
hlAH IIN MARlElTA ENERG< SYSTEMS LlljRflRES

I

3 4 4 5 b 0 2 7 0 5 2 7 5

. -

ORNL/TM- I0656

Energy Division

SEVE OF ERATOSTHENES BENCHMARKS
FOR TIHE 28 FORTH MICROCONTROLLER

Robert Edwards

Date Published - February 1989

Prepared for the
Smart House Project

National Association of Home Builders
Research Foundation

NOTICE: This document contains information of a
preliminary nature. It is subject to
revision or correction and therefore does
not represent a final report.

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831

operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-840R21400
MARTIN MARIEITA ENERGY SYSTEMS L18RARIES

3 4 4 5 b 0240527 5

.
ABSTRACT

This report presents benchmarks for the 28 FORTH microcontroller system that ORNL
uses extensively in proving concepts and developing prototype test equipment for the
Smart House Project. The results are based on the sieve of Eratosthenes algorithm, a
calculation used extensively to rate computer systems and programming languages. Three
benchmark refinements are presented, each showing how the execution speed of a FORTH
program can be improved by use of a particular optimization technique. The last version
of the FORTH benchmark shows that optimization is worth the effort: It executes 20
times faster than the Gilbreaths’ widely-published FORTH benchmark program.

The National Association of Home Builders Smart House Project is a cooperative research
and development effort being undertaken by American home builders and a number of
major corporations serving the home building industry. The major goal of the project is
to help the participating organizations incorporate advanced technology in
communications, energy distribution, and appliance control products for American homes.

This information is provided to help project participants use the 28 FORTH prototyping
microcontroller in developing Smart House concepts and equipment. The discussion is
technical in nature and assumes some experience with microcontroller devices and the
techniques used to develop software for them.

TABLEOFCONTENTS

1 . INTRODUCTION . 1

2 . THE SMART HOUSE PROJECT . 2

3 . THE FORTH LANGUAGE . 4

4 . THE SIEVE OF ERATOSTHENES . 6

5 . THE GIEBREATHS’ FORTH PROGRAM FOR THE SIEVE ALGORITHM . . . 9

6 . IMPROVING THE EFFICIENCY OF THE INNER LOOP 13

7 . TMPROVINC THE EFFICIENCY OF THE OUTER LOOP 15

8 . ELIMINATING DUPLICATE MARKING OF MULTIPLES 17

9 . CONCLUSlON . 20

10 . REFERENCES . 21

APPENDIXA . 22

APPENDIXB. 23

APPENDIXC . 24

.

LIST OF TABLES

1 . BENCHMARK RESULTS FROM BYTE MAGAZINE 8

2. Z8 FORTH BENCHMARK RESULTS USING THE
GILBREATH VERSION OF THE FORTH BENCHMARK 12

3. 28 FORTH BENCHMARK RESULTS USING THE
ROW-FILL VERSION OF THE FORTH BENCHMARK 14

4. 28 FORTH BENCHMARK RESULTS USING AN
OPTIMIZED OUTER LOOP VERSION OF THE FORTH BENCHMARK . 16

5. 28 FORTH BENCHMARK RESULTS - DUPLICATING
MARKING AVOIDANCE VERSION OF THE FORTH BENCHMARK. . 19

1. 1NTRODUCTION

The Oak Ridge National Laboratory (ORNL) is a participant in the Smart House Project,

a cooperative effort between the National Association of Home Builders Research

Foundation and a number of manufacturers of home-construction products. QRNL is

providing technical evaiuations of proposed Smart House designs and advice on methods

for design evaluation and system integration.

This report presents benchmarks for the 28 FORTH system (Edwards 1987a, 1987b) that

ORNL uses extensively in proving concepts and developing prototype test equipment for

the Smart House Project. The results are based on the sieve of Eratosthenes algorithm

(Knuth, 1969), a calculation used extensively to rate computer systems and programming

languages. The first benchmark presented is taken from one developed by Jim and Gary

Gilbreath and presented in BYTE magazine (Cilbreath 1981, 1983). Three refinements of

the Gilbreaths' program are presented, each showing how the execution speed of a

FORTH program can be improved by use of a particular FORTH optimization technique.'

The last version of the FORTH benchmark shows that optimization is worth the effort: It

executes 20 times faster than the widely-published sieve program usually used to test

FORTH system performance.

The information in this report is intended to help Smart House participants make

effective use of 2 8 FORTH for developing and testing Smart House equipment and

concepts. The discussion is technical in nature and assumes some experience with

microcontroller devices and the techniques used to develop microcontroller software.

"he Gilbreaths would probably object to presenting the refinements as "benchmark"
results. In Jim Gilbreath's September 1981 article, he states, "The program for each
language was coded conventionally, taking advantage of features that are defined in the
language, but not exploiting the clever or obscure innovations that can make it run
faster. In most cases, some improvement in running time could be achieved by
knowledgeable trickery. [IH fact , that is the point o f a benchmurk program: to compare
language performance by running the same algorithm encoded in d i f fererrt languages.
(BYTE editor)]." Contrary to the Gilbreaths' and BYTE editor's opinions, the objective of
computer benchmarking is to permit comparison of expert implementations of an
algorithm on particular combinations of computer language and equipment. The
algorithm, in this context, is the statement of the process as described by Eratosthenes,
not by Cilbreath in a Pascal program. What the Gilbreaths and the BYTE editor
measured in their benchmarking was a program porting process, in this case from Pascal.
(or C) to FORTRAN, BASIC, FORTH, and other languages without regard to use of
advantageous features of the target language.

