eForth and Zen

Dr.C. H.Ting
Second Edition

Ofeete Enterprises

2013

eForth and Zen

Contents

Forth and Zen
Comparing Forth and Zen
Zen as an Ora Tradition
Forth as an Oral Tradition
Acceptance of Zen
Acceptance of Forth
Simplicity in Zen
Simplicity in Forth
Enlightenment in Zen
Enlightenment in Forth
eForth Modéel

Origin of eForth

eForth Model

Changing Environment
Universal Microcomputer
Universal Forth

DOS Implementation
Porting eForth

eForth Overview

Inner and Outer Interpreters
Virtual Forth Engine
eForth Words

eForth Word Set

Memory Map

Assembly Macros
Address Interpreter

Cold Boot

Initializing User Variables
M achine Dependent Kernel
eForth Kernel

Colon Word Interpreter
Integer Literals

Address Literals

Memory Access

Return Stack Words

Data Stack Initidization
Classic Data Stack Words
logical Words

Primitive Arithmetic Word

~NO OO U DNPRF PR

10

12
12
13
13
15
15
16
17
19
19
21
23
24
25
20
30
31
32
33
33
35
36
37
38
39
40
41
42

High Level Forth Words 44

User Variables 44
Vocabulary and Search Order 46
Multitasking Considerations 47
More Stack Words 48
MoreArithmetic Operators 49
More Comparison 50
More Math Words 52
Scaling Words 55
Memory Alignment Words 56
Special Characters 57
Managing Data Stack 58
Memory access 59
Memory Array and String Words 60

Text Interpreter 62
Numeric Output 63
Number Formatting Tools 64
Number Output Words 65
Numeric Input 66
Seria 1/0 Words 68
Derived I/0O Words 69
String Literal Words 70
Word Parser 71
Parsing Words 73
Dictionary Search 74
Text Input from Terminal 77
Error Handling 79
Text Interpreter Loop 82
Operating System 84
eForth Compiler 86
Interpreter and Compiler 87
Control Structures 90
String Literals 92
Name Dictionary Compiler 93
Defining Words 96
Utilities 97
Memory Dump 98
Stack Dump 99
Stack Checking 100
Dictionary Dump 101
Search Token Names 102
The Simplest Decompiler 103
Sign-on Message 104
Hardware Reset 106

Some Final Thoughts 108

1. Forth and Zen

Forth is often mentioned not only as a computegl@ge but also a religion, because of
its feverish followers. Among the religions, Zenconsidered to be the closest to Forth.
As popularly known, Zen is understood as a synoof/simplicity, brevity, light,
understanding, wisdom and enlightenment. Thesalaceattributes to Forth as a
language and a philosophy. Indeed, Zen and Ftsthbeear striking similarity in their
historical development and evolution. This aspéaimilarity between Forth and Zen
has not been well documented, and this is one gerpbthis paper.

Zen and Forth both started as revolutions towamlsemtrenched establishments--the
priesthood.

Zen and Forth both started as oral traditions bezafithe lack in supporting literature
and the high concentration of expertise.

Zen and Forth both stressed that their matteralgest were simple and straightforward.
However, it was in the interests of the entrenabstdblishment to make things
complicated and inaccessible to common folks.

Zen and Forth both stressed that the true enligt@hand understanding were within
the grasp of individuals. The rituals and the atee practices exercised in the
establishments had nothing to do with these goals.

Here | would like to compare Zen and Forth in geedetails so that we all have a better
appreciation of these two seemingly unrelated gpid-orth programmers may be
encouraged to press on using this language witgreehhope that their work will be
recognized by their peers in the future.

Comparing Forth and Zen

The most important contributions of Huineng, thetlsPatriarch of Zen in China, was
that he had his lectures recorded by his discipléte also had the lectures printed and
distributed as identifications of discipleship is teach and his philosophy. In striking
contrast to the Buddhist Sutras translated frons&anthe lectures were plain, easy to
read and to comprehend. This collection of lectuvas the only book written by a
Chinese to be granted the status of a Sutra iBtidelhist literature, and is commonly
call the Platform Sutra. (Sutras were the teachirBuddha himself.)

People compared Forth and Zen in a very superficaainer, mostly without the
understanding of either. | feel that there is ad® treat both subjects fully in a single
treatise. There is no better way than to presentveéry original text of Zen and the
source code of Forth side by side. In the coufgeeparing the complete
documentation for eForth, | thought it would beyaseful to lay down the eForth text in
parallel with the original text of the Platform gt Of course, it is impossible to

1

correlate the text of eForth directly with the tekthe Platform Sutra. However, one
should be able to see the common threads in thetheahemes of simplicity, personal
understanding, enlightenment, and the struggleimstgarevailing established doctrines
recurring time and again in both texts.

As | intended this book for both English and Chanesaders, | would like to include
texts and discussions in both English and Chinege effect, we would have four
threads running in parallel: the original PlatfoButra in Chinese, its English translation,
the text of eForth, and its Chinese translationhis Ts how this book is laid out.

Historically, Zen was a grand synthesis, combinimgessence of Buddhism,
Confucianism, and Taoism after about one thousaadsyof inter fertilization. It was

the results of the many Chinese minds, strugglamgemancipation after a thousand years
of conflicts between the traditional humanistic @mmanism, the nihilistic Taocism and

the imported anti-materialistic Buddhism. It l@idrmant for a hundred years, surviving
through five generations of Zen masters, passiegltictrine orally from heart to heart.
Eventually, during the reign of the Sixth Patrigreluineng (638-714 AD), it blossomed
in full and became the dominating religious philaisp in China ever since. Its

influence spread into Japan, Korea, and Southesat ALately, it also became
fashionable in Western Europe and America.

The history of Forth is too short for meaningfuhgmarison with that of Zen. It was
virtually unknown to the world in its first decadéexistence until the late 70's. It was
invented by a lone programmer, Charles H. Moorésida of the main stream of
computer industry and computer sciences. In thg &@'s, it was only used in
astronomy, as he helped programming minicomputeasitomate telescopes and
observatories. Then it blossomed with microcomprgeolution, promoted by Forth
Interest Group in the early 1980's. Since 1985 Fbrth Interest Group has been in
steady decline, as C became the dominant progragniamguage. The advantages of
Forth, such as elegance in its architecture, saiplin its syntactic construction, and
economy in memory utilization, seem irrelevanthia aige of mega-resources, where
MIPS, megabytes of RAM memory, gigabytes of diskage are commodities easily
affordable.

As the operating systems and applications growltthé available RAM and disk
storage, at some point people will ask the questioaether these huge programs are
worthy of the resources they consume. Peoplehaite to ask whether the direction we
are heading will lead us to better lives and bedtesironment. When we stop equating
bigger to better, and more to happier, then wereavaluate the computer technology in
a new light. Then, maybe Forth will shine again.

Zen asan Oral Tradition
Buddhism was founded by Gautama Siddhartha, aoaighilosopher and teacher who

lived in India (~560-480 B.C.) He was called Buddthich means the enlightened one.
He attracted a large following. His teaching isexe was that one could reach

Nirvana, a divine state of release from earthlywpsorrow, and desire, by the right living,
the right thinking and self denial. He left no tvg behind, while Buddhism flourished
in India for a long time.

In the two hundred years after Buddha's death, rsaehgols formed after different
personalities and there were great arguments dmtekeconcerning what were his true
teaching. Great conventions were held to debatéstues and codified his teachings as
Sutras in Sanskrit.

The earlier dominant school was Hinayana, whicleagito the south and is still
flourishing in Sri Lanka, Burma, and Thailand. Tater dominant school was
Mahayana, which spread into China, Tibet, Kored, Japan.

The Hinayana School emphasize the mystic poweludidBa and the personal salvation
through one's own efforts. The Mahayana Schoohasiped eclecticism and in
common search for salvation.

After the introduction of Mahayana into China @02AD, it arose great interests in the
intellectuals as well as the peasants. Many emparad their courts were converted
and spent great efforts in building temples aneéaging the Buddhism. A continuing
effort over three hundred years was devoted tskate Sanskrit Sutra and related
literature into Chinese. In Tang Dynasty (618-2@), more than 5000 volumes of
Buddhist literature were translated and assembled.

Most of the Sutra translations were done poorly @egiired a priesthood for the
interpretation and dissimulation. The vast amaititerature also caused sectarian
divisions and arguments among the priesthood, ointy the Hindu tradition.

Zen was introduced into China by a legendary Indi@mk Buddhidharma in 527 AD.
He stayed at the Shaolin Temple for 9 years, spgrali his time meditating in front of a
stone wall. He was known as the ‘Indian Monk Lagkat a Wall'. He didn't use any
Sutra, and he didn't write anything. He taughewa $tudents and encouraged them to
find enlightenment in themselves. His teaching stammarized as:

My teaching is outside Buddhist tradition,

As truth cannot be conveyed by writings,
Cleanse your mind to reveal your true nature;
One can reach Nirvana directly.

Buddhidharma passed his garment and bowl to htestiHuiko as evidence of the
discipleship and commanded him to do the samavergenerations. He then returned
to India. Huiko passed the teach with the garmaedtthe bowl to Sengtsan. Sengtsan
passed them to Taohsin. Taohsin passed them tgjéiun Finally, Hungjen passed
them to Huineng (638-714 AD).

For a hundred years, Zen was passed from moutlotbthnand from heart to heart.

Very few people knew of its existence. Even felusw its philosophy and teachings.
In China, Buddhism flourished when supported byehmperors and by high officers. A
number of times the Buddhism was almost complatestroyed when the country was in
turmoil and when the Confucian officers could comé the emperor that Buddhists were
threats to the state. All the while, the Zen masteally passed their teachings from
one generation to the next.

Forth asan Oral Tradition

Forth was invented by Charles (Chuck) H. Moore wias trained as a physicist in MIT
but wandered into programming.

In early days, he built an interpreter so thatotld execute words on punched cards.
Later he found that these words could be more aaaadly compiled into lists, which
could be executed by the computer more convenienile interpreter with very small
modification, could be made to compile anything amdrything, and the whole scheme
evolved into a programming language. It was nafkath, as abbreviated from Fourth,
meaning the fourth generation of programming lagguahen the third generation of
computers bases on integrated circuits were be@prgvailing in the computing
industry.

Very early in the development of Forth, a statelofure was reached. Chuck was
able to generate new Forth systems from an exisomth system through
meta-compilation. He did not need other prograngnaols to build new Forth systems,
and Forth started to evolve independent of thetiegi®perating systems and
programming languages. This state of closure eag mteresting, like the ying-yang
cycle. One could not find an entry point oncediiele was closed. In that Chuck had
the monopoly on Forth, because very few peoplegssesl the understanding to cut in
the cycle in order to build new Forth systems. félequite secure in giving users the
complete source listings, fairly sure of that nopoduld reversed engineered the Forth
technology, even though the source listings wereptete and truthful.

Indeed, the source code was very difficult to rdetause a Forth system was generated
by the meta-compiler, and the meta-compiler wastevriin Forth. To understand Forth,
one had to understand the meta-compiler. To utatetshe meta-compiler, one had to
understand Forth completely. Where do you start?

Forth thus became a legend. The astronomers lbgednuch that they made it the
standard language for observatory automation. a#t fairly easy to use but very

difficult to understand. The source code travetethe far corners of the world with the
telescopes, but the knowledge and understandifgrdfi was only passed from mouth to
mouth and heart to heart. Hence Forth becameadtradition these days. Forth code
tended to be concise and often packed tightlyackd. In-line documentation and
comments were deemed too expensive, and most caslpaorly commented. Forth
thus acquired the reputation of a write-only largpia

Several manuals were circulated among the obsem@stalocumenting a few of the most
popular Forth implementations. These manuals mosthtained a short section
introducing Forth and discussing how to use thdiqdar Forth system, and a long
dictionary documenting what each word did. Thesauwals told the users what Forth
was, but provided very little help as to how Fostbrked.

Acceptance of Zen

Huineng, the Sixth Patriarch, was a genius. Hédriiuread because he was borne poor
and gathered wood for a living, but he could exptae Sutras when people read them to
him. He went to learn from the Fifth Patriarch Igjem, and Hungjen sent him to labor
in the kitchen. As Hungjen got old and wanteddegpon the garment and the bowl, he
asked his students to write poems to show him thderstanding of the enlightenment.
His best student Shenhsiu wrote the following poem:

Our body is the bodhi tree,

And our mind amirror bright.
Carefully we wipe them hour by hour,
And let no dust alight.

Hearing this poem, Huineng asked a scholar to wioign his own poem, because he
couldn't write himself:

Thereisno bodhi tree,

Nor stand of a mirror bright.
Snceall isvoid,

Where can the dust alight?

When Hungjen saw this poem, he passed the garmdriha bowl to Huineng and told
Huineng: "You are the one Buddhidharma prophesiéten will flourish in China
through you. Take the garment and the bow! tcheeSixth Patriarch, but do not pass
them on any more." Hungjen was in such a hurpyats things to Huineng that he didn't
even shave Huineng's hair (to admit him to Buddbrider), as Huineng was still a
layman.

About 20 years later, when Huineng was well essélelil as the Master of Zen, he was
asked by a Provincial Officer to give lectures @anZ The Officer had Huineng's eldest
student Fahai recorded his lectures and had theréscprinted as the 'Platform Sutra,
Lectures by the Six Patriarch’. When Huineng wamiato die, Fahai asked him:

"What are you going to do with the garment andibw|? Who's going the inherit
them?" Huineng said: "As commanded by Buddhidhathegarment and the bowl

will not be passed on. But now you have the Ptatf8utra. Go forth and teach others
according to this Sutra. Everything | learned i gown in it. When you read it, it is

as if you am talking to me."

20 years after Huineng died, the Northern Schodl fagored by the royal court and

dominated the Buddhist landscape. The Southeradbelas scattered and mute in
Southern China. One of Huineng's student, Shegi@d@-760 AD), went to the capital
and challenged the doctrine and the Zen inheritahtiee Northern School in a series of
lectures and public debates. He convinced thet @out the public of the historical
significance of Huineng and established the PlaifSutra as the orthodox doctrine of
Zen Buddhism.

Acceptance of Forth

The major breakthrough in the Forth arena was diileg Forth Interest Group, which
was founded by Bill Ragsdale in 1978 in the Siliaalley. The most important
contribution FIG made was to reverse-engineer ghFystem from ground zero, thus
breaking the infinite ying-yang cycle. FIG orgasdza Forth Implementation Team
which built and released 6 Forth implementatiomgtie 6 then most popular
microprocessors based on the figForth model. Timegkmentations were written in
assembly code of the native microprocessors. PBeupb were familiar with the
assembly code could then easily implement figFortltheir own microcomputers.
figForth thus trained a new generation of Forthgpaonmers outside the Forth oral
tradition.

There was a host of Forth literature appearingpéndarly 1980's, which further helped
the popularization of Forth among the personal agempusers. Among them was Leo
Brodie's 'Starting Forth' , 'Thinking Forth', aie tL979 Special Forth Language Issue in
the Byte magazine. 'Forth Dimensions' from FIG dodrnal of Forth Applications and
Research' from the Forth Institute were the twoompyblications on Forth. These
literature showed that Forth penetrated into mafigrént scientific communities and
technical industries.

My most important contribution to Forth was the ledtion of 'Systems Guide to
figForth', first released in 1979. Instead ofitglpeople what Forth did, it
systematically explored how Forth did things and/wiings were done the ways they
were. It put to rest the myth that Forth was @evonly language by showing that Forth
could be understood by averaged user with somegdsaial studying. It showed how
the inner interpreter and the outer interpreterkedr and why words and dictionary in
Forth were constructed the ways they were by négesdt proved that the
understanding of Forth could be transmitted thropger medium without personal
interaction. The impact of this work, | would like believe myself, was similar to what
Huineng caused with his Platform Sutra on Zen.

Simplicity in Zen

Buddhism is very complicated because it is not adgtithic system of thoughts and
philosophy. It accumulated many centuries of galtand philosophical development.
The Sutras were all attributed to Buddha but wesstrtikely written by people remotely
associated with Buddha. Lots of the mystic Hindufeund their ways into Buddhism,
which was inevitable because Buddhism was developte Hindu environment, like

the 33 layers of heaven, 18 layer in hell, theaaination of all animals, etc.

There were many different theories about how tigth, and Nirvana. There were
many sectors and schools about how one could dtiamana to avoid the reincarnation
into a lower animal form. Thing got complicatedlaonfusion reigned supreme. In
essence, everybody just picked what he believeccandinced others that his was the
best and most logical way to deal with life anditaliramifications.

The general consensus was that vegetarianism vea giving to the temple was good,
kindness to people and animal was good, recitirigaSuas good, meditation was good,
worshipping Buddha and other Buddhist deities wasdgdedicating to priesthood was
good, etc. Could one attain Nirvana by doingladise? Maybe. Maybe not.

Zen was a great simplification of all these. Huigenaintained that Buddha hood and
enlightenment could not be achieved through gelyesiatepted Buddhist practices, like
reciting Sutras, making offerings, meditation ieapl sitting positions. As everybody
already had the Buddha nature in him, all he hatbts looking inward to find the true
Buddha. Our senses and our thoughts tended tov&ibm the Buddha nature and they
should not be trusted. The process of Zen (Dhy@han, meditation), was to reject the
influences of senses and thoughts, and to arrigestdte of ideallessness, nonobjectivity,
and nonattachment. In this state, nothing exteshalirselves and within our own
minds can influence us and dragged us back toatikyeexistence.

Simplicity in Forth

The poem by Shenhsiu and the poem by Huineng pediiel best contrast for us to
compare the conventional wisdom in the current agempindustry against the Forth
philosophy. Let me paraphrase the poems to shoywoimy. From the mainstream of
the computer science, one will advice our youngster

Hardware is complicated,
Softwar e even more so.

Sudy hard day and night,
Maybe you can be productive.

From the point of view of Forth, we might say:

Hardwareisthereality,
Software but anillusion.

Learn your Forth well,

And you can conquer them both.

Computer hardware is difficult. Computer softwereven more difficult. We have
volumes and volumes of literature to prove themardware and software are difficult,
only because people are not given the right taptietl with the complexity in these
systems. If we insist on asking whether the corifylés necessary, we can convince

ourselves that they should not be complicated. cmeputer hardware evolved trying
to solve the perceived software problems. Thenso# evolved trying to solve the
perceived hardware problems and the problems ihdh&an interface. If these
preconceived problems do not exist at all, theward can be simple and powerful.
The software can be simple and powerful as well.

In a typical computer system, there are layers ugyers of software between the user
and the computer hardware. The operating systehitantilities, the compilers,
assemblers, editors, linkers and loaders are glla@mplicated and mostly proprietary
programs. They helped the user to start his joguime this computer juggle. After a
while, they tend to hinder the users progress, uscthey insulate the user from the
hardware, and deliberate efforts were expendedeteept the user to fully make use of
the capabilities built in the hardware.

This issue of simplicity can be illustrated in folowing diagram. The operating
systems and the applications separate the usehamdmputer hardware. The software
protects the hardware, because the user is nettiusted. Leaving to the user, he will
abuse the hardware and causes the system to crastine days of mainframe computers,
the greatest sin was to crash the computer, bethed®elihood of the computer
priesthood depended upon the continuing operatidineocomputer. The hardware and
the operating system had to be protected at aécos

Cormputer Hardware

i

Dewice Dirivers

Fesource MManagers
Operating System Services
Azsemblers
Compilers
Linlzers
Loaders
Editors

Applications

i

zer

In this age of personal computers, the prioritjuimed by 180 degrees. The user owns
the computer. He is responsible for its operatiols. it necessary to protect the
computer against its owner?

Forth provides a much simplified interface betwdenuser and his computer as show in
the following diagram. Forth is a simple and imtggd interface between the user and
his computer.

Cormputer Hardware

i

Inner Interpreter

Forth

Cuter Interpreter

i

ser

Through Forth, the use can directly control the potaer hardware, because every part of
the computer system is freely accessible to the useherefore, the user can explore the
best way to use the computer system to suit hiscapipns.

With the freedom to access computer hardware comeeesponsibility to use the
hardware properly. The user may crash the systegquéntly. It will cause no harm
as long as the computer can recover quickly froenctlashes with minimal damages to
the data stored in the computer system. Aftetladl user owns the computer.

There are other examples which show that compleikigs not necessarily mean
performance. Simple systems are generally fagtnzore resilient.

Registers in the CPU are designed to hold tempataty so that the CPU does not have
to go to the slow memory to fetch and store datdowever, large number of registers
become a burden when you call subroutines, antetfisters must be saved before the
call and restored after the return. In order tespup a computer, you tend to have
more and more registers and make less and lessusimar calls. If we recognize that in
high level languages and in structure programmiggsubroutine is the most important
mechanism, we should instead optimize the memargsacin the subroutine call-return
and put all the intermediate data on the data stack

Another example is the prefix arithmetical notatpyevailing in conventional
programming languages. The prefix notation is tumahand was forced upon all

young minds in their algebra lessons. It is mudntematural for both computers and
humans to think in linear lists, sequentially exedu Thinking algebraically, you need
two-pass compilers to break the equations downpigoes and reassemble them for the
computer to execute. Thinking in the postfix terasimple one-pass interpreter can be

10

drafted to perform all the functions required afcanplicated compiler.
Enlightenment in Zen

Zen was the cumulative synthesis of the Buddhigopbphy and the traditional Chinese
Confucianism and Taoism. Zen was also a revolwdgainst the Buddhist traditions

and establishments. It discredited the Buddhesttmes, which emphasized ceremonies
and outer appearances, while claimed that thetgslignent exists only in the minds of
individuals.

A huge amount of Buddhist literature had been teded from Sanskrit to Chinese.
Because the translations were difficult to undedta priesthood was established for its
dissimulation and interpretation. Towards thierb tradition, the Zen masters
proclaimed that enlightenment could not be trangahiby written words, but had to be
handed done orally from heart to heart.

In traditional Buddhist theories, it was very diffit to attain Nirvana or Buddhahood.

It required a long time of studying, and the preebf self-denial. In the end, there was
still no assurance that one could attain it. E¥eme attained it in this life, there would
be the possibility of losing it in the next lifeThere were external forces which we could
not know and we could not avoid.

Zen placed the possibility and the capability taiatenlightenment and Buddhahood
squarely in the individual, by declaring that thed8ha nature is part of the human nature
and it exists in everybody. The Buddha naturelesand corrupted by the worldly
desires and thoughts. These desires and thouahisecpurged, the individual can thus
be enlightened, and his own Buddha nature can rése. The enlightenment is the
realization of this self-sufficient Buddha nature.

