Swap { TRUE IF OTBERCASE SPECIZIED
Ir 1 - 8000 OR THEN (= «1 AND OTHERCASE BIT SET
TBEN SWAP | ; IMMEDIATE DECIMAL :S (STORE CASE-INDEX

This listing is from a 6809 version of FORTH.

R T

CASE

n CASE mO ml ... mi DONE

CASE 1is used as a structured con-
struction where n = 0 to 1 and mO
ml ... mi represent a list of word
names with the list being terminated

by the word DONE.

When the definition containing the
case construction 1s executed,
module mn will execute, then execu-
tion will continue after the DONE.
If n is not in the range O to i,
execution continues after the
DONE.

Alternative CASE usage with OTHERCASE

n CASE ®C @)l ... =i OTHERCASE mnx DONE

When the definition containing the
case construction is executed,
module mn will execute if n is in
the range O to i; then execution
will continue after the DONE. If n
is not in the range O to i, module
mx will execute and then execution
will continue after the DONE.

Only executable modules should be
used in the case list; literals and
compiler words, especially:

CASE OF ELSE THEN BEGIN END BUILDS DOES
Should NOT be used.

OTHERCASE
Used in conjunction with CASE word
for out of range conditions. See
CASE usage.

DONE

CASE word terminator. See CASE

usage.

Replaces the interpreter pointer
with the top stack item (n). '

Page 87

FORTH DIMENSIONS I1/3

The execution time portion of the
CASE word.

<<
nln2 — f

Unsigned 16 bit less than.

Example of CASE usage

1 TXX CASE TX1 TX2 TX3 DONE ;

If TXX is executed, then execution will
continue as follows based on the value
on the stack.
STACK VALUE EXECUTE
0 TX1
1 TX2
2 TX3
Execution then continues after the
DONE. If the stack value was not 0, 1

or 2 then execution continues after
the DONE.

Examples of CASE usage with OTHERCASE.

¢ MA@ TE1l CASE ENQ VOICE SYNC NULL OTHERCASE €£M3) OONE

1 Ml CASE NULL FIfO TIME XMIT-MSG OTHERCASE MH2 DONE CLEANUP ;

If MH]1 is executed, then execution will
continue as follows based on the value
on the stack.

STACK VALUE EXECUTE

0 NULL

1 FIFO

2 TIME

3 XMIT-MSG
Any Other Value MH2

Execution then continues after the
DONE, in this instance CLEANUP.

MH2 illustrates the nesting capability
of the CASE word.

This form of CASE conforms with the
unwritten rule of FORTH to keep it
simple and basic. The user needs to
remember only three words, CASE,
OTHERCASE and DONE to construct simple
to complex forms of the structured
CASE. The CASE in providing automatic
limit checking and out of range
recovery elliminates the need for user
limit testing of the parameters. This
out of range checking capability does
slow the execution speed slightly, but
it was felt that the added capability
was worth the slight loss of speed.

Bill Busler
Odessa, Florida 33556

Wayne Witt
Tampa, Florida 33615

Judge's Camments - The run-time word
(CASE) seems much too long for the job
it does. ‘This is partly because the
out-of-range case is handled by a
special construction. Nevertheless,
the code could be reorganized or
factored. Also, pushing the DONE
address back on the return stack at the
end of (CASE) would eliminate the need
for 1! and make the package more
portable.

The @DO ... THEN construction in Kitt
Peak FORTH accomplishes all the same
functions much more efficiently.

COME TO FIG CONVENTION
NOVEMBER 29

FORTH DIMENSIONS II/3

Page 88

THE KITT PEAK
GODO CONSTRUCT

By David Kilbridge

The GODO construct, as specified
in the glossary of the Kitt Peak FORTH
Primer, is a type of CASE statement.
An index on the stack is truncated to
fall within a contiguous range and used
to select a word from an in-line
execution vector. I present here a
very simple implementation in fig-
FORTH.

As an example of usage, here is a
word which accepts a 0 or 1 from the
terminal and selects the corresponding
disk drive, and rings the bell if any
other key is pressed.

GET-DRIVE ." DISK DRIVE? "
KEY 2F -
(ODO BELL DRO DRl BELL THEN ;

The necessary source definitions
are

(GODO) 2*

0 MAX R @ 4 - MIN
R> DUP DUP & + >R
+ 2+ @ EXECUTE ;

: QDO
COMPILE (GODO)
HERE 0 , 2
IMMEDIATE

How it works: GODO compiles (GODO)
and leaves space for a branch offset to
be calculated by THEN. The address of
the cell and an error-checking flag are
left on the stack. At run time (GODO)
doubles the index on the stack and
truncates it both above and below so
that the reference executed will always
be chosen from the list provided. Then
(GODO) uses the branch offset to step
its return address over the reference
list and finally executes the selected
reference.