2. 'THE SMART MOUSE PROJECT

The goal of the Smart House project is to help the participants incorporate advanced

technology into new products for communications, energy distribution, and appliance

control. One of the project's most important goals is to bring Smart House cabling,

electrical control devices, coifsumer appliances, and gas products into the market for the

majority of homes constructed in the next century.

The imgctus for the project comes from two areas. One is the pressure of foreign

consumer products, which dominate the after-sale consumer appliance market and

threaten to make inroads into sales to home builders. The other is the increasing

sophistication of modern electric and gas appliances and the inability of present energy

distribution arid control systems to accomniodate the potential these appliances offer.

The Smart House will provide intelligent control and coordination between appliances and

their controlling devices. Appliance functions that are presently accomplished with

difficulty - distributed control of multizone heating, ventilating, and air conditioning and

multiunit remote control of entertainnient coinponmts - are simple to support with the

Smart Mouse design.

This same intelligent control and coordinatioii also makes possible a new standard of

safety in the home, primarily by providing closed-loop control of electrical appliances.

With closed-loop control, branch circuits are de-energized except when power is

necessary to operate appliances. This feature is made possible through redesigning the

function of an appliance switch, which in the Smart House is a signaling device rather

than a power controller. When an appliance is turned on, a signal is sent from the

appliance switch to a circuit controller, which i s part of the Smart House wiring system.

This device then powers the circuit that supplies energy to the appliance. Once the flow

of power has been initiated, the appliance must send a recurring "nominal-operation"

signal to the circuit controller to continue the power feed. If the circuit controller does

not receive this signal, it assumes that a fault has occurred (e.g., the plug was pulled

out of the outlet) and de-energizes the circuit. Closed-loop protection of circuits in the

2

Smart House can be thought of as the electrical equivalent of the "proof-of-flame"

protection in gas appliances.

The Smart House design must meet rigid requirements for reliability and ease af

installation and maintenance. As an example of the attention being paid to reliability,

the Smart House design provides home control through use of several distributed

controllers all wired together, each with the ability to back up one another in case of

failure. This redundancy avoids the sudden loss of all home control functions that could

occur if only one central controller were used.

3

3. THE FORTH LANGUAGE

FORTH is a high-level language that is widely used in real-time applications. Its most

distinctive feature is the ease with which a. FORTH subroutine (called a word in FORTH)

C ~ A be changed. In fact, a FORTH programmer can completely redefine the FORTH

system words if the need arises.

Charles Moore developed FOR'ITII in the 1970s for use in astronomical applications,

During the early 1980s, FORTH became popular with amateur programmers because it

allowed the use of a high-level language on microcomputers with limited memory and

processing ability. Since then, FORTH has had a checkered history. Its recent decline

in popularity for general-purpose programming is the result of the ever-increasing

availability of high performance microcomputers (such as the ubiquitous IBM clones) and

the tendency of some FORTH programmers to develop unstructured code that is difficult

to follow and impossible to change. Guidelines for averting this latter problem are

discussed in the excellent tutorial, Starting F O R 7 H (Brodie 198 1).

Both experienced and inexperienced application programmers often have trouble using

FORTI-? effectively, but for different reasons. Almost all inexperienced application

programmers are uncomfortable with FORTH's use o f "reverse-Polish" notation and

extensive use of stack operators. To appreciate this concern, contrast two equivalent

BASIC and FORTH programs for printing a table of squares from 1 to 10:

BAS I C FORTH

FOR r = I t o i o
PRINT I,I*I
MEXT I

10 1 DO
I . I I * .

LOOP

In the FORTH example, the first line puts the final limit oii the stack, puts the initial

value of the loop index on the stack, then calls the FORTH word DO to start the loop.

The six FORTH words in the second line, which form the body part of the loop, produce

the same result as does the corresponding line of the BASIC program. By writing out

4

detailed remarks for each of the FORTH words on the second line, the operations

performed in the body part of the loop become clear:

FORTH
UORD

_I

I

1

I

*

COmnentS

Put a copy of the Loop index on the stack

Remove the l a s t v a l w on t he stack and print i t out (which
i s acconplished by the c r y p t i c FORTH word appropr ia te ly
pronounced Wot1I)

Put a copy of the loop index on the stack

P u t a copy of the loop index on the stack (on top of the
copy already there)

Multiply the t w o values of the index together t o produce
the square, which i s l e f t on the stack

Remove the square from the stack and print i t out.

Someone familiar with HewIett/Packard hand calculators, which are based on reverse-

Polish operation, will immediately recognize FORTH notation. Unfortunately,

Hewlett/Packard calculators are becoming less and less common, so that the majority of

application programmers are uncomfortable with FORTH when first introduced to it.

Experts have another, bona-fide concern about the use of FORTH in time-critical

applications. With FORTH words, and especially the elementary words such as DUP,

DROP, +, A N D , etc., the time necessary to execute the operation is usually dwarfed by

the time needed to fetch the word from the stack, push the result back onto the stack,

and perform the operations necessary to transfer control to the succeeding word.

