

Inside F83

Dr. C. H. Ting

Fourth Edition

Offete Enterprises, Inc.

2013

ii

 (c) Copyright, 1991 by C. H. Ting

First Edition, November 1984

Second Edition, June 1985

Third Edition, June 1991

Fourth Edition, June 2013

All rights reserved. This book, or any part thereof,

may not be reproduced in any form

without written permision from the author.

Printed in the United States of America

by

Offete Enterprises, Inc.

156 14 th Avenue
San Mateo, CA 94402

Tel: (415) 571-7639

iii

Preface to the Fourth Edition

It is thirty years since F83 was first released by Mike Perry and Henry Laxen. This book was out
of print a long time ago. Yet, I still receive requests for the printed copies. The book was
originally produce on a CP/M microcomputer, with a Diablo daisy wheel printer. All the text
was preserved, but the figures and tables could not be reproduced. Earlier, I released an
electronic edition with figures and tables scanned from the original book. It was embarrassing,
because it exceeded the 25 MB limit for email delivery, due to the scanned images. I think it is
probably time to do a better job, taking advantages of Microsoft Words with its fonts and
formatting capabilities.

I am using the 12 point Times New Roman font for all narration, and the 8 point Courier New
font for all source code and documentation. Code and documentation are presented in two
columns. Left column is for code and right column for documentation. As the left column is
generally 1.5 inches wide, I allow only 1 character space for each level of indentation. It is hard
to see the nested levels, but I think is adequate if you do want to inspect the code in detail.

The only significant modification is on the term of ‘words’. In the original book, Forth
commands were called Forth words, Forth definitions, and sometimes Forth commands. Now I
have decided to call things which are executed by the host computer machine instructions or just
instructions. What’s executed by the Virtual Forth Computer are commands, which are mostly
colon commands and code commands. I think it is now very consistent in the narration.
However, in the documentation, words and definitions are not changed.

Many figures were listings produced by an old IBM PC which was sent to dump yard long ago. I
was extremely please that I could get the 8086 F83 v.2.10 to run in a small CMD window on my
old desktop PC with Windows XP. The listings were produce by redirecting text output to a file.
F83 is still alive! It reads and writes to a floppy disk in the A: drive. Boy! I am lucky that I
keep this PC which still has a 3.5” floppy drive. I almost threw it away, as it developed some
intermittent disk problems.

Seeing a working F83 system in front of me, it’s like seeing a good old friend coming back after
30 years. It makes me feel encourage, and gives me hope that this new edition of Inside F83
may still be useful for some friends out there. It will also save some trees.

C. H. Ting

July 2013
San Mateo, California

iv

Preface to the Third Edition

It is almost eight years since F83 was first released by Mike Perry and Henry Laxen. It has been
widely distributed by many shareware and freeware distributors, as well as through many
bulletin boards. It also has found its way into many real applications and useful products.
Although we have seen many better public domain Forth systems brought out over the years, F83
still stands out because of its high quality and because it is available on three very popular
microprocessors: 8080, 8086, and 68000.

The quality of F83 is testified by the fact that over the years, we have found only one bug in the
8086 F83 system (DOS Version 2.10). This bug was discovered by Mike Yantis at Maxtor Corp.
The ENTRY cell in the user area contains 90H (NOP) and E9H (JMP) when the task is asleep.
E9H causes a jump to the next task, thus skipping the current task. These two bytes are changed
to CDH and 80H (INT 80) when the task is to be waken. INT 80H wakes up this task when the
CPU control is passed to the task. This scheme works fine in most instances. This mechanism
falls apart only if the waking up routine is activated by an interrupt, and if the interrupt hits when
the CPU just finishes executing the NOP (90H) instruction and is ready to execute the JMP (E9H)
instruction. Unfortunately, the waking up routine secretly changed E9H to 80H, whose behavior
at this point is unpredictable and in most cases crashed the CPU. The probability of this
occurring is very small, only about once in 100,000 interrupts, which were enough to bother
Mike Yantis. Mike fixed this bug by choosing INT E9H to start the wakened tasks.

Discussing this bug in detail is meant to be a compliment to Mike Perry and Henry Laxen in their
efforts producing the F83 system. It took a bug of such a oblique nature to escape Mike and
Henry's tight grips.

I take this opportunity to revise the book and produce it using a laser printer. I am always
amazed at how a laser printer can transform lies into truth. In spite of the laser, I like to give
special thanks to Jay McKnight in reviewing the text and corrected many of my grammatical and
technical errors.

F83 is one among the very few Forth systems which are useful while still understandable. Inside
F83 had helped many people gain the privilege to peek inside a fully functional Forth system. I
hope it will help you also. Not just take a peek, but use it as a key and open a whole new field to
yourself.

C. H. Ting

June 1991
San Mateo, California

v

Preface to the Second Edition

After I implemented my first Forth system on a Data General Nova computer and got the 'OK'
message, I went back home and told my wife: "I just promoted myself from an applications
programmer to a system programmer!" I was so excited and my brain was so completely filled
with the intricate details of the Forth fabric that the only way to get hold of myself was to dump
everything on paper. That was the Systems Guide to figForth. I xeroxed it and brought a boxful
to the then Northern California FIG meeting and it was sold out immediately. Apparently I had
struck a chord in the Forth community which was desperately in need of documentation and
instruction on Forth internals.

I was fortunate that a polyForth on LSI-11 computer was available at work. I tried to convince
Forth, Inc. to publish a similar book on polyForth and obtained some support to proceed. I sent a
draft manual, titled Systems Guide to polyForth to Forth, Inc. Somehow, Forth, Inc. decided not
to publish or promote it, and had left it on their bookshelf. I heard that it found its way into the
underground Forth circle in Southern California. PolyForth is concise and powerful, and it
deserves better system documentation than what is provided. I was very impressed as I went
through it screen by screen. I was delighted in picking a great mind, that of Chuck Moore
himself. It was like poetry.

When Mike Perry and Henry Laxen released their public domain F83 system, I bought a listing
to read. It was a very worthy product, with lots of tools and utilities. The best part is that it is
complete with on-line documentation in the form of shadow screens. I thought there was little
for me to contribute. As F83 was spreading wider, we started to hear more complaints about the
difficulties in learning and using it. I reached a conclusion that Forth screens are good medium
for programming, but a screen is too small a window for viewing and learning a large Forth
system, even with shadows. In reading the source code, it is necessary to look at many screens at
the same time, quickly moving from one screen to another while keeping everything in plain
view. We have all been conditioned to read things in the printed form, making the best use of our
visual system with instant zooming and panning capability. The visual system is very difficult to
emulate with a 24 by 80 character screen.

Then Wil Baden came to one of the FIG meetings and showed the completely sorted index of
F83 words in all vocabularies. I rushed to the front table and grabbed a copy of his handout with
the index, which was the tool I needed to navigate through the F83 system. With the help of the
index, lots of midnight oil, and ignoring my wife's orders to clean up my room, I was able to
rearrange the source code of F83 in a form more tangible to mortal souls. Most of the work was
simply rearranging the source code from the horizontal to the vertical format and fill the right
hand side of the page with words taken from the shadow screens. I collected related source code
and present it in a logical sequence, which often does not coincide with the loading sequence of
the source screens. Once the code is ordered logically, you will find it is much easier to
comprehend this very large and seemingly intimidating system.

F83 provides a very extensive and solid foundation for professional programmers to build
application packages. It is also a very useful source for beginners to learn Forth programming
style and techniques. Its problem, as in any large Forth system, is the fragmentation of functions

vi

in a multitude of words. With more than 1000 words, it is very difficult to have a firm handle on
F83. However, functions a user needs to program a computer application or to use a computer
application are not that many. Once you are familiar with those top level utility words, you can
dig into the underlying low level words and use them to build your own castles. This book, I
hope, will serve the purpose of showing you the power and the beauty behind the Forth language.

We are all indebted to Mike Perry and Henry Laxen for releasing the F83 system into the public
domain. It certainly sets a higher standard for commercial Forth systems and forces Forth
vendors to provide more powerful systems and better user support. Anything less than F83 will
not be acceptable anymore. Thanks are also due to Dr. S. Y. Tang and Mr. John Peters for
reading the manuscript and making numerous suggestions and corrections. The Chinese brush
painting on the covers was provided by my mother, Mrs. I-Jean Hwang Ting. My father, Mr. C.
W. Ting, was the editor and also managed the production of this book. This is a traditional
Chinese family business, small but efficient and very Forth-like.

C. H. Ting

May 1985
San Mateo, California

vii

INSIDE F83

Contents

Part I Introduction to F83 system

1 The heritage of F83
 1.1 The roots of the F83 1
 1.2 Advancements in Forth-83 Standard 3
 1.3 Creators of F83 system 4
 1.4 Features of F83 system 6

2. Browsing F83 system 8
 2.1 Listing the word names 9
 2.2 Vocabulary 10
 2.3 Viewing source code of word definitions 13
 2.4 Shadow screen documentation 15
 2.5 Files in F83 16
 2.6 Printing utility 17
 2.7 Debugger 19

3. Using the F83 system 21
 3.1 Create your own file 21
 3.2 The editor 23
 3.3 Loading and testing your program 25
 3.4 Memory dump 26
 3.5 Debugging your program 28
 3.6 The 8086 assembler 29
 3.7 Multitasker 33
 3.8 Save a system image 34
 3.9 The meta-compiler 35

Part II The Forth kernel

4. Interface to the host computer 37
 4.1 Virtual Forth computer 37
 4.2 Forth computer hosted on 8086 38
 4.3 Inner interpreters 41
 4.4 Interpreters for in-line data and strings 46
 4.5 Interpreters for control structures 48

5. The Forth nucleus 51
 5.1 8086 assembly language in Forth 51
 5.2 Code definitions in Forth nucleus 52
 5.3 Examples of code definitions 53

6. Terminal input and output 56
 6.1 The BDOS I/O calls to the operating system 56
 6.2 Terminal output commands 57
 6.3 Interpreting control characters 57
 6.4 More sophisticated input commands 58
 6.5 String commands 60

7. The virtual memory 62

viii

 7.1 Mass storage and virtual memory 62
 7.2 Disk buffers 63
 7.3 The file control block (FCB) 65
 7.4 Read and write disk files 66
 7.5 Disk buffer management 67
 7.6 Saving disk buffers to disk files 71

8. Dictionary and vocabulary 73
 8.1 Threading of the dictionary 73
 8.2 Hashing and searching the dictionary 75

9. Number input and output 81
 9.1 Representation of numeric data 81
 9.2 Input number conversion 82
 9.3 Output number conversion 85
 9.4 Double integer output 86

10 Word parsing 88
 10.1 Text processing 88
 10.2 Input stream and input buffers 88
 10.3 Low level parsing commands 89
 10.4 High level parsing commands 91
 10.5 String commands defined using PARSE 92
 10.6 End-of-buffer condition 92

11. Text interpreter 94
 11.1 The operating system of Forth 94
 11.2 Entering the text interpreter 94
 11.3 INTERPRET 95
 11.4 DONE? and X 96

12. Compiler 98
 12.1 The colon definition 98
 12.2 Colon and semicolon 99
 12.3 The compiler loop 100
 12.4 Low level supporting commands 102
 12.5 Immediate commands 102

13. Structures in colon definitions 105
 13.1 Compiler directives 105
 13.2 Compiling numeric data structures 106
 13.3 Compiling string literals 107
 13.4 Compiling control structures 109
 13.5 Address calculation for control structures 112
 13.6 Control structure compiler directives 112

Part III Utilities in F83 system

14. The CP/M-DOS files 115
 14.1 CP/M-DOS file primitive commands 115
 14.2 The file control block 116
 14.3 High level file commands 117
 14.4 Save core image to a file 118
 14.5 Directory accessing 118
 14.6 System level file commands 119

ix

15. Text editors 121
 15.1 String utility 121
 15.2 Terminal dependent deferred words 123
 15.3 The cursor commands 123
 15.4 Editing buffers 125
 15.5 Line editing commands 127
 15.6 String editor commands 128
 15.7 Screen editor 120
 15.8 The screen display commands 131
 15.9 The screen editor commands 133
 15.10 Configuring the terminal 124

16. Viewing source screens 136
 16.1 The view field 136
 16.2 The view files 137
 16.3 The viewing command 138

17. WORDS 140
 17.1 Output formatting commands 140
 17.2 WORDS 140

18. Disk file utility 142
 18.1 Displaying screens in a file 142
 18.2 Disk buffers 143
 18.3 Single block copying 144
 18.4 Multiple block copying 144
 18.5 Multiple file copying 145

19. Memory dump 147
 19.1 The dumb DUMP 147
 19.2 The smart DUMP 147

20. Decompiler 149
 20.1 Positional case defining word 149
 20.2 Associative defining word 150
 20.3 Decoding different classes of words 151
 20.4 Sorting and execution tables 152
 20.5 Decompiling different word classes 153
 20.6 Word classification 154
 20.7 The decompiler SEE 155

21. Printing utility 157
 21.1 Variables and setup 157
 21.2 Printing two screens side by side 158
 21.3 Printing 6 screens on a page 159
 21.4 SHOW 161

Part IV 8086 Specific utilities

22. Debugger 163
 22.1 Low level supporting words 163
 22.2 High level trace commands 164

23. Multitasker 166
 23.1 Multitasking 166

x

 23.2 User variables and the user area 166
 23.3 PAUSE and RESTART 168
 23.4 The multitasker 170
 23.5 Task definition 170
 23.6 Background tasks 171

24. 8086 Assembler 173
 24.1 Assembly tools 173
 24.2 8086 register definitions 174
 24.3 Addressing mode operators 176
 24.4 Defining words to generate opcodes 180
 24.5 Special opcodes 183
 24.6 Structures in code definitions 185

25. Metacompiler 188
 25.1 Concept of metacompilation 188
 25.2 Vocabularies for metacompilation 189
 25.3 Accessing memory in the target system 191
 25.4 Branching constructs 192
 25.5 Forward referencing 194
 25.6 Compiling new words to target system 195
 25.7 Transition compiler directives 196
 25.8 Defining words in metacompiler 198
 25.9 User variables 199
 25.10 Vocabulary 199
 25.11 Resolving forward references 200
 25.12 Redefining host words 201
 25.13 Running the metacompiler 201

Index 204

xi

Figures

1.1 The Forth family tree 2
1.2 The standard bearer 5
2.1 IBM-DOS files in F83 system 8
2.2 Forth commands 11
2.3 Assembler and DOS commands 11
2.4 Commands in other vocabularies 12
2.5 VIEW and SEE 15
2.6 File and directory commands 18
2.7 Debugging LIST 20
3.1 Memory dump 27
4.1 The virtual Forth computer 29
4.2 Memory map of F83 system 42
6.1 Representation of strings 61
7.1 The file control block 64
7.2 Disk buffer management 68
8.1 Structure of a Forth command 75
8.2 Vocabularies and dictionary structure 77
8.3 Four-way threading in a vocabulary 80
9.1 Input and output number conversion 83
10.1 Parsing with WORD 91
12.1 The interpreter and the compiler 101
13.1 Numeric data structures 107
13.2 The string literals 108
13.3 The control structures 111
15.1 The editing buffers 126
15.2 Screen editor display 131
16.1 The view field and the view files 137
20.1 Decoding different types of commands 152
20.2 Decompile different commands 156
21.1 Two printing formats 160
23.1 The round robin task scheduler 169
24.1 Register addressing mode constants 175
24.2 8086 instruction types 179
25.1 The chicken-egg cycle of meta-Forth 285
25.2 Supporting vocabularies for

metacompilation
191

xii

Tables

2.1 Vocabularies in F83 10
3.1 Editor commands 23
3.2 Loading commands 26
3.3 8086 registers and Forth registers 30
3.4 Register addressing modes and mnemonics 30
3.5 8086 assembler commands, Forth style 31
3.6 Return commands 31
3.7 Machine code conditionals 32
4.1 8086 Register assignments for Forth 39
6.1 String commands 60
9.1 Data representation 81
23.1 User variables 167

1

Part I. Introduction to F83 System

Chapter 1. The Heritage of F83

1.1. The Root of F83

Forth was invented by Charles Moore in the 60's as he developed specialized programming tools

for various software projects and crystallized them into a language-operating system. Forth

spread to many continents following the radio telescopes originally programmed by Mr. Moore

when he was with the National Radio Astronomy Observatory. Forth was so prevalent in the

astronomy communities that the International Astronomic Union formally adopted Forth as their

standard programming language in 1974.

Mr. Moore and some of his colleagues left NRAO and formed the Forth, Inc. to market Forth

systems and services in 1972. Over the years, a series of Forth implementations were produced for

commercial minicomputers and microcomputers. These products evolved into poly-Forth, which

contained many advanced features such as interrupt drive I/O, multitasking-multiprogramming,

data base management, transcendental functions, and meta- or target compilation. It remains the

most comprehensive Forth system in the Forth market place.

Forth users in Europe organized a user's group, called EuropeanForth users Group (EFUG). To

encourage the exchange of Forth programs and information, EFUG published a list of Forth

commands with standard commands, commonly known as the Forth-77 Standard. It documented

the then often used Forth commands in an effort to prevent these commands from mutation as more

Forth systems were installed.

The Forth Interest Group was organized in 1978 to encourage the use of Forth on small personal

computers. Two major activities sponsored by FIG in 1978 were the publication of figForth

Model and the organizing of the Forth Standards Team. Because of the low costs of the figForth

source listings and the quality of these figForth implementations, figForth became the de facto

standard of Forth on small computers. The product from the Forth Standards Team, the Forth-78

Standard, however, was not as successful. It was soon orphaned by FIG. The Forth Standards

Team went back to the drawing board and produced the Forth-79 Standard which was much more

2

precise in wording and consistent in the naming of standard commands. Many vendors including

Forth, Inc. made genuine efforts to adopt this standard into their products.

Figure 1.1 The Forth family tree

Several problems kept the Forth Standards Team working. Among them, the more serious ones

are the state dependence of many commands, the loop structure, the representation of falsehood,

integer division with negative divisor, and the naming of many commands. These problems were

3

resolved in the publication of the Forth-83 Standard in early 1984. The exhausted Forth Standards

Team decided that no new Forth standard will be considered in the near future to let Forth-83

Standard some time to establish itself in the Forth community.

1.2. Advancements in Forth-83 Standards

Major improvements in Forth-83 Standards over previous Forth standards are briefly discussed here.

Exhaustive discussions have appeared in Forth Dimensions, authored by the Secretary of the Forth

Standards Team, Dr. Robert L. Smith. Some of the more significant features in the Forth-83

Standard are summarized here.

Mono-Addressing

Four addresses are used to address different fields in a command in the dictionary, the name field

address, the link field address, the code field address, and the parameter field address. To allow

maximum implementation flexibility and code portability, the 83-Standard uses only one address,

the compilation address. It is equivalent to the code field address in the figForth model. The

compilation address is the one returned by ' and FIND, compiled to colon commands, and used by

EXECUTE to run the command. Only one extra command is provided in the standard to access

information stored in the parameter field: >BODY.

The importance of the compilation address cannot be overstressed. Mono-addressing recognized

this characteristics of Forth. It is also beneficial that the compilation address serves as the focal

point in locating information stored in the commands.

Eliminating State Smart Commands

Many Forth commands in the early standards execute differently depending upon whether the

system is in the execution mode or compiling mode, like LITERAL, ' (tick), ." , etc. In Forth-83

the state smart commands are either eliminated or separate commands are defined for interpreting

and compiling states, making the system less ambiguous and faster.

Old ' is split into two commands: ' and [']. Old ." is split into .(and ." .

Improved DO-Loop

The DO-LOOP structure went through a major overhaul in Forth-83. The range of index is

extended to 64K so that full memory range can be addressed in the loops.

LEAVE is made to terminate the loop immediate upon its execution rather than wait until LOOP is

executed.

4

Improved Division

Division is now floored towards negative infinity instead of rounded towards zero. It is more

useful in that the quotient and modulus have a smooth change between positive integer and

negative integer domain when either divisor and/or dividend is negative.

Representation of True Flag

A true flag generated by the Forth-83 system is represented by -1 instead of 1 in the older standards.

-1 is more useful than 1 in doing bit-wise logic operation.

Consequently, NOT can now be defined as one's complement operation instead of being simply an

alias of 0=.

Zero-based PICK and ROLL

Top of the data stack is treated as the based of a memory area and addressing into this area is zero

based like addressing regular memory areas.

WORD Returning an Address

Word buffer was generally assumed to be at the top of the dictionary. However, this is

implementation dependent. With WORD returning the address of the word buffer, the word buffer

can be assigned to other memory areas. Practical usage of WORD always requires the address of

the WORD buffer. Including the word buffer address in the WORD function is a convenience to

you. A slight speed advantage can also be realized.

1.3. Creators of the F83 Systems

F83 is a very extensive language and operating system created by Henry Laxen and Mike Perry,

two professional Forth programmers in Berkeley, California. Both of them have been active in the

Forth Interest Group since its beginning, and participated in the work of the Forth Standard Team to

develop Forth-79 Standard and Forth-83 Standard. They have published papers and written

tutorials on Forth in Forth Dimensions and in the FORML (Forth Modification Laboratory)

proceedings. As Forth-83 Standard evolved, they felt the need of a complete Forth system based

on this standard to carry the standard to Forth users and community, in the same way the figForth

implementations on the 6 popular microprocessors carried the figForth model. F83 system was

the result of their efforts.

5

Figure 1.2. The Standard Bearer

The F83 system was designed to use the CP/M operating system as its host for terminal

input-output and disk interface so it is rather straightforward to be transported to a variety of

microcomputers using the CP/M system. It has been implemented for 8080-Z80, 8086-8088, and

68000 CPU's. Laxen and Perry put this system in the public domain, according to the tradition of

the Forth Interest Group, as a vehicle to distribute the newly established Forth-83 Standard. Wil

Baden at Los Angles ported it to the Apple II computer and named his system F83X.

F83 Version 1.0 was released by Perry and Laxen in September, 1983, shortly after the Forth-83

Standard was published. They also organized an F83 working group in the Northern California to

evaluate the F83 system for practical applications. The F83 system, over the period of about a

6

year, was enhanced and upgraded several times. The latest version, Version 2.1 was released in

the summer of 1984. The authors promised that this version will not be modified in the near

future, and it should be stable for you to get familiar with it and to be distributed to a wider

audience.

This book is meant to be a reference manual to the F83 system. It was originally written for the F83

system Version 1.0 for the 8086 processor on a CP/M86 operating system. Since the release of

Version 2.1, it was also upgraded to this version. Due to the overwhelming spread of the IBM

Personal Computers and its compatible models, it was also modified for using with the F83 system

for the MS-DOS system. As for the other F83 systems, it is useful as a reference for all the high

level Forth commands. For low level machine code commands, you will have to refer to the

source code and documentation coming with the specific F83 system.

1.4. Features of F83 System

F83 is not a toy language like most other public domain and some commercial Forth system. It

contains all the necessary utilities and tools for you to develop application programs conveniently

and efficiently. Both executable object codes and the source codes are provided and distributed on

floppy diskettes in the machine readable form. Although Laxen and Perry do not intend to

provide support and consultation on the F83 system, as they called their publishing firm No Visible

Support, Inc., the systems they distributed are of excellent quality and can stand on their own

strength. Extensive documentation are provided in the form of shadow screens and in-line

comments.

Laxen and Perry intended that F83 should demonstrate and bring out the best features in Forth as a

professional programming language. Many utilities and tools were included in this system which

are not generally available even in the best of the commercial Forth systems. Some of these

utilities are listed here:

 Editor
 Assembler for the host CPU
 Full BIOS/BDOS interface
 Multiple file accessing
 Four-way threaded dictionary
 Dynamically defined vocabulary search order
 Source code viewing
 Decompiler
 Debugger
 Memory dumping
 Multitasking
 Shadow-screen documentation
 Source and documentation printing
 Forward referencing
 Metacompiler
 Huffman code compression and expansion

7

In realizing all these functions, F83 has more than 1000 commands in its dictionary, comparing

with about 300 commands in the figForth model and 130 commands in the required command set

of Forth 83-Standard. Casual users may not need to know the details of all these commands.

However, this whole F83 system is a huge reservoir of Forth programming examples from which

serious Forth programmers can study and find ready solutions to many of their programming

problems.

FigForth became the de facto standard of Forth on small computer systems because of the quality

and the availability of the source listings distributed by the Forth Interest Group. The figForth

system is complete in the sense that it includes all the necessary system functions so that it can be

implemented on real life microprocessors. The Forth 79-Standard, on the other hand, had not

attained the popularity of figForth in spite of the intensive lobbying efforts within and without the

Forth Interest Group. The principal reason is that 79-Standard has to be supported by a system to

be useful. Forth Interest Group expected that the support to Forth 79-Standard would come from

vendors of commercial Forth systems, and it did not provide executable systems in supporting the

standard.

Forth-83 Standard is a refinement on the 79-Standard. Many ambiguities in the 79-Standard were

resolved and all required commands are defined in better precision. The DO-LOOP structure was

overhauled. However, Forth Interest Group maintained the policy to let Forth vendors to provide

the system support to the 83-Standard. Because of the reservation they had in the capability of

vendor supports, Laxen and Perry built the F83 system as the bearer of the 83-Standard. They

also realized that the Forth community has matured over the years and a minimal system like

figForth will not satisfy the needs of Forth users in building applications and systems. To be the

standard bearer, F83 had to go beyond the figForth model and provides you with a complete

program developing environment.

8

Chapter 2. Browsing F83 System

I assume that you have either followed the instructions as described in the README.TXT file on

the original disk you obtained from Henry Laxen or Mike Perry and expanded the compressed files

to the full length files comprising the F83 system, or somebody did the expansion for you and you

have a set of floppy disks ready to be used to explore this interesting and powerful Forth operating

system and language. If you did not have an expanded system, please read the instructions in the

README file and then run the executable file RUNME. You will be guided step by step to create

a set of disks which will contain all the files to be used by the F83 system, as show in Figure 2.1.

Volume in drive A has no label.
 Volume Serial Number is 0000-0000

 Directory of A:\

02/09/1985 09:23 PM 12,288 CLOCK.BLK
02/09/1985 09:23 PM 53,248 CPU8086.BLK
02/09/1985 09:23 PM 30,720 EXTEND86.BLK
02/09/1985 09:23 PM 26,368 F83.COM
02/09/1985 09:23 PM 4,993 F83-FIXS.TXT
02/09/1985 09:23 PM 43,008 HUFFMAN.BLK
02/09/1985 09:23 PM 190,592 KERNEL86.BLK
02/09/1985 09:23 PM 49,280 META86.BLK
02/09/1985 09:23 PM 112,640 UTILITY.BLK
06/24/2013 05:55 PM 0 2-2.TXT
 10 File(s) 523,137 bytes
 0 Dir(s) 916,480 bytes free

Figure 2.1. IBM PC-DOS files in F83 system

In this chapter, I would like to show you what are contained in the F83 system and also the files on

the disks and help you to get familiar with this system. All the commands and exercises

mentioned in this chapter can be used freely to exercise the system so that you will gain certain

degree of confidence to use them later when you will do programming. These commands will in

no way disturb the information stored on the disks. The best way to learn them is to type them in on

the keyboard and observe the results on the CRT terminal.

F83 system is very large comparing to earlier public domain Forth system like figForth . It has

about 1000 commands or commands in its dictionary. However, most commands are defined to

support other high level commands and are seldom used for ordinary programming purposes.

Only a very limited number of commands are used often and these are commands that a user must

learn and be fluent in them to use Forth productively. Included in this set of commands are the

required command set defined in the Forth-83 Standards, which is a minimum set of commands

allowing you to compose solutions to a wide range of programming problems, and the set of utility

commands in this F83 system which allows you to use the specific resources provided by your

computer. I further assume that you have already had some knowledge on Forth by reading some

9

textbook like Leo Brodie's 'Starting Forth', or its equivalent, and used a Forth system from some

other source. Therefore, I will not try to explain in details the elementary functions and

commands common to most Forth system and only discuss those commands unique in the F83

system. The purpose is to get you to know this system well enough so that you will be able to use

it as a basis to build your application or your new Forth system.

In this chapter, all the words or commands discussed are non-destructive. They will allow you to

browse through the entire system and explore its riches without writing anything to any of the files.

You must try them all and get to know them well before we get to the next chapter where we will

try to edit files and make permanent changes on disks. However, it is recommended that you

make some backup copies of the disks with the expanded files and only use the copies for the

exercises, just to be safe.

2.1. Listing the Command Names

Words or commands in Forth are very powerful constructs. They have the essence of subroutines

in FORTRAN, procedures in PASCAL and PL/I, characters in APL, macro instructions in assembly,

and command files in operating systems. Because they are resident in a dictionary in the RAM

memory of a computer, they are available for immediate execution or for compilation into other

high level commands. Commands in the dictionary are arranged in the form of a linked list so that

the execution procedure associated with a particular command can be located quickly by the Forth

operating system. A very useful utility command is defined to go through this linked list and print

the names of all the commands in the dictionary. It is called WORDS in Forth-83 Standard, a

remarkable improvement over the old computerese name VLIST in the figForth model. Typing:
 WORDS

on your keyboard will generate a long list of command names on the terminal, as shown in the

following figures. On the list of Forth commands, you will find all the regular Forth commands

for arithmetic operations like + , - , * , / , and other division and ratio operators; the stack operators

like DUP , DROP , SWAP , OVER and ROT; the memory operators like @ , ! , C@ , and C! ; etc.

In fact, all the Forth-83 standard commands are included in this list some where.

WORDS have few equivalent in other language or operating system. The Forth computer can tell

you all the commands it knows, which are available for your use, any time you care to browse. In

other language or operating system, you have to go look them up in thick manuals and can never be

sure that they are really in your system. WORDS reveals the current state of the dictionary. If

you add more commands to the dictionary, they will appear at the top of the name list. It is very

handy when you are extending the system by defining new commands and add them to the

dictionary. In this case you will be interested in the commands on the top of the dictionary and

10

not the rest of the long listing. You can stop the name listing by pressing any key on the

keyboard.

2.2. Vocabualry

Fig. 2.2 shows you how to list the commands in the Forth vocabulary. The dictionary in Forth is

usually not a single linked list of commands or commands, but contains a number of logically

independent linked lists of commands called vocabularies. The purpose of vocabulary is

three-fold: to shorten the time needed to search through the dictionary, to group functional related

commands together, and to allow different commands to share the same name. There are nine

vocabularies defined in the F83 system. The names of these vocabularies can be displayed by

typing the following command:
 VOCS

and nine vocabulary names will be displayed on the terminal. The function and contents of these

vocabularies are summarized in Table 2.1.

Table 2.1. Vocabularies in F83

NAME FUNCTIONS
ROOT Words to assign vocabulary searching order. A ll vocabulary must be defined

in this vocabulary.
FORTH The main trunk vocabulary for all standard an d system words.
EDITOR All editing commands.
ASSEMBLER All words needed to define low level mach ine code routines.
DOS Words to use the underlying DOS utility.
USER User variables.
SHADOW Words to support shadow screens for comments and documentation.
BUG Words to support F83 debugger.
HIDDEN Miscellaneous supporting words not useful to the user.