Glossary:
GODO -—— addr n (campile-time) pP,C
(GODO) n ~—~ {run-time)

Used in the sequence
.o« @ODO RO Rl ... Rn THEN ...

At run-time, QODO selects execution
based on a signed integer index. 1f
the 1index is <=0 then RO is executed;
1f =1 then Rl is executed; ... if >=n
then Rn 1s executed. After executing
the selected reference, execution
resumes after THEMN,

Discussion: The GODO construct
provides a basic contiguous-range type
of CASE statement requiring very little
supporting code. The compile-time word
is simple because most of the work is
done by THEN. The run-time word is
simple because truncating the index
allows out-of-range cases to be handled
just like in-range cases.

If other means are used to insure
that the index is always within range,
the "catch-all" references RO and/or Rn
can be omitted. However, there is
still the time overhead needed to
truncate the index (unless (GODO) 1is
recompiled without the second line of
its definition).

The principal limitation of this
construct is that only single words can
be referenced. This prevents direct
nesting of ®DO's. However, one can
nest by defining the inner QDO as a
separate word and referencing it in the
outer @DO. By letting Ro amd/or Rn be
such references, several noncontiguous
ranges can be covered.

Kitt Peak PRIMER available from FIG
for $20.00 in US and $25.00 Overseas.

COME TO FIG CONVENTION
NOVEMBER 29

Page 89

FORTH DIMENSIONS 11/3

FIG NORTHERN CALIFORNIA
MONTHLY MEETING REPORT

26 April 80

The FORML session consisted of three
cresentations covering FORTH File
croposals. John James and John Cassady
2:scussed Directories consisting of bit
—aps named FileControlBlock (FCB)
~nerein allocation of strings of blocks
files) were managed. Particulars of
zitmap manipulation at the Buffer,
3lock and Disk (file and volume) levels
~ere explicated. Some other oconcepts
:ncluded user transparency, hierarchy
cf directories, commands, security and
.ntegrity. Kim Harris described Record
vpes and management within a File and
zave examples of FORTH, Inc. styled I/0
2t the Field level. The pros and cons
zf the various approaches will be
Jebated at the next meeting where also
String manipulation will be discussed.
Attendees were requested to prepare
~rltten proposals of anticipated
requirements and arguments for and
zjainst the different approaches.
Though not a tutorial, the FORML
session was very instructive.

The April Northern California FIG
meeting oonsisted of a presentation by
Jim Brick (of M&B Design) of a poly-
TRTH bootup under CP/M. Jim described
tne application requirements that
croduced the need and the technique he
-sed to develop this bootup package
s0ld by FORTH, Inc. He demonstrated
the hybrid package on a TRS-80 with I/0
accessories which allowed 8" disks and
remapping of the TRS-80 memory for
20lyFORTH-CP/M compatability.

Bill Ragsdale initiated a tutorial
on overflow correction which spon-
zaneously escalated into a discussion
on error signals, repair and recovery.
¥im Harris, Lafarr Stuart and Dave
3oulton described their respective
approaches to dealing with errors.
2111 elaborated the "Utrecht approach"”

words can define error recovery and
the return stack can be usefully
unthreaded. He congratulated our Dutch
colleagues for their imaginative
applications of "tricks" garnished from
other computer languages.

Henry Laxen was congratulated for
his excellent article on FORTH in the
80 April 28 issue of INFOWORLD.

Kim Harris announced his FORTHcaming
ocourse on FORTH programming at Humbolt
State University (80 July 21-25) and
also reported on a talk he delivered
earlier this month at the Asilomar

1.E.E.E. conference on megatransistor
chips.

.. .HANDOUTS provided at the meeting
included:

-polyFORTH-CP/M (Brick)
-INFONORLD reprint (Laxen)

~TIC-TAC-TOE (in FORTH, of ocourse)
(George Flammer)

~overflow correction (Ragsdale)
-Match CPM for 8080 figFORTH (anon)
-Double number support (Ragsdale)

-String match for Editor (Peter
Midnight)

;S Jay Melvin

Publisher's Note:

Come on, you other FIGGERS, send in

=0 error signaling and recovery and reports on your meetings. We'll
wted two lessons learned: high level publish them.
FORTH DIMENSIONS I11/3 Page 90

FIG NORTHERN CALIFORNIA
MONTHLY MEETING REPORT

24 May 80
FORML Session -

Kim Harris directed a review of last
month's session to compare and contrast
file systems presented by:

1. John James
2. John Cassady
3. Kim Harris (FORTH, Inc. system)

The most striking difference between
the three file systems was that FORTH,
Inc.'s did not utilize a bit map in the
directory which would allow for a
distinction between physical and
logical files. The bit map implemented
in James' and Cassady's systems provide
for easier file manipulation.