Typically, elementary FORTH operations are only about a tenth as efficient as the same

application written in native code (Appendix A shows an example of the overhead

associated with the FORTH word that adds two 16-bit integers).

5

4. THE SIEVE OF ERATOSTHENES

In 1981, Jim and Gary Gilbreath proposed a simple method of testing microcomputer

system performance through use of a small program based on the sieve of

an algorithm developed im the third century B.C. The process is based on crossing out

multiples of two, then repeatedly advancing to the next highest integer not marked out

and marking out multiples of it. Thus, the first set of markings would cross out 2, 4, 6 ,

ebc. Three would then be selected (the next integer not marked after 2) and 6, 9, 12,

etc, would be marked. The next integer after 3 not marked is 5 , which is used to mark

out 10, 15, etc. The numbers not crossed out are prime numbers.

The Gilbreaths' implementation of the algorithm is a structured program that is easily

translated into Pascal or C, and has neither multiplication nor d i ~ i s i o n . ~ As in the

Knvth algorithm, the Gilbreaths' program omits processing multiples of two; only odd

integers are considered for primality. An array of flags is maintained, one for each odd

integer. The flag with index 0 is for the integer 3, index 1 is for 5, index 2 is for 7,

etc. In general, the index for the integer I is (1-.3)/2"

The standard Gilbreath benchmark program, which appears at the top of the next page,

determines the primes between 3 and 16,384 (the 14th power of 2). When the

benchmarks were written (1980-1981)' 8K bytes (the space necessary to flag primality of

the odd integers between 3 and 16,384) was a significant amount of memory:

2Knuth's statement of the sieve of Eratosthenes algorithm is "'Start with all the odd
numbers less than N ; then successively strike out the multiples pk2, pk(& + 21,
P)k(pk -t 4) of the kth prime pk, for k=2,3 ,4 , ..., until reaching a prime pk with pk2
greater than N."

'Gilbreath's statement of the sieve of Eratosthenes algorithm, in Knuth terms, is:
"Start with all the odd numbers less than N; then saiccessively strike out the multiples
3pk, 5 p k , ... of the kth prime Pk. for k=2,3,4, ..., until reaching a prime pk greater than N."

1.
2.
3.

4.
5 .
6.
7.
8.
9.

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.
20.
21.

constant s i re = 8190;
va r

flags : array [O..sizel of integer;
i,prime,k,count,iter : integer;

count := 0;
for i := 0 to size do

for i:= 0 to size do

begin

flagslil := 1;

if flagsCil then
begin
prime := i + i + 3;
k :=i + prime;
k i t e k <= size do

&gin
flagstkl := 0;
k :=k + prime
end;

count := count + 1

end;
end;

Lines 1 through 4 define the constants, variables, and the array for keeping track of

whether an odd integer is a prime or not. A I in this array indicates a prime; a 0

indicates a nonprime. With the array dimension 8,190, the last odd integer examined for

primality is 16,383.

The body part of the program examines each of the flags sequentially. When a flag is

found not marked to a 0, all the remaining flags corresponding to muitiples of the prime

are set to 0. This is done by computing the prime (tine 12), computing the first index

of the first multiple (line 13), then marking members of the flag array for the computed

index and all succeeding multiples of the prime for which the index is less than 8,190

(lines 14-18). Finally, the count of primes is updated, and the process repeats for the

next member of the flag array not marked to 0.

In 1983, the Gilbreaths’ translated their Pascal/C program into a number of languages

(BASIC, FORTRAN, Ada, COBOL, etc.) and published an extensive list of timings for

7

computers ranging in size from IBM mainframes (3033) to home microcomputers (Apple

11). The following table shows a selection from the Gilbreaths’ compilation:*

Table 1 . Benchmark Results frm BYTE Mageiine

-

Language Time for 10 Iterations Chmputer
(Seconds 1

_____-....

IBH 3033 AssenhLy .0078

VAX 11/780 1 . 4

IBH AT (6 HHz) C Conpilei- .7

IBM PC (5 MHz) AsseenbLy 4.
ISM PC (5 MHz) C Compiler 30.

IBW PC (5 H H z I FORTH 70.

Apple 1 1 Asse&ly 13.9
Apple 1 1 FORTH 190.

When evaluating this list of timings, remember that they reflect timings for a translation

of the original Pascal algorithm to the equiprnenh/language combination being

benchmarked.

*BY convention, sieve algorithm timings are reported for performing the sieve
calculation ten times because the time for a single pass on the faster computers is only
a fraction of a second.

8

5 . THE GILBREATHS’ FORTH PROGRAM FOR THE SIEVE ALGORITHM

The FORTH version of the Gilbreaths’ benchmark, as presented in their BYTE articles, is

shown below:

1.
2 .

3,
4.
5 .
6 .

7.
8.
9.