As to how one became enlightened, there were twormahools of thoughts. Huineng
insisted that enlightenment came suddenly and Semghaintained that it ought to be

the results of diligent study, mediation and seiaigch These were the Southern Sudden
School and the Northern Gradual School. HoweweHwaineng maintained, how
enlightenment is achieved is not important. Thpadrtant thing is its realization.

People are all different, and they are enlightaneatifferent ways. A master can teach,
but he can not enlighten. The enlightenment canoes within. The best a master

can do is to inspire, to help, to lead the way, mwaybe to strike a sharp blow on the head
at the right time.

Enlightenment in Forth

What is the enlightenment in Forth? | think ithe complete understanding of a
computer in terms of its operations and its int#feo the user. This understanding is
not as complicated as we have all being lead tew®| It involves two components of
Forth: the inner interpreter which Forth imposedtmcomputer hardware to execute
Forth lists, and the outer interpreter which exeswtords typed in by the user. If one

11

understands both the inner interpreter and the citrpreter, he has the complete
understanding of computer, in the sense that hgoamut and build a Forth system on
any computer and make that computer do what heswiaitt do. He then will realize
that operating systems and languages enslave peogdewhat the system permits them
to do, while Forth gives them freedom to tell tioenputer to do what they want to do.
This is enlightenment.

Operating systems and programming languages aigneéelsto enslave the users, by their
sheer sizes and their complexities. They are tmopticated to be understood by
individual users. Forth shows that an operatirgjesy and a high level language do not
have to be complicated. In fact, they can be genple and can be mastered by
individuals with some limited efforts. Once théngiples are mastered, they can be
applied to all computers. Then, the user can bedbtw master, and the computers
become obedient but powerful slaves. To be theéena$powerful slaves is very
enlightening and satisfying. Once you taste tekedom and the satisfaction of being
the master, you will not want to be enslaved aggia computer through its operating
systems and programming languages.

12

2. eForth Model

eForth is a series of Forth implementations basea wery small and simple model
developed in the Silicon Valley Chapter of the Rdrterest Group, in the San Francisco
area. Many people inside this chapter and all tvemorld had made significant
contributions to it. The first model was releaged991. As it stands now, there are
14 different implementations of this model on was microprocessors, including 8086,
80386, 280, 8096/98, 8051, 68000, 68332, 68HC11C1RC42, Transputer, and the
experimental P21.

The basic model used the direct-threaded codeptement the inner interpreter, but
there are several versions of subroutine threaddd around. The basic model used the
Microsoft MASM as the software platform, but thare many versions using the native
assemblers of the targeted microprocessor. The belel came with a minimum set

of utilities, but there are several versions highyimized and with lots of utilities.

With eForth we hoped to achieve two goals: orte encourage people who do not
have any prior Forth experience to learn Fortheraluate it for possible applications.
The other was to enable experienced Forth progrartovgort this model to newer and
more powerful microprocessors. It seems that we Inaade good progress in both
directions.

It is amazing that eForth had gained that muchmplamithout a detailed and complete
documentation. | hope that by going through thes®code of the 8086
implementation line by line in this book, users cawlerstand this system better and can
make better use of this model in their applications

Origin of eForth

eForth is the name of a Forth model designed &irbple so that it can be easily
understood by programmers with some elementary ledgye about assembly languages
and easily portable to a large number of newerraae powerful processors which are
available now and are becoming available in the figare. Originally it was called
pigForth. However, because of very strong objedtim the term 'pig' among many
experienced Forth programmers and users, a legsqative name 'eForth’ was adopted
after much heated debates at a beer party in 9@ R8chester Forth Conference, held in
June 1990, Rochester, New York.

PIG originally stood for Post-Forth Interest Groagerm used by Mr. Andreas Gopold, a
Forth programmer from Germany, to encourage peopieink the future of Forth, in

light of the recent advancements in computer hare\ead software technologies. His
feeling was that Forth in its present shape aneh foill not be useful for the

programmers in the future, because it does notigeaenough support for program
development, especially for large and very demamghojects. He thus felt that Forth
has to develop in the direction as Tom Zimmer's AR@h Bradley's ForthMacs, and
Leibnitz he developed. These systems are hugeibedthey incorporate lots of tools

13

and utilities useful in the programming processes.

| am stealing this acronym 'pig' from him for afdient purpose. As we are marching
into the nineties, we are confronting a host of & very powerful microprocessors of
different architecture and designs. The excitergenbt the least less intense than that
in the seventies when the first crop of 8 bit mproxessors made their appearance.
Forth Interest Group captured the imagination effttst generation of personal
computer users by releasing the figForth modehgdin six different microprocessors.

It is thus very interesting to see if we can baildew Forth which can be easily ported to
many, if not all, of the new and future micropraa@s. This is the original design goal
of eForth.

eForth Moddl

eForth model defines a minimal Forth system whizchg a computer into a system that
the user can build applications and to test thdiegions interactively. At the topmost
layer, the outer (text) interpreter accepts wordmfthe user and executes them. In this
layer, a rich set of utility words are availablealtow the user to compile new words into
the dictionary, decompile words in the dictionangpect and change memory, inspect
and change the data stack, and download filesigfirthe terminal. These are
functions a normal operating system provides taufer. In eForth, these functions are
provided in one simple, elegant, and integratedam.

At the lowest layer, the eForth is built upon aZkprimitive words which are coded in
the native machine instructions. This set of pireiwords was selected for portability,
because we intended that the eForth model to beemgmted on many different
computers. Ideally, one could port eForth to a stemputer by recoding only this set
of primitive words, and the rest of the system wido# ported over unmodified. This
portability has been proven in many cases, althdligie were cases where we had to
make minor changes to port it to a computer withrgge architecture.

This set of primitive words imposes the virtual thoengine on a real life computer and
make it behave like an idealized Forth computeth wiio stacks and a dictionary. By
limiting the number of machine specific primitivews, we also impose a performance
penalty on eForth, which does not take advantafjfeeaesources designed into a real
computer. However, it is expected that the usérmprove its performance by
replacing the most often used high level words walive machine instructions.

Changing Environment

In the seventies, personal computers were novetbedly stand-alone systems that you
put on your desk and had them do work for you. (@te precisely, you willingly
became enslaved to them.) A personal computerebenvhad to contain the
programming environment to be useful. Thus oneleéea CPU with memory, a
keyboard, a display monitor, one or more disk drj\and an operating system including
languages and utilities. A personal computer rhastelf-sufficient to be able to

14

stand-alone.

figForth was originally written by William Ragsddier an Apple Il computer. Bill
organized the Forth Interest Group in 1978. Amitragfirst things he did was gathering
a group of programmers to port it to other persaoahputers popular at the time.

figForth, as all other Forth systems at that tilveed to be self-sufficient also. It had to
be able to support the keyboard input, screen antepoutput, and the disk drive for
mass storage. An editor was always the first appbn a Forth user did, because that
was the only way he could proceed to do seriougrproming.

figForth was adopted in many commercial Forth systewvhich generally added an
editor, an assembler, and some demonstration pregralt was enthusiastically
accepted because it was the only high level langbagide BASIC which could
conformably reside in 16 Kbytes of RAM memory.

F83 was developed by Henry Laxen and Michael Hartlye early 1980's. It was a
giant step forward from figForth, and much humagieeering went into it to facilitate
programming. It included a much better editor, enextensive debugging tools, and
smoother interface to the operating system. Nbetss, F83 was still an environment
to itself, tailored to a single user using a singkechine.

The largest change in the eighties was the separatithe processor from the
programming environment, due to the proliferatibstandard personal computers; i. e.,
IBM-PC and the clones. PC's become the defaufjrproming tool for other

processors in separated boxes. | do not denyhbet are still lots of programming
done on the PC's, for the PC's. However, a vegelportion of the programming
activities for newer and more advanced processersaried out on PC's separated from
the target computers.

The separation of the programming environment ftieentarget processor has a great
impact on the design of eForth, which | presumé galinto the target processor, not the
host computer. Itis also of great advantage ¢éadttsign of eForth, because eForth does
not have to include utilities supported by the remshputer, and the eForth design
requirements can be greatly simplified. In a setimeeForth is addressing the needs of
the embedded processors, the latest buzz wore imitroprocessor world.

15

Universal Microcomputer

The microcomputer for which figForth was designad be shown schematically here.
It contained a CPU, some memory, and it had tottakk keyboard, a monitor, and a disk.

HCresn

i

FAN ra—- CPU a—= Dzl

i

Keyhoard

The microcomputer eForth has to deal with is muetpker, as shown in the following.
It is a CPU with some memory, perhaps with soméperals which are yet to be
specified. It is connected to the outside worldtigh a RS232 cable. This RS232
line may not be used in real applications, but tannected to a host computer for
programming, testing and debugging. In certairliegions, the RS232 umbilical cord
may never be severed because then the host carlcdohapecific code to the target to
perform specific tasks, depending on differentwinstances. Many of the new
generation of instruments are designed using dpslaility.

Ivlicroprocessor EE131
B SEE—
CPU+IMerm Host Computer

Universal Forth

As we have defined an Universal Microcomputers ibgical that we can define and
build a Universal Forth for it. There are manyeaffs that we have to consider in
designing this Universal Forth, which we assumé lvalported to many different CPU's.
There are also many models of Forth which we cad s base our design on, taking
advantages of the wisdom accumulated over theviastty years in the Forth
community.

16

There are three most important Forth models fronchvBForth derives its strength:
figForth by Bill Ragsdale, cmForth by Chuck Mooreand the bForth by Bill Muench.

Here is a list of important features we liked tolirde in this Universal Forth:

1. A small set of kernel words, which is machiepehdent. Only this set of words
are rewritten for a specific CPU. A minimum kermedrd set encourages the porting of
eForth to new CPU's.

2. The high level definitions must be portablalidarget CPU's, including 8, 16, and
32 bit machines.

3. The only /O words are KEY, EMIT, and ?KEY, hese the only I/O device in the
target is the RS232 port.

5. Editor, file server, and other utilities ar@yided in the host system. Forth does
not have to provide these services.

6. Assume that the host is an PC/MS-DOS systernhnikithe lowest cost, and the
most available platform for programming.

7. Source code is provided in the MASM assemlbyté avoid problems in
metacompilation..

The guiding principles for this Forth are easy nalerstand, easy to modify, and easy to
port to other microprocessors. The letter 'eHarth thus stands for easy, educational,
embedded, elegant, and maybe, evangelical.

DOS Implementation

The ideal of eForth was discussed extensivelyerSiticon Valley FIG Chapter in the
period of 1990-91. Various models were evaluatedetcide which one was the best for
its implementation. The available models considéneluding figForth, F83, cmForth,
LaForth, ZenForth, Fcode, ANS Standard Forth, dfmfth. The consensus favored
bForth, whose principal author was Bill Muench. hdd a very small core of machine
specific word set, and had the most of the featdesgred in eForth. Bill distributed a
preliminary specification based on bForth for theup to work on. | took the model
and implemented it on an IBM-PC, in the MASM formafrhis implementation formed
the basis of the eForth Model.

The eForth Model is targeted to the Intel 8086 pssors under the DOS environment.
It relies on the DOS to provide the serial I/O ssgg. It is a fully functional Forth
system which allows a user to exercise it and etalthe functions of its word set.

Following are some of the special features in ¢fisrth Model are:

31 machine dependent words and 193 high level words.
Direct Threaded Code.

Separated name and code dictionaries.

All system variables are defined as user béasafor ROMmability.
Vectored ?KEY, KEY, and EMIT.

Al A

17

File handling through the serial I/O interface
CATCH-THROW error handler.

Only the single indexed FOR-NEXT loop is puoaal.
Track the proposed ANS Forth Standard.

10 Compile-only words are trapped in interpretinode.
11. Tools include DUMP, WORDS, SEE and .S.

12. Flexibility in memory mapping.

©o~NO

Porting eForth

The eForth Model was designed for portability andrg effort was made to facilitate the
porting process. The eForth system is relativellsnieerein the code dictionary is 5
Kbytes long and the name dictionary is 2 KbyteglonThe following procedure is
suggested for porting it to a new CPU.

1. Determine the memory map in the target syste§et the memory pointers in the
EQU section properly to reflect the physical memasgignments in the target system;
i.e., ROM, RAM, stacks, user area, code dictiorsarg name dictionary.

2. Study the words in the machine dependent kerrfeewrite them in the assembler of
the target CPU. If you have access to an assemblbe target CPU, use it to assemble
this set of code words. If you do not have anragder, hand assemble the code words.
It seems difficult to do hand assembly, but youeharly 31 words to worry about.

3. If you have tools to exercise the assembly swalels, try to debug them.

4. The binary object from the assembler has terttered into the eForth source code
using DB and DW statements, which can be handledA8M.

5. Assemble eForth source code by MASM to produbary object code.
6. Move the binary object code into your targedteyn via EPROM's or other means.
7. Debug the target system.

The eForth Model assumes that the CPU can addy&ssib memory. All the memory
accessing words use byte addresses. If your CRubtaddress bytes, you have to
synthesize a byte addressing space from the adléasing space and provide a
mechanism to translate byte addresses into celeades and vice versa. The eForth
Model does enforce words alignment to the cellngauies to facilitate the byte to cell
address translation.

Hand assembling machine code is not the most pletask in programming. However,
it is impossible to provide the eForth Model inthk assembler formats used by all the
CPU manufacturers. Adopting MASM as the commornr@oode processing
environment establishes the largest common dendonifa porting eForth to the largest

18

number of CPU's.

After the generic eForth Model is ported to a tai@BU, you might want to consider
optimizing it to improve its performance. Followirs a list of words which are
primary candidates to be recoded in machine instms:

1. Recode +, -, UM*and UM/MOD if you want to damber crunching.

2. Recode 'parse’ and NUMBER? to speed up intatpye and compilation.

3. Recode doUSER and doVAR. Use CALL doUSE andlICAoVAR to replace the
high level mechanisms in the eForth Model.

4. Recode 'find' to improve the dictionary seanghi

5. Add ONLY-ALSO mechanism to use multiple vocatids.

19

3. eForth Overview

Before diving directly into eForth, | would like tiscuss the general principles of a
virtual Forth engine and many other system desiguds so that you have a better overall
view of the eForth system when investigating thiaitkrl structures and code in eForth.

I think the following list of topics are the mostportant in understanding Forth:

Address interpreter

Text interpreter

Dual stack architecture
User variables

List of execution addresses
Linked vocabulary

Memory map

Using a real eForth implementation helps to maksettopics clear. Itis also
interesting to note that these topics appear auaiterally in the beginning of the eForth
MASM source listing as we set up the assemblerrbedftarting assembling any code.

In effect, it allows us to read the source codenftbe beginning to the end in its natural
sequence. | had some reservation in that we migthbe able to present the eForth
system clearly without going back and forth over slource listing, because the logic of
the system might not follow the loading order. the end, it worked out perfectly.

Inner and Outer Interpreters

Like Prajna and Samadhi in Zen, the most importantepts in Forth can be
summarized in two components, the inner interpraterthe outer interpreter. The
inner interpreter controls the actions of the cotaphardware to execute compiled Forth
commands in the form of address lists. The outerpreter is the user interface in
Forth. It accepts commands from the user in thieftem and executes these
commands. Through the outer interpreter, the ceeiinteractively control the entire
computer system to do what he wants to accomplish.

A typical line of Forth commands is as follows:

' ?TX HERE OVER - DUMP

This line of commands dumps the entire eForth gystebinary form on the screen.
The meaning of the commands can be explained mbyeas the following:

"?TX 'is a Forth command, which searches théhfmmmmand ?TX in memory and
returns its address. ?TX happens to be the faghFeommand in memory. HERE
returns the address of the end of the last Fontimeand in memory. OVER - subtract
the address of ?TX from the address returned byEHER he result is the length of the
memory which contains the entire Forth system. DBRJMlisplays the contents of
memory from ?TX to the last command in memory

20

The Forth outer interpreter reads the line of comusaparses out each command and
execute them in the sequence by which the commanedsntered by the user. The
commands are separated by spaces so that thardetereter can easily pick up the
commands one after the other and executes theegiresce.

Forth uses very simple syntax rules, which makestlter interpreter extremely simple
yet very powerful

A typical Forth program creates a new command émtlemory which performs a
sequence of existing commands. An example is:

: dumpCode [] ?TX HERE OVER - DUMP ;

This new command dumpCode does exactly what therzord line in the previous
example did. It dumps the entire memory contaigith¢he Forth commands. This
new command is compiled and added to the memoryter AumpCode is so defined,
the user can type: 'dumpCode’ and all the actiottee command line will be
executed.

The Forth command : changes the behavior of titer anterpreter so that the outer
interpreter will compile commands into the memanwylater execution, rather than
execute them interactively. DumpCode in the menmngpresented by a list of
execution addresses:

dumpCode:
addr of [1]
addr of ?2TX
addr of HERE
addr of OVER
addr of -
addr of DUMP
addr of ;

When dumpCode is executed, it is the inner intégprehich runs through this address
list and causes each command to be executed iesegu The interesting thing about
the inner interpreter in Forth is that it is naeparated program which takes the address
list, extracts the execution addresses out ofish@hd executes the commands. The
inner interpreter is actually part of the codevery command. When a command is
executed, at the end of its execution, the innerpmeter is executed which causes the
next command to be pulled in and executed.

The inner interpreter in Forth is generally a velngrt code fragment inside the
executable portion of every command in the memory.

There are several classes of Forth commands ipieatyForth system. Each class of

Forth commands employs an unique inner interptetprovide special run time behavior
to this class of commands.

21

Virtual Forth Engine

Forth is a computer model which can be implementedny real CPU with reasonable
resources. This model is often called a virtuattrengine. The minimal components
of a virtual Forth engine are:

A dictionary to hold all the execution proceshkicalled words.

A return stack to hold return addresses ofgulares yet to be executed.

A data stack to hold parameters passing betywescedures.

A user area in RAM memory hold all the systeariables.

. A CPU to move date among stacks and memodydarALU operations to items
stored on the data stack.

Al A

The eForth Model is a detailed specification ohavarsal virtual Forth engine which can
be implemented on many different CPU's and forkemtto behave identically in
executing an identical instruction set. This fisplementation of eForth used Intel
80x86 CPU's as a guiding model to implementatmnsther CPU's. Here we will try
to describe precisely the behavior of the gendfarin Model. When the logic
description is not clear enough, we will use the8®implementation to clarify the
specification.

The following registers are required for a virt&alrth Engine:

Forth Register Function

P (SI) Interpreter Pointer

SP (SP) Data Stack Pointer

RP (RP) Return Stack Pointer
WP (AX) Word or Work Pointer

UP in memory User Area Pointer

In the dictionary, each procedure (more commonliedavord in Forth terminology)
occupies an area called code field, which contexesutable machine code and data
required by the code. There are two types of wos#sl in eForth: code word whose
code field contains only machine instructions, aalkbn word whose code field contains
an colon word interpreter and a list of tokens. toRen is the execution address of the
word in the dictionary. 4 bytes are allocatedtf@ colon interpreter. Tokens are 2
bytes in length, and are pointers to code fieldsafds in the dictionary. The length of
a code field varies depending upon the compleXithe word.

In the code field of a code word there is a listn@fchine instructions of the native CPU.
The machine instructions are terminated by a gajupstructions, generally specified as
a macro instruction named $NEXT. The function NEXT is to fetch the token
pointed to by the Interpreter Pointer IP, increnm@nto point to the next token in a token
list, and execute the token just fetched. Sintmkan points to a code field containing
executable machine instructions, executing a tokeans jumping directly to the code
field pointed to by the token. $NEXT thus allowe wirtual Forth engine to execute a
list of tokens with very little CPU overhead. het80x86 implementation, $NEXT is a

22

macro assembling the following two machine insinuw as shown below.

In other CPU's, especially the less capable 8rbitgssors, SNEXT could assemble a
JMP <NEXT> instruction. <NEXT> is then a centralizroutine which causes the next
token to be fetched and executed while IP is inerged to point to the next token.

; Assemble inline direct threaded code ending
$NEXT MACRO

LODSW ;;load next token into WP (AX)
JMP AX ;;jump directly to the to ken thru WP
ENDM ;;IP (SI) now points to the next to ken

This scheme of jumping to the execution addresstedito by a token is commonly
referred to as 'Direct Threaded Code'. The ottieerse 'Indirect Thread Code' used in
many other Forth systems puts a pointer at the bkadode field. This pointer points
to the executable code of an inner interpreter wdefines the execution behavior of the
token. A third scheme uses the pointer to poirat token table where addresses of
executable code can be stored. This is callecedkreaded Code'. Direct Threaded
Code is chosen in eForth because it is conceptsiaipler and faster in execution.

In a colon word, the first four byte in the codeldi must be a machine instruction to
process the token list following this first insttien. This token list processing routine
is too complicated to fit into a four byte spadesrefore, it is generally implemented as a
CALL DOLST instruction. DOLST pushes the content$P onto the return stack,
copies the address of the first token in its caele fnto IP and then calls $NEXT.
$NEXT will then execute the list of tokens in thede field.

The last token in the token list of a colon wordstioe EXIT. EXIT is a code word
which undoes what DOLST accomplished. EXIT pogsttp item on the return stack
into the IP register. Consequently, IP points ®tthken following the colon word just
executed. EXIT then invokes $NEXT which contintles processing of the token list,
briefly interrupted by the last colon word in tldken list.

doLIST (a--)
Process colon list.
$CODE COMPO+6,'doLIST',DOLST

XCHG BP,SP ;exchange pointers
PUSH SI ;push return stack

XCHG BP,SP ;restore the pointers
POP SI ;new list address

SNEXT

EXIT (--)

Terminate a colon definition.
$CODE 4,'EXIT EXIT

XCHG BP,SP ;exchange pointers
POP SI ;pop return stack
XCHG BP,SP ;restore the pointers
$NEXT

$NEXT, DOLST and EXIT are often call the 'innerarreters' and ‘address interpreters'
of Forth. They are the corner stones of a virk@th Engine.

Based on the above mechanism to execute code anddsolon words, a Forth engine

23

can be constructed using a small set of machinerdigmt code words and a much larger
set of colon words, giving it the capability of apting commands from a user through a
terminal device and compiling more words to extdrefunctionality of the basic system.
The word at the highest level which interact witk tiser through a terminal is call the
text interpreter and outer interpreter. The Ftettt interpreter is equivalent to a
conventional operating system with an integral cibenp

To learn Forth, it is important to keep in mind stamntly the functions of the
inner/address interpreter and of the outer/texrpreter. They are the crucial elements
which make a Forth engine tick.

