FOSTH IIMEISID TS

FORTH INTEREST GROUP Volume 1
P.O. Box 1105 Number 6
San Carlos, CA 94070 Price $2.00

59 Historical Perspective
' Publisher’'s Column

60 FORTH, The Last Ten Years
and The Next Two Weeks
by
Charles H. Moore, Creator of
FORTH and Chairman of the
Board of FORTH, Inc.

76 Information

77 Meeting Notices

78 FIG Doings

FORTH ITIENSIDNS

Published by Forth Interest Group

Volume 1 No. 6 March/April 1980

Publisher Roy C. Martens

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
George Maverick

FORTH DIMENSIONS solicits editorial
material, comments and letters. No
responsibility is assumed for accuracy
of material submitted. ALL, MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP
IS IN THE PUBLIC DOMAIN. Information
in FORTH DIMENSIONS may be reproduced
with credit given to the author and the
Forth Interest Group.

Subscription to FORTH DIMENSIONS is
free with membership in the Forth
Interest Group at $12.00 per year
($15.00 overseas). For membership,
change of address and/or to submit
material, the address is:

Forth Interest Group
P.0O. Box 1105
San Carlos, CA 94070

Mr. Moore and several associates
formed FORTH, Inc. in 1973 for the
purpose of licensing and support of
the FORTH Operating System and Pro-
gramming Language, and to supply
application programming to meet
customers unique requirements.

The Forth Interest Group is centered
in Northern California, although our
membership of 950 is world-wide. It
was formed in 1978 by FORTH prograrmmers
to encourage use of the language by the
interchange of ideas through seminars
and publications.

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H.
Moore in 1969 at the National Radio
Astronomy Observatory, Charlottesville,
VA, It was created out of dissatis-
faction with available programming
tools, especially for observatory
‘automation.

PUBLISHER'S COLUMN

This is a special issue of FORTH
DIMENSIONS. It is the regular issue
but it is also very special. It
includes the complete text of Charles
Moore's speech at FORTH Convention,
October 1979, in San Francisco.
The founder of FORTH has given us a
historical and futuristic view of
FORTH. Thank you, Chuck!

This issue completes Volume 1 of
FORTH DIMENSIONS and what a way to
finish. The largest issue to date and
the complete Charles Moore article.
Look for Volume 2, Number 1 soon.

Roy Martens

Page 59

FORTH DIMENSIONS 1/6

'S

34

s h e B A

.

FORTH, The Last Ten Years and The Next Two Weeks ...

Charles H. Moore
Chairman of the Board
FORTH, Inc.

WELCOME

Thank you. You honor me just by
being here and being so involved
in something that I never really
expected would be this interesting to a
group of people. I think way back in
the Dark Ages I had in mind maybe some
day addressing the Rotarians about
FORTH. This is a rather more select

group.

It turns out that FIG's estimate
of this being the tenth birthday party
for FORTH is remarkably accurate. By
way of explanation, this is not
intended to be a history of FORTH. For
one reason, I do not have a very good
memory for such events and I am not
going to be particularly accurate nor
particularly complete -- I am just
going to give you my impression of
what's happened for ten years. I
am not up with what's happening in
Europe or even in San Francisco and I
apologize for that, but there never
seems to be a need to delve into the
history of FORTH. There is a history
but first I want to talk a little bit
about what FORTH is. This has been a
subject of some speculation.

ASPECTS

Is FORTH an operating system? Is
it a language? Is it a state of mind?
I propose to trace five threads of
history through ten years. I am going
to do it in such an order that if we
cut off the end nobody will care.

The five aspects of FORTH are
philosophy, language, implementations,
computers, and organizations, (meaning
groups like FIG). If you talk about
FORTH, the language, you can talk about
some of these things and if you talk

about FORTH the ocompany you can talk
about other things. This is a reason-
able organization for what is really a
broadly based attack upon the problems
of society.

When I was very young I don't
think I would have liked myself very
much. I recollect being rather
arrogant — that is a little bit too
strong —- I wanted to do things my way,
I was not convinced that I should not
be permitted to, and I think I was a
bit hard to get along with. That's all
changed now. But in particular I was
insecure. I was promoting certain
ideas which everyone told me were wrong
and that I thought were right. But if
I were right, then all those other
people had to be wrong and there were a
lot more of them than me. It took a
lot of arrogance to persist in the face
of rather massive disinterest.

You may have noticed that FORTH is
a polarizing concept. It is just like
religion or politics, there are people
who love it and people who hate it and
if you want to start an argument, just
say -— "Boy, FORTH is really a great
language".

I think there were some of you
around ten years ago who may be aware
of tte problems that a programmer would
encounter. They are exactly the same
problems that a programmer encounters
today! There has been no progress in
the software industry for the last
twenty years. This was apparent ten
years ago and it was unsettling.
It did not seem that the last thought
had been "thunk" when FORTRAN was
invented and yet nobody seemed to
question that. It was the unspoken
assumption that things are the way
they are and they cannot become
substantially different.

Speech at FORTH Convention, October 1979, San Francisco. CA.

FORTH DIMENSIONS I/6

Page 60

PHILOSOPHY

Let me about philosophy now. I
was a free-lance programmer once upon a
time (1968). I went to work for a
carpet manufacturer and learned COBOL
partly out of financial necessity and
partly with the thought "here's a
language I don't know — let's pick up
one more”. These people acquire a
graphics system. It was an IBM 1130
with a 2250 graphic display unit, a
very nice state-of-the-art outfit,
expensive! Speculation was that this
would help us design carpets or maybe
furniture. Nobody was really sure but
they wanted to try. The 1130 was a
very important computer. It had the
first cartridge disk. It also had a
card reader, a card punch, and a
console typewriter. The backup for the
disk was the card punch! I don't
think I ever backed-up the disk but I
do remember reloading the operating
system numerous times.

The 1130 went away one day because
without color it really wasn't worth
anything for manufacturing carpets.
They also had a Burroughs 5500 which
was running ALGOL at a time when ALGOL
was not popular. A very nice machine.
They were programming in OOBOL, which
was the first good COBOL. These were
progressive people and want to credit
them -- Mohasco Industries. I put
FORTH on the 5500 -- this is fairly
unusual. It was cross-compiled to the
5500 from the 1130, since there is no
assembler on the 5500. There is a
dialect of ALGOL called ESBOL that
Burroughs used to compile operating
systems (it was not available to the
users). But I learned about push-down
stacks from this machine and had a
lot of fun. It was third-shift work
because the 5500 was busy. It was
replaced by a Univac 1108, so I imple-
mented FORTH on the 1108. It con-~
trolled the interactions of a bunch of
COBOL modules which did all the real
work. The 1108 was cancelled due to
anticipated financial reverses; the
programming staff quit; and I went to
work for the National Radio Astronomy
Observatory (NRAO).

Before I left -- my last week -- I
wrote a book. It was entitled Program—
ming a Problem Oriented Language and it
expressed my philosophy at the time.
It is very amusing reading. It also
describes what was then FORTH. It
makes amusing reading because, unknown
to anyone, 1 was expressing opinions,
attitudes, not designing a programming
language.

FORT™H first appeared on that 1130
and it was called FORTH. It had all
the essential characteristics of FORTH
and I will return to that point later.

F-O-R-T-H is a five letter
abbreviation of "fourth," standing for
four th-generation computers. This was
the day, you may remember, of third-
generation computers and I was going to
leapfrog all of that. But FORTH ran
on the 1130 which only permitted
five-character identifiers.

The first thing that was modern
FORTH was the Honeywell 316 program at
NRAO. I was hired by George Conant
to program a radio telescope data
acquisition program. I was given a
camputer (to the envy of other people
who felt they deserved it). I was
turned loose to do whatever I could
with it, provided I came up with a
product. I just went off and nobody
really wanted or appreciated what they
ended up with,

We developed a number of systems at
NRAO and encountered the issue of
patenting software. Programs cannot be
patented; ought not to be patented;
would be very expensive to patent.
NRAO has an agreement with Research
Corporation, a company that tries to
pull from universities some technology
spinoffs that can be used to better
mankind. (They patent things for
people who don't know (or care) how.)
FORTH seemed like something that
perhaps should be patented, so we spent
a year writing proposals, investigating
and getting lawyers' opinions. The
conclusion was that maybe it could be
patented, but it would take Supreme
Court action to do it. NRAO wasn't

Page 61

FORTH DIMENSIONS 1/6

interested. As inventor, I had fall-
back rights but I didn't want to spend
$10,000 either, so FORTH was not
patented. This probably was a good
thing. I think that if any software
package would qualify for patenting
FORTH would. It has no really innova-
tive ideas in it, yet the package would
not otherwise have been put together.
If you apply this reasoning to hard-
ware, hardware is patentable. It is
one of my disillusionments that the
establishmen. refuses to provide any
effective protection for software.
Probably it is the lack of vocal
objection from within the industry
and the willingness to acquiesce,
knowing that today's software will be
obsolete in a year anyway.

