
Fourier transform faster than fast Fourier transform (FFT)

Chen-Hanson Ting

NOT Technology Laboratory, Lockheed Missiles and Space Company, Incorporated

52-36/533. P.O Box 504. Sunnyvale. Califorrisa 94086

Abstract

Because of the rapid advances in multiplication hardware, the most time consuming processing step in

Fourier Transform will be the number of memory accesses rather than the number of multiplications. An

3lgorithm of Continuous Fourier Transform (CFT) which minimizes memory access was developed. It can be

implemented with e*isting technology and Is potentially faster than FF1’, particularly for processing

ontinuous, real-time signals.

Introduction

Since its publication by Cooley and Tukey,1 Fast Fourier Transform (FFT) has been the principal technique

employed in the computer realization of Fourier analysis for most applications. The success of FFT lies in

the fact that the number of multiplications, which until very recently has been the most time consuming

operation in the computation, is minimized to the order to N log2N from N2, where N is the number of data

values to be transformed.

As indicated by recent advancements in the LSI and computer technologies, multiplications can be done as

fast as additions,2’and low cost CPU’s can be ganged together in parallel to increase processing throughput

These developments point to new directions of signal processing which might achieve even greater throughput

than the FFT as implemented on a single CPU computer. Here I shall outline the theoretical justifications

of such a design and suggest ways of its hardware implementation with currently available LSI technology.

Thrs type of Fourier Transform processor is capable of processing signals sampled at a rate in excess of

1 MHz. It should have numerous applications in the processing of radar signals, optical images, arid

acoustic images in real time.

Theoretical considerations

The signal values to be processed are of an infinite series where i 0,1.2,... For a finite

segment of this series with only N erms starting at the kth term, k’ k k-4-j’ the nth term of

the Fourier Transform is defined as

ex’p (-2rt(m-k)jnIN)
(1)

It was realized by Halberstein in l966 that the same term with the signal values starting at the

k+l)th term is simply related to as follows:

(k+1) (k)
Fn exp (2njn/N) (F

- k + k + N
(2)

Thus, if F,’s were known, the next set of Ft),s could be obtained with only N complex multiplica

tions. Equation 2 can be easily implemented on a general purpose computer and Halberstein used it to

process real-time radar signals.

Eqaut ion 2 will be awkward to implement on a computer with only integer arithmatics or with floating

point numbers of limited range, because consecutive multiplications cause the round-off errors to accumulate

rather rapidly ‘and the Fourier transform cannot be carried for too long. An alternative Continuous Fourier

Transform (CFT) is proposed here which is more appropriate to process an infinite series of input signal

values, as

k+N-l
= I f exp(-2’jmn/N)

(3

mk
n

which differs from the conventional Fourier Transform by only a simple phase factor:

exp(2ikn/s

recursive relationship’s also evident:

SPIE Vol 23) RI T,rne S,c’naf Puuess’nq lii ‘9’ ‘ - -

170

TING

T
+ k+Nk

cxp(-2’jkn/N) (5)

The advantages of Equation 5 over EquatIon 2 are that it conforms more readily to the natural multiply-
accumulate structure of the AU) in CPU, and that there will be no accumulation of round-off errors because
the error introduced by the term will be cancelled exactly N cycles later. Therefore, Equation 5
can be implemented with integer arithmatics without extra bits guarding round-off errors.

The inverse of CFT can be defined as follows:

(i/N) : T exp(2rrjln/N) with

I k, k + I, k + 2 k + N-I (6)

Consequently, CFT is entirely sufficient in replacing the conventional Fourier Transform for all its
intentions and purposes, and it is not necessary to use Equation 4 to get back to the conventional
Fourier coefficients. Digital processings in the frequency domain can thus be applied directly to
T0s and the results can be transformed back to the time or space domain using Equation 6.

Another significant advantage in CFT is that the terms Tn1 of different frequencies n can be
calculated independent of one another, and many ALU’s can be ganged in parallel to further increase the
throughput. Ultimately N ALU’s can be paralleled and operated in synchronism, and it would take the
period of only one complex multiplication to update the entire N Fourier coefficients. The Fourier
processors of this structure will be able to process real-time signals at an extremely high rate.

FFT requires that N must be an integer power of 2 and that entire sets of N Fourier coefficients be
computed whether they are all useful or not. On the other hand, CFT does away with these restrictions.
In real applications, if only a few Fourier coefficients or frequency channels are of interest, the other
channels without useful information can be deleted from the processing system to reduce processing time,
hardware costs, and power consumption.

