N

r____
\ | ‘]

HONTH TIHISIDNS

i R
‘ FORTH INTEREST GROUP Volume Il
P'Og rl 11%5A 94070 PNumggrozo
San Carlos, rice .
P
P
L L 22 General Information
/ _)
Publisher’'s Column
Ny Lyons’ Den
— 23 Temporal Aspects of the FORTH
f Language
26 A Generalized Loop Construct
for FORTH
29 File Naming System
32 Towers of Hanoi

33 Letters

FOSTH (MTIENSIOES

=_o:shed by Forth Iinterest Group
July/August 1980
Roy C. Martens

vZiume il No. 2
cubhsher
Ecitorial Review Board

Bil} Ragsdale
Dave Boulton
Kim Harris

John James
George Maverick

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is
assumed for accuracy of material submitted. ALL
MATERIAL PUBLISHED BY THE FORTH INTER-
EST GROUP IS IN THE PUBLIC DOMAIN. Infor-
mation in FORTH DIMENSIONS may be repro-
duced with credit given to the author and the Forth
interest Group.

Subscription to FORTH DIMENSIONS is free
with membership in the Forth interest Group at
$12.00 per year ($15.00 overseas). For member-
ship, change of address and/or to submit material,
the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

=—HISTORICAL PERSPECTIVE==

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radic Astronomy Observa-
tory, Charlottesville, VA. it was created out of
dissatistaction with available programming toois,
especially for observatory automation.

Mr. Moore and several associates formed
FORTH, inc. in 1973 for the purpose of licensing
and support of the FORTH Operating System and
Programming Language, and to supply applica-
tion programming to meei customers’ unique
requirements.

The Forth Interest Group is centered in Northern
California, although our membership of 1100 is
world-wide. It was formed in 1978 by FORTH
programmars to enccourage use of the language by
the interchange of ideas through seminars and
publications.

=——=PUBLISHER'S COLUMN =—=

Summer is here. Lazy days should abound but
not at FIG and FORTH DIMENSIONS individuals
and groups are working hara on Standards and
Cases. Soon there will be announcements and
printing of these efforts. In tact, if everything works
out right, the next issue of FORTH DIMENSIONS
wili be the big one that everyone has been waiting
for (have you renewed your subscription and
membership?). This doesn't mean that we aren't
eager for more articles and letters from members,
send them. More issues are in the works

Now that we have a few issues of the new looking
FORTH DIMENSIONS under our belt, we'd like to
have your suggestions about improvements and
additional information. Do you want more tech-
nical material? More beginning input? More new

Remember your inputs are what make FORTH
DIMENSIONS.

Have a nice summer. Renew if you haven't
already.

Roy Martens

LYONS’ DEN

While listening to the tapes ct the FORTH
Convention (availabie from Audio Village, P.O.
Box 291, Bloomington, |A 47402, $16.00 for tour
tapes) | noticed puzzlement over how toc com-
municate concisely the nature of FORTH, that is,
what single term—cperating system, compiler,
interpreter—indentities the class to which it
belongs. How about referring to FORTH as a Meta
Interpreter—a program for generating an inter-
preter (the application) to provide an interactive
tool for solving application specific probiems
(sometimes referred to as JOL's, job-oriented-
languages)? Other members cf this ciass are LISP
and an obscure IBM system called PLAN, as well
as APL. FORTH has unique features distinguish-
ing it from other members of this class, being more
optimized for arithmetic than LISP, for example,
and being more compact and iower level than APL.
Also, its implementation is rmore like LISF than
APL.

Continued on pg. 21

Page 22

FORTH DIMENSIONS I1/2

TEMPORAL ASPECTS OF THE
FORTH LANGUAGE

A BEGINNER'S STUMBLING BLOCK

John M. Derick

Linda A. Baker

P.O. Box 553
Mountain View, CA 94042

Novice FORTH programmers who have
had previous experience with other,
more traditional, programming languages
almost invariably become confused when
first dealing with FORTH. A first time
user sitting down at a FORTH terminal
soon notices what seem to be time-based
inconsistencies. That is, the language
seems to require that things be done in
the wrong order or that the language
itself does things out of time order.
The novice, striving to understand
these supposed "inconsistencies"
detects time as a note of commonality
and therefore lumps them all together
as one oddity, while in actuality there
are three separate areas of difficulty.

The interesting point of this is
that the cause of this confusion is so
elementary that once the problems are
understood, it is difficult to look
back and pinpoint why the confusion
arose in the first place. This is why
these elementary problem areas are not
stressed in most existing FORTH litera-
ture and are just assumed to be part of
the longer than normal learning curve
associated with FORTH. Making it clear
in the neophyte's mind that there are
three separate, but related, factor
shortens this learning curve.

Let us examine what situations cause
this confusion.

Sitting at a FORTH terminal, you
enter a FORTH word, hit a carriage
return and the word executes. Other
times, though, you enter a line of
FORTH words (including the one you just
executed previously), hit carriage

return and nothing executes. But when
used later on this same word executes!
As you learn more, you discover that in
order to perform some functions you
must actually alter the traditional
time sequence of programming and modify
FORTH's compiler after it already works
and is ebugged. Then, to add even more
confusion, you find that some words,
when added to the compiler, will
execute different parts of that same
word at different times. Or, when you
edit a FORTH program, save it on disk
and then compile it; some parts compile
as expected but other words execute
immediately.

To an experienced FORTH programmer
it is quite obvious that there are
actually three separate (but releated)
aspects of FORTH represented in this
example. To a beginner all of these
attributes are lumped together 1in
one tangled question of "who's on -
first????" and "when did he get
there??2?2?"

With the exception of different
parts of a word executing at different
times, these are very trivial problems
to an experienced FORTH programmer. To
the beginner they are totally new
concepts that must be sorted out and
grasped——even though once understood
they really are trivial concepts.

Let us first address the most basic
of these three time related stumbling
blocks; that of modifying the compiler.