Given interest from other astron-
omers, a few believers formed FORTH,
Inc. We developed miniFORTH (FORTH on
minicomputers) with the idea to have a
programming tool. The first important
realization of that tool came when we
put an ISI~-11 and FORTH into a suit-
case, 1 think I became the first
computer-aided programmer, in that I
had my computer and took it around. I
talked to my computer, my computer
talked to your computer and we could
communicate much more efficiently than
I could directly. Using this tool we
put FORTH on many computers. My goal
in all of this was to make myself a
more productive programmer. Before
all this started, I had figured that
in forty years I could write forty
programs at the rate I was going. That
was it. Period! That was my destiny
but I wanted to write more programs
than that. There were things out in
the world to be done and I wanted to
do them.

It has taken a long time. I still
don't have the computer I want, but I'm
working at ten times that rate and I
see other computer-aided programmers
now. I am amazed that it should not
have been obvious that programmers
had to be computer-aided. To expect
the programmer to deal with an intrin~
sically unfriendly machine on his own

is not in keeping with the attitude
that we preach for other people to
follow.

As time went on it became apparent
that FORTH is an amplifier. A good
programmer can do a fantastic job with
FORTH; a bad programmer can do a
disastrous one. I have seen very bad
FORTH and have been unable to explain
to the author why it was bad. There
are characteristics of good FORTH:
very short definitions and a lot of
them. Bad FORTH is one definition per
block, big, long, dense. It is quite
apparent, but very hard to point to an_
example of samething that went awry or
explain why or how. BASIC and FORTRAN
are much less sensitive to the quality
of the programmer. I was a good
FORTRAN programmer. I felt that I was
doing the best job possible with
FORTRAN and it wasn't much better than
what everyone else was doing. I
indented things a little more nicely,
maybe, and I declared some things that
everybody else left to get declared by
default. What more can you do?
In a sense 1 said, "let me do it
right. Let me use a tool which I
appreciate and if everyone can't use
this tool well, I am sorry, but that is
not my goal." In that sense FORTH is
an elitist language. On the other
hand, I think that FORTH is a language
that a grade-school child can learn to
use quite effectively if it's presented
in the proper bite-size pieces, with
the proper motivation.

Finally, polyFORTH is a con-
densation of everything we have learned
in the last ten years of developing
FORTH. I think it is a very good
package. I foresee no fundamental
changes in the design of the language
except for accommodation to the
standards which are becoming in-
creasingly important. Up until
now there has been no reason for
standards. There are internal stan-
dards of FORTH, Inc. internal standards
at Kitt Peak for the effectiveness of
the organization, but there has never
been a demand for portability. 1In

FORTH DIMENSIONS I/6

Page 62

fact I know very few programs that
portability has ever been seriously
attempted with. The time has clearly
come to change that.

There will be developments in
other areas and one was brought home
most forcibly today. It may be that
FORTH 1is not merely a programming
language. It may be saying something
much more important about communication
— between people, between computers,
between animals. This is startling!
It had never occwrred to me that anyone
would really "speak FORTH" in an
attempt to communicate with anything
else than a computer; it is not any
longer clear that that is the case.
There may be concepts embodied in FORTH
of greater general utility to the basic
problem of communication.

Now in concluding the philosophy
section, I would like to read a poem.
This is a poem that some of you have
heard. It is a translation of a
classic of English literature and it
goes as follows:

+ SONG
SIXPENCE !
BEGIN RYE @ POCKET +! ?FULL END
24 ¢ DO BLACKBIRD 1 + @ PIE +! LOOP
BAKE BEGIN ?0PENED END
SING DAINTY-DISH KING ! SURPRISE ;

The author is Ned Conklin, who is
very good at that sort of thing and
is the first FORTH poet. 1Is there a
place for this in the world of com-
munication? I don't know. It is
remarkably easy to come up with such
paraphrasing of just about anything
that you care to paraphrase. It's not
clear that it's not an efficient
means of communication.

INTRODUCTIONS

Let me introduce two people since
I have touched upon the subject.
It is ten years since there was one
FORTH programmer. I would estimate
that there are now 1,000 FORTH pro-

grammers, which is 2 to the 10th
power and comes out nice and round -- a
doubling time of one year. Actually, I
think the doubling time is slightly
shorter than that -- 10 times in three
years and that comes out to 2,000 as
some people would prefer. What we
conclude is that next year there will
be twice as many programmers; the year
after that twice as many, and if you
believe numerology these projections
are unarquable. There is a curve, you
extrapolate the curve and draw the
conclusions. We don't know how it is
going to come about. FORTH, Inc. can't
train twice as many people next year —
well, maybe we can. But, somehow the
FORTH community as a whole has got to
train twice as many people next year
and thereafter. Maybe the Apples ar-
the Radio Shacks are going to be the
method of accomplishing that. It seems
that capabilities come along just about
quickly enough to keep the exponential
curve growing. I have fairly great
confidence that 1) the doubling time
is a year, and 2) it is going to
continue. Now there is collateral
evidence to support this, if you plot
the number of FORTH systems or the
dollar value of FORTH systems or
percent penetration of markets. Each
way, you get about the same growth
curve, so I think the growth curve is
honest.

Ten years ago there was one
FORTH programmer. The second FORTH
programmer is in the audience; please
meet Elizabeth Rather. Now that is
quite a guantum jump, from one to two.
The next step was four and they came
out of Kitt Peak and the growth can be
traced from there, for awhile, if
anyone cares to. Actually the first
FORTH user is in the audience and
that is Ned Conklin. He was head of
the station at Kitt Peak for NRAO,
running the telescope, responsible for
committing his telescope to this risky
venture. It is an important telescope
because it is responsible for half of
the interstellar molecules discovered
in the last ten years.

Page 63

FORTH DIMENSIONS I/6

Again, I didn't exactly ask
permission to commit these people to
this course of action. Nobody realized
what the consequences were going to
be. It doesn't seem to have worked out
too badly. FORTH is still running on
that telescope at Kitt Peak and on a
lot of other telescopes.

LANGUAGE

Now let's talk about the language
and how FORTH came to be what it is
today. There is a pre-history which
goes back much further than ten years
and I have some slides showing that
time. These are strictly pre-history
-- I found an old pile of listings
and I photographed them. The first
component of FORTH to occur was the
interpreter. [Figure 1] This is an
example of an early interpreter
programmed in ALGOL. This was done at
Stanford Linear Accelerator Center back
in the early sixties. This is a
program which still exists and it
is called TRANSPORT. It designs
electton-beam transport systems. You
see an early dictionary there. The
word ATOM shows the LISP influence.
ATOM is an indivisible entity, which we
now call a "word." Having read a word
DRIFT from an input card, I would
execute the drift routine and so on.
I have looked through innumerable
listings and found this style of
programming gquite consistent — it's
the way I wrote programs in those
days. I had an input deck which got
interpreted with a structure pretty
much as you see it today: words
separated by spaces, no particular
limits on the length of the words (as
you can see from SOLENOID), only
the first characters, however, were
significant.

IF ATOM="DRIFT* THEN DRIFT FIGIRE 1.
ELSE IF ATOM="QUAD" THEN QUAD
ELSE IF ATOM="BEND" THEN BEND
ELSE IF ATOM="FACE" THEN FACE (-1)
ELSE IF ATOM=ROTATE® THEN ROTATE
ELSE IF ATOM="SOLENO" THEN SOLENDID
ELSE IF ATOM="SEX" THEN SEX
ELSE IF ATOM="ACC" THEN ACC
ELSE IFf ATOM«~"MATRIX" THEN BEGIN IF NOT PITTING THEN BEGIN
%‘:ﬁ:,o.o.mlsn; LINE {~({B+42x({ORDER-1)));
FOR J=1 STEP 1 UNTIL 6 DO BEGIN
FOR K=] STEP] UNTIL 6 DO WRITE1(2,8,RI[J,X)xUNIT (K] ANIT(JL,2),

LINE(0) END;
IF ORDER=2 THEN FOR C=) STEP 1 UNTIL 6 DO BEGIN

Here is another example, quite
similar. [Figure 2.] Here ATOM has
become W and I am looking up + and -
and T, R, A and I — which represent an
early version of our text editor. That
again is ALGOL. I am not campletely
clear what was being edited. I think
it was some kind of files sort program,
maybe on cards that were getting
printed or rearranged.