Conceptual designs of continuous Fourier processors

Here I propose two hardware structures for implementing the Continuous Fourier Transform. The first
system, a Serial CFT Processor, takes its form of a conventional computer architecture in which only one
ALT) is used for all the arithmatic operations. The time it requires to process or update H Fourier
coefficients is that in which Mcomplete multiplications can be completed.. The second Parallel CFT Proces
sor contains H independent ALU’s to update the H Fourier coefficients. These ALU’s are slaves to a master
CPU which manages the input signal values and synchronizes the operations of the slave ALU’s. The time
required to update the H coefficients will than be that to do one complex multiplication.

A schematic structure of the Serial CFT processor is shown in Figure 1. There are three banks of memory,
each holds N complex numbers. The Data Memory Contains the current input signal value and the preceeding
N-i values, the Table Memory contains lhe N complex roots of 1, and the Fourier Coefficient Memory or the
T Memory contains the cumulative results of CFT. Each bank of memory has a modulo N address register which
points to the address of the current operand in the memory. The sequence of events in updating the Fourier
coefficients areas follows.

As the signal value k+N..l is ready and available in the Input Register, the Data Address Register is
incremented to (k+N-I) so that the new data k+w-1 ‘s fetched into the (k-l)th cell in the Data Memory
while the old value k-l and the new value k+NI are simultaneously fe. to the Subtractor. The output
of the Subtractor is held steady at one of the input ports of the Multiplier, in which the other input port
gets the appropriate phase factor from the Table Memory. Ttie product of wkn and (k+Nl-fkl) is
then added to the content of the nth cell in the T Memory, Tn11 to become the new Fourier
coefficient T(k). The Frequency Register is clocked through only those frequencies of interest. The
frequency n is multiplied by k and the product kn in modulo N is put into the Table Address Register
to select the proper phase factor for use in the Multiplier. After all the Fourier coefficients needed are
updated. the Data Address Register is again incremented to receive the next input signal value.

In this arrangement, the Multiplier and the Adder can be parts of a pipeline and the time required toprocess N Fourier coefficients is essentially chat needed to carry out N complex multiplications. The time
perod is about (log2Nl/2 of that required by an FFT implemented on a similar computer. For a Fourier
transform of 1024 complex values, this Serial CFT should be about 5 times faster than an FFT processor. Itshould be noted that consecutive Fourier coefficients Ta’s are continuously available at the output port ofthe Adder for posiprocessings, while in FFT the Fourier coefficients are available only afterthe FF1 processis cempleted The ins:antancous availability of Tn’s is especially important to the real-time signalprocessine applications In which the Fourier coefficients must be further manipulated to yield useful nior-a t on

168 SR/F Vol 247 Real Tene Sqoa/ I’roceisi’g Ill 1980)

171

FOURIER TRANSFORM FASTER THAN FAST FOURiER TRANSFORM FFT)

As mentioned in the previous section, the Fourier coefficients of different frequencies n’s are updated

independent to one another; therefore, more than one ALIJ can be used in parallel to reduce the total time of

processing. The functions in the Parallel CFT Processor can be best partitioned between one master CPU and

trany (as many as N) slave ALUs. The master CPU will handle input signal values and synchronization of the

whole system while the ALlis will do the multiplications and additions. The structure of this Parallel CFT

Processor is shown schematically in Figure 2.

The Master CPU contains the Data Memory and the mechanism to produce much the same as those

components in the Serial CFT processor. The resultant is applied to all the slave ALU’s. The

sosplest slave ALU handles only one frequency channel, and contains in its read only memory (RON) a complete

rable Memory and a multiplier-accumulator which holds the current Fourier coefficient. The frequency n of

a particular slave ALU is introduced either as a pert of the ROil or by software programming during system

initiation. The entire stave ALU can be impl.eaiented on a single LSI chip. The same chip can be used as

different frequency channels simply by programming its Frequency Register, thus the slave ALU can be mass

produced for improved reliability and reduced system costs. This partitioning of functions will greatly

airriplify the manufacturing of the Parallel CFT Processors, which can be easily tailored to fit specific

appi i cat ions.

In cases where a single slave ALU was required to handle more than one frequency channel, additional T Memory

and addressing togics would be included. Here the Fourier coefficients of different frequencies will be multi.

Leied at the’ data output port. The resulting CFT Processor will be something between the Serial CFT

Processor and the Parallel CFT Processor. The balancing point of the trade-of Es is determined by considera

tions on the processing speed and the Cost of hardwares.