Before we continue it is important
to point out that there are several
steps (one may almost say laws) that
always must be followed to generate
object code from source code. Tradi-
tional programming languages take these
steps in a straight line one-pass
manner. FORTH also takes these same
steps (i.e., a compiler has been
written and installed). The difference
with FORTH however, is that the act of
writing the compiler is not intended to
be a one-pass step. Instead it is a

FORTH DIMENSIONS

Page 23

recursive procedure where the compiler
15 constantly modified and tailored to
the users needs over and over again.
This alters the time sequence of things
and is a slightly shocking concept but
the basic rules are still the same.

In traditional languages a pro-
grammer goes through several temporally
separated steps to generate a user
program: A compiler (or assembler), an
editor, a link editor and loader are
all separately created and installed on
the user's system. Then the user edits
a program, compiles it, links it, then
loads and tests it. Everything is done
in such absolutely clear cut steps that
one is subtly led to believe that this
is the absolute nature of the world.

FORTH on the other hand is a highly
interactive, dictionary-based language
where new additions to the language
(i.e., user added words) are simply
added to the end of the dictionary
thereby "extending" it. FORTH's
compiler is part of this dictionary
and therefore words added to the
dictionary can actually affect or be
used in the compiler. In FORTH, this
is not only possible, it is required if
one is to fully use the power of the
language.

A simple concept? Yes. But it is
so contrary to traditional practice
that it is hard for a neophyte to
believe advanced documentation which
tells how to build compiler directives
such as "creating” or "defining" words
while only alluding to the fact
that the compiler can and should be
modified.

Therefore, let us emphasize this
fact: The compiler in FORTH is not

sacred. The traditional sequential
steps of writing a compiler and forever
using that particular product do not
apply in FORTH. FORTH's compiler may
be modified at any time. All, or part
of it may be executed at any time.
As a matter of fact "creating" or

"defining" words used in the compiler
are actually tiny standalone compilers
in themselves and can he used to
perform mini-compilations whenever they
are referenced.

Now that this compiler modification
aspect has been "factored" out of the
jumble of time related "confusions",
the beginner is still left with the
second point of confusion: Namely why
words sometimes execute immediately and
sometimes do not.

The technical reason why words
execute immediately 1s that the
"precedence" bit associated with
that word is set on; but it is the
philosophical reasoning for the
existence of the precedence bit that
is of importance to the neophyte.

Again all of this is tied in with
the fact that FORTH's compiler is an
integral interactive part of the
language. It is an integral part of
the language because it 1is composed of
common FORTH words used not only in the
compiler but in every other FORTH
application as well.

Entering a FORTH word or words on
a terminal, and hitting carriage
return causes that word or words to be
immediately executed and is similar to
executing an already compiled and
linked object module. The dictionary
is searching until the word is found
and the definition is executed. To do
this, the word is preceded by a colon,
FORTH is put into the compiler state,
and all words up until a semicolon will
be compiled (i.e., placed into the
dictionary for future execution). This
is similar to inputting source code to
a FORTRAN compiler and getting object
code out.

The point being made here is that
FORTH continuously changes between
"compiler" state and "execution”
state. When in compiler state,
most input words are compiled, not

Page 24

FORTH DIMENSIONS II/2

executed. Notice the word "most".
Some words are executed while in
compiler state. These are naturally
called compiler words.

These compiler words are identical
in appearance to any other FORTH word.
Indeed they actually are simply FORTH
words with the exception that their
precedence bit 1s set. They are
analogous to assembly language pseudo
ops or oompiler directives. A pseudo
op (like ORG) 1in assembly language
gives direction to or is "executed" by
the assembler; not the object code. It
is never executed by the user program.

Thus, words in FORTH may be "flagged"
to operate as pseudo ops. That is,
they may be chosen to execute immedia-
tely and thereby perform some act of
compilation upon other words in the
definition; (even if they are imbedded
inside of a string of source code--
just as a pseudo op would do in
assembly language). This "flag” is
the precedence bit. When the FORTH
interpreter detects that this bit is
set, it will cause it associated word
to be executed immediately, even while
in compiler mode. Using the word
IMMEDIATE just after a definition is
the method used to set the precedence
bit.

This is a very powerful feature
of the FORTH language. It allows
definitions to execute while in
compile mode and since FORTH makes no
distinction between "supplied" words
and user written words the compiler
itself can be added to and improved.
This feature is called "extendability".

There are certain defining words
in FORTH that take the trait of "when a
word is executed" one step further.
Conceptionally advanced word such as
BUILDS and DOES allow a definition to
be constructed so that the first half
of the word will be used at compile
time but the second half will execute
at execution time.

While it is beyond the scope of this
paper to go into the usage of BUILDS
and DOES type words, it should be noted
that they exist and really do have two
separate times of execution.

The last point of confusion is: When
words contained in a "loaded" block
execute immediately instead of com-
piling (or visa versa). When FORTH
loads a block, it treats the incoming
data almost as if it were being read
from a keyboard. Definitions are
compiled and put into the dictionary
as they are encountered in the data
stream. But, if a word is encountered
that is not contained inside of a
definition (whether intentionally
or not!) that word is executed imme-
diately, just as if it was entered from
the keyboard. This is a quite straight
forward, and quite understandable
effect once it is pointed out. The
rule here is to put words to be
canpiled inside of definitions. Leave
words to be executed immediately
outside of definitions.

A good example of word purposely
left outside of a definition is
DECIMAL. This word is normally used as
the last word of a loaded block to
insure that after compilation the
system is left in its standard base ten
state.

In summary, the temporal confusion
that occurs when first using FORTH
is all quite elementary and under-
standable--at least in principle. And
at a beginners stage, principle is very
important.

The three general categories;
modifying the compiler, compiler
directives using the precedence bit,
and loading and compiling blocks, all
perform execution at predictable
times and really do have a direct
correspondence with traditional
programming seguences.

FORTH DIMENSIONS

Page 25

A GENERALIZED LOOP
CONSTRUCT FOR FORTH=———"—

For some time, I have been building
my own version of a FORTH-like language
with direct rather than indirect
threaded code, running on the 8080.
Last year I learned that my approach is
almost identical to that of URTH; this
is not surprising since the design
criterion of highest possible execution
speed was the same. To this end, the
inner interpreter has one level of
indirection removed (compared to
FORTH) and jumps (as for IF , ELSE ,
LOOP , WHILE , UNTIL , etc.) are
compiled to their 16 bit absolute
value, rather than a 16 bit offset.
All this by way of preface that
although my "home base" is isolated
from the West Coast and my implementa-—
tion of the following words may not be
exactly FORTH compatible, yet I feel
that the concepts presented are new and
useful in the FORTH environment.