The text interpreter has the capability of comjlimew words into the dictionary. A

new word contains a list of existing words, liketeng of subroutines. The user can
thus expand the scope and capability of an elemehRtath system by adding more
words to the dictionary. By adding more words ldaggon previously defined words in
the dictionary, a Forth system can easily grow @mtbmpasses solutions to a wide range
of applications.

eForth Words

There are 190 high level words in eForth, builtlom 31 low level primitive words.

The high level word set is required to build théesunterpreter and the associated utility
words. As the outer interpreter itself represantairly substantial application, the word
set necessary to build the outer interpreter famery solid foundation to build most
other applications. However, for any real worlglagation one would not expect that
this eForth word set is sufficient. The beautyrofth is that in programming an
application, the user designs and implements awend set best tailored to his
application. Forth is an open system, assumingrib@perating system can be
complete and all-encompassing. The user has 8taibhderstanding of his own needs,
and he knows the best way to accomplish his goal.

Another way of looking at the eForth word set igligde it into the commonly used
words and the system words which are needed td thel outer interpreter, but are rarely
used in applications. Among the 221 words in ékdB4 words can be classified as
commonly useful words and 87 words are the systendsv

The set of 134 common Forth words contains thehRedrds which are universally
supported in most Forth systems. To use Fortmflyeyou have to fully understand
these words and use them efficiently to composelsvathich will solve your
applications. They include data stack and rettaokswords, memory accessing words,
math and logical words, control structure wordginideg words, and some utility words.

The set of 87 system words are defined to suppertonstruction of the outer interpreter
in eForth. They are necessary in building a Feyitem and are not needed for
day-today programming. If you are building appiicas on an eForth system, only in
rare occasions you will have to use words in thts sif you have to build an eForth

24

system or port it to a special CPU, you must untdacsthis word set very well because
there are tools you must have to build or chahge=forth system.

eForth Word Set

Devi ce Dependent |/O Wrds

BYE ?RX TX! 11O

Kernal Words

doLIT doLIST EXIT EXECUTE next ?branch branch
SP@ SP! DROP DUP SWAP OVER 0< AND OR XOR
System Vari abl es

doVAR UP doUSER SPO RPO '?KEY '‘EMIT 'EXPECT
>IN #TIB CSP 'EVAL 'NUMBER HLD HANDLER CONTE
Comon Functi ons

doVOC FORTH ?DUP ROT 2DROP 2DUP + NOT NEGAT

WITHIN

Di vide and Multiply

UM/MOD M/MOD /MOD MOD / UM* * M* *MOD */
M scel | aneous

CELL+ CELL- CELLS ALIGNED BL >CHAR DEPTH PIC
Menory Access

+! 2! 2@ COUNT HERE PAD TIB @EXECUTE CMOVE
Nurneri c Qut put

DIGIT EXTRACT <# HOLD # #S SIGN #> str HEX
Nuneric | nput

DIGIT? NUMBER?

Basic 1/0

?KEY KEY EMIT NUF? PACE SPACE TYPE CR do$
Par si ng

parse PARSE .((\ CHAR TOKEN WORD

Di ctionary Search

NAME> SAME? find NAME?

Term nal Response

"H TAP KTAP accept EXPECT QUERY

Error Handling

CATCH THROW NULL$ ABORT abort"

Text Interpreter

$INTERPRET [.OK ?STACK EVAL

Shel |

PRESET xio FILE HAND 1/0 CONSOLE QUIT

Conpi | er

" ALLOT , [COMPILE] COMPILE LITERAL $." RECU
Structures

FOR BEGIN NEXT UNTIL AGAIN IF AHEAD REPEAT
Nane Conpi l er

?UNIQUE $,n

Forth Conpil er

$COMPILE OVERT ;] call, : IMMEDIATE

Defi ni ng Words

USER CREATE VARIABLE

Tool s

_TYPE dm+ DUMP .S ICSP ?CSP >ANME .ID SEE
Har dwar e Reset

VER hi 'BOOT COLD

25

'@ C! C@RP@ RP! R> R@ >R
UM+

TAP 'ECHO 'PROMPT BASE tmp SPAN
XT CURRENT CP NP LAST

E DNEGATE - ABS = U< < MAX MIN

H
FILL -TRAILING PACK$

DECIMAL

$. RURU. .?

RSE

THEN AFT ELSE WHILE ABORT" $" ."

WORDS

Memory Map

The most important contribution by von Neumannhi® ¢computer design was the
recognition that a single, uniform memory device ba used to store program and data,
contrasting to the then prevailing architecturgvirich program and data were stored
separately and most often using very differentaggermedia. It greatly simplified the
design of computers and had become the dominanputemarchitecture for all the
important computer families ever since.

Memory space is a concept of paramount importamceinputer hardware and assembly
programming, but often hidden and ignored in mosiventional high level languages.
High level languages and operating systems hidaddeessable memory space from the
user in order to protect the operating system, imxéhere are very sensitive areas in the
memory space and unintentional alterations torif@mation stored in these areas would
cause the system to malfunction or even to cra3e point of view from the operating
system and from the computer priesthood, thesstsenareas must be protected at all
cost, and they are the reserved territory of ttesygs programmers. Ordinary
applications programmers are allocated only en@pgite to run their programs safely,
for their own good.

Forth opens the entire memory space to the usdne u$er can freely store data and
code into memory and retrieve them from the memor§goming with the freedom is the
responsibility of handling the memory correctly.

;; Memory allocation 0//code>--/[--<name//up>--<sp/ ltib>--rp/lem
EM EQU 04000H ;top of memory

COLDD EQU 00100H ;cold start vector

US EQU 64*CELLL ;user area size in cells

RTS EQU 64*CELLL ;return stack/TIB size

RPP EQU EM-8*CELLL ;start of return stack (RPO)
TIBB EQU RPP-RTS ;terminal input buffer (TIB)

SPP EQU TIBB-8*CELLL ;start of data stack (SPO)
UPP EQU EM-256*CELLL ;start of user area (UPO)
NAMEE EQU UPP-8*CELLL ;name dictionary
CODEE EQU COLDD+US ;code dictionary

Memory used in eForth is separated into the folhgrareas:

Cold boot 100H-17FH Cold start and va riable initial values
Code dictionary 180H-1344H Code dictionary g rowing upward
Free space 1346H-33E4H Shared by code and name dictionaries
Name/token 33E6H-3BFFH Name dictionary g rowing downward
Data stack 3C00H-3E7FH Growing downward

TIB 3E80H- Growing upward

Return stack -3F7FH Growing downward

User variables 3F80H-3FFFH

These areas are allocated by assembly constantaarite changed conveniently to suit
the target environment.

The memory map follows conventional Forth systésa figForth, except that the
headers of words are put in a separated dictionafyheader consists of the following
fields:

26

Field Length Function

Token 2 bytes code address (ca)
Link 2 bytes name address (na) of previous word
Length 1 byte length and lexicon bits
Name n bytes name of word
Filler 0/1 byte fill to cell boundary
4000H EM
User Variable
3F80H upP
Return Stac RPO
o erminal Input BuffefTIB
Data Stack
3CO0H NAMEE
Name Dictionary
3380H + NP
Free Space
1342H * CP
Code Dictionary
180H CODEE
Cold Boot Area
100H ORIG
DOS Area
0

The name dictionary is a linked list of all the @wdreaders. This list grows downward
towards the code dictionary. Thus the name diatipshares the free space with the
code dictionary. This arrangement has the advariteag the name dictionary can be
eliminated from a target system which does notamsmterpreter.

27

eForth is built using the 'Direct Threaded Codehteque. Each word is allocated a
Code Field in the code dictionary. The startindrads of the Code Field is stored in the
Pointer Field in the header. This code addresensidered the Token of this word.

The code field contains executable code in Dirdoe@ded Code, contrasting to a pointer
to executable code in Indirect Threaded Code scheitmea low level machine code
definition (a code word), the code field contaire@itable code terminated by the Forth
inner interpreter SNEXT. $NEXT is defined as asiie expanded macro (LODWS
JMP AX) which fetches the next token from a tokehand executes that token.

In a high level colon definition (a colon word)ethode field begins with a CALL
DOLIST instruction, which process the rest of tbdefield as a list of tokens. This is
the only other code field construct used in eFbeakides the code word construct.
Other familiar constructs in conventional Forthteyss like constants, variables, arrays,
and user variables are derived from the colon wortstruct. The eForth
implementations of these constructs (defining wpade shown in the following page.

EXIT, doLIT, doUSER and doVAR are themselves codedy

In the name dictionary, headers are linked thrahgHink fields. The contents of a link
field is the address of the name field in the pyasiheader. This threading scheme
optimizes the dictionary search. With the linkdiaddress on the data stack, @ @ will
yield the length byte and the first character i tame of the previous word. This 16
bit value is compared to the length and first mftthe name to be searched for, and a
quick decision can be reached to look for the hestder or to compare the rest of the
name. Since the name fields are NUL filled to¢ak boundary, name comparisons
proceed one cell at a time and can be made vaoyeet.

In eForth, all variables used by the system armddfas user variables and their initial
values are stored in the cold boot area. Duringthte booting process, all user variables
are copied from the cold boot area to the usernbbiarea in the high memory. This
design is especially advantageous in a ROM basgdttaystem in which the cold boot
area and the code dictionary are burnt into ROM.

28

Code Word

Machine Instractions LODWS | TMP AX
Colon Word
CALL dol.5T Token List EXIT
User Vatiahle
CALL dol.5T dolJSER 11
Wariahle
CALL dol.5T doV AR 11
Create Atray
CALL dol3T doW AR, Array

29

Assembly Macros

Several macros are defined in the MASM assemblycgocode to simplify the
assembling of the object code. The macro $CODBnsplicated because it is designed
to assemble both a name dictionary and a codedarty. Another problem is that the
name dictionary must be laid down backward, froghhmemory to low memory as new
entries are added to the name dictionary. The readealso required special attention
because it must be NULL filled to the cell boundary

$CODE begins by adjusting the assembly pointertfiemext cell boundary in the code
dictionary. A label is created marking the coddrads, which are later referred to as
tokens. The assembly pointer is then saved im$sembly variable _CODE before
assembling an entry in the name dictionary. Thgtleof the next name entry is
computed from the length of the new name, with ispect to the cell boundary at the
end of the new name field. Now the assembly poistewitched to the name dictionary,
previously saved in _NAME, an offset to the begmgof the new name entry. From
there, the code pointer field, the link field ahé hame field of the new name entry are
assembled.

;1 Initialize assembly variables

_LINK =0 ;force a null link

_NAME = NAMEE ;initialize name pointer
_CODE = CODEE ;initialize code pointer
_USER =4*CELLL Jfirst user variable offset

;; Define assembly macros
; Adjust an address to the next cell boundary.
$ALIGN MACRO

EVEN ;;for 16bit systems
ENDM
; Compile a code definition header.
$CODE MACRO LEX,NAME,LABEL
$ALIGN ;;force to cell boundary
LABEL: ;;assembly label
_CODE =$;;save code pointer
_LEN = (LEX AND 01FH)/CELLL ;;string cell count, r ound down
_NAME = _NAME-((_LEN+3)*CELLL);;new header on cell boundary
ORG _NAME ;;set name pointer
DW _CODE,_LINK ;token pointer and link
_LINK =% ;:link points to a name string
DB LEX,NAME ;;name string
ORG _CODE ;;restore code pointer
ENDM

Compile a colon definition header.

After the new header is completed, the addresseohéw pointer field is saved back in
_NAME. The assembly pointer $ is then restorechfr&CODE, ready to assemble new
code into the code field of this new word. Fowode& definition, machine code are
assembled in this code field. For a colon worNGP and a CALL doLIST are
assembled. The NOP is used to align the CALL¢elBboundary.

$CODE, $COLON and $USER are macros to build heaaleashe initial entries of code,
colon and user variable definitions. $COLON use®®E to assemble a header and
then assembles NOP CALL doLIST to begin a token li$USER adds doUSE and an
user variable offset to the CALL doLIST instructionThe user variable offset is
managed by another assembly variable _USER sohihaiser variable list can be

30

generated automatically.

D$ is a special macro to construct string litenahicolon definition. It first assembles a
string literal token FUNCT, followed by the lendikite of the string and then the string
itself. The string is NULL filled to the cell bodary so that MASM is ready to resume
assembling new tokens into the colon definition.

$COLON MACRO LEX,NAME,LABEL
$CODE LEX,NAME,LABEL

NOP ;;align to cell boundary
CALL DOLST ;iinclude CALL doLIST
ENDM

; Compile a user variable header.
$USER MACRO LEX,NAME,LABEL
$CODE LEX,NAME,LABEL
NOP ;;align to cell boundary
CALL DOLST ;;include CALL doLIST
DW DOUSE, USER ;;followed by doUSER and offset
_USER = USER+CELLL ;;update user area offset
ENDM
; Compile an inline string.
D$ MACRO FUNCT,STRNG
DW FUNCT ;function

_LEN=$% ;;save address of count byte
DB 0,STRNG ;;count byte and string
_CODE =% ;;save code pointer

ORG _LEN ;;point to count byte
DB _CODE-_LEN-1 ;;setcount

ORG _CODE ;;restore code pointer
$ALIGN
ENDM

AddressInterpreter

Finally, the macro $NEXT is defined to assemble NEXe inner interpreter, at the end
of every code word. It adds three bytes to a eedl@, the same length as a JIMP
<NEXT> instruction. The in-line $NEXT macro makég code run much faster by
eliminating an unnecessary jump. Using Direct @dexl Code and in-line $NEXT,
eForth has the potential to be very fast and effici However, the goal of eForth is not
performance but portability. The speed is intamity throttled down because many
important words are defined in high level colon dgr Implementers and users are
encouraged to optimize their systems, taking achgad of the clean and efficient
mechanism built-in in eForth.

In a colon definition, tokens (execution addresses)assembled using DW assembly
commands. To execute a list of tokens, we fingigiize the IP register (Sl in 8086) to
point to the head of this list and then execute ¥NE LODSW reads an execution
address into the WP register (AX in 8086), andifhe=gister is automatically
incremented to point to the next token in the tokgn JMP AX simply jumps to the
token's execution address and causes the tokendrdzuted. At the end of the
execution sequence of the token, there will beteerdNEXT, which causes the next
token to be read and executed, and so forth.

This $NEXT is a very powerful mechanism allowinggea lists to be scanned and
executed in sequence. It is thus commonly refeexs the address interpreter in Forth.

31

It is also called the inner interpreter of Forthcontrast to the text interpreter which is
also called the outer interpreter of Forth. Withaaldress interpreter embedded in every
word, each code word in Forth is a self containedeof code. This property makes
Forth words reentrant so that one copy of the veardbe executed by many different
tasks independently.

; Assemble inline direct threaded code ending.
SNEXT MACRO

LODSW ;;next code address into AX
JMP AX ;;jump directly to code address
ENDM

Cold Boot

DOS starts executing the object code at 100H. Hoetle Model is configured for a DOS
machine. It can be modified to jump to any memocation from where the CPU
boots up. What we have to do here is to set ug@®8é CPU so that it will emulate the
virtual Forth engine as we discussed before. Hdlgertinent registers have to be
initialized properly. Since eForth is very smaibdits comfortably in a single 64 Kbyte
code segment, we will use only one segment for cdaka, as well as the two stacks.
Therefore, both the DS and SS segment registeisitdadized to be the same as the CS
register. Then, the data stack pointer SP andetinen stack pointer RP (BP in 8086)
are initialized. To prevent the eForth from befaged back into DOS accidentally, the
Control-C interrupt is made benign by vectorintpitr simple IRET instruction.

Now we are ready to start the Forth engine. Simptyping to COLD will do it.

COLD is coded as a colon word, containing a listoékns. This token list does more
initialization in high level, including initializig the user area, and setting up the terminal
input buffer. At the end, COLD executes QUIT, tagt interpreter, which contains an
infinite loop to receive commands from a user axetates them repeatedly.

;; Main entry points and COLD start data
MAIN SEGMENT
ASSUME CS:MAIN,DS:MAIN,ES:MAIN,SS:MAIN

ORG COLDD ;beginning of cold boot
ORIG: MOV AX,CS

MOV DS,AX ;DS is same as CS

CLI ;disable interrupts, old 808x CPU bug

MOV SS,AX ;SS is same as CS

MOV SP,SPP ;initialize SP

STI ;enable interrupts

MOV BP,RPP ;initialize RP

MOV AL,023H ;interrupt 23H

MOV DX,OFFSET CTRLC

MOV AH,025H ;MS-DOS set interrupt vector

INT 021H

CLD ;direction flag, increment

JMP COLD ;to high level cold start
CTRLC:IRET ;control C interrupt routine

32

Initializing User Variables

The user area contains vital information for Fadlperform its functions. It contains
important pointers specifying memory areas foraasiactivities, such as the data stack,
the return stack, the terminal input buffer, whigre code dictionary and the name
dictionary end, and the execution addresses of macipred words like KEY, EMIT,
ECHO, EXPECT, NUMBER, etc.

The user area must be located in the RAM memogaume the information contained in
it are continuously updated when eForth is runninghe default values are stored in the
code segment starting at UZERO and covering anadréd bytes. This area is copied
to the user area in RAM before starting the eFertfine. The sequence of data in
UZERO must match exactly the sequence of userblaga

; COLD start moves the following to USER variables.
; MUST BE IN SAME ORDER AS USER VARIABLES.

$ALIGN ;align to cell boundary
UZERO: DW 4 DUP (0) ;reserved
DW SPP ;SPO
DW RPP ;RPO
DW QRX ' ?KEY
DW TXSTO JEMIT
DW ACCEP yEXPECT
DW KTAP ' TAP
DW TXSTO 'ECHO
DW DOTOK ;'PROMPT
DW BASEE ;BASE
Dw 0 ;tmp
DW 0 ;SPAN
DW 0 >IN
DW 0 #TIB
DW TIBB TIB
DW 0 CSP
DW INTER EVAL
DW NUMBQ NUMBER
DW 0 ;HLD
DW 0 ;HANDLER
DW 0 ;CONTEXT pointer
DW VOCSS DUP (0) ;vocabulary stack
DW 0 ;CURRENT pointer
DW 0 ;vocabulary link pointer
DW CTOP ,CP
DW NTOP NP
DW LASTN ;LAST
ULAST

33

4. Machine Dependent Kernel

For the very beginning, we wanted to develop a deteg-orth system with a minimum
set of primitives. In the Forth community, thissHaeen an active argument since day
one. What had been selected as the eForth keordlset were all the operations we
can not synthesize conveniently and effectively.ctually, eForth provided a good
platform to test the effectiveness of this setrabhgive Forth words. We had observed
that in certain small 8-bit controller like 805hjg primitive word set really slows down
the processor. However, the same primitive woedlpsoved to be quite adequate in
the 16-bit processors like 8086 and 68000. Ir3@upit implementation for 80386 in
the protected mode, eForth is blazingly fast.

Since most microprocessors have fairly good madhisteuction sets, it is quite easy to
rewrite the eForth kernel for any target micropssm. The assembly code in the
eForth Model serves to clarify any discrepancyhm functional specifications of the
primitive words.

eForth Kerndl

One of the most important feature of eForth isstmall machine dependent kernel,
which allows its to be ported to other CPU's vasgveniently. The selection of words in
this kernel is based on the criteria that theywarg difficult if not impossible to
synthesize from other words as high level colomnitedns. From this set of kernel
words, all other Forth words have to be built. Keenel words can be classified as
following:

System interface: BYE, ?rx, tx!, lio

Inner interpreters: doLIT, doLIST, next, ?bran ch, branch, EXECUTE, EXIT
Memory access: 1 @, C, C@

Return stack: RP@, RP!, R>, R@, R>

Data stack: SP@, SP!, DROP, DUP, S WAP, OVER

Logic: 0<, AND, OR, XOR

Arithmetic: UM+

BYE returns control from eForth back to the opex@system. lio initializes the serial
I/O device in the system so that it can intera¢hwhe user through a terminal. These
two words are not needed once the eForth systeim a&d running, but they are essential
to bring the system up in DOS. ?rx is used to am@nt ?KEY and KEY, and tx! is
used to implement EMIT. eForth communicates wighuser through these words
which supports terminal interactions and file dovad/upload.

34

Here these words are defined using the DOS secalt® For embedded controllers,
these three words must be defined for the spdéicievices.

ORG CODEE ;start code dictionary
;; Device dependent 1/O
BYE (--)
Exit eForth.
$CODE 3,BYE',BYE
INT 020H ;MS-DOS terminate process

?RX is a unique design invented by Bill Muenchupgort serial input . ?RX provides
the functions required of both KEY and KEY? whidtept input from a terminal. ?RX
inspects the terminal device and returns a charaotba true flag if the character has
been received and is waiting to be retrieved. oltharacter was received, ?RX simply
returns a false flag. With ?RX, both KEY and KEd&éh be defined as high level colon
definitions.

TX! sends a character on the data stack to tharnatmevice. Both ?RX and TX! are
coded here as DOS calls. In embedded applicatibeg,will have to be coded in
machine specific code to handle the specific séatevice.

110 initializes the serial 1/0O device, which is nuécessary here because it is taking care
of by the DOS. In embedded systems, the I/O dawigst be initialized by !lO.

?2RX (—-cT|F)

Return input character and true, or a false if no input.
$CODE 3,"?2RX',QRX
XOR BX,BX :BX=0 setup for false flag
MOV DL,0FFH ;input command
MOV AH,6 ;MS-DOS Direct Console /O
INT 021H
JZ QRX3 ;?key ready
OR ALAL ;AL=0 if extended char
JNZ QRX1 ;?extended character code
INT 021H
MOV BH,AL ;extended code in msb
IJMP QRX2
QRX1: MOV BL,AL
QRX2: PUSH BX ;save character
MOV BX,-1 ;true flag
QRX3: PUSH BX
$SNEXT
X! (c-)

Send character c to the output device.
$CODE 3, TXI'"TXSTO

POP DX ;char in DL
CMP DL,0FFH ;OFFH is interpreted as input
JNZ TX1 ;do NOT allow input
MOV DL,32 ;change to blank

TX1: MOV AH,6 ;MS-DOS Direct Console I/O
INT 021H ;display character
SNEXT

1o (--)

Initialize the serial 1/0 devices.
$CODE 3,'10',STOIO
$SNEXT

35

Colon Word Interpreter

The words doLIST and EXIT encapsulate a tokenrist colon definition, which begins
with a CALL doLIST, followed by a list of tokensnd terminated by EXIT. doLIST
pushes the current Instruction Pointer (IP), whscim the Sl register, on the return stack
and then pops the address of the token into IP frendata stack. When NEXT is
executed, the tokens in the list are executed comisely.