FIG Meeting -

Bill Ragsdale opened the meeting by
introducing guests Ed Murray from the
University of South Africa and Don
Colburn who is marketing a FORTH
Teaching Tutorial to be configured for
various machines. '

The meeting was devoted to a two
fold tutorial where Kim Harris ex-
plained FORTH tools ranging from
NUMERIC output and base conversion to
test interpretation. I/0 formating
examples included the definition of
HOLD, ASCII and PAD. These "tools"
were applied in a temperature con-
version program. Bill Ragsdale
followed with a presentation on problem
solving techniques using the task of
printing Morse (dits/dahs) characters
to the screen in response to text
input. Top down techniques were
delineated by listing the subtasks and
writing code then testing each module.

John Draper described CAP'N Soft-
ware's Version 1.7 FORTH for the Apple;

the system was up and running for
demonstration. Ragsdale notified us
that Computer magazine wants articles
for a FORTH issue next year and that
Byte's August issue will have a Robert
Tinney cover displaying three blocks in
a field of stars, each block containing
a word (2%, DUP, +) and threaded
together by a ribbon terminating in a
space needle.

Handouts included: Kim's tool Kkit,
Bill's Morse Code worksheet (a blank
page!), John's Version 1.7 brochure,
and Benchmark by DRC for measuring
FORTH execution speeds on CRAY-1
through micros. Also, a floating point
package by NHC, a paper on file word
concepts by Jim Berkey and the HomeBrew
Computer Club's newsletter by (ed.)
Bill Reiling were available.

;s Jay Melvin

—---MELP WANTED ----

Full or Part Time
MICROCOMPUTER
R & D Technician
Jr. Engineer

To assist in the integration, trouble-
shooting and design of microcamputer
systems for scientific and industrial
applications.

Programming interest a plus.

FORTH, Inc.

Contact: Gary Kravetz
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254
(213) 372-8493

Page 91

FORTH DIMENSIONS 11/3

FORTH Interest Group Meetings

Northern California

4th Saturday

Massachusetts
3rd Wednesday

San Diego
Thursdays

Seattle
various times

Potomac
various times

Texas
Various times

Arizona
Various times

Oregon
Various times

FIG Monthly Meeting,
1:00 p.m., at Liberty
House Department
Store, Hayward, CA.
FORML Workshop at
10:00 a.m.

MMSFORTH Users
Group, 7:00 p.m.,
Cochituate, MA. Call
Dick Miller at (617)
653-6136 for site.

FIG Meeting, 12:00
noon. Call Guy Kelly
at (714) 268-3100
x 4784 for site.

Contact Chuck Pliske
or Dwight Vandenburg
at (206) 542-8370.

Contact Paul van der
Eijk at (703) 354-
7443 or Joel Shprentz
at (703) 437-9218.

Contact Jeff Lewis at
(713) 729-3320 or
John Earls at (214)
661-2928 or Dwayne
Gustaus at (817)

387-6976. John
Hastings (512)
835-1918.

Contact Dick Wilson
at (602) 277-6611
x 3257.

Contact Ed Krammerer
at (503) 644-2688.

New York

vVarious times Contact Tom Jung at

(212) 746-4062.

Detroit
Various times Contact Dean Vieau at

(313) 493-5105.

Japan

Various times Contact Mr. Okada,
President, ASR Corp.
Int'l, 3-15-8,
Nishi-Shimbashi
Minato-ku, Tokyo,

Japan.
Publisher's Note:

Please send notes (and reports)
about your meetings.

----HELP WANTED -

BUSINESS SYSTEMS IN FORTH
We need two good FORTH programmers.

You should have solid FORTH experi-~
ence, a year or two, and be generally
competent in Computer Science.

We are building an exciting range
of business application systems using
FORTH - the advantages are obvious! -~
and our approach is unique. We'll have
a range of configurations - single and
multi-processor, both Winchester and
large fixed disks and color graphics
screens,

Ideally you'll live in Orange County
- be attracted by a small, quality team
- and like to grab your own projects
with a strong sense of self management
- we haven't got the time or the
inclination to be overbearing.

Please send brief description of
your background to: :

The Software Development Director
4861 McKay Circle
Anaheim, CA 92807

and let us know why you think you'd like
to work with us.