The article 'FORTH-85 "CASE" STATE-
MENT' by Richard B. Main in FORTH
DIMENSIONS, Volume 1, Number 5 had a
catalytic effect in the development
of these ideas, specifically the
technique of saving an unknown number
of addresses on the stack and using
zero as a marker for the last address.
It seemed to me that one area to apply
this scheme with good effect is in the
BEGIN ... UNTIL and BEGIN ... WHILE
... REPEAT loop constructs which
currently permit only one exit test.
This sometimes forces awkward stack
manipulations to "or" conditions when
two or more conditions must be tested,
any one of which is sufficient to
terminate the loop. The proposed
constructs solve this problem, require
no more lower level CODE words than
already exist, and add to the elegance
of the lanquage by removing the word
REPEAT.

The generalized loop is constructed
one of two ways:

BEGIN ... WHILE ... WHILE ... WHILE ... UNTIL
or
BEGIN ... WHILE ... WHILE ... WHILE ... AGAIN

There can be any number of WHILE
words in each loop, including none.
The meaning of the words BEGIN ,
WHILE , UNTIL , and AGAIN 1s
exactly the same as currently under-
stood; no new concepts need be learned.
For newcomers to the language (of which
we all hope for, and in large numbers)
the learning task is easler because we
have reduced the number of FORTH basic
words while at the same time increasing
the power of the language by permitting
more powerful combinations of these
words. This is surely a good direction
since the human (programmer) mind is
unsurpassed at manipulating symbols,
but not in remembering them.

The Words

The following definitions work in
my system. In FORTH, where XELSE and
XIF require a compiled offset rather
than an absolute address, the words
WHILE , COMPADDS , AGAIN , and
UNTIL must be changed slightly.

(GENERALIZED LOOP WORDS - dEGIN WHILE UNTIL AGAIN

: BEGIN HERE O ; IMMED (ATE
: WHILE LIT XIF , HERE O ;O IMMELIATE
: UNTIL OROP LIT XIF , , ; IMMEDIATL « TRYPIHANY
: COMPADDS BEING DUP [# HAERE 1e 14 s5wdP 0 LNOIF 1= oNTIL
: AGAIN LIT XELSE , COMPADDS , ; IMMEULIATH
: UNTIL LIT XIf , CUMPADDS , ;o IMMET JATE

How They Work, Compile Time

BEGIN Pushes onto the stack the
address to which the loop
should jump, followed by a
zero. The zero is used as a
market by the COMPADDS
word.

WHILE (if used) Compiles a ocondi-
tional jump to the temporary
address of zero, and also
pushes the address of the
temporary address to the

Page 26

FORTH DIMENSIONS II/2

stack. The temporary
address, which can never
be zero, will later be
overwritten by COMPADDS
with the address of the next
word immediately after the
loop structure; this is how
WHILE effects a loop exit.

UNTIL (temporary) Allows correct
compilation of the COMPADDS
word's BEGIN ... UNTIL
structure. It will shortly
be replaced with the gen-
eralized UNTIL .

COMPADDS Overwrites the address of all
previous WHILE words until
the last BEGIN . Each
address on the stack (there
may be none) is overwritten
with the vale HERE+2. The
zero placed on the stack by
the last BEGIN terminates
the overwriting and leaves
the address of the first word
in the loop on the top of the
stack.

AGAIN Compiles an unconditional
jump, completes all previous
WHILE words, and then
compiles the address of the
unconditional jump, pointing
to the top of the 1loop.

UNTIL Identical to AGAIN , except
a conditional jump is com-
piled, allowing a conditional
loop exit.

How They work, Run Time

They work the same as the previously
known BEGIN , WHILE , ONTIL , and
AGAIN .

Error Procedures

Error checks can easily be added to
these words. This is done as below:

{ GENERALIZED LOOP WORDS - BEGIN WHILE DNTIL AGALN)

{ WITH ERROR PROCEDURES AS PER RULL-HOLLAND

: BEGIN HERE 0 ; ITMMEDIATE
. WHILE t ?PATIRS LIT X1F, HERF O , 1 s IMMEBIATY
: UNTIL DROP DROP LIT XI1F ,
. COMPADDS BEGIN DUP IF HERE 1+ 1e¢ SwAP ' ENDTT O UNTTL
: AGAIN 1 2PAIRS LIT XELSE , COMPADDS ;O IMMEDIATYY
: UNTIL 1 ?PALIRS LIT XIF , « OMPARDS o IMMEDILATE

The operation is self-evident.
Conclusion

Generalized loop words BEGIN ,
WHILE , ONTIL , and AGAIN have
been proposed. Their use provides,
as a subset, the well known actions
of BEGIN ... AGAIN , BFGIN ...
UNTIL , and BEGIN ... WHILE ...
REPEAT (with the word REPEAT
replaced by AGAIN). When used in
this manner the new words impose no
more run time overhead in time or
space than the words they replace.
If the new words did nothing more,
they would still be desirable
because they "orthogonalize" the
unconditional loop termination word,
making it AGAIN regardless of the
presence or absence of the WHILE
word.

But, as an added benefit of the new
words, more powerful constructs such
as BEGIN ... WHILE ... UNTIL or
BEGIN ... WHILE ... WHILE ... AGAIN are
possible. Thus multiple tests and
exits from a loop can be arranged in
the most natural order, without the
need to "or" the results of the tests.
These multiple loop exits do not
violate the principles of structured
programming since they all lead to a
common point; in other words, the loop,
as a structure, has one entry and one
exit.

Future Research

After much thought about the impli-
cations of the proposed words in
relation to the FORTH philosophy of
programing, I must say that of the two
changes wrought by these words, viz.