120 CYCLE; PILL CUTPUT WITH BUFFER|[}].BUFFER[2]:
WHILE WORD NEQ “END " Do
IF W=(M1 THEN REPLY {“OK *)
ELSE IF NUMERIC THEN L:-MIN{W-1, EOF)
ELSE If W="4 “THEN L: =M IN({L+WORD.EOF)
ELSE IF We"- “THEN L: *MAX(L~WORD.O)
ELSE IF wW="T “THEN BEGIN
IF WORD=G 1 THEN W:=l; W:MIN(L-1, EOF};
FOR L:=L STEP | UNTIL W DO BEGIN
POSITION: TYPE END; L:=L-1 END
ELSE IF w="R “THEN BEGIN
POSTITION; REPLACE END
ELSE IF W="A “THEN BEGIN
L:=EOF:=BOF+1; REPLACE END
ELSE IF W="1 “OR W="D “THEN BEGIN
IF NOT RECOPY THEN BEGIN
RECOPY : *TRUE ; REWIND(CARD) END;
POSITION; (F W ="1 “THEN BEGIN
PLACE: REPLACE END
ELSE BEGIN EMPTY:=TRUE; IF WORD NEQ QM1 THEN BEGIN
L:aMIN(1+-1, BOF}; SPACE(CARD, L-LO+1); LO:=L+]
BND END END

Here is another way of setting up
a dictionary. [Figure 3.] I am
filling an array with strings of text
and I am going to search that array for
a match, take the index and vector
through a computed 30-TO. A

LABEL UNDEFINED, BACKWARD!, TYPE2, FIND, INSERT, DELETE, ERASE,
START, REPEAT], BOUNDARY1, BEGIN2, END2, QUIT1, ALODL, FORTRAN,
COBOL, DATA, PACK};

SWITCH SW:=UNDEF INED, BACKWARD! TYPE2, FIND, INSERT, DELETE, ERASE,
BACKWARDL, TYPE2, FIND, INSERT, DELETE, ERASE, START, REPEAT1, BACK,
BOUNDARY], BEGIN2, END2, QUIT1, ALGOL, PORTRAN, COBOL, DATA, PACK!:
ALPHA ARRAY COMMAND{1:132};

FILL COMMAND{*] WITH
. - wp -

FIGURE 2.

-
w
HFOWE YA VNBA LN~ OB® IOV RN~

e
-

gwaw

. SUET "D “ e -
*BACKWAR", “TYPE ®, "FIND ", "INSERT ", "DELETE ", "ERASE *,
"START *, “REPEAT *, " “, "BOUNDAR *, "BEGIN ", “END
“EXIT *, "ALOOL ", "FORTRAN®, “COBOL ", “DATA ", "PACK
- ", COUNT:=0; RETURN; COPY ("EDIT#RE™ U “ADY ");
TRANSMIT ;

BACK: SOURCE(]); WORDL;
IF Wa" “THEN GO QUIT1; GO TO SW{MEMBER{COMMAND.W)+l1];

»~
ne-Boouenawn-

Here is another way of imple-
menting the dictionary. [Figure 4.]
This is the first appearance I have on
record of a stack. I am looking up
the words in a conditional statement
and setting NEXT to the index. And
that's the first appearance of NEXT

which I can find. FIGURE 4.
8 PROCEDURE RELEVANCE; BEGIN REAL T,NO;
J:#0; 1:e-1; WHILE WORD NEQ "END o
1 IF Wam= “THEN NEXT:=3

ELSE If We"GT “THEN NEXT:=4
ELSE IF w="LT “THEN NEXT:aS
ELSE IF W="NOT “THEN NEXT:=6
ELSE IF W="AND “THEN NEXT:=7
ELSE IF w="OR "THEN NEXT:=§

ELSE IF Wa"+ “THEN NEXT:=9
ELSE IF We"- “THEN NEXT:=10
ELSE IF wW="# STHEN NEXT:=11
ELSE IF w="/ “THEN NEXT:=12
1 ELSE IF KO:=SEARCH1(W) GEQ O THEN BEGIN
NEXT:=1; NEXT:«k:=KO END

ELSE BEGIN
NEXT:=2;
IF BASE{K]=" THEN NEXT:=WORDG (0|
ELSE NEXT:= W END;

NEXT: =0 END;

ouwa-SooqowbuNo-s»o

FORTH DIMENSIONS 1/6

“Page 64

Here is the other half of that --
this is the implementation of the
stack. [Figure 5.] This is a variant
of ALGOL called BALGROL that lets you
put assignment statements inside other
statements. “"Stack of J replaced by
J-1" is how you push something onto the
stack., One of my "less-liked" features
of ALGOL was that I had to play
games like "real of boolean of stack of
J and boolean of ..." just in order to
get around the automatic typing that
ALGOL was insisting that I apply. Now
this was specifically intended to let
me manipulate parameters that were
interpreted from the card deck as
arguments to the routines. In other
words, if I wanted the sine of an
angle, I oould say ANGLE SINE but if I
wanted to convert the angle from one
unit to another, I needed at least some
simple arithmetic operators and this
provided them. This is again at
Stanford. FIGURE 5.

7 BOOLEAN PROCEDURE RELEVANT; BFGIN
I:=J:=1; STACK(0]:=1; 0O CASE NEXT OF S8EGIN
NEE S
STACK [.J: wJ+1) : «CONTENT ;
STACK [J:=J+1) : =NEXT;
STACK [J:=J~1] : =REAL{STACK [J) =STRCK (J+1));
STACK [J:=J-1} :=REAL({STACK [J] GTR STACK(J+1]);:
STACK [J:aJ-1) : =REAL{STACK [J] 1S5 STACK[J+1));
STACK [J] : =REAL(NOT BOOLEAN{STACK[J]}))7
STACK (J:=J~1] : sREAL(BOOLEAN(STACK [3]) AND BOOLEAN{STRCK(J+11)));
STACK {J:=J~1) : *REAL(BOOLEAN(STACK{J]) OR BOOLEAN(STRCK{J+1])});
STACK{J:aJ~1] :=STACK[J | +STACK [J+1) ;
STACK (J:mJ-1] : =STACK |J | -STACK [J+]] ;
STACK (J:=J-1] : *STACK [J) xSTACK [J41] ;
STACK [J:=mJ~1} :#STRCK [J | /STACK [J41];
END UNTIL J LSS 0;
RELEVANT : sBOOLEAN(STACK [0)) END;

~
~
SV® e

N
~
AWN-FOY D UR U E N

Now here is a PL/1 program doing
very much the same thing at a con-
siderably later date. (Figure 6.] At
the top you see JCL (Job Control
Language) which was also not a pleasant
thing to deal with. One of the
criticisms of programming languages
that I mentioned in my book was that a
programmer at a typical computer
center, in order to function, needed to
know nineteen languages. This covered
writing PFortran programs, submitting
card decks, etc. These languages
were all subtly different with commas
here and spaces there and equal signs
meaning different things — nineteen
languages, just to function. Nobody
advertised the fact. Nobody sat
down and took a course in nineteen
languages, but you had to pick them

up in the course of several weeks
or several months in order to be
effective. FORTH, I figured could
replace all of them.

Here is NEXT: PROCEDURE CHARAC-
TER. {Figure 7.] I don't remember
that syntax but that I think it is the
first definition of NEXT as a procedure
that went off and got the next word and
did something with it. This is still
all pre-FORTH. We haven't gotten to
what I would consider the first FORTH
system.

1 /ATILITY JOB SYSTEM OVERHEAD

V4 EXEC PGM=I1FBUPDTE, PARM=NEW

//SYSPRINT m SYSOUT»A

//SYSIN D DATA

3
4
S ./ AU NAME-WORD, LEVEL=00, SOURCE=0, LIST=ALL
6 NEXT: PROCEDURE CHARACTER(4);
7
8

FIGURES 6 & 7

DECLARE KEYBOARD STREAM INPUT, PRINTER STREAM OUTPUT PRINT;
DECLARE (1 TEXT CHARACTER (8l) XNITXAL((BI)' “1.

9 2 C(81) CHARACTER(1), I INITIAL(E™ *,W CHARACTER(4

10 WORD CHARACTER(12} VARYING BASED{),P,NUMERIC BI‘NU) EXTERNAL;
11 P-MDR(C(I))

12 IF C(1)="-* OR C{I)="." OR "0" LE C{1) THEN BEGIN; NUMERIC="1"B;

13 1F C{I) NOT="_" THEN 0O I=I+l BY] WHILE "O" LE C(1); END;

14 IF C(1)="_." THEN DO Ixl+¢l BY ! WHILE "0" LE C(I}; END; END;

15 ELSE DO; NUMERIC=*0"8;

16 IF A* L& C(1) THEN DO Is=1+] BY 1 WHILE “A" LE C(I) OR C(I)="-"

17 END; ELSE; I=I141; END;
18 WsWOKD; RETURN(W):

Here is a rather later version of
FORTH coded for the IBM 360. [Figure
8.] Those are the routines PUSH and
POP. PUSH cost 15 microseconds on an
IBM 360-50. It includes stack limit
checking, which doubled the cost and
was one of the things that led me to
feel that execution-time stack checking
was not desirable and in fact not
necessary. However, up to that point,
the consequences of a runaway stack
were terrifying. POP is there also.
It was coded in a macroassembler that
did not have stack operations. It was
not possible to refer to a previous
"anything” so the deck is full of "L19
data oonstants, address, AL2(*-L18)"
to give me a relative jump to the
previous one. It could all be done but
it wasn't pleasant.