EXIT is at the end of all token lists. EXIT popeetexecution address saved on the
return stack back into the IP register and thusres the condition before the colon
word was entered. Execution of the calling tokehwill continue.

doLIST and NEXT are therefore the interpreter ghhlievel colon definitions. They
are the crucial mechanism which executes a higtl leken in a token list and then
returns control to the calling token list.

EXECUTE takes the execution address from the datk &ind executes that token.
This powerful word allows the user to execute arkeh which is not a part of a token
list.

doLIST (a--)
Process colon list.
$CODE COMPO+6,'doLIST',DOLST

XCHG BP,SP ;:exchange pointers
PUSH SI ;push return stack
XCHG BP,SP ;restore the pointers
POP SI ;new list address
SNEXT

EXIT (--)

Terminate a colon definition.
$CODE 4,'EXIT EXIT

XCHG BP,SP ;:exchange pointers
POP SI ;pop return stack
XCHG BP,SP ;restore the pointers
$NEXT

EXECUTE (ca--)

Execute the word at ca.

$CODE 7,'EXECUTE',EXECU

POP BX

JMP BX ;jump to the code address

36

Integer Literals

In the token list of a colon definition, it is geally assumed that tokens are execution
addresses, which can be executed sequentiallyebgdtiress interpreter SNEXT.
However, occasionally we do need to compile otiyees of data in-line with the tokens.
Special mechanisms must be used to tell the adohtespreter to treat these data
differently. All data entries must be precededspgcial tokens which can handle the
data properly. A special token and its associdtad form a data structure. Data
structures are extensions of tokens and can bglthaf as building blocks to form lists
in colon definitions with regular tokens.

In eForth, three types of data structures are a@tbwnteger littorals preceded by doLIT,
address literals preceded by 'next', “?branch’aadch’, and string literals (which will be
discussed in the section of compiler). doLIT pughesnext token onto the data stack as
an integer literal. It allows numbers to be comias in-line literals, supplying data to
the data stack at run time. eForth uses this nmésimeto replace CONSTANTS as we
know in conventional Forth systems. Integer lige(aoLIT n) are compiled by
LITERAL which will be discussed in the compiler sea.

Integer literals are by far the most numerous datactures in colon definitions other
than regular tokens. Address literals are usdmlilo control structures. String literals
are used to embed text strings in colon definitiond/e will discuss address literals and
string literals later.

In the 8086 eForth implementation, doLIT is vemypigle and very fast. It is the
preferred way to introduce integers to the datekstiaan constants and variables.

doLIT (-w)
Push an inline literal.
$CODE COMPO+5,'doLIT',DOLIT

LODSW ;get the literal compiled in-line
PUSH AX ;push literal on the stack
$NEXT ;execute next token after literal

37

AddressLiterals

eForth uses three different types of address lgeraext’, "?branch’ and 'branch’ are
followed not by tokens but by addresses of tokarelist to be executed next. These
address literals are the building blocks upon whadping and branching structures are
constructed. An address token is followed by adineaddress which causes execution
to be transferred to that address. The brancheaddanost often points to a different
location in the same token list.

Address literals are used to construct controkcstines in colon definitions. 'next'is
compiled by NEXT. '"?branch’is compiled by IF, WHland UNTIL. ‘branch'is
compiled by AFT, ELSE, REPEAT and AGAIN.

It is interesting to note that eForth supplies dhly down-counting FOR-NEXT definite
loop structure. The more conventional DO-LOOPdtite and its variations are not
supported. The dual indexed DO-LOOP structureishmmore complicated than the
single index FOR-NEXT structure. Omitting DO-LOO$splifies eForth greatly.

next (--)
Run time code for the single index loop.
$CODE COMPO+4,'next',DONXT

SUB WORD PTR [BP],1 ;decrement the index
JC NEXT1 ;?decrement below 0
MOV SI,0[SI] ;no, continue loop
$SNEXT
NEXT1:ADD BP,CELLL ;yes, pop the index
ADD SI,CELLL ;exit loop
SNEXT

?branch (f--)
Branch if flag is zero.
$CODE COMPO+7,"?branch’',QBRAN

POP BX ;pop flag
OR BX,BX ;?flag=0
JZ BRAN1 ;yes, so branch
ADD SI,CELLL ;point IP to next cell
$NEXT
BRAN1:MOV SI,0[SI] ;IP:=(IP), jump to new address
SNEXT
branch ()

Branch to an inline address.

$CODE COMPO+6,'branch',BRAN

MOV SI,0[S]] ;jump to new address unconditionally
$SNEXT

38

Memory Access

Four memory accessing words are included in thetekernel: !, @, C'and C@. !

and @ access memory in cells, whose size depentfe @PU underneath. eForth
assumes that the CPU can access memory in bytdbatrall addresses are in the units
of bytes. Porting eForth into a cell addressingJC@! and C@ must used synthesized
byte addresses and one must be able to switch beteat addresses and byte addresses
conveniently.

@ and C@ allow the user to inspect any memory ilmcan the computer, and they can
be executed harmlessly. On the other hand, ! dradeCdangerous. You can
mistakenly store wrong data into the dictionarg, tiser variable area, and the stack area.
When this happens, most likely the Forth systerhas@sh, or behave erratically.
However, it is very easy to reboot the system &ens aver again. If one develop a
system incrementally and save the source code,ofterashes do not seriously impede
the progress.

! (wa--)
Pop the data stack to memory.
$CODE 1,'I"'STORE

POP BX ;get address from tos

POP 0[BX] ;store data to that adddress
$SNEXT

@ (a-w)

Push memory location to the data stack.
$CODE 1'@' AT

POP BX ;get address
PUSH 0[BX] ;fetch data
SNEXT
C!' (cb-)

Pop the data stack to byte memory.
$CODE 2,'CI'CSTOR

POP BX ;get address
POP AX ;get data in a cell
MOV O[BX],AL ;store one byte
SNEXT

C@ (b-c)

Push byte memory location to the data stack.
$CODE 2,'C@',CAT

POP BX ; get address

XOR AX,AX ;AX=0 zero the hi byte
MOV AL,0[BX] ;getlow byte

PUSH AX ;push on stack

SNEXT

39

Return Stack Words

Return stack is used by the virtual Forth engingatee return addresses to be processes
later. It is also a convenient place to store tetgorarily. The return stack can thus
be considered as a extension of the data stackwet#r, one must be very careful in
using the return stack for temporary storage. data pushed on the return stack must
be popped off before EXIT is executed. OtherwiS¢lT will get the wrong address to
return to, and the system generally will crash.

RP@ and RP! are only used to initialize the systechare seldom used in applications.

>R pops a number off the data stack and pushesthiereturn stack.. R> does the
opposite. R@ copies the top item on the returcksdad pushes it on the data stack.

RP@ (--a)
Push the current RP to the data stack.
$CODE 3, RP@',RPAT

PUSH BP ;copy address to return stack
SNEXT ;pointer register BP
RP! (a--)

Set the return stack pointer.

$CODE COMPO+3,'RP!',RPSTO
POP BP ;copy (BP) to tos
$NEXT

R> (--w)
Pop the return stack to the data stack.
$CODE 2,'R>' ' RFROM

PUSH 0[BP] ;copy w to data stack
ADD BP,CELLL ;adjust RP for popping
SNEXT

R@ (-w)

Copy top of return stack to the data stack.
$CODE 2,/R@',RAT

PUSH 0[BP] ;copy w to data stack
$NEXT

>R (w-)
Push the data stack to the return stack.
$CODE COMPO+2,>R", TOR

SUB BP,CELLL ;adjust RP for pushing
POP 0[BP] ;push w to return stack
$SNEXT

40

Data Stack I nitialization

Data stack is initialized by SP!. The depth ofadstick can be examined by SP@.
These words, as RP@ and RP! are only used by stensyand very rarely used in
applications. These words are necessary in thia kernel because you cannot operate
a stack-based computer without these instructiokwever, in a true Forth engine like
NC4000 and RTX2000 which have build-in circularc&sin independent stack spaces,
which are completely separated from the main meptbese stack words are
unnecessary.

SP! and RP! are not needed because the stacksewilitialized by hardware. SP@
and RP@ are not needed because the stacks adarcand they do not overflow. The
system does not have to constantly watch over tbgmevent them from overflowing or
underflowing.

In true Forth engines, we can eliminate these ifmstructions. However, to impose
virtual Forth engines on conventional CPU's, weehtavretain them to manage the stacks.
It is very awkward to justify their existence ireteForth kernel since they do occupy 4
slots among the 31 primitive eForth words, butrarely used in applications.

SP@ (-a)
Push the current data stack pointer.
$CODE 3,'SP@',SPAT

MOV BX,SP ;use BX to index the stack
PUSH BX ;push SP back

$SNEXT

SP! (a--)

Set the data stack pointer.
$CODE 3,'SP!'SPSTO
POP SP ;safe
$SNEXT

41

Classic Data Stack Words

The data stack is the centralized location whdreuaherical data are processed, and
where parameters are passed from one word to anotfibe stack items has to be
arranged properly so that they can be retrievefdapty in the Last-In-First-Out (LIFO)
manner. When stack items are out of order, theybearearranged by the stack words
DUP, SWAP, OVER and DROP. There are other staakisvoseful in manipulating
stack items, but these four are considered todenhimum set.

In this eForth Model, we use the system stack agléita stack. We can use the
machine instructions PUSH and POP to access thestitk. Because 8086 is a
register-based CPU, all arithmetic and logic openastare performed in the CPU
registers, it is necessary to POP items from the stack into the registers for these
operations, and then PUSH the results back ondteestack. This is the overhead we
have to pay in using a register machine to emualaack machine.

DROP (w --)

Discard top stack item.

$CODE 4,'DROP',DROP

ADD SP,CELLL ;adjust SP to pop
SNEXT

DUP (w--ww)

Duplicate the top stack item.

$CODE 3,'DUP',.DUPP

MOV BX,SP ;use BX to index the stack
PUSH 0[BX]

$SNEXT

SWAP (wlw2--w2wl)
Exchange top two stack items.
$CODE 4,'SWAP',SWAP

POP BX ;get w2
POP AX ;getwl
PUSH BX ;push w2
PUSH AX ;push wil
SNEXT

OVER (w1l w2 --wlw2wl)
Copy second stack item to top.
$CODE 4,'OVER',OVER

MOV BX,SP ;use BX to index the stack
PUSH CELLL[BX] ;get wl and push on stack
$SNEXT

42

Logical Words

The only primitive word which cares about logi¢dbranch’. It tests the top item on the
stack. Ifitis zero, ?branch will branch to tleldwing address. If it is not

zero, ?branch will ignore the address and exebatéoken after the branch address.
Thus we distinguish two classes of numbers, zarddlise' and non-zero for 'true’.
Numbers used this way are called logic flags wicih be either true or false. The only
primitive word which generates flags is '0<', whetamines the top item on the data
stack for its negativeness. If it is negative, ®O# return a -1 for true. Ifitis O or
positive, '0<" will return a 0 for false.

The three logic words AND, OR and XOR are bitwisgi¢ operators over the width of a
cell. They can be used to operate on real flags(D-1) for logic purposes. The user
must be aware of the distinct behaviors betweemedhleflags and the generalized flags.

0< (n--f) ;Return true if n is negative.
$CODE 2,'0<',ZLESS

POP AX

CwD ;sign extend AX into DX
PUSH DX ;push O or -1

$NEXT

AND (ww--w) ;Bitwise AND.
$CODE 3,'AND', ANDD
POP BX

POP AX

AND BX,AX

PUSH BX

SNEXT

OR (ww--w) ;Bitwise inclusive OR.
$CODE 2,'0OR',ORR

POP BX

POP AX

OR BXAX

PUSH BX

SNEXT

XOR (ww--w) ;Bitwise exclusive OR.
$CODE 3,’XOR',XORR

POP BX

POP AX

XOR BX,AX

PUSH BX

SNEXT

43

Primitive Arithmetic Word

The only primitive arithmetic word in the eForthrkel is UM+. All other arithmetic
words, like +, -, * and / are defined from UM+ asaime logic word as colon definitions.
Bill Muench pioneered this design in his bForth.hisTdesign emphasize portability over
performance, because it greatly reduces the efforteoving eForth into CPU's which do
not have native multiply and divide instruction®©nce eForth is implemented on a new
CPU, the multiply and divide words are the firsesrto be optimized to enhance the
performance.

UM+ adds two unsigned number on the top of the sf@tek and returns to the data stack
the sum of these two numbers and the carry as wméer on top of the sum. To
handle the carry this way is very inefficient, besa most CPU's have carry as a bit in
the status register, and the carry can be accégse@ny machine instructions. Itis
thus more convenient to use carry in machine codgramming. eForth provides the
user a handle on the carry in high level, makirepgier for the user to deal with it
directly.

Since it is slower to handle the carry in high lesade, we expect that the user will
enhance the eForth system by recoding many ofitirel&ével ALU words in assembly
so that the eForth system can run faster in rgalcgions.

UM+ (ww--wcy)
Add two numbers, return the sum and carry flag.
$CODE 3,'UM+" UPLUS

XOR CX,CX ;CX=0 initial carry flag
POP BX

POP AX

ADD AX,BX

RCL CX,1 ;get carry

PUSH AX ;push sum

PUSH CX ;push carry

$NEXT

44

5. High Level Forth Words

Following are the eForth words defined as highlleaéon definitions. They are built
from the primitive eForth words and other high les®orth words, including data
structures and control structures. Since eFontincgois coded in Microsoft MASM
assembler, the token lists in the colon definitiars constructed as data in MASM, using
the DW directive. This form of representation,upgb very effective, is very difficult to
read. The original model of eForth as providedBilyMuench was in the form of a
Forth source listing. This listing is much simpéerd easy to read, assuming that the
reader has some knowledge of the Forth syntax. s lidting is also a very good source
to learn a good coding style of Forth. | therefibriek it is better to present the high
level Forth colon definitions in this form. As tB886 eForth implementation deviates
slightly from the original Forth model, I tried taanslate the 8086 implementation
faithfully back to the Forth style for our discussihere.

The sequence of words is exactly the same asrtliheiMASM assembly source listing.
The reader is encouraged to read the MASM soustiadi along with the text in this
book. Reading two descriptions of the same suloféeh enable better comprehension
and understanding.

User Variables

The term user variable was codified in earlier F@gtstems on the mini-computers in
which multitasking was an integral part of the Ravperating system. In a multitasking
system, many user share CPU and other resourties acomputing system. Each user
has a private memory area to store essential irgoom about its own task so that the
system can leave a task temporarily to serve atbers and return to this task continuing
the unfinished work. In a single user environm#émg, user variables have the same
functionality as system variables.

In eForth, all variables used by the system aregatetogether and are implemented
uniformly as user variables. A special memory anghae high memory is allocated for
all these variables, and they are all initializgdcbpying a table of initial values stored in
the cold boot area. A significant benefit of tatcheme is that it allows the eForth
system to operate in ROM memory naturally. Itesywconvenient for embedded
system applications which preclude mass storagdilendbwnloading.

In an application, the user can choose to implemanébles in the forms of user
variables or regular variables when running in RAMmory. To run things in ROM,
variables must be defined as user variables. AljhaeForth in the original model
allows only a small number of user variable to béred in an application, the user area
can be enlarged at will by changing a few assembhstants and equates.

45

doVAR (--a)
(Run time routine for VARIABLE and CREATE.)
R>; (where data is stored)

VARIABLE UP (--a)
(Pointer to the user area.)

doUSER (--a)
(Run time routine for user variables.)
R> @ (retrieve user area offset)
UP@ +; (add to user area base addr)

eForth provides many functions in the vectored ftorallow the behavior the these
functions to be changed dynamically at run time. ve@tored function stores a code
address in a user variable. @EXECUTE is used towt&ehe function, given the address
of the user variable.

USER SP0 (--a)

Pointer to bottom of the data stack.
USERRPO (--a)

Pointer to bottom of the return stack.
USER "?KEY (-a)

Execution vector of ?KEY. Default to ?rx.
USER 'EMIT (—-a)

Execution vector of EMIT. Default to tx!
USER 'EXPECT (--a)

Execution vector of EXPECT. Default to ‘accept'.
USER 'TAP (--a)

Execution vector of TAP. Defulat the KTAP.
USER 'ECHO (-a)

Execution vector of ECHO. Default to tx!.
USER 'PROMPT (--a)

Execution vector of PROMPT. Default to ".ok'.
USER BASE (--a)

Storage of the radix base for numeric /0. Defaul tto 10.
USERtmp (--a)
A temporary storage location used in parse and fin d.

USER SPAN (--a)
Hold character count received by EXPECT.
USER >IN (--a)

Hold the character pointer while parsing input str eam.
USER #TIB (--a)
Hold the current count and address of the terminal input buffer.

Terminal Input Buffer used one cell after #TIB.
USERCSP (--a)
Hold the stack pointer for error checking.
USER 'EVAL (-a)
Execution vector of EVAL. Default to EVAL.
USER'NUMBER (--a)
Execution vector of number conversion. Default to NUMBER?.
USERHLD (--a)
Hold a pointer in building a numeric output string
USER HANDLER (--a)
Hold the return stack pointer for error handling.
USER CONTEXT (-a)
A area to specify vocabulary search order. Defaul tto FORTH.
Vocabulary stack, 8 cells follwing CONTEXT.
USER CURRENT (--a)
Point to the vocabulary to be extended. Default t 0 FORTH.
Vocabulary link uses one cell after CURRENT.
USERCP (--a)
Point to the top of the code dictionary.
USERNP (-a)
Poaint to the bottom of the name dictionary.
USER LAST (--a)
Point to the last name in the name dictionary.

46

Vocabulary and Search Order

In eForth only one vocabulary is used. The namaisfvocabulary is FORTH. When
FORTH is executed, the address of the pointer@ddh of the dictionary is written into
the first cell in the CONTEXT array. When the texterpreter searches the dictionary
for a words, it picks up the pointer in CONTEXT &otlow the thread through the name
dictionary. If the name dictionary is exhaustéa, text interpreter will pick up the next
cell in the CONTEXT array and do the search. Titst €ell in CONTEXT array
containing a 0 stops the searching. There ard8inghe CONTEXT array. Since the
last cell must be zero, eForth allows up to 8 cantecabularies to be searched.

There are two empty cells in the code field of FGRT The first cell stores the pointer
to the last name field in the name dictionary. $beond field must be a 0, which
serves to terminate a vocabulary link when manybataries are created.

Vocabularies are useful in reducing the number @fds the text interpreter must search
to locate a word, and allowing related words tghmiped together as logic modules.
Although the eForth itself only uses one vocabylrg mechanism is provided to define
multiple vocabularies in large applications.

The CONTEXT arrays is designed as a vocabulankdtacnplement the ONLY- ALSO
concept of vocabulary search order first propdseBill Ragsdale in the Forth 83
Standard.

CURRENT points to a vocabulary thread to which miefinitions are to be added.

:dovOC (--)
(Run time action of VOCABULARY's.)
R> (get vocab pointer)
CONTEXT !; (make it context vocab)
:FORTH (--)
(Make FORTH the context vocabulary.)
doVvVOC (retrieve FORTH pointer)
(‘and make it context vocab)
0, (vocabulary head pointer)
0, (vocabulary link pointer)

47

Multitasking Considerations

As discussed before, Forth systems early on hapocated the multitasking features
through the use of user variables. Multitasking igery advanced feature we chose not
to implement in eForth, because the design goaFofth is to present a simple and
portable Forth system to first time Forth users.evéttheless, the design of eForth has
provisions to become a multitasking system if teeriso desires.

The first four cells in the user area are resefeetmplementing multitasker in eForth.
Four cells are sufficient to build a Round Robinltiask Switching mechanism on most
CPU's. Implementing multitasking is an advancectbeyond the scope of eForth.
Interested reader should consult polyForth, F8BRI to get more detailed information
on how a multitasking system works and how to baildultitasking system.

48

More Stack Words

This group of Forth words are commonly used inimgitForth applications. They are
coded in high level to enhance the portability 6beh. In most Forth implementations,
they are coded in machine language to increasextbeute speed. After an eForth
system is ported to a new CPU, this word set shbellcecoded in assembly to improve
the run time performance of the system.

This group of words are stack operators supplemegkie four classic stack operators
DUP, SWAP, OVER and DROP.

ROT is unique in that it accesses the third itenthendata stack. All other stack
operators can only access one or two stack itedmsForth programming, it is generally
accepted that one should not try to access stawisiieeper than the third item. When
you have to access deeper into the data staskaiggood time to re-evaluate your
algorithm. Most often, you can avoid this situattwy factoring your code into smaller
parts which do not reach so deep.

When you have to dig deep into the stack, the t@demes very difficult to read
because of all the stack operations. This is dnlesoreasons why Forth acquired the
reputation of a write-only language. Proper faaois the best cure against this
tendency.

: ?DUP (w--ww|0)
(Dup top of stack if its is not zero.)

DUP

IF DUP THEN ; (‘add another copy if not 0)
:ROT (wlw2w3--w2w3wl)

(Rot 3rd item to top.)

>R (save top item)

SWAP (get 3rd to top)

R> (retrieve top)

SWAP ; (get 3rd to top)

:2DROP (ww--)
(Discard two items on stack.)
DROP DROP ;

: 2DUP (wlw2--wlw2wlw?2)

(Duplicate top two items.)
OVER OVER ;

49

More Arithmetic Operators

This group of arithmetic operators are simple esitams from the primitive word UM+.
It is interesting to see how the more commonly wm#timetic operators are derived.

is UM+ with the carry discarded.
NEGATE returns the two's compliment.

used to form multiple precision operators like D+t.ater we will see how UM+ is used

to do multiplication and division.

i+ (ww--sum)
(Add top two items.)

UM+ (return sum and carry)
DROP; (discard carry)
:D+(dd--d)

(Double addition, as an example using UM+.)
>R SWAP >R (' save high parts)

UM+ (‘add low parts with carry)
R>R> + (‘add high parts)
+; (add carry)
:NOT (w--w)
(One's complement of tos.)
-1 XOR;

:NEGATE (n---n)
(Two's complement of tos.)
NOT 1 +;

: DNEGATE (d - -d)
(Two's complement of top double.)