FORTH DIMENSIONS

Page 27

DO TMMEDITATLE (P MPOKHARY

o orthogonalization of the loop
“yotruct, and the ability to have
ritiple loow exits, I believe that
rvthogonalization 1s by far the most
Important result. In FORTH, while the
very act of programming consists of
extending the language by creating many
new words usetul in the application
environment, even so, 1 believe that
the 1nitial basic words, especially the
structured programming constructs such
as IF ... ELSE ... ENDIF , BEGIN ...
UNTIL , and DO ... LOOP should be as
tew and as general purpose as possible.

In addition, they should be care-
fully names so as to convey their
action to programmers new to FORTH, but
familiar with similar structures on
other, "industry standard" languages
such as ALGOL, PASCAL, and C. The
construct IF ... ELSE ... THEN is
poor in this respect; the word THEN
confuses novices to FORTH since it
usually implies selection, while in
this case it is really a construct
terminator. I assume that this is the
reason why the change from THEN to
ENIF was specified in FORTH-79.
Similarly, BEGIN ... END is confusing
since it does not imply repetition to
the average programmer. FORTH-79
partially corrects this confusion with
BEGIN .. UNTIL , but I believe some
word signifying repetition should
replace BEGIN , such as REPEAT ...
UNTIL , REPEAT ... AGAIN , and REPEAT
... WHILE ... AGAIN .

As for DO ... LOOP , this construct
cries out for a convenient way to
prematurely exit the loop. LEAVE
seems weird - at odds with commonly
accepted practice - since it has a
deferred effect, taking place only at
the end of the loop. Although I won't
remove it from the language, I suggest
an alternative: Do ... WHILE ... LOOP
. At the execution of the optional
WHILE , 1if the stack is zero the loop
1s exitted. Not possible because
WHILE 1is already used for the REPEAT
... WHILE ... AGAIN 1loop, you say?

But it is possible! A very useful
by-product of the Error Procedures of
University at Ulrecht, Netherlands is
that they always leave at the top of
the stack (during compile time) a
flag indicating the identity of the
innermost construct, different for
REPEAT ... and DO ...; it is then a
simple matter to arrange WHILE to
have different actions and to compile
entirely different CODE words depending
on this value. Of course, we would not
limit the number of WHILE words
between DO and LOOP . LOOP must be
modified, as was described above for
AGAIN , to permit this.

Bruce Komusin

Ontel Corp.

250 Crossways Park Dr.
Woodbury, NY 11797

New Product

OmiForth, from Interactive Computer
Systems, is now available for the North
Star computer. FORTE combines struc-
tured programming, stack organization,
virtual memory, compiler, assembler,
and file system into an extensible
macrolanguage. Organized as a dic-
tionary of words, FORTH allows defining
new words that extend the vocabulary to
suit any application. Words are
compiled on entry into code ready'for
immediate test, and execute ten times
faster than Basic. FORTH supports
coding time-critical routines in
assembler for the fastest response.
OmniForth contains the interactive
FORTH compiler (modeled on.Fig-FORTH),
assembler for the 8080 and Z-80, file
system, and text editor. Omni-Forth
requires 24K memory and North Star DOS,
and costs $49.95; an optional Intro-
duction to FORTH manual is available
for $15.00. Interactive Computer
Systems, Inc., 6403 DiMarco Road,
Tampa, FL 33614.

Page 28

FORTH DIMENSIONS 11/2

=———=FILE NAMING SYSTEM =——=

Peter H. Helmers
University of Rochester

This particular FORTH file naming
system is set up to use a disk based
directory to name files which are
comprised of a series of disk blocks.
The system does not include any
specific file formats, but instead is
used to translate a filename to a block
number. This block number can be a
traditional "load block", a directory
block for a linked set of random data
blocks, or perhaps the initial block in
a multi-block text file. Routines are
available to control a disk's bit map
of allocated blocks so that already
utilized blocks are not overwritten.
Additional routines allow creation of
filename/block entries at either fixed
block locations or at random locations,
or deletion of file entries, directory
listings, etc.

The philosophy in writing this
package was that file formats should
be user definable although several
standard uses are being brought up for
text files, and data arrays stored in
consecutive blocks. By using the words
available, additional file formats can
be easily added.

The file naming system presently
uses three blocks at the end of each
disk. The first block contains two
data arrays: a bit map of block usage
on the disk, and a list of block-
pointers for each defined filename.
The bitmap uses one bit per disk block
to define whether the block is used or
not; the bit is a "1" if the block is
used. The block pointer array consists
of 64 integers which point to the
filename's starting block number. A
value of -1 means that the filename is
undefined.

The second two blocks contain 64
filename strings of up to 32 characters

each. Each name string is actually
stored as a fixed length 32 byte string
with any extra characters being padded
blanks. A non-valid file is flagged by
a -1 value for the block pointer, not
by a null of special string.

The following is a list of the
primary user oriented words in this

file naming package:
("STR") FIND-NAME (INDX)

FIND-NAME searches for the STR in the
directory and returns its directory
index if found, or a -1 if not
found. Thus a user can test for a
-1 to see if a filename exists.

INIT-DIRECTORY

INIT-DIRECTORY is used to set all
block pointers to -1's so that no
files will be considered to be in
existence.

INIT-BIT-MAP
INIT-BIT-MAP is used to set all
bit map bits to 0's, thus indicating

that no disk blocks are being
used.

(BLK#) FREE-BLK

FREE-BLK is used to reset a given
block's bit map bit, thus indicating
that it is not in use.

(BLK#) RESERVE BLK

RESERVE-BLK is used to set a given
block's bit map to indicate that it
is in use.,

FIND-FREE-BLK (BLK#)

FIND-FREE-BLK is used to find the
first free block encountered in the
bit map. It returns a "free" block
number if one can be found, or a -1
if the disk is full.

FORTH DIMENSIONS II/2

Page 29

("TQ!\PGIE") !!3221

NEW is used to create a new filename
entry with a block pointer found
from the first free block en-
countered in the bit map.

("NAME"), (BLK#) NEW FIXED

NEW-FIXED is used to define a new
filename with a specific block
pointer (for example, a traditional
"load block").

("NAME") FILE (BLK#)

FILE is used to translate a filename
string to a specific block number.

("NAME") ERASE

ERASE is used to erase the given
filename from the directory.