FIGURE 8.

830 L18 DC AL2(*-Li7)

831 NAME 3,X'+4555)",0 DUP

B32¢+ o AL1(3},x"445550 *
833+ I o X'
834+ WG *-2-W0
835+ s ™
836+ ORG *+ 04)
837+ oC ALL{O*X* lo +X'40°) .AL2(4)
838 PUSH A SP,MPOUR COSTS 15 0S

839 ST T,0(,SP)

840 cB sp,0P

841 BCR 2,NEXT BHR

842 B ABORT

843 L19 DC AL2(*-L1@)

844 OC ALI(4),X°4402CF50°, X 40 AL2(8) DRCP
845 LA SP,4(,SP)

B46 POP L T,4(,SP) COSTS 21 US

847 LA SP,4(,SP)

848 € 8p, SFOO

849 BCR 12, NEXT BNHR

850 B ABORT

Page 65

FORTH DIMENSIONS 1/6

Here is a version of FORTH coded
in COBOL. [Figure 9.]) This was done
at Mohasco, of course. I am setting up
a table of identified words which
I am going to interpret from an input
string. The attitude is so pervasive
that I begin to think that I was
talking myself into something here.
COBOL is fairly difficult to write
subroutines for. They have sub-
routines, they can be performed, but
they may not have any parameters. This
makes it a little bit awkward to do
anything meaningful.

FIGURE 9.

“CONF IGURATION® TO IDENTIFY(4);
“DATA® TO IDENTIFY(S);

"FILE®" TO IDENTIFY(6);

"FD* TO IDENTIFY(?);

“MD" TO IDENTIPY(8);

“SD" 10 IDENTIFY(9);
"WORKING-STORAGE® T0 IDENTIFY(10);
“CONSTANT* TO IDENTIFY(1l);
“PROCEDURE”™ TO IDENTIFY(12);

MOVE °INPUT-QUTPUT" TO IDENTIFY(13);

P

~

Here's the first example of FORTH
text. [Figure 10.] This came out of
Stanford again. The word DEFINE
begins (that is,:) a definition and the
word END (that is,;) ends it. The
"OPEN is obscure. "NAME seems to be
the way the name was introduced.
Apparently there did not have to be a
space between the quote and the word.
There are the definitions of a number
of stack operators. Top of the line is
CODE - "OPEN DEFINE MINUS + END ;
I guess that is subtraction. SEAL
was an early word for sealing the
dictionary for some reason. BREAK, I
guess broke the seal. "< : OPEN
DEFINE - < END ; is the same
definition we use today, in a very
early state. That was from a thing I
called "Base Two," intended to be some
kind of base programming language — I
can't remember any more about it.

PIGURE 10.

SEAL "< "OPEN DEFINE - < END BREAK
"NOT "OPEN DEFINE MDWS 1+ END

"¢ “OPEN [EFINE .< BND

"AND "OPEN [EFINE x END

OR "OPEN DEFINE NOT .NOT AD NOT BND
T 1 1 "REAL DECLARE

*= "OPEN DEFINE Te; DUP T< . T> OR NOT BND
¥ "OPEN [EFINE = NOT BND

"< "OPEN DEFDE, > NOT END

*> "OPEN [EFINE < NOT 8D

“OPEN [EFINE NAME 10 "ALPHA WRITE; 3 10 "REAL WRITE 0 LINE

This is a version of. FORTH source
for the 5500. [Figure 11.] Again,
very early — the second computer that
FORTH was put on. Apparently ¢ stands

g

for CODE and these are the code
definitions of the stack operation
on a 5500. Now the 5500 is a stack
machine at a time when stack machines
were not at all popular. They did a
very good job with their stack. All
of these were implemented with one
12-bit instruction and the present
names of these operations are directly
derived from the names of the 5500
operations. That's where DUP came
from, for instance. Notice that the
Z#OR was a way of distinguishing the
assemblers OR from the FORTH OR before
vocabularies were available.

FIGURE 11.

List
0001
0002
0003

0011 ¢ MOD #MOD RETURN

Here's an example of FIND coded for
the 5500. [Figure 12.] Notice that
the word SCRAMBIE is referred to, which
is a colon-definition for doing a
hashed search. Apparently here I had
eight threads, just as we put in
polyFORTH last year. These ideas go
way, way back. This is FORTH after the
threshold was crossed, ten years ago,
almost exactly. One can become a
little bit depressed at the "tremen-
dous" rate of progress in the last ten
years when you see that it was all back
there. PIGURE 12.

0013 ¢5M ¢FIND SCRAMBLE <SD gOUP
0014 41 A 41 >B ¢BEGIN V < 1771, f#IF

0015 MECIN VO <U 1771, £IF
0016 1 <L RESULT

0017 LHEN ADDR #DUP 1 <L <S
0018 US WORD <J fEQUAL #IP
0019 Vi _J US RESULT

001A LTHEN ¢DUP <SD #BACK

0018 £THEN GET ¢BACK
001C : FIND TOP #FIND #£IF (R <UD /8 ¢THEN;

Here is another example of
source. [Figure 13.] This was from
the Univac 1108. These are very
early record descriptions. This is the
layout of a record in a file with the
name of the field and the number of
bytes in the field. That was the Dun &
Bradstreet reference file for looking
up bad debts.

FORTH DIMENSIONS I/6

Page 66

FIGURE 13.

DBl DBI/MOORE 33 13
OUNS B8 NAME 24 STREET 19 CITY 15 STATE 4 2IP S
PHONE 10 BORN 3 PRODUCT 19 OFFICER 24 SIC 4 SIC1 4 SIC2
SIC3 4 SIC4 4 SICS 4 TOTAL 5.0 EMPL 5.0 WORTH 9.0 SALES 9.0
SUBS 1 HDQ 1 HEAD 8 PARENT B MAIL 19 CITY 15 STATE 14
WAME) 19

CBNRA VS W

This is the last slide. [Figure
-14.] This is a modern FORTH source
from FORTH, Inc. Vector arithmetic
coded for the Intel 8086. CODE V+ with
comments listing the arguments that are
on the stack with the results being
obvious. Fairly nicely spaced out
code. It just looks like good, clean
pure FORTH instead of that other
gibberish. Not at all coyptic, per-
fectly obvious to the discerning reader
and that's the end of the slides.

FIGURE 14.

<)

POP 1 POP 2 POP 3 POP
PUSH O PUSH NEXT

POP 3 POP O FOP] FOP
PUSH 0 PUSH NEXT

(VECTOR ARTTHMETIT
CODE V¢ { Y X Y X) O
20AD 31ADD 1
CODE V- { YX YX) 2
20smB 318w 1

CODE UMINUS 0 POP 1 POP 1 NBG] PUSH
0 NEG 0 PUSH MNEXT
: UMIN ROT MIN >R MIN R ;

WO U U AW —O

10 CODEV*/ (YXWMD) 7POP JPOP 1FOP OPOP
11 3 IMUL 7 IDIV 0 PUSH
12 10MOV 3 IMUL 7 IDIV O PUSH NEXT

Let me now sketch in time sequence
the operations that were implied by
some of those slides. The first thing
to exist was the text interpreter
reading punch cards. The next thing to
exist was the data stack with the
manipulations of the operators.
Those took place very early, around
1960.

Nothing substantial then happened
until 1968 and that was the 1130 and
the ability for the first time to
totally control the way the computer
interacted with the programmer. This
machine had the first console I had
ever seen. I had always submitted card
decks -— now I had a typewriter. Do
you know what I did? I submitted card
decks. It took a long time to figure
out how to use the keyboard and
whether or not the keyboard would do
anything for me. I was very good at a
keypunch and I really didn't care if
there was a console or not.

The first FORTH was coded in
FORTRAN. Very shortly thereafter it
was recoded in assembler, Very much
later it was coded in FORTH. It took a
long time to feel that FORTH was
complete enough to code itself. The
first thing to be added to what had
already existed was the return stack
and I don't remember why that was. I
don't remember why I didn't just
put the return information on the
parameter stack. It was an important
development to recognize that there had
to be two stacks -- exactly two stacks,
no more, no less.