Executing a vocabulary command makes the specified vocabulary the 'context' vocabulary. The

system will search the context vocabulary first to locate a command entered by you. The

command WORDS displays only the list of commands in the context vocabulary. Since normally

the context vocabulary is the Forth vocabulary, executing WORDS usually displays the command

names in the Forth vocabulary as shown in Fig. 2.2. Executing WORDS after a vocabulary

command will list the command names in that vocabulary, as shown in the examples in Fig. 2.3-4.
 ok
 ok
WORDS
EMPTY MARK HELLO BACKGROUND: ACTIVATE SET -TASK TASK: RESUME DEBUG LISTING SHOW
(SEMIT) (PAGE) FORM-FEED PAGE #PAGE LOGO L/PAGE FOOTING INIT-PR EPSON SEE (SEE)
ASSOCIATIVE: CASE: MAP OUT DL DU DUMP .HEAD ?.A ?.N DLN EMIT. D.2 .2 A S HADOW
(WHERE) FIX EDIT ED DONE EDITOR DARK AT -LINE BLOT REPLACE INSERT DELETE SEA RCH
SCAN-1ST FOUND TO CONVEY (CONVEY) .TO H OP CONVEY-COPY U/D HOPPED VIEW @VIEW CO PY
(COPY) ESTABLISH L B N :: MANY TIMES #TIMES WORDS LARGEST IND INDEX .LINE0
TRIAD LIST .SCR ?CR ?LINE RMARGIN LMARG IN HIDDEN 0<= 0>= >= <= U>= U<= MS
FUDGE P! PC! P@ PC@ MULTI SINGLE STOP WAKE SLEEP !LINK @LINK LOCAL INT#
RESTART (PAUSE) UNBUG BUG DOES? DOES-SIZE DOES-OP LABEL UTILITY.BLK CPU8086.BLK
EXTEND86.BLK KERNEL86.BLK VIEWS VIEW-FILES SAVE-SYSTEM FROM OPEN DEFINE B: A: DRIV E?
DIR CREATE-FILE MORE ROOT --> +THRU THR U ?ENOUGH ? (S \ L/SCR C/L RECURSE B Q
DUMP .ID .S DEPTH BYE START OK INITIA L COLD WARM BOOT QUIT RUN IS (IS) > IS

11

USER #USER CODE AVOC 2VARIABLE 2CONSTANT DEFINITIONS VOCABULARY DEFER VARIABLE
CONSTANT RECURSIVE ; :] [DOES> ;COD E (;CODE) ;USES ASSEMBLER (;USES) REVEAL
HIDE ?CSP !CSP CREATE "CREATE ,VIEW WHI LE ELSE IF REPEAT AGAIN UNTIL +LOOP
LOOP ?DO DO THEN BEGIN ?LEAVE LEAVE ? <RESOLVE ?<MARK ?>RESOLVE ?>MARK <RESOLVE
<MARK >RESOLVE >MARK ?CONDITION ABORT ABO RT" (ABORT") (?ERROR) ?ERROR WHERE FORGET
(FORGET) TRIM FENCE " ." ," (.") (") [COMPILE] ['] ' ?MISSING CRASH CONTROL
ASCII DLITERAL LITERAL IMMEDIATE COMPILE EVEN ALIGN C, , ALLOT INTERPRET
STATUS ?STACK DEFINED ?UPPERCASE FIND #TH READS (FIND) HASH VIEW> >VIEW >LINK >NA ME
>BODY LINK> NAME> BODY> L>NAME N>LINK F ORTH-83 DONE? TRAVERSE \S (.(>TYPE WORD
'WORD PARSE PARSE-WORD SOURCE (SOURCE) PL ACE /STRING SCAN SKIP D.R D. (D.) UD. R
UD. (UD.) .R . (.) U.R U. (U.) OCTA L DECIMAL HEX #S # SIGN #> <# HOLD
NUMBER (NUMBER) NUMBER? (NUMBER?) CONVERT DOUBLE? DIGIT LOAD (LOAD) DEFAULT VIEW#
FLUSH SAVE-BUFFERS EMPTY-BUFFERS IN-BLOCK B LOCK (BLOCK) BUFFER (BUFFER) MISSING
DISCARD UPDATE ABSENT? LATEST? CAPACITY D OS SWITCH FILE? .FILE WRITE-BLOCK
READ-BLOCK >UPDATE BUFFER# >END >BUFFERS INIT-R0 FIRST >SIZE LIMIT DISK-ERROR B/FC B
REC/BLK B/REC B/BUF #BUFFERS QUERY TIB EXPECT CC-FORTH CC DEL-IN CHAR (CHAR)
CR-IN P-IN RES-IN BACK-UP (DEL-IN) BS-IN BEEP BACKSPACES SPACES SPACE TYPE CRLF
(EMIT) (PRINT) PR-STAT CR KEY KEY? (CON SOLE) (KEY) (KEY?) BDOS COMPARE CAPS-COMP
COMP -TRAILING PAD HERE UPPER UPC MOVE LENGTH COUNT BLANK ERASE FILL CAPS BE LL
BS BL END? #TIB SPAN >IN BLK VOC-LINK WIDTH 'TIB CONTEXT #VOCS CURRENT CSP
LAST R# DPL WARNING STATE PRIOR SCR E MIT PRINTING IN-FILE FILE HLD BASE OFFS ET
#LINE #OUT DP RP0 SP0 LINK ENTRY TOS */ */MOD MOD / /MOD * MU/MOD M/MOD *D
DMAX DMIN D> D< DU< D= D0= ?DNEGATE D- D2/ D2* DABS S>D DNEGATE D+ 2ROT
4DUP 3DUP 2OVER 2SWAP 2DUP 2DROP 2! 2 @ WITHIN BETWEEN MAX MIN > < U>
U< ?NEGATE <> = 0<> 0> 0< 0= UM/MOD U*D UM* 2- 1- 2+ 1+ 8* U2/ 2/ 2* 3
2 1 0 +! ABS - NEGATE + OFF ON CTOGGLE CRESET CSET FALSE TRUE NOT XOR OR
AND ROLL PICK R@ >R R> ?DUP FLIP -R OT ROT NIP TUCK OVER SWAP DUP DROP RP!
RP@ SP! SP@ CMOVE> CMOVE C! C@ ! @ (?LEAVE) (LEAVE) J I PAUSE NOOP GO
PERFORM EXECUTE >NEXT BOUNDS (?DO) (DO) (+LOOP) (LOOP) ?BRANCH BRANCH (LIT) UP
UNNEST EXIT FORTH ok
 ok

Figure 2.2 Forth commands

 ok
VOCS : SHADOW EDITOR HIDDEN BUG ROOT USER ASSEMBLER DOS FORTH ok
 ok
ORDER
Context: FORTH FORTH ROOT
Current: FORTH ok
 ok
 ok
 ok
ASSEMBLER ok
 ok
WORDS
2PUSH 1PUSH NEXT DO REPEAT WHILE AGAIN UNTIL BEGIN ELSE THEN IF OV U> U<= U>=
U< > <= >= < 0>= 0< 0<> 0= A?<RES OLVE A?<MARK A?>RESOLVE A?>MARK +RET XOR
XLAT WAIT SUB STOS STI STD STC SHR SHL SCAS SBB SAR SAHF ROR ROL RET R EPZ
REPNZ REP RCR RCL PUSHF PUSH POPF POP OUT OR NOT NOP NEG MUL MOVS LOOPNE
LOOPE LOOP LODS LOCK LES LEA LDS LAHF JS JPO JPE JO JNS JNO JNE JMP JL E JL
JGE JG JE JCXZ JBE JB JAE JA IRET INTO INC IN IMUL IDIV HLT DIV DEC DAS
DAA CWD CMPS CMP CMC CLI CLD CLC CB W CALL AND ADD ADC AAS AAM AAD AAA MOV
SS: ES: DS: CS: XCHG SEG INT ESC TE ST 13MI 14MI 12MI 11MI 10MI 9MI 8MI 7MI
6MI 5MI 4MI 3MI 2MI 1MI ?FAR FAR IN TER WR/SM, R/M, WMEM, MEM, B/L? LOGICAL
RR, ,/C, SIZE, W, OP, BYTE SIZE RMID RLOW BIG? REG? #? SEG? MEM? R16? R8 ?
MD [W] W [IP] IP [RP] RP S#) #) # DS SS CS ES [DI+BP] [SI+BP] [DI+BX]
[SI+BX] [BX] [BP] [DI] [SI] [BP+DI] [BP +SI] [BX+DI] [BX+SI] DI SI BP SP BX DX
CX AX BH DH CH AH BL DL CL AL R EGS REG ?<RESOLVE ?<MARK ?>RESOLVE ?>MARK
HERE , C, C; END-CODE ok
 ok
 ok
DOS WORDS
?DEFINE FILE: .NAME SAVE HEADER SELECT !FCB (!FCB) MAKE-FILE WRITE READ DELETE
SEARCH SEARCH0 CLOSE RESET FCB2 DOS-FCB OPEN-FILE DOS-ERR? FILE-SIZE FILE-IO
FILE-WRITE FILE-READ SET-IO REC-WRITE REC-R EAD IN-RANGE MAXREC# RECORD# SET-DMA
CLR-FCB FCB1 ?DISK-ERROR DISK-ABORT !FILES ok
 ok

Figure 2.3 Assembler and DOS commands

 ok

12

ORDER
Context: FORTH FORTH ROOT
Current: FORTH ok
 ok
 ok
VOCS : SHADOW EDITOR HIDDEN BUG ROOT USER ASSEMBLER DOS FORTH ok
 ok
ROOT WORDS
WORDS VOCS ORDER DEFINITIONS FORTH PREVIO US SEAL ONLY
ALSO ok
 ok
 ok
SHADOW WORDS
SHOW BRING G CONVEY COPY >IN-SHADOW >SH ADOW (>SHADOW)
DISPLACEMENT ok
 ok
 ok
EDITOR WORDS
IBM IBM--LINE IBM-BLOT IBM-DARK IBM-AT SM ART DUMB .DUMB (DARK) (BLOT) (AT) GET-I D
NEW EDIT-AT .ALL CHANGED? REDISPLAY .LINE DY DX KT J TILL R D E S F FI ND?
BRING G M WIPE JOIN SPLIT X U P O I ?STAMP STAMP ID ID-LEN 'F+ (TILL) (I)
'C#A W K KEEP ?MISSING .BUFS .FRAMED 'VIDEO 'FIND 'INSERT C/PAD ?TEXT EOS
MODIFIED #END #REMAINING #AFTER 'LINE 'CU RSOR 'START +T COL# LINE# CURSOR T C
TOP C/SCR INSTALL CHANGED EDITING? AUTO .SCREEN ok
 ok
 ok
HIDDEN WORDS
PR-FLUSH PR-S-PAGE PR-PAGE PR-STOP PR-START P-FOOTING P-HEADING 2SCR 2PR PR TEXT?
SCR#S ((SEE)) .DEFINITION-CLASS
DEFINITION-CLASS .OTHER .USER-DEFER .DEFER .USER-VARIABLE .DOES> .: .VARIABLE .CONSTAN T
 .IMMEDIATE .PFA .EXECUTION-CLASS
EXECUTION-CLASS .FINISH .UNNEST .(;CODE) .S TRING .QUOTE .BRANCH .INLINE .WORD ok
 ok
 ok
BUG WORDS
TRACE 'UNNEST (DEBUG) RES SLOW L.ID PNE XT DEBNEXT DNEXT FNEXT CNT IP> <IP 'D EBUG
ok
 ok
 ok
USER WORDS
DEFER VARIABLE CREATE ALLOT ok
 ok
 ok
FORTH ok
 ok
 ok
ORDER
Context: FORTH FORTH ROOT
Current: FORTH ok
 ok

Figure 2.4 Commands in other vocabularies

The vocabulary structure in F83 is significantly improved as compared with the vocabulary

structure in the figForth Model. It is more flexible in that you can dynamically change the

vocabulary searching sequence and specify up to to eight different vocabularies in the searching

sequence. The speed of dictionary searching is also much faster than that in the figForth Model,

because all vocabularies in the dictionary are hashed into four threads. In order to locate a

command, only a quarter of a vocabulary needs to be scanned. This hashed searching greatly

improves the speed of text interpretation and program compilation.

Two commands are used to manage the vocabulary searching sequence: ONLY and ALSO.

ONLY initializes the searching sequence and makes ROOT as the only vocabulary available for

13

searching. In the ROOT vocabulary, all the other vocabulary names must be defined so that they are

accessible. After ONLY is executed, executing any other vocabulary command will make that

vocabulary the context vocabulary which becomes the first vocabulary to be searched during text

interpretation. Executing ALSO pushes the context vocabulary on the top of a vocabulary stack

and makes it the first resident vocabulary. Other resident vocabularies already in the vocabulary

stack are pushed down so that they will be searched in order after searches in the context and the

first resident vocabularies failed to locate a command.

The context vocabulary, for all practical purposes, is the equivalent to the context vocabulary in

figForth . The resident vocabularies are extensions of the context vocabulary to allow you to

specify the number and the order of vocabularies to be searched in runtime.

To arrange the searching order as DOS-EDITOR-ASSEMBLER-Forth, one has to execute the

following command sequence:
 ONLY FORTH ALSO ASSEMBLER ALSO EDITOR ALSO DOS

Here DOS becomes the context vocabulary and EDITOR is the first resident vocabulary to be

searched. If a command cannot be located in either DOS or EDITOR, the ASSEMBLER and the

FORTH vocabularies will be searched in turn.

Another command ORDER will list the context and the resident vocabularies on the terminal. It

is a useful command to assure yourself the context environment you are in at any time. If you

executed the above string of vocabulary commands, typing
 ORDER

results in the following display on the terminal:
 Context: DOS EDITOR ASSEMBLER FORTH ROOT
 Current: FORTH ok

indicating the desired vocabulary search order. The current vocabulary, in this case FORTH, is the

vocabulary to which new commands are added. It will be discussed later.

The command WORDS behaves similarly to VLIST in figForth . However, WORDS only lists

the names of commands in the context vocabulary; therefore, WORDS must be preceded by the

name of the vocabulary you wish to examine, like FORTH WORDS, DOS WORDS, etc. Since

the list of command names always starts with the command defined last, it is often used to see

which was compiled last. If there were any error during disk file loading, you can find quickly

where compilation stopped.

2.3. Viewing Source Code of Command Definitions

Since there are so many commands in the F83 system, it is impossible for anybody to remember the

14

meaning and the function of all these commands. Although the compiled object code of a

command in the dictionary contains all the information about this command, it is not readily usable

to casual users. F83 system provides a very interesting and powerful tool set which permits you to

see the source code of any command in the system. This magic command is named 'VIEW'. If

you wanted to see how the command LIST was defined, you should type:
 VIEW LIST

and the F83 system will open the file in which LIST was defined and display the screen containing

the definition of LIST. On the top of the displayed screen, you will also find the named of the file.

This is shown in Fig. 2.4.

To use the viewing facility, you must have all the source files on disks and have them properly

inserted into appropriate disk drives. For some computers, the files fit on a single floppy disk.

This is the ideal case because you don't have to worry about where a particular file is. For

computers with smaller disk drives, the files must be spread over two or more drives. If the

required file is not on the disk of your current disk drive, you have to log on to the drive where the

file is located and repeat the viewing command, or insert the proper disk in the the log-on drive and

repeat the viewing command.

Commands are grouped by their functions and by the order of compilation into six major files in

the F83 system:

METAnn.BLK The meta-compiler
KERNELnn.BLK The trunk FORTH system. Nucleus, inter preter and compiler.
EXTENDnn.BLK Vocabulary and file words.
CPUnnnn.BLK Assembler and CPU dependent words.
UTILITY.BLK Editor, debugger, decompiler, printing and other utility.
HUFFMAN.BLK Huffman compression.

where nn or nnnn identifies the CPU for which the F83 system is hosted. 80 for 8080 and Z80, 86

for 8086 and 8088, and 68 for 68000.

If you have to choose which files to put on a disk for viewing, I suggest that you put

UTILITY.BLK, KERNELnn.BLK, and EXTENDnn.BLK on one disk and use it for viewing,

because they comprise the majority of useful commands that you might be interested in browsing.

F83 also comes with a built-in decompiler which can regenerated the source code from the object

code in the dictionary. The decompiler command is 'SEE', followed by the name of the command

you want to decompile. For example:
 SEE LIST

will display the sequence of commands which define the function of LIST on the terminal. The

displayed sequence of commands does not match exactly the sequence in the original source code,

15

because the control structures are not decompiled but simply represented by the corresponding

runtime routines. Nevertheless, the decompiled sequence does reveal the composition of the

source code faithfully. The advantage of the decompiler over the viewing facility is that the

decompiler is always available for you to browse commands, even without the disk files.

The result of SEE LIST is also shown in Fig. 2.5. .

 ok
 ok
VIEW LIST is in A:UTILITY.BLK screen 4
Scr # 4 A:UTILITY.BLK
 0 \ Managing Source Screens 22Mar84map
 1 : .SCR (S --) ." Scr # " SCR ? 8 SPACES F ILE? ;
 2 : LIST (S n --)
 3 1 ?ENOUGH CR DUP SCR ! .SCR L/SCR 0
 4 DO CR I 3 .R SPACE
 5 DUP BLOCK I C/L * + C/L -TRAILING >TYPE KEY? ?LEAVE
 6 LOOP DROP CR ;
 7 : TRIAD (S n --)
 8 12 EMIT (form feed) 3 / 3 * 3 BOUNDS DO I LIST LOOP ;
 9 : .LINE0 (S n --)
 10 DUP 3 MOD 0= IF CR THEN CR DUP 3 .R SPACE
 11 BLOCK C/L -TRAILING >TYPE ;
 12 : INDEX (S n1 n2 --)
 13 2 ?ENOUGH 1+ SWAP DO I .LINE0 LOOP CR ;
 14 : IND (S n --)
 15 BEGIN DUP .LINE0 1+ KEY? UNTIL DROP ;
 ok
 ok
 ok
 ok
SEE LIST
: LIST 1 ?ENOUGH CR DUP SCR ! .SCR L/SCR 0 (DO) 3 8 CR I 3 .R SPACE DUP
BLOCK I C/L * + C/L -TRAILING >TYPE KEY? (?LEAVE) (LOOP) -34 DROP CR ; ok
 ok
 ok

Figure 2.5 VIEW and SEE

2.4. Shadow Screen Documentation

Since most people think that a Forth screen of 1024 bytes is too small to put inline documentation

with the code in the same screen, the shadow screen technique was developed to give you an extra

screen to write comments and documentation for each source screen. This documentation screen

is the shadow of the source screen.

F83 divides a screen file into two equal parts: the first half will be used for source code and the

second half for documentation. one can toggle between a source screen and its shadow screen with

the commands A and L. After viewing the source code in a source screen, you can type A L and

switch to the shadow screen to see the comments and documentation. Documentation thus

provided in the F83 system is quite extensive, and you are encouraged to examine the shadow

screens with their respective source screens. The shadow screens generally bring out the purpose

and over-all function of commands which are not obvious in the source definition.

16

2.5. Files in F83

F83 uses MS-DOS or CP/M operating system to access the terminal and the disk files. Using a

readily available operating system to host the F83 system has the advantage that it can be

transported to a large number of computers with that operating system. It also allows the

partitioning of the F83 system into several named files which are easier to handle than simply

blocked disk. Within a file, however, F83 system still deals with program or data in the 1024 byte

block format as required by the Forth-83 standard. Most of the elementary file functions are

defined as Forth commands. However, you only need a few high level commands to use files to

store and to retrieve programs and data.

Three simple Forth commands have functions similiar to their DOS or CP/M counterparts: DIR

lists on the terminal all the files on the current disk drive, A: makes drive A the current drive,

and B: makes drive B the current drive. All file activities are processed for files on the current

drive.

All the Forth commands using the disk mass storage, such as BLOCK, BUFFER, FLUSH, etc.,

access the current file on the current disk. A file becomes the current file when it is opened by the

command OPEN <filename>, and subsequent disk commands are directed to this file. In our

previous example of the command VIEW, which displays the screen containing the source code in a

file, the command VIEW actually opens the file containing the command and displays the

requested block on the terminal. If you want to examine or to modify data or source in a specific

file, you have to open it explicitly. Once a file is opened, you can display any block within that

file.

The size of a file is usually specified when the file was created. The size in number of 1024 byte

blocks can be recalled by the command CAPACITY. Execute CAPACITY and the number of

blocks in the current file is returned on the stack. Source code files in the F83 system with the

extension BLK are arranged to have the source code in the first half of the file and the shadow

documentation in the second half.

To examine the contents of a BLK file, you can use the command INDEX to display the first lines

in a range of screens. For example, to display the first lines of all the source code screens, you

can type:
 0 CAPACITY 2/ INDEX

and the first lines of those screens will be displayed on the terminal. By convention, the first line

in a screen should always be a comment to the contents of this screen. Thus INDEX gives us the

17

information equivalent to a directory in a file. An example of the index listing of the

UTILITY.BLK file is shown in Fig. 2.6.

After you identify any screen of your interest, you can examine the detailed contents of this screen

by the command LIST, preceded by the screen number:
 1 LIST

It will display the first text screen in a file. In all the F83 source code files, screen one is the load

screen of the file, i. e., it contains commands that will load or compile the source screens in the rest

of the file. There are also some comments in screen one indicating the packaging of the screens in

the file.

To display the shadow documentation of any source screen, you should type:
 A L

The command A uses CAPACITY to calculate the screen number of the associated shadow screen

and makes it the current screen. the command L displays the current screen. Executing A and L

again will display the source screen again.

2.6. Printing Utility

To make hard copy of the source screens and shadow screens, a simple method is to let the printer

follow the terminal display. In the CP/M systems you can type the control P code on the keyboard

to turn on the printer. Any character hereafter displayed on the terminal will also be printed.

Now you can use any of the listing commands discussed in the last section to print index of a file or

individual screens. However, you do not have control on the printing format. F83 provides

some utility commands to print source code and shadow screens. If you have an EPSON printer

capable of printing in condensed format, you can print the source screens side by side with their

shadows on single 8.5" by 11" paper, which is very convenient when studying the source code.

The print utility allows you to print a range of screens on a printer. It must be properly initialized

for your printer. If you do have an EPSON printer you have to initialize it by the following

commands:
 ' EPSON IS INIT-PR

which initialize the vectored command, INIT-PR. The print format is 6 screens to an page with

two 3 screen columns. The printer must be able to print 132 characters per line to fit two screens

side by side.

 ok
 ok
 ok
DIR
CLOCK BLK CPU8086 BLK EXTEND86 BLK F83 COM F83-FIXS TXT

18

HUFFMAN BLK KERNEL86 BLK META86 BLK UTILIT Y BLK 2-6 TXT ok
 ok
 ok
OPEN EXTEND86.BLK ok
 ok
 ok
CAPACITY . 0 ok
 ok
 ok
0 15 INDEX

 0 \ The Rest is Silence 03Apr84map
 1 (Load Screen to Bring up Standard System 07Apr84map
 2 \ Load up the system 08MAY84HHL

 3 (Commenting and Loading Words 16Oct83map
 4 \ The ALSO and ONLY Concept 07Feb84map
 5 \ The ALSO and ONLY Concept 06Apr84map

 6 \ Load Screen for DOS Interface 07Apr84map
 7 \ DOS Interface 10Apr84map
 8 \ Create File Control Blocks 19Apr84map

 9 \ Save a Core Image as a File on Disk 06Apr84map
 10 \ Display Directory 13Apr84map
 11 \ Define and Open files 04Apr84map

 12 \ Viewing Source Screens 08MAY84HHL
 13 \ My normal configuration 07Apr84map
 14

 15
 ok
 ok
 ok
1 LIST
Scr # 1 A:EXTEND86.BLK
 0 (Load Screen to Bring up Standard System 07Apr84map
 1) CR .(Loading system extensions.) CR
 2 2 VIEW# ! (This will be view file# 2)
 3 WARNING OFF
 4
 5 3 LOAD (BASICS)
 6 6 LOAD (FILE-INTERFACE)
 7 FROM CPU8086.BLK 1 LOAD (Machine Dependen t Code)
 8 FROM UTILITY.BLK 1 LOAD (Standard System Utilities)
 9
 10 WARNING ON
 11 -->
 12
 13
 14
 15
 ok
 ok
 ok
 ok

Figure 2.6 Files and directory commands

The command to print a range of screens is SHOW:
 1 30 SHOW

will print screens 1 to 30.

There are two versions of SHOW in F83. The version in Forth prints 6 screens per page and the

version in the SHADOW vocabulary prints 3 screens of source with their corresponding shadow

screens:

19

 1 30 SHADOW SHOW

prints source screens 1 to 30, 3 screens to a page with 3 shadow screens.

If your printer cannot handle 132 columns per line, you will have to use the command TRIAD to

print three screens on a page.

To obtain the complete listing of a file in the source-shadow format, there is a simple command

LISTING. LISTING was used to generate all the source listings as distributed with the F83

systems, with file name, page number, and footing. .

2.7. Debugger

The debugger is designed to let you single stepping through the execution sequence of a high level

command. To invoke the debugger to trace a command, issue the following command:
 DEBUG <name>

where <name> is the command to be debugged. Nothing happens at this point. DEBUG sets

things up so that when the command is executed you will get a single step trace showing the

command within <name> that is about to be executed and the contents of the parameter stack.

While single stepping through a command, the name of the next command to be executed and the

contents of the parameter stack are displayed on the CRT terminal. The debugger then waits for a

key stroke on the terminal keyboard. Any key will cause the next command to be executed and

the debugging information displayed. Three special keys, C, F, and Q, have the following

functions:

Q Quit the debugging process and restore the debugg ed word to its original state for normal

execution.
C Turn off the single stepping mechanism and let ex ecution run to completion.
F Temporarily return to Forth system so that you ca n execute other Forth commands, for example,

to change the data stack items. You must type RESUM E to come back and continue the debugging
process.

An example to single step through the execution of 1 LIST is shown in Fig. 2.7. Typing Q at the

bottom of the list terminates the execution.

 ok
 ok
OPEN UTILITY.BLK ok
 ok
 ok
DEBUG LIST ok
 ok
 ok
1 LIST 1
1 --> 1 1
?ENOUGH --> 1
CR -->
 1

20

DUP --> 1 1
SCR --> 1 1 2998
! --> 1
.SCR --> Scr # 1 A:UTILITY.BLK 1
L/SCR --> 1 16
0 --> 1 16 0
(DO) --> 1
CR -->
 1
I --> 1 0
3 --> 1 0 3
.R --> 0 1
SPACE --> 1
DUP --> 1 1
BLOCK --> 1 64000
I --> 1 64000 0
C/L --> 1 64000 0 64
* --> 1 64000 0
+ --> 1 64000
C/L --> 1 64000 64
-TRAILING --> 1 64000 64
>TYPE --> \ Load Screen to Bring up Standard System 07Apr84map 1
KEY? --> 1 0
(?LEAVE) --> 1
(LOOP) --> 1
CR -->
 1
I --> 1 1
3 --> 1 1 3
.R --> 1 1
SPACE --> 1
DUP --> Unbug
 ok
 ok

Figure 2.7 Debugging LIST

21

Chapter 3. Using the F83 System

I suppose that you are now ready and eager to use the F83 system to do some programming on your

own. In this chapter I will try to give you some tips on how to use F83 to write programs and save

them on disk for posterity. It is not my job to teach you how to programming in Forth. There are

too many books on this subject in the book stores. What I want to do is to discuss many useful

commands in the F83 system which are very helpful to generate code, test and debug the code, and

save them on the disk in files. Most of them are specific to the F83 system. You will find all of

them in the source code form and commented in the shadow screens if you study diligently the

entire F83 listings. Rather than postpone the pleasure in exploring this system until you learn all

about it, I think you will appreciate a few tips to get started immediately and do something useful.

Again I have to remind you to make backup copies of your original F83 system disks. If you are

through with the viewing facility and do not need all the F83 source files, you may want to use a

formatted blank disk in the currently logged disk drive for the exercises we will do here. Since all

the Forth commands are loaded into the dictionary in RAM memory, you really do not need those

source files unless you want to copy and use some of the screens. When we invoke the editor, we

will make permanent changes on the disk. You would certainly want a good F83 system backed

up so you have something to fall back to.

3.1. Create Your Own File

To write your own programs, the first thing you have to do is to find some space on the disk to store

your program. You can get disk space in three different ways:

1. Open an existing file and use screens in it. You will destroy some of the information in this

 file.

2. Extend an existing file and use the increased space at the end of this file to store your code.

3. Create your own file and do whatever you want with it.

If you wanted to modify F83 to suit your own computer or to make it perform better, you probably

will use the first approach. Just be sure that the disk is not write-protected so that you will be able

to save your program. Simply OPEN the file you want to use and select a screen by the command
n LIST or n EDIT.

Then you can use editor commands to enter new code into the screen or edit its contents. We will

discuss the editor commands later.

22

If you chose the second approach to extend an existing file, you should first open the desired file

and use the command MORE to add more screens to this file. For example,
 10 MORE

will add 10 screens to the end of the current file. All the added screens are filled with blank

characters. Now, the command CAPACITY will return the total screen number on the stack.

From this number you can select any of the added screens to enter your program. One problem

with this approach is that the shadow screens in the file will not match with the corresponding

source screens.

To create a new file on the disk for your private use, you have to use the command CREATE-FILE.

Following is an example:
 30 CREATE-FILE MYFILE.BLK

where MYFILE.BLK is the name of the new file, and the length of the file is 30 Forth blocks or

30K bytes. After a file is created this way, it can be opened by the OPEN command:
 OPEN MYFILE.BLK

and now we can use the command LIST or EDIT to select one screen in this file to enter new text

or other information. The file name must conform to the rules of the disk operating system.

Usually the name can contain up to 8 characters with a three character extension.

F83 allows you to open 2 files at a time so that screens can be copied from one file to the other.

The command FROM opens the second file which can be read while the current file can be written.

For example,
 FROM YOURFILE.BLK 1 10 COPY

opens YOURFILE.BLK file as the input file and keeps MYFILE.BLK file as the current file. Of

course, you have to create YOURFILE before you can open it. The command COPY which

normally would copy screen 1 to screen 10 in MYFILE.BLK will now copy screen 1 from

YOURFILE.BLK file to screen 10 in MYFILE.BLK. When a file is OPEN’ed, it is made both the

current file and the input file. When a file is opened by the command FROM, the file becomes the

input file only and can be used with the current file.

To copy a range of screens in the current file from one place to another, the command to use is

CONVEY. First you have to tell the F83 system how many screens you want to skip over during

copying. If you want to copy screens 1-6 to screens 12-17, you should give the following

commands:
 11 HOP 1 6 CONVEY
or 1 6 TO 12 CONVEY

If the number before HOP is negative, the range of screens will be moved towards the beginning of

the file.

23

If you want to copy screens 1-20 in YOURFILE.BLK to HISFILE.BLK and put them down as

screens 11-30, the commands are:
 OPEN HISFILE.BLK FROM YOURFILE.BLK
and 10 HOP 1 20 CONVEY
or 1 20 TO 11 CONVEY

You should be very careful about these commands because two files are involved. You always

read from the input file and write to the current file. In case that you want to copy screens from

the current file to the input file, you must use the command SWITCH to exchange the current and

the input files before issuing COPY or CONVEY command.

3.2. The Editor

There are two text editors in the F83 system: a regular line editor and a screen editor. The line

editor processes the text one line at a time and can be used with any type of terminal. Since most

terminals can display 24 80 column lines, there are more than enough space on the terminal screen

to display an entire Forth screen in the 16 by 64 block format, with ample space to enter editing

commands. The line editor is adequate for all editing and programming purposes. The only

drawback is that after entering 8 lines of commands, the listed screen starts to roll off the top of the

terminal display and you will have to re-list it to keep it in the view. The screen editor keeps the

listed screen on the top of the terminal display and refreshes its contents after any editing command

is executed.

The line editor is compatible with the editor described in Brodie's book 'Starting Forth'. The most

often used editing commands are summarized in Table 3.1.

Table 3.1. Editor Commands

Block Editing Commands:
n LIST Display screen n and make it the current scr een.
L Display the current screen.
N L Display the next screen.
B L Display the previous screen.
A L Toggle between the current screen and its shado w screen.
UPDATE Mark the current screen to be saved to the d isk file.
SAVE-BUFFERS Write all updated screens to their res pective disk files.
FLUSH SAVE-BUFFERS and de-allocate the buffers.
n LOAD Interpret the text in screen n.
Line Editing Commands
n T Select line n as the current line for editing.
P xxxx Put the string xxxx in the current line.
U xxxx Insert the string xxxx under the current lin e.
X Delete the current line.
n NEW Input multiple lines of text starting at line n.
String Editing Commands
F xxxx Find string xxxx from the current cursor pos ition and place the

cursor at the end of xxxx.
D xxxx Find string xxxx and delete it.
I xxxx Insert string xxxx after the current cursor and move the cursor to

the end of xxxx.
TILL xxxx Delete all text till the end of string xx xx in the current line.
J xxxx Delete text till the beginning of string xxx x. (Justify).