DIRECTORY

DIRECTORY is used to print a listing
on the console of all defined

filenames.
{(FILE NAMING SYSTEM - PHH - 12 3 79) BASE @ HEX
FILE-ERROR
DOCASE
DUP 1 = WHEN T" ALL BLOCKS USED *
CASE DUP 2 = WHEN T" FILE ALREADY EXISTS .
CASE DUP 3 = WHEN T" DIRECTORY FULL *
CASE DUP 4 = WHEN T* NAME TOO LONG -
CASE DUP S » WHEN T FILE NOT FOUND .
ENDCASE
CR
RESTART

2DROP (DO CASE BUG)
BASE ! iS

FILE NAMING SYSTEM - PHH -~ 12 4 79) BASE @ HEX
PB O DO T" " LOOP :

*“SPACES O DO " " "+ LOOP ; (ADD {TOS] SPACES TO STRNG)
“GET 20 SWAP "@F ; { GET 32 BYTE STRNG FROM ADDR ON TOS)
"PUT 20 SWAP "!'F (PUT 32 BYTE STRNG TO ADDR ON TOS)
FILE-NAME-FIX { MAKE NAME 32 CHARS LONG)

;?EN sup 1E > (CHECK THAT NAME <= 30 CHARS)

4 FILE-ERROR

THEN

20 -~ “"SPACES

{ NPOE, SO GIVE ERROR)
{ PAD W/BLNKS TO 32 CHARS)

BASE :5

(FILE NAMING SYSTEM - PHH - 30 NOV 79) BASE » HEX

OF8 CONSTANT DIR { FILE DIRECTORY BLOCKS YTART MbkE

INDX~ >STR-ADDR { INDX ON TNS ON ENTKY }
20 /MOD { 32 FILENAMES/BLOCK
DIR + 1+ (NAMES IN HLKS DIke!, DIkes !
BLOCK { ADDR OF BLOCK W/ NAMEL IN IT 1
SWAP 5 «-L (BYTE OFFSFT INTO BLOXK

.

+ RTRN ADDK OF NAME STHING UN TOL 1

INDX->BLK-PTR-ADDR INDX ON Tus)

{
1 <-L (CREATE BYTE OFFSET INTO BLOCK 1}
DIR BLOCK { ADDR OF BRLOCK WITH FILE POINTERS
+ { RTRN ADDR OF FILF'35 ALOCK PNTR
BASE ! iS
(FILE NAMING SYSTEM - PHH - 11 30 79) BASE ¢ HEX
-1 VARIABLE FILE~INDX -1 VARIABLE FILE-BLK
FIND-NAME -1 FILE-INDX ! (SET INDX FOR NO MATUH)
40 0 DO (CHECK ALL POSSIBLE NAMES)
1 INDX->BLK-PTR-ADDR @ -1 =
IF { VALID FILE - SO CHECK NAME MATCH)
“puUP 1 INDX->STR-ADDR "GET "=
IF { NAME MATCH FOUND
1 FILE~-INDX ! EXIT (SET INDX AND ESJAPE)
THEN { UTHERWISE)
THEN

{ TRY NEXT NAME CNTRY 1F NOT DONE)
(REMOVF TARGET STRING AND ... }
(RETURN THE INDX OF THE STRING

LOOP
*DROP FILE-INDX @

BASE ! :S

(FILE NAMING SYSTEM - PHH - 11 30 79) BASE ¢ HEX

: CREATE-NAME (FILE-NAME STRING ON TOS)
-1 FILE~INDX ! (SET TO INDICATE NO ROOM AVAIL
40 0 DO (SEARCH DIRECTORY FOR NULL FILE)
1 INDX->BLK-PTR-ADDR @ -1 =
IF (NULL, SO PLACE NAME HERE)
1 FILE-INDX ! { SAVE INDX WHERE NAME 1S SAVED
I INDX->STR-ADDR "PUT (SAVE FILE'S NAME IN DIR)
" UPDATE EXIT (NULL STR TO TOSS, AND EXIT)
THEN

LOOP { UNTIL ™ATCH OR END OF DIR }
“DROP FILE-INDX @ DROP TARGET OR NULL STRING, & |}

H (RTRN INDX OF NEW FILE)

BASE ! 38

{ FILE NAMING SYSTEM - PHH - 11 30 79) BASE @ HEX

: DELETE-FILE (DELETE FILE GIVEN BY INDX ON TOS
INDX~->BLK-PTR-ADDR { FIND ADDR OF BLK'S POINTER)

-1 SWAP ! (FLAG DELETION BY -! BLK PTR)
UPDATE (FORCE DISK UPDATE)

-DELETE ALL DIR ENTRIES)

INIT-DIRECTORY

40 0 DO { INDX ALL 64 DIR ENTRIES }
1 DELETE-FILE (DELETE EACH BY INDX)
Loop
H
BASE ! S
.
A Riddle

FORTH

Supervisor: What's the differ-
ence between
'ignorance' and

‘indifference'?

I don't know and I
don't care.

Programmer :