NOT >R (complement and save high)
NOT 1 UM+ (complement low part)
R> +; (‘add carry to high)

- (nln2--nl-n2)
(Subtraction.)
NEGATE + :

: ABS (n--n)

(Return the absolute value of n.)

DUP 0O< (negate if negative)
IF NEGATE THEN ;

NOT returns tme® compliment of a number, and

Because UlBsprves the carry, it can be

50

+

M ore Comparison

The primitive comparison word in eForth is ?braaold 0<. However, ?branch is at
such a low level that it can not be readily useligh level Forth code. ?branch is
secretly compiled into the high level Forth worgslb as an address literal. For all
intentions and purposes, we can consider IF thevalgmt of ?branch. When IF is
encountered, the top item on the data stack isderezl a logic flag. If itis true
(non-zero), the execution continues until ELSEnthuenp to THEN, or to THEN directly
if there is no ELSE clause.

The following logic words are constructed using lhe.ELSE... THEN structure with 0<
and XOR. XOR is used as 'not equal’ operator, usecH the top two items on the data
stack are not equal, the XOR operator will returroa-zero number, which is considered
to be 'true'.

U< is used to compared two unsigned numbers. dpesator is very important,
especially in comparing addresses, as we assurnthéhaddresses are unsigned numbers
pointing to unigue memory locations. The arithmebmparison operator < cannot be
used to determine whether one address is higHewer than the other. Using < for
address comparison had been the single cause gffanmes in the annals of Forth.

= (ww--t)
(Return true if top two are equal.)
XOR (compare all bits)
IF 0 EXIT THEN (return 0 if mismatch)
-1; (match completely, return -1)

U< (ulu2--t)
(Unsigned compare of top two items.)
2DUP XOR 0< (compare sign bits)
IF SWAP DROP (sign bit different)
O<EXIT (tfollowsu2)

THEN
-0<; ('same sign, subtract)
< (nln2--1t)
(Signed compare of top two items.)
2DUP XOR 0< (compare sign bits)
IF DROP (sign bit different)
O<EXIT (tfollowsnl)
THEN
-0<; ('same sign, subtract)

51

MAX retains the larger of the top two items on tiaa stack. Both numbers are
assumed to be signed integers.

MIN retains the smaller of the top two items on tla¢a stack. Both numbers are
assumed to be signed integers.

WITHIN checks whether the third item on the datcktis within the range as specified
by the top two numbers on the data stack. Theer@ipclusive as to the lower limit
and exclusive to the upper limit. If the thirdnites within range, a true flag is returned
on the data stack. Otherwise, a false flag ignett All numbers are assumed to be
unsigned integers.

: MAX (nln2--n)
(Return the greater of two top stack items.)

2DUP < (ifnl<n2)
IF SWAP THEN (drop n1)
DROP; (else drop n2)

: MIN (nln2--n)
(Return the smaller of top two stack items.)

2DUP SWAP < (ifn1>n2)
IF SWAP THEN (drop n1)
DROP ; (else drop n2)
SWITHIN (uuluh--t)
(Return true if u is within the range of ul and u h; ul<=u<uh.)
OVER - >R (distance between ul and uh)
- (distance between u and ul)
R>U<; (compare the distances)

52

MoreMath Words

This group of words provide a variety of multiplican and division functions. The
most interesting feature of this word set is thaytare all based on the primitive UM+
operator in the kernel. Building this word set ighhlevel has the penalty that all math
operations will be slow. However, since eForthdsehese functions only in numeric
I/O conversions, the performance of eForth itsetiot substantially affected by them.
Nevertheless, if an application requires lots ahetic computations, a few critical words
in this word set should be recoded in assembly.e grimary candidates for
optimization are UM/MOD and UM*, because all otineultiply and divide operators are
derived from these two words.

UM/MOD and UM* are the most complicated and compredive division and
multiplication operators. Once they are codedp#ier division and multiplication
operators can be derived easily. It has beerdditna in Forth coding that one solves
the most difficult problem first, and all other pitems are solved by themselves.

UM/MOD divides an unsigned double integer by anigmsd signal integer. It returns
the unsigned remainder and unsigned quotient odateestack.

:UM/MOD (udludh u --uruq)

(Unsigned divide of a double by a single. Return mod and quotient.)
2DUP U<
IF NEGATE (negate u for subtraction)
15 FOR (repeat 16 times for 16 bits)
>R ('save -u)

DUP UM+ (left shift udh)
>R >R DUP UM+ (left shift udl)
R>+ DUP (add carry to udh)
R>R@ SWAP (retrieve -u)
>R UM+ (subtract u from udh)
R>OR (a borrow?)
IF >R DROP (yes, add a bit to quotient)
1+R>
ELSE DROP (no borrow)
THEN R> (retrieve -u)
NEXT (repeat for 16 bits)
DROP SWAP EXIT (return remainder and quotient)
THEN DROP 2DROP (overflow, return -1's)
-1 DUP;

53

M/MOD divides a signed double integer by a signgdal integer. It returns the signed
remainder and signed quotient on the data stacke signed division is floored towards
negative infinity.

/MOD divides a signed single integer by a signedger. It returns the signed
remainder and quotient.

MOD is similar to /MOD, except that only the signegnainder is returned.
/ is also similar to /MOD, except that only therségg quotient is returned.
In most advanced microprocessors like 8086, afidltivision operations can be

performed by the CPU as native machine instructiorfe user can take advantage of
these machine instructions by recoding these Rotidls in machine code.

:M/MOD (dn-rq)

(Signed floored divide of double by single. Retur n mod and quotient.)
DUP 0< (n negative?)
DUP >R ('save a copy of flag)
IF NEGATE >R (take abs of n)
DNEGATE R> (negative d also)
THEN >R
DUP 0< (if d is negative)
IFR@ + THEN (floor it)
R> UM/MOD (now divide)
R> (if n is negative)
IF SWAP NEGATE SWAP THEN ; (negative remainder al S0)

: /IMOD (nln2--rq)
(Signed divide. Return mod and quotient.)
OVER 0< ('sign extend n1)
SWAP M/MOD ; (floored divide)

: MOD (nn--r)
(Signed divide. Return mod only.)
/MOD DRORP ; (discard quotient)

:/ (nn--q)

(Signed divide. Return quotient only.)
/MOD SWAP DROP ; (discard remainder)

54

UM?* is the most complicated multiplication operatio Once it is coded, all other
multiplication words can be derived from it.

UM* multiplies two unsigned single integers andures the unsigned double integer
product on the data stack.

M* multiplies two signed single integers and retuthe signed double integer product
on the data stack.

* multiplies two signed single integers and retuttms signed single integer product on
the data stack.

Again, advanced CPU's generally have these mudéfiin operations as native machine
instructions. The user should take advantageesf@lesources to enhance the eForth
system.

s UM* (ulu2--ud)
(' Unsigned multiply. Return double product.)

0 SWAP (ulsumu2)
15 FOR (repeat for 16 bits)
DUP UM+ >R >R (left shift u2)
DUP UM+ (left shift sum)
R> + (‘add carry to u2)
R> (carry shifted out of u2?)
IF >R OVER UM+ (add ul to sum)
R>+ (carry into u2)
THEN
NEXT (repeat 16 time to form ud)
ROT DROP ; (discard ul)
* (nn--n)
(Signed multiply. Return single product.)
UM* DROP ; (retain only low part)
:M*(nln2--d)

(Signed multiply. Return double product.)

2DUP XOR 0< >R (n1 n2 have same sign?)

ABS SWAP ABS UM* (multiply absolutes)

R> IF DNEGATE THEN ; (negate if signs are differe nt)

55

Scaling Words

Forth is very close to the machine language thgenierally only handles integer numbers.
There are floating point extensions on many mophsticated Forth systems, but they
are more exceptions than rules. The reason thiét Ras traditionally been an integer
language is that integers are handled faster amd afficiently in the computers, and
most technical problems can be solved satisfagtasging integers only. A 16-bit
integer has the dynamic range of 110 dB whichrigrfare than enough for most
engineering problems. The precision of a 16-ligger representation is limited to one
part in 65535, which could be inadequate for smathbers. However, the precision
can be greatly improved by scaling; i.e., taking ttio of two integers. It was
demonstrated that pi, or any other irrational nurspean be represented accurately to 1
part in 100,000,000 by a ratio of two 16-bit intege

The scaling operators */MOD and */ are useful ialsgg number nl by the ratio of n2/n3.
When n2 and n3 are properly chosen, the scalintatipe can preserve precision similar
to the floating point operations at a much highpsesl. Notice also that in these scaling
operations, the intermediate product of n1 andsr&2double precision integer so that the
precision of scaling is maintained.

*MOD multiplies the signed integers nl1 and n2, #meh divides the double integer
product by n3. Itin fact is ratioing n1 by n2/n3lt returns both the remainder and the
guotient.

*/ is similar to */MOD except that it only returnke quotient.

:*MOD (n1n2n3--rq)

(Multiply n1 and n2, then divide by n3. Return mo d and quotient.)
>R M* (n1*n2)
R> M/MOD ; (n1*n2/n3 with remainder)

:*/(n1n2n3--q)
(Multiply n1 by n2, then divide by n3. Return quo tient only.)
*IMOD (n1*n2/n3)
SWAP DROP ; (discard remainder)

56

Memory Alignment Words

The most serious problem in porting system from amaputer to another is that
different computers have different sizes for tla@idresses and data. We generally
classify computers as 8, 16, 32, ..., bit machibesause they operate on data of these
various sizes. It is thus difficult to port a degrogramming model as eForth to all
these computers. In eForth, a set of memory al@mmwords helps to make it easier to
port the eForth model to different machines.

We assume that the target computer can addressmbny in 8 bit chunks (bytes). The
natural width of data best handled by the compistdrus a multiple of bytes. A unit
of such data is a cell. An 16 bit machine handkgs in 2 byte cells, and a 32 bit
machine handles data in 4 byte cells.

CELL+ increments the memory address by the cel sibytes, and CELL- decrements
the memory address by the cell size. CELLS mudtgothe cell number on the stack by
the cell size in bytes. These words are very Useftonverting a cell offset into a byte

offset, in order to access integers in a data array

ALIGNED converts an address on the stack to the oelkboundary, to help accessing
memory by cells.

:CELL+ (a--a)
(Add cell size in byte to address.)
2+;

:CELL- (a--a)
(Subtract cell size in byte from address.)
2+ :

:CELLS (n--n)
(Multiply tos by cell size in bytes.)
2%

:ALIGNED (b --a)
(Align address to the cell boundary.)
DUP 0 2 UM/MOD (divide b by 2)
DROP DUP (' save remainder)
IF 2 SWAP - THEN (add 1 if remainder is 1)
+)

57

Special Characters

The blank character (ASCII 32) is special in eFdrtlcause it is the most often used
character to delimit words in the input stream #r@most often used character to format
the output strings. It is used so often that @dgantageous to define an unique word
forit. BL simply returns the number 32 on theadstiack.

>CHAR is very important in converting a non-printabharacter to a harmless
‘'underscare' character(ASCIl 95). As eForth isghesl to communicate with a host
computer through the serial I/O device, it is intpat that eForth will not emit control
characters to the host and causes unexpected bebavihe host computer. >CHAR
thus filters the characters before they are senbp&EMIT.

:BL(--32)
(Return 32, the blank character.)
32;

:>CHAR (c--c)
(Filter non-printing characters.)
127 AND DUP (mask off the MSB bit)
127 BL WITHIN (if it is a control character)
IF DROP 95 THEN ; (replace it by an underscore)

58

Managing Data Stack

The data stack is one of the most important ressurca Forth system. The user has to
have the complete knowledge of whets on the stackder to be sure that his program is
operating properly. The Forth words discussedsalfows the user to access only the
top 3 items on the stack. In coding small modules,user is not expected to access
stack items more than 3 levels deep. Howeveynning significant applications, there
are occasions when the user needs to reach dedpéne stack.

In eForth there is an utility word .S which dummsrdestructively the contents of the
data stack for the user to examine. The stacksvDEPTH and PICK are included in
the eForth system mainly to support this stack dutiliy.

DEPTH returns the number of items currently ondata stack to the top of the stack.
PICK takes a number n off the data stack andaoegl it with the n'th item on the data
stack. The number n is 0-based;i.e., the ®pis number 0, the nextitemis
number 1, etc. Therefore, 0 PICK is equivaler®tP, and 1 PICK is equivalent to
OVER.

As discussed in an earlier section, DUP, SWAPER\ANnd ROT should be able to
handle most situations in Forth programming. I yimd yourself in a situation that
you have to use PICK, something is wrong and yauwlkshlook more carefully in your
code to see if there are ways to simplify your code

:DEPTH (--n)
(Return the depth of the data stack.)
SP@ (current stack pointer)
SPO0 @ SWAP - (distance from stack origin)
21/; (divide by bytes/cell)
: PICK (cotn--..w)
(Copy the nth stack item to tos.)
1+ CELLS (bytes below tos)
SP@ + @ ; (fetch directly from stack)

59

Memory access

Here are three useful memory operators. +! incresihe contents of a memory
location by an integer on the stack. 2! and 2@esand fetch double integers to and
from memory.

There are three buffer areas used often in thetleBgstem. HERE returns the address
of the first free location above the code dictighavhere new words are compiled.

PAD returns the address of the text buffer whemalmers are constructed and text strings
are stored temporarily. TIB is the terminal inputfer where input text string is held.

@EXECUTE is a special word supporting the vect@eecution words in eForth. It
takes the token address stored in a memory locatidrexecutes the token. It is used
extensively to execute the vectored words in tlez asea.

c+l(na-)
(Add n to the contents at address a.)
SWAP OVER @ (get contents in a)
+ (add nto it)
SWAP ! ; (store the sum back)
:21(da--)
(Store the double integer to address a.)
SWAP OVER'! (store high part)
CELL+!; (store low part)
2@ (a--d)
(Fetch double integer from address a.)
DUP CELL+ @ (fetch low part first)
SWAP @ ; (fetch high part)

: HERE (-a)
(Return the top of the code dictionary.)

CP@; (top of code dictionary)
: PAD (-a)
(Return the address of a temporary buffer.)
HERE (top of code dictionary)
80 +; (leave 80 byte gap)
1 TIB -a)
(Return the address of the terminal input buffer.)
#TIB CELL+ @ ; (1 cell after #TIB)

. @EXECUTE (a--)
(Execute vector stored in address a.)
@ (fetch the execution address)
?DUP (do nothing if addr is 0)
IF EXECUTE THEN ; (execute it only if non-zero)

60

Memory Array and String Words

A memory array is generally specified by a staraddress and its length in bytes. In a
string, the first byte is a count byte, specifythg number of bytes in the following string.
This is called a counted string. String literalghe colon definitions and the name
strings in the name dictionary are all represebtedounted strings. Following are
special words which handles memory arrays andgstrin

COUNT converts a string array address to the addesgyth representation of a counted
string.

CMOVE copies a memory array from one location tother.
FILL fills a memory array with the same byte.

Arrays and strings are generally specified by tidress of the first byte in the array or
string, and the byte length. This specificatiorcodirse is the consequence that the
memory is byte addressable. In a CPU which addnessory in cells, these words
must be defined in terms of an artificial byte spac

:COUNT (b --b+1+n)

(Return count byte of a string and add 1 to byte address.)
DUP 1 + (increment b)
SWAP C@ ; (get byte from b)

:CMOVE (blb2u--)
(Copy u bytes from b1 to b2.)
FOR (repeat u+1 times)

AFT (skip to THEN the first time)
>R DUP C@ (fetch from source)
R@ C! (store to destination)
1+ (incerement source address)
R>1+ (increment destination address)
THEN (repeat after AFT)
NEXT 2DROP ; (done. discrad addresses)
: FILL (buc-)
(Fill u bytes of character c to area beginning at b.)
SWAP (get u to the top)
FOR (loop u+1 times)
SWAP (get b to top)
AFT (skip to THEN)
2DUP C! (store ctob)
1+ (increment b)
THEN (repeat after AFT)
NEXT 2DROP ; (done. discard b and c)

61

-TRAILING removes the trailing white space charasteom the end of a string. White
space characters include all the non-printableactars below ASCII 32. This word
allows eForth to process text lines in files dovaded from a host computer. It
conveniently eliminates carriage-returns, life-feg@bs and spaces at the end of the text
lines.

PACKS$ is an important string handling word usedHtoy text interpreter. It copies a
text string from on location to another. In thegtt area, the string is converted to a
counted string by adding a count byte before thedéthe string. This word is used to
build the name field of a new word at the bottonth&f name dictionary. PACKS$ is
designed so that it can pack bytes into cellséalbaddressable machine.

A cheap way to implement eForth on a cell addrdsgabchine is to equate cell
addresses to byte addresses, and to store onmlaytell. This scheme is workable,
but very inefficient in the memory utilization. EAS$ is a tool which helps the
implementor to bridge the gap.

:-TRAILING (bu--bu)

(' Adjust the count to eliminate trailing white spa ce.)
FOR ('scan u+1 characters)
AFT (skip the first loop)
BL (blank for comparison)
OVER R@ + C@ < (compare char at the end)
IFR>1+ (' non-white space, exit loop)
EXIT (with adjusted count)
THEN
THEN (else continue scanning)
NEXT O ; (reach the beginning of b)
:PACK$ (bua--a)
(Build a counted string with u characters from b. Null fill.)
DUP >R ('save address of word buffer)
2DUP C! (store the character count first)
1+ 2DUP + (go to the end of the string)
0 SWAP! (fill the end with O's)
SWAP CMOVE (copy the string over)
R>; (leave only word buffer address)

62

6. Text Interpreter

The text interpreter is also called the outer prteter in Forth. It is functionally
equivalent to an operating system in a conventiooaiputer. It accepts command
similar to English entered by a user, and carriddite tasks specified by the commands.
As an operating system, the text interpreter mastdmplicated, because of all the things
it has to do. However, because Forth employs sienple syntax rules, and has very
simple internal structures, the Forth text intet@rés much simpler that conventional
operating systems. It is simple enough that wediseuss it completely in a single
chapter, admitted that this is a long chapter.

Let us summarize what a text interpreter must do:

Accept text input from a terminal
Parse out commands from input text
Search dictionary

Execute commands

Translate numbers into binary
Display numbers in text form

Handle errors gracefully

Forth allows us to build and integrate these remgufunctions gradually in modules.
All the modules finally fall into their places ihaé word QUIT, which is the text
interpreter itself.

You might want to look up the code of QUIT firsttasee how the modules fit together.

A good feeling about the big picture will help youthe study of the smaller modules.
Nevertheless, we will doggedly follow the loadirmgler of the source code, and hope that
you will not get lost too far in the progress.

63

Numeric Output

Forth is interesting in its special capabilitiehendling numbers across the man-machine
interface. It recognizes that the machine andchtimean prefer very different
representations of numbers. The machine preferbittary representation, but the
human prefers decimal Arabic digital representationrHowever, depending on
circumstances, the human may want numbers to besepted in other radices, like
hexadecimal, octal, and sometimes binary.

Forth solves this problem of internal (machine)susrexternal (human) number
representations by insisting that all numbers epeasented in the binary form in the
CPU and in memory. Only when numbers are impastezkported for human
consumption are they converted to the external ABpresentation. The radix of
external representation is controlled by the raditue stored in the user variable BASE.

Since BASE is a user variable, the user can satecteasonable radix for entering
numbers into the computer and format ting numteelse shown to the user. Most
programming languages can handle a small set afesdike decimal, octal,
hexadecimal and binary.

DIGIT converts an integer to a digit.

EXTRACT extracts the least significan digit fronmamber n. n is divided by the radix
in BASE and returned on the stack.

:DIGIT (u--¢)
(Convert digit u to a character.)
9 OVER < (if u is greater than 9)
7 AND + (add 7 to make it A-F)
48 +; (‘add ASCII O for offset)

: EXTRACT (n base -- n/base c)
(Extract the least significant digit from n.)
0 SWAP UM/MOD (divide n by base)
SWAP DIGIT ; (convert remainder to a digit)

64

Number Formatting Tools

The output number string is built below the PADfbuf The least significant digit is
extracted from the integer on the top of the dtdeksby dividing it by the current radix

in BASE. The digit thus extracted are added todtiput string backwards from PAD
to the low memory. The conversion is terminated mtie integer is divided to zero. The
address and length of the number string are maaitable by #> for outputting.

An output number conversion is initiated by <# éeninated by #>. Between them, #
converts one digit at a time, #S converts all tigiég] while HOLD and SIGN inserts
special characters into the string under constyacti This set of tokens is very versatile

and can handle many different output formats.

D<)
(Initiate the numeric output process.)
PADHLD'!; (use PAD as the number buffer)

HOLD (c-)
(Insert a character into the numeric output strin

HLD @ (get the digit pointer in HLD)

1-DUPHLD! (decrement HLD)

C!; (store ¢ where HLD pointed to)
(u--u)

(Extract one digit from u and append the digit to

BASE @ (get current base)

EXTRACT (extract one digit from u)

HOLD ; ('save digit to number buffer)
#S(u--0)

(Convert u until all digits are added to the outp

BEGIN ('begin converting all digits)

DUP (convert one digit)
WHILE (repeat until u is divided to 0)
REPEAT ;

: SIGN (n--)
(Add a minus sign to the numeric output string.)
o< (if n is negative)
IF 45 HOLD THEN ; (add a - sign to number string)

#>(w--bu)
(Prepare the output string to be TYPE'd.)
DROP (discard w)
HLD @ (‘address of last digit)
PAD OVER -; (return address of 1st digit and le

65

g,

output string.)

ut string.)

ngth)

Number Output Words

With the number formatting word set as shown abowe,can format numbers for output
in any form desired. The free output format isuanber string preceded by a single
space. The fix column format displays a numbdrtfjgstified in a column of
pre-determined width. The tokens ., U., and ?thedree format. The tokens .R and
U.R use the fix format.