A Parallel Fourier CFT Processor with N ALU’s is capable of extremely fast operation. The throughput

is equal to the rate of one multiplication in the ALU. With the slave ALU’s constructed using LSI NMOS

technology, throughput between 10 to 100 KHz can be realized. With faster bipolar technology, using for

example the multiplier-accumulator MPY-l6HJ manufactured by TRW4, throughput in excess of l MHz might be

expected. Ar a lower level of integration, more components and more complicated and expensive circuitry,

and more power consumption are expected of the CFT processor with bipolar technology. Nevertheless, the

modul,sr structure of the Parallel CFT processor as outlined is still a valid and feasibLe approach when the

processing speed is. the principal concern.

Conc lus ion

the CFT is iii a sense a simple-minded, brute force Fourier transform which has to carry out all the N2

complex multiplications. Its elegance and usefulness tie in the fact that to calculate the Fouriet transform

including the next signal value, (N-1)N multiplications had already been done and only N new multiplications

are actually needed. This gives CFT a time factor of log2N over the FFT.

In the process of adding new information to update the Fourier coefficients, the contributtons from the

signal value received N cycles ago are completely deleted, together with whatever errors then introduced.

therefore, CFT can be implemented with simple integer arithmatics and logic, while FFT requires floating

point format to guard against round-off errors.

The CFT operates on a “moving window memory” of N consecutive signal values, which determines the

frequency resolution and the time response of the processor. Since the Fourier coefficients are updated in

step with every input signal value, its response to rapid changes in signal values is very fast. Most FFT

operates on consecutive blocks of N signal values in real-time applications, indicating that the frequency

spectrum is sampled only once for every N cycle, much slower than the CFT.

Because in CFT the Fourier coefficients are independently calculated, the frequency channels can be

divided to take advantage of a parallel processing structure and the advanced LSI technology. The through

put of a Parallel CFT Processor with N independent frequency channels could ultimately equal the rate of

complex multiplication in the slaveALUs.

The CFT technique can be used also in other types of signal transformations in which the phase factors are

periodic. Only the contents of the Table Memory have to be changed accordingly.

Re ferences

I. Coolev, LW., J. 14. Tukey, An algorithm for the Machine Calculation of Complex Fourier Series. Plath.

c :ol. 19 pp 2°73O2, 1965

2. API2OP Array Processor Handbook, pub. 9259-O2, Floating Point Systems, Portland, Or., 1976.

3. ParaUel2-jJWltilier-Accumulacor, Mudel TDC-1003J, TRW LSI Products, Redondo Peach, Ca.

. S.L., _ptimalAlaorithm for Computing Fourier TextureDescriptors. lilT Trans. Comuc.

pp 81-86. 1978.

i. Lil”ersten,L H.. Rccuriive. Complex Fourier Analysis for Real lci’pl.attons. Proc. I F. p. 903

172

tnternal Structure
of the slave ALU

Pr og r amniab 1 e
Frequency Register

Fig. 2 Structure of the parallel Cfl processor

4’’?, ,‘1,,;, /// 1

FOURIER TRANSFORM FASTER THAN FAST FOURIER TRANSFORM (FFT)

Master CPL’ Slave ALLIs

—3

0I
Se
c
02
UI
a
U
0
S.

UI
0
0

0

UI

UI

UI
C

C
Si

C

k

Table Addi-.
Register

173

CONTINUOUS FOURIER TRANSFORM

Continuous Fourier Transform (CFT) was conceived to take

advantages of digital multiplier chips to process continuous

input signals and produce Fourier transform coefficients at very

high clock rate. This program simulates CFT algorithm to deter—

its performance and error propagation.
The detailed description of CFT is included in the following

reprint from Proc. SPIE, Vol. 241, p.167—171.

MODULO A constant of 512, the length of Fourier transform.

HMODU A constant of 256, half of MODULO.

QMODU A constant of 128, quarter of MODULO.

MASK A constant of 511, used in modular computations.

SET UP TABLES AND REGISTERS FOR CFT

ARRAY A defining word to create integer arrays.

DARRAY A defining word to create double integer arrays.

DATA The 512 integer array storing input signal data in the

form of a ring buffer.
POINTER The indexing pointer for DATA ring buffer.

SINE An integer array storing a full circle of sine values.

It is accessed circularly with specified phase angle.