10.
1 4 ”
12.
13.

ai90 CONSTAMT SIZE
0 VARIABLE FLAGS SlZE ALLOT
: OO-PRIHE

FLAGS S I Z E 1 F I L L
0 S I Z E 0
DO FLAGS I + C8

I F I DUP + 3 + DUP I +
BEGIN DUP S I Z E <
UHILE 0 OVER FLAGS + C! OVER + REPEAT
DROP DROP I+

THEN
LOOP
. .I‘ PRIMES“ ;

The Gilbreaths admit they are not skilled FORTH programmers; unfortunately, their

FORTH program reflects their lack of skill. There are two errors in the programs that

must be corrected to obtain correct r e s ~ l t s . ~ First, the condition for testing the

completion of the BEGIN ... W H I L E ... REPEAT (lines 8 and 9) loop is erroneously written as

BEGIN DUP S I Z E <. To be consistent with the original version of the algorithm, the

line should read BEGIN DUP SIZE <=.

The second error occurs on line 4 of the program. The FORTH word FILL initializes the

number of bytes specified in its second argument. Thus, the result of executing the

words on line 2 is to initialize only bytes 0 , I , ..., 8189. To also initialize FLAGf81901,

the statement on line 2 should read:

FLAGS S I Z E I + 1 F I L L

A third error, which occurs on line 2, does not affect the correctness of the results. As

written, 8,192 bytes are allocated for the FLAGS array. The sequence 0 VARIABLE

5The errors result in incorrectly determining that 16,383 (which has factors 3, 43
and 127) is a prime.

9

FLAGS allocates 2 bytes for a variable called FLAGS. The sequence S I Z E ALLOT

allocates S I Z E more bytes for the variable, thus defining S I Z E + 2 bytes (8,192) bytes

total. A correct definition o f the FLAGS array is:

0 VARIABLE FLAGS SIZE 1 - ALLOT

A better way of defining the FLAGS array is to use the standard FORTH word for array

definition, ARRAY-YARIABLE, to define an array of length SIZE+l :

SIZE 1+ ARRAY-VARIABLE FLAGS

A corrected version of the Gilbreaths’ version of the sieve algorithm is:

1.
2 .

3.
4 .

5 .
6 .

7.
8.

9 .

IO.
11.
12.
13.

8190 CONSTANT SIZE
SIZE I+ ARRAY-VARIABLE
: DO-PRIME

FLAGS SIZE 1+ 1 FILL
0 SIZE 0
DO FLAGS I + C@

I F 1 DUP + 3 + DUP I +
BEGIN DUP SIZE <=
WHILE 0 OVER FLAGS + C! OVER + REPEAT
DROP DROP I+

THEN
LOOP
. . I n PRIMESnb ;

By adding comments and grouping the words as arguments to the higher-level FORTH

words, the Gilbreaths’ FORTH benchmark program is more easily understood:

10

1.
2.
3.

4.

5 .
6 .

7.
8.
9.

I O .
11.
12.
13.
14.
15.
16.

8190 CONSTANT SIZE
SIZE I+ ARRAY-VARIAELE FLAGS
: DO-PRIME

FLAGS SIZE I+ 1 FILL
0
SIZE 0 DO

FLAGS I + C@ IF
I DUP + 3 + DUP I +
BEG I N
DUP S I Z E <=
UH I LE

0 OVER FLAGS + C!
OVER + REPEAT

DROP DROP 1+ THEW
LOOP
. .'I PRIMES" ;

Define constant SIZE uith v a l w 8190
Define the array FLAGS o f length 8191
Define a FORTH uord c a l l e d DO-PRIME
I n i t i a l i z e 8191 bytes of FLAGS t o 1
I n i t i a l i z e prime count t o 0
Loop t o examine 8191 FLAG bytes;
Fetch FLAGSII I ; do mu l t i p les i f not 0
Calculate 2*1+3 (prime) and 3*1*3 (K)
Begin marking of mu l t i p les of prime

white the value of K i s <= S I Z E

Store zero i n FLAGSCKI
Increment K by PRIMES; repeat WHILE
Drop PRIME, K; increment prime c o m t
E n d of outer loop t o examine F L A G S l I l
P r i n t out prime count

The execution time for the corrected version of the Gilbreaths' FORTH program on a Z8

microcontroller (12 MHz, no wait-states) is 102 seconds. As expected, the Z8 result puts

it in the same league as the 6502, the microprocessor used in the Apple I1 computer.

The following table shows this result together with the benchmarks previously reported:

11

Table 2. 28 FORTH Benchmark Results Using the Gilbreath
Version of the FORTH Benchmark

Ccwnputer Language T i m e for 10 I terat ions
(Seconds 1

IBH 3033 AssenJbly .0078

VAX 11/780 C Compiler 1.42

IBH AT (6 MHz) C Compiler .7

IBM PC (5 Hflz) Assembly 4 .
iapI PC (5 M H Z) C Colnpiler 30.
IBM PC (5 HHz) FORTH 70.

Apple I 1 Assembly 13.9
Apple I 1 FORTH 190.

28 FORTH 102. (Gilbreath program)

The major contributor to the poor performance of the Gilbreaths’ FORTH program is the

inefficient code that results when PASCAL is ported literally without regard to using

features of the FORTH language that can result in a more efficient program. The next

section presents a way of improving the efficiency of the inner loop of the program,

which is used to mark multiples of primes.