Page 30

FORTH DIMENSIONS 11/2

FILE NAMING SYSTEM - PHH - 12 3 79) BASE © HEX

(FILE NAMING SYSTEM - PHH - 11 30 79) BASE @ HEX {
. GET-BIT-MASK (GET BIT MAP INFO FOR BLK# ON TOS) ¢ FILE { XLATE FILE NAM:E ON TussS o HEXKS
DUP FILE-NAME-FIX { FORCE 32 CHAR STRNG LEN
7 & 1 SWAP <«-L { GENERATE BIT#, THEN BIT MASK) FIND-NAMF. DUP -V = { FIND NAME'S DIR OINDX)
SWAP 3 ->L { GEN. BYTE OFFSET IN BIT MAP) IF 5 FILE~-ERROR THEN (NAME NOT FOUND IN DIK
300 + INDX->BLK<PTR-ADDR @ { GET NAME'S BLOCK ¥)
DIR BLOCK + (ADD BIT MAP OFFSET W/IN DIR BLK) H (AND RETURN ON TOS)
DUP C@ (DUP IT, AND GET ITS VALUE) : ERASE { ERASE NAME ON TOSS FROM Dlg
ROT (RTRN BIT MAP ADDR, OLD BIT MAP) FILE-NAME-F1X (FORCE 32 CHAR STRING LENGTH)
{ BYTE, & BIT MASK ON TOS) FIND-NAME DUP -1 = (GET NAME'S DIR INDX, IF ANY)
FREE-BLK { BLK# ON TOS TO BE FREE'D } IF 5 FILE-ERROR THEN { NAME NOT FOUND IN DIR)
GET-BIT-MASK DUP DELETE-FILE (DELETE FILE GIVEN BY INDX#)
-1 XOR & SWAP { MASK BLK'S BIT MAP BIT TO 0) INDX->BLK~PTR-ADDR @ (GET THE OLD BLK POINTER
C! UPDATE { STORE BACK IN BIT MAP & TO DISK) FREE-BLK { ...AND FREE IT IN THE BIT MAP }
BASE ! ;S BASE ! :S
(FILE NAMING SYSTEM - PHH - 12 3 79) BASE @ HEX (FILE NAMING SYSTEM - PHH - 12 3 79)} BASE ¢ HEX
RESERVE-BLK (MARK BLK ON TOS AS USED) : DIRECTORY (PRINT ENTIRE DIRECTORY)
GET-BIT-MASK 40 0 DO (CHECK EACH DIR ENTRY)
OR SWAP C! UPDATE (SET BIT IN BIT MASK) 1 INDX->BLK-PTR-ADDR €@ (GET BLK PNTR)
DUP -1 = (IS IT AN EXISTANT FILE?)
INIT-BIT-MAP (FREE ALL BLKS, THEN RESERVE) IF { YES, SO PRINT ITS CONTENTS)
{ THE RANGE OF BLKS GIVEN ON TOS) I INDX->STR-ADDR { FIRST, GET THE ADDR OF THE NAME)
DIR O DO { FREE ALL BLKS IN DISK) "GET ". { PUT 1T ON TOSS, AND PRINT IT)
I FREE-BLK S PB . CR { PRINT S5 BLNKS, AND THE BLK #)
LOOP ELSE DROP { BLK NUMBER)
SWAP 14 SWAP DO (RANGE OF BLKS ON TOS) THEN
I RESERVE-BLK (RESERVE ALL BLKS IN THE RANGE) LOOP (CONTINGE FOR ALL POSSIBLE FILES)
LOOP ;
: BASE ! i8S
BASE ! 1S

FILE NAMING SYSTEM ~ PHH - 12 5 79) BASE @ HEX

FIND-FREE-BLK { SEARCH BIT MAP FOR FREE BLOCK)
-} FILE BLK ! { FLAG RESULT FOR NO BLKS FOUND)}
DIR O DO (NOW SEARCH ENTIRE BIT MAP) y
;FGET-BIT—MASK & 0= E ;g BLK IN USE?) LYONS' DEN (Continued from pg. 22)
1 FILE-BLK ! EXIT ¢ SO'SAQE BLK#, AND EXIT LOOP)
THEN
DROP (BIT MAP ADDR)
LOOP { TRY THE NEXT BLOCK i 1
FilE-BLK @ (DONE . S0 RETURN ME FOUND BLK) Regarding FORTH this way captures some of
ase 1 s { NOTE, -1 => NO BLKS FREE) the reasons why FORTH should not be used as
merely a low level pseudo-machine in the way
Wirth used P-Code to implement PASCAL, or as
FILE NAMING SYSTEM - PHH - 12 3 79) BASE € HEX how meta compilers, as opposed to how a meta
NEW (SET UP NEW FILE W/ NAME ON TOSS H
T LE-NAME-FIX (FIRST, FORCE VALID NAME LEN) ! interpreter works. Of course, any language can be
FIND~FREE-BLK DUP -1 = (. MORE ROOM ON DISK?) i i i
N K i e T e S used to wrltg an mterprete'r, byt FOR_TH provides
"DUP FIND-NAME -1 = { NAME ALREADY USED?) tools for this purpose built in and is thus pre-
IF 2 FILE~-ERROR THEN { YES, GIVE ERROR MESSAGE)
CREATE-NAME DUP -1 = (PUT NAME IN DIR, IF NOT FULL) structured for that kind of application. This may
IF 3 FILE-ERROR THEN { DIR FULL ERROR) H H™H H
SWAP DUP RESERVE-BLK { SET NEW BLK, FOUND BY) also SuggeSt—aSJUSt a possmlllty—why there has
{ FIND-FREE~BLK, AS RESE o i
SWAP INDX->BLK-PTR-ADDR ! { STORE FILE'S BLK POIN?;ZD)) been Observed markedly 'ess use Of Condltlonal
| UPDATE { GO TELL IT TO THE DISK, TOO !) branches in FORTH programs relative to
BASE ! ;S FORTRAN; perhaps many of the conditionals that

would be explicit in FORTRAN are simply per-
formed as executions of the interpreter functions

LNEeeTxED o T ke TEu: EXCEPT BLK POINTER) which perform a complex set of conditional
GIVEN BY ¢ ON TOS : : . . .

FILE-NAME-FIX ORCE 32 CHaR Lo n) branches automa‘tlcally without having to identify
"DUP FIND-NAME -1 = NAME ALREADY EXIST?) them as such. | will wager LISP is the same way.

IF 2 FILE-ERROR THEN
CREATE-NAME DUP -1 =
IF 3 FILe~ERROR THEN
SWAP DUP RESERVE-BLK

YES, SO GIVE ERROR MESSAGE)

PUT NAME IN DIR, IF DIR NOT FULL)
DIR FULL, SO GIVE ERROR)

RESERVE BLK, GIVEN BY # ON TOS)

ON ENTRY TO 'NEW-FIXED') George B. Lyons
SWAP INDX->BLK-PTR-ADDR ! (AND STORE BLK# AS FILE'S PTR) .
UPDATE (GO TELL IT TO THE DISK !) Jersey City, NJ
BASE | ;S