:str (n--bu)
(Convert a signed integer to a numeric string.)
DUP >R (save a copy for sign)
ABS ('use absolute of n)
<# #S (convert all digits)
R> SIGN (‘add sign from n)
#> (return number string addr and length)
:HEX --
(Use radix 16 as base for numeric conversions.)
16 BASE ! ;
: DECIMAL (--)
(Use radix 10 as base for numeric conversions.)
10 BASE!;
:.R(n+n--)
(Display an integer in a field of n columns, righ t justified.)
>R str (convert n to a number string)
R> OVER - SPACES (print leading spaces)
TYPE; (print number in +n column format)

UR (u+n--)

(Display an unsigned integer in n column, right j ustified.)
>R ('save column number)
<# #S #> R> (convert unsigned number)
OVER - SPACES (print leading spaces)
TYPE; (print number in +n columns)
U (u--)
(Display an unsigned integer in free format.)
<# #S #> (convert unsigned number)
SPACE (print one leading space)
TYPE; (print number)
o(we)
(Display an integer in free format, preceeded by a space.)
BASE @ 10 XOR (if not in decimal mode)
IF U. EXIT THEN (print unsigned number)
str SPACE TYPE ; (print signed number if decimal)
:? (a--)

(Display the contents in a memory cell.)
- (very simple but useful command)

66

Numeric I nput

The Forth text interpreter also handles the nuririrt to the system. It parses words
out of the input stream and try to execute the wandsequence. When the text
interpreter encounters a word which is not the nahgtoken in the dictionary, it then
assumes that the word must be a number and attéonmsvert the ASCII string to a
number according to the current radix. When theitgerpreter succeeds in converting
the string to a number, the number is pushed oddkee stack for future use if the text
interpreter is in the interpreting mode. If iiisthe compiling mode, the text interpreter
will compile the number to the code dictionary asraeger literal so that when the token
under construction is later executed, this litergdger will be pushed on the data stack.

If the text interpreter fails to convert the woodat number, there is an error condition
which will cause the text interpreter to abort, tpagan error message to the user, and
then wait for the user's next line of commands.

Only two words are needed in eForth to handle ilgpsingle precision integer numbers.
DIGIT? converts a digit to its numeric value acaongio the current base, and

NUMBER? converts a number string to a single integ&lUMBER? is vectored
through 'NUMBER to convert numbers.

:DIGIT? (cbase--ut)

(Convert a character to its numeric value. A flag indicates success.)
>R ('save radix)
[CHAR O] LITERAL - (character offset from digi t0)
9 OVER < (is offset greater than 9?)
IF 7- (yes. offset it from digit A)
DUP (nn)
10< (if n<10, the flag will be -1, and)
OR (OR with n, result will be -1)
THEN (if n>10, the flag will be 0 and)
DUP (OR result will still be n)
R>U<; (if n=/>radix, the digit is not valid)

67

NUMBER? converts a string of digits to a singlesmer.

the number is assumed to be in hexadecimal.

If the first character is a $ sign,
Otberthe number will be converted

using the radix value stored in BASE. For negativebers, the first character should

be a - sign.

No other characters are allowederstting.
encountered, the address of the string and aflalg@re returned.

If a non-digit character is
Successful

conversion returns the integer value and a trug fldf the number is larger than 2**n,
where n is the bit width of the single integer,yotile modulus to 2**n will be kept.

:NUMBER? (a--nT,aF)

(Convert a number string to integer. Push a flag on tos.)
BASE @ >R (save the current radix in BASE)
0 OVER COUNT (a0a+ln -, get length of the string)
OVER C@ (get first digit)
[CHAR $] LITERAL = (isita $ for hexadecimal b ase?)
IF HEX (use hexadecimal base and adjust st ring)
SWAP 1 + (aOnat2)
SWAP 1 - (a0a+2n-1)
THEN OVER C@ (get the next digit)
[CHAR -] LITERAL = (isita-sign?)
>R (a0b'n) (save the - flag)
SWAP R@ - (adjust address b))
SWAPR@ + (a0b"n") (adjustcountn)
?DUP (do we still have digits left?)
IF (yes. do conversion)
1-(a0b"n"1) (adjustloop countfor FOR-NE XT loop)
FOR DUP >R ('save address b))
c@ (get one digit)
BASE @ DIGIT? (convert it according to current radix)
WHILE SWAP (itis avalid digit)
BASE @ * + (' multiply it by radix and add to s um)
R>1+ (increment b, pointing to next digit)
NEXT (loop back to convert the next digit)
R@ (?sign) (completely convert the string.get sign)
NIP (asum) (discard string address b))
IF NEGATE THEN (negate the sum if - flag is tru e)

SWAP (suma)
ELSE ('a non-digit was encountered)
R> R> (asumb" b index)
2DROP (asumb")
2DROP 0 (a0, conversion failed)
THEN DUP (/sum a &/ if success; else /a 0
THEN
R> ('n ?sign) (retrieve the sign flag)
2DROP (discard garbage)
R>BASE ! ; (restore radix)

68

/10)

Serial 1/0O Words

The eForth system assumes that the system will agriwaite with its environment only
through a serial 1/0 interface. To support theas#O, only three words are needed:

?KEY returns a false flag if no character is pegdn the receiver. If a character is
received, the character and a true flag are return&his word is more powerful than
that usually defined in most Forth systems becdusmsolidate the functionality of
KEY into ?KEY. It simplifies the coding of the mane dependent I/O interface.

KEY will execute ?KEY continually until a valid crecter is received and the character
is returned. EMIT sends a character out through@transmit line.

?KEY and EMIT are vectored through '"?KEY and 'EM8®,that their function can be
changed dynamically at run time. Normally ?KEY extes ?RX and EMIT executes
TX!. ?RX and TX! are machine dependent kernel wordVectoring the 1/0 words
allows the eForth system to changes its I/O chanhgiamically and still uses all the
existing tools to handle input and output transeni

. ?KEY (—-cT|F)
(Return input character and true, or a false if n o0 input.)
'?KEY @EXECUTE ;

. KEY (-c)
(Wait for and return an input character.)
BEGIN ?KEY (‘wait until a key is pressed)
UNTIL ;

EMIT (c-)

(Send a character to the output device.)
'EMIT @EXECUTE ;

- NUF? (--t)
Return false if no input, else pause and if CR ret urn true.
?KEY DUP ('wait for a key-stroke)
IF 2DROP KEY
13= (return true if key is CR)
THEN;

69

Derived 1/0O Words

All' I/O words are derived from ?KEY, KEY and EMIT.The following set defined in
eForth is particularly useful in normal programming

SPACE outputs a blank space character.
SPACES output n blank space characters.
CR outputs a carriage-return and a line-feed.

PACE outputs an ASCII 11 character to acknowledgeslIreceived during file
downloading.

NUF? returns a false flag if no character is pegdmthe input buffer. After receiving
a character, pause and wait for another charactéthis character is CR, return a true
flag; otherwise, return false. This word is vesgful in user interruptable routines.

TYPE outputs n characters from a string in memory.

: PACE (-)
(Send a pace character for the file downloading p rocess.)
11 EMIT ; (11 is the pace character)
:SPACE (--)
(Send the blank character to the output device.)
BL EMIT ; (' send out blank character)

:SPACES (n--)
(' Send n spaces to the output device.)

SWAP 0 MAX (‘avoid negative n)
FOR AFT (skip first loop)
SPACE (emit one space)
THEN
NEXT DROP ; (repeat till done)

' TYPE (bu--)
(Output u characters from b.)

FOR AFT (repeat u times)
DUP C@ EMIT (get one byte and emit it)
1+ (increment b)

THEN
NEXT DROP ; (repeat until done)
:CR(-)

(Output a carriage return and a line feed.)

15 EMIT ('send carriage-return)

10 EMIT ; (and a line-feed)

70

String Literal Words

String literals are data structures compiled ironalefinitions, in-line with the tokens.
A string literal must start with a string token whiknows how to handle the following
string at the run time. Let us show two examplethe string literals:

I XXX ... " A compiled string" ... ;
Lyyy"Anoutput string" ... ;

In xxx, " is an immediate word which compiles tbowing string as a string literal
preceded by a special token $"|. When $"| is drelcat the run time, it returns the
address of this string on the data stack. In yyy,compiles a string literal preceded by
another token ."|, which prints the compiled sttioghe output device.

Both $"| and ."| use the word do$, which retridwe address of a string stored as the
second item on the return stack. do$ is a bitadiltf to understand, because the starting
address of the following string is the second itamthe return stack. This address is
pushed on the data stack so that the string cacdessed. This address must be
changed so that the address interpreter will retuthe token right after the compiled
string. This address will allow the address intetgr to skip over the string literal and
continue to execute the token list as intended.

: do$ (-a)
(Return the address of a compiled string.)
R> (this return addres must be preserved)
R@ (get address of the compiled string)
R> (get another copy)
COUNT + ALIGNED >R (replace it with addr after s tring)
SWAP (get saved address to top)
>R; (restore the saved retrun address)
8 (-a)
(' Run time routine compiled by $". Return address of a compiled string.)
do$; (‘return string address only)
2 (-)
(Run time routine of ." . Output a compiled strin g.)
do$ (get string address)
COUNT TYPE; (print the compiled string)

71

Word Par ser

Parsing is always thought of as a very advanceid togcomputer sciences. However,
because Forth uses very simple syntax rules, gaisi@asy. Forth source code consists
of words, which are ASCII strings separated by epad other white space characters
like tabs, carriage returns, and line feeds. Eweihterpreter scans the source code,
isolates words and interprets them in sequenceter Afword is parsed out of the input
text stream, the text interpreter will 'interpretexecute it if it is a token, compile it if

the text interpreter is in the compiling mode, aodvert it to a number if the word is not
a Forth token.

PARSE scans the source string in the terminal ibpéfer from where >IN points to till
the end of the buffer, for a word delimited by cwer c. It returns the address and
length of the word parsed out. PARSE calls 'paoséb the detailed works.

PARSE is used to implement many specialized pamsorgls to perform different source
code handling functions. These words, including GHAR, WORD, and TOKEN are
discussed in the next section.

: PARSE (¢ -- b u\<string>)

(' Scan input stream and return counted string deli mited by c.)
>R (save the delimiting character)

TIB>IN @ + (‘address in TIB to start parsing)

#TIB@ >IN @ - (length of remaining string in Tl B)

R> parse (parse the desired string)

>IN +!; (move parser pointer to end of string)

72

'‘parse’ (blulc--b2u2n) Fromthe soungegsstarting at bl and of ul characters
long, parse out the first word delimited by chaeact Return the address b2 and length
u2 of the word just parsed out and the differenbetween bl and b2. Leading
delimiters are skipped over. ‘parse’is used bRERA

:parse (b uc--budelta\ <string>)

(Scan string delimited by c. Return found string and its offset.)
temp ! (save delimiter in temp)
OVER >R DUP (buu--)
IF (if string length u=0, nothing to parse)
1- (u>0, decrement it for FOR-NEXT loop)
temp @ BL = (is delimiter a space?)
IF (b u'--, skip over leading spaces)
FOR BLANK
OVER C@ (get the next character)
-0< (isitaspace?)
INVERT
WHILE
NEXT (b --, if space, loop back and scan fur ther)

R>DROP (end of buffer, discard count)
0 DUP EXIT (exitwith--b 00, end of line)

THEN
1- ('back up the parser pointer to non-space)
R> (retrieve the length of remaining string)
THEN
OVER SWAP (b'b'u'--, start parsing non-spa ce chars)
FOR
temp @ (get delimiter)
OVER C@ - (get next character)
temp @ BL =
IF 0<
ELSE 1 +
THEN
WHILE (if delimiter, exit the loop)
NEXT (not delimiter, keep on scanning)
DUP >R ('save a copy of b at the end of the | oop)
ELSE (early exit, discard the loop count)
R> DROP (discard count)
DUP 1 +>R ('save a copy of b'+1)
THEN
OVER - (length of the parsed string)
R> R> - (‘and its offset in the buffer)
EXIT
THEN (b u)
OVER (buffer length is 0)
R>-; (the offsetis 0 also)

73

Parsing Words

.(types the following string till the next). i# used to output text to the terminal.
(ignores the following string till the next). t i used to place comments in source
text.

\ ignores all characters till end of input buffeit is used to insert comment lines in
text.

CHAR parses the next word but only return the fitsearacter in this word. Get an
ASCII character from the input stream.

WORD parses out the next word delimited by the A®Béaracter c. Copy the word to
the top of the code dictionary and return the asklod this counted string.

TOKEN parses the next word from the input buffed anpy the counted string to the top
of the name dictionary. Return the address ofdbisted string.

o

(Output following string up to next) .)

[CHAR)] LITERAL PARSE (parse the string until next))
TYPE ; IMMEDIATE (type the string to terminal)

()
(' Ignore following string up to next) . A comment)
[CHAR)] LITERAL PARSE (parse the string until))
2DROP ; IMMEDIATE (‘and ignore it as a comment)

A ()

(' Ignore following text till the end of line.)

#TIB @ >IN! (store the length of TIB in >IN)

; IMMEDIATE (in effect ignore the rest of a li ne)
:CHAR (--¢)

(Parse next word and return its first character.)

BL PARSE (get the next string)

DROP C@ ; (return the code of the 1st charact er)
: TOKEN (-- a\ <string>)

(Parse a word from input stream and copy it to na me dictionary.)

BL PARSE (parse out next space delimited stri ng)

31 MIN (truncate it to 31 characters)

NP @ (word buffer below name dictionary)

OVER - 2 - PACKS$; (copy parsed string to word buffer)
:WORD (¢ -- a\ <string>)

(Parse a word from input stream and copy it to co de dictionary.)

PARSE (parse out a string delimited by c)

HERE PACKS$; (copy the string into the word bu ffer)

74

Dictionary Search

In eForth, headers of word definitions are linketbia name dictionary which is
separated from the code dictionary. A header castaree fields: a token field holding
the code address of the word, a link field holdimg name field address of the previous
header and a name field holding the name as aedsiring. The name dictionary is a
list linked through the link fields and the nameldis. The basic searching function is
performed by the word 'find'. 'find’ follows theked list of names to find a name

which matches a text string, and returns the addrethe executable token and the name
field address, if a match is found.

eForth allows multiple vocabularies in the namdidi@ary. A dictionary can be divided
into a number of independently linked sublists tiglo some hashing mechanism. A
sublist is called a vocabulary. Although eForseit contains only one vocabulary, it
has the provision to build many vocabularies afmal many vocabularies to be
searched in a prioritized order. The CONTEXT airathe user area has 8 cells and
allows up to 8 vocabularies to be searched in semue A null entry in the CONTEXT
array terminates the vocabulary search.

:NAME> (na--ca)
(Return a code address given a name address.)
2 CELLS - (move to code pointer field)

@ ; (get code field address)
:SAME? (ala2u--ala2f\-0+)
(Compare u cells in two strings. Return 0 if iden tical.)
FOR ('scan u+1 cells)
AFT (skip the loop the first time)
OVER (copyal)
R@ CELLS + @ (fetch one cell fromal)
OVER (copy a2)
R@ CELLS+ @ (fetch one cell from a2)
- (compare two cells)
?DUP
IF (if they are not equal)
R>DROP (drop loop count)
EXIT (‘and exit with the difference as a flag)
THEN
THEN
NEXT (loop u times if strings are the same)

0; (then push the 0 flag on the stack)

find (ava--cana, aF) A counted string a the name of a token to be looked up in
the dictionary. The last name field address oMbeabulary is stored in location va. If

the string is found, both the token (code addrasd)the name field address are returned.
If the string is not the name a token, the striddrass and a false flag are returned.

To located a word, one could follow the linked hstd compare the names of defined
tokens to the string to be searched. If the stmagches the name of a token in the
name dictionary, the token and the address ofdéingerfield are returned. If the string
is not a defined token, the search will lead thezita null link or a null name field. In
either case, the search will be terminated andsa fiag returned. The false flag thus
indicates that the token searched is not in thealalary.

75

.find (ava--cana,aF)

(Search a vocabulary for a string. Return ca and na if succeeded.)
SWAP (vaa)
DUPC@ 2/temp! (vaa--, getcell count)
DUP @ >R (vaa--,save 1st cell of s tring)
CELL+ SWAP (a'va--, compare string wi th names)
BEGIN (fast test, compare only 1st cells)
@ DUP (a'nana--)
IF (na=0 at the end of a vocabulary)
DUP @ (not end of vocabulary, test 1st cell)
[=MASK] LITERAL AND (mask off lexicon bits)
R@ XOR (compare with 1st cell in string)
IF (1st cells do not match)
CELL+ -1 (try the next name in the vocabulary)
ELSE CELL+ (get address of the 2nd cell)

temp @ (get the length of string)
SAME? ('string=name?)

THEN
ELSE (‘end of vocabulary)
R> DROP (discard the 1st cell)
SWAP CELL- SWAP (restore the string address)
EXIT (exit with ca na, na=0 is false flag)
THEN
WHILE (if the name does not match the string)
CELL- CELL- (a'la--, move to next word in vocab)
REPEAT (repeat until vocabulary is exhausted)
R> DROP NIP (‘a match is found, discard 1st and va)
CELL- (restore name field address)
DUP NAME> (find code field address)
SWAP ; (reorder and return. --cana)

'find' runs through the name dictionary very guydiécause it first compares the length
and the first character in the name field as a cdh most cases of mismatch, this
comparison would fail and the next name can behezhthrough the link field. If the
first two characters match, then SAME? is invok@ddmpare the rest of the name field,
one cell at a time. Since both the target textg@nd the name field are null filled to
the cell boundary, the comparison can be perforquickly across the entire name field
without worrying about the end conditions.

76

NAME? (a--cana,aF) Search all the vocaledan the CONTEXT array for a
name at address a. Return the token and a nhamesadfla matched token is found.
Otherwise, return the string address and a fadge fl The CONTEXT array can hold up
to 8 vocabulary links. However, a 0 which is natadid vocabulary link in this array
will terminate the searching. Changing the vocatylinks in this array and the order
of these links will alter the searching order aedde the searching priority among the
vocabularies.

:NAME? (a--cana,aF)
(Search all context vocabularies for a string.)

CONTEXT (address of context vocabulary stack)
DUP 2@ XOR (are two top vocabularies the same?)
IF (if not same)

1 CELLS - (backup the vocab address for loopin g)
THEN
>R (save the prior vocabulary address)
BEGIN

R> CELL+ (get the next vocabulary address)

DUP >R ('save it for next vocabulary)

@ ?DUP (is this a valid vocabulary?)
WHILE (yes)

find (find the word in this vocabulary)

?DUP (word found here?)
UNTIL (if not, go searching next vocabulary)

R> DROP EXIT (word is found, exit with ca and na)
THEN
R> DROP (word is not found in all vocabulari es)
0; (‘exit with a false flag)

77

Text Input from Terminal

The text interpreter interprets source text stamatie terminal input buffer. To
process characters from the input device, we reee special words to deal with
backspaces and carriage return from the input devic

KTAP (bl1b2b3c--blb4b5) Process acharacteceived fromterminal. blis
the starting address of the input buffer. b2 ésehd of the input buffer. b3 is the
currently available address in the input buffer.is normally stored into b3, which is
bumped by 1 and becomes b5. In this case, b4&isdaime as b2. Ifcisa
carriage-return, echo a space and make b4=b5=I63.is b back-space, erase the last
character and make b4=b2, b5=b3-1.

TAP (bl1b2b3c--blb4b5) Echoctooutperide, store cin b3, and bump b3.

"H (blb2b3--blb2bd) Processthe backeapharacter. Erase the last
character and decrement b3. If b3=b1, do notheéwabse you cannot backup beyond
the beginning of the input buffer.

T MH (bot eot cur -- bot eot cur)
(Backup the cursor by one character.)
>R OVER (bot eot bot --)
R@ < DUP (bot<cur ?)
IF [CTRLH]LITERAL (yes, echo backspace)
'ECHO @EXECUTE

THEN (bot eot cur 0]-1 --)
R>+; (decrement cur, but not passing bot)
: TAP (bottom eot currrent key -- bottom eot curre nt)
(Accept and echo the key stroke and bump the curs or.)
DUP (duplicate character)
'ECHO @EXECUTE (‘echo it to display)
OVER C! (store at current location)
1+; (increment current pointer)

. KTAP (bot eot cur key -- bot eot cur)
(Process a key stroke, CR or backspace.)

DUP 13 XOR (is key a return?)

IF [CTRLH]LITERAL (is key a backspace?)
XOR
IF BLTAP (non of above, replace by space)
ELSE H (' backup current pointer)
THEN
EXIT (done this part)

THEN (keyis areturn)
DROP NIP (discard bot and eot)
DUP; (duplicate cur)

78

QUERY is the word which accepts text input, up @ocBaracters, from the input device
and copies the text characters to the terminaltibptfer. It also prepares the terminal
input buffer for parsing by setting #TIB to the ceter count and clearing >IN.

EXPECT (bu--) Acceptu charactersto a mentarffer starting at b. The input is
terminated upon receiving a carriage-return. Timaler of characters actually received
is stored in SPAN. EXPECT is called by QUERY td ploaracters into the terminal
input buffer. However, EXPECT is useful by itsedéfcause one can use it to place input
text anywhere in the memory. QUERY and EXPECTthaeetwo words most useful in
accepting text from the terminal.

accept (bul--bu2) Acceptul charactetstou2 returned is the actual count
of characters received.

caccept(bu--bu)

(Accept characters to input buffer. Return with a ctual count.)
BEGIN
2DUP XOR ('b+u = current pointer?)
WHILE (no, get next character)
KEY (get one more character)
DUP BL - 95 U< (is it printable?)
IF TAP (yes, accept and echoiit)
ELSE 'TAP @EXECUTE (no, process control code)
THEN
REPEAT (repeat until buffer full)
DROP (discard current pointer)
OVER -; (leave character count)

:EXPECT (bu--)
(Accept input stream and store count in SPAN.)

'EXPECT @EXECUTE (execute accept)
SPAN'! (store character count in SPAN)
DROP; (discard eot address)
i QUERY (--)
(Accept input stream to terminal input buffer.)
TIB 80 (‘addr and size of terminal input buffe r)
'EXPECT @EXECUTE (execute 'accept')
#TIB! (store number of characters received)
DROP (discard buffer address)
0>IN!; (initialized parsing pointer)

79

Error Handling

This error handling mechanism was first developgtiich Bradley in his ForthMacs
and then adopted by the ANS Forth Standard. Meig simple yet very powerful in
customizing system responses to many different eonditions.

CATCH setups a local error frame and execute thelweferenced by the execution
token ca. It returns a non-zero error code or a #ero error occurred. As the assigned
word at ca is executing, any error condition wideeute THROW, which pushes an error
code on the data stack, restore the return staitietstate before CATCH was executed,
and execute the error handler stored in HANDLERinc&the error handler frame is
saved on the return stack, many layers of safdty/can be laid down nested.