12

6 . IMPROVING THE EFFICIENCY OF THE INNER LOOP

To take advantage of an alternative method of marking the multiples, notice that the

BEGlN..WHlLE..LOOP consists of marking the last row of an N by S I Z E / N matrix with

zeros except for the cell in the first column. In the case of N=3, the result of the

inner calculation is:

A1 A4 A? A10 ... ASIZE/3-2

A2 A5 A8 A l l ... ASIZE/J-l

1 0 0 0 ... 0

Once the relation of the multiple-marking process to matrix operations is recognized, a

more efficient method of initializing the FLAGS array is possible using a FOKTIl word

(F I L L - R O W) to initialize a row of a FLAGS array in matrix format.6 After using

FILL-ROW, the program must reset the initial element of the row back to 1. The four

arguments for the FILL-ROW word are similar to those for FILL, except that extra

parameters for the row index and column length are inserted after the array-name

argument. The stack situation when calling FILL-ROW must be programmed to be:

Array name, Rou index, C o l m length, Array size, Initialization value

Modifying the FORTH program to use the word FILL-ROW results in the program shown

at the top of the next page:

‘An implementation of the word FILL-ROW for 28 FORTH is provided in Appendix B.

13

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

8190 CONSTANT S I Z E
SIZE 1+ ARRAY-VARIABLE FLAGS
: DO-PRIME

FLAGS SIZE l+ 1 F I L L
0

S I Z E 0 DO
FLAGS I C@l I F

FLAGS
I I D U P + 3 +
S I Z E 0
F I LL - ROW
1 I FLAGS + C!
1+ THEN

LOOP
. .Io PRIMES" ;

Define constant S I Z E wi th value 8190
Define en array o f Length 8141
Define a FORTH word c a l l e d DO-PRIME
I n i t i a l i z e 8191 bytes of FLAGS t o 1
I n i t i a l i z e prime count t o 0
Loop t o examine 8191 FLAG bytes
Fetch FLAGS[!]; de, mul t i p les i f not 0
P u t address o f FLAGS on the stack
P u t row index and PRIME (2*I+3) on stack
Matr ix size, i n i t i a l i z a t i o n constant t o stack
Invoke word t o zero l as t row of matr ix
Restore the value one a t FLAGSCPRIMEI
Increment the p r im count
End o f outer Loop t o examine F L A G S l l l

P r i n t out prime count

The time to execute ten iterations of this improved version of the sieve algorithm in
FQRTH is shown in the following table together with the previously presented
benchmarks:

Table 3. Z8 FORTH Benchmark Results Using the ROW-FILL
Version o f the FORTH Benchmark

Computer Language Tim f o r 10 I t e ra t i ons
(Seconds)

IBM 3033 Assembly .0078

VAX 11/780 C Compi Ler 1.42

IBM AT (6 MHz) C Compiler .7

IBM PC (5 MHz) Assembly 4.
IBM PC (5 MHz) C Compiler 30.
IBM Pt (5 MHz) FORTH 70.

Apple I 1 Assembly 13.9
Apple I 1 FORTH 190.

FORTH
FORTH

102. (Gilbreath program)
36. (Version using ROW-FILL)

Thus, by using the FORTH words applicable to the sieve algorithm, rather than simply

developing FORTH as a direct translation from Pascal, execution speed can be improved

by a factor of three, which is comparable to IPB PC/C Compiler results.

14

7. IMPROVING THE EFFICIENCY OF THE OUTER LOOP

To further improve execution performance of the FORTH benchmark program, the outer

loop can be made more efficient by converting it to its assembly language

The outer loop is that part of the FORTH program that examines each integer's flag in

turn and initiates the marking of multiples for each prime encountered. The strategy for

optimizing the outer loop of the program shown on the previous page is to redefine the

FORTH words that accomplish the looping (lines 6 and 14), and the flag test (line 7). If

a prime is encountered as a result of the flag test, the previously developed FORTH code

(lines 8 through 13) is to be used to mark multiples. The program to accompiish this is

as follows:

1. 8190 CONSTANT SIZE
2. S I Z E I+ ARRAY-VARIABLE FLAGS

3. : SIEVESUB

5 . I I D U P + 3 +
4. FLAGS

6. SIZE 0
7. FILL-ROU ;
8. 1 I FLAGS + C1
9. : O U T E R - L O P
10. do-code,
11. LTBAI ,
12. nz i f ,
13. GOFOR T H SI EVESUB
14. inc-prime-count,
15. then,
16. toop- code,
17. E X I T ,

18. : DO-PRIME
19. FLAGS S I Z E I + 1 F I L L
20. 0
21. SIZE 0 OUTER-LOOP
22. . .Ii PRIMES" ;

Define constant SIZE u i t h value 8190
Define an array o f length 8191 (0 .. 8190)

Define a FORTH word t o mark primes
Put the address o f FLAGS (XI the stack
Put rou index and PRIME (2*1+3) on stack
Matr ix size, i n i t i a l i z a t i o n constant t o stack
invoke word t o zero l a s t rou o f matr ix
Restore the value o f the primens FLAG

Push the L i m i t , s t a r t i n g index t o RStack
Load the byte a t I , t e s t i f on-zero
1f the byte a t 1 i s nonzero; mark i t s multiples
Use a FORTH uord t o mark mu l t i p les
Increment prime count
E n d o f mult iple-marking sect ion
E n d o f outer Loop
E x i t back t o DO-PRIME word

Define a FORTH uord ca l l ed DO-PRIME
I n i t i a l i z e 8191 bytes of FLAGS t o 1
I n i t i a l i z e prime count t o 0
L o o p t o examine 8191 FLAG bytes
P r i n t out prime count

7?his conversion borders on the "knowledgeable trickery" that Gilbreath disallows.