FORTH DIMENSIONS I1/2 _ Page 31

- ——=—=TOWERS OF HANO| =—=—=—

by Peter Midnight

. . . SCR # 14
Here are the listings of a graphic 0 (TOWERS OF HANOI Copyraght, 1979, Peter Midnight)
: .) 1 PRESENCE { tower ring PRESENCE -> boolean)
representation of the ancient Towers 2 RING + C& =
3 M 3 3 3 : LINE { tower LINE =-> display_line_of_top)
of Hanol puzzle which is adjustable 4 4 SWAP N O DO DUP I PRESENCE 0= ROT + SWAP LOOP DROP ;
for any CRT terminal with curser FAE
addressing. 7 : RAISE (size tower RAISE)
8 DUP POS SWAP LINE 1 SWAP DO
9 20UP I BL DISPLAY 2DUP I 1- COLOR DISPLAY
. 10 -1 +LOOP 2DROP ;
Recently, when I got fig FORTH 11 : LOWER (size tower LOWER)
i 12 DUP POS SWAP LINE 1+ 2 DU
running on my system under North St'ar 13 2DUP I 1- BL DISPLAY 2DUP I COLOR DISPLAY
DOS, I decided to translate this 14 __Loor 2DROP
program into FORTH as an exercise and
- . MSG # 15
as a comparison between FORTH and
PASCAL. In the process I noticed some
inefficiencies but chose to translate SCR # 15
them more or less directly, for the 0 (TOWERS OF HANGI Copyright, 1979, Peter Midnight)
. 1 : MOVELEFT (size source_tower destiny_tower MOVELEFT)
sake of comparison. 2 POS l- SWAP POS 1- DO DUP R 1+ 1 BL DISPLAY
3 DUP R 1 COLOR DISPLAY -1 +LOOP DROP ;
4 : MOVERIGHT (size source_tower destiny_tower MOVERIGHT)
: s 5 POS 1+ SWAP POS 1+ DG DUP R 1- 1 BL DISPLAY
The UCSP PASCAL program 1s available ¢ DUP R 1 GOLOR DISPLAY Loop DROP . ;
1 ews— 7 : TRAVERSE (size source_tower destiny_tower TRAVERSE)
by requesting the Jan/Feb 1980 N 8 2DUP > IF MOVELEFT ELSE MOVERIGHT THEN: ;
9 : MOVE size source_tower desti tower MOVE
letter from Homebre.w Cc.)mPUter Club, 10 ?TEl(lHINAL 1r 0N 4+ GOTOXY ABORT THEN :
P.O. Box 626, Mountain View, CA 94042, 11 ROT ROT 2DUP RAISE >R 2DUP R> ROT TRAVERSE
12 2DUP RING + 1- ClI SWAP LOWER ;
13 -->
14
15
Forth Program
SCR * 12 SCR & 16 (ah 19 Ldnigh
0 { TOWERS OF HANOI Copyright, 1979, Peter Midnight) g { :8:5?308F Tﬂg?ie souggEVé;gt:;yl:pa;eP;;E;I:svn;g t
! (Tranclated for speed comparison } FORTH DEFINITIONS DECIMAL 2 * 4 PICK ! = IF DROP MOVE ELSE
2 { First extend Forth to include a few features of Pascal) 3 SR >R SWAP 1- SWAP R> R> 4DUP SWAP MYSELF
T ¢ MYSELF (In definition, this is a recursive use of new 3 4DUP DROP ROT 1+ ROT ROT MOVE
4 LATEST PFA CFA , ; IMMEDIATE word) e ROT ROT SWAP WYSELR THEN s
S 1 GOTOXY { X Y GOTOXY) 27 CMIT 61 EMIT 5 b ’
6 0 MAX 1S MIN 32 + EMIT 0 MAX 63 MIN 32 + EMIT ; 7 : MAKETOWER (tower MAKETOWER)
- }gifgscg;g’; chop I 8 POS 4 N+ 3 DO DUP I GOTOXY 124 EMIT (|) LOOP DROP ;
: Pl"\}{, SPA SWAP 2 % 4 e 9 : MAKEBASE { no arguments)
6 . 4DUP 4 PICK 4 PICK 4 PICK' 4 PICK 3 J0 O N4+ GOTOXY N6 ® 3 + 0 DO 45 EMIT { -) LOOP ;
o RO, . . M . 11 : MAKERING { tower size MAKERING)
12 10 CONSTAUT NMAX { maximum permisable number of rings) 12 2DUP RING + 1~ C! SWAP LOWER ;
1! NMAX VARIABLE (N) : N (N} @ ; (formerly a constant) 13 : SETUP { no ar uments) CLEM'(SCREEN.
13 0 CONSTANT HELL_FREEZES_OVER 43 CONSTANT COLOR (+) 14 N1+ 0 D0 1 RIne T eTct LoOD T3 0 DO 1 MARETOWER LOOP
14 0 VARIABLE RING N 2 - ALLOT (array {l..N] of bytes)} 15 ° MAKEBASE 0 NDO 0 I MAKERING -1 +LOOP >
15 --> !
SCR 8 13 SCR ¢ 17 . Lo
0 (TOWERS OF HANOI Copyright, 1979, Peter Midnight } 6! TOwERS °F(“AN°‘t.t gggg;;g?" 1979, Peter Midnight
1 : DELAY (centiseconds DELAY) é TONERS MAX NN T
2 0DO 17 0 DO 127 127 ® DROP LOOP LOOP ; 3 SETUP N2 01 BEGIN
2508, [tegataen BOS > coordinate) 4 OVER POS N 4 + GOTOXY N 0 DO 7 EMIT 50 DELAY LOOP
5 : HALFDISPLAY { color size HALFDISPLAY) R FABOrES VLR UWIIL s
6 0 DO DUP EMIT LOOP DROP ; 3 LL_ — ;
7 <DISPLAY> (line color size <DISPLAY> } 8 :§
8 2DUP HALFDISPLAY ROT 3 < IF BL ELSE 124 (|) 9 !
]2 . g};ggLicn (g}iuz‘z[)xzulwine;color DISPLAY) 10 (Results: DELAY runs much slower in Forth than in Pascal.h
R i i i tht
5 SWAP >R ROT ROT OVER - R (color size pos-size iine) i; But the rest of the program is over twice as fast in For
12 GOTOXY R> (color size line) ROT ROT <DISPLAY> ; 11 Note that CLEARSCREEN and GOTOXY are terminal dependant.
w7 14 NMAX should be 10 for 16x64 or 12 for 24x80 screens.)
15 15
MSG ¢ 15
Thanks to "THE I/0 PORT", the article on FORTH by Art Sorski in their

Official Newsletter of the Tulsa
Computer Society, for the feature

April 1980 issue.