CATCH pushes SP and HANDLER on the return stackes&P in HANDLER, and
then execute the token at ca. If no error occurrddANDLER and SP are restored
from the return stack and a 0 is pushed on thestatk.

THROW throws the system back to CATCH so that tinerecondition can be processed.
CATCH is backtracked by restoring the return staokn the pointer stored in
HANDLER and popping the old handler and SP offalrer frame on the return stack.

: CATCH (ca--err#/0)

(Execute word at ca and set up an error frame for it.)
SP@ >R (save current stack pointer on return stack)
HANDLER @ >R (save the handler pointer on retu rn stack)
RP@ HANDLER'! (save the handler frame pointer in HANDLER)
(ca) EXECUTE (execute the assigned word over t his safety net)
R> HANDLER! (' normal return from the executed word)
(restore HANDLER from the return stack)

R> DROP (discard the saved data stack pointer)
0; (push a no-error flag on data stack)

: THROW (err# -- err#)
(Reset system to current local error frame an upd ate error flag.)
HANDLER @ RP! (expose latest error handler fram e on return stack)
R> HANDLER! (restore previously saved error h andler frame)
R> SWAP >R (retrieve the data stack pointer sav ed)
SP! (restore the data stack)
DROP
R>; (retrived err#)

80

NULLS is the address of a string with a zero counthis address is used by ABORT
and abort" to terminate the interpreting of therent command line. QUIT tests the
address reported by CATCH. If this address is N$lLthe termination is normal and
no error message will be issued. If CATCH repartifferent address, QUIT will
display the contents of the string at that address.

ABORT" is used only within a definition to comp# inline packed string terminated

by the " double quote character. At run-time, @ flag is false, execute the sequence of
words following the string. Otherwise, the strisgdisplayed on the current output device,
and execution is then passed to an error handbugne.

You have to study the code in QUIT carefully witiistsection to get a better
understanding of the CATCH-THROW error handling hreadsm.

CREATE NULL$ 0,99¢c, 111 ¢, 121 ¢, 111 ¢c, 116 ¢, 101 c,
(Return address of a null string with zero count.)
: ABORT ()
(Reset data stack and jump to QUIT.)
NULL$ (take address of NULL$)
THROW ; (‘and give it to current CATCH)
s abort" (f--)
(Run time routine of ABORT" . Abort with a messag e.)
IF (if flag is true, abort)
do$ (take address of next string)
THROW (and give itto CATCH)
THEN (if flag is false, continue)
do$ DROP (skip over the next string)

; COMPILE-ONLY

81

Let's look at how the CATCH-THROW pair is used. QWIT, there is this indefinite
loop:

BEGIN QUERY ['EVAL] LITERAL CATCH
?DUP UNTIL

QUERY get a line of text and CATCH causes EVALnterpret the line. CATCH also
sets up an error handling frame on the return stacksaves the return stack pointer in
the user variable HANDLER. The error handling feaoontains the current data stack
pointer and the current contents in HANDLER. Iferoor occurred during EVAL, the
error frame is popped off the return stack andsefiag is returned on the data

stack. ?DUP UNTIL will loop back to QUERY and timerpretive process will
continue.

While EVAL interprets the text, any word which déed that it detects an error condition
and needs attention, it will execute THROW. THR@4tores the return stack from
the pointer stored in HANDLER, making the error tlamg frame available. THROW
then restores HANDLER from the one saved in therdrame so that the error handling
can be nested. The data stack pointer is alsoregstrom the error frame. Now
THROW passes the address of a error processingedotthe CATCH which built the
error frame.

Here are some of the words which generate erraditons:

:ABORT NULL$ THROW ;
:abort" IF do$ THROW THEN do$ DROP ;
: ?STACK DEPTH 0< IF $" underflow" THROW THEN ;

:$INTERPRET ... 'NUMBER @EXECUTE IF EXIT THEN T HROW ;

$INTERPRET, ?STACK and abort" pass string addregs@siROW. The strings
contains appropriate error messages to be displayé#ue text interpreter. In QUIT, the
words between UNTIL and AGAIN deal with the erronditions and then re-initialize
the text interpreter.

82

Text Interpreter Loop

Text interpreter in Forth is like the operatingteys of a computer. It is the primary
interface a user goes through to get the compateo tvork. Since Forth uses very
simple syntax rules--words are separated by spHuesext interpreter is also very

simple. It accepts a line of text from the ternhiparses out a word delimited by spaces,
locates the token of this word in the dictionarg éimen executes it. The process is
repeated until the source text is exhausted. Tietext interpreter waits for another

line of text and interprets it again. This cya@eats until the user is exhausted and
turns off the computer.

In eForth, the text interpreter is encoded in tloed\QUIT. QUIT contains an infinite
loop which repeats the QUERY EVAL phrase. QUERYegts a line of text from the
terminal and copies the text into the Terminal npuffer (TIB). EVAL interprets the
text one word at a time till the end of the tereli

One of the unique features in eForth is its ereordiing mechanism. While EVAL is
interpreting a line of text, there could exist mamyor conditions: a word is not found in
the dictionary and it is not a number, a compilétavord is accidentally executed
interpretively, and the interpretive process mag in¢errupted by the words ABORT or
abort". Wherever the error occurs, the text imeigr must be made aware of it so that
it can recover gracefully from the error conditemmd continue on about the interpreting
business.

SINTERPRET executes a word whose string addremss the stack. If the string is not
a word, convert it to a number.

: $INTERPRET (a--)

(Interpret a word. If failed, try to convert it t 0 an integer.)
NAME? (search dictionary for word just parse d)
?DUP (is it a defined word?)
IF @ (yes. examine the lexicon)
[=COMP] LITERAL AND (is it a compile-only word ?)
ABORT" compile ONLY" (if so, abort with the pro per message)
EXECUTE EXIT (' not compile-only, execute it and exit)
THEN (not defined in the dictionary)
'NUMBER @EXECUTE (convert it to a number)
IF EXIT THEN (exit if conversion is successful)
THROW ; (else generated the error condition)

83

Here are some of the nitty-gritty stuff on the temerpreter and how it actually works.

[activates the text interpreter by storing theaiion address of SINTERPRET into
the variable 'EVAL, which is executed in EVAL whillee text interpreter is in the
interpretive mode.

.OK prints the familiar 'ok' prompt after executitagthe end of a line. 'ok’ is printed
only when the text interpreter is in the interpretmode. While compiling, the prompt
is suppressed.

?STACK checks for stack underflow. Abort if thack depth is negative.

EVAL is the interpreter loop which parses tokemsrfrthe input stream and invokes
whatever is in 'EVAL to handle that token, eithreeute it with SINTERPRET or
compile it with $COMPILE.

L(0-)
(Start the text interpreter.)

['$INTERPRET] LITERAL (store SINTERPRET in 'E VAL)
'EVAL !
; IMMEDIATE (must be done even while compiling)

:.OK (-)
(Display 'ok' only while interpreting.)
['$INTERPRET] LITERAL

'EVAL @ =
IF." ok" THEN
CR;
1 ?2STACK (--)
(Abort if the data stack underflows.)
DEPTH 0<
ABORT" underflow" ;
:EVAL (--)
(' Interpret the input stream.)
BEGIN
TOKEN (--a) (parse a word and leave its addr ess)
DUP C@ (is the character count 0?)
WHILE (no)
'EVAL @EXECUTE (evaluate it)
?STACK (‘any stack error? overflow or underflow)
REPEAT (repeat until TOKEN gets a null string)
DROP (discard the string address)
'PROMPT @EXECUTE ; (display the proper prompt, i fany)

84

Operating System

Source code can be downloaded to eForth througbettia@ input device. The only
precaution we have to take is that during file dma&ding, characters are not echoed
back to the host computer. However, whenever e eccurred during downloading,
it is more useful to resume echoing so that erressages can be displayed on the
terminal. It is also convenient to send speciaim@characters to the host to tell the
host that a line of source code was received anckgsed correctly. The following
words configure the eForth 1/0 vectors to haveptuper behavior in normal terminal
interaction and also during file downloading:

FILE turns off character echoing. After one lifdext is processed correctly, a pacing
character ASCII 11 is sent to the host. If anreoezurred, send an ESC (ASCIl 26)
character. An error will also restore the I/O westinto the terminal mode.

HAND resumes terminal interaction. Turn on chagaetchoing, and send normal
prompt message after a line is processed correctly.

: PRESET (--)
(Reset data stack pointer and the terminal input buffer.)
SPO @ SP! (initialize data stack)
[=TIB] LITERAL

#TIB CELL+ ! (initialize terminal input buffer)

: XIO (prompt echo tap --)

(Reset the 1/0 vectors 'EXPECT, 'TAP, 'ECHO and ' PROMPT.)
["accept] LITERAL 'EXPECT ! (vector EXPECT)
‘TAP | (init KTAP)
'ECHO ! (init ECHO)
'PROMPT !'; (init system prompt)
(FILE (--)
(Select I/0 vectors for file download.)
["'PACE] LITERAL ('send 11 for acknowledge)
['DROP] LITERAL (do not echo characters)
['KTAP] LITERAL (ignore control characters)
XIO ;
:HAND (--)
(Select I/O vectors for terminal interface.)
['.OK]LITERAL (say 'ok'if all is well)
'EMIT @ (echo characters)
["'KTAP] LITERAL (ignore control characters)
XIO ;

85

CONSOLE initializes the serial I/O device for temal interaction. ?KEY is vectored
to ?RX and EMIT is vectored to TX!.

QUIT is the operating system, or a shell, of therdFsystem. It is an infinite loop
eForth will never get out. It uses QUERY to acaefpihe of commands from the
terminal and then let EVAL parse out the tokens exetute them. After a line is
processed, it displays 'ok' and wait for the new bf commands. When an error
occurred during execution, it displays the commahah caused the error with an error
message. After the error is reported, it re-iti#tes the system using PRESET and
comes back to receive the next line of commands.

Because the behavior of EVAL can be changed byngt@ither SINTERPRET or
$COMPILE into 'EVAL, QUIT exhibits the dual natuoé a text interpreter and a
compiler.

CREATE /10 "RX?,'TX
(Array to store default /0 vectors.)

: CONSOLE (--)
(Initiate terminal interface.)
/0 2@ 'KEY? 2! (get defaults from 1/O)
HAND ; (keyboard input)
CQUIT (--)
(Reset return stack pointer and start text interp reter.)
RPO @ RP! (initialize the return stack)
BEGIN
[COMPILE] [(start text interpreter)
BEGIN
QUERY (get a line of commands from terminal)
['EVAL] LITERAL
CATCH (execute commands with error handler)
?DUP
UNTIL (a) (‘exit if an error occurred)
'PROMPT @ SWAP (save the current prompt address)
CONSOLE NULL$ OVER XOR (s error address=NULL$?)
IF SPACE (no. display name of error word)
COUNT TYPE
R (followed by a error code)
THEN
['.OK]LITERAL XOR ('PROMPT has .OK ?)
IF [ERR] LITERAL EMIT (no, send error code to file handler)
THEN
PRESET (reset the data stack)
AGAIN ; (go back get another command line)

86

7. eForth Compiler

After wading through the text interpreter, the Razbmpiler will be an easy piece of cake,
because the compiler uses almost all the modukx$ mgthe text interpreter. What the
compile does, over and above the text interpregeo, build various structures required

by the new words we want to add to the existingesys Here is a list of these
structures:

Name headers
Colon definitions
Constants
Variables

User variables
Integer literals
String literals
Address literals
Control structures

A special concept of immediate words is difficatgrasp at first. It is required in the
compiler because of the needs in building diffedgata and control structures in a colon
definition. To understand the Forth compiler fulppu have to be able to differential
and relate the actions during compile time andasttaken during executing time.
Once these concepts are clear, the whole Forteraysill become transparent.

This set stage for enlightenment to strike.

87

Interpreter and Compiler

The Forth compiler is the twin brother of the Faetkt interpreter. They share many
common properties and use lots of common code eFarth, the implementation of the
compiler clearly reflects this special duality. dwmteresting words [and] causes the
text interpreter to switch back and forth betwden¢ompiler mode and interpreter mode
of operation.

Since 'EVAL @EXECUTE is used in EVAL to proces®kdn parsed out of a line of
text, the contents in 'EVAL determines the behawidhe text interpreter. If
$INTERPRET is stored in 'EVAL, as [does, the takanre executed or interpreted. If
we invoked] to store $COMPILE into 'EVAL, the takwill not be executed, but added
to the top of the code dictionary. This is exattly behavior desired by the colon
definition compiler in building a list of tokens the code field of a new colon definition
on the top of the code dictionary.

$COMPILE normally adds a token to the code dictigna However, there are two
exceptions it must handle. If the token parsedobtite input stream does not exist in
the dictionary, the string will be converted towamber. If the string can be converted to
an integer, the integer is then compiled into thaecdictionary as an integer literal. The
integer number is compiled into the code dictiorfatipwing the token doLIT. The
other exception is that a token found in the diciy could be an immediate word, which
must be executed immediately, not compiled to tieedictionary. Immediate words
are used to compile special structures in colomdieins.

-)
['$INTERPRET] LITERAL
'EVAL ! (vector EVAL to $INTERPRET)
; IMMEDIATE (enter into text interpreter mode)

-)
[' $COMPILE] LITERAL
'EVAL ! (vector EVAL to $COMPILE)

88

Here is a group of words which support the compddsuild new words in the code
dictionary.

" (tick) searches the next word in the input stréar a token in the dictionary. It
returns the execution address of the token if sgfae Otherwise, it displays an error
message.

ALLOT allocates n bytes of memory on the top @& tode dictionary. Once
allocated, the compiler will not touch the memargdtions.

, (comma) adds the execution address of a tokeheotop of the data stack to the code
dictionary, and thus compiles a token to the grovtoken list of the word currently
under construction.

COMPILE is used in a colon definition. It causks hext token after COMPILE to be
added to the top of the code dictionary. It therefforces the compilation of a token at
the run time.

[COMPILE] acts similarly, except that it compildgetnext word immediately. It causes
the following word to be compiled, even if the fling word is an immediate word
which would otherwise be executed.

" (--ca)
(Search context vocabularies for the next word in input stream.)
TOKEN NAME?
IF EXIT THEN
THROW ;

SALLOT (n--)
(Allocate n bytes to the code dictionary.)
CP+1; (adjust code dictionary pointer)

s (w--)
(Compile an integer into the code dictionary.)
HERE DUP CELL+ (align to cell boundary)
CP!!; (update code dictionary pointer)

: [COMPILE] (--; <string>)
(Compile the next immediate word into code dictio nary.)
', ; IMMEDIATE

: COMPILE (--)
(Compile the next address in colon list to code d ictionary.)
R>DUP @, (compile address)
CELL+ >R ; COMPILE-ONLY (adjust return address)

89

LITERAL compiles an integer literal to the curreaion definition under construction.
The integer literal is taken from the data stackl s preceded by the token doLlIT.
When this colon definition is executed, doLIT vektract the integer from the token list
and push it back on the data stack. LITERAL coegpdn address literal if the
compiled integer happens to be an execution addfestoken. The address will be
pushed on the data stack at the run time by doLlIT.

$," compiles a string literal. The string is takesm the input stream and is terminated
by the double quote character. $," only copiescthented string to the code dictionary.
A token which makes use of the counted string @ttim time must be compiled before
the string. Itis used by ." and $".

RECURSE is an interesting word which allows eFtothompile recursive definitions.

In a recursive definition, the execution addresthefword under construction is
compiled into its own token list. This is not alled normally because the name field of
the current word under construction is not yetéihko the current vocabulary and it
cannot be referenced inside its own colon definitioRECURSE stores the address of
the name field of the current word into CURRENTydtenable it to be referenced inside
its own definition. Recursive words are not usedveryday programming.

RECURSE is defined here in eForth merely as a t¢aseet your appetite. It is not
used in eForth.

: LITERAL (w --)
(Compile tos to code dictionary as an integer lit eral.)
COMPILE doLIT (compile doLIT to head lit)
. IMMEDIATE (compile literal itself)

8" -
(Compile a literal string up to next " .)

34 WORD (move string to code dictionary)
COUNT + ALIGNED (calculate aligned end of string)
CP!: (‘adjust the code pointer)

: RECURSE ()
(Make the current word available for compilation.)
LAST @ (pointer to current word)
CURRENT @ ! ; IMMEDIATE (link it to current vocab)

90

Control Structures

A set of immediate words are defined in eForthetpHouilding control structures in
colon definitions. The control structures useeéHorth are the following:

Conditional branch IF ... THEN
IF ... ELSE ... THEN

Finite loop FOR ... NEXT
FOR ... AFT ... THEN... NEXT
Infinite loop BEGIN ... AGAIN

BEGIN ... UNTIL
BEGIN ... WHILE ... REPEAT

Indefinite loop

This set of words is more powerful than the ondggiRorth model because they permit
multiple exits from a loop. Many examples are jdevn the source code of eForth like

NUMBER?, parse, find and >SNAME.

A control structure contains one or more addreéssdllis, which causes execution to
branch out of the normal sequence. The controtaire words are immediate words
which compile the address literals and resolvebtia@ch address.

:FOR (-a)

(Start a FOR-NEXT loop structure in a colon defin
COMPILE >R (runtime code of FOR)
HERE ; IMMEDIATE (push HERE on stack)

BEGIN (--a)
(Start an infinite or indefinite loop structure.)
HERE ; IMMEDIATE (push HERE for later ref.)

: NEXT (a--)
(Terminate a FOR-NEXT loop structure.)
COMPILE next (runtime code of NEXT)
. IMMEDIATE (compile address after FOR)

CUNTIL (a--)
(Terminate a BEGIN-UNTIL indefinite loop structur
COMPILE ?branch (runtime code of UNTIL)
. IMMEDIATE (compile branch address)

:AGAIN (a--)
(Terminate a BEGIN-AGAIN infinite loop structure.
COMPILE branch (runtime code of AGAIN)
. IMMEDIATE (compile branch address)

91

ition.)

e)

One should note that BEGIN and THEN do not comgilg code. They executes
during compilation to set up and to resolve thenbhaaddresses in the address literals.
IF, ELSE, WHILE, UNTIL, and AGAIN do compile addre$terals with branching

tokens. Here are many excellent examples on thgeusf COMPILE and [COMPILE],
and they are worthy of careful study.

JIF(-A)
(Begin a conditional branch structure.)
COMPILE ?branch (runtime code of IF)
HERE (push HERE to resolve addr)
0,; IMMEDIATE (compile dummy address now)

:AHEAD (--A)
(Compile a forward branch instruction.)

COMPILE branch (compile uncondition jump)
HERE (push HERE to resolve addr)
0, ; IMMEDIATE (compile dummy address now)

:REPEAT (Aa--)
(Terminate a BEGIN-WHILE-REPEAT indefinite loop.)
[COMPILE] AGAIN (compile uncondition jump)
HERE SWAP ! ; IMMEDIATE (compile jump address)

:THEN (A-)
(Terminate a conditional branch structure.)

HERE SWAP ! ; IMMEDIATE (resolve address for IF/E LSE)
:AFT (a--aA)

(Jump to THEN in a FOR-AFT-THEN-NEXT loop the fir st time through.)

DROP (discard address left by IF)

[COMPILE] AHEAD (compile uncondition jump)

[COMPILE] BEGIN (leave HERE on stack)

SWAP ; (realign jump addresses)
: ELSE (A--A)

(Start the false clause in an IF-ELSE-THEN struct ure.)

[COMPILE] AHEAD (compile uncondition jump)

SWAP (exchange address with IF)

[COMPILE] THEN ; IMMEDIATE (resolve jump address)
WHILE (a--Aa)

(Conditional branch out of a BEGIN-WHILE-REPEAT | oop.)

[COMPILE] IF (compile condition jump)

SWAP ; IMMEDIATE (realign jump addresses)

92

String Literals

Character strings are very important devices fergfogram to communicate with the
user. Error messages, appropriate warnings argkestigns must be displayed to help
the use to use the system in a friendly way. Gltaratrings are compiled in the colon
definitions as string literals. Each string litecansists of a string token which will use
the compiled string to do things, and a countadgtr The first byte in a counted string
is the length of the string. Thus a string mayeh@vo 255 characters init. A string is
always null-filled to the cell boundary.

ABORT" compiles an error message. This error nggsgadisplay when the top item
on the stack is non-zero. The rest of the wordkerdefinition is skipped and eForth
re-enters the interpreter loop. This is the ursgkresponse to an error condition.
More sophisticated programmer can use the CATCH-OMRmechanism to customize
the responses to special error conditions.

." compiles a character string which will be prohtghich the word containing it is
executed in the runtime. This is the best wayrés@nt messages to the user.

$" compiles a character string. When it is exetubaly the address of the string is left
on the data stack. The programmer will use thifesb to access the string and
individual characters in the string as a stringuarr

: ABORT" (--; <string>)
(Conditional abort with an error message.)
COMPILE abort" (compile runtime abort code)
$," ; IMMEDIATE (compile abort message)

1 $" (--; <string>)
(Compile an inline string literal.)

COMPILE $"| (compile string runtime code)
$,"; IMMEDIATE (compile string itself)
2" (- <string>)
(Compile an inline string literal to be typed out at run time.)
COMPILE ."| (compile print string code)
$," ; IMMEDIATE (compile print string)

93

Name Dictionary Compiler

We had discussed how the compiler compiles tokadsstauctures into the code field of
a colon definition in the code dictionary. To lod new definition, we have to build its
header in the name dictionary also. A header hakem pointer field, a link field, and
a name field. Here are the tools to build theskel$.

?UNIQUE is used to display a warning message tavghat the name of a new token is
a duplicate to a token already existing in theidicry. eForth does not mind your
reusing the same name for different tokens. Howeyreing many tokens the same
name is a potential cause of problems in maintgisoftware projects. It is to be
avoided if possible and ?UNIQUE reminds you of it.

$,n builds a new entry in the name dictionary usirgname already moved to the
bottom of the name dictionary by PACK$. It pads tbken field with the address of
the top of code dictionary where the new code isetduilt, and link the link field to the
current vocabulary. A new token can now be builihie code dictionary.