TABLE A double integer array storing immediate products of

the signal and the sine phase factors.
REAL A double integer array storing the real Fourier

coefficients like an array of accumulators.

IMAG Same as REAL, but for imaginery coefficients.

INPUT SIGNAL

FILL—TABLE (step data
Selectively fill TABLE with the products of data
and sine values, stepping with the phase angle of
‘step’. Multiplications are minimized this way.

STEP C k ——— step)
Given the ring pointer on the stack, calculate the

phase angle needed to step through the sine circle.

SIGNAL (data -—— diff)
Store the input data in the DATA ring and leave the

difference of this data and the one previously stored

in the same location, i.e., the prior 5l2’th data.

+REAL Accumulate real parts of current signal into REAL.

÷IMAG Accumulate imaginery parts into IMAG.

174

186 LIST

CFT REGISTERS AND ARRAYS, CHT, 25—FEB-83)

512 CONSTANT MODULO
MODULO 1 - CONSTANT MASK
MODULO 2/ CONSTANT HMODU HMODU 2/ CONSTANT QMODU

ARRAY CREATE 2* ALLOT
DOES> (K ——- ADDR) SWAP 2* +

MODULO ARRAY DATA VARIABLE POINTER

QMODU ARRAY SINE
DARRAY CREATE 2* 2* ALLOT

DOES> (K ——— ADDR) SWAP 2* 2* + ;

MODULO DARRAY TABLE
MODULO DARRAY REAL
MODtJLO DARRAY IMAG
OCTAL

187 LIST

(CFT FILL-TABLE, CHT, 25—FEB—83)

: FILL-TABLE (STEP DATA ———)

QMODU 0 DO
I SINE @ OVER M* 2DUP I TABLE 21

2DUP HMODU I — TABLE 2!

DMINUS 2DUP HMODU I + TABLE 21 MODULO I — TABLE 2!

OVER +LOOP SWAP DROP —1000 M*

2DUP MODULO QMODU - TABLE 2!

DMINUS QMODU TABLE 21 ;

STEP (K ——— STEP)
DUP 0= IF QMODU + EXIT THEN

1 BEGIN OVER 2 MOD
0= IF 2* SWAP 2/ SWAP
AGAIN SWAP DROP ;

188 LIST

CFT SIGNAL, CHT, 25—FEB—83)

SIGNAL C DATA --— DIFF, UPDATE DATA ARRAY AND POINTER

POINTER @ 1+ MODULO 1 - AND >R

I POINTER 1 I DATA @ OVER R> DATA I

+REAL C ACCUMULATE REAL PARTS OF CFT)

0 C TABLE POINTER T) MODULO 0 DO

DtJP MASK AND TABLE 2 I REAL 2@ D+

I REAL 2! POINTER @ + LOOP DROP ;
+IMAG C ACCUMULATE IMAGINERY PARTS OF CFT)

QMODU C 90 DEG) MODULO 0 DO

DUP MASK AND TABLE 2@ I IMAG 2 D+

I IMAG 2! POINTER @ + LOOP DROP ;

175

CFT INITIATION AND DATA PRINTOUT

SINE—TABLE Fill the SINE table with sine coefficients.

INIT Clear the input data buffer DATA, the real coefficient

accumulator REAL, the iinaginery accumulator IMAG, and

initialize ring buffer pointer POINTER to —1.

.REAL Print the contents of REAL array.

.IMAG Print the contents of IMAG array.

.DATA print the contents of DATA array.

CFT TESTING CASES

1TEST Test the CFT routines with a linear ramp input from

o to 511.
COEFF A integer array to be filled with testing signal

values which can be modified for various tests.

1 1 FILL—TABLE
Fill TABLE with sine values.

READ Copy TABLE values into COEFF array for testing.

2TEST Transform a regular sine function.

3TEST Transform a regular cosine function by a phase shift

of QMODU, i.e., 90 degrees.

Loading block for the CFT program.