24

To use the line editor, you first have to select a screen as the current editing screen by the

command:
 1 LIST EDITOR

Then, you can use the line editing commands to enter text into this screen. The NEW command

is especially useful in entering several contiguous lines into the screen. If screen 1 is a blank

screen, you probably will start with:
 0 NEW

and follow with up to 16 lines of text. Two consecutive carriage returns will terminate the NEW

command. If you find any error in the entered text, you can use the string editing command to

find text strings, delete strings, and also insert strings. When you are satisfied with the contents of

the screen, you can interpret or compile the screen using the command:
 1 LOAD

and start to debug your program entered in screen 1. Usually you will find some errors or bugs in

the program, causing the interpreter to abort during the loading process or giving wrong results

when you execute commands defined in this screen. You will then have to find the cause of the

problem and fix the bug, again using the editor.

F83 has a generic screen editor. However, this screen editor must be customized to run on your

terminal. An example to install a screen editor for the ADM-3A dumb terminal is shown in the

README file which is also a good example on the command sequence in using the line editor.

Terminal characteristics are specified in four commands:

AT Move the display cursor to a specified screen co ordinate.
DARK Clear the screen and home the cursor.
-LINE Delete current line and roll up the rest of t he screen.
BLOT Erase till the end of line.

These four commands have to be vectored to the commands which perform these functions on the

terminal you are using.

There are some new features in the F83 screen editor. An automatic ID stamping utility inserts an

identification string on the top right of every screen being edited. This is very convenient to keep

the date and person doing the entry and modifications. FIX xxxx will locate the source command

of xxxx and display the screen of this command. It also invokes the editor to let you edit the

command.

WHERE is also a very useful command during program development. When an error causes the

text interpreter to abort, executing WHERE will call EDIT to display the screen where the error

occurred while loading and the cursor will be pointing right at the command causing trouble. All

25

the editing commands can then be used to fix the problem.

To use the screen editor, you have to select a screen as your current editing screen. Instead of the

LIST command as used in the line editor, you should use the EDIT command:
 23 EDIT

It invokes the screen editor to edit screen 23. The screen editor first checks the ID field at the end

of line 0. If this field is blank, it will ask you to input a ten character string as a stamp to fill the

ID field. The ID stamp helps you to keep track of the modifications you make on this screen.

The contents of the screen are then displayed in the screen window on the top of the terminal

display. You can now enter any of the line editing commands and the results will be shown

immediately in the screen window. The command dialog will be scrolled in the command text

window at the bottom of the display screen while the screen text is stationary in the screen window

on the top of the display.

After you have completed the editing work and decide to leave the screen editor, you should type:
 DONE

and the editor will save this screen to the disk file if you made any modification. The terminal

display will be returned to its normal scrolling mode. To re-enter the screen editor to edit the

same screen you just parted, you can use:
 ED

without specifying the screen number as you would using EDIT.

3.3. Loading and Testing Program

Screens of 1024 bytes are about the optimal size for writing and testing programs. The limited

size forces you to modularize your program and eases the tasks of testing and debugging the

program.

A source screen may contain three types of information: commands to be interpreted or executed,

new commands to be compiled to the dictionary, and comments. The text interpreter treats the

source text the same way as it treats text entered from the keyboard. The command to ask the text

interpreter to interpret source text in a screen is LOAD:
 1 LOAD

will cause the system to fetch screen 1 from the current file and interpret its contents.

F83 has a few other commands to load source screens. They are collected in Table 3.2. here.

26

Table 3.2. Loading Commands

n LOAD Interpret source text in screen n in the cur rent file.
n m THRU Interpret sequentially the source text in screens n to m.
n +LOAD Load the screen n blocks from the current s creen.
n m +THRU Load a range of screens n blocks offset f rom the current screen.
--> Exit the current screen and load the next scree n immediately.

F83 system allows you to open two files at the same time by the command FROM. After you

open a file using FROM, the LOAD command will load a screen from the from file instead of the

current file. This way you can load utility programs from other files while still maintain the file

you are using as the current file. However, LOAD restores the current file to be the input file at

the end of its operation, so that you will be able to refer to the current file. Thus you can only load

one screen from the FROM file with the LOAD command.

3.4. Memory Dump

LIST allows you to display text data in a screen. However, screens can also be used to store

binary data or object code. Binary data cannot be listed on the terminal or printed by a printer. If

binary data are accidentally send to the terminal or printer, usually the terminal or printer will print

garbage with lots of form-feeds. Sometimes they can be locked up by some binary code and you

will have to turn off the entire system and re-boot. F83 provides a few commands to let you

examine binary data in memory or in disk files.

The dump utility gives you a formatted hex dump with the ASCII text corresponding to the hex

bytes, on the right hand side of the screen. Three commands are available to specify the desired

dumping actions. DUMP requires an address and a byte count on the stack to display the contents

of a range of memory. The dump is always in hex, but the current base is not disturbed. DU dumps

64 bytes at the specified address. The address is incremented by 64 to facilitate dumping the next

memory range of 64 bytes.

Examples of using these commands are:
 HEX 100 80 DUMP (Dump 128 bytes starting from 100H.)
 DECIMAL 256 DU DU DROP (Do the same thing as a bove.)

DL dumps the specified line on the current screen, with the line number as the input on the stack.

This dump is useful in detecting nonprintable characters in the screen which disturb interpretation

and compilation.
 13 DL (Dump the 13th line in the current editin g screen.)

A dumping example is shown in Fig. 3.1.

27

 ok
 ok
HEX ok
 ok
 ok
0 400 DUMP
 \/ 1 2 3 4 5 6 7 8 9 A B C D E F V123456789ABCDEF
 0 CD 20 FF 9F 00 9A F0 FE 1D F0 DE 01 21 04 4B 01 Mp~.p^.!.K.
 10 21 04 56 01 21 04 21 04 01 03 01 00 02 FF FF FF !.V.!.!.........
 20 FF FF FF FF FF FF FF FF FF FF FF FF 22 05 F2 EC ".tl
 30 6A 05 14 00 18 00 6A 05 FF FF FF FF 00 00 00 00 j.....j.........
 40 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 50 CD 21 CB 00 00 00 00 00 00 00 00 00 00 20 20 20 M!K..........
 60 20 20 20 20 20 20 20 20 00 00 00 00 00 20 20 20
 70 20 20 20 20 20 20 20 20 00 00 00 00 00 00 00 00
 80 00 0D 20 20 20 53 45 54 20 42 4C 41 53 54 45 52 .. SET BLASTER
 90 3D 41 30 0D 64 64 72 65 73 73 2E 20 20 46 6F 72 =A0.ddress. For
 A0 20 65 78 61 6D 70 6C 65 3A 0D 20 6F 6E 20 4E 54 example:. on NT
 B0 56 44 4D 2C 20 73 70 65 63 69 66 79 20 61 6E 20 VDM, specify an
 C0 69 6E 76 61 6C 69 64 0D 20 6F 6E 6C 79 2E 0D 00 invalid. only...
 D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 100 E9 34 2B E9 2B 2B 52 50 AD 8B D8 FF 27 03 10 00 i4+i++RP-.X.'...
 110 00 85 46 4F 52 54 C8 9A 29 63 66 D2 66 3D 66 ED ..FORTH.)cfRf=fm
 120 65 00 00 43 43 4D 4D 89 76 00 8B F3 EB DA 04 10 e..CCMM.v..skZ..
 130 00 00 84 45 58 49 D4 39 01 8B 76 00 45 45 EB C8 ...EXIT9..v.EEkH
 140 04 10 30 01 86 55 4E 4E 45 53 D4 39 01 87 EC 56 ..0..UNNEST9..lV
 150 87 EC 5E 43 43 53 EB B0 43 43 53 EB AB 05 10 42 .l^CCSk0CCSk+..B
 160 01 82 55 D0 58 01 72 2C 43 43 8B 07 EB 99 43 43 ..UPX.r,CC..k.CC
 170 8B 07 03 06 66 01 EB 8F 05 10 00 00 85 28 4C 49 f.k......(LI
 180 54 A9 84 01 AD E9 7F FF 09 10 0F 01 86 42 52 41 T)..-i.......BRA
 190 4E 43 C8 95 01 8B 34 E9 6E FF 09 10 00 00 87 3F NCH...4in......?
 1A0 42 52 41 4E 43 C8 A8 01 58 09 C0 74 E8 46 46 E9 BRANCH(.X.@thFFi
 1B0 56 FF 0B 10 7A 01 86 28 4C 4F 4F 50 A9 BF 01 B8 V...z..(LOOP)?.8
 1C0 01 00 01 46 00 71 CE 83 C5 06 46 46 E9 39 FF 0B ...F.qN.E.FFi9..
 1D0 10 B4 01 87 28 2B 4C 4F 4F 50 A9 DD 01 58 EB E2 .4..(+LOOP)].Xkb
 1E0 0C 10 D1 01 84 28 44 4F A9 EB 01 58 5B 4D 4D 8B ..Q..(DO)k.X[MM.
 1F0 14 89 56 00 46 46 81 C3 00 80 4D 4D 89 5E 00 29 ..V.FF.C..MM.^.)
 200 D8 4D 4D 89 46 00 E9 FF FE 0C 10 E2 01 85 28 3F XMM.F.i.~..b..(?
 210 44 4F A9 15 02 58 5B 39 C3 75 D2 8B 34 E9 E8 FE DO)..X[9CuR.4ih~
 220 0C 10 8A 01 86 42 4F 55 4E 44 D3 23 01 E4 03 82 BOUNDS#.d..
 230 05 D4 03 4B 01 0E 10 22 02 85 3E 4E 45 58 D4 68 .T.K..."..>NEXTh
 240 01 08 01 0E 10 5F 01 87 45 58 45 43 55 54 C5 51 _..EXECUTEQ
 250 02 5B FF 27 0E 10 0B 02 87 50 45 52 46 4F 52 CD .[.'.....PERFORM
 260 62 02 5B 8B 1F FF 27 43 43 8B 1F FF 27 43 43 8B b.[...'CC...'CC.
 270 07 03 06 66 01 8B D8 8B 1F FF 27 0E 10 9C 01 82 ...f..X...'.....
 280 47 CF 84 02 C3 0E 10 37 02 84 4E 4F 4F D0 90 02 GO..C..7..NOOP..
 290 E9 75 FE 0E 10 56 02 85 50 41 55 53 C5 9F 02 E9 iu~..V..PAUSE..i
 2A0 66 FE 0F 10 45 02 81 C9 AA 02 8B 46 00 03 46 02 f~..E..I*..F..F.
 2B0 E9 54 FE 0F 10 87 02 81 CA BB 02 8B 46 06 03 46 iT~.....J;..F..F
 2C0 08 E9 43 FE 0F 10 95 02 87 28 4C 45 41 56 45 A9 .iC~.....(LEAVE)
 2D0 D2 02 83 C5 04 8B 76 00 45 45 E9 2B FE 0F 10 C6 R..E..v.EEi+~..F
 2E0 02 88 28 3F 4C 45 41 56 45 A9 EC 02 58 09 C0 75 ..(?LEAVE)l.X.@u
 2F0 E1 E9 14 FE 10 10 DF 02 81 C0 FC 02 5B FF 37 E9 ai.~.._..@|.[.7i
 300 06 FE 10 10 A4 02 81 A1 0A 03 5B 8F 07 E9 F8 FD .~..$..!..[..ix}
 310 10 10 7D 02 82 43 C0 19 03 5B 29 C0 8A 07 E9 E6 ..}..C@..[)@..if
 320 FD 10 10 12 03 82 43 A1 2A 03 5B 58 88 07 E9 D7 }.....C!*.[X..iW
 330 FD 11 10 23 03 85 43 4D 4F 56 C5 3D 03 FC 8B DE }..#..CMOVE=.|.^
 340 8C D8 8E C0 59 5F 5E F2 A4 8B F3 E9 BA FD 11 10 .X.@Y_^r$.si:}..
 350 33 03 86 43 4D 4F 56 45 BE 5B 03 FD 8B DE 8C D8 3..CMOVE>[.}.^.X
 360 8E C0 59 49 5F 5E 01 CF 01 CE 41 F2 A4 8B F3 FC .@YI_^.O.NAr$.s|
 370 E9 95 FD 12 10 50 03 83 53 50 C0 7D 03 8B C4 E9 i.}..P..SP@}..Di
 380 85 FD 12 10 75 03 83 53 50 A1 8C 03 5C E9 78 FD .}..u..SP!..\ix}
 390 12 10 B5 02 83 52 50 C0 9A 03 8B C5 E9 68 FD 12 ..5..RP@...Eih}.
 3A0 10 92 03 83 52 50 A1 A9 03 5D E9 5B FD 13 10 F6 RP!).]i[}..v
 3B0 02 84 44 52 4F D0 B8 03 58 E9 4C FD 13 10 AF 03 ..DROP8.XiL}../.
 3C0 83 44 55 D0 C6 03 58 50 E9 3C FD 13 10 84 03 84 .DUPF.XPi<}.....
 3D0 53 57 41 D0 D6 03 5A 58 E9 2B FD 13 10 CD 03 84 SWAPV.ZXi+}..M..
 3E0 4F 56 45 D2 E6 03 5A 58 50 E9 1A FD 14 10 BE 03 OVERf.ZXPi.}..>.
 3F0 84 54 55 43 CB F7 03 58 5A 50 E9 09 FD 14 10 A1 .TUCKw.XZPi.}..! ok
 ok
 ok

Figure 3.1 Memory dump

28

3.5. Debugging Your Program

A program usually does not work and you will have to find out why it doesn't work and try to fix it.

The advantage of Forth is that you can fix bugs quickly because loading a screen and testing the

commands in a screen is simple and fast. It allows you to experiment and try out ideas and

methods to solve your problem. If you limit yourself writing programs one screen at a time and

test the commands in the screen fully, the problem can be solved very efficiently. Of course, you

should make it easier for yourself by writing short commands which are easy to test, and if there is

a problem, easy to spot the problem and fix it. Choosing good names for your commands and

commenting the stack effects will make the program more readable and easier to modify or update.

F83 system gives you a powerful debugging tool in case you cannot spot the bug by staring at the

source code long and hard. The F83 debugger allows you to single step through a colon command

and shows you the contents of the data stack at each step. By examining the data stack at each

step, it is a simple matter to find when and how the bug gets into your program. During the

tracing, you can jump back into Forth to poke around and change things like the data stack before

continue the tracing. These functions in the debugger really help a Forth user to produce clean

code.

There are two steps in using the debugger. First you have to prepare the command you want to

trace use the DEBUG command. Then, you have to execute the command in the normal way it is

used, with necessary data stack parameters. The command is then executed in steps. The

computer displays the name of the command in the command to be executed next and the contents

of the data stack. You have to press a key on the keyboard for it to step to the next command.

For example, we would like to debug the command LIST:
 DEBUG LIST

It sets up the command LIST so that it will be executed in steps. Then we can debug LIST by

listing screen 1 using the patched LIST:
 1 LIST

Now, LIST will be executed one step a time to allow you the examine the data stack at each step.

The sequence of commands are shown in Fig. 2.7.

During single stepping, you can use three keys to divert the stepping action:

F temporarily enter FORTH so that you can use regul ar FORTH commands to change stack values

and anything else you care to do. executing resume allows you to come back to the proper
place to continue single stepping.

C executing the rest of the definition continuously to the end without pausing.
Q quit the debugger immediately and restore the deb ugged word to it original state.

29

If you keep your commands short and thoroughly test them as they are defined, you may not need

this debugger. However, every once a while you will find that the capability in single stepping

through a command is very helpful in spotting some obscure bugs.

3.6. The 8086 Assembler

F83 is available for 8080/Z80, 8086/88, 68000, and also 6502 CPUs. Each version of F83 comes

with an assembler to assemble code routines in the machine code of the host CPU. The assembler

is useful if you want to write machine code routines to speed up the execution of your program or

to utilize special hardware features in your computer system. Since Forth is fast and quite

efficient, and has the commands to access memory and I/O directly, it is not necessary to dip into

the machine code in normal circumstances. However, there are occasions that you have to

optimize the program. As the assembler for your CPU is provided free in F83, we might just as

well learn to use it for the fun of it. Since this book is devoted to the version of F83 for IBM PC, I

will only discuss the 8086 assembler.

Another reason to describe the assembler in detail is that the kernel of the F83 system is written

using the same assembler. Therefore, it is mandatory that you are familiar with the 8086

assembler if you want to dig into the F83 system and to apply it to do useful work.

8086 has 12 registers in its CPU. All these registers can be referenced in the assembler.

However, the F83 system uses four of the registers to implement the Virtual Forth Computer.

These registers used by Forth have special names to indicate their special functions in Forth, and

they should be preserved inside the code command. Table 3.3. shows the 8086 registers and the

mapping with Forth registers.

In code routines, RP and IP must be restore if they have to be used. SP is used for data stack and

must be maintained to pass parameters between commands. AX, CX, DX, and DI can be used

freely. W points to the code field of the command currently being executed. If this address is

not needed, W register can also be used freely. The segment pointers can be used to address

memory outside of the 64K code space, but they must also be restored to the original state before

the end of the code routine.

The 8086 registers can be used in a number of different addressing modes. The addressing modes

defined in the Forth 8086 assembler are shown in Table 3.4.

30

Table 3.3. 8086 Registers and Forth Registers

8086 Forth Function of register
AX Accumulator
CX Counter
DX I/O register
BX W Current word pointer
SP SP Data stack pointer
BP RP Return stack pointer
SI IP Instruction pointer
DI Scratch
ES Extra segment pointer
CS Code segment pointer
SS Stack segment pointer
DS Data segment pointer

Table 3.4. Register Addressing Modes and Mnemonics

Addressing Mode Mnemonics
8 bit register mode AL CL DL BL AH CH DH BH
16 bit register mode AX CX DX BX BP SP SI DI ES CS SS DS W RP IP
Indirect register mode [SI] [DI] [BP] [BX] [RP] [IP] [W]
Indirect with index [BX+SI] [SI+BX] [BX+DI] [DI+BX] [BP+SI] [SI+BP] [BP+DI] [DI+BP]
Immediate #
Immediate address #)
Inter-segment address S#)

All 8086 machine instructions are implemented in this F83 8086 assembler, making it rather

complicated. It is not appropriate to discuss all the possible combinations of the instructions and

the addressing modes. Here I shall discuss a few important aspects in making use of this

assembler. You should read the chapter on the assembler to study how the machine instructions

are assembled and how the addressing modes are processed to put together complete machine

instructions. It is also a good idea to study the code commands in the Forth kernel, where we have

hundreds of fine examples of code commands. The best way to write a code command is to find

one of similar function in the kernel and make modifications to the existing code to put in the

function you need.

A code command must start with the command CODE which creates a header in the dictionary and

invokes the ASSEMBLER vocabulary to do the assembly work. Then a sequence of assembler

mnemonic commands are executed to assemble machine instructions into the body of the code

command. At the end of the code command, there must be a command to return control to the

Forth interpreter and a command to terminate the code command:
 CODE <name>
 <assembly commands>
 <return command>
 END-CODE

where <name> is the name of the new code command. CODE only creates the header. The

Forth text interpreter is still in control after CODE, and the sequence of assembly commands are

executed. Executing an assembly command causes a machine instruction to be assembled to the

dictionary. END-CODE terminates the assembly process and makes the new code command

31

available for searching and compiling.

An assorted collection of assembly commands are shown in Table 3.5. Note that the assembler

syntax is still reverse Polish: the operands are put before the assembly command. The operands,

whether they are addresses, immediate values, registers, or specification of addressing modes, are

all pushed on the data stack for the assembly command to consume and build the final machine

code into the dictionary.

Table 3.5. 8086 Assembly Commands, Forth Style.

Assembly Command Function
>NEXT #) JMP Jump to address >NEXT.
1 # AX MOV Move value 1 into AX register.
6 # RP ADD Add 6 to the return stack pointer. Pop t hree 16 bit numbers off the return

stack.
8000 # BX ADD Add 8000 to the contents of BX.
0 [IP] DX MOV Copy the contents of memory pointed t o by IP into DX register.
0 [W] W MOV Copy the memory pointed to by W registe r into W register.
PDO JNE Jump to address PDO if the zero flag in sta tus is not set.
REP BYTE MOVS Move a range of bytes in memory. Sou rce pointed to by SI, destination

pointed to by DI, and count in DX.
0 [BX] POP Pop data stack into memory pointed to by BX register.
CX PUSH Push contents of CX on the data stack.
AX LODS Move memory pointed to by IP into AX regist er and increment IP by 2.
SP RP XCHG Exchange data and return stack pointers.

There are three return commands which assemble jump instructions to the inner interpreter which

returns control of the CPU to the next command to be executed or to the text interpreter.

Table 3.6. Return Commands

NEXT Assemble a jump to >NEXT routine so that the n ext word pointed to by the IP will

be executed.
1PUSH Assemble a jump to APUSH routine which pushes AX on data stack and then falls into

>NEXT.
2PUSH Assemble a jump to DPUSH routine which pushes DX on data stack and then falls into

1PUSH.

F83 uses a centralized return mechanism by which all code commands eventually execute the code

routine at >NEXT, the inner interpreter. This single return point makes it possible to implement

the powerful debugger which patches >NEXT to a debugging routine to single step through the

execution sequence.

CODE generates executable machine instruction routines which behave the same externally as high

level colon commands. The code routines are easy to test under the Forth operating system.

However, to write a piece of code which can be shared by many code commands, it is necessary to

build subroutines. The command to define subroutine is LABEL, which is similar to VARIABLE in

the sense that it returns an address when invoked. This address can be used in other code

32

commands to assemble a CALL instruction doing the subroutine calling. A LABEL routine

cannot be executed or tested directly. It can only be called inside a code command.

Within a code command, the execution path can be altered or repeated using structure commands

IF-ELSE-THEN, BEGIN-UNTIL, and BEGIN-WHILE-REPEAT, similar to those used in colon

commands. The principal difference is that the test conditions required by IF, UNTIL, and

WHILE are not taken from the data stack but from the status register. These conditional

commands must be preceded by machine code conditionals so that proper conditional branching

instructions can be assembled. The machine code conditionals are listed in Table 3.7.

Table 3.7. Machine Code Conditionals

Forth Conditional Assembled Code
0= JNE/JNZ
0<> JE/JZ
0< JNS
0>= JS
< JNL/JGE
>= JL/JNGE
<= JNLE/JG
> JLE/JNG
U< JNB/JAE
U>= JB/JNAE
U<= JNBE/JA
U> JS
OV JNO

The Forth conditionals are reverse of the assembler code because the IF, UNTIL, and WHILE are

skip-on-condition, not jump-on-condition as in the machine instructions. A machine instruction

preceding the jump instruction sets the flags in the status register in 8086 CPU for the jump

instruction to select the next instruction to be executed. An example of the branching structure in

Forth style is:
 5 # CX CMP 0< IF AX BX ADD ELSE AX BX SUB THEN

The structure commands IF, ELSE, etc., are different from those used in the colon commands.

The assembler structure commands are in the ASSEMBLER vocabulary and those in colon

commands are in the FORTH vocabulary. Their behaviors are quite different.

A very good example is the code command of UPPER which converts a string of ASCII characters

to upper case characters:

CODE UPPER (addr length --)
 CX POP BX POP Get parameters into registers.
 BEGIN Setup the loop.
 CX CX OR Is the count in CX zero?
 0<> WHILE Exit the loop if CX is zero.
 0 [BX] AL MOV Get one character to AL.
 >UPPER #) CALL Call a subroutine to convert the ch aracter to upper case.
 AL 0 [BX] MOV Put the converted character back int o the string.
 BX INC Address of the next character.
 CX DEC Character count.

33

 REPEAT Convert the next character.
 NEXT Done. Return.
 END-CODE

CX CX OR sets up the status flag and 0<> WHILE sets up the conditional jump instruction to exit

the loop. REPEAT assembles a jump instruction back to CX CX MOV to continue processing the

next character until the character string is exhausted.

Code commands are difficult to debug and are machine dependent. They are defined only as the last

resort to squeeze performance out of your computer and should not be considered lightly. In most

programs, there are only a few critical commands which are executed very often. You should try

to identify these commands and convert only these commands to code commands.

3.7. Multitasker

The early Forth systems implemented by Charles Moore were multi- tasking systems and could

support many users or terminals to operate simultaneously. The implementers of figForth

neglected this feature in the figForth Model. Because of the popularity of figForth , Forth has

been regarded by most users as a system only suitable for single user without the multi-tasking

capability. The Forth architecture was designed to be able to run many tasks at the same time. The

authors of F83 restored this important feature of Forth to the F83 system without too much effort.

The source code to put the multi-tasker back consumes only about six screens. Try to do it in

PASCAL!

Commands to create one or more tasks are already defined in the FORTH vocabulary. A task

must be first created by the command TASK:, which allocates space in the dictionary needed by a

task, including area for user variables, return stack, and data stack. When the task is later

activated by the command ACTIVATE, the task will execute a sequence of commands and share the

CPU with the regular Forth system in a round robin task switching scheme. Each task uses the

CPU until it voluntarily gives up by executing PAUSE or STOP and releases the CPU to the next

task in the round robin chain. All system I/O commands have PAUSE's embedded to switch tasks

automatically. In the command sequence give to a task to execute, the command PAUSE or STOP

must be place properly so that the task will not hold on to the CPU indefinitely.

Background tasks are defined by the command BACKGROUND: . Examples are:
 BACKGROUND: SPOOLER 1 CAPACITY SHOW STOP ;

SPOOLER is defined as a background task which lists a complete screen file to the printer while

you still have full control over the Forth computer via your keyboard.

Once the SPOOLER is defined as a task, it can be re-assigned to perform other chores. For

34

example:
 : SPOOL-THIS SPOOLER ACTIVATE 3 15 [SHADOW] SHOW STOP ;

will print the screens 3 to 15 with their shadow screens in a six screens per page format.

Another example is to maintain a counter counting the cycles around the round-robin task

switching loop. A global variable COUNTS is defined to keep the counts so that you can examine

it any time you want to.
 VARIABLE COUNTS
 BACKGROUND: COUNTER BEGIN PAUSE 1 COUNTS +! AG AIN ;

which increments the variable COUNTS indefinitely at the background. You can run the

computer in the foreground, doing any thing you care to. Occasionally, you can read COUNTS to

see how many times the computer runs around the task switching loop.

After background tasks are defined, the command MULTI starts the multi-tasker running. The

command SINGLE stops the multi-tasker. Individual background tasks can be stopped or restarted

by the following commands:
 SPOOLER SLEEP (Put spooler on hold.)
 SPOOLER WAKE (Restart the spooler.)

The multi-tasker is fun to play with. You have to try it your self to appreciate it. Windows are

built this way.

3.8. Save A System Image

Suppose you have developed an application using F83 and also found a company interested in

buying this program from you. It would be nice if the user of this program can simply insert a

disk into his drive, type a magic command, and have the entire program running immediately. He

just wants to use the program and does not have any interest on how this thing is written or how it

works. If you sell this program to the company, you may not want to reveal to them all the source

code you developed so that they will short cut you. The best solution is to give them an

executable object file which can be loaded into the computer and run, but very difficult to decipher

and modify.

F83 gives you a tool to generate an executable object file from the dictionary of your running Forth

system. When this object file is loaded into the memory through the operating system, it restores

the computer to the same state as your current system. The command to do it is SAVE-SYSTEM:
 SAVE-SYSTEM GISMO.COM

It copies the entire dictionary into a file named GISMO.COM. When you boot your system in DOS

or CP/M, typing GISMO will load this file into memory and start the Forth system. Now, you can

execute the highest level command in your application and run it.

35

3.9. The Metacompiler

Using SAVE-SYSTEM you make an object file with your application program overlay on the top

of the F83 Forth system. It is fine this way if you allow the user open access to F83 system.

However, allowing an unsophisticated user unlimited access to Forth can be disastrous for the

health of his computer and to your profit. Another problem is that there is lots of code in the F83

system not needed by your application, but it is also saved in the object file doing nothing but

occupying RAM space. The meta-compiler in F83 allows you to strip out the dead wood and

build an application package best tailored to the application. It recompiles the entire Forth system

with your application. During the compilation, you have the option to omit any command not

needed by your application. If the target computer is not identical to the host computer you used

to develop the application, you can also modify the source code in the kernel so that the application

can be run on the target computer. The ability to generate a new Forth system from a Forth

system is called metacompilation. Metacompilation is sometimes referred to as the 'extensibility

of the third kind', which is the highest level of programming activity on a computer.

F83 system was itself generated by the metacompilation process, and all the source code needed for

its self-generation are included in it. The command sequence to create the executable object

image F83.COM is as follows:

1. Prepare a disk with F83.COM file on it. This F83.COM file is the Forth system which will

do the metacompiling. Insert this disk into drive A.

2. Prepare a disk with METAnn.BLK and KERNELnn.BLK files on it. METAnn.BLK contains

the metacompiler and KERNELnn.BLK contains source code for the bare-bone Forth system.

Insert this disk into drive B.

3. Log on to drive B, and type the following command:
 A:F83 METAnn.BLK
 1 LOAD

F83 is now loaded and builds a bare-bone Forth system, which is stored on the disk in drive A with

a name KERNEL.COM.

4. Type BYE to return to DOS or CP/M.

5. Copy KERNEL.COM to a new disk with three files EXTENDnn.BLK, CPUnnnn.BLK, and

UTILITY.BLK. Insert this disk in drive A.

6. Log onto drive A and type the following command:
 KERNEL EXTENDnn.BLK
 1 LOAD

All the extensions and utilities are now loaded and a new version of F83.COM is created on drive

A.

7. Type BYE to return to DOS.

36

nn above stands for 80, 86, or 68 depending upon the host computer running the F83 system, and

nnnn stands for 8080, 8086, or 68000.

The above procedure was used to generate the F83 system. If you want to modify the system and

add your own programs to the system, you have to prepare the files and load them in a sequence

similar to the above sequence. I must remind you that meta-compiler is very complicated because

it has to compile the target code to a virtual memory space where the code cannot be executed.

There are many important conditions which must be satisfied for a successful metacompilation,

such as forward references, proper initialization of system variables, and the initialization of all the

vectored execution routines. These subjects will be discussed in detail when we study the code in

the meta-compiler. You have to understand the metacompiler fully before attempting your

modifications.

37

Part II. The Forth Kernel

Chapter 4. Interface to the Host Computer

Source code discussed in this chapter is in the file KERNEL86.BLK, Screens 3 to 15.

4.1. Virtual Forth Computer

The Virtual Forth Computer is a program loaded into the memory of a real computer. It partitions

the computer memory into areas of specific functionality and enables the real computer to process

Forth command streams. Fig. 4.1 is a schematic representation of the functional parts in a Virtual

Forth Computer. It consists of a dictionary, two stacks, a terminal input buffer, and a number of

disk buffers. These are the essential parts in a Virtual Forth Computer.

The Virtual Forth Computer uses a set of registers to keep the most vital information and to control

the execution sequences. They are:
 SP Data Stack Pointer
 RP Return Stack Pointer
 IP Interpretive Pointer
 W Current Word Pointer
 PC Program Counter

The program counter PC and the return stack pointer RP are usually registers in the host CPU.

The data stack pointer SP, the interpretive pointer IP, and the current command pointer W can

reside in CPU as registers or implemented in memory if the host CPU does not have enough

registers.