The next thing to be added was
even more important. I don't know if
you appreciate it but it was the
invention of the dictionary. 1In
particular, the dictionary in the form
of a linked list. In particular, the
existence of the code field in the
header. For control, up until then,
flags had been set, computed GO-TOs
executed, some mechanism for associa-
ting a subroutine with a word. Now
the existence of the address of the
routine (rather than an index to the
routine) made an incredibly fast way of
executing a word once it had been
identified. No other language has a
code field or anything resembling it.
No other language feels obliged to
quickly implement the code that the
word identifies. You can go about it
at your own precious time, but even in
these days it was important that
FORTH be efficient. The whole purpose
of this system was to draw pictures on
the 2250 display. The 2250 was a
stand-alone minicomputer interfaced
with the 1130. What came out of the
1130 was a cross-assembler which
assembled the instructions which were
then to be executed by the 2250. I
think the 2250 had its own memory.
Again, very sophisticated things being
done very early in a very demanding
environment. IBM software, in 16K of
memory, could draw pictures on the 2250
fairly slowly. What I accomplished in
4K would draw three-~dimensional moving
pictures on the 2250. But it could

Page 67

FORTH DIMENSIONS 1/6

only do that if every cycle were
accounted for and if the utmost was
squeezed out -- that's why FORTRAN had
to go. I couldn't do an impressive
enough job with FORTRAN, an assembler
was the requirement.

At this time colon definitions
were not compiled — the compiler came
much later. The text was stored in the
body of the definition and the text
interpreter reinterpreted the text in
order to discover what to do. This
kind of contradicts the efficiency of
the language but I had big words that
put up pictures and I didn't have to
interpret too much. The cleverness was
limited to squeezing out extraneous
blanks as a compression medum and I am
told that this is the way that BASIC
executes today in many instances.

This machine had a disk — I can't
prove it but I am almost certain that
the word BLOCK existed in order to
.access records off the disk. I do
remember that I had to use the FORTRAN
I/0 package and it wouldn't put the
blocks where I wanted them -~ it put
the blocks where it wanted them and I
nad to pick them up and move them into
my buffers. It had an assembler
for assembling 1130 code, it had a
target assembler for assembling 2250
code and clearly B-5500 code. The
B-5500 program was taken far enough to
recompile itself. Beyond that there
was no application because there was no
way I was going to get access to that
machine outside of the third shift,

This was the transition point
between something that could not be
called FORTH and something that could.
All the essential features except the
compiler were present in 1968. It took
a long time for the next step.

The first compiler occurred on the
Honeywell 316 system at NRAO several
years later. It resulted from the
recognition that, rather than reinter-
preting text, the words could be
compiled and an average of five charac-

ters per word could be replaced by
two bytes per word at a compression of
a factor of two or three. Execution
speed would be vastly faster. Again,
if it was that easy, why hadn't anyone
else done that? It took me a long time
to convince myself that you could
compile anything and everything. The
conditional expression, for instance,
had to be compiled somehow. Before
compilation, if you came to an IF you
could scan ahead in a text string until
you came either to an ELSE or a THEN.
How did you do an IF if you were going
to compile things? But, it worked!
Again, I can't remember the sequence.

It may be that the 316 compiled
the 360, but I think the 360 compiled
the 316. Again, in the early days of
FORTH, the idea of of today was there
-- cross compiling, cross assembling
between different computers was there.
Interrupts came at about this time. It
was important to utilize the interrupt
capability of the computer but it had
not been done by me before that. I
didn't know anything about interrupts,
but I/0 was not interrupt-driven.
Interrupts were available for the
application if it wanted them. FORTH
didn't bother.

The multi-programmer came along a
couple of years later when we put an
improved version of the system into the
Kitt Peak PDP-11. This multiprogr ammer
had four tasks. Input was still not
interrupt-driven, which was unfor-
tunate. Interrupt-driven I/0 came
along when FORTH, Inc. produced its
first multi-terminal system. It did
not speed things up particularly. If
you count cycles it was much more
efficient, and it prevented any loss of
characters when many people were typing
at the same time. FORTH didn't have to
look quickly to get each character
before the next one came along, as they
were all buffered and waiting.

Data-base management came along at
this time. It has been extensively
changed, just 1like FORTH has, but

FORTH DIMENSIONS I/6

Page 68

fundamentally nothing has changed. The
concept of files and records and fields
that I outlined this afternoon dates
back from 1974 or so.

The first target compilers came
along later with microFORTH. They are
very complex things, much more so than
I had expected them to be.

I think that completes the
capabilities that I think of as FORTH
today and I think you can see how they
dribbled in. At no point did I sit
down to design a programming language.
I solved the problems as they arose.
When demands for improved performance
came along I would sit and worry
and come up with a way of providing
improved performance. It is not clear
that the process has ended, but I
think it is clear that that process has
now got to be carried into the hardware
realm.

HARDWARE

I have designed some computers.
This is expensive because I am supposed
to be earning money by writing soft-
ware. I think that hardware today is
in the same shape as software was 20
years ago. No offense, but it's time
that the hardware people learned
something about software and there is
an order or two magnitude improvement
in performance possible with existing
technology. We do not need pico-second
computers to make substantial, really
substantial, improvements in speed.
And faced with that realization, there
is no point in trying to optimize the
software any further until we have
taken the first crack at the hardware.
The hardware redesign has got to be as
complete as the software redesign was.
The standard microprocessors did
not have FORTH in mind. Those mini-
computers that can be microprogrammed
cannot be microprogrammed well enough
to even be worth doing. The improve-
ments available are much greater than
you can achieve by these half measures.

IMPLEMENTATIONS

All right, let's switch gears a
little bit. I would like to talk about
the implementations of FORTH of which I
am aware. I have touched on them
already but I want to rattle off a
string of CPUs which have come to
mind just to dazzle you with the
capabilities. It is actually a towr
through the history of computers and it
is fascinating that this could all have
happened in ten years.

FORTH has been programmed 1in
FORTRAN and in ALROL and in PL/1l and in
COBOL and in assembler and in FORTH. I
am sure some of you can come up with
other languages with the same history.
It has been done on the IBM 1130, the
Burroughs 5500, the Univac 1108,
the Honeywell 316, the IBM 360, the
Nova, the HP 2100 (not by me, but by
Paul Scott at Kitt Peak), the PDP-10
and PDP-11 (by Marty Ewing at Cal-
Tech), the PDP-11 (by FORTH Inc.), the
varian 620, the Mod-Comp II, the
GA/SPC-16, the CDC 6400 (by Kitt Peak),
the PDP-8, the Computer Automation
ISI-4, the RCA 1802, the Interdata, the
Motorola 6800, the Intel 8080, The
Intel 8086, the TI 9900 anc coming soon
the 68000, the 28000, the 6809 - I
know you people have 6502s and Four
Phase. (Audience: And Illiac!) I've
raised the question -- is it the case
that FORTH has been put on every
computer that exists?

COMPUTERS

We speak now about FORTH camputers
— there are FORTH computers. The first
one I know of was built at Jodrell Bank
in England around 1973. It is a
redesign of a Ferranti computer that I
think went out of production. They
were going to build their own bit-slice
version and they discovered FORTH about
the same time, modified the instruction
set to accommodate FORTH, and built
what I am told is a very fast FORTH
computer. I have never seen it. I

Page 69

FORTH DIMENSIONS 1/6

have talked to its designer, John
Davies, who is one of the early FORTH
enthusiasts and eminently competent to
do this.

In 1973 came General Logic and
Dean Sanderson. The machine qualifies
as a FORTH computer because it has a
FORTH instruction set and there is a
story there. Dean showed me his
instruction set and there was this
funny instruction that I couldn't
see any reason for. I figured it was
some kind of no-op or catch-all because
it had the weirdest properties. It
couldn't possibly he useful — it was
NEXT. It was a one-instruction NEXT —
it was beautiful. And it was a very
simple modification to the instruction
set. A few wires here and there and
that was the first time I saw a FORTH
computer. Here was the ability to
change an ordinary computer to make it
into a FORTH computer.

We have had some ideas about other
such modifications that could be
made effectively, but I don't know that
any of them have been carried out. I
am told that Cybek has got its own
machi~e now, built by Eric Fry. These
are rumors that I'm just passing on.
Child, Inc. does raster graphics
systems., I am told they were working
on a FORTH coomputer that was supposed
to be available last February --
I haven't heard. Again, I think they
are competent to do it and do it well.
A blindingly fast FORTH computer on a
board, probably biased towards graphics
applications, raster graphics.

I have built a FORTH computer
called BLUE. It's small. It has never
executed any FORTH yet. The design
changes as fast as the chips can be
plugged into the board, but it's not
hard to do.