176

189 LIST

CFT INITIALIZE, CUT, 25—FEB—83)
SINE-TABLE (FILL SINE TABLE

QMODUDUP2/1+ 0 DO 12*SINS+10/
I 2*

INIT

190 LIST

COS 5 + 10 / OVER I — SINE 1
0 REAL MODULO 2* 2* ERASE
0 IMAG MODULO 2* 2* ERASE
0 DATA MODULO 2* ERASE

PRINT REAL PARTS)
MODULO 0 DO I 8 MOD 0= IF CR I
I REAL 2@ 10 D.R LOOP ;
MODULO 0 DO I 8 MOD 0= IF CR I
I IMAG 2@ 10 D.R LOOP ;
MODULO 0 DO I 8 MOD 0= IF CR I
I DATA @ 10 U..R LOOP ;

CFT TESTS, CUT, 1—MAR—83) -

1TEST MODULO 0 DO I
I STEP I SIGNAL FILL—TABLE
+REAL +IMAG LOOP ;

MODULO ARRAY COEFF
1 1 FILL-TABLE

READ MODULO 0 DO I TABLE 2@ DROP
I COEFF 1 LOOP ;

2TEST MODULO 0 DO I STEP I COEFF @ SIGNAL
I FILL-TABLE +REAL +IMAG LOOP ;

3TEST MODULO 0 DO I STEP I QMODU + MASK AND COEFF @
SIGNAL I . FILL-TABLE +REAL +IMAG LOOP ;

191 LIST

CFT LOADING, CUT, 1—MAR—83)
186 190 THRU

195 197 THRU C CFT BODY
192 193 THRU (TEST)

.REAL

.IMAG

.DATA

I SINE I
LOOP DROP ;

—1 POINTER I ;

10 U.R THEN

10 U.R THEN

10 U.R THEN

177

PRINTER CONTROL
This block has the instructions to slow down the data output

to allow a slow, unintelligent printer to print all the data
sent to it.

DELAY A delay loop about 1 second.
CARRIAGE Do the carriage return with the 1 second delay.
NEW—CR Patch the vectored CR routine to CARRIAGE, enable

a delay after every CR.
OLD—CR Restore the regular CR for CRT output.

Typical usage in poly—FORTH is:

PRINT NEW-CR .DATA .REAL .IMAG OLD-CR

Output will be directed to the printer as a task.

MORE CFT TESTING CASES

The most important information Iwanted from these tests
was the error accumulation and propagation. I was able to
verify that there is no error accumulation because the use
of the ring buffer in storing a whole circle of input signal.
Any computational error introduced by the kth signal will be
completely cancelled when the k+Nth signal is processed. It
demonstrated that in CFT, integer multiplications can be used
in place of floating point number multiplications.

FASTER FIRMWARE MULTIPLICATION

Regular M* was derived from M*/, which uses the soft
ware multiplication routine. To increase the speed of
execution, here I invoke the microcoded multiplication
instruction in the EIS of the LSI—ll/2.
Using this hardware feature, the CFT computation time
was observed to be reduce by 50%.

178

192 LIST

C PRINTER DELAY, CHT, 2—MAR—83)
DELAY 30000 0 DO LOOP ;

: CARRIAGE (CR) DELAY ;
: NEW—CR [‘1 CARRIAGE ‘CR I

OLD—CR I’] (CR) ‘CR 1 ;

193 LIST

C CFT TESTS, CHT, 3—MAR-83)
: 3TEST MODtLTLO 0 DO I STEP I QMODU + MASK AND COEFF @

SIGNAL I . FILL-TABLE +REAL +IMAG LOOP ;
4TEST MODtJLO 0 DO I STEP I 2* MASK AND COEFF @

SIGNAL I . FILL-TABLE +REAL +IMAG LOOP ;

STEST MODULO 0 DO I STEP I 2* 2* MASK AND COEFF @
SIGNAL I . FILL-TABLE +REAL +IMAG LOOP ;

194 LIST

MICROCODE MULTIPLY, CUT, 3-MAR—83)
OCTAL
CODE M* 0 S)+ MOV 70015 , C MUL) S) 1 MOV

S -) 0 MOV NEXT DECIMAL
DEC I MAL

179

SINE AND COSINE LOOK-UP TABLES

This program builds a 4096 byte sine—cosine table in the
Forth dictionary to be accessed by Fourier transform routines.
A cirle is divided into 1024 segments and the sine—cosine pairs
are evaluated for each of these ‘degrees’.

1. A double integer of 100000000, the maximum value of
sine or cosine during mixed mode calculations.

NN The square of an angle (O..128).
SIGN A flag controlling the sign of the sine or cosine.
SIN Calculate sine value from a given angle by polynomial

expansion.

COSINE EVALUATION

COS Similar to SIN. Calculate cosine value from an angle
between 0 arid 128.

This was a brute force implementation in deriving sine and
cosine values before I learned to do better. The use of mixed
mode multiplications and divisions are complicated and very
inelegant. It takes a while to generate the entire table.
However, once the table is generated, accessing it to find
any sine—cosine pair is very fast.