The dictionary is a linked list of commands. Each command consists of five fields: The name

field and the link field allow commands to be linked into a linear list which can be searched by the

text interpreter for a command by its name. The code field contains the address of the inner

interpreter for this command and the parameter field contains necessary information specific for the

task defined for this command. The view field contains information on where the source code of

the command is located on disk to help user in locating the source code and detailed documentation

on the command.

Two stacks are needed by the Virtual Forth Computer. The return stack contains a list of

addresses of commands which are waiting to be executed, or addresses to be returned to after

procedure calls. It is similar to the return stacks used in most modern computers. The other

38

stack is called data stack, holding a list of numeric and logic parameters to be passed between

commands. Separating numeric parameters and return addresses into two stacks allows procedure

calls without passing parameters through explicitly parameter lists. It greatly simplifies the syntax

of Forth and cuts down the overhead for procedure calls.

Buffers are used to reduce time and efforts to process data transferred between the Forth computer

and the I/O devices. Since the two major I/O devices in a typical computer system is the disk for

mass storage and the terminal for operator control, two buffer areas, a disk buffer area and a

terminal input buffer, are allocated to handle the I/O data.

The kernel of the F83 system is the part of the dictionary which contains commands defined in the

machine code of the host computer, and transforms the host computer into a Virtual Forth

Computer so that the computer can accept and act upon Forth commands give to it either through a

keyboard or through text loaded from a disk. It is the elementary Forth operating system, which

can be expanded by loading utility programs and application programs, and then executing those

programs.

4.2. Forth Computer Hosted on 8086

The Virtual Forth Computer is a hypothetical computer or an ideal structure of a computer which

can process (interpret or compile) Forth command set. So far, we have yet to see a computer built

based upon the Forth architecture. However, this architecture can be implemented on any CPU

worthy of the name. As a matter of fact, most of the commercial CPU's have at least one version

of Forth on them, including all popular microprocessors, minicomputers, and many mainframes.

Because Forth is simple and relatively small, it can be implemented on a computer with about one

man-month's effort. This is very short comparing to other operating systems or high level

languages.

F83 has three versions: one for 8080, one for 8086/8088, and one for 68000. Because the very

small number of registers are available in the 8080 CPU, many Forth registers will have to be

simulated in memory. Most numbers processed in Forth are 16 or 32 bits in width. They have to

be manipulated in 8 bit chunks in 8080. Forth code commands in 8080 machine instructions are

thus very messy and very difficult to explain. Between 8086 and 68000, my personal preference

is 68000 which has a much cleaner architecture and more orthogonal instruction set. Nevertheless, I

feel very feeble in raising a voice against the infinite wisdom of IBM, who picked 8088 for PC.

Since there are apparently more people using 8088 than 68000, it is better to write this manual in

terms of the 8086/8088 F83 model if I want to sell more copies of this manual.

39

First of all, let see how the Forth registers are assigned in the 8086 CPU:

Table 4.1. 8086 Register Assignments for Forth

8086 Reg. Forth Reg. Function
AX Acratch Accumulator
CX Scratch Counter
DX Scratch I/O control
BX W Current word pointer
SP SP Data stack pointer
BP RP Return stack pointer
SI IP Instruction pointer
DI Scratch
ES Extra segment
CS Code segment
SS Stack segment
DS Data segment

Figure 4.1 The Virtual Forth Computer

8086 has only one stack, with SP as stack pointer, which allows pushes and pops. Other registers

do not have automatic incrementing or decrementing facilities, and increment/decrementing must

40

be done explicitly. An interesting exception is the SI index register. When SI is used in the

supposed string instruction LODS and STOS, it is incremented by 1 or 2 bytes to point to the next

string element. It is ideal for the interpretive pointer. The stack pointer SP is used to implement

the Forth data stack, while the Forth return stack is simulated using the BP register. Popping and

pushing on the return stack have to be done explicitly by incrementing and decrementing the BP

register. The command pointer W is simulated by the BX register. Lacking automatic

incrementing and decrementing facility, the W register has to be left pointing to the code field after

NEXT. It has to be incremented in code so that it will point to the parameter field. We will have

to use indirect JMP instructions through the code field to control the program flow.

Other 8086 registers, like AX, CX, DX, and DI, can be used freely in code routines. However,

parameters and other information cannot be passed from one command to another through these

registers. They have to be initialized appropriately before use, but they do not have to be restored

before the end of a code command. The W register or the BX register contains the code field

address of the command under execution. If this address is not needed in the code command, this

register can be also used without restoring. The SP, RP, and IP registers, however, have to be

restored to the original values if they have to be used in a code command.

All information in the F83 system is contained within a single 64K byte memory segment, and the

four segment registers ES, CS, SS, and DS are initialized to the same segment. They can be

changes to address other segments of memory, but must be restored before the end of a code

command. F83 system does not use them.

Memory Map

RAM memory in the host computer, as used by the F83 system, is a contiguous 64 Kbytes of

memory. Forth separates this memory space into a few regions, each dedicated to specific

function. The lowest memory is used to hold the interrupt vectors which is used by the hardware

to service external interrupts or software interrupts. Immediately above the vector region is the

dictionary, holding all the executable codes of the commands. Above the dictionary is a free

space for you to define new commands. On the top of the memory map is the region for disk

buffers. F83 allocate 4 Kbytes for the buffers, enough to hold 4 blocks of data from/to the disk.

Under the disk buffers is an area storing user variables which are essential parameters for the Forth

system to work. Below the user area is the return stack, sharing its space with the terminal input

buffer, which is used to store characters received from the terminal keyboard before processed by

the text interpreter.

Below the terminal input buffer is the data stack, growing downward into the free memory space

41

above the dictionary. The space just above the dictionary are used to store temporary text data.

We can identify a word buffer, a text buffer called PAD, an insert buffer and a delete buffer used by

the text editor. A video buffer of 1 Kbytes is also assigned if the screen editor is invoked. These

buffers float on the top of the dictionary, moving to higher memory as new commands are added to

the dictionary. Data stored in them have to be used before new commands are defined.

Fig. 4.2. schematically shows the arrangement of various regions in a typical F83 Forth system.

Most Forth system are arranged similarly.

4.3. Inner Interpreters

Inner interpreters in Forth are a set of execution procedures, usually in the machine code of the host

computer, which execute various Forth commands by processing the information stored in their

parameter fields. The address of such a procedure is stored in the code field of a command.

Forth commands of the same class have the same address in their code fields. Two major inner

interpreters are used to process code commands, defined by machine instructions, and colon

commands, defined in terms of other existing Forth commands. Many other minor inner

interpreters are used in F83 system to process constants, variables, user variables, and other types

of data and structures.

Code Interpreters

Forth commands defined by host machine instructions are executed by one of two routines,

EXECUTE or NEXT. EXECUTE can be used to start executing any Forth command, given that

the code field address of the Forth command is placed on the data stack before calling EXECUTE.

EXECUTE is a regular Forth command which can be executed interactively or called from the text

interpreter. At the end of all code commands, there must be a jump to the machine routine labeled

NEXT, which transfer control to execute the next command in the execution sequence. In F83,

NEXT is centralized so that every command must return to it through a JMP instruction. NEXT

assumes that the code field address of the next command to be executed is stored in the IP register.

42

Figure 4.2 Memory map of F83 system

43

CODE EXECUTE (cfa --) Execute the word whose exec ution address is on the data stack.

 W POP Pop execution address into W.
 0 [W] JMP Make an indirect jump through W. W is le ft pointing to the END-CODE

code field. It must be incremented if parameter fi eld must be
addressed.

LABEL DPUSH A label in the target system.
 DX PUSH Push contents of DX on the data stack.
LABEL APUSH Another label.
 AX PUSH Push contents of AX on the data stack.
LABEL >NEXT The principal point of return for all code definitions. The

execution address of the next word to be executed i n IP register.
 AX LODS Load the next execution address from IP in to AX and increment IP.
 AX W MOV Copy execution address into W.
 0 [W] JMP Indirect jump through W.

The codes of EXECUTE appears in Screen 36 of META86.BLK, and the codes of NEXT is in

Screen 25 in the F83 source. The fact that these codes are scattered in many separated blocks

makes it difficult for the reader to put a whole picture together. It is the purpose of this manual to

present you a well organized system description, and to help you understand the F83 model fully.

: NEXT A macro definition to assemble a jump to >NE XT instruction at the end of a code

definition.
 >NEXT #) JMP Assembler the jump instruction.
;

: 2PUSH Another macro definition.
 DPUSH #) JMP Jump to DPUSH, push DX on stack.
;

: 1PUSH Macro definition pushing AX on the data sta ck before NEXT.
 APUSH #) JMP
;

These commands are defined in the metacompiler as shown in the source code. Let us not worry

about them here.

Address Interpreter

The address interpreter is used to execute a high level Forth command whose parameter field

contains a list of execution address. It processes this list by executing commands at these

addresses sequentially.

The address interpreter is not an executable Forth command. It is a machine code routine labeled

NEST:

LABEL NEST IP has the address to return and W has t he code field addressof the colon definition

to be called.
 W INC W INC Increment W to point to the parameter field of the callee.
 RP DEC RP DEC Decrement return stack pointer and prepare for a push.
 IP 0 [IP] MOV Push contents of IP, the return addr ess on the return stack.
 W IP MOV Copy the first execution address into IP, to start the called colon definition.
 NEXT Assembler >NEXT #) JMP here.

In 8086, W and RP have to be incremented twice because these registers are byte pointers. All

44

code routine ends up with the code >NEXT #) JMP. This is very convenient in debugging the

system or changing the behavior of the code interpreter to include new features in the Forth system.

CODE EXIT Terminate a colon definition and return t o the caller routine whose address is

on top of the return stack.
 0 [RP] IP MOV Pop the return address back to the I P register.
 RP INC RP INC
 NEXT Return.

CODE UNNEST
 ' EXIT ' EXECUTE !

The standard command EXIT is vectored to UNNEST which is the reverse of NEST. NEST is

equivalent to the high level subroutine call in FORTRAN, and UNNEST is the equivalent of

RETURN.

Variable Interpreter

Variable interpreter uses the W register to point to the parameter field of the variable command and

returns the parameter field address on the data stack for the subsequent commands to access the

parameter field. This inner interpreter can be shared by other types of commands which uses the

parameter fields to store various types of data, like strings, double integers, floating point numbers,

or even large arrays. When a new command is created in the dictionary, the compiler assumes that

the command is of this type, unless a new inner interpreter is defined. Instead of the old name

DOVAR in figForth , F83 uses the generic name DOCREATE:

LABEL DOCREATE W points to the code field.
 W INC W INC Increment W to point to the parameter field.
 W PUSH Push pfa on the data stack.
 NEXT Return.

W register as returned by NEXT contains the code field address of the variable command. To get

the parameter field address, W has to be incremented here. This is called the post-incrementing

NEXT. In many other Forth systems, the W register is incremented inside NEXT so that it points

to the parameter field at the end of NEXT. The pre-incrementing NEXT is more desirable than

the post-incrementing NEXT, because the post-incrementing NEXT requires that the code field is

two bytes ahead of the parameter field. Because F83 uses the W register to make the indirect

jump to the inner interpreter, the W register cannot be incremented before the jump.

Constant Interpreter

Constant interpreter is very similar to variable interpreter. The only difference is that constant

interpreter returns the contents of the parameter field while variable interpreter returns the address

of the parameter field.

45

LABEL DOCONSTANT W points to the code field.
 W INC W INC Point W to the parameter field.
 0 [W] AX MOV Fetch contents in the parameter field to AX register.
 1PUSH JMP Push AX on the data stack and then retur n.

The constant interpreter first copies the contents of the parameter field into the AX register, and

then jumps to the APUSH routine which pushes AX on the data stack before falling into NEXT.

User Variable Interpreter

User variables are defined for a multitasking or multiuser Forth system. These variables are not

addressed by their parameter field addresses, but by an offset into a memory area unique to the

current user, a user variable area whose starting address is stored in a register or a variable UP.

The user variables define the operating environment for a user at any point of its operation. Since

each user has its own user variables preserved in a unique memory area, users or tasks can be

switched very conveniently with minimal house keeping.

The user variable interpreter in F83 is defined as:

VARIABLE UP The user area pointer is defined as a v ariable.
LABEL DOUSER-VARIABLE
 W INC W INC Point W to the parameter field.
 0 [W] AX MOV Get the user area offset from the par ameter field.
 UP #) AX ADD Add the offset to the base address in UP.
 1PUSH Push the address of the user variable on the data stack and return.

The parameter field of a user variable stores the offset value of the user variable in the user area.

This offset value is added to the starting address of the user area as stored in the variable UP. The

address returned on the data stack is the address of the user variable of the current user who is

controlling the Forth system at this moment.

With all the viable system parameters saved in the user variable areas, the task switching in a Forth

multitasking system is very easy and very efficient. The multitasker only has to save and restore

the IP, RP, and SP in between two tasks. We will get into this in detail later. F83 has a very

interesting multitasker which is a good demonstration of the power and the versatility of Forth as a

system and as a language.

High Level Inner Interpreter

Inner interpreters are preferably coded in the host machine instructions, because they are the actual

routines executed by the host computer. However, F83 does provide the CREATE ... DOES>

46

construct for users to define inner interpreters using high level Forth commands. These high level

inner interpreters are easy to develop and eminently transportable across different host computers.

The mechanism which allows this type of inner interpreters to execute correctly is DODOES:

LABEL DODOES W points to the code field of the curr ent words and SP points to the high level

inner interpreter.
 SP RP XCHG
 IP PUSH Push current IP on the return stack.
 SP RP XCHG
 IP POP Pop address of the high level interpreter i nto IP.
 W INC W INC Point W register to parameter field w hich may contain data.
 W PUSH Push W on the data stack.
 NEXT Return to execute the high level interpreter while the top item on the data stack

points to the parameter field of the current word.

Using this DODOES, the new commands defined by the CREATE-DOES> structure is almost

identical to those defined by the CREATE-;CODE structure. DODOES must be the first

command to be executed in the high level inner interpreter.

Deferred Command Interpreter

F83 uses a special technique to handle forward references, which is normally not allowed in a

regular Forth system. A deferred command is created with a blank parameter field. When the

contents of the deferred command is finally compiled, the parameter field in the deferred command

is then patched with a pointer pointing to the beginning of the compiled codes so that the deferred

command can be executed. Before the contents of a deferred command is defined, however, the

deferred command can be referred to by the compiler and be compiled as other regular commands

even if it cannot be executed. This technique is useful, especially during metacompilation, where

commands have to be referred before their functionality can be precisely defined by the commands

compiled after them.

The deferred command interpreter fetches the address in the parameter field and makes an indirect

jump through it:

LABEL DODEFER Execute the word whose execution addr ess is stored in the parameter field of this

deferred word.
 W INC W INC Get the parameter field address.
 0 [W] W MOV Replace W with contents of the paramet er field.
 0 [W] JMP Make an indirect jump through it.

The deferred address can also be stored as a user variable so that each user may have its own

version of the execution procedure to be referred to by the same name.

4.4. Interpreters for In-Line Data and Strings

In the parameter field of a colon command there is normally a list of execution addresses, which is

47

scanned sequentially by the address interpreter and executed. However, there are many instances

that the execution sequence must be change in runtime or that some special data have to be

included in-line with the execution addresses, like literal numbers and character strings. A set of

special commands are defined to take care these conditions at runtime, when the colon command is

being executed. Although these special commands are given names like other commands and can

be found by both the text interpreter and the colon compiler, they are not meant to be invoked by

either. They are compiled into colon commands by a corresponding set of immediate commands

or compiler directives. To indicate their associations with corresponding compiler directive and

that they are not to be directly invoked, they are assigned names with enclosing parentheses.

Executing them interactively from a terminal is the most convenient way to crash a Forth system.

Be warned of it!

CODE (LIT) (-- n) Push the contents in next cell on the data stack.
 AX LODS Load the contents of next cell, pointed to by IP, into AX. Increment IP to skip

over the numeric literal.
 1PUSH Push the literal number on the data stack an d return.

LODS is an interesting 8086 instruction. It is used to access character strings in memory using the

SI register as a pointer. After the memory fetching, SI is automatically incremented. It happens

that the SI register is the IP register in Forth virtual computer and the incrementing is exactly what

we wanted in (LIT). It makes an extremely simple code command for (LIT). APUSH pushes the

contents of AX register on the data stack before falling into the NEXT routine.

(LIT) thus overrides the natural tendency of the address interpreter to interpret data as execution

addresses and forces the interpretation of the contents in the next cell as an in-line literal. This is

the way literal numbers are compiled in a colon command, preceded by (LIT), so that in runtime,

the number will be pushed on the stack and not to be mistaken for an execution address.

: (.") (--) Print the next character string to t he terminal.
 R> RP is pointing to the next cell where the strin g starts. Pop the string address

to data stack.
 COUNT Get the string address and character count o n the stack.
 2DUP + EVEN Compute the address of the next execut able word after the string.
 >R Replace the next execution address back on the return stack.
 TYPE ; Now, type out the string.

(.") and the character string following it are compiled by the immediate command ." , in-line with

the other execution addresses in a colon command. When the colon command is executed, (.")

will pull this string out of the execution sequence, print it on the terminal, and then pass the control

to the command after the string. This is the way we let a colon command print messages on the

terminal to facilitate the user-computer interface. Computer can be made much more friendly this

way if proper messages are printed timely.

: (") (-- addr n) Leave the address and the char acter count of the following string on the stack

and continue execution after the string.

48

 R> COUNT Get the address and count on stack.
 2DUP + EVEN Compute the next executable word add ress,
 >R ; and put it back on the return stack.

(") is very similar to (.") in the way it handles the in-line string and the execution sequence. The

difference between them is that (") leaves the string address and character count on the data stack

without doing any terminal output; therefore, the string data can be manipulated any way we want

in the colon command.

4.5. Interpreters for Control Structures

BRANCH and ?BRANCH

We all think Forth is a totally structured programming language, even saying: "Look Mom, no

GOTO's!" GOTO's are replaced by structures like IF-ELSE-THEN , BEGIN-UNTIL , and

DO-LOOP , etc. Well, the hard truth is that Forth does have GOTO's, disguised in names like

BRANCH and ?BRANCH, and many other commands. If you learned how to use them, you

could jump anywhere you wanted and create really messy spaghetti codes. Novices are made to

believe Forth is GOTOless because they are shielded from the dark side of Forth.

BRANCH and ?BRANCH take the contents in the next cell as the address of the next executable

command and direct the address interpreter to that address to start a new execution sequence.

This can be done simply by manipulating the interpretive register IP.

CODE BRANCH (--) Perform an unconditional jump to the address in the next cell.
LABEL BRAN1
 0 [IP] IP MOV Copy next cell into IP, thus
 NEXT effecting the branch.
 END-CODE

CODE ?BRANCH (f --) If the flag on stack is false , branch to the next address; otherwise, skip the

next cell and continue the execution sequence.
 AX POP Pop the flag into AX register.
 AX AX OR Set the CPU status register.
 BRAN1 JE Branch if flag is false.
 IP INC IP INC Skip the jump address if flag is tr ue.
 NEXT
 END-CODE

BRANCH is compiled by ELSE, REPEAT, and AGAIN. ?BRANCH is compiled by IF, WHILE,

and UNTIL. The cell immediately following BRANCH or ?BRANCH is the address of the next

executable command in memory, and it directs the conditional or unconditional branching,

deviating from the normal sequential execution path favored by the address interpreter.

The New F83 Loops

The DO-LOOP structure experienced a major surgery in the birth of Forth-83 Standard, drastically

49

deviated from the DO-LOOP structure as Charles Moore invented. The basic reasons behind the

new DO-LOOP structure were to eliminate the discontinuity of indexing through the 8000H

boundary and to leave the loop immediately at LEAVE. F83 provides a solution by using three

numbers on the return stack to handle the indexing and looping. The number at the bottom of the

three is the address of the command right after LOOP, providing LEAVE with the return address to

terminate the looping. The second number is the loop limit, offset by 8000H so that the index

range from 0 to FFFFH becomes contiguous. The top number is the difference between the index

and the limit, also offset by 8000H. At the end of the loop, LOOP increments the top number on

the return stack by either one or the amount specified in the case of +LOOP, and tests for overflow

from bit 14 to bit 15. The overflow condition occurs when the 8000H boundary is crossed from

either direction. Therefore, both the positive and negative increments are handled correctly with a

single run-time loop routine. Since the address of the command after LOOP is carried on the

return stack, LEAVE can use this address to jump out of the loop.

CODE DO
 (limit index --)

Push the in-line exit address and the modified loop limit and scan range on the
return stack.

 AX POP Get the index.
 BX POP Get the limit.
LABEL PDO
 RP DEC RP DEC Make room on the return stack.
 0 [IP] DX MOV Get the in-line address following DO .
 DX 0 [RP] MOV] Push the exit address on the return stack.
 IP INC IP INC Pointing IP to the next executable word.
 8000 # BX ADD Offset the limit by 8000H.
 RP DEC RP DEC Make more room.
 BX 0 [RP] MOV] Push the modified limit on the retu rn stack.
 BX AX SUB Subtract limit from index, also offset b y 8000H.
 RP DEC RP DEC Make room.
 AX 0 [RP] MOV Push the index scan range on the ret urn stack.
 NEXT All done.
 END-CODE

CODE (?DO)
 (lim ind --)

Same as (DO) except that if index is the same as li mit, the entire loop is skipped.

 AX POP Index.
 BX POP Limit.
 AX AX CMP Compare index and limit.
 PDO JNE If not equal, execute the loop.
 0 [IP] IP MOV If equal, jump over the do loop.
 NEXT END-CODE

With the modified index, modified limit, and the exit address on the return stack, the task for

end-of-loop routines are much easier. Believe it or not, this new loop structure is claimed to run

faster than the old, traditional loop.

CODE (LOOP) (--) Branch back to the executable w ord after DO if the index does not cross the 8000H

boundary. If it does, exit the loop after clearing the return stack.
 1 # AX MOV Increment by one. LABEL PLOOP Increment top of return stack,
 AX 0 [RP] ADD the scanning index.
 BRAN1 JNO If overflow condition is not set, jump t o the in-line address compiled after (LOOP)

and repeat the loop.
 6 # RP ADD Pop all three numbers off the return st ack. Clean up the return stack to the

state before the do-loop.
 IP INC IP INC Point IP to the next executable wor d. Exit the loop.
 NEXT END-CODE

CODE (+LOOP) (inc --) Increment the scanning inde x by the value on the data stack and decide whether

or not to loop.

50

 AX POP Get the increment.
 PLOOP #) JMP Use the same loop routine in (LOOP).
 END-CODE

Since the scanning index on top of the return stack is not the index as we understood, the functions

of I and J are also different.

CODE I (-- index) Return the current loop index.
 0 [RP] AX MOV Get the scanning index on top of the return stack.
 2 [RP] AX ADD Add the modified limit to the scanni ng index. The result is the actual current

index.
 1PUSH Push it on data stack.
 END-CODE

CODE J (-- index) Return the loop index of the n ext outer loop in nested do-loops.
 6 [RP] AX MOV Get the outer index.
 8 [RP] AX ADD Add the outer limit.
 1PUSH Push the computed index on stack.
 END-CODE

The New Leave

Forth-83 Standard requires that when LEAVE is executed inside a loop, the loop be exited

immediately. It was agreed that the old LEAVE is not desirable in allowing execution to continue

to the next LOOP before exiting the loop. Unwelcome guests should not be permitted to remain

when the party is over. Since the exit address of the command after LOOP is compiled after (DO)

and tucked on the return stack, LEAVE can be executed using this piece of information:

CODE (LEAVE) (--) Immediately exit a DO-LOOP.
LABEL PLEAVE
 4 # RP ADD Pop the index and limit off the return stack.
 0 [RP] IP MOV Copy the exit address to IP, ready t o exit the loop.
 RP INC RP INC Clear the return stack.
 NEXT END-CODE

CODE (?LEAVE).(f --) Exit the loop immediately if the flag on stack is true. If not, continue the

looping.
 AX POP Get the flag.
 AX AX OR Test the flag for zero.
 PLEAVE JNE True. Leave the loop.
 NEXT False. Continue.
 END-CODE

LEAVE is not very useful all by itself because it will defeat the purpose of a do-loop. In most

cases, it is used after a testing condition like IF. ?LEAVE combines the functions of IF and

LEAVE, and is a much more useful command.

51

Chapter 5. The Forth Nucleus

The source code discussed here is in the file KERNEL86.BLK, Screens 16 to 37.

In the last chapter on Virtual Forth Computer, what we discussed was the 'hardware' of this

conceptual computer, such as the registers, the memory and its organization, buffers, and stacks.

The inner interpreters are similar to the CPU in this computer, which cause the machine to perform

the most primitive operations like jumping from one Forth Command to the next. There is also a

'software' part of the Virtual Forth Computer, i. e., the primitive command set or the elementary

operations from which programs can be constructed to solve complex, real life programming

problems. This primitive command set, the counter part of the microcodes or random logic

machine instruction set in a real, conventional computer, is what we mean by the Forth Nucleus.

In a real Forth computer, this instruction set will probably be microcoded or committed to random

logic in the Forth CPU. Before that becomes a reality, the Forth Nucleus will have to be

implemented on a real CPU using its native machine codes.

F83 is available in three versions: one for 8080, one for 8086/8088 and one for the more recent

68000. It's a pain to discuss the Forth nucleus in 8080 machine code, because we have to pretend

that the 8 bit 8080 is a 16 bit machine. There is so much noise in the 8080 codes that you can

hardly hear the beautiful music played in Forth. 8086 is far from being a dream machine. Being

a 16 bit machine with more than enough registers in CPU, the Forth nucleus put on it looks much

nicer and the code is considerably shorter. For most of the commands in the Forth nucleus, the

8086 code is less than 1 line in length and the functions are fairly obvious. In fact, most code is

simple enough that I really don't have to go through them line by line, as I did for the inner

interpreters. I will only go through the code by functional groups, making some occasional

comments on special features in the F83 implementation.

I encourage you to read the code in the nucleus carefully because they are good examples of

assembly programming in. There are lots of techniques and styles we can learn from these code.

When you want to write code commands to take advantage of the speed and to tackle some

hardware facilities, the best way is to pick up a code command in the nucleus of similar functions

and modify it to suit your need. Once you are at home with the manipulation of stacks and the

CPU registers in Forth assembly style, you will be able to build your own castles.

5.1. 8086 Assembly Language in Forth

Assembly code in Forth is quite different from the normal assembly code in conventional assembler.

52

The most eye catching difference is that the Forth assembly codes are written in reverse Polish

notation, i.e., operands preceding the operator. The reason is simple. In Forth, the assembler is

not a gigantic program which assembles mnemonic codes line by line. The assembly functions

are scattered in many small pieces of Forth commands which are given assembly mnemonic names.

When a Forth command like MOV is executed, it compiles a machine code to the dictionary where

we are building the parameter field of a code command. When MOV is executed, it needs

information like source register, destination register, and address mode. These information, or the

operands, are provided on the data stack prior to the invocation of MOV. MOV takes the operand

information from the data stack, does some computation to derive the correct machine code, and

compiles this code to the top of the dictionary. All the other assembly commands do similar

things, using data from the stack and compiling specific codes to the dictionary.

There is a major difference between the Forth colon compiler and the Forth assembler, even though

they both build new commands on the dictionary. When compiling colon commands, the Forth

computer is in the compiling mode, under which commands parsed out from the input stream are

not executed, but have their addresses added to the dictionary. During assembly, the Forth

computer is in the interpretive mode, under which all the assembly commands are executed. The

net result produced by the execution of an assembly command is that a machine code is added to

the dictionary. In other words, we can claim that it is the Forth text interpreter who does the

assembly of machine codes. The full Forth system, with all its resources, are supporting the

process to assemble machine codes. In a way, the assembly process is so much more complicated

than compiling colon commands that it indeed needs the support of the whole Forth system. The

complexity of the assembler is best seen in the actual codes of the Forth 8086 assembler, which will

be the subject in a separated chapter. At this moment, we just have to learn how to read the Forth

assembly code in the nucleus.

5.2. Code Definitions in Forth Nucleus

In the F83 Nucleus, all the code commands are written in the following general format:
 CODE <name> < operands and assembly mnemonics > < end> END-CODE

A code command is enclosed between two commands CODE and END-CODE. Immediately

following CODE is the name given to the command. After the name, there is a sequence of

commands which are either assembly mnemonics or operands used by the mnemonics. The

assembly mnemonics are Forth commands which assemble machine codes into the parameter field

of the code command under construction. The command before END-CODE must be a special

command which returns control to the routine which calls the command in runtime. Anywhere

inside or outside of the code command, comments are placed between (or (S and), which are

ignored by the Forth interpreter which does the assembly.

53

The assembly commands have mostly the same names as those mnemonics used in the regular

8086 assembler provided by Intel. However, they are not just names of machine instructions, they

are actually Forth commands which assemble machine instructions into the dictionary when they

are interpreted or executed. Many of these mnemonic commands require operands, which are

supplied before the mnemonic commands. If two operands are needed, the format is:
 <source operand> <destination operand> <mnemon ics>

A partial list of the mnemonic commands is:

 MOV PUSH POP JMP JE JNE JCXZ
 ADD SUB MUL DIV AND OR XOR
 MOVS PUSHF REPZ SAHF WAIT LODS XLAT

The following registers are defined in F83 for 8086:

 AL CL DL BL AH CH DH BH
 AX CX DX BX SP BP SI DI
 ES CS SS DS

Forth registers RP, IP, and W are equivalent to BP, SI, and BX, respectively.

Several registers are often used for indirect addressing. The indirect addressing operands are the

following:
 [RP] [IP] [W] [SI] [DI] [BP] [BX]

An offset number must precede the indirect addressing operand. Numeric values needed as

operands must be used with a numeric operator following immediately:
 # #) S#)

where # is preceded by an immediate constant, #) is preceded by an address, and S#) is preceded by

an address for intersegment jump.

Three most frequently used code endings are NEXT, 1PUSH, and 2PUSH. They are assembly

macros which return control to the next command in the execution sequence. 1PUSH pushes the

AX register on the stack before jumping into NEXT, and 2PUSH pushes first the DX register and

then jumps to 1PUSH. Sometimes a JMP is used as a code ending. The routine jumped to must

eventually fall into NEXT so that the execution can be continued.

5.3. Examples of Code Definitions

The following are a few simple examples of the code commands. They are fully commented here

for the purpose of demonstrating the Forth assembly syntax. Since 8086 has most of the functions

required by Forth in machine instructions, the code commands in the F83 nucleus are fairly simple

and obvious. I will not try to make dumb comments any more.

54

CODE @ (addr -- n) Fetch a 16 bit value from addr .
 BX POP Pop addr into BX register.
 0 [BX] PUSH Push the contents of addr, indexed by BX with 0 offset, onto the data stack.
 NEXT Jump to next and return.
 END-CODE End of code definition.

CODE !(n addr --) Store a 16 bit value at addr.
 BX POP Pop addr to BX register.
 0 [BX] POP Pop n into memory at addr.
 NEXT END-CODE

CODE C@ (addr -- char) Fetch an 8 bit value from addr.
 BX POP Pop addr into BX register.
 AX AX SUB Clear the 16 bit AX register.
 0 [BX] AL MOV Copy one byte at addr to AL.
 1PUSH Push the byte value on stack and return.
 END-CODE

CODE C! (char addr --) Store an 8 bit value at ad dr.
 BX POP
 AX POP Pop char into AX.
 AL 0 [BX] MOV Store byte into addr.
 NEXT END-CODE

Other code commands in the nucleus are fairly straightforward and are also adequately commented

in the shadow screens. They are grouped together and shown here for references. You are

encouraged to read the detailed code and comments in the source listing.