What are the characteristics of a
FORTH computer? It does not need a lot
of memory. 16K bytes is about right.
Half PROM, half RAM, maybe. It does
not need a lot of I/0 ports —— it does

not need any I/O ports except for the
application requirements. A serial
line is nice; a disk port is nice. We
have put FORTH on an 8080 with disk
replaced by enough core to hold 8
blocks. Quite viable, no particular
problem with system crashes, a somewhat
protected environment. Bubble memories
are coming, and Winchester drives of
course. We don't need much mass
memory, we only need on the order of
100 to 250 blocks. The fact that FORTH
can exist quite happily on a very small
machine by contemporary standards
should be exploited.

ORGANIZATION

Finally, I would like to run
through the history of the organiza-
tions which have been involved with
FORTH. They form another thread to
the tapestry. Mohasco, of course,
and the National Radio Astronomy
Observatory. They birthed it and they
rejected it. Thats pretty much why I
am here today instead of in South
America programming telescopes. They
had what we have learned to identify as
the NIH Syndrome but in a weird mutated
case because it was invented there! It
is their loss. You have perhaps read
about the VLA, a very large array of
antennas in New Mexico -- a very
exciting project. Something that I
really would have liked to have pro-
grammed. It wasn't in the cards (and
they have software problems today).
On the other hand, there was Kitt
Peak. Astronomers are a conservative
lot. This may be swrprising. I think
they are surpassed only by nuclear
physicists in being conservative. We
have been unable to scratch the nuclear
physics field here although I am told
that CERN is interested. NRAO is a
sister laboratory to Brookhaven. One
would think that there would be some
communication between them and there
isn't. They are both managed by the
same University Association. We
couldn't interest Brookhaven and we
couldn't interest NRAO, but we could
interest Kitt Peak and Elizabeth Rather

FORTH DIMENSIONS I/6

Page 70

is the one who did it. She liked FORTH
and talked a lot of other people into
liking it, too. Kitt Peak adopted
FORTH —— gave it the impetus because
Kitt Peak is the show place of the
astronomy world. Kitt Peak out FORTH
on a whole batch of varians. 1It's fun
because 1 remember Varians breaking
down and spares being wheeled in --
there were 14 of them lined up in the

hall. Reliability through redundancy? -

Pipeline architecture? A lot of other
observatories picked it up.

We were deluged by requests for
FORTH systems from astronomers and went
into business to try to exploit that
market. It is a market we would still
be in today except that there are so
few new telescopes in the world, and
you can't support a company on that
market.,

The formation of FORTH, Inc. was
important because I don't think we
would be here today if it weren't for
FORTH, Inc. We worked very hard to try
to sell this thing. We didn't know
what we were getting into; we were your
classic naive, small business folk., I
caution any of you against thinking it
is easy to go into business for your-
self. It is fun, but the advice is
true -- do not go into an area where
you must create the demand for your
product. But that was the least of
the problems really that FORTH has
faced. The next step was probably
DECUS. Marty Ewing gave his PDP-11
FORTH system to DECUS. I didn't know
if that was a good idea at the time —
free FORTHs floating around. It
was important because a lot of people
were exposed to FORTH who otherwise
would not have been. I imagine we
picked up a few sales through that
channel. Cybek came along. Cybek is
probably the savior of FORTH, Inc., in
that it provided us lucrative business
at a time where we desperately needed
it to stay alive. Art Gravina,
the President of Cybek is the one that
designed (if that's the word) our
data-base management system. We can

arque about who did what, but Aart
provided the opportunity to do com-
mercial systems. He got a good deal
because he could handle 10 times as
many terminals as he could with the
BASIC program that preceded FORTH; we
learned everything we know about data
base management from him. We also
acquired owr distaste for commercial
programming at that time. I commend
those of you who are involved in it.
I find it much to heavy in system
analysis for my taste. You'wve got to
go in there and tell the businessman
what he has to do, talk him into it,
and hold his hand all through the
process Of installation. It is a
different talent from that of writing
programs. Don't underestimate the cost

of support.

I think that is about the time
that the International Astronomical
Union met and agreed on FORTH as a
standard language. That was a boost in
the world of astronomy although
the world of astronomy was no longer
the major driving force in the popu-
larity of FORTH. I think EFUG came
along about that time -- this was '76
or so =-- the European FORTH Users
Group. It turned o:t, to our surprise,
that Europe was a hotbed of FORTH
activity of which we were largely
unaware and perhaps really still are
unaware, in that we are not involved in
that world and don't quite appreciate
the level of interest. FST (FORTH
Standards Team) probably began in
EFUG's first meetings. Later, a
couple of years ago, FIG was started
and now we have FORML (FORTH Modi-
fication Laboratory), which is an
idea~generating organization. The
tendency seems to be for people to
organize themselves into groups. Some
of these groups are companies, some of
these groups are associations. It
looks like FORTH is going to be a
communal activity in the sense of
unstructured clusterings of like minded
people. The suggestion is that this
whole world of FORTH is going to be
quite disorganized, uncentralized,

Page 71

FORTH DIMENSIONS I/6

uncontrollable. It's not bad, it's
perhaps good.
CONCLUSION

To close on a philosophical note:
power to the people. This is the
first language that has come up from
the grassroots. It is the first
language that has been honed against
the rock of experience before being
cast into bronze. 1 hesitate to say it
is perfect. I will say that if you
take anything away from FORTH, then
it isn't FORTH any longer, that the
basic components that we know are all
essential to the viability of the
language. If you don't have mass
memory, you've got a problem and it
can't be waved away. I hesitate to
predict. I don't know what is going to
happen. I think my view of the future
is more unsettled tonight than it has
been for years. Promising, yes,
confusing, and perplexing. The
implications are perhaps as staggering
now as they were ten years ago. The
promise of realization is much higher.
This is ten years of FORTH.

My original goal was to write more
than 40 programs in my life. It think
I have increased my throughput by a
factor of 10. I don't think that that
throughput is program-language limited
any longer, so I have accomplished what
I set out to do. I have a tool that is
very effective in my hands —— it seems
that it is very effective in others'
hands as well. I am happy and proud
that this is true.

I wish that the future smiles on
you and all of your endeavors.

(Mr. Moore's address concluded
to an extended standing ovation.)
DISCUSSION PERIOD

Question: When did <BUILDS and DOES>
come along?

Mr. Moore: That's a good question -—-
:CODE came first. I think it began way
back in 1130 days with the notion that
you could define a word that would
define other words. That was stagger-
ing. I couldn't grasp the implica-
tions. ;CODE was a very esoteric
word. I explained it to people proudly
but I couldn't express the potential I
saw in it. I didn't know what ;CODE
should do. (It specified the code to
be executed for a previously defined
word.) I don't have it but I think the
initial assembler code for ;CODE was
three or four lines long. One of the
driving forces behind the address
interpreter was making it possible to
code ;OODE cleanly. This had all kinds
of implications as to what registers
should be available. W should be saved
in a register instead of (pardon the
expression) direct threaded code
recovered somewhere because that was
expensive. I had a lot of trouble with
;OODE. That was the most complicated
routine I had coded in this systems
programming fashion. Not so much
later it seemed that there ought to be
an analog of ;CODE which specified
the code to be interpreted when you
executed a word. It seemed the natural
balance, but I hadn't the foggest idea
of what the implementation should be.
The first definitions of ;: required
three or four lines of code. You had
to do what ;OODE did and then more and
this couldn't be explained to anyone.
out of that grew the distinction
between compile time action and
execute-time action and the present
form of CREATE and DOES>. This was due
to Dean Sanderson, again. It was very
convenient for words to be coded to act
this way, but it was expensive. It
required not only the address of the
code to be executed, but the address of
the code to be interpreted as well as
the parameter to be supplied to the
code to be interpreted. Questions
included: should the parameter be put
on the stack or should the address of
that parameter be put on the stack?
Should that parameter be at the

FORTH DIMENSIONS 1/6

Page 72

beginning of the parameter field where
it was a little bit awkward or one
word in? MNow I don't know if you are
aware of the new DOES>? It now has
full symmetry with ;CODE.

Again, this grew out of a clear
perception of what the word is and what
it does. I know of no way of speeding
the process from initial thought to
development except to let a certain
amount of time pass. We sat and
debated this thing endlessly and
missed the obvious. The current
implementation of DOES> does not
require the address of the code to be
interpreted. That is supplied by a
different mechanism and therefore the
parameter can occupy the parameter
field as it is supposed to. Therefore
you can "tick" it and change its value,
which is wonderful, except that it
is going to be in ROM and won't
matter. We save two bytes per DOES>
definition. Two bytes per word for a
very common class of words and for
three years we didn't realize that we
had missed the optimum by so much!
Although this is proprietary to FORTH,
Inc., I am sure that given these clues
all of you will proceed to go off and
invent the new DOES>. Maybe that's the
way things should be.

Question: When you were in the phil-
osophy section, you said that you still
don't have the computer that you want
and you sort of alluded to that at
various times. Can you tell us just
what computer you would like to have?