FORTH DIMENSIONS II/3

Page 92

CALL FOR PAPERS
FORML CONFERENCE

(FORTH Modification Laboratory)

Papers are reguested for a three day
technical workshop to be held November
26~-28, 1980 at the Asilomar Conference
Grounds in Pacific Grove, California
{(on the Monterey Peninsula). The
purpose of the workshop 1s to discuss
advanced technical topics related to
FORTH implementation, language and
application. Papers on any of the
following or related topics are
requested for presentation and dis-
cussion:

1. Programming methodology
problem analysis and design
implementation style
development team management
documentation
debugging

2. Virtual machine implementation
arithmetic
address enlargement
position independent object
code
metaFORTH

3. Concurrency
resource management
schedul ing
intertask communication
and control
integrity, privacy and
protection

4. Language and compiler
typing and generic operations
data and control structures
optimization
5. Applications
file systems
string handling
text editing
graphics

6. Standardization
Review and discussion of
79-STANDARD
Input for the Standards Team

FORML 1S an organization (sSponsoreq
by the FORTH Interest Group) which
promotes the ecxchange of ideas on
the use, modification and extension
of the FORTH approach to systems
development., This will be an advanced
technical workshop; no introductory
tutorials will be held.

Abstracts of papers must be received
by October 1, 1980 for inclusion in the
conference program. Complete papers
must be received by November 1, 1980
to be included in the conference
proceedings. Send both abstracts and
completed papers to:

FORML Conference

P. 0. Box 51351
Palo alto, CA 94303

----HELP WANTED----

TITLE: Product Support Programmer

DUTIES: Responsiple for maintaining
existing list of software products,
including the polyFORTH Operating
System and Programming Language, file
management options, math options and
utilities and their documentation,
and providing technical support to
customers of these products.

Pequirements for candidates:

1. Good familiarity with FORTH—preferably
through one complete target-compiled
application.

2. Good assembler level programming
skills.

3. Assembler level familiarity with the
8080 and PDP/LSI-11 processors and
preferably some of these: 8086, M680O,
CDP1802, NOVA, IBM Series I, TI99C.

4. Excellent communications skills--both
oral and written; ability to work weil
with customers.

5. Excellent organizational ability.
Elizabeth Rather

FORTH, Inc.

2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254

(213) 372-8493

Contact:

Page 93

FORTH DIMENSIONS 71/3

FORML CONFERENCE

(FORTH Modification Laboratory)

November 26~28. 1980 at the Asilamar
Conference Grounds, Pacific Beach,
California. A three day advanced

technical workshop for the discussion

of topics related to FORTH implementa-
tion, language and application. No
introductory tutorials will be held.

FORML 1s an organization (sponsored
by the FORTH Interest Group) which
promotes the exchange of ideas on the
use, modification and extension of the
FORTH approach to systems development.

Asilomar is a comfortable, rustic
resort located on the Pacific Ocean
near Monterey in Northern California.
Attendees are urged to bring family
members to Asilomar as they will enjoy
the area and Thanksgiving dinner.
Costs are very reasonable, especially
for families, and include room (double
occupancy) and meals.

Attendees and/or
participants $100.00 (includes
conference registra-

tion and materials)

Non-conference
guest (wife
and/or husbard,

friend, and

children 12 or

over) $ 75.00
Children 11

or younger $ 50.00

Send request for registration and
list of guests by October 15th with a
check to:

FORML Conference
P.0. Box 51351
Palo Alto, CA 94303

NATIONAL CONVENTION

FORTH Interest Group

November 29, 1980 at the Villa
Hotel, San Mateo, California, 8:30 a.m.
- 4:30 p.m. for exhibits and papers;
6:00 p.m. cocktails; 7:30 p.m. for
dinner (with speaker). This one day
convention will include presentations,
workshops, hands-on equipment and a
number of vendor exhibits. An evening
dinner will include a talk by one of
the foremost authorities on FORTH (more
about the speaker in a later re-
lease).

Pre-registration for the convention
is available for $4.00.

Pre-registration for the dinner and
speech is required by October 15th at
$15.00.

Vendors may contact FIG about
the cost and availability of booth and
table space.

To pre-register or for more informa-
tion write:

FORTH Interest Group
P. O. Box 1105
San Carlos, CA 94070

Vendors may contact Roy Martens at
(415) 962-8653 for details about

exhibiting.

Room arrangements can also be
made through FIG.

kkkhkkk*kkkXFLASH LATE NEWSA#*#kkhkkxikk

FIG NATIONAL CONVENTION BANQUET SPEAKER

ALAN TAYLOR
Author of The Taylor Report for Computer
World. 30 years in computer field.

*kkkkkk*AMAKE YOUR RESERVATION* ks k ki

FORTH DIMENSIONS II/3

Page 94