Memory Commands

 @ ! C@ C! CMOVE CMOVE> FILL ERASE BLANK MOVE HERE PAD

Stack Commands

 SP@ SP! RP@ RP! DROP DUP SWAP OVER TUCK NIP
 ROT ROT FLIP ?DUP R> >R R@ PICK ROLL

Logic Commands

 AND OR XOR NOT TRUE FALSE CSET CRESET CTOGGLE ON OFF

Arithmetic Commands

 + - ABS +! 2* 2/ U2/ 8* 1+ 2+
 1- 2- UM* U*D UM/MOD *D M/MOD MU/MOD * /MOD
 / MOD */MOD */

Comparison Commands

 0= 0< 0> 0<> = <> ?NEGATE U< U> <
 > MIN MAX BETWEEN WITHIN

Double Integer Commands

55

 2@ 2! 2DROP 2DUP 2SWAP 2OVER 3DUP 4DUP 2ROT D+
 DNEGATE S>D DABS D2/ D- D0= D= DU< D< D> DMIN DMAX

String Commands

 COUNT LENGTH -TRAILING UPPER COMP CAPS-COMP COMPARE

56

Chapter 6. Terminal Input and Output

The source code discussed in this chapter is in file KERNEL86.BLK, screens 41 to 49.

Forth is an interpretive language which intimately interacts with you through a CRT terminal.

Terminal input and output control is a very important part of the Forth system, allowing you to

enter commands and data into the computer and display the results or messages on the CRT.

Many Forth implementations have input/output commands coded in the host machine codes which

access the terminal directly. These Forth system are often stand-alone system which do not need

support from a traditional operating system. F83 was design to run under the popular CP/M or

MS-DOS system, so that it can be transported between different host computers. The terminal

input/output commands in F83 thus utilize the CP/M or DOS BIOS routines to receive information

from the keyboard and send information to the CRT display.

6.1. The BIOS I/O Calls to the Operating System

The fundamental interface between Forth terminal I/O commands and the CP/M or DOS is the

Forth command BDOS:

CODE BDOS
 (entry function --
return-value)

Load function code into C register and entry parame ter into D register. Call the
BIOS. Return result are then pushed on the data st ack.

 CX POP Load function code into C register.
 DX POP Load entry parameter into D register.
 33 INT Call BIOS by a software interrupt. This is the MS-DOS interrupt vector. For CP/M,

it is 224 INT.
 AH AH SUB Clear the high byte in the AX register.
 1PUSH Return with the result on stack.
 END-CODE

BDOS is not only used for terminal I/O, it can also be used for most of the disk I/O calls, making

Forth I/O commands very neat and simple.

: (KEY?) (-- f) Return a true flag if the user pr esses a key. Otherwise, return a false flag.
 0 11 BDOS Function 11 is the direct console I/O ca ll. Entry 0 specifies a console status

command. If no character is ready, 0 is returned. If a character is entered,
FFH is returned.

 0<> Reversed the BDOS flag.
;

: (KEY) (-- char) Wait until a key is pressed and return the ASCII code.
 BEGIN Enter the wait loop.
 PAUSE Release the CPU to other tasks so that the multitasking scheme can work smoothly.
 (KEY?) Is a key pressed?
 UNTIL Yes, then exit the loop. Otherwise, wait an other round.
 0 8 BDOS Entry para meter 0 specifies a console input function and retu rns an ASCII code

on the stack.
;

: (CONSOLE) (char --) Send the character on stack to the terminal for display.
 PAUSE Let other task have a run on the CPU.
 6 BDOS Call BDOS to send out the character.

57

 DROP BDOS always returns a number on the stack. I t has to be dropped.
 1 #OUT +! Increment user variable #OUT, keeping tr ack of the output character count.
;

: (PRINT) (char --) Send a character to the print er.
 PAUSE Always pause b efore an I/O operation because I/O operations are g enerally slow.

CPU can then be freed to serve other tasks or other users.
 5 BDOS Function 5 is the BDOS call for output to l isting device.
 DROP Clear the stack.
 1 #OUT +! Increment #OUT.
;

: (EMIT) (char --) Send the character to both the terminal and the printer.
 PRINTING @ Is the printing flag set?
 IF Yes. Sent character to the printer.
 DUP (PRINT) Print character.
 -1 #OUT +! Back up #OUT so it will not be increme nted twice
.THEN
 (CONSOLE) Output to the terminal.
;

(KEY?), (KEY), and (EMIT) are the actual commands vectored to by KEY?, KEY, and EMIT.

EMIT can be vectored to (PRINT) or (EMIT) like the regular CP/M system to activate the printer

with the console.

6.2. Terminal Output Commands

The following output commands are all simple derivatives of EMIT and they do not need extensive

comments:

: CRLF (--) Send a carriage return and a line fee d to the console.
3 EMIT Carriage return.
 10 EMIT Line feed.
 #OUT OFF Clear the output character count.
 1 #LINE +! Increment the line count.
;

: TYPE (addr len --) Display a string on the cons ole.
 0 ?DO Repeat len times, but skip if len is zero.
 DUP C@ EMIT Send one character.
 1+ Increment character address.
 LOOP
 DROP Clear stack.
;

: SPACE (--) Send a space to console.
 BL EMIT ;

: SPACES (n --) Send n spaces to console.
 0 MAX Eliminate negative counts.
 0 ?DO Repeat n times.
 SPACE
 LOOP ;

: BACKSPACES (n --) Send n backspaces to console.
 0 ?DO
 BS EMIT
 LOOP ;

6.3. Interpreting Control Characters

Forth is capable of using most of the ASCII characters for command names. Only a few ASCII

58

codes are reserved for system functions. Many figForth system reserve the NUL (ASCII 0), CR

(ASCII 13), and SP (ASCII 32) as delimiters for Forth commands. The DEL (ASCII 127) is

used to nullify the previously entered character, which is important in correcting typing errors.

Other non-printable characters or control character can be used freely to name commands.

Because it is difficult to document the non-printable characters, embedding them in names is

discouraged unless you want a very secured environment.

F83, on the other hand, provides a mechanism for you to implement special functions for control

characters. When a function is defined for a particular control character, the function will be

executed immediately when that character is entered on the keyboard. A jump table is maintained

for all the 32 control characters. A few of them are used for special purposes which are defined as

follows:

: BS-IN (n char -- n-1) Back up the input charact er buffer by dropping the character off the stack a nd

decrementing n by 1. If n is zero, sound the bell instead.
 DROP Discard the character.
 DUP IF Is n=0?
 1- BS Yes. Decrement n and backspace.
 ELSE
 BELL n=0. Sound the bell.
 THEN EMIT Send either BS or BELL to console.
;

: (DEL-IN) (n char --
n-1)

Backup the input and erase the previous character. If n=0, sound the bell.

 DROP
 DUP IF
 1- BS Backspace.
 SPACE BS Send a space and backspace again. Erase the previous character.
 ELSE BELL
 THEN EMIT ;

: BACK-UP (n char -- 0) Erase the current line an d set the character count to zero.
 DROP Discard the character on stack.
 DUP BACKSPACES Backup to the beginning of the curr ent line.
 DUP SPACES Erase all the characters on this line.
 BACKSPACES Backup
 0 Clear character count.
;

: RES-IN (char --) Reset the Forth system to a cl ean start again.
 FORTH Set default vocabulary.
 TRUE Force system abort.
 ABORT" Reset" Abort with a message.
;

: P-IN (char --) Toggle the printer on or off.
 DROP PRINTING @ Get the flag in PRINTING.
 NOT Complement it to turn the printer on or off.
 PRINTING ! Store it back.
;

: CR-IN (m addr n char
-- m addr m)

Finish input and remember the number of characters in SPAN.

 DROP SPAN ! Store n in SPAN.
 OVER Duplicate m.
 BL EMIT Send out a space.
;

: (CHAR) (addr n char
-- addr n+1)

Process a normal character by appending it to the i nput buffer.

 3DUP EMIT Send character to console.
 + Addr+n, the memory address for the current chara cter.
 ! Store the character into the input buffer at add r+n.

59

 1+ Increment n by 1 for the next character.
;

DEFER CHAR CHAR will be vectored to (CHAR).
DEFER DEL-IN DEL-IN will be vectored to (DEL-IN).
VARIABLE CC CC will be used to point to the current control character table.
CREATE CC-FORTH The control character table which c an handle each control character as a special

case. It is actually an execution array which is in dexed into by EXPECT to do
the right thing when it receives a control characte r.

] Enter compilation mode to compile 32 execution ad dress for the 32 control
characters.

 CHAR CHAR CHAR CHAR CHAR CHAR CHAR CH AR
 BS-IN CHAR CHAR CHAR CHAR CR-IN CHAR CHAR
 P-IN CHAR CHAR CHAR CHAR BACK-UP CHAR CHA R
 BACK-UP CHAR RES-IN CHAR CHAR CHAR CHAR CHAR
[Reenter the execution mode.

6.4. More Sophisticated Input Commands

KEY is the most elementary command to accept keyboard input. It simply gets a character and

puts its ASCII code up on the data stack, not a very intelligent command. Once we have the

control character table, we can build a very intelligent input command which can respond to many

control characters to do a wide range of different things in response to our keyboard strokes. This

command is EXPECT:

: EXPECT (addr len --) Get a string f rom the terminal and place it in the buffer at addr specified.

Perform a limited amount of line editing. Save the number of characters input
in the variable SPAN. Process control characters as specified by the control
character table pointed to by CC.

 DUP SPAN ! Save len in SPAN.
 SWAP 0 Stack is now: len addr 0 --
 BEGIN Start the input loop.
 2 PICK Copy len to top of stack.
 OVER - (len addr count #left --)
 WHILE If all characters were received, exit the lo op. If #left is not 0, continue on.
 KEY Get one more character.
 DUP BL < Is it less than 32, i.e., a control char acter?
 IF Yes. A control character.
 DUP 2* Offset to the CC table.
 CC @ + The table entry address.
 PERFORM Execute the CC table entry.
 ELSE Not a control character.
 DUP 127 = Is it a DEL?
 IF DEL-IN Yes. Do delete the prior character.
 ELSE CHAR No. A regular character.
 THEN
 THEN
 REPEAT End of string input loop.
 2DROP DROP Clear the stack.
;

: TIB (-- addr) Get the address of the terminal i nput buffer.
 'TIB @ TIB is vectored through 'TIB.
;

: QUERY (--) Get an input stream of text from the terminal and store it in the terminal input

buffer. Prepare the system to interpret this input text.
 TIB 80 EXPECT Receive upto 80 characters into the terminal input buffer
.SPAN @ Get the actual length of the input stream, which may be less than 80.
 #TIB ! Store it in #TIB so that the text interpret er will know when the text is exhausted.
 BLK OFF Clear BLK so that the tex t interpreter will use the terminal input buffer fo r

text input.
 >IN OFF Clear the character pointer to start from the beginning of the terminal input

buffer.
;

60

QUERY is the Forth input command at the highest level. It waits on you to type a line of text on

the keyboard. The line is terminated either by receiving 80 characters from the keyboard or by

receiving a carriage return key. The line of text is stored in the terminal input buffer. All the

pertinent parameters are set so that the text interpreter can take over and interpret or execute the

commands given in the input line.

6.5. String Commands

Screens 41 to 43 are a set of commands to operate on strings in memory. A string in Forth is a

sequence of ASCII characters preceded by a byte count. A string may have zero to 255 characters.

It is generally identified by the address of the count byte. However, most string commands

require the address of the first character in the string as argument, not the address of the count byte.

String commands use the following generalized syntax:
 <source addr> <dest addr> <length> <string comman d>

Destination address is optional in cases of single string operations.

Most of the string commands are standard Forth-83 commands and their commands are simple and

straightforward. I will only list here their functions and stack parameters:

Table 6.1. String Commands

Command Stack Effects Function
COUNT (addr -- addr+1 len) Convert the string add ress to address-length

representation.
LENGTH (addr -- addr+2 len) Return address-length for long strings whose character

count is 16-bits.
FILL (addr len char --) Initialize a string to ch ar.
ERASE (addr len --) Initialize a string to NUL.
BLANK (addr len --) Initialize a string to blanks .
MOVE (sour dest len --) Move a string without ove rlapping.
UPC (char -- char') Convert a character to upper case.
UPPER (addr len --) Convert s string to upper cas e.
-TRAILING (addr len -- addr len') Delete trailing blanks from a string by changing its

length.
COMP (sour dest len -- n) Compare source string w ith destination string. Return

-1 if source<destination. Return 1 if
source>destination. Return 0 if strings are the sam e.

CAPS-COMP (sour dest len -- n) Compare two string s regardless of character cases.
COMPARE (sour dest len -- n) Compare two strings. If CAPS is true, convert to upper

case before comparing.

61

Figure 6.1 Representation of strings

62

Chapter 7. The Virtual Memory

The source code discussed in this chapter is in KERNEL86.BLK, Screens 50 to 56.

7.1. Mass Storage and Virtual Memory

Mass storage is a very important and integral part of a computer although we often think of it as a

peripheral or an appendage. The computer uses the RAM memory for most of its normal

operations, executing programs stored in RAM and operating on data stored in RAM. However,

programs and data must be saved to more permanent and less expensive media before the power to

the computer is turned off, or to transfer programs or data from one computer to another. Without

mass storage, a computer is just as useful as a video game, operating entirely from the ROM

memory with very limited amount of RAM. Most programming languages, by default or by

neglect, do not include facilities to deal with the mass storage as part of the language. Thus we

have to have a huge beast, an operating system, underneath the language to supply the functions

necessary to use the mass storage conveniently and effectively.

Charles Moore perceived the need to use mass storage efficiently, to make Forth not only as a

programming language, but also as a total environment in which you can describe and solve your

programming problems. At the time he put together Forth, core memory was much more

expensive than now and its use had to be optimized at all costs. His design used the mass storage,

whether tape or disk, as a direct extension of the core memory. The user can address the mass

storage in the same way he addresses the core memory, without worrying the detailed processes in

storing data to disk or retrieving data from disk. This is the concept of 'virtual memory'.

The way how virtual memory operates is as follows. The mass storage, tape or disk, are divided

into consecutive blocks as the basic storage units, each block consisting of 1024 bytes. The

blocks are numbered from 0 to the capacity of the device, and are addressed by the block number.

In the core or the RAM memory in the computer, an area called disk buffer is reserved as

temporary storage for blocks of data from disk. One disk buffer is also of 1024 bytes and one or

more disk buffers can be reserved. When a block of data is needed, it is read from the disk and

stored in one of the disk buffers. Data in this disk buffer can then be used or modified, as needed

by the program. When all disk buffers are filled and the system needs to read another block, the

system will select the least used disk buffer to receive the new block of data. If the data in the

selected disk buffer was modified by the program and was marked as 'updated', the contents of this

buffer will be written back to the disk before the new block is read in. This way, the data on disk

are assured of their integrity and constantly updated as required, while a few disk buffers can fulfill

63

the need to gain access to the entire disk without large overhead.

If you know how to read and write a sector of the disk, it is not a big job to implement the virtual

memory system in Forth. Many Forth systems include such functions. These Forth system have

no need for an operating system because the functions of an operating system, handling terminal

I/O and managing mass storage, are all provided by the Forth system. In this sense, Forth is its

own operating system. F83 on the other hand was designed to run under the CP/M or MS-DOS

system and uses the file system in CP/M for mass storage. The advantage is that the resulting

Forth system can be easily transported from one computer to another, under the umbrella of CP/M

or DOS, and that data can be dealt with within a more manageable file system. The disadvantage

is that one cannot address disk at the sector level and the performance is degraded.

7.2. Disk Buffers

A set of pointers and constants are needed to construct the virtual memory system in allocating the

disk buffers and defining their characteristics:

0 CONSTANT FIRST The starting address of the disk b uffers. The actual address is patched during

Forth initialization.
0 CONSTANT LIMIT The address above the top disk buf fer. Also patched at initialization.
4 CONSTANT #BUFFERS Four disk buffers are allocated in this example.
1024 CONSTANT B/BUF 1024 bytes per disk buffer.
128 CONSTANT B/REC 128 bytes per record in CP/M an d DOS.
8 CONSTANT REC/BLK 8 records per block of 1024 byte s.
42 CONSTANT B/FCB 44 bytes in a file control block
VARIABLE DISK-ERROR Storing error code after a disk operation.
#BUFFERS 1+ 8 * 2+
CONSTANT >SIZE

The size of a buffer-pointer array. Each disk buffe r uses 8 bytes in this array
to store buffer information:

 0-1 Block number
 2-3 Pointer to file
 4-5 Buffer address
 6-7 Update flag

This disk buffer pointer array is reserved just below the first disk buffer or FIRST. Whenever a

block is referenced, its pointer is moved to the head of this array, so that the most recently used

buffer is always checked first. This allows the references to multiple disk buffers to be very fast.

Disk buffers are 1024 bytes long. No trailing zeros are needed to stop the text interpreter, as in

figForth , because the text interpreter in F83 will process only 1024 characters in a buffer. The

following commands are defined to get pointers to address into this array:

: >BUFFERS (-- addr) Return the address of the fi rst buffer pointer.
 FIRST Starting address of first buffer.
 >SIZE Total bytes in the pointer array.
 - First buffer pointer entry.
;

: >END (-- addr) Return the address of the last c ell in the buffer pointer array
.FIRST 2- One cell below FIRST.
;

: BUFFER# (n -- addr) Return the address of the n th buffer pointer.
 8* Offset of the nth buffer pointer.

64

 >BUFFERS Origin of the buffer pointer array.
 + ;

Figure 7.1 The File Control Block

65

7.3. The File Control Block (FCB)

CP/M-DOS programs accesses the disk files through BDOS calls. However, a program must

maintain a special memory array which contains all the information about the file it is using. This

memory array is called FCB, File Control Block, usually 36 bytes in length. The first byte in FCB

stores the disk drive code. The next 11 bytes store the file name and extension. Bytes 33, 34,

and 35 store the current random record number in read/write operation. F83 reserves 8 more bytes

at the end of FCB for some special purposes. A user variable named FILE is used to store the

address of the FCB currently used by the Forth system and indicates the current file. All other

Forth commands doing disk I/O refer to the file pointed to by this user variable FILE.

To fully understand the structure of CP/M-DOS files and how they are utilized by programs is

beyond the scope of this book. You have to go back to the CP/M manuals where these topics are

treated in details. What I shall do here is to go through the F83 disk I/O commands and explain

there functions. We only have to know a small portion of the CP/M to get a working knowledge

of the CP/M-DOS files as required by F83 system.

CREATE FCB1 B/FCB ALLOT Create a default file contr ol block in the Nucleus of F83. 41 bytes are reser ved.

: CLR-FCB (fcb --) Initialize the current FCB, gi ven the address of the current File Control Block.
 DUP B/FCB ERASE Clear the entire array to zero.
 1+ Address of the first byte of the file name.
 11 BLANK Initialize the name and extension to blan ks, as required by CP/M.
;

: SET-DMA (addr --) Set direct memory transfer ad dress.
 26 BDOS DROP A standard BDOS call.
;

: RECORD# (fcb --
addr)

Return the address of the 3 byte pointer to the cur rent random record.

 33 + Offset to the random record pointer.
;

: MAXREC# (fcb --
addr)

Return the address of the field storing maximum rec ord number in the current FCB.

 38 + ;

: VIEW# (fcb -- addr) Return the address where th e file number for viewing is stored.
.40 + ; The last cell in FCB.
: CAPACITY (-- n) Return the number of blocks in the current file.
 FILE @ Fcb of current file.
 MAXREC# @ Get the maximum record number.
 1+ 0 Make it a double number.
 8 UM/MOD Unsigned mixed division.
 NIP Discard the remainder.
;

VARIABLE DISK-ERROR A variable storing the record n umber out-of-range flag.

: IN-RANGE (fcb --
fcb)

Make sure that the current random record is within range. Abort if it is not.

 DUP MAXREC# @ Maximum record in the file.
 OVER RECORD# @ Current record number.
 U< Do an unsigned comparison.
 DUP DISK-ERROR ! Store the flag in DISK-ERROR# for diagnostics.
 IF 1 Error process.
 BUFFER# ON Set buffer flag.

66

 ." Out of Range"
 DISK-ABORT Abort if out of range.
 THEN ;

7.4. Read and Write Disk Files

The following commands are the fundamental interface to the disk drive through the CP/M-DOS

BDOS. They specify the disk drive, the memory address, the sector to be read or written, and do

the reading or writing.

: REC-READ (fcb --) Read one record from the curr ent file. The record number is stored in the field

of random record.
 DUP IN-RANGE Check the random record number.
 33 BDOS Call the read random function.
 ?DISK-ERROR Store the returned error code in DISK- ERROR.
;

: REC-WRITE (--) Write one random record.
 DUP IN-RANGE Check the random record number.
 34 BDOS Write the record from memory.
 ?DISK-ERROR Store error code.
;

One CP/M record is 128 bytes long. One Forth block is 1024 bytes long. To read or write one

Forth block, we have to do eight consecutive reads or writes. Another thing we have to take care

of is that there are four disk buffers allocated in the F83 system. The buffer to be used for disk

I/O has to be specified by a pointer to the appropriate entry in the disk buffer pointer array in front

of the buffer area.

DEFER READ-BLOCK Vectored to FILE-READ.
DEFER WRITE-BLOCK Vectored to FILE-WRITE.

: SET-IO (buffer-pointer-entry -- buffer rec/blk 0)

Set up common parameters for file reads or writes.
 DUP 2@ Get the block number, the first cell in a b uffer pointer entry.
 REC/BLK * The record number.
 OVER RECORD# ! Use it as the random record number. Put it in the FCB.
 SWAP 4 + @ Get the address of the disk buffer in t he third cell or the buffer pointer entry.
 REC/BLK 0 These two parameters are the index and l imit for read/write do-loops in FILE-READ

and FILE-WRITE.
;

: FILE-READ (buffer-pointer-entry --)

Read 1024 bytes from current file to the disk buffe r specified on stack.
 SET-IO Set random record number and leave buffer a ddress and loop parameters on the

stack.
 DO Repeat 8 times.
 2DUP SET-DMA Address for one record.
 DUP REC-READ Read one record.
 1 SWAP RECORD# +! Increment the random record num ber for the next read
 B/REC + Address of next buffer area.
 LOOP
 2DROP Discard the addr on stack.
;

: FILE-WRITE (buffer-pointer-entry --)

Write a block to file.
 SET-IO Get buffer address and loop parameters.
 DO Repeat 8 times.
 2DUP SET-DMA Record address.
. DUP REC-WRITE Write one record.
. 1 SWAP RECORD# +! Next random record.
. B/REC + Address of next buffer area.

67

 LOOP
 2DROP ;

: FILE-IO (--) Vector block I/O words to file /O words to use CP/M files.
 ['] FILE-READ Get the address of FILE-READ.
 IS READ-BLOCK Vector READ-BLOCK to it.
 ['] FILE-WRITE Get address of FILE-WRITE.
 IS WRITE-BLOCK Vector WRITE-BLOCK.
;

7.5. Disk Buffer Management

The above set of commands allow us to access files on disk. As mentioned earlier, F83 maintains

4 disk buffers in its memory. How are these buffers used? Who decides which buffer is given to

which block? When does the block on disk get updated? These are problems we have to face in

using a virtual memory system projected into a file system. The following commands are

designed to deal with these problems. We might call them the 'Virtual Memory Management' in

F83 system.

Let's review what we know about the virtual memory in F83. There are 4 disk buffers, each 1024

byte long. There is a buffer pointer array with 4 entries, each entry being 8 bytes long. Each

entry has four cells containing the block number, the pointer to a file, the buffer address, and the

update flag. This array has all the management information on the disk buffers, while the buffers

contain the actual data from/to disk file.

The buffer pointer array is a prioritized structure, in which the first entry points to the most recently

used buffer and the last entry points to the least recently used buffer. When a file block is

requested, this array is searched. If the disk block is in one of the buffers, its pointer entry is

moved to the head of the array. If the disk block is not in the buffers, then the buffer pointed to by

the last pointer entry is assigned to the new disk block. However, if the contents of this buffers

was modified and the pointer entry was marked as updated, this buffer will be written back to the

disk file before the new disk block is read into this buffer. Thus the disk file is maintained to

reflect the current state of any update and modifications, while disk read/write is kept to a

minimum. The disk I/O activities are totally transparent to you, as long as you use the commands

BLOCK or BUFFER to access his file.

68

Figure 7.2 Disk buffer management

: LATEST? (n fcb -- fcb n | addr f)

Check if block n is the first entry in the buffer p ointer array. If it is, return
the buffer address and a false flag, and exit from the calling word ABSENT?. If

69

not, return the block number n with the file contro l block address.
 DISK-ERROR OFF First reset the error flag.
 SWAP OFFSET @ + Add the offset block number to obt ain the true block number in the file.
 2DUP Leave a copy for return.
 1 BUFFER# The first entry in the pointer array.
 2@ Get the FCB address and the block number of the buffer pointed to by the first

entry.
 D= IF If block n is pointed to by the first entry,
 2DROP Drop n and fcb. They are not needed.
 1 BUFFER# Get the address of the entry again.
 4 + @ Get the address of the disk buffer.
 FALSE Push a false flag on top.
 R> DROP Discard the top address on the return stack and ter minate the calling word ABSENT?.

The disk buffer was found and there's no point to s earch through the pointer array.
 THEN Block n is not the first entry.
; Return with the block number intact.

The most recently referred block is also the block most likely to be referred to the next time.

LATEST? thus will cut down much buffer searching overhead and improve significantly the

performance of the disk buffer management system.

: ABSENT? (n fcb -- addr flag)

Search through the buffer pointer array for block n in the current file. If it
is found, bring the buffer entry to the head of the array and return the buffer
address with a false flag. If block n is not found in the array, return a dummy
address with a true flag.

 LATEST? Is block n same as the first entry in the buffer pointer array? Exit if so.
Otherwise continue.

 FALSE Put a false flag on the data stack as the in itial flag before looping.
 #BUFFERS 1+ 2 DO Scan through the buffer pointer a rray.
 DROP 2DUP Get the block number n and fcb address duplicated
 I BUFFER# 2@ Get the n and fcb in the pointer arr ay.
 D= IF Is the block number and fcb match?
 2DROP I LEAVE Yes. Block n is in a buffer. Leav e the loop immediately.
 ELSE FALSE THEN No match. Put a false flag back.
 LOOP
 ?DUP IF If a buffer is found to contain the requir ed block, do the following:
 BUFFER# DUP Address of the pointer entry found.
 >BUFFERS Starting address of the pointer arrays o r the 0th entry
. 8 CMOVE Copy this entry to the 0th entry.
 >R Save the address of entry found.
 >BUFFERS Address of 0th entry.
 DUP 8 + Address of 1st entry.
 OVER R> SWAP Current entry address.
 - Length of entries to be shifted downward by 8 b ytes.
 CMOVE> This shift brings the entry with block n t o the 1st entry, making it the currently

used buffer.
 1 BUFFER# Address of the 1st entry with block n j ust found and moved to he 1st entry.
 4 + @ Get its block buffer address.
 FALSE Put the 'found' flag on data stack.
 ELSE No match. The requested block is not in any of the disk buffers.
 >BUFFERS 2! Store the block number and fcb in the 0th pointer entry
 TRUE Return with a 'not found' flag.
 THEN ;

: >UPDATE (-- addr) Get the address of the update field in the 1st buffer pointer entry.
 1 BUFFER# 6 + ;

: UPDATE (--) Mark the most recently used buffer as modified.
 >UPDATE Address of the update field in the 1st ent ry.
 ON Set it true to indicate that the buffer is modi fied.
;

: DISCARD (--) Mark the most recently used buffer as unmodified, preventing it from being written

back to disk.
 1 >UPDATE ! Store a one in the update field in the 1st entry, marking it as unmodified.
;

The update cell in the buffer pointer entry is very important in the virtual memory management

70

system. When this cell is set to true (-1), nothing will happen for the moment. However, when

this buffer space is assigned to a new disk buffer and before the data in the new block is brought in

from the disk, the contents of this buffer will be written back to disk to where it came from. This

way, any change we made in the disk buffer will eventually be written back to disk. On the other

hand, if the update cell is set to 0 or 1, presumably that the contents of the disk buffer is the same as

those on the disk, there is no need of writing the data in the disk buffer back to the disk. Therefore,

new disk block can be brought into this buffer immediately without flushing the old block back to

the disk. The disk accessing can thus be reduced while the integrity of data on disk is assured.

: MISSING (--) Discard the least recently used di sk buffer. If this buffer was marked as

modified, it is written back to disk. The first th ree buffer pointer entries
are then shifted down by one entry. The first entr y is made available to the
new block to be brought in.

 >END 2- @ The address of the update cell in the la st buffer pointer entry, which is the
least used one.

 0< IF If it contains a true flag, write the buffer data back to disk
. >END 8 - The block number of the last entry.
 WRITE-BLOCK Write this buffer back to disk.
 >END 2- OFF Reset the update cell.
 THEN
 >END 4 - @ The buffer address of the last entry.
 >BUFFERS 4 + ! Make it the buffer address of the 0 th entry.
 1 >BUFFERS 6 + ! Mark the 0th entry unmodified.
 >BUFFERS Source address of the down shift of point er entries.
 DUP 8 + Target address of the down shift.
 #BUFFERS 8* Total bytes to be shifted.
 CMOVE> Move from the last byte to first.
; Last pointer entry is discarded. First entry is i nitialized for a new block of

data.

: (BUFFER) (n fcb --
addr)

Assign a disk buffer to block n and return the buff er address on the stack. Block
n is not read in from the disk.

 PAUSE Allow other tasks a chance of execution.
 ABSENT? Is block n already in one of the disk buff ers?
 IF No. A buffer has to be allocated to block n.
 MISSING Shift the pointer entries.
 1 BUFFER# Get the first entry.
 4 + @ Fetch the buffer address therein.
 THEN ;

: BUFFER (n -- addr) Do (BUFFER) on the current f ile.
 FILE @ Fcb of the current file.
 (BUFFER) Assign a buffer to the disk block. Write the old block in the buffer to disk if

it was updated.
;

: (BLOCK) (n fcb --
addr)

Return the address of a buffer which contains data from block n. If block n is
not already in one of the buffers, it is read in fr om the disk.

 (BUFFER) Assign a buffer to the requested block.
 >UPDATE @ Get the update field.
 0> Is it 1?
 IF Yes. The block is not in the buffer.
 1 BUFFER# DUP
READ-BLOCK

Read it from the disk.

 6 + OFF Reset the update flag to false.
 THEN ;

VARIABLE FILE Pointing to the file control block of the current file.
VARIABLE IN-FILE Pointing to the file control block of the second opened file or the in-file.

: BLOCK (n -- addr) Read a block from the current file if it is not in the buffer. Return the buffer

address.
 FILE @ Fcb of the current file.
 (BLOCK) Read it.
;

71

F83 allows you to open and use two files concurrently. The first file is opened with the command

OPEN and is referred to as the current file. The second file is open by the command FROM and

is called the in-file. The current file is always used as the output file and the in-file is always used

as the input file. This way you can copy blocks from one file to another. When OPEN is

executed, the invoked file is set to be both the current file and also the in-file so that you can read

and write to the same file. The file control block address of the current file is stored in FILE, and

that of the in-file is in IN-FILE.

: IN-BLOCK (n -- addr) Read a block from the in-f ile which is the second file opened to the system.
 IN-FILE @ Get the fcb of the in-file.
 (BLOCK) Read it.
;

BLOCK is the most important command to communicate with the disk. It is the virtual memory

manager. If we need any block of data from disk, just give BLOCK the block number and it will

make sure that you have the data in one of the disk buffers. From the address returned by BLOCK,

you can access the disk block data using the regular memory accessing commands. If you

remember to set the update cell when you change the data in the disk buffer, BLOCK will see to it

that the modified data will be written back to disk. This is done explicitly using the UPDATE

command. You can command BLOCK to ignore any change you made in a disk buffer by the

command DISCARD.

In cases that you want to write raw data on to a fresh disk or you do not want to read in the disk

block, BUFFER is the command to use because it does not do the disk read. You can use BLOCK

for the same purpose, but then you will do a useless disk read operation. When you are writing a

large file on to the disk, BUFFER can save you quite some time because only write operations are

performed.