:?2UNIQUE (a--a)

(Display a warning message if the word already ex ists.)
DUP NAME? (name exists already?)
IF." reDef" (if so, print warning)
OVER COUNT TYPE ('with the offending name)
THEN DROP ; (discard token address)
28N (na-)
(Build a new dictionary nhame using the string at na.)
DUP C@ ('null input?)
IF 2UNIQUE (duplicate name?)
(na) DUP LAST! (save na for vocabulary link)
(na) HERE ALIGNED SWAP (align code address)
(cp na) CELL- (link address)

(cpla) CURRENT @ @ (link to current vocab)
(cplana’) OVER'!
(cpla) CELL- DUP NP ! (adjust name pointer)

(ptr) ' EXIT (save code pointer and exit)
THEN (‘here if null input)
$" name" THROW ; (this is an error return’)

94

$COMPILE builds the body of a new colon definitionA complete colon definition also
requires a header in the name dictionary, andiie ¢ield must start with a CALL
doLIST instruction. These extra works are perforiogd. Colon definitions are the
most prevailing type of words in eForth. In adutiti eForth has a few other defining
words which create other types of new definitianghie dictionary.

OVERT links a new definition to the current vocadyland thus makes it available for
dictionary searches.

; terminates a colon definition. It compiles anlEXo the end of the token list, links
this new word to the current vocabulary, and thesctivates the interpreter.

] turns the interpreter to a compiler.

: $COMPILE (a--)

(Compile next word to code dictionary as a token or literal.)
NAME? (parse the next word out)
?DUP ('successful?)
IF C@ (yes, get the lexicon)
[=IMED] LITERAL AND (is it an immediate word?)
IF EXECUTE (yes. execute it)
ELSE, (no. compileit)
THEN
EXIT (done. exit)
THEN (not a valid word)
'NUMBER @EXECUTE (convert it to a number)
IF [COMPILE] LITERAL (successful. compile a lit eral number)
EXIT (done)
THEN (' not a number either)
THROW ; (generate an error condition)
:OVERT (--)
(Link a successfully defined word into the curren t vocabulary.)
LAST @ (name field address of last word)
CURRENT @'! (link it to current vocabulary)

;)

(Terminate a colon definition.)

COMPILE EXIT (compile exit code)

[COMPILE] [(‘return to interpreter state)

OVERT ; COMPILE-ONLY (restore current vocabualry)
IMMEDIATE

10-)
(Start compiling the words in the input stream.)
['$COMPILE] LITERAL (get code address of comp iler)
'EVAL !; (storeitin 'EVAL)

95

creates a new header and start a new colon. wdtrdakes the following string in the
input stream to be the name of the new colon defmiby building a new header with
this name in the name dictionary. It then comp&3ALL doLIST instruction at the
beginning of the code field in the code dictionarjNow, the code dictionary is ready to
accept a token list.]is now invoked to turn té&et interpreter into a compiler, which
will compile the following words in the input stmeao a token list in the code dictionary.
The new colon definition is terminated by ;, whdmpiles an EXIT to terminate the
token list, and executes [to turn the compilerktactext interpreter.

call, compiles the CALL doLIST instruction as ftiirst thing in the code field of a
colon definition.

IMMEDIATE sets the immediate lexicon bit in the narireld of the new definition just
compiled. When the compiler encounters a word Witk bit set, it will not compile
this words into the token list under constructioat execute the token immediately.
This bit allows structure words to build speciaustures in the colon definitions, and to
process special conditions when the compiler iginm

ccall, (ca--)
(Assemble a call instruction to ca.)

[=CALL] LITERAL, (assemble CALL machine code)

HERE CELL+ -, ; (change ca to 8086 call offset)
i1 (- <string>)

(Start a new colon definition using next word as its name.)

TOKEN $,n (compile new word with next name)

['doLIST]LITERAL CALL, (compile CALL doLIST)

I

:IMMEDIATE (--)
(Make the last compiled word an immediate word.)

(switch to compiling state)

[=IMED] LITERAL (immediate bit in the name le ngth)
LAST @ C@ OR (OR itinto the length byte)
LAST @ C!; (store back to name field)

96

Defining Words

Defining words are molds which can be used to éefirany words which share the same
run time execution behavior. In eForth, we havedSER, CREATE, and VARIABLE.

USER creates a new user variable. The user varcaitains an user area offset, which
is added to the beginning address of the useraar@#o return the address of the user
variable in the user area.

CREATE creates a new array without allocating mgmomemory is allocated using
ALLOT.

VARIABLE creates a new variable, initialized to 0.

eForth does not use CONSTANT, because a integealliis more economical than a
constant. One can always use a variable for a@ons

1 USER (u--; <string>)
(Compile a new user variable.)

TOKEN $,n (compile user name)
OVERT (restore current vocabulary)
['doLIST] LITERAL

call, (compile CALL doLIST)
COMPILE doUSER (compile doUSER)

(compiler user area offset)

: CREATE (--; <string>)

(Compile a new array entry without allocating cod e space.)
TOKEN $,n OVERT (compile name for array)

['doLIST] LITERAL

call, (compile CALL doLIST)

COMPILE doVAR ; (compile doVAR)

: VARIABLE (--; <string>)

(Compile a new variable initialized to 0.)
CREATE (use CREATE to build name and code)
0,; (initialize data as 0)

97

8. Utilities

eForth is a very small system and only a very ss&lbf tools are provided in the system.
Nevertheless, this set of tools is powerful enotaghelp the user debug new words he
adds to the system. They are also very intereptiogramming examples on how to

use the words in eForth to build applications.

Generally, the tools presents the information stamedifferent parts of the memory in

the appropriate format to let the use inspectdisalts as he executes words in the eForth
system and words he defined himself. The toolsideememory dump, stack dump,
dictionary dump, and a colon definition decompiler.

98

Memory Dump

DUMP dumps u bytes starting at address b to timeited. It dumps 16 bytes to a line.
A line begins with the address of the first bytdldwed by 16 bytes shown in hex, 3
columns per bytes. At the end of a line are théyités shown in characters. The
character display is generated by _ TYPE, which tsubss non-printable characters by
underscores. Typing a key on the keyboard hadtsltbplay. Another CR terminates
the display. Any other key resumes the display.

dm+ displays u bytes from bl in one line. It ledlve address b1+u on the stack for
the next dm+ command to use.

_TYPE issimilarto TYPE. It displays u charaststarting from b. Non-printable
characters are replaced by underscores.

:_TYPE (bu-)

(Display a string. Filter non-printing characters)

FOR (repeat u+l times)
AFT (skip to THEN the first time)
COUNT (get one character from b))
>CHAR EMIT (display only printable char)
THEN

NEXT (repeat u times)

DROP ; (discard b address)

cdm+ (au--a)

(Dump u bytes from , leaving a+u on the stack.)

OVER 4 U.R SPACE (print address first)

FOR AFT (repeat u times))
COUNT 3 U.R (display bytes in 3 columns)
THEN

NEXT ; (repeat u times)

: DUMP (au--)
(Dump u bytes from a, in a formatted manner.)

BASE @ >R (save current radix)

HEX (‘always dump in hex)

16/ (dump 16 bytes at a time)

FOR CR ('new line for each 16 bytes)
16 2DUP dm+ (dump 16 bytes with address)
-ROT 2 SPACES _TYPE (display the ASCII character s)
NUF? 0= (exit the loop if a key is hit)

WHILE

NEXT (repeat until all bytes are dumped)

ELSE R> DROP (key hit. Discard loop count)

THEN

DROP R>BASE!; (restore radix)

99

Stack Dump

Data stack is the working place of the Forth enginiéis where words receive their
parameters and also where they left their resulis.debugging a newly defined word
which uses stack items and which leaves items @sttck, the best was to check its
function is to inspect the data stack. The nunaodput words may be used for this
purpose, but they are destructive. You print batriumber from the stack and it is
gone. To inspect the data stack non-destructieedpecial utility word .S is provided
in most Forth systems. It is also implementedHarh.

.S dumps the contents of the data stack on tleesdn the free format. The bottom
of the stack is aligned to the left margin. The item is shown towards the left and
followed by the characters '<sp’. .S does not ghde data stack so it can be used to
inspect the data stack non-destructively at ang.tim

One important discipline in learning Forth is tarle how to use the data stack effectively.
All words must consume their input parameters @nstiack and leave only their intended
results on the stack. Sloppy usage of the datk staoften the cause of bugs which are
very difficult to detect later as unexpected itdafson the stack could result in
unpredictable behavior. .S should be used libedhlting Forth programming and
debugging to ensure that the correct data aretethe data stack.

S (e
(Display the contents of the data stack.)
(start stack dump on a new line)

DEPTH (get stack depth)

FOR AFT (repeat that many times)
R@ PICK . (print one item in stack)
THEN

NEXT (repeat until done)

Mo<sp"; (print stack pointer)

100

Stack Checking

.S is useful in checking the stack interactivelyiig the programming and debugging.

It is not appropriate for checking the data stadkea run time. For run time stack
checking, eForth provides !ICSP and ?CSP. Thewparased in the eForth system itself,
but are very useful for the user in developing@aesiapplications.

To do run time stack checking, at some point tligy@m should execute !CSP to mark
the depth of the data stack at that point. Lalkerprogram would execute ?CSP to see
if the stack depth was changed. Normally, thekstispth should be the same at these
two points. If the stack depth is changed, ?CS®ldvabort the execution.

One application of stack checking is to ensure gtempecurity. Normally, compiling a
colon definition does not change the depth of @@ dtack, if all the structure building
immediate words in a colon definition are propgrfyred. If they are not paired, like IF
without a THEN, FOR without a NEXT, BEGIN without AGAIN or REPEAT, etc.,

the data stack will not be balanced and ?CSP isusaful in catching these compilation
errors. This stack check is a very simple but péwéool to check the compiler. !CSP
and CSP are the words to monitor the stack depth.

ICSP stores the current data stack pointer imauser variable CSP. The stack
pointer saved will be used by ?CSP for error chegki

?CSP compares the current stack pointer with enadsin CSP. If they are different,
abort and display the error message 'stack depth'.

:ICSP (--)
(Save stack pointer in CSP for error checking.)
SP@ (get the current stack pointer)
CSP!; (storeitin a variable)
: ?CSP (--)
(Abort if stack pointer differs from that saved i n CSP.)
SP@ (get the current stack pointer)
CSP @ XOR (compare it with that in CSP)
ABORT" stack depth"; (abort if they are differen t)

101

Dictionary Dump

The Forth dictionary contains all the words defimethe system, ready for execution
and compilation. WORDS allows you to examine tleti@hary and to look for the
correct names of words in case you are not sutieenf spellings. WORDS follows the
vocabulary thread in the user variable CONTEXT disgplays the names of each entry in
the name dictionary. The vocabulary thread cammdmed easily because the link field

in the header of a word points to the name fielthefprevious word. The link field of
the next word is one cell below its name field.

WORDS displays all the names in the context volzalgu The order of words is
reversed from the compiled order. The last defwwedls is shown first.

.ID displays the name of a token, given the tokearse field address. It also replaces
non-printable characters in a name by under-scores.

:.ID(na--)
(Display the name at address.)
?DUP ('not valid name if na=0)
IF COUNT (get length by mask lexicon bits)
$001F AND (limit length to 31 characters)
TYPE (print the name string)
EXIT
THEN ." {noName}"; (error if na is not valid)
:WORDS (--)
(Display the names in the context vocabulary.)
CR CONTEXT @ ('search only the context vocab)
BEGIN @ ?DUP (continue if not end of vocab)
WHILE DUP SPACE
.ID (print a name)
CELL- (get the link field)
NUF? (exitif a key is hit)
UNTIL (repeat next name)
DROP
THEN ; (‘end of vocab exit)

102

Sear ch Token Names

Since the name fields are linked into a list intlaene dictionary, it is fairly easy to
locate a token by searching its name in the nacteodary. However, finding the name
of a token from the execution address of the tokemnore difficult, because the
execution addresses of tokens are not organizadyirsystematic way.

It is necessary to find the name of a token fraekecution address, if we wanted to
decompile the contents of a token list in the cdddonary. This reversed search is
accomplished by the word >NAME.

>NAME finds the name field address of a token frii@ execution address of the
token. If the token does not exist in the CURREMCabulary, it returns a false flag.
It is the mirror image of the word NAME>, which uehs the execution address of a
token from its name address. Since the executidreas of a token is stored in the
token field, two cells below the name, NAME> isvial. >NAME is more complicated
because the entire name dictionary must be seatoHedate the token. >NAME only
searches the CURRENT vocabulary.

:>NAME (ca--na|F)
(Convert code address to a name address.)

CURRENT ('search only the current vocab)
BEGIN CELL+ @ ?DUP (‘end of vocabulary?)
WHILE 2DUP
BEGIN @ DUP
WHILE 2DUP NAME> XOR (code pointer=ca?)
WHILE CELL-
REPEAT (ca not found, repeat next word)
THEN NIP ?DUP
UNTIL NIP NIP EXIT (found. return name address)
THEN O NIP ; (‘end of vocabulary, failure)

103

The Simplest Decompiler

Bill Muench and | spent much of our spare timeuty,J1991 to build and polish the
eForth Model and the first implementation on 8086/MOS. One evening he called
me and told me about this smallest and greatest Becompiler, only three lines of
source code. | was very skeptical because | kreawtb build a Forth decompiler. If
a Forth colon definition contains only a simple 6§ execution addresses, it is a trivial
task to decompile it. However, there are manyedéifit data and control structures in a
colon definition. To deal with all these structsird is logically impossible to have a
three line decompiler.

| told Bill that | had to see it to believe. Thexttime we met, he read the source code
in assembly and | entered it into the eForth mod&he decompiler had 24 words and
worked the first time after we reassemble the smootle.

SEE searches the dictionary for the next word énitiput stream and returns its code
field address. Then it scans the list of execusiddresses (tokens) in the colon
definition. If the token fetched out of the lisatohes the execution address of a word in
the name dictionary, the name will be displayedh®ycommand ".ID". If the token does
not match any execution address in the name dantyon it must be part of a structure
and it is displayed by 'U.". This way, the decdepgnores all the data structures and
control structures in the colon definition, andyodisplays valid tokens in the token list.

: SEE (--; <string>)
(A simple decompiler.)
' (find the next word in context voc)

CR CELL+ (skip the CALL instruction)
BEGIN CELL+ (skip doLIST address offset)
DUP @ DUP (get the next token)
IF >NAME (find its name field address)
THEN
?DUP (if name is valid)

IF SPACE .ID (print the name of token)
ELSE DUP @ U. (else print the value as literal)

THEN

NUF? (exitif a key is hit)
UNTIL (continue to the next token)
DROP; (discard the token address)

104

Sign-on M essage

Since we expect eForth to evolve as experiencecisnaulated with usage, and as it has
to track the ANS Forth Standard under developmasion control becomes an
important issue. To assure compatibility at défarstages of development, the user can
always inquire the version number of the eFortlshrenning. With the version number,
corrective actions can be taken to put an overtathe system to force it to be

compatible with another eForth of a different vensi

VER returns the version number of this eForth systeThe version number contains
two bytes: the most significant byte is the magwision number, and the least significant
byte is the minor release number.

'hi' is he default start-up routine in eForth. inltializes the serial I/O device and then
displays a sign-on message. This is where theoasecustomized his application.
From here one can initialize the system to starcthstomized application.

$101 CONSTANT VER

(Return the version number of this implementation)
chi(--)

IXIO (initialize terminal 1/O)

CR (start a new line)

" eForth v" (display sign-on text)

BASE @ (save current radix on stack)

HEX (change radix to hexadecimal)

VER (get the version number)

<# (start converting)

(convert the minor version number)

46 HOLD (insert a period)

(convert the major version number)

#> (terminate number conversion)

TYPE (display the version number)

BASE ! (restore current radix)

CR (add a new line)

105

Hardwar e Reset

Because all the system variable in eForth are impiged as user variables and the name
dictionary is separated from the code dictionaRgréh dictionary is eminently

ROMmable and most suitable for embedded applicatiod o be useful as a generic
model for many different processors and applicatianflexible mechanism is designed

to help booting eForth up in different environmei@sfore falling into the QUIT loop,

the COLD routine executes a boot routine whose ealdieess is stored in 'BOOT. This
code address can be vectored to an applicatiomeowhich defines the proper behavior
of the system.

After the computer is turned on, it executes soateve machine code to set up the CPU
hardware so that it emulates a virtual Forth enginEhen it jumps to COLD to initialize
the eForth system. It finally jumps to QUIT whishthe operating system in eForth.
COLD and QUIT are the topmost layers of an eFoystesn.

'BOOT is an variable vectored to 'hi'.
COLD is a high level word executed upon power-ufis most important function is to

initialize the user area and execute the boot-upine vectored through 'BOOT, and then
falls into the text interpreter loop QUIT.

VARIABLE 'BOOT (--a) (The application start up vector.)
:COLD (--)
BEGIN
U0 UP 74 CMOVE (initialize user variable)
PRESET (initialize stack and terminal buffer)
'BOOT @EXECUTE (' execute user bootup procedure)
FORTH (make FORTH the context vocabulary)
CONTEXT @ DUP (make FORTH the current vocabular y)
CURRENT 2!
OVERT (link new words to FORTH vocabulary)
QUIT (invoke the Forth operating system)
AGAIN (safeguard the Forth interpreter)
LASTN EQU _NAME+4 ;last name address
NTOP EQU _NAME-0 ;next available memory in name d ictionary
CTOP EQU $+0 ;next available memory in code dict ionary
MAIN ENDS
END ORIG

106

9. Some Final Thoughts

Congratulations if you reach this point the firsté. As you can see, we have traversed
a complete Forth system from the beginning to tigg and it is not as difficult as you
might have thought before you began. But, thinkimgvhat we have accomplished. It
is a complete operating system with an integrateetpreter and an integrated compiler
all together. If you look in the memory, the whelestem is less than 7 Kbytes. What
else can you do with 7 Kbytes these days?

Forth is like Zen. Itis simple, it is accessildad it can be understood in its entirety
without devoting your whole life to it.

Is this the end? Not really. There are many ®pigportant in Forth but we had chose
to ignore in this simple model. They include ntakking, virtual memory, interrupt
control, programming style, source code managenaantyes, metacompilation.
However, these topics can be considered advang#dtatpons of Forth. Once the
fundamental principles in Forth are understoodsefhtepics can be subject for further
investigations at your leisure.

Forth is not an end to itself. It is only a tomd, useful as the user intends it to be. The
most important thing is how the user can use stolwe his problems and build useful
applications. What eForth gives you is the undading of this tool. It is up to you to
make use of it.

107

	eForth and Zen
	Contents
	1. Forth and Zen
	Comparing Forth and Zen
	Zen as an Oral Tradition
	Forth as an Oral Tradition
	Acceptance of Zen
	Acceptance of Forth
	Simplicity in Zen
	Simplicity in Forth
	Enlightenment in Zen
	Enlightenment in Forth

	2. eForth Model
	Origin of eForth
	eForth Model
	Changing Environment
	Universal Microcomputer
	Universal Forth
	DOS Implementation
	Porting eForth

	3. eForth Overview
	Inner and Outer Interpreters
	Virtual Forth Engine
	eForth Words
	eForth Word Set
	Memory Map
	Assembly Macros
	Address Interpreter
	Cold Boot
	Initializing User Variables

	4. Machine Dependent Kernel
	eForth Kernel
	Colon Word Interpreter
	Integer Literals
	Address Literals
	Memory Access
	Return Stack Words
	Data Stack Initialization
	Classic Data Stack Words
	Logical Words
	Primitive Arithmetic Word

	5. High Level Forth Words
	User Variables
	Vocabulary and Search Order
	Multitasking Considerations
	More Stack Words
	More Arithmetic Operators
	More Comparison
	More Math Words
	Scaling Words
	Memory Alignment Words
	Special Characters
	Managing Data Stack
	Memory access
	Memory Array and String Words

	6. Text Interpreter
	Numeric Output
	Number Formatting Tools
	Number Output Words
	Numeric Input
	Serial I/O Words
	Derived I/O Words
	String Literal Words
	Word Parser
	Parsing Words
	Dictionary Search
	Text Input from Terminal
	Error Handling
	Text Interpreter Loop
	Operating System

	7. eForth Compiler
	Interpreter and Compiler
	Control Structures
	String Literals
	Name Dictionary Compiler
	Defining Words

	8. Utilities
	Memory Dump
	Stack Dump
	Stack Checking
	Dictionary Dump
	Search Token Names
	The Simplest Decompiler
	Sign-on Message
	Hardware Reset

	9. Some Final Thoughts

eForth and Zen

Dr.C. H.Ting
Second Edition

Ofeete Enterprises

2013

eForth and Zen

Contents

Forth and Zen
Comparing Forth and Zen
Zen as an Ora Tradition
Forth as an Oral Tradition
Acceptance of Zen
Acceptance of Forth
Simplicity in Zen
Simplicity in Forth
Enlightenment in Zen
Enlightenment in Forth
eForth Modéel

Origin of eForth

eForth Model

Changing Environment
Universal Microcomputer
Universal Forth

DOS Implementation
Porting eForth

eForth Overview

Inner and Outer Interpreters
Virtual Forth Engine
eForth Words

eForth Word Set

Memory Map

Assembly Macros
Address Interpreter

Cold Boot

Initializing User Variables
M achine Dependent Kernel
eForth Kernel

Colon Word Interpreter
Integer Literals

Address Literals

Memory Access

Return Stack Words

Data Stack Initidization
Classic Data Stack Words
logical Words

Primitive Arithmetic Word

~NO OO U DNPRF PR

10

12
12
13
13
15
15
16
17
19
19
21
23
24
25
20
30
31
32
33
33
35
36
37
38
39
40
41
42

High Level Forth Words 44

User Variables 44
Vocabulary and Search Order 46
Multitasking Considerations 47
More Stack Words 48
MoreArithmetic Operators 49
More Comparison 50
More Math Words 52
Scaling Words 55
Memory Alignment Words 56
Special Characters 57
Managing Data Stack 58
Memory access 59
Memory Array and String Words 60

Text Interpreter 62
Numeric Output 63
Number Formatting Tools 64
Number Output Words 65
Numeric Input 66
Seria 1/0 Words 68
Derived I/0O Words 69
String Literal Words 70
Word Parser 71
Parsing Words 73
Dictionary Search 74
Text Input from Terminal 77
Error Handling 79
Text Interpreter Loop 82
Operating System 84
eForth Compiler 86
Interpreter and Compiler 87
Control Structures 90
String Literals 92
Name Dictionary Compiler 93
Defining Words 96
Utilities 97
Memory Dump 98
Stack Dump 99
Stack Checking 100
Dictionary Dump 101
Search Token Names 102
The Simplest Decompiler 103
Sign-on Message 104
Hardware Reset 106

Some Final Thoughts 108