Mr. Moore: Well, first and foremost it
has to be reliable. I want an MTBF of
ten years. I see around me computers
that fail in six months and that is
preposterous. You do not get an MIBF
of ten years by taking ten computers
with an MTBF of six months and lining
them up in parallel. I want a camputer
that I can drop in the ocean and fish
out and it doesn't care. I want a
computer without an on/off switch. 1
want it to be small. By small I guess
I mean I want it to fit in my pocket, I

don't really want it on my wrist.
These considerations have conse-
quences. I consider that a reliable
computer is one with small parts
count. The probability of failure is
proportional to the number of parts.
So if you only have six parts you can
last maybe ten years -- I don't know.
I would like it to have wvoice input/
output. A terminal 1is acceptable
but this isn't small. Are you familiar
with the Write-Hander? A very nice
input device which, if it's perfectly
matched to your fingers and if you can
train your reflexes to depress two keys
at the same time, is a good idea. I
am afraid the implementation is
not perfect. It probably has to be
customized to youwr hands somehow and
even then it is only a substitute for
voice input. No power supply, of
course, it should run off body heat.

The potentials in the field of
communication are enormous. I don't
like telephones much. I speculate that
I would talk on the telephone if there
were a computer between me and it. I
speculate that a personal computer like
this could be an interface between an
individual and society. If I wanted a
new driver's license I would tell my
computer to get me a new driver's
license and it would deal with the
bureaucracy.

stion: Can you develop a version of
FORTH that will be machine-independent?

Mr. Moore: The premise is wrong. The
equivalence of FORTH on different
machines reJuires meticulous attention
to the characteristics of these
machines. You must use all the hard-
ware capabilities of each machine and
you must then work to force it into the
mold specified by FORTH's virtual
machine.

The internal characteristics
of every machine can and must be
exploited. You do not need any par-
ticular number of registers or stacks,
as they can all be simulated; but if

Page 73

FORTH DIMENSIONS 1/6

you neglect the capability of the
machine, you can end up a factor of two
down from where you might otherwise be.

Question: So far I've heard you say
that things can be done differently but
I wanted to hear what you had to say
about the architecture of the processor
itself.

Question: I would like to support that
guestion with one more guestion. I
have a customer who ran 64 users on a
5500 for ten years and bought a VAX and
can only run 16. My question is --
which is progress and what is a suit-
able architecture for a FORTH machine?

Mr. Moore: If you measure the size of
those two machines, we could put 64
users on a VAX, no problem. The fact
that he couldn't is a condemnation of
the software, not the hardware.

The characteristics of a FORTH
processor? I don't want to go into
detail but I will say it is substan-
tially simpler than machines like the
8086, 6800s, simpler than the 8080,
probably. You don't need much more
than the ability to execute microcode.
Very simple microcode will serve for
this very simple architecture and
the performance comes out of the
simplicity. If you add complexity, you
are going to decrease your reliability
and increase power consumption, all
those bad things. I would like to see
some studies made of the tradeoffs. I
would like to know how complicated
FORTH is. Take FORTRAN. You cannot
measure its complexity. You can't say
a FORTRAN program is 10 to the sixth
power in complexity. You can't measure
that, you can't separate FORTRAN
from the operating system, from the
floating-point hardware. You can't
determine how complicated a problem it
is that that FORTRAN is trying to
solve. If we had a standard FORTH
implemented on a chip with enough RAM,
PROM, and CPU and all FORTH words on
that chip, we could measure the area of
that chip and get a measure of the

difficulty of the task that we were
trying to solve. We could compare
two implementations with different
hardware/ software tradeoffs based on
the common measure of the area it took
to implement. I think that would be a
very, very interesting thing to do.

There is a speculation that human
brains have a great capacity, 10 to the
13th bits, some preposterous number. I
suspect that human brains have a much
smaller capacity than that, on the
order of 10 to the 9th bits maybe. We
make up for our bad memories by
"faking it" a lot; people don't
remember what happened ten years ago.
I reconstruct what must have happened
based on little clues that I pick up
here and there. Those reconstructions
are so accurate and so impossible to
contradict that we get the impression
that we can remember a very great
deal. I suspect that we can build a
computer as complicated as a human
brain now and it won't need to be
powered by Niagara Falls. It will be a
small box.

Question: Assuming someone were to
design a FORTH small micro-engine of
some sort, how much faster or more
capable do you think it would be over
the present implementations? Just
assuming that sameone has done that.
No guesstimate?

Mr. Moore: No, and I am not saying and
don't you say either, Dean.

Question: Can we assume that it is
less than 100 and more than 1?

Mr. Moore: A substantial improvement.
We've got to have some edge. The rest
of the world is going to come up and
clobber us.

Question: You mentioned before the
philosophy of seeking the least com-
plicated solution for a problem. Would
you comment on simplicity versus
flexibility for a solution. How do you
judge, how do you make tradeoffs?

FORTH DIMENSIONS 1/6

Page 74

Mr. Moore: If you have a thing that
does one thing well it is of no
interest or value unless the one thing
that does well is FORTH. I have no
idea. It never occurred to me to ask
how you measure flexibility.

Question: Could you extrapolate
present trends to the future?

Mr. Moore: I think the obvious extra-
polation is telepathy. That in 20
years we will have the functional
equivalent of telepathy. If you want
to talk to anyone in the world you will
be able to do so with minimal apparatus
and you will be able to talk to them in
the sense of not intruding upon them as
telephones do now, but rather relaying
messages fram your computer to their
computer and holding vast dialogues in
the way computer mediated conferencing
is being done today through terminals.
This will be a very natural way of
conducting our 1lives. It requires
nothing in the way of technological
breakthroughs! It merely wants the
implementation of optical communication
links worldwide.

I'm reluctant to quote science-
fiction books, but there was one
recently dealing with the first manned
Mars mission and the fact that the
United States came up with project
management techniques of an advanced
order through the use of computers —
and completely outstripped the rest of
the world. We gained an ascendant
position in the world and earned the
hatred of the rest of the world for our
superiority, tried desperately to
export technology and failed. The same
thing can happen here. If we have a
very tightly integrated community
in terms of human resources and the
rest of the world is excluded, we are
going to have one helluva problem. I
think this will happen. I think it
will happen without any deliberate
planning, and I think it is going to
cause problems as great as those we
have today between the haves and

have-nots. But it will probably also
generate the solution.

As to the twists that might occur,
there are two wild speculations. One,
that computers become intelligent or
aware. Nobody has a clue as to what
that means, but it is conceivable.
Two, that we learn to record human
personalities in machines. That
merely requires the ability to detect
and record the requisite volume of
information which, as I say, I don't
think is all that great.

Question: I wonder if you care to
comment about the possibility of a new
direction of architecture having to do
with associative memory, which the
brain seems to have.

Mr. Moore: I've studied these associa-
tive memories: there is such a chip on
the market. I'd like to say they ought
to be useful in implementing a FORTH
computer but, I'm afraid I'm stuck in
the mold. When I first encountered
LISP I couldn't conceive of a language
that didn't have a store operator. BHow
could you do anything if you couldn't
store your results somewhere? I can't
conceive of a piece of data that is its
own label, if you will. I am so used
to thinking of data having addresses
that my mind just doesn't grasp the
possibilities if they don't. So, I'm
afraid I can't say anything useful
about associative memories.

(The evening concluded with
an extended ovation.)

Page 75

FORTH DIMENSIONS 1/6

INFORMATION

Convention Transcriptions

Audio tape transcripts of the
FORTH Convention held in San Francisco,
October, 1979 are available. FI1G
member Jim Berkey recorded the tech-
nical sessions and the banquet speech
by Charles Moore.

Our thanks to Jim for this signif-
icant contribution to FORTH history.

There are four tapes and they
may be ordered at $4.00 each, postpaid
from: Audio Village, PO Box 291,
Bloomington, IA 47402,

Tape 1 - Bill Ragsdale, Welcome and
Introductions; Standard
Teams Report; General
Announcements; Case State-
ment Contest.

Tape 2 - More Standards Team
Reports; FORML; Applica-
tions of FORTH: Language
Concepts.

Tape 3 - Continuation of Language
Concepts; Technical Work-
shop with Charles Moore.

Tape 4 - Banquet Speech by Charles
Moore, "FORTH, The Last Ten
Years and The Next Two
Weeks." (Printed in this
issue of FORTH DIMENSIONS.)

Manuals

Here's an update of FORTH manuals
currently in print and commercially
availabe i.e. not part of licensed
material.

...Using FORTH, 1979, Carolyn
Rosenberqg and Elizabeth Rather,
160 pp, $25.00. Order from FIG
or FORTH, Inc., 2309 Pacific
Coast Highway, Hermosa Beach, CA
90254.