7.6. Saving Disk Buffers to Disk Files

BLOCK and BUFFER will write to disk only when disk buffers are full and new disk blocks are

requested. If the computer is turned off, the buffers will be lost because their contents do not have

a chance of being written back. The following commands force the system to write all the

updated buffers back to disk. They are highly recommended, especially when you are doing

editing work.

: SAVE-BUFFERS (--) Write back all the updated bu ffers to disk and then mark them all as unmodified.
 1 BUFFER# Address of the 1st pointer entry.
 #BUFFERS 0 DO Scan all the pointer entries.
 DUP @ Get the block number.
 1+ IF Block number cells were initialized to -1 a s empty buffer. Make sure the buffer

is not empty.
 DUP 6 + Address of the update cell.
 @ IF Is the buffer updated?
 DUP WRITE-BLOCK Yes. Write it back to disk.

72

 DUP 6 + OFF Reset the update cell.
 THEN
 8 + Address of the next entry.
 THEN
 LOOP
 DROP Discard the entry address.
;

: EMPTY-BUFFERS (--) First wipe out the data in t he buffers. Initialize the buffer pointers to poin t

to the right addresses in memory and reset all the update cells.
 FIRST LIMIT Boundary of disk buffers.
 OVER - ERASE Erase the entire disk buffer area.
 >BUFFERS Buffer pointer array.
 #BUFFERS 1+ 8 * Bytes in the pointer array.
 ERASE Clear the pointer array.
 FIRST 1st buffer address.
 1 BUFFER# Address of the 1st pointer entry.
 #BUFFERS 0 DO Go through all pointer entries.
 DUP ON Initialize the block number cell.
 4 + 2DUP ! Initialize the buffer address cell.
 SWAP B/BUF + Address of the next buffer.
 SWAP 4 + Address of the next pointer entry.
 LOOP
 2DROP ; Clear the stack.

: FLUSH (--) Save and empty all the buffers.
 SAVE-BUFFERS
 0 BLOCK DROP Cheat the CP/M system to defeat its e xtra buffering in BIOS. By accessing a dummy

block, you can be sure that the old one is flushed out of the pipeline and written
to disk.

 EMPTY-BUFFERS ;

Whenever you change disk, be sure to FLUSH out all the buffers to the old disk. During program

developments, if you have any concern about losing data or crashing the system, FLUSH the

buffers first. If you are absolutely sure that the data in the buffers are corrupted, use

EMPTY-BUFFERS to clear the buffers. If you want to throw away only one buffer, use

DISCARD immediately after you access this buffer by BLOCK, making it the most recently used

buffe

73

Chapter 8. Dictionary and Vocabulary

The source code discussed in this chapter is in the file KERNEL86.BLK, Screens 67-68, and 76.

If you had a figForth system, you might have noticed that it toke a while to compile a screen of text.

If you were to load a sizable system or application program, it might seem to be a long time before

the computer came back and put an 'ok' on the screen. The reason is that the dictionary in figForth

is basically a single, linearly linked list of commands. It takes some time for the text interpreter to

travel through this list to find a command. The worst cases are the numbers. If the text

interpreter cannot find the command in the context vocabulary, it will search again in the current

vocabulary, which in most cases is the same as the context vocabulary with the entire root FORTH

vocabulary tagged at the end.

F83 improves this situation by breaking the dictionary into four separately linked lists. To locate

a command, only a quarter of the dictionary needs to be searched. This strategy visibly enhances

the performance of the text interpreter. In this section, I hope that I can explain how this

dictionary structure is implemented.

8.1. Threading of the Dictionary

First, there are several important system variables which perform the house keeping chores in

managing the vocabulary and the searching of dictionary:

VARIABLE DP Pointer to the top of the dictionary. R eturned by HERE.
VARIABLE CURRENT Pointer to the current vocabulary to which new definitions are linked.
8 CONSTANT #VOC The number of vocabularies to be se arched, as specified by the array in CONTEXT.
VARIABLE CONTEXT The context vocabulary pointer.
#VOCS 2* ALLOT Space to hold 8 transient vocabulary pointers. The array specifies the search

order for the text interpreter.
VARIABLE VOC-LINK Pointer to the most recently defi ned vocabulary. Vocabularies are thus linked

in the order of their creation.

The 8 numbers stored in the transient array are the parameter field addresses of up to eight different

vocabularies. The text interpreter searches up to eight vocabularies and stops at the first encounter

of the name it looks for.

Next, let us see how the vocabularies are defined and how to select the context and current

vocabularies.

: VOCABULARY (--) Define a new vocabulary.
 CREATE Take the following string as the name of th e new vocabulary.
 #THREADS 0 DO Compile four 0's in the parameter fi eld.
 0 , They are the four threads
 LOOP in the dictionary for the new vocabulary.

74

 HERE The next cell is for the vocabulary link, VOC -LINK.
 VOC-LINK @ , Old vocabulary link is placed in this cell.
 VOC-LINK ! The new vocabulary is the last in the v ocabulary link list. Its link address must

be stored in VOC-LINK.
 DOES> End of the compilation of a new vocabulary e ntry in dictionary. Next is the

vocabulary interpreter:
 CONTEXT ! Store the parameter field address of this vocabular y in the first cell of the

CONTEXT array so that this vocabulary will be searc hed first by the text
interpreter.

;

: DEFINITIONS (--) Link subsequent definitions to the context vocabulary.
 CONTEXT @ Get the address of the context vocabular y.
 CURRENT ! Store it in CURRENT. New definitions wi ll be linked to the vocabulary pointed

to by CURRENT.
;

The interesting things are how new commands are linked to the current vocabulary and to the

threads in the dictionary. We may think that the vocabularies are the logical groupings of

commands in the dictionary and the threads are the physical groupings of commands in the

dictionary. New commands are created by CREATE, which invokes "CREATE to build the name

fields and link fields:

: "CREATE (--) Create an header for a new definit ion. The header consists of a view field, a

link field, and a name field.
 COUNT Character count in the name.
 HERE EVEN 4 + Address of the name field.
 PLACE Move the name string into the name field.
 ALIGN Align the header to cell boundary because th e view field contains a 16 bit integer.
 ,VIEW Lay down the view field in which the top 4 b its contain a file number and the

lower 12 bits contain a block number in the file.
 HERE 0 , Save a cell for the link field to be fill ed later.
 HERE LAST ! Store the name field address in LAST.
 HERE (lfa nfa) Get the name field address.
 WARNING @ If the warning flag is set, search the d ictionary to see if the name is unique.
 IF FIND If it is an existing name,
 IF HERE COUNT TYPE print the name, ."isn't unique " with an error message.
 THEN
 DROP HERE Clean the stack after DEFINED.
 THEN
 CURRENT @ HASH Hash the first character of the nam e with the current vocabulary to return one

of the four threads to be extended.
 DUP @ Get the name field address of the last defin ition of this thread.
 HERE 2- The link field address of the current defi nition.
 ROT ! Store this link field address in the head of thread in the current vocabulary.
 SWAP ! Store the link field address of the last de finition in the link field of the current

definition and extend the linked chain.
 HERE Name field address saved on stack.
 DUP C@ Character length of name.
 WIDTH @ MIN 1+ Width of the name field.
 ALLOT ALIGN Name field allocated.
 128 SWAP CSET Set the MSB of the length byte, the first byte in name field as a name field

delimiter.
 128 HERE 1- CSET Set the MSB of the last byte in n ame field as another delimiter.
 COMPILE [Turn on the interpreter.
 DOCREATE , Compile the variable interpreter in the code field.
; Thus complete the header.

75

Figure 8.1 Structure of a Forth command

The header in this F83 Forth is not the same as the other more popular Forth systems. A view

field is added to help you locating a command in one of the CP/M files containing Forth source

screens. The link field is placed before the name field so that the string comparisons can be

performed more quickly without traversing through the name field. The linking of dictionary

entries involves only the link fields. Name fields are no longer involved in the linkage.

8.2. Hashing and Searching the Dictionary

76

Two important commands in "CREATE above was not fully explained: HASH and DEFINED.

These are the key commands used by the text interpreter to search specific commands in the

dictionary. HASH is a code command. DEFINED, however, is a high level colon command

which eventually calls a code command (FIND) to do the actual searching. Let us look at HASH

and (FIND):

CODE HASH

(string-addr vocabulary-pfa -- thread-addr)
Given a string address and a pointer to a vocabular y, return the address of the
thread in the parameter field of the vocabulary.

 CX POP Pfa of the vocabulary.
 BX POP Address of the string.
 BX INC Address of the first character.
 0 [BX] AL MOV Get the first character which is the key of hashing.
 3 # AX AND Use only the two LSB bits.
 AX SHL Multiply it by 2 to get the cell offset to the proper thread.
 CX AX ADD The actual address of the thread.
 1PUSH Push the thread on stack and return.
 END-CODE

CODE (FIND)

(here lfa -- cfa true, if found; here false, if no t found.)
Given the address of a string and the link field ad dress of a word in dictionary,
search the dictionary and return an address and a f lag on the stack. Flag=1 for
an immediate word; flag=-1 for a regular word; and flag=0 if the word is not found.
If not found, the string address remains on the sta ck.

 DX POP The link field address.
 DX DX OR Test it.
 0= IF
 AX AX SUB Lfa is 0.
 1PUSH Push a false flag and return.
 THEN Lfa not 0. Start comparing strings.
 BEGIN
 DX BX MOV
 BX INC BX INC BX now points to the name field of the dictionary entry.
 DI POP Here.
 DI PUSH Get the string address to DI.
 0 [BX] AL MOV Get the length byte of the dictiona ry entry.
 0 [DI] AL XOR Compare it with the string length.
 63 # AL AND Mask of two most significant bits, de limiter and precedence bits.
 0= IF Length bytes not equal, go for the next ent ry in the thread.
 BEGIN
 BX INC Length bytes equal, now scan the strings .
 DI INC Next character.
 0 [BX] AL MOV From the dictionary entry.
 0 [DX] AL XOR Compare with the one at HERE.
 0<> UNTIL If equal, continue the comparison.
 127 # AL AND Not equal. See if it is the last c haracter in the name field.
 0= IF Not the last character. Strings are not t he same. Go for the next entry in the

thread.
 DI POP Rid of the HERE.
 BX INC Get the code field address.
 BX PUSH Push it on the data stack.
 DX BX MOV Get the link field address back to BX again, checking precedence bit.
 BX INC BX INC Increment to the name field addre ss.
 0 [BX] AL MOV Get the length byte again.
 64 # AL MOV Examine the precedence bit.
 0<> IF Not an immediate word.
 1 # AX MOV Set indicator to 1 for immediate w ord.
 ELSE
 -1 # AX MOV Not immediate, set AX to -1.
 THEN
 1PUSH Push the indicator on stack and return.
 THEN
 THEN
 DX BX MOV String comparison failed. Prepare to t est the next entry in the thread.
 0 [BX] DX MOV Get the link field address of the n ext entry in the thread from the link field

of this entry.
 DX DX OR Is the next link field address zero, end of the thread?
 0= UNTIL Not the end of thread. Loop back for the next entry.
 AX AX SUB End of the thread,
 1PUSH push a false flag on stack and return.
 END-CODE

77

Figure 8.2 Four-way threading in a vocabulary.

(FIND) searches through one thread, with a given link field address of a dictionary entry. To pick

up one thread among four for searching and to do the searching, a high level command FIND has to

be used.

78

4 CONSTANT #THREAD Number of threads implemented in this Forth system.

: FIND (string-addr -- cfa true, if found; strin g-addr false, if not found)
 DUP C@ IF If the string is not a null string, do t he dictionary searching. Otherwise, do

the end of line processing.
 PRIOR OFF PRIOR is a user variable storing the la st vocabulary searched. Clear PRIOR to

begin searching.
 FALSE This is a dummy flag for the next do-loop.
 #VOCS 0 DO #VOCS=8, the number of vocabularies to be searched.
 DROP Drop the flag on stack.
 CONTEXT I 2* + @ Get the vocabulary address in t he CONTEXT array.
 DUP IF If the vocabulary address is zero, skip i t because no vocabulary was specified

for this CONTEXT entry.
 DUP PRIOR @ Get the contents of PRIOR, the last vocabulary searched.
 OVER PRIOR ! Update PRIOR with the vocabulary to be searched now.
 = IF If the PRIOR vocabulary is the same as the present vocabulary, here is no need

of repeating the searching.
 DROP FALSE Drop the vocabulary and replacing with a false flag. Loop back.
 ELSE Now search the new vocabulary.
 OVER SWAP Save a copy of the string address.
 HASH Hash the string and return the address of the head of a thread in the present

vocabulary.
 @ Pick up the thread, the link field address o f the last entry in this thread in

the dictionary.
 (FIND) Search the dictionary.
 DUP ?LEAVE If tos is a true flag, a word is found in the dicti onary. Leave the loop immediately.

If tos is false, repeat the loop and search the nex t vocabulary.
 THEN
 THEN
 LOOP
 ELSE Null string processing.
 DROP Discard the string address.
 END? ON Turn on the end-of-line flag.
 ['] NOOP 1 Push the NOOP address on the stack wit h a true flag so that the end-of-line process

will happen immediately.
 THEN ;

FIND thus scans the CONTEXT array, where up to 8 vocabularies can be specified and are to be

searched in the order of the array. When a vocabulary is to be searched, HASH selects one of the

4 threads, which are the link field addresses of the last entries in each of the threads stored in the

parameter field of the vocabulary, and hands the proper link field address to (FIND) to scan the

thread for a name matching the given string. When a vocabulary was searched, its address was

preserved in PRIOR to avoid searching the same vocabulary repeatedly. This allows the same

vocabulary to be specified in the CONTEXT array more than once without being searched more

than once. FIND can also skip nulls in the CONTEXT array. Nulls and multiple vocabulary

entries in CONTEXT are conveniences in manipulating vocabulary searching order, which will be

discussed in a moment.

: DEFINED (-- addr flag)

Parse out the next word in the nput stream and sear ch the dictionary. If a matching
entry is found, return its cfa and an 1 or -1. If n ot found, return HERE and a
false flag.

 BL WORD Parse the next word, delimited by blank ch aracters, and copy the word to HERE,
the word buffer.

 CAPS @ IF If the contents of CAPS is true, he word will be converted to upper case characters.
 DUP COUNT UPPER Upper the cases.
 THEN
 FIND Now do the searching.
;

If an immediate command is found by FIND, the return flag is 1. If the found command is a regular,

79

non-immediate, command, -1 is returned. It is important for the colon compiler to know whether

a command is immediate or not. The colon compiler normally compiles the code field addresses

of regular commands, but executes the immediate command to take care of special compiling

conditions or to build structures in a colon command.

In F83, because of the more complicated CONTEXT structure, it requires a few more commands to

handle the vocabularies and to use then effectively. When a vocabulary is invoked, its parameter

field address is stored into the first cell in the CONTEXT array. Next time a search is initiated,

this vocabulary will be the first vocabulary to be searched. The command ONLY is used to

initialized the CONTEXT array and places the address of a very small searching control vocabulary

in the first and the last cell of the CONTEXT array. The commands in this control vocabulary

allow us to select appropriate working vocabularies like FORTH, etc. The command ALSO

copies the first CONTEXT entry to the second entry and moves the second and subsequent entry up

by one cell, adding one entry to the searching order. This set of command can be used to specify

any searching strategy within the size of the CONTEXT array.

80

Figure 8.3 Vocabularies and the dictionary structure.

81

Chapter 9. Number Input and Output

The source code discussed in this chapter is in KERNEL86.BLK file, Screens 58 to 61.

The Forth interpreter can only recognize two types of commands: commands or Forth commands

compiled into the dictionary, and numbers. A large portion of the Forth system is devoted to

processing numbers, including inputting numbers from console or disk, doing arithmetic and logic

operations on them, and outputting them to console or other devices in a required format. In the

nucleus layer, we've seen lots of arithmetic and logic operators. In this chapter, we will discuss

how numbers are converted from the external representation in ASCII strings to the internal

representation in the binary form, and vice versa.

9.1. Representation of Numeric Data

A very interesting aspect of Forth in its external representation of numbers is that numbers can be

presented in many different bases. Not only decimal, octal, hexadecimal, and binary, but also in

any reasonable base from 2 to 70, limited by the number of ASCII characters available to represent

digits. The reason is that in Forth the primitive number input and output commands are directly

accessible to you, giving you tools that you can use at will to define and modify rules in doing

number input and output.

Internally, all numbers are represented in 16 bit binary form and processed in 16 bit units. In the

case that more bits are required to represent large integer numbers, two 16 bit numbers are used

together as a 32 bit double precision integer. For data requiring less than 16 bits, they are

generally right justified in the 16 bit field and the high order unused bits are cleared to zeros.

F83 uses many different data types. Their ranges are show in the following table:

Table 9.1. Data Representation

Date Type Range
True flag -1 or 32767
False flag 0
ASCII codes 0..127
Byte 0..255
Integer -32768..32767
Unsigned integer 0..65535
Address 0..65535
Double integer -2,147,483,648..2,147,483,647
Unsigned double integer 0..4,294,967,295

Forth is not a typed language. We can talk about data types and their external representations, but

82

once they are inside the Forth computer, they are all represented in the uniform 16 bit format.

Forth doesn't care what type a number was when it is input into Forth. Thus you can do arithmetic

on the flags and ASCII codes like any other number. You have to know what you are doing.

You must use the right operator to process the data you entered. This is the price you have to pay

for the convenience in using the data stack.

F83 maintains three user variables specifically for the purposes of number input/output:

VARIABLE BASE The current base for number input and number output conversions. a 10 stored in BASE

causes input number strings to be treated as decima l numbers. A 16 in BASE makes the
conversions done in hexadecimal.

VARIABLE DPL The decimal point location. It stores the location of the decimal point in an ASCII
number string, from the right end of the string. In other words, the number of digits
after the decimal point.

VARIABLE HLD The number of digits stored in the num ber output buffer for output.

9.2. Input Number Conversion

The text interpreter parses a word out of the input stream and places the parsed word in the word

buffer, just above the last entry in the dictionary. It first searches the dictionary to see if the word

is a pre-defined Forth command. If it fails to match the parsed word to a command, the parsed

word is left in the word buffer for the number conversion routine to convert it to a number. The

following set of F83 commands support the number conversion process.

LABEL FAIL A common return routine used when failed to convert the string to a number due

to a number of reasons.
 AX AX SUB Push a false flag on the stack
 1PUSH and return to the NEXT routine.

CODE DIGIT (char base
-- n f)

Return a flag indicating whether or not the charact er is a valid digit in the
current base. If so, return the converted value wi th a true flag. Otherwise,
return the character with a false flag.

 DX POP Pop base into DX.
 AX POP Pop character into AX.
 AX PUSH Push character back to stack just in case of a conversion failure.
 ASCII 0 # AL SUB Subtract ASCII 0 (48) from the co de of the given character.
 FAIL JB If char is below 0, it is not a valid digi t. Jump to FAIL.
 9 # AL CMP Is char > 9?
 > IF No, a regular digit. Skip to DIGI1.
 17 # AL CMP Is char between 9 and A?
 FAIL JB Yes. Invalid digit. Jump to FAIL.
 7 # AL SUB Eliminate the gap between 9 and A. A must be the next digit following 9.
 THEN
 DL AL CMP AL has the converted value. Is it in th e range of BASE?
 FAIL JAE If the value is equal or above the base v alue, it is not a valid digit. Jump

to FAIL.
 AL DL MOV Copy value to DL for DPUSH.
 AX POP Discard char from the stack.
 TRUE # AX MOV Put true flag in AX.
 2PUSH Push value and flag on stack and return.
 END-CODE

83

Figure 9.1 Input and output number conversions

The sequence of digits is from 0 to 9, and from A up if the base value is greater than 10.

Theoretically the sequence can go up to tilde (~ ASCII 126). Then anything you type would be

84

converted to a number.

: DOUBLE? (-- f) Return a true flag if a period i s encountered in the number string.
 DPL @ Get the contents of DPL. If no period is in the number string, DPL is -1 as

initialized.
 1+ 0 if no period.
 0<> Logic NOT.
;

: CONVERT (ud1 addr1 --
ud2 addr2)

Starting with the unsigned double integer ud1 on st ack and the number string at
addr1, convert the string to a number and add to ud 1 according to the current
base. Leave the resulting double integer and the a ddress of the unconvertable
digit addr2 on stack.

 BEGIN This is an indefinite loop.
 1+ Get the next character in the string.
 DUP >R C@ Get one digit and save a copy of its ad dress on return stack.
 BASE @ DIGIT Convert one digit.
 WHILE Exit the loop if the digit is invalid.
 SWAP BASE @ UM* Left shift the upper half of the double integer by one digit.
 DROP Keep only the lower half of the product.
 ROT BASE @ UM* Left shift the lower half of the d ouble integer by UM*. Result is a double integer

sitting on top of the value of converted digit and the left-shifted upper half
of ud1.

 D+ This is tricky, but the result s ud1*base+valu e.
 DOUBLE? Have we seen a period?
 IF 1 DPL +! THEN Yes, we get one more digit after the period. Increment DPL.
 R> Recall the character address.
 REPEAT
 DROP Discard the invalid digit left by DIGIT.
 R> Address of the invalid digit.
;

: (NUMBER?) (addr -- d
flag)

Given a string at addr with at least one digit, con vert it to a double integer.

 0 0 The initial value of the double integer servin g as accumulator.
 ROT Get addr to top of stack.
 DUP 1+ C@ Get the first digit.
 ASCII - = Compare it to ASCII - sign.
 DUP >R Save the negative flag on return stack.
 - Otherwise, start conversion at the current addre ss.
 -1 DPL ! Initialize DPL.
 BEGIN
 CONVERT Convert the number string.
 DUP C@ Get the invalid digit.
 ASCII , ASCII /
 BETWEEN them is a valid punctuation mark, equival ent to a period.
 WHILE 0 DPL ! A punctuation mark is encountered. R eset DPL.
 REPEAT Ignore the punctuation mark and continue co nverting the rest of the number string.
 -ROT Rotate the invalid character address below th e double integer.
 R> Get the negative flag.
 IF DNEGATE THEN If the number is preceded by a - s ign, negate the double integer.
 ROT C@ BL = Compare the last invalid digit with bl ank and leave the result on stack as a flag.
;

F83 accepts numbers with an optional preceeding - sign for negative numbers. Within the number

string, four punctuation marks, ',', '-', '.', and '/' are allowed. When any of these punctuation marks

appear in the string, DPL is reset to zero so that CONVERT can keep track of the number of digits

following the punctuation mark, and the converting process continues on until an invalid digit other

than these punctuation marks is encountered.

: NUMBER? (addr -- d f) Convert the number string at addr to a double integer. The number string ma y

be preceded by a - sign, but must be terminated by a blank. The location of the
last punctuation mark is saved in DPL. A true flag is left on the stack if
successful.

 FALSE Put up a default flag on stack.
 OVER COUNT BOUNDS Set up loop limits to scan the s upposed number string.
 ?DO Scan the string for valid digit.
 I C@ BASE @ DIGIT Is this a valid digit?

85

 NIP I don't care its value now.
 IF DROP TRUE LEAVE Leave the loop with a true f lag if a valid digit is found in the string.
 THEN
 LOOP The purpose of this test is to filter out a m istyped word in which case it is

just a waste of time to do the number conversion.
 IF (NUMBER?) Do the conversion if the string is po tentially a number.
 ELSE No valid digit in the string.
 DROP Discard its address.
 0 0 Put a null double integer on stack.
 FALSE Top it with a false flag.
 THEN ;

: (NUMBER) (addr -- d) Convert a number string to a double integer. The string may have optional le ading

- sign and embedded punctuation. It must be termina ted by a blank.
 NUMBER? Conversion.
 NOT If not a number or not terminated by a blank,
 ?MISSING print an error message and abort.
;

DEFER NUMBER Vectored to (NUMBER).

With this set of input conversion tool, we can type in numbers like:
 415-424-3001 12/25/1983 123.45 -0.4567 987,654 ,321 534,234.00

If we are in hexadecimal base the following numbers are also valid:
 A1 F9 BAD-FAD FEED/BEAD -1B2A5D.0

However, after conversion, they are all internally represented by double integers. The embedded

punctuation marks have no effect on the conversion except the contents of DPL.

9.3. Output Number Conversion

The primitive Forth output conversion routine converts a double integer to an ASCII string suitable

for outputting to a console or to a printer. You can explicitly format the string and insert special

characters into the string to design formats you desire. Let's look at these small tool commands

first and then see how they are strung together to build number output commands often used in

routine Forth programming.

: HOLD (char --) Insert the character char into t he output string. HLD contains a character pointer

to the output text buffer where he number output st ring is being constructed.
The number character string is built backwards from the least significant digit
to the most significant digit. To insert a charact er into this string HLD has
to be decremented.

 -1 HLD +!
 HLD @ Get the character pointer.
 C! Insert char to where HLD points.
;

: <# (--) Initialize the number conversion proces s.
 PAD PAD returns the location of the text buffer us ed for output.
 HLD ! Point HLD to PAD so that the number string c an be built in the PAD buffer.
;

: #> (d -- addr len) Terminate the output number conversion and leave the address and length of the

number string on stack suitable for TYPE to print o ut.
 2DROP The double integer on stack is no longer nee ded.
 HLD @ The address of the number string.
 PAD The end of the string.
 OVER - The length of string.
;

: SIGN (n --) If n is negative insert a minus sig n into the number string.
 0< IF If n is negative,

86

 ASCII - HOLD Insert the minus sign.
 THEN ;

: # (d1 -- d2) Convert one digit and add the digi t to the number string. The conversion is to

divide d1 by base. The quotient d2 is left on stac k and the remainder is converted
to ASCII code and add to the output buffer.

 BASE @ MU/MOD Divide d1 by base. The remainder an d the double integer quotient are left on
stack.

 ROT Get the remainder to top.
 9 OVER < If the remainder is greater than 9,
 IF 7 + THEN add 7 to make A.
 ASCII 0 + HOLD Convert to ASCII code and HOLD it i n the output buffer.
;

: #S (d -- 0 0) Convert a double integer until fi nished.
 BEGIN
 # Convert one digit.
 2DUP OR Is the quotient 0?
 0= UNTIL If it is zero, exit the loop. Otherwise, continue converting.
;

With these tools, we can format numbers for output in any format we want. However, it is always

nice to look at how the F83 designers built some of the standard number output commands.

: (U.)(u -- addr len) Convert an unsigned single integer to a number string.
 0 Make the unsigned integer a double integer.
 <# Initialize the conversion.
 #S Convert all digits.
 #> Prepare for output.
;

: U. (u --) Output an unsigned single integer wit h one trailing space.
 (U.) Convert.
 TYPE SPACE Print.
;

: U.R (u len --) Output an unsigned integer in a field of len columns.
 >R Save the column width.
 (U.) Convert.
 R> Recall column width.
 OVER - SPACES Output appropriate number of spaces so that the number string will come out right

justified.
 TYPE Output the string.
;

: (.) (n -- addr len) Convert a signed single in teger to a number string.
 DUP ABS Get the absolute value of n.
 0 Make it a double integer.
 <# #S Convert all digits.
 ROT SIGN Add a minus sign if n is negative.
 #> Finish the output string.
;

: . (n --) Output a signed integer with a trailin g space.
 (.) Convert.
 TYPE SPACE Type.
;

: .R (n len --) Output a signed integer right jus tified in len columns.
 >R (.) Convert n first.
 R> OVER - SPACES Pad with leading blanks.
 TYPE Now print the number right justified.
;

9.4. Double Integer Output

: (UD.) (ud -- addr len)

Convert an unsigned double integer to a number stri ng.
 <# #S #> ;

87

: UD. (ud --) Output an unsigned double integer w ith a trailing space.
 (UD.)
 TYPE SPACE ;

: UD.R (ud len --) Output an unsigned double inte ger right justified in len columns.
 >R (UD.)
 R> OVER –
 SPACES TYPE ;

: (D.) (d -- addr len) Convert a signed double in teger to a number string.
 TUCK Save a copy of the upper half of the double i nteger under he double integer. We

will need its sign.
 DABS Convert the double integer to its absolute va lue.
 <# #S Convert all digits.
 ROT Get the saved upper half of the original doubl e integer
 SIGN Put up its sign.
 #> All done.
;

: D. (d --) Output a signed double integer with a trailing space.
 (D.)
 TYPE SPACE ;

: D.R (d len --) Output a signed double number ri ght justified in len columns.
 >R (D.) R> OVER -
SPACES TYPE ;

88

Chapter 10. Word Parsing

The source code discussed in this chapter is in the file KERNEL86.BLK, Screens 62 to 64.

10.1. Text Processing

In communicating with you through a console, the computer must be able to accept a line of

commands and find out what is your intention. The computer then can carry out the commands

and do some useful work. In most conventional operating systems, the task which accepts

commands from console and interprets the contents of the commands is called a command line

interpreter (CLI). The user has to observe a set of rules in entering commands, because the

computer uses this set of rules to determine what has to be done, given these commands. These

rules are the syntax rules, or more generally, the grammar of the command line interpreter. When

the command line interpreter becomes more powerful and has more functions built into it, its

syntax becomes more complicated and the syntax rules multiply very quickly.

Forth uses a very simple and straightforward syntax rule in interpreting command lines. The

command line consists of a sequence of words, separated by blanks or spaces. The words

represent either commands pre-compiled in the Forth dictionary or numbers. Thus the Forth

command line interpreter or text interpreter can be extremely simple, comparing to CLI's in other

languages or operating systems. The interpreter just has to parse out words using blanks as

delimiters, searches the dictionary to locate the executable code of the commands, and executes the

code. If a word is not a command in the dictionary, the interpreter will try to convert it into a

number and push the number on the stack. If the word is neither a command nor a number, it is

beyond the capability of the computer to do anything about it, and the interpreter will send an error

message to you protesting your mistake in a very mild manner.

The tool that provides the interpreter with the ability to parse out words from a command line, or an

input stream of characters, is the Forth command WORD. Before we get into the details of

WORD, a few other supporting commands have to be clarified.

10.2. Input Stream and Input Buffers

First, what is an input stream? Where does the interpreter get the command lines? Forth

interpreter can accept commands from two different sources: a console terminal or a disk. Two

special areas in the computer memory are dedicated to store commands coming from these sources:

a terminal input buffer or TIB for commands entered through the console, and one or more disk

89

buffers for commands coming from the disk. The terminal input buffer is managed by a number

of variables and commands:

VARIABLE 'TIB Contains the starting address of the terminal input buffer.

: TIB (-- addr) Return the address of the termina l input buffer.
 'TIB @ ;

VARIABLE #TIB Maximum number of characters thatcan be held in the terminal input buffer.
VARIABLE >IN Pointer to the character currently bei ng processed. It is an offset from the

starting address of the input buffer, which is eith er the terminal input buffer
or a disk buffer.

The disk buffers are managed by the virtual memory management in Forth. The details of this

virtual memory system are discussed in a separate chapter. Here we are only concerned with the

one disk buffer which is assigned to the interpreter so that the interpreter will get its commands

from this buffer. The disk block number is store in a user variable:
VARIABLE BLK Block number of source on disk to be i nterpreted.

The convention adopted by most Forth systems, including F83, is that if BLK contains a zero, the

terminal input buffer is used for interpretation; otherwise, the disk block specified by BLK is used.

10.3. Low Level Parsing Commands

DEFER SOURCE Vectored to (SOURCE). Return the star ting address of the buffer used to hold

current input stream.

: (SOURCE) (-- addr len)

Return the string to be processed by the text inter preter. Addr is the beginning
address of the input buffer and len is the length o f the input buffer.

 BLK @ Get the block number from BLK.
 ?DUP IF If the block number is not zero,
 BLOCK fetch the block of commands from disk and return wi th the address of the disk

buffer.
 B/BUF Length of disk buffer is 1024 bytes.
 ELSE If the block number is zero,
 TIB get the address of the terminal input buffer,
 #TIB @ and the length of it.
 THEN ;

Here are the hard stuff. Two code commands that scan the input stream to locate special

characters in the stream.