The routine by J. Bumgarner, Forth Dimension Vol. IV, p. 7,
(1982), is much more concise and elegant. Similar accuracy is
achieved without using double precision integers. It was used
in the game of GUNNER.

BUILD THE SINE—COSINE TABLE

TABLE An array hold 1024 pairs of sine and cosine values.

1QUAD Fill the first quadrant of TABLE, using values
calculated by SIN and COS.

2QUAD, 3QUAD, 4QUAD
Fill the other three quadrants from data in the
first quadrant.

BUILD—TABLE Fill TABLE with proper sine—cosine pairs.

182

180 LIST

SINE, CHT, 6—23—81 1 DEG IS 1024TH OF 2*PI)
100000000. 2CONSTANT 1. (MAX VALUE OF SINE)
VARIABLE NN VARIABLE SIGN

SIN (N ——— Ni , N BETWEEN 0 AND 128, P1 IS 512
Ni IS BETWEEN 0 AND 10000, THE SINE OF N)

DUP DUP * NN ! C N**2) 1 SIGN ! (INITIAL SIGN
1. C X2I) 1. (SINE
5 1 DO

2SWAP 18505 30000 M*/
NN @ 16384 M*/ (UPDATE X**21)
1 12*M*/1 12*1+M*/ (X**21/21/21+1)
2SWAP 2OVER (PUT X**21 BACK. GET ONE COPY TO TOP)
2DUP 10000 0 D< IF LEAVE THEN (QUIT IF ACCURATE ENOUGH)
SIGN DUP @ SWAP OVER NOT SWAP ! (CHANGE SIGN)
IF DMINUS THEN D+

LOOP 2SWAP 2DROP ROT 128 M*/ 7854 10000 M*/ 10000 Mi ;

181 LIST

COSINE, CHT, 6—23—81)
(SINE AND COSINE CONVERGE QUICKLY WHEN N IS LESS THAN 128.)
100000000. 2CONSTANT 1. (MAX VALUE OF SINE)
VARIABLE NN VARIABLE SIGN

COS (N ——— Ni , N BETWEEN 0 AND 128, P1 IS 512)
DUP * NN I (N**2) 1 SIGN I (INITIAL SIGN)
1. C X2I) C SINE
5 1 DO

2SWAP 18505 30000 M*/
NN @ 16384 M*/ (UPDATE X**21
1 I 2* 1— M*/ 1 I 2* M*/ (X*2I / 21 / 21+1)
2SWAP 2OVER (PUT X**2I BACK. GET ONE COPY TO TOP)
2DtJP 10000 0 D< IF LEAVE THEN (QUIT IF ACCURATE ENOUGH)
SIGN DUP @ SWAP OVER NOT SWAP I (CHANGE SIGN)
IF DMINUS THEN D+

LOOP 2SWAP 2DROP 10000 M/ ;

182 LIST

(BUILD SINE TABLE, 6-23—81, CHT)
VARIABLE TABLE 4096 ALLOT

1QUAD 129 0 DO I COS DUP I 2* 2* TABLE + I
1026 I 2* 2* — TABLE + I
ISINDUP 12*2*2+TABLE+!
1024 I 2* 2* — TABLE + I LOOP ;

DO TABLE I + @ MINUS TABLE I 2048
2 +LOOP

DO TABLE I + 2@ SWAP MINUS
TABLEI +1024+2! 4+LOOP

DO TABLE I + 2@ MINUS SWAP
TABLE I + 3072 + 21 4 +LOOP

BUILDTABLE 1QUAD 2QUAD 3QUAD 4QUAD ;

1.)

3QUAD 1024 0

2QUAD 1024 0

4QUAD 1024 0

183

FETCH Given a digital angle between 0 and 1023, return
both the cosine and the sine values on the stack.
For speed considerations, this routine is coded
in the LSI—ll machine codes.

DISPLAY Type out the entire table for verification.

184

183 LIST

SINE TABLE ADDRESSING, 6—23—81, CHT)
CODE FETCH C N ——— COSINE SINE ; N BETWEEN 0 AND 1023)

OS) MOV OASLOASL
O —4096 # BIC 0 TABLE # ADD
S) 0) + MOV S -) 0) MOV
NEXT

DISPLAY (TYPE OUT SINE TABLE)
10240D0 CRI5U.R I

4 0 DO DUP I + FETCH 0 7 D.R 0 7 D.R LOOP DROP
4+LOOP;

184 LIST

185 LIST

185