1s

The FBW'fH words needed to generate this program are:

do-c&e, Push d o - l i m i t a d star t ing- index from Stack t o RStack

LTBAI, Load the byte in the FLAG array a t index i, t e s t i f nonzero

i f , Condi t ional ly execute block o f statements depending an the
condi t ion code obtained by LTBAI,

GOFORTH During execution, t ransfer cont ro l t o the fo l lowing FORTH word

loop-code, Increment the Loop index, t es t f o r end-of - loop condi t ion

Definitions of these assembler constructs for optimizing the outer loop appear in

Appendix C.

The execution rate of the FORTH program using assembly language constructs for the

outer loop is shown in the following table along with the timings for the benchmarks

previously presented:

Table 4 . 28 FORTH Benchmark Results Using an Optimized
Outer Loop Version of the FORTH Benchmark

-. . . ____._
Computer Language Time f o r 10 I t e r a t i o n s

(Seconds)

.._._

IBM 3033 Assembty -0078

VAX 11/780 C Compiler 1.42

1BP9 AT (6 MHZ) C Compiler .?

I5M PC (5 MHz) Assembly 4.
IBM PC (5 MHz) C Ccmpiler 30.
IBM PC (5 MHz) FORTH 70.

Apple 11 Assembly 13.9
Apple 11 FORTH 190.

28
P8
28

FORTH
FORTH
FORTH

102. (Gilbreath program)
36. (Version using ROW-FILL)
21. (Assembly Language f o r outer

LOOP)

14

8. ELIMINATING DUPLICATE MARKING OF MULTIPLES

To squeeze out another increment of improvement, notice that the Gilbxeaths’ version of

the sieve algorithm marks many nonprirnes more than once. To see this, consider the

determination of the odd nonprimes less than 50:

Prime Multiples marked

3 9 15 21 27 33 39 45

5 15 25 35 45

7 21 35 49

11 33

13 39

Notice the multiple markings for 33, 35, 39, and 45. In this example, 33, 35, 39, and 45;

are each marked twice because these multiples can be obtained from either of two

products, e.g., 39 can be obtained from 13 threes or 3 thirteens. As can be seen from

Knuth’s statement of the algorithm (footnote 2), multiple markings may be omitted for

any prime greater than the square root of the limit. Use of this observation for the

example above will eliminate multiple markings for primes greater than seven.

’To implement the rule for the FORTH program, a test must be inserted in the

OUTER-LOOP word to eliminate multiple markings whenever the corresponding prime is

greater than the square root of the limit. For S U E = 8190, the last integer tested for

primality is 16,383. Because the relationship between the integer examined for primality

(P) and the index in the outer loop (I) is P = (I - 3) / 2 multiple marking for value of the

outer loop index greater than (SQRTfLIMIT] - 3) / 2 can be omitted. In the case of

LIMIT = 16,384, multiple markings can be omitted for values of the outer loop index

greater than 62.

To generalize the program, a square root calculation should be added to permit

considering SIZE as a program parameter. A FORTH program incorporating calculation of

17

the limit to eliminate many multiples is shown below. The additional FORTH words used

in this benchmark (limit>i:if and word-then) are defined in Appendix @:

1. 8190 CONSTANT SIZE
2. SIZE 1+ ARRAY-VARIABLE FLAGS

3. : SIEVESUB
4. FLAGS
5. I I D U Q + 3 +
6.. SIZE 0
7. FILL-ROW ;
a. 1 I FLAGS + C! ;

9. : OUTER-LOOP
10. do-code,
11. LTBAI,
12. nx i f ,
13. l i m i t > i : i f ,
14. GOFORTH SIEVESUB
15. word-then,
16. inc-prime-count,
17. then,
18. 1 oop- code I

19. E X I T , ;

20. : DO-PRIME
21. FLAGS S I Z E 1+ 1 F I L L
22. 0
23. SIZE 0 OUTER-LOOP
24. . -I1 PRIMES" ;

Define constant S l Z E wi th value 8190
Define an array o f length 8191 (0 .. 8190)

Define a FORTH yosd t o mark primes
Put the address o f FLAGS on the stack
Put row index and PRIME (2*I+3) on stack
Matr ix size, i n i t i a l i z a t i o n constant t o stack
Invoke word t o zero l a s t row o f matr ix

Restore the value of the p r i m t s FLAG

Push the L i m i t , s t a r t i n g index t o RStack
Load the byte at I , t es t i f on-zero
I f the byte a t 1 i s nonzero; m r k i t s w t t i p t e s
Test i f LIMIT > outer- loop index
Use a FORTH word t o mark ntu l t ip les
Pairs with l i m i t > i : i f condi t ional t e s t
Increment prim count
E n d o f mult iple-marking sect ion
E n d o f outer Loop
E x i t back t o DO-PRIME word

Define a FORTH word ca l l ed DO-PRIME
I n i t i a l i z e 8191 bytes o f FLAGS t o 1
I n i t i a l i z e pr im count t o 0
Loop t o examine 8191 FLAG bytes
P r i n t out prime countl .