LABEL DONE A common returning point when the input stream is exhausted.
 CX PUSH Push the contents of CX on stack and retur n. CX register has the remaining length

of the stream.
 NEXT

CODE SKIP (addr len char -- addr1 len1)

Given the address and length of a string, and a cha racter to look for, scan through
the string while we continue to find the character. Leave the address of the
mismatch and the length of the remaining string.

 AX POP Move char to AX register.
 CX POP Move len to CX register.
 DONE JCXZ If length of string is zero, jump to DON E and return.
 DI POP Move addr to DI register.
 DX DX MOV
 DX ES MOV Set ES=DS for string manipulations.
 REPZ BYTE SCAS Repeatedly scan the string until we find a character different from that in AX.
 0<> IF CX now has the count of characters in the r emaining string. If CX is not zero,

90

DI is pointing to the first mismatched character.
 CX INC Backspace.
 DI DEC Pointing to the last matching character.
 THEN
 DI PUSH Addr1.
 CX PUSH Len1.
 NEXT Return.
 END-CODE

CODE SCAN (addr len char -- addr1 len1)

Given the address and length ofa string, run throug h the string until we find
the character. Leave the address of the match and t he length of the remaining
string.

 AX POP CX POP
 DONE JCXZ Same as SKIP.
 DI POP
 DS DX MOV DX ES MOV
 CX BX MOV Set up looping parameters.
 REP BYTE SCAS Repeat if character mismatches. Scan the string.
 0= IF If the string is exhausted,
 CX INC Backspace.
 DI DEC
 THEN
 DI PUSH Restore string registers.
 CX PUSH
 NEXT END-CODE

SKIP is used to skip over the leading spaces in front of a word, because words can be separated by

a number of spaces allowing source commands to be free-formatted. SCAN, on the other hand,

will stop at the first match. Separating these two functions into two commands gives F83 much

more versatility in handle strings than older versions of Forth like figForth .

: /STRING (addr len n -- addr1 len1)

Index into the string by n characters. Return addr+ n and len-n.
 OVER MIN Change n to the smaller of n and len.
 ROT OVER + Addr+n.
 -ROT - Len-n.
;

: PLACE (from-addr len to-addr --)

Move the characters at from-addr to to-addr. The f inal string has a preceding
length byte of len.

 2DUP C! Store the length byte.
 1+ To-addr+1, address of the first character.
 SWAP MOVE Copy the string.
;

91

Figure 10.1 Parsing with WORD

10.4. High Level Parsing Commands

The real word parsing actions are embodied in the following two commands, which scan the input

stream and parse out words with specified delimiting character.

: PARSE-WORD (char -- addr len)

Scan the input stream until char is encountered. S kip over leading chars. Update
>IN pointer. Leave the address and length of the p arsed word.

 >R Save char on return stack.
 SOURCE TUCK Get the address and length of the inpu t buffer.
 >IN @ /STRING Get the current character pointer in >IN and modify addr and length accordingly.
 R@ SKIP Skip over leading chars in the input strea m starting at >IN.
 OVER SWAP R> SCAN Scan for the next occurrence of char.
 >R Save length of the remaining string.
 OVER - ROT Addr and length of the parsed string.
 R> Retrieve the length of string.
 DUP 0<> + - >IN +! Update >IN to one character aft er the parsed word. However, if the parsed string

is a null string, do not move >IN.
;

: PARSE (char -- addr len)

Do the same as PARSE-WORD without skipping the lead ing char.
 >R
 SOURCE >IN @ /STRING
 OVER SWAP R> SCAN SCAN instead of SKIP.
 >R Len.
 OVER - DUP Addr and length of parsed string.
 R> 0<> - >IN +! Update >IN to end of string.

92

;

: 'WORD (-- addr) Leave on stack the address of the word buffer, which is on top of the dictionary.

In F83 'WORD is the same as HERE. They might differ as indicated in 83-Standard.
 HERE ;

Finally, we get to the most important command WORD, which parses the next word in the input

buffer and copies the word to the word buffer for the text interpreter to do searching or number

conversion. WORD will skip over leading delimiters so that words in the input stream can be

spaced out to conform to various formatting conventions.

: WORD (char -- addr) Parse the input stream for char and return a count delimited string in the word

buffer at HERE. Note that there is always a blank following the word in the word
buffer.

 PARSE-WORD Get the address and the length of the next word in the input stream.
 'WORD PLACE Move the word into the word buffer, with a length byte as the first character.
 'WORD DUP COUNT + The address following the string.
 BL SWAP C! Append a blank at the end of string.
; .

10.5. String Commands Defined Using PARSE

A couple of examples are handy here to illustrate the usefulness of these parsing commands:

: ((--) The Forth comment command. The input stream is skip ped until a) is encountered.

The enclosed comments are thus ignored by the text i nterpreter.
 ASCII) Use) as the delimiter.
 PARSE Move >IN to the character after).
 2DROP Nothing will be done with the comments. Discard its address and length.
; IMMEDIATE Declare (to be immediate so that it will be executed inside a colon definition.

: .((--) Type the following string on the console during interpretation or compilation.
 ASCII) Use) as delimiter.
 PARSE Parse out the next string upto but not including the) character.
 >TYPE With addr and len on stack, type out the string.
;

: >TYPE (addr len --) Same as TYPE. The string is copied to the PAD buffer before outputting for

multi-tasking environment.
 TUCK PAD SWAP CMOVE Copy the string to PAD buffer.
 PAD SWAP TYPE Type from the PAD buffer which is private to a task.
;

10.6. End of Buffer Condition

A blank character appended to the end of the parsed word in the word buffer is very important to

the F83 system. It serves many important functions. One of them is for the number conversion

routine to recognize the correct end of a number string. Another function is to help the text

interpreter to detect the end of an input stream so that the text interpreter can prepare itself to

process the next input stream or command line. For those familiar with the figForth system, there

the end of an input stream is artificially terminated by one or more ASCII NUL characters.

During console inputting, when a carriage return is received from the keyboard, the input routine

appends a NUL at the end of the input stream. When using source texts in disk blocks, each disk

buffer has two trailing NUL as the tail of the buffer. These artificial NULs force the interpreter

93

loop to be terminated in a non-obvious and hard to document fashion. F83 tries to treat the end of

line condition explicitly.

When WORD reaches the end of the input stream, the length of the parsed word will be zero. A

string without character is then moved into the word buffer. The count byte is zero with a blank

character appended to it. This null command, two bytes or one cell long, has a hex value of 2000.

In the dictionary, there is a command of this name, whose hex value in the name field is A080.

Masking off the MSB in these two bytes (the delimiters of the name field), the real name has a hex

value of 2000, exactly the same as the parsed null command. The function of this null command

is to turn on the end-of-buffer flag. Seeing that this flag is set, the text interpreter knows it has

reached the end of the input stream and terminates the loop, readying itself for the next line of

input.

94

Chapter 11. Text Interpreter

The source code of the text interpreter is in file KERNEL86.BLK, Screens 65 to 69.

11.1. The Operating System of Forth

The text interpreter is the heart of a Forth system. As a matter of fact, the text interpreter is 'the'

operating system of Forth, if there is one in Forth. The text interpreter accepts input stream from

console and extracts commands from the input stream. It looks up the commands in a dictionary

and causes the system to perform the functions designed into these commands. After it

successfully carries out the commands, it will come back to the console and ask for another line of

commands. If all the commands designed into the dictionary have names similar to English

commands commonly used, the Forth text interpreter makes a computer rather intelligent and easy

to use, using a computer industry cliche, user friendly.

11.2. Entering the Text Interpreter

The functions of the text interpreter is best traced from the very beginning in the booting up of the

Forth system to the point when a command line or input stream is accepted and processed.

Instead of explaining all the low level commands first and build up layers of high level commands

to reach the top level of the text interpreter, let’s try this top-down approach: explaining the

functions of the high level commands and then detailing the functions of the modules invoked in

the high level command. The most logical command to start is ABORT, which is the starting

point of the Forth system and also the point of return whenever an error condition is encountered.

DEFER ABORT Vectored to (ABORT). Re-initialize all the Forth registers and start the text

interpreter afresh.

: (ABORT) (--) Unconditional abort routine.
 SP0 @ Get the initial data stack pointer from the user variable SP0.
 SP! Stuff that pointer into the data stack pointer register of the virtual Forth

computer.
 QUIT Jump to QUIT routine which is the point of re turn for normal forced termination

of execution.
;

: WARM (--) Perform a warm start.
 TRUE Force an abort.
 ABORT" Warm Start" Abort with a message.
;

: COLD (--) High level cold start.
 BOOT Execute a user defined bootup definition.
 QUIT Jump to QUIT, a normal re-start oint.
;

DEFER BOOT Vectored to a user selected initializing routine. The default boot routine is

ABORT.

: QUIT (--) The main Forth loop. Get more input from the conso le terminal and interpret it.

95

Respond with "ok" if every thing is well.
 SP0 @ 'TIB ! Initialize the terminal input buffer to address just above the data stack.
 BLK OFF Store a zero in BLK. Force the interprete r to process input from the console

terminal.
 [COMPILE] [Store a zero in the variable STATE, fo rcing the system into the interpretive mode.
 BEGIN Enter the main Forth loop.
 RP0 @ RP! Initialize the return stack pointer.
 STATUS Indicate status of the system. A defer wor d normally vectored to CR, doing a

carriage return.
 QUERY Prompt the user to enter a line of commands on the console and copy this command

line to the terminal input buffer
. RUN Process the command line.
 STATE @ NOT If STATE is zero, the system is n the interpretive mode.
 IF ." ok" THEN Then print the ok message.
 AGAIN The Forth loop is an infinite loop. After on e command line is processed, it goes

back to ask for another line. It goes on this way forever.
;

: RUN (--) An enhanced INTERPRET. It allows for multiline compilation, enabling you to enter

a colon definition that spans over several lines.
 STATE @ IF If STATE is not zero, the system must b e in the compiling dictionary.
 STATE @ NOT After compiling one line of source co des, test STATE again.
 IF INTERPRET THEN If the system left the compilin g mode, then interpret the rest of the line.

Otherwise, exit.
 ELSE The state is zero,
 INTERPRET interpret the command line.
 THEN ;

11.3. INTERPRET

INTERPRET is a beautiful piece of code, a classic example of the simplicity and powerfulness of

Forth language in describing complicated computational processes using high level commands. It

is worthy of our time to read the code and do our best to gain the fullest understanding of it. The

definition of INTERPRET reads:

: INTERPRET (--) The Forth interpreter loop. It parses out a word from the input stream. If the

word is defined execute it, otherwise convert it to a number and push it on the
stack.

 BEGIN Begin the interpret loop.
 ?STACK Check for stack underflow or overflow.
 DEFINED Get the next word from the input stream a nd return its cfa and a flag.
 IF EXECUTE If the word is defined, execute it usi ng the cfa left on stack.
 ELSE NUMBER Otherwise, convert it to a number.
 DOUBLE? Is it a double precision integer?
 NOT IF DROP THEN No. Only a single precision nu mber. Drop the upper half of the double number,

preserving only the lower half single integer.
 THEN
 FALSE Put up a false flag for DONE?.
 DONE? Is it the end of line?
 UNTIL If we reach end of line here, exit the loop. Otherwise, loop back to interpret

the next word.
;

DEFINED is a very big command. It first parses a word out of the input stream and places it in

the word buffer on the top of the dictionary. It then searches through the dictionary for a

command with the same name. If a command is found, its code field address is placed on the data

stack followed by a true flag. A valid code field address is then turned over to EXECUTE.

EXECUTE executes this command by invoking the appropriate inner interpreter, which we had

discussed in the chapter on inner interpreters. DEFINED is discussed in the chapter on

vocabulary.

96

Now, if DEFINED failed to find a command with a matching name, control is passed to NUMBER,

which converts the parsed word to a double precision number on the data stack. If a period was

embedded in the number string, which causes DPL to differ from -1, the command DOUBLE?

returns a true flag and the double number remain on the stack. Otherwise, the higher half of the

double number is dropped from the stack and only a single precision number is left on the stack.

At the beginning of the loop, the data stack is checked for overflow or underflow by ?STACK. If

the stack is ok, control falls into DEFINED to process the next word in the input stream. If a stack

error condition is encountered, the system is forced into ABORT to start all over again. If an error

condition is encountered during the number conversion process, an abort is also forced. These are

the two conditions for abnormal exit from the INTERPRET loop.

11.4. DONE? and X

At the end of the INTERPRET loop, DONE? is executed to test the end-of-buffer condition. If it

reached the end of the input buffer, the loop would be terminated and the control falls into the outer

Forth loop in QUIT. Otherwise, the interpreter will loop back to parse and execute the next word

in the input buffer.

A flow chart of this chain of activities might be helpful in visualizing the sequence of events when

the Forth system is cranking in full steam, as shown in Fig. 12.1.

A number of loose ends have to be patched before we finish this chapter.

: ?STACK (--) Check for data stack underflow or o verflow. Abort if any of the error

conditions occurred.
 SP@ Get the current data stack pointer.
 SP0 @ SWAP U< If the stack underflowed,
 ABORT" Stack Underflow" Abort.
 SP@ PAD U< If the stack grows too close to the top of the dictionary,
 ABORT" Stack Overflow" Abort also.
; Otherwise, return normally.

: DONE? (n -- f) Return a true flag if the inputs tream is exhausted or the STATE doesn't match

with the current state.
 STATE @ <> Is the state flag left on stack he sam e as that in STATE?
 END? @ OR Or the end of line? Leave the or'ed fla g on stack.
 END? OFF Turn off the end-of-buffer flag to let th e interpreter get a new line of command

and start over.
;

In F83 systems before Version 2.0, the end-of-buffer condition is detected and the END? flag is set

by a command with a null string as its name. This null command was defined using a pseudo

name of X and later patched to null. When the input stream is exhausted, the last word parsed out

by WORD is this null command and it tells the text interpreter to stop processing the input buffer.

97

This technique had been used in most Forth systems including figForth . In F83 Version 2.0 and

later, the end-of- buffer condition is detected and the END? flag is set in the word FIND; therefore,

this mysterious null command is eliminated and the text interpreter is in much better shape. The

discussion on the null command X is included here for completeness and for users with older

versions of F83.

: X (--) The null word to flag end-of-buffer and to terminate the interpreter loop.
 END? ON Turn on the end-of-buffer flag in the user variable END?.
;

HEX A080 LAST @ !
IMMEDIATE DECIMAL

The real name of X in the Forth dictionary is a null string, with a character count of 0 and a blank

character. This null string is returned by WORD to the word buffer when the end of the input

stream is reached. The contents of the name field of this null command is A080 in hex, with the

MSB's in both bytes set as name field delimiters. As we reach the end of the input stream, this

null command is returned by WORD and executed. It turns on the END? flag and terminates the

interpret loop. Explicitly terminating the interpret loop at the end of input stream makes the

definition of INTERPRET comprehensible. Another advantage is that the end-of-buffer condition

does not have to be artificially synthesized by appending a NUL character at the end of the input

line form the console or at the end of every disk buffer (as done in figForth), which can be easily

corrupted and causes the Forth system to behave erratically.

98

Chapter 12. Compiler

The source code discussed here is in the file KERNEL86.BLK, Screens 70, and 76 to 78.

12.1. The Colon Definitions

Colon commands are the most prevailing type of commands in Forth. A colon command has a

variable length parameter field where a list of execution addresses is stored. Functionally, a colon

command is the equivalence of the sequence of commands whose execution addresses are stored in

its parameter field. When the colon command is invoked, this sequence of commands are

executed by the address interpreter. Comparing to other high level languages, a Forth colon

command is similar to a procedure or a subroutine, which contains a sequence of procedures or

subroutine calls:

Forth Colon Definition FORTRAN Subroutine
: Z SUBROUTINE Z
A CALL A
B CALL B
C CALL C
D CALL D
; RETURN

where A, B, C, and D are other pre-defined commands in Forth or subroutines in FORTRAN.

Colon commands allow us to build higher level functions from existing modules. The building

process can continue on until the final colon command becomes the solution to our programming

problem.

What, then, is the advantage of colon commands over the procedures or subroutines in other

languages, since they serve very much the same purposes? The answer is that although a Forth

colon command is the same as a procedure or a subroutine in functionality, it serves the functions

more efficiently and it can be debugged more easily. The result is a solution or a program of

much higher quality at lower cost. We can summarize the advantages of Forth colon commands

in two words: efficiency and modularity.

Efficiency

Efficiency in computer programming has three aspects: memory utilization, execution speed, and

programming productivity. Forth colon commands excel in all these aspects as compared to other

high level languages. Each reference to another pre-compiled command in Forth costs two bytes

in memory, the execution address of the referred command. The calling of a command and

99

returning to the caller in Forth is also very fast due to the efficiency in the inner interpreters,

especially in hosts of good architecture design. In executing high level language programs, by far

the largest overhead is doing subroutine calls and returns, with a host of parameters to be passed

between the caller and the callee. Since Forth uses the data stack to pass all the parameters

between commands, the overhead in parameter passing is cut to the minimum. Ease in testing and

debugging greatly improve the productivity of programmers using Forth as software development

tool.

Modularity

Forth commands are true modules because they are memory resident and individually executable

routines. Once a command is defined and compiled into the dictionary, it is immediately available

for execution and for compiling into other commands. In other languages, procedures and

subroutines are modules only in the abstract sense. They have to be compiled and linked to a

mainline program before they can be invoked to do any useful work, within the context of the

mainline program. In the example above, the commands A, B, C, D, and Z are all executable

modules in Forth. In FORTRAN, none of the subroutines A, B, C, D, and Z are executable.

They are only modules on paper.

Why is true modularity so important? It greatly simplifies the testing and debugging of a program

of large size, because individual modules can be thoroughly tested before being integrated into

modules at a higher level of construction. In debugging a conventional program, the most

valuable tool is the break point facility, allowing you to stop the program at selected break points to

examine the progress of operations. In Forth, each command can be tested at the interpreter level

with a natural break point at its end, eliminating the need of a debugger.

Due to the small overhead in nesting commands, Forth encourages the breaking of large modules

into many small modules which can be tested thoroughly and separately. This modularization

gives us a chance to prove the correctness of a large program by proving the correctness of each

component and the correctness of their interconnections.

12.2. Colon and Semicolon

So much for propaganda. Let's now look at how the colon compiler itself is defined.

: : (--) Define a colon definition. The new defi nition is hidden until it is completed.

The runtime code for : adds a nesting level.
 !CSP Store the current stack pointer in a variable CSP for error checking at the end

of a definition. Normal compilation should not aff ect the depth of the data stack.
I stack depth ischanged, it is a potential error co ndition.

 CURRENT @ CONTEXT ! Select the current vocabulary as the context vocabulary to restore the environmen t
of compilation.

100

 CREATE Create a header in the dictionary using the name following
 :.
 HIDE Smudge the name field of the new header so it is hidden from dictionary searches.
] Enter the colon definition compiler to start con structing the list of execution

addresses in the parameter field.
 ;USES Insert the following code routine address in to the code field of the new

definition, making it a colon definition.
 NEST , Compile the address of the address interpre ter NEST here so that it can be put

into the code field of new colon definitions.
;

: ; (--) Terminate a colon definition. It compile s the runtime code of UNNEST to remove

a nesting level and changes STATE to terminate comp ilation.
 ?CSP Check the current stack pointer with the cont ents of CSP. If they are not the

same, abort.
 COMPILE UNNEST Compile UNNEST at the end of the ne w colon definition to force execution to return

to the caller.
 REVEAL Unsmudge the name field of the new colon de finition, making it available for

dictionary searches.
 [COMPILE] [Compile [here to terminate the compil ation of the new colon definition.
; IMMEDIATE ; must be executed in the compiling s tate. It must be declared immediate.

The compilation process is very similar to the interpreting process in Forth. Instead of executing

the word parsed out of the input stream, the execution address of the command is added to the top

of the dictionary, where we are building the parameter field of a new colon command. If the word

is a number, instead of leaving the number on the data stack, it is compiled into the new command

as a literal so that when the new command is eventually executed, the same number can be

retrieved and put back on the stack. The compiler is embodied in the command], which is the

twin brother of INTERPRET, because they share lots of common tools and structure. In figForth

and many older Forth systems, the compiling functions are actually rolled into INTERPRET as one

single piece of command. The good doctors in the Forth Standard Team decided that it is

unsightly that the Siamese twin should share their umbilical cord forever, and cut them loose. The

compiling functions are then welded into]. F83 has no choice but to follow the doctor's order.

12.3. The Compiler Loop

:] (--) The compiling loop. It sets the compili ng flag in STATE, and parses the next

word out of the input stream. If the word is found in the dictionary, it is either
executed or compiled depending on whether it is imm ediate or not. If it is a
number, it is compiled into the dictionary as eithe r a single or a double integer
literal. Continue until the input stream is exhaus ted.

 STATE ON Set the flag in STATE and enter the compi ling mode.
 BEGIN Loop to scan the input stream.
 ?STACK Check for stack over- or underflow.
 DEFINED Parse out the next word and search the di ctionary.
 DUP IF If it is found in the dictionary,
 0> IF and if it is an immediate word,
 EXECUTE then execute it.
 ELSE If it is not an immediate word, compile its cfa into the dictionary.
 THEN
 ELSE It is not a word in the dictionary.
 DROP Discard the flag left by DEFINED.
 NUMBER Convert the word to a number.
 DOUBLE? IF If a punctuation is detected in the s tring,
 [COMPILE] DLITERAL compile the double integer l iteral.
 ELSE No punctuation in the string.
 DROP Discard the upper half of the converted do uble integer,
 [COMPILE] LITERAL and compile the single intege r literal.
 THEN
 THEN
 TRUE The compiling flag.
 DONE? If the input stream is exhausted, leave a t rue flag to exit the compiling loop.

101

 UNTIL Otherwise, loop back to compile the next wor d.
;

Figure 12.1 The interpreter and the compiler

: [(--) Stop compiling and start interpreting.
 STATE OFF Turn off the compiling flag in STATE, fo rcing the Forth system into the

interpreting mode.
; IMMEDIATE It is declared immediate so that its ef fect can be revealed even during

compilation.

102

12.4. Low Level Supporting Commands

We have presented the compiler at the highest level. There are a long list of supporting

commands behind these compiler commands to realize all the functions required in the compilation

processes. Let's try to give recognition to all these unsung heroes.

VARIABLE DP The user variable where the address of the first free memory above the dictionary

is stored. It helps the compiler to keep track of its memory.

: HERE (-- addr) Return the address above the dic tionary, the free memory available for the

compiler.
 DP @ ;

: 'WORD (-- addr) Return the address of the word buffer, same as HERE.
 HERE ;

: ALLOT (n --) Allocate more space on the diction ary by moving the DP pointer.
 DP +! ;

: , (n --) Copy the top stack item to the top of the dictionary. This is the compiler in

its most primitive form.
 HERE ! Compile n to dictionary.
 2 ALLOT Move the DP pointer passing the item just compiled.
;

: C, (byte --) Compile one byte to the dictionary .
 HERE C! Compile one byte.
 1 ALLOT Move DP.
;

: COMPILE (--) Compile the next word in a colon d efinition to the dictionary when this definition

is executed. It can only be used inside a colon def inition.
 R> The address of the next word is on the top of t he return stack. Retrieve it.
 DUP 2+ >R Increment the top of return stack so tha t the next word will not be executed.
 @ Get the execution address of the next word.
 , Compile it to the dictionary.
;

: IMMEDIATE (--) Mark the most recently defined w ord to make it an immediate word. An immediate

word will not be compiled by the] compiler but wil l be executed.
 64 The precedence bit in the first byte of the nam e field.
 LAST @ Get the name field address of the most rece ntly defined word from the variable

LAST.
 CTOGGLE Set the precedence bit in the name field, marking the word immediate.
;

12.5. Immediate Commands

Two good examples of immediate commands are LITERAL and DLITERAL in]. They are used

to compile literal numbers in a colon command. They are needed because the address interpreter

treats the data stored in a colon command as execution addresses. If we need to put a number on

the stack between two addresses, we cannot simply compile the number in-line, because then the

number will be interpreted as an address. In-line literal numbers in a colon command must be

preceded by a special runtime command (LIT), which will push the following literal to the stack

when executed. To compile a number into a colon command, LITERAL is executed immediately

to compile first (LIT) and then the number, building the correct literal structure in the colon

command.

103

: LITERAL (n --) Compile the single integer from the stack as a literal.
 COMPILE (LIT) First compile the runtime routine (L IT).
 , Then compile the number.
; IMMEDIATE Make it an immediate word.

: DLITERAL (d --) Compile the double integer from the stack as a double literal.
 SWAP Reverse the order of the double integer so th at the right double integer will

be pushed on the stack when executed.
 [COMPILE] LITERAL Do the literal compilation not n ow but when DLITERAL is executed. To force the

compilation of LITERAL, it must be preceded by [COM PILE].
 [COMPILE] LITERAL Force compilation of the upper h alf of the double literal.
; IMMEDIATE

Words in a colon definition are normally compiled. Immediate commands are not compiled but

executed immediately. To compile an immediate command like other commands in a colon

command, the immediate command must be preceded by [COMPILE]. To compile a command

only when the command is executed, the command is preceded by COMPILE. It is rather

confusing for a new comer to Forth. But, you have to remember, building compiler is not an easy

task for everybody. These commands encompass activities in the designing of a compiler to build

commands which will have the correct behavior at runtime. You will have to go to a graduate

school of computer sciences to hear these topics discussed only peripherally. To understand these

concepts, you have to read more code in the Forth compiler and let it gradually sink in. Or, try to

write a few compiler routines yourself and see how they function.

I can offer you one more hint: immediate commands are the equivalents of the compiler directives

or assembly directives in the conventional programming languages. They may or may not

generate executable code in the program, but they control the process of compilation or assembly

and they are executed during the compilation or assembly, but not when the final codes are

executed. We will discuss more of these immediate commands in the following chapter.

: [COMPILE] (--) Force compilation of the followi ng immediate word.
 ' (tick) Find the execution address of the next word.
 , (comma) Compile it.
; IMMEDIATE It must be executed immediately.

[COMPILE] cannot wait to let the] compiler to find the address it needs, because] might have to

execute the next command. [COMPILE] is executed inside the compiler loop and it has to find

the address of the next command immediately to compile it. Therefore, [COMPILE] uses a

special dictionary searching command ' (tick) to do the dictionary search:

: ' (-- cfa) Return the execution address of the next word. If the word cannot be found, abort.
 DEFINED Parse the next word and search the diction ary for it.
 0= If the search failed,
 ?MISSING Abort with an appropriate message.

; If the word is found, return its code field addre ss.

: ?MISSING (f --) Tell the user the word does not exist and abort.
 IF The flag is true,
 'WORD COUNT TYPE Type the word failed to match.
 TRUE ABORT" ?" Abort with a very mild message.
 THEN Return if the flag is false.
;

104

105

Chapter 13. Structures in Colon Definitions

The source code discussed in this chapter is in KERNEL86.BLK, Screens 70-71, and 74-75.

13.1. Compiler Directives

We have discussed in great detail the contents and the functions of the colon command compiler

which compiles colon commands, and the address interpreter which executes colon command as a

list of execution addresses. If that is all, the usefulness of colon commands is severely limited, as

they will not be able to cope with the wide variety of situations a programmer must solve using his

computer. Very few problems can be solved by linearly strung procedures or commands. We

need the capability of altering the execution sequence on the fly, depending upon the results

obtained in runtime. We need the capability to compile and use different types of data and data

structures, which are used to encode input/output information and to hold intermediate information

during processing. Compiler directives are used to allow you to specify explicitly alternate or

repetitive execution sequence and compile special data structures inside a colon command.

Compiler directives are also called immediate commands because they have to be executed

immediately during compilation so that special structures can be built inside a colon command.

Immediate commands can be distinguished from normal commands by the fact that a bit, the

precedence bit, in the first byte of the name field is set.

The compiler loop] can compile normal, non-immediate commands and single or double integer

literals. However, it incorporates an extremely powerful hook to take care of any special

compiling conditions in the form of immediate commands. Whenever we have a situation that the

compiler] is not able to handle, we will design an immediate command to do whatever is necessary

to take care of the situation and then let the compiler] continue its normal compilation.

A few examples were shown in the chapter on the colon compiler. In fact, literals are handled this

way. When the compiler fails to locate a command in the dictionary, it converts the word into a

number and asks LITERAL or DLITERAL, two immediate commands, to compile the numbers

into the dictionary in the form of two data types, single integer literal or double integer literal.

This way, numbers can be compiled into colon commands, in-line with the execution addresses

which are the default data type in colon commands.

There are other data types and different methods of interpreting them within the context of a colon

command. F83 is very rich in these special commands, for the convenience of you the user.

Let's look at them closely.

106

13.2. Compiling Numeric Data Structures

Two data types were taken care of: the single integer literal and the double integer literal. The

immediate commands which compile them are LITERAL and DLITERAL. The runtime

commands which interprets them, pushing the number on the data stack, is (LIT).

Two immediate commands are provided to compile ASCII codes. They also use (LIT) to interpret

the compiled character literals:

: ASCII (-- char) Compile the next character in t he input stream as an ASCII character literal.
 BL WORD Parse out the next character.
 1+ C@ Get the ASCII code of this character from th e word buffer.
 STATE @ Are we in the compiling state?
 IF [COMPILE] LITERAL Yes. Compile the character a s a single integer literal. However, technically

it is a character literal.
 THEN If interpreting, just leave the character on stack.
; IMMEDIATE

: CONTROL (-- char) Compile the next character in the input stream as a control character literal.

The character must be upper case.
 BL WORD Get the next character.
 1+ C@ Get its ASCII code.
 ASCII @ Offset between the control character and t he upper case character.
 - Control ASCII code.
 STATE @ If compiling,
 IF [COMPILE] LITERAL Compile the control code as a literal.
 THEN Leave the character on stack if interpreting.
; IMMEDIATE

We can always lookup the ASCII table and use the character codes directly in colon commands.

ASCII and CONTROL, however, make very clear documentation to the intention of the

programmer. Using these commands to invoke ASCII codes explicitly is highly recommended.

Ever heard of address literals? Well, there are really such things. Its usefulness has been

demonstrated in many applications in which we want to locate a command in the dictionary in

runtime. An example is to find the address of a colon command so that we can jump into the

middle of it. The reason of doing so is not obvious and certainly is not orthodox Forth practice.

Anyway, if you need the address of another command inside a colon command, the command ['] is

the one to use.

: ['] (--) Compile the address of the next word a s a literal. At runtime, return that address

to the stack.
 ' (tick) Find the execution address of the next word in the input stream.
 [COMPILE] LITERAL Compile the address as a literal .
; IMMEDIATE

107

Figure 13.1 Numeric data structures.

13.3. Compiling String Literals

String literals are very useful data type. They can be used to compile messages in a colon

command. At runtime, the message will be typed out on the console, creating a friendly

environment for the end users.

: (") (-- addr len) Return the address and the le ngth of an in-line string.
 R> Address of the in-line string compiled immediat ely after (").
 COUNT Get the addr and len of the string.
 2DUP + The address of the executable code after th e string.
 EVEN Align to cell boundary.
 >R Replace it on the return stack to continue the execution process.
;

: (.") (--) Type out the in-line string and conti nue executing the word after the string.
 R> Address of the in-line string.
 COUNT Addr and len.
 2DUP + EVEN >R Replace the address of the next wor d to be executed.
 TYPE Output the string to console.
;

: ," (--) Compile the following string to the dic tionary.
 ASCII " Use " as the delimiter of the string.
 PARSE Parse the string out.
 TUCK 'WORD PLACE Copy the string into the word buf fer, just the right place to compile this string.
 1+ ALLOT ALIGN All we have to do is to move the DP pointer to include the string i the dictionary.
;

108

Figure 13.2 The string literals.