Address: The Tulsa

Computer Society, P.O. Box 1133, Tulsa,
OK 74101.

Page 32

FORTH DIMENSIONS II/2

;hl

LETTERS

I'd like to take this chance to
accomplish several aims. First, let me
congratulate Roy Martens and the entire
editorial staff for a fine puplication
in FORTH DIMENSIONS.

My interest 1n FORTH 1i1s far from
passive; 1 have been using the Univer-
sity of Rochester's (my employer, by
the way) URTH dialect for several vears
now. While at first 1 used it mainly
at home for a private music svnthesizer
research project, I have more recently
been applying 1t with success to
several laboratories within the
University's Medical Center. The
applications have primarily been
concerned with slow speed {10 to
100 samples per second) analog data
acquisition and analysis - the latter
involving the use of the AaMD 9511 IC
for number crunching (and it 1is fast
..+!). These data acquisition systems
have been described in an article which
I just recently submitted to BYTE for
publication (I hope).

While using FORTH in these appli-
cations, I have developed a set of
goals for the elimination of some of
the limitations of FORTH (there are
same, you know ...). One of the major
problems has been saving only three
characters plus the length for identi-
fiers; I have just recently implemented
changes to adopt (in URTH) the FIG
standard. Using primarily S-100
hardware, I am also now implementing a
hardward debug facility for FORTH which
allows easier program development. The
design is very simple, but allows traps
at instructions, memory references,
and/or 1/0 references. I consider this
method of debugging immeasurably more
useful than just software trapping at
each pass through NEXT.

Additional FORTH changes planned are
the implementation of a random block

text file system with variable record
length and blanks compaction. 1 feel
that this system will make it easy to
write programs in a more readable
format since this better formatted text
will use less space than the current
block oriented text editors. Thus
there will be less of a temptation to
use a short, cryptic coding style. My
method of blanks compaction is to use
the MSB of each text character to flag
a compaction count byte. When listing
a program in the editor, the compacted
blanks can be re-expanded while they
can be interpreted as blanks (due to
changes in the WORD routine in URTH)
when loading the text. Text will be
stored on disk blocks as an integral
number of lines of text per block with
each line being defined as 0 or more
characters followed by a carriage
return character.

Text will be able to span multiple
random blocks to avoid any "artificial"
program length constraints due to fixed
block size. Blocks are associated
together via a doubly linked (forward
and backward) pointer scheme while
block usage is kept track of via a bit
map (more on this later) corresponding
to the disk's block utilization. So
far the text editor has been written,
but not fully debugged. However, the
bit map and filing name system has been
written and used for several months.
I'd like to discuss them here as
the type of entity which should be
standardized for FIG FORTH usage. Let
me try to motivate this building of
file structures by analogy to building
data structures in FORTH.

IN FORTH (or at least URTH) one
can use some system features to define
any arbitrary data structure. One
which I've used recently is:

: IPARAM <BUILDS 2 ALLO7 DOES >
which might be used:

IPARAM MY-VIRTUAL-INTEGER

FORTH DIMENSIONS 11I/2

Page 33

The 1mportant things to notice 1in
this example are that the IPARAM data
type first uses standard dictionary
features to add new specific variables
- in this case MY-VIRTUAL-INTEGER - to
the dictionary. IPARAM also sets aside
some dictionary space - in this case
just one word - to store data for
MY-VIRTUAL-INTEGER. Thus there are two
important actions here - that of
linking a variable's name into the
dictionary, and that of reserving
dictionary space for a variable's
storage requirements.

The file system that I have been
evolving also achieves two analogous
actions to those above. First, it has
a way of linking a file's name into a
diskettes name directory, and second,
it has a way of reserving disk block
space for a file's sole use. Note,
that it does not concern itself in
any manner with how the file is
logically formatted. As such, it is
not a complete file management system,
but only a common protocol for various
logical file structures!

Let me explore two uses of file
types built on this foundation. The
previously mentioned text file system
logically builds a file structure
by the use of doubly linked random
blocks. But in another case, the file
is logically built up as an array
of consecutive integers in consecu-
tive disk blocks - thus linked only
implicitly. Other logical structures
are as diverse as are FORTH data

types.

In summary, what I am proposing to
be discussed and hopefully standardized
is a common structure which can be used
to name files and reserve disk space
for files. I am not suggesting any
specific file structures or formats
for standardization. I am enclosing a
copy of the source listings and some
(hastily written) documentation for

th@s file system so that it might
stimulate comments and improvements
from the public domain.

Thanks very much, and keep up the
good work. ...

Peter H. Helmers
University of Rochester
Rochester, N.Y.

In December I got tired of waiting
and implemented FORTH-65 from the
fig-FORTH model. By the end of Decem—
ber I had it up and running. This
version follows the model exactly
except for printer control, the disk
kinkage, and the inner interpreter.

The jump indirect in the inner
interpreter doesn't always work, JMP
(SXXFF) doesn't work correctly on a
6502. If a CFA ends in SFF it's

goodbye FORTH.

This bus bit after my third re-
assembly of FORTH-65. The inner
interpreter I'm now using is con-
siderably slower (60 cycles) but it is
reliable.

I assembled FORTH-65 through the
disk I/0 (SCR #69), Screens 72 through
92 reside on disk and are compiled
as needed. What I need now is the
ASSEMBLER vocabulary. Has anyone done
any work on a FORTH assembler for the
650272

SCR 044
{ RANDOM NUMBER GENERATOR E)

-

DECIMAL

0 VARIABLE SEED

: (RAND) SEED @ 259 @ 3 ¢ 32767 AND DUP SEFD ! |
: RANDOM (RAND)Y 32767 */ ; { RANGF =1 1

;S

S e QWD RN WA

J.E. Rickenbacker
Houston, TX

Page 34

FORTH DIMENSIONS II/2

sy mEaw M D«

o reerrrr— e e