18

The time to perform ten iterations of the prime calculation with the program just

presented is only five seconds. This result is shown with the benchmarks previously

presented in the table below:

Table 5 . 28 FORTH Benchmark Results - Duplicate Marking
Avoidance Version of the FORTH Benchmark

Computer Languege Time f o r 10 Iterations
(Seconds)

I 0 M 3033 Assembly -0078

VAX 1 1/780 C Conpiler 1.42

IBM AT (6 HHz) C Campiler .7

IBW PC (5 MHz) Assembly 4 .
IBM PC (5 HHz) C Cornpiter 30.
I B H PC (5 M H z I FORTH 70.

Apple I I Assembly 13.9
Apple I 1 FORTH 190.

FORTH
FORTH
FORTH
FORTH

102.
36.
21.

5 .

(Gilbreath program)
(Version using RMJ-FILL)
(Assembly language for outer loop)
(Avoid duplicate marking of multiples)

19

9. CONCLUSION

This memorandum presents four FORTH programs that implement the sieve of

Eratosthenes algorithm. The baseline version of the benchmark, which was published in

BYTE articles on computer benchmarks, results in execution that i s three times longer

than those obtained by writing the program so that it uses a FORTH matrix operation

word ROW-FILL. The alternative shows that the 2 8 microcontroller programmed in

FORTH call perform at speeds compaiable to an IBM PC programmed using a C compiler.

By replacing the benchmark's outer loop with an assembly-language equivalent that more

accurately implements the Knuth algorithm (in this case, eliminating some of the

duplicate markings of nonprimes), speeds can be reduced by another factor of five.

However, in fairness to the other sieve benchmarks, their timings would also show a

significant reduction if a similar duplicate marking of primes was avoided in those

programs.

20

10. REFERENCES

Brodie, L., Starting FORTH, Prentice-Hall, Englewood Cliffs, NJ, I98 1.

Edwards R., Evaluation o f a Single Board Microcomputer Suitable for Rapid Prototyping,
ORNL TM/10361, Oak Ridge National Laboratory, February 1987.

Edwards, R., Optimizing the Zilog Z8 FORTH Microcomputer for Rapid Profotyping, URNL
TM/10463, Oak Ridge National Laboratory, September 1987.

Gilbreath, Jim, "A High-Level Language Benchmark," BYTE, September 198 1.

Gilbreath, Jim and Gilbreath, Gary, "Eratosthenes Revisited," BYTE, January 1983.

Knuth, Donald E., The Art o f Computer Programming Vol 2: Semi-Numerical Algorithms.
Reading MA: Addison- Wesley, 1969.

2 8 Microcomputer Technicul Reference Manual, Zilog Inc., 1984.

21

APPENDIX A

EXAMPLE OF SYSTEM OVERHEAD FOR AN ELEMENTARY FORTH WQRP,

Conisider the word "+" that adds the two sixteen-bit words at the top of the stack and

replaces them with their sum. In 28 FORTH, the sequence of instructions to accomplish

this operation consist o f

28
Ins t ruc t i on C m n t s

POP UR9
POP WR8
POP W R l l
POP W R l O
ADD R9,Rll
ADC R8,RlO
PUSH WRP
PUSH VR8
LO R15,#EVR
LDCI @R15,ORR2
LDCI @r15,@RR2
LDCI @R15,aRR4
LDCI @R15,@RR4
JP a R 6

Pop Lou byte a t top o f stack i n t o Reg 9
Pop high byte a t top o f stack i n t o Reg 8
Pop lou byte a t 2nd from top i n t o Reg 11
POP high byte a t 2nd from top i n t o Reg 10
A d d Least s i g n i f i c a n t bytes o f the tmo 1 6 - b i t arguments
A d d mast s ign i f i can t bytes, propagate the carry (i f any)
Push resu l t low byte t o stack
Push r e s u l t high byte t o stack
Load address of execution vector reg i s te r
Load high byte of next execution vector
Load Low byte of next execution vector
Load high byte of next execution adcfress
Load Low byte o f next execution address
Jump t o code f o r next FORTH uord

Calculating the execution times for these operations shows that the A D D and ADC
instructions amount to just 15% of the total time required to execute the FORTH word.

22

APPENDIX B

IMPLEMENTATION OF ROW-FILL FOR 28 FORTH

28 Instruct ion Comnents

POP U R 6
POP U R 7
CALL m C A 8

POP
wp

ADD
ADC
ADD
ADC

LM3p:LDC
ADD
AD C
CP
JR
JR
CP
JR

E X I T : JP@

U R l L
UR15
UR13, UR 15
UR 12, UR 14
R9,RlS
R8,R14
6R8,R7
R 9 , R l l
R8,R10
R12,R8
ULT, EX1 T
UGT,LOOP
R13,RP
UGT, LOOP
EXIT-VECTOR

POP I N I T I A L I Z A T I O N VALUE TO UR7

POP VALUE OF MATRIX S I Z E TO UR12f13
POP VALUE OF COLUMN LENGTH TO WR70/11
POP VALUE OF ROU INDEX TO UR8/9
POP MATRIX ADDRESS TO UR14/15

ADD MATRIX ADDRESS TO MATRIX S I Z E

ADD MATRIX ADDRESS TO ROW INDEX

STORE I N I T I A L I Z A T I W S VALUE V I A R 1 4 / 1 5
INCREMENT POINTER USING COLUWN LENGTH

TEST HIGH BYTE OF NEW VALUE OF POINTER AGAINST L I M I T

TEST LOU BYTE I F HIGH BYTES ARE EQUAL

23

APPENDIX C

'Ihis section defines the FORTH words required in the optimization of the outer loop of
the FORTH benchmark for the sieve algorithm discussed in Section 6 . The W Q ~ S used in
the outer loop optimization make use of locations 60 through 69 of the 28 register file.