...microFORTHTwl Primer, 2nd Edi-
tion, 1978, 60 pp plus glossary.
Order from FORTH, Inc. or Miller
Microcomputing Services, 61 Lake
Shore Road, Natick, MA 01760.

...Kitt Peak Primer, Feb. 1979,
Richard Stevens, 200 pp plus
glossary. Order from FIG.

... Introduction to STOIC, Mar. 1978.
Jonathon Sachs. Order from
Stephen K. Burns, MIT, Room
20A-119, Cambridge, MA 02139 or
Wink Seville (714) 452-0101.

...Cal Tech FORTH Manual, June
1978, M.S. Ewing. Send $6.00
to Cal Tech Bookstore, 1-51,
California Institute of Tech-
nology, Pasadena, CA 91125.

«..URTH Tutorial, University of
Rochester. Send $20.00 to
Software Ventures, 53 Arvine
Heights, Rochester, NY 14611.

«+.FORTH Introduction Reprints, 38
pp, summary and collection of
published and unpublished
articles about FORTH. Send
$10.00 to John S. James, P.0O. Box
348, Berkeley, CA 94701.

BEditor...

Know anymore? Send us your lists.

FORTH DIMENSIONS I/6

Page 76

MEETING NOTICES

NORTHERN CALIFORNIA

FIG Monthly meetings are held the
fourth Saturday of each month at the
Special Events Room of the Liberty
House department store in Hayward.
Informal lunch at noon in the store
restaurant, followed by the 1:00 p.m.
meeting. Directions: Southland
Shopping Center off Highway 17 at
Winton Avenue in Hayward, CA. Third
floor rear of the Liberty House.
Dates: 3/22/80, 4/26/80, etc.
All welcome.

THREE NEW GROUPS

FORTH Ottawa Group

c/o W. Mitchell

39 Rockfield Crescent

Nepeah, Ontario, K2E 5L6, CANADA

FORTH UK Group

¢/0 William H. Powell
16 Vantorts Road
Sawbr idgeworth, Herts
CM21 9NB, ENGLAND

Mr. Edward J. Murray

Department of Computer Science
University of South Africa

P.0O. Box 392

Pretoria 0001, Union of South Africa

Congratulations! Let us know what

you're doing.

People who want to organize local
groups can write to FIG for organiza-
tional aids and names of other members
in your areas. Start a group!

MASSACHUSETTS
Dick Miller of Miller Microcomputer

Services announces monthly meetings of
the MMSFORTH Users Group. Meetings are

on the third Wednesday of the month at
7:00 pm in Cochituate, Mass. Call Dick
at (617) 653-6136 for the site and more
information.

Incidentally, Dick offers a TRS-80
FORTH System and Z80 and 8080 assem-
bler, data base manager and floating
point math extensions, Enthusiastic
comments have been received.

FORTH DAY AT NCC

Tuesday, May 20, is FORTH DAY at
the PERSONAL COMPUTING FESTIVAL at the
National Computer Conference which is
being held at the DISNEYLAND HOTEL,
ANAHEIM, CA on May 19-22. FIC members
wishing to break out their portable
soapbox are invited to participate.
Speakers may address the audience on
any FORTH related topic or may be part
of a panel discussion. FIG will have
a table in the exhibit area for dis-
tribution of FIG literature and
individual discussions. Figgers with
running FORTH systems with a good
demonstration package may show off
their efforts at the exhibition area.
Members with a paper may present it
and have it become a part of the
proceedings. FIG has committed to
this effort on a short deadline.
Those wishing to participate should
contact Jim Flornoy (415) 471-1762
immediately. There will also be a FIG
meeting at the show.

Page 77

FORTH DIMENSIONS 1/6

FIG DOINGS

FIFTH COMPUTER FAIRE

Look for FIG at the Fifth West Coast
Computer Faire! We'll be at Booth 1028
in Brooks Hall, San Francisco (the
lower exhibit area), on March 14-16.
We'll also have a Users Group Meeting
on Saturday. All FIG Publications will
be available. This will be an ideal
time to sign up for FORTH DIMENSIONS,
vVolume II.

The Booth and meeting site are
through the generous consideration of
Jim Warren and the Faire management.
Thanks again!

FIG MEMBER PAPER

Joel Shprentz of the Software Farm,
Reston, VA, will present a paper at the
Fifth Computer Faire entitled "Solving
the Shooting Stars Puzzle". Joel sells
TRS-80 tiny-FORTH and features a FORTH
solution to this network problem, using
a modification of Dijkstra's algorithm
for the shortest path problem.

OLD NEWS BUT INTERESTING

The West Coast Computer Faire is
one of the best personal computing
conferences and exhibitions. The
Fourth Computer Faire was held in San
Francisco on May 11-13, 1979 with more
than 14,000 people attending.

FIG had a booth where it released
the first of the public domain fig-
FORTH implementations. FIG also
sponsored a FORTH Users Meeting at
which about 100 people attended to hear

seven vendors talk and answer questions
about FORTH systems.

A four hour technical session was
also held on the topics of FORTH
introduction, Extensibility, Standards,
FIG implementation, poly-FORTH,
multi-tasking in URTH, and ARPS. The
conference proceedings are available
for $14.78 from Computer Faire, 333
Swett Road, Woodside, CA 94062.

EUROPEAN MEETINGS

Promptly after the Fourth West Coast
Computer Faire, several FIG members,
including Kim Harris, Bill and Anne
Ragsdale, John James and John Bum-
garner, sallied forth (sic) to Amster-
dam for the annual European FORTH
User's Group Meeting, May 1979.

The meeting was held at the State
University at Utrecht, under the
hospitality of Dr. Hans Nieuwenhuizen.
In addition to papers fram FIG members
that were also presented at the Com-
puter Faire, there were status reports
on standards efforts and reviews of
European developments.

The next meeting is planned for
Nancy, France, hosted by TECNA.
Incidentally, TECNA is one of the most
technically progressive firms in using
FORTH as a base for a variety of
operating systems and application
dialects.

REVIEW BY KIM HARRIS

During the European User's Group
Meeting at Utrecht, it was exciting to
meet other FORTH users and learn of
their activities. Attendees shared the
results of projects including improved
user security, an innovative file
system, a microcoded FORTH interpreter,

FORTH DIMENSIONS 1/6

Page 78

and the extension of FORTH to new
languages. This last topic illustrated
a powerful use of FORTH. A translator
was written in FORTH which converted
a completely different computer
language into FORTH source which was
subsequently compiled and interpreted.
The new language was designed to be
readable by bank managers in France (it
resembles French COBOL). But this
language can be easily controlled and
expanded because the FORTH translator
is small, structured and itself
extensible.

We also met some University of
Utrecht students who have done a lot
with FORTH on an Apple II. They added
floating point software to FORTH and
wrote some excellent high resolution
graphic words. 'We were shown a timing
benchmark of 500 floating point addi-
tions using the same floating point
software but called from FORTH or
microsoft BASIC.

European FORTH users are very active
in experiments for improving FORTH.
FIG members were pleased to meet some
of them and we all look forward to
sharing past, present and future
developments.

STANDARDS TEAM

Twenty seven people, comprising the
1979 Standards Team, met at Avalon, CA
(Catalina 1Island), October 14-18,
1979. The scope of their work has
significantly expanded! FORTH-77
and FORTH-78 were primarily stan-
dardized glossaries for common program
expression. FORTH-79 has been extended
to assure (hopefully) program port-
ability. The glossary notation has
been improved, definitions of terms
added, English vocalization specified
for symbols, rules of usage added and
address space specified.

The intent of FORTH-79 is for a
common form for publication and inter-
change of FORTH programs. The steps
before release include a final Tech-
nical Referee review and a mail vote
of the Standards Team. Watch FORTH
DIMENSIONS for the availability
announcement.,

FORTH CONVENTION

On October 20, 1979, FIG sponsored a
one day convention in San Francisco.
This date allowed European members
attending the Computer Faire to
attend. In all there were 255 at-
tendees with 110 at a dinner for
Charles Moore's "Tenth Birthday of
FORTH". Technical meetings were
held and Jim Berkey has tape tran-
scripts. $16.00 for 4 tapes. Audio
village, P. O. Box 291, Bloomington, IA
47402.

FORML MEETING

The first meeting of the FORTH
Modification Laboratory (FORML) was
held at Imperial College, London,
January 8-10, 1980. Representatives of
both the Ewropean FORTH Users Group and
FIG attended.

The participants identified cate~
gories of limitations and approaches
toward solutions. Detailed work is to
be done by individuals with progress
reports to the team. Topic areas
included: Virtual FORTH Machine,
concwrrency, lanaguage, correctness,
documentation, file system, I/0 and
programming methodology.

Contact Kim Harris or Jon Spencer
through FIG for further information.

Page 79

FORTH DIMENSIONS 1/6