Register

Address Descr ip t ion o f D e f i n i t i o n
F i l e

60/61 P r i m e count
62/63 1nCk.X
54/65 Array s i ze (SIZE)
66/67 Address of the FLAGS array
68/69 L I M I T (Used t o l i m i t dupl icate markings o f nonprimes)

: do-codp 62 R POP, 63 R POP, I n i t i a l i z e s t a r t i n g value o f index
64 SIZE-ADDR LOAD-WORD,
66 FLAGS LOAD-WORD,
68 R INCW, do, ; Increment S IZE t o do SIZE+l i t e r a t i o n s

Copy o f array s i ze t o reg i s te r f i l e
Copy o f FLAGS addr t o reg i s te r f i l e

: LTBAI R9 63 RR LD. Copy o f INDEX t o working reg i s te r 8/9
R8 62 RR LD,
R 9 67 RR ADD,
88 66 RR ADC,
R10 R8 LDC,
R10 R10 rr OR, ;

A d d FLAGS address t o Index

Load R10 v i a po inter a t R8/9
Set condi t ion codes in Z8 f l a g reg i s te r

: Li rn i t> i : i f , 68 62 RR CP, Test L I M I T > INDEX
l e i f ,
ecl if, I F L I M I T (H) = I N D E X (H) t e s t Low byte

I f LIMIT < INDEX skip out

69 63 RR CP, Test low bytes
i f LIPBIT(L) <= INDEX(L) s k i p O u t

SWAP then,
u l t i f ,

62 R PUSH, 63 R PUSH, ; Push current vaLue o f INDEX t o stack

: word-then, then, then, Targets f o r the i < l i m i t t es ts

: loopcode, 62 R INCW,
64 R DECW,

LOOP,

Increment INDEX
Decrement the loop counter
Test loop counter f o r end-of- loop

24

: L O A D - W R D OVER 1+ OVER 0 100 U/ RR LO, DROP FF AND RR LK, ;

: ZERO-UORD DUP 1+ R CLR, R CLR , ;

: GOFORTN FJND
RO R DECU,
RO R3 STC,
RO R DECW,
RO R 2 STC,

HERE 12 4 a d 3COD OR,
HERE 10 + 0 100 U/

SUAP 2600 OR , DROP
DUP FF and 5COO OR ,
0 100 U/ 4COO OR , DROP

R 6 R 4 LDC,
R 4 R INCW,
R 7 R 4 LDC,
R 4 R INCU,
R6 EXIT ,

HERE a + , HERE a + ,
R2 RO LDC,
RO R lNCU,
R 3 RO LDC,
RO R INCU,

A d d r e s s o f t a rge t FORTH word to stack
S a v e R2/R3 on R S t e c k
R 3 t o R S t a c k (v i a RO)

R2 t o R S t a c k (v ia RO)
Lou byte o f HERE+12 t o R 3

H i g h byte o f HERE+IO t o R 2
L o w byte of target addr t o R5
H i g h byte of target addr t o R 6
Load jwp addr t o R 6 / 7

J w p t o target addr v i a R 6 / 7
I P and EV t o return t o prior routine

R e s t o r e I P

: SQRT DUP 8000 AND I F NEGATE THEN 60 5 0 DO OVER OVER / + 2 / LOOP SWAP DROP ;

25

I N E R N A L DISTRIBUTION LIST

1.
2-11.
12.
13.
14.
15.
66.
17.
18.
19.
20.
21.
22-24.
25.
26.
27-29.
30.
31.
32.
33.

E Paul Baxter
W. Edwards
W. Futkerson
R. Grydcr
Pa. €3. Honea
J" 0. Kolb
Russell Lee
C. T. Privon
D. E. Reichle
P. M. Spears
R. B. Shelton

Steve Wallace
Central Research Library
Document Reference Section
Laboratory Records
Laboratory Records -RC
Patent Office
C. B. Grillot
Eleanor T. Rogers

D, P. vogt

EXTERNAL DISTRUBUTTON LIST

34. Office of Assistant Manager for Energy Research & Development, Department of Energy,
Oak Ridge Operations Office, Oak Ridge, TN 37831.

35-44. Office of Scientil'k and Technical Information, P.O. Box 62, Oak Ridge, TN 319831.

45. J. J. Cuttica, Vice President of Research and Development, Gas Research Institute, Is6uo
W. Bryn Mawr Avenue, Chicago, 1L 60631.

46. J. P. Kolt, Professor of Economics, Kennedy School of Government, Harvarcl University,
79 John F. Kennedy Street, Cambridge, MA 02138.

4'7, I). E. Morrison, Professor of Sociology, Michigan State University, 201 Berkey Hall, East
taming, MI 48824-1111.

48. R. &. Perrine, Professor, Engineering and Applied Sciences, Civil Engineering Department,
Engineering I, Room 2066, University of California, b s Angeles, CA 9024.