: ." (--) Compile the following string to be type d out later.
 COMPILE (.") Compile the runtime code (.") before the string so that the string will be

interpreted correctly.
 ," Compile the string into the dictionary.
; IMMEDIATE This is a compiler directive. Declare it to be immediate.

: " (--) Compile the string. At runtime, return its address and length.
 COMPILE (") Compile the runtime routine (").
 ," Compile the string after (").
; IMMEDIATE Must be immediate.

109

An important command also using string literals is the command ABORT". It forces the Forth

system to return to the text interpreter with a clean state to start over again. It can also print out a

message explaining why it has to take such a drastic measure to help you figure out what happened

in the computer at run time.

: (ABORT") (f --) The runtime routine compiled by ABORT".
 R@ COUNT Get the addr and len of the following str ing literal.
 ROT Move the flag to the top of stack.
 ?ERROR Turn over to ?ERROR to process the error co ndition.
 R> COUNT + EVEN >R Move the top of return stack to the word after the string, toresume execution

as the error condition was not true.
;

: ABORT" (f --) If the flag is true, issue an err or message and quit.
 COMPILE (ABORT") Compile runtime routine.
 ." Compile the message.
; IMMEDIATE

DEFER ?ERROR Vectored to (?ERROR).

: (?ERROR) (addr len f
--)

If the flag is true, execute WHERE to store useful debugging data, type a message,
and quit.

 IF If the flag is true, prepare to quit.
 >R >R Save the string parameters.
 SP0 @ SP! Initialize the data stack.
 PRINTING OFF Turn off the printer.
 BLK @ IF If BLK is not zero, we are processing dat a from a disk block.
 >IN @ BLK @ WHERE Save the character pointer to th e input buffer and the block number and call WHERE

to provide debugging aids.
 THEN
 R> R> Restore the string parameters.
 SPACE TYPE SPACE Print the abort message.
 QUIT Restart the text interpreter.
 ELSE No error condition.
 2DROP Clear the data stack.
 THEN ;

DEFER WHERE WHERE is vectored to an editor routine (WHERE) to display the block of source

with the cursor pointing to the word that causes th e abort.

There are other data structures that can be compiled into the colon commands. However, many of

them can be taken care of by variables and arrays derived from variables. Other recurring

structures may be handled by the CREATE-DOES> technique.

13.4. Compiling Control Structures

Forth is a structured language. A structured language has provisions for you to do two things:

successive refinement to decompose a problem into smaller parts hierarchically, and building

modules with control structures. Control structures, or simply structures, are segments of a

program or groups of program statements which have only one entry and one exit. The one-

entry-one-exit property of control structures allows the structures to be stacked linearly to form

larger segments which can be built into other structures at a higher level. Execution can take

alternate paths or repeat a portion of the path only within a structure. Very complicated high level

structures can be built on simple structures, enabling programmers to deal with real life problems

efficiently.

110

In a previous chapter, I emphasized that Forth is a truly modular language because the commands

in Forth are true modules, which can be independently executed and compiled, quite different from

modules in other languages which can function only within the context of a mainline program.

Forth commands are also structures, with one entry and one exit. There are some exceptions when

error conditions are encountered. In these cases, execution is forced to abort to the text interpreter.

Forth commands, as structures, can be stacked linearly together to form higher level structures,

which are basically the colon commands. Besides linearly stacked structures, Forth provides a

special set of commands which allows you to build other more sophisticated control structures

inside colon commands so that alternate paths can be chosen and segments can be repeated in

runtime. These structure building commands are all immediate commands, because they have to

perform extra work to build the desired structures correctly while the compiler is running.

111

Figure 13.3. The control structures

The set of structure building commands in F83 are listed here according to the syntax of their

usages:

 IF <true clause> THEN
 IF <true clause> ELSE <false clause> THEN
 BEGIN <repeat clause> UNTIL
 BEGIN <repeat clause> AGAIN
 BEGIN <repeat clause 1> WHILE <repeat clause 2> RE PEAT
 DO <repeat clause> LOOP
 DO <repeat clause> +LOOP
 ?DO <repeat clause> LOOP
 ?DO <repeat clause> +LOOP

112

Inside the do-loops, the optional commands LEAVE and ?LEAVE can be used to force the

termination of the loop.

13.5. Address Calculation for Control Structures

In the chapter on the kernel commands, we have already discussed the low level commands which

change the execution sequence in runtime. What the structure building commands have to do is to

compile these runtime routines into the colon command with additional branching addresses so that

the execution sequence in runtime can be changed according to pre-defined rules. Thus a group of

supporting commands are needed to calculate the branching addresses during compilation.

: ?CONDITION (f --) Compile time error checking. If the flag is false, abort.
 NOT Invert the flag.
 ABORT" Conditionals Wrong" Abort with a message.
; This simple error checking is adequate for most s ituations.

: >MARK (-- addr) Mark the point of a forward bra nch by saving its address on stack.
 HERE Addr in which the forward branching address w ill be placed.
 0 , Compile a dummy address for the moment.
;

: >RESOLVE (addr --) Resolve a forward branch.
 HERE This is the address to jump to.
 SWAP ! Store this address in the memory addr where the forward jump originates.

 ;

: <MARK (-- addr) Set up a backward branch by lea ving the current address on stack.
 HERE This is the address the backward branch will jump to.
;

: <RESOLVE (addr --) Resolve a backward branch.
 , ; Compile the backward jump address at this poi nt.

: ?>MARK (-- f addr) Set up a forward branch with error checking.
 TRUE Put up a true flag for error checking.
 >MARK ; Do the work.

: ?>RESOLVE (f addr --) Resolve an backard branch with error checking.
 SWAP ?CONDITION Check conditional error first.
 >RESOLVE ; Then resolve the forward branch.

: ?<MARK (-- f addr) Set up a backward branch wit h error checking.
 TRUE The flag for error checking.
 <MARK ; Backward jump address.

: ?<RESOLVE (f addr --) Resolve a backward branch with error checking.
 SWAP ?CONDITION Error checking.
 <RESOLVE ; Resolve the backward branching.

Error checking is a valuable service to you to make sure that you have laid down the control

structures correctly. Structure commands not properly paired are frequent causes of system

crashes, because execution can be steered to an unknown address.

13.6. Control Structure Compiler Directives

Here come the real heroes that compile the control structures in colon commands:

113

: IF (-- f addr) Set up the IF-ELSE-THEN structur e.
 COMPILE ?BRANCH Conditional branch.
 ?>MARK Set up forward branch.
; IMMEDIATE

: ELSE (f1 addr1 -- f2
addr2)

Resolve the forward branch from IF and set up forwa rd branch to THEN.

 COMPILE BRANCH Unconditional branch.
 ?>MARK Set up flag and address to jump to THEN.
 2SWAP ?>RESOLVE Resolve the jump address at IF.
; IMMEDIATE

: THEN (f addr --) Resolve the forward jump from either IF or ELSE.
 ?>RESOLVE Resolve the jump address.
; IMMEDIATE

: BEGIN (-- f addr) Mark the address for backward branching.
 ?<MARK ; IMMEDIATE

: UNTIL (f addr --) Compile a conditional branch to BEGIN.
 COMPILE ?BRANCH Compile the conditional branch run time routine here.
 ?<RESOLVE Put the address of BEGIN here to close t he loop.
; IMMEDIATE

: AGAIN (f addr --) Compile an unconditional bran ch to BEGIN.
 COMPILE BRANCH Unconditional branch.
 ?<RESOLVE Address of BEGIN.
; IMMEDIATE

: WHILE (-- f addr) Compile a conditional exit in the BEGIN-WHILE-REPEAT loop.
 [COMPILE] IF Functionally, WHILE is identical to I F. To execute IF when WHILE is called, you

have to use [COMPILE] to override the immediate eff ect of IF.
;

: REPEAT (f1 addr1 f2
addr2 --)

Compile an unconditional branch to addr1 left by BE GIN, and resolve the forward
branch for WHILE at addr2.

 2SWAP Get f1 and addr1 to top of stack.
 [COMPILE] AGAIN Use AGAIN to compile the unconditi onal branch back to BEGIN.
 [COMPILE] THEN Since WHILE is identical to IF, we can use THEN to resolve its forward branch.
; IMMEDIATE

: DO (f addr --) Compile the header of a do-loop.
 COMPILE (DO) Put the runtime (DO) here.
 ?>MARK (DO) needs the address after LOOP, making i t look like a forward branching for

a real backward branching.
; IMMEDIATE

: ?DO (f addr --) Compile the header for ?DO-LOOP .
 COMPILE (?DO)
 ?>MARK ; IMMEDIATE

: LOOP (f addr --) Complete the do-loop.
 COMPILE (LOOP) Compile the runtime routine here.
 2DUP 2+ ?<RESOLVE The backward branch address is 2 bytes after (DO), because (DO) needs two bytes

to store the address after (LOOP), in case LEAVE ne eds it.
 ?>RESOLVE Put the address after (LOOP) to the memo ry just after (DO).
; IMMEDIATE

: +LOOP (f addr --) Compile the ending of the +lo op.
 COMPILE (+LOOP)
 2DUP 2+ ?<RESOLVE
 ?>RESOLVE ; IMMEDIATE

: LEAVE (--) Compile (LEAVE).
 COMPILE (LEAVE) ; IMMEDIATE

: ?LEAVE (--) Compile conditional leave.
 COMPILER (?LEAVE) ; IMMEDIATE

These structure commands look very simple and indeed they are. All they have to do is to pick

and compile the right runtime routine and resolve the branching addresses. The runtime routines

114

know what to do with the branching addresses and change the execution sequence if necessary.

These branching addresses can be considered as special address literals, different from the normal

execution addresses compiled by the] compiler.

As it is evident in the definitions of these control structure commands, these commands must used

in pairs, and they can be considered as the delimiters for structures in the colon command, clearly

indicating the entry points and the exit points of the structures. IF must be followed by THEN.

DO must be paired with either LOOP or +LOOP. BEGIN must be paired with UNTIL, AGAIN,

or REPEAT. Structures can be nested but can not be overlapped. If the structures are

overlapping, the system will behave erratically if not crashed.

The error checking in compiling the structures in F83 is not as extensive as that in the figForth

model, in which different types of structures are assigned different error checking numbers instead

of a true-false flag. figForth prohibits the compiling of improperly nested structures.

Nevertheless, F83 is better than those earlier Forth system without any error checking on the

control structures. If you want speed in compilation, you can strip out the error checking in F83

by using >MARK in place of ?>MARK, etc., and change all the 2DUP to DUP. Then you are

entirely on your own.

115

Part III. Utilities in F83 System

Chapter 14. The MS-DOS Files

The source code managing files in the F83 system is scattered in Screens 51 and 57 in

KERNEL86.BLK and also in Screens 7 to 12 in EXTEND86.BLK. Some of them were discussed

in the chapter on the virtual memory.

14.1. CP/M-DOS File Primitive Commands

The DOS file management system consists of a set of commands in the DOS vocabulary that access

the BDOS functions of the CP/M-DOS operating system, such as creating, opening, and deleting

files. There is also a command that parses a string and creates a file control block (FCB). A

very useful command SAVE is also provided to save the contents of memory as an executable DOS

file. A number of commands were also defined in the basic F83 system which are used to access

the default file defined by the FCB1 control block.

VOCABULARY DOS All the DOS words are put in this vo cabulary. For CP/M systems, its name is CP/M,

of course.
DOS DEFINITIONS Make DOS the current vocabulary so that all subsequent words will be added to

this vocabulary.
CREATE FCB1 B/FCB ALLOT Allocate space for the firs t FCB block of the current file.
CREATE FCB2 B/FCB ALLOT Allocate space for the seco nd FCB block of the in-file.

: CLR-FCB (fcb --) Initialize the specified FCB.
 DUP B/FCB ERASE Clear the FCB to nulls.
 1+ 11 BLANK Initialize the file name and extension to blanks.
;

The following commands are simply BDOS functions with Forth names. Descriptive names make

the Forth programs or commands more readable.

: RESET (--) 0 13 BDOS DROP ;

: CLOSE (fcb --) Close the given file and report errors.
 16 BDOS Call BDOS to close the file.
 DOS-ERR? If there is error,
 ABORT" Close error" report it.
;

: SEARCH0 (fcb -- n)
 17 BDOS ;

: SEARCH (fcb -- n)
 18 BDOS ;

: DELETE (fcb -- n)
 19 BDOS ;

116

: READ (fcb --) Read the next record and report a ny error.
 20 BDOS Read next record.
 DOS-ERR? If read error,
 ABORT" Read error" abort with a message.
;

: WRITE (fcb --) Write the next record and report error if any.
 21 BDOS Write the record.
 DOS-ERR? Any error?
 ABORT" Write error" Report and abort.
;

: MAKE-FILE (fcb --) Create a new directory entry for a new file. Report error if any.
 22 BDOS Create directory.
 DOS-ERR? Error?
 ABORT" Can't make
file"

;

14.2. The File Control Block

The file control block FCB is a table containing essential information so that the DOS system can

manage the file in association with the blocks. The next two commands build FCB blocks which

is almost all that is needed to create files and gain access to them using the above commands.

: (!FCB) (addr len fcb
--)

Use the string at addr and the length, len, to set up a file control block. This
is the primitive file name parsing word, which brea ks the drive/filename/extension
string into a drive specifier, the file name, and t he extension, and inserts them
into the proper fields in the FCB.

 DUP B/FCB ERASE Clear the entire FCB to zeros.
 DUP 1+ 11 BLANK Clear the name/extension fields to ASCII blanks.
 >R Save the FCB address for later use.
 OVER 1+ C@ Get the second character in the string on stack.
 ASCII : = IF If it is a ':', then get the first ch aracter and use it as the drive specifier.
 OVER C@ Get the first character.
 [ASCII A] LITERAL Store ASCII code of A here a s a literal.
 - Subtract 65 (ASCII A) from the drive specifier. The result is the drive number.
 R@ C! Store it in the drive number field in FCB.
 2 /STRING Adjust the string address and length to point to the file name.
 THEN
 R> 1+ Address of the name file in FCB.
 -ROT Get the string length to top of stack.
 0 DO Now fill the file name field.
 DUP C@ ASCII . = Is the character a period?
 IF Yes. End of file name and start of extension.
 SWAP Swap the FCB field pointer to top of stack.
 8 I - + Compute the address of the extension fie ld in FCB.
 ELSE Not a period. Stuff the character in the nam e or extension field.
 2DUP C@ Get the character from string.
 SWAP C! Store it in the FCB.
 SWAP 1+ Increment the FCB pointer.
 THEN
 SWAP 1+ Increment the string pointer also.
 LOOP
 2DROP Clean the stack to exit.
;

: !FCB (FCB-addr --) Use the following string as the file name string and create an FCB for it. If

CAPS is false, allow lower case file names.
 BL WORD Parse out the next string and place it in the word buffer.
 COUNT Get the string length from the word buffer a ddress left by WORD.
 CAPS @ IF If CAPS is true,
 2DUP UPPER convert the string to upper case.
 THEN Otherwise, allow lower case string.
 ROT Get the FCB address to top of stack for (!FCB) .
 (!FCB) Now, get (!FCB) to fill the FCB with the na me string in the word buffer.
;

: SELECT (drive --) Make the given drive the defa ult drive.

117

 14 BDOS DROP ;

14.3. High Level File Commands

The following commands are defined in the basic F83 system as shown in KERNEL86.BLK file,

screen 57. However, their functions make them a natural part of this chapter on the MS-DOS files.

One of the problems in reading Forth source code is that the order in loading the Forth source codes

does not necessarily bear any relationship with the logical order of commands. In this book, I

hope that grouping commands together according to their functionalities will help you to perceive

more clearly the logical structures in the F83 system.

: FILE-SIZE (fcb -- n) Return the size of the cur rent file in number of records.
 35 BDOS DROP BDOS function 35 returns the file siz e in the field of random record number.
 RECORD# @ Get the file size.
;

: DOS-ERR? (-- f) Return a true flag if the previ ous DOS operation is in error.
 255 = BDOS returns 255 if an error occurred
. ;

: OPEN-FILE (--) Open the current file and store the size of this file in MAXREC#.
 IN-FILE @ 15 BDOS Open the in-file.
 DOS-ERR? IF Is there an error?
 ." Open error"
 DISK-ABORT
 THEN If so, abort.
 DUP FILE-SIZE Otherwise, size the file.
 1- SWAP Number of the last record in file.
 MAXREC# ! Save it.
;

92 CONSTANT DOS-FCB The zero page address where DOS puts a parsed FCB.

: DEFAULT (--) Open the default DOS file. Move t he parsed FCB block to FCB1 and open the fil e.

If no file is in DOS-FCB, do nothing.
 FCB1 DUP IN-FILE ! Make the default file as specif ied by FCB1 both the in-file
 DUP FILE ! and the current file.
 CLR-FCB Erase FCB1.
 DOS-FCB 1+ C@ Get the first character in the name field of the DOS file in DOS-FCB.
 BL <> IF If the first character of file name is no t blank, there is a DOS file.
 DOS-FCB FCB1 12 CMOVE Copy the drive number, file name, and extension into FCB1.
 OPEN-FILE Open the current file.
 THEN ;

: CREATE-FILE (n --) Create a new file and alloca te n blocks to this file.
 FCB2 DUP !FILES Set the file pointers in both the current file and in-file to point to FCB2.
 DUP !FCB Build a FCB at FCB2 and make it the curre nt file. The file name is taken from

the input stream.
 MAKE-FILE Call BDOS to make the file.
 MORE Allocate the require blocks.
;

: MORE (n --) Add n blocks to the current file.
 1 ?ENOUGH I need at least one stack item.
 CAPACITY SWAP Current maximum size in blocks.
 SWAP DUP 8* Record number to be added.
 FILE @ MAXREC# +! Add to the maximum record field in the current FCB.
 BOUNDS ?DO Now initialize the whole file to blanks .
 I BUFFER Get a disk buffer.
 B/BUF BLANK Clear the disk buffer to blanks.
 UPDATE Mark the buffer as modified. Next time BUF FER is called to use this buffer, the

blanks will be written to the file.
 LOOP
 SAVE-BUFFERS Flush the remaining buffers out to di sk.
 FILE @ CLOSE Close the file.
;

118

14.4. Save Core Image to a File

A very special usage of the file commands is to save the entire core image in a file which can be

called for execution from DOS. This will save lots of compiling time to load in many blocks of

utilities. It is also a good way to build an application program without giving the user all the Forth

source code, a good way to protect your software product.

DEFER HEADER Create a vectored word.
' NOOP IS HEADER HEADER is used in the DOS system.

: SAVE (addr len --) Use the name following as th e file name and create an executable DOS file. Mem ory

from addr to addr+len is saved into this file. The current file is not disturbed.
 FCB2 DUP !FCB Build a new FCB at FCB2, using the n ame following SAVE.
 DUP DELETE DROP If this file already exists, delet e it.
 DUP MAKE-FILE Create a new file.
 HEADER Build an executable header.
 -ROT BOUNDS DO Scan the given range of memory.
 I SET-DMA Specify memory address for DMA transfer .
 DUP WRITE Write one record of 128 bytes.
 128 +LOOP Increment the index of length for next r ecord.
 CLOSE Close the file.
;

: SAVE-SYSTEM (--) The high level command to save the code image to a file. You do not have to reme mber

the dictionary addresses.
 256 Starting memory address of the Forth dictionar y.
 HERE End of dictionary.
 SAVE Make the executable file.
;

14.5. Directory Accessing

F83 can access the DOS directory on a disk directly without having to leave the Forth environment.

They are convenience that makes you feel at home and eliminate the necessity of learning the DOS

system and fight against it.

: .NAME (n --) Print the name of the nth entry in the DOS directory.
 #OUT @ Get the current output character count in # OUT.
 C/L > If it exceeds the line length,
 IF CR THEN send a CR to start a new line.
 32 * PAD + 1+ The address of the nth entry, alread y copied to the PAD buffer.
 8 2DUP TYPE SPACE Print the file name.
 + 3 TYPE 3 SPACES Print the extension.
;

: DIR (--) Print the DOS directory.
 [DOS] Switch context to CP/M vocabulary.
 " ????????.???" Put a file name template in PAD.
 FCB2 (!FCB) Create a new FCB with the ? marks in i ts name and extension fields.
 CR PAD SET-DMA Fetch the directory information to PAD.
 SEARCH0 Search for the first directory entry that matches the ? mark name. Any valid

file name would do. The stack item returned is the entry number of the file in
PAD, just right for NAME.

 BEGIN Scan the entire directory.
 .NAME Print the file name and extension.
 SEARCH Search the next matching file name, i.e., the next file name
 DUP DOS-ERR? End of the directory?
 UNTIL If any error flag is returned, we have reach ed the end of the directory. Exit

now. Otherwise, loop back to print the next file n ame.
 DROP Drop off the invalid entry number.
;

119

: .FILE (addr --) Given the address of an FCB, pr int the name of this file.
 COUNT ?DUP IF If the drive number is not zero,
 ASCII @ + EMIT ." :"
 THEN then print the drive prompt.
 8 2DUP Name field width.
 -TRAILING TYPE Print the file name without the tra iling blanks.
 + The address of the extension field.
 ." ." Print a period sign between name and extensi on.
 3 TYPE SPACE Print the extension.
;

: FILE? (--) Print the name of the current file.
 FILE @ Get the FCB of current file.
 .FILE Print its name.
;

F83 allows you to have two files opened at the same time: a current file and an in-file. The in-file

is used for input and the current file is used for output. The command SWITCH can be used to

switch these two files so you can input from the previous current file and output to the previous

in-file.

: SWITCH (--) Exchange the current file and the i n-file.
 FILE @ IN-FILE @ Two fcb's.
 FILE ! IN-FILE ! Exchange the fcb addresses.
;

: !FILES (fcb --) Set both the current file and t he in-file to the given fcb.
 DUP FILE ! Set current file.
 IN-FILE ! Set in-file.
;

14.6. System Level File Commands

The utility commands defined above allow the F83 system to manage DOS files and the associated

facility. As a user, you will probably have no need for them unless you have to dig down into the

system level. To use the file management system, you need only a few commands at the top Forth

level to create files and to gain access to their contents. This section describes these commands

and their functions.

: FILE: (-- fcb) Use the following string as the file name and create a new file. The address of

the FCB is returned on the stack.
 >IN @ Save the input character pointer because we will use the next name more than once.
 CREATE Create a Forth word using the following nam e. When this word is referenced, the

file of the same name in DOS will be opened and mad e the current file.
 >IN ! Restore the input character pointer to the f ront of the file name.
 HERE DUP The parameter field address of the file d efinition.
 B/FCB ALLOT Put the FCB in the parameter field.
 !FCB Now stuff the FCB with the new file name.
 DOES> Now comes the execution part of the file def inition.
 !FILES Initialize both the current and the in-file .
;

: ?DEFINE (-- fcb) Define the next word as a file if it is not already define. Leave its FCB addres s

on stack.
 >IN @ Save the input character pointer.
 DEFINED Search the dictionary for the next word, w hich is supposedly a file name.
 IF NIP >BODY If the file definition is in the dict ionary, discard the character pointer because

we will not need it. The cfa returned by DEFINED i s then changed to pfa which
is the FCB of the defined file.

 ELSE No. The file was not defined.
 DROP Throw away the word buffer address.

120

 >IN ! Restore the character pointer to the front of the file name.
 FILE: Define a new file with a new file definitio n in the dictionary.
 THEN ;

FORTH DEFINITIONS All the file management words wer e put into the DOS vocabulary, which are not

accessible from Forth. The two most used words con cerning files are to be defined
in the FORTH vocabulary so that they can be accesse d conveniently.

: OPEN (--) Open the following file and make it t he current file.
 [DOS] OPEN has to refer to words in the DOS voca bulary.
 ?DEFINED Find the file in dictionary. If failed, c reate a new file.
 !FILES Make this file the current file.
 OPEN-FILE Open it.
;

: DEFINE (--) Define the following word as a new file without opening it.
 ?DEFINE DROP ;

: FROM (--) Make the next word in the input strea m the FROM file. It will be created if not

already being defined.
 ?DEFINE Open a file.
 IN-FILE ! Make it the in-file.
 OPEN-FILE And then open it.
;

DEFER LOAD Interpret a screen.

In the previous Forth systems, including F83 Version 1, LOAD always interprets a screen from the

current file. To allow more natural and more convenient access to multiple files, F83 Version 2

modified the LOAD command so it will load a screen from the in-file, which is set up as the input

file. Most of the other file commands access the current file as default. To make sure that other

file commands can still access the current file, LOAD only loads one screen from the in-file and

then restores the current file.

: (LOAD) (n --) Interpret one screen from the in- file.
 FILE @ >R Save the current file fcb.
 BLK @ >R Save the currently processed screen numbe r on the data stack.
 >IN @ >R Save the word parsing pointer also.
 >IN OFF Start at the beginning of the screen.
 BLK ! Store n into BLK to process screen n.
 IN-FILE @ FILE ! Make the in-file the current file for interpreting.
 RUN Interpret the screen.
 R> >IN ! Restore the parsing pointer.
 R> BLK ! Restore the previous screen number.
 R> !FILES After loading from the FROM file, restor e the current file.
;

' (LOAD) IS LOAD Vector LOAD to execute (LOAD).

1 CONSTANT INITIAL In all the F83 source files, scr een 1 is always a load screen which loads in the

code in the file. INITIAL is defined to load this s creen.

: OK (--) Load applications in the current file.
 INITIAL LOAD ;

: A: (--) Select drive A as the default drive.
 0 SELECT ;

: B: (--) Select drive B as the default drive.
 1 SELECT ;

121

Chapter 15. Text Editor

The source code of the editors are in the file UTILITY.BLK, Screens 12 to 27.

An editor is the most often used utility in an operating system to support programming activity.

The friendliness of an operating system depends heavily on the editor it provides to you. Since

the source code in Forth is organized around blocks of 1024 bytes and the editor has to deal only

with blocks of fixed size, the editor is simpler than the editors in other systems, which have to be

able to handle large text files, usually of variable length.

The line editor in F83 system is compatible with the editor described in the popular book "Starting

Forth". For details on the various commands in this editor, see the book by Leo Brodie. There

are a few extensions, most notably the command NEW which allows you to enter multiple lines of

text.

A screen editor is also provided in F83 so that you always have a full text screen showing on his

terminal. The screen editor will be discussed in Chapter 16.

15.1. String Utility

The string manipulation primitives include string comparison and searching. The string search

command is used in the line editor to find the desired string. The only unusual feature about this

string package is the presence of a variable called CAPS, which determines whether or not to

ignore the case of the source and target strings. If case is ignored then A-Z=a-z. The default is

to ignore case.

Many string primitives are defined in the kernel, like string compare, lower-to-upper case

conversion, etc. Many of them are defined in machine instructions to increase execution speed.

Here their high level commands are shown for completeness and for reference. You should

consult the sections in the kernel for the code commands actually used in the editor, in the file

KERNEL86.BLK, Screens 41-43.

VARIABLE CAPS If true, lower case characters are to be converted to upper case.

: UPC (char -- char') Convert a character to uppe r case.
 DUP Copy char for comparison.
 ASCII a ASCII z
 BETWEEN

Is it between a and z?

 IF BL - THEN If so, convert to upper case by subtr acting 32.
;

: ?CHAR (char --
char')

Convert a character to upper case if CAPS flag is s et.

122

 CAPS @ Is CAPS true?
 IF UPC THEN If so, convert; otherwise skip.
;

: COMPARE (addr1 addr2 count -- n) Compare two st rings at addr1 and addr2 of equal length.

Case may be significant depending on CAPS. 0 is re t urned if the strings are equal.
1 is returned if string at addr1 is greater than th at at addr2. -1 is returned
if the string at addr1 is less than that at addr2.

 >R Save the count.
 0 The initial value of n to be returned.
 -ROT Put it under addr1.
 R> Retrieve the count.
 0 ?DO Scan through the strings.
 OVER I C@ Get a character from string 1.
 ?UPCHAR Convert it to upper case if needed.
 OVER I C@ Get the corresponding character from st ring 2.
 ?UPCHAR Convert.
 - DUP Are the characters the same?
 IF No. The characters are not equal.
 >R Save the comparison result.
 ROT DROP Discard the initial n.
 R> Retrieve comparison result.
 0< IF -1 If it is less than zero, return -1 beca use string 2 is larger.
 ELSE 1 THEN If the comparison is positive, retur n 1 to indicate that string 1 is greater than

string 2.
 -ROT Put the result below addr1, replacing the i nitial n.
 LEAVE Quit the do-loop immediately.
 ELSE DROP Characters are equal. Discard the resu lt of comparison.
 THEN
 LOOP
 2DROP Discard the addresses.
;

: INSERT (sa sl ba bl --) Insert a string at sa i nto the buffer at ba. The length of

string inserted is the smaller of sl and bl.
 ROT OVER MIN >R Save the smaller of sl and bl on t he return stack.
 R@ - bl-sl or 0 if sl>bl.
 OVER DUP Buffer address ba.
 R@ + Address of the remainder of the buffer.
 ROT CMOVE> Shift the string in the buffer forward, making room for the string to be inserted.
 R> Restore the count of insert string.
 CMOVE Copy string to buffer.
;

: REPLACE (sa sl ba bl --) Copy a string from sa to ba. Characters copied is the smaller

of sl and bl.
 ROT MIN Smaller of sl and bl.
 CMOVE Copy from sl to ba.
;

: DELETE (ba bl sl --) Delete sl characters from the start of buffer, ba. Fill the end of buffer with

blanks.
 OVER MIN >R Save the smaller of bl and sl.
 R@ - The remainder of the buffer.
 DUP 0> Any character to be move forward in the buf fer?
 IF Yes. Copy the remainder of buffer forward to t he start of buffer.
 2DUP Duplicate ba and remainder of buffer.
 SWAP DUP Buffer address ba.
 R@ + Address of remainder of buffer.
 -ROT SWAP CMOVE Copy the remainder of buffer to t he beginning of the buffer.
 THEN
 + Address of remainder of buffer.
 R> BLANK Fill the remainder of buffer with blanks.
;

VARIABLE FOUND A local variable to be used by SEARC H as a flag.

: SEARCH (sa sl ba bl -- n f) Search for the stri ng at sa inside the string at ba. If

found, return the offset of the found string as n a nd a true flag. If not found,
f is false and n is meaningless.

 FOUND OFF Initialize FOUND to be false.
 OVER >R Save buffer address ba.
 ROT TUCK - bl-sl.
 1+ 0 ?DO Scan the buffer for the string. Stack is now (sa ba sl --)
 3DUP COMPARE Is the string found at this position ?
 0= IF If found,

123

 FOUND ON Turn on the FOUND flag,
 LEAVE and quit the do loop immediately.
 THEN
 SWAP 1+ SWAP Increment the buffer address ba to d o the next comparison.
 LOOP
 DROP NIP Discard sl and sa.
 R> - Offset from the beginning of the buffer to th e starting point of the found string.
 FOUND @ Get the found flag.
;

These string commands are the basic commands used in implementing the string editing commands

which are needed in both the line editor and the screen editor in this F83 system.

15.2. Terminal Dependent Deferred Commands

Several commands which will be used to control screen display in the screen editor are defined here

as deferred commands so that commands defined in the line editor can be used also in the screen

editor by re-vectoring these deferred commands.

DEFER AT (col row --) Position the cursor at the given location specified by the stack numbers.
 DOES> A vectored word.
 -ROT 2DUP #LINE ! Store col in #LINE.
 #OUT ! Store row in #OUT.
 ROT PERFORM Execute the word vectored to by AT.
;
AT Execute AT vectors to itself.

DEFER BLOT (col --) Delete the rest of the curren t line.

DEFER –LINE (--) Delete the current line and scro ll the rest of screen up by one line.

: DARK (--) Clear the screen and home the cursor.
 DOES> Dark is a deferred word and can be re-vector ed.
 PERFORM First execute the routine whose execution address was put into the parameter field.
 #LINE OFF Reset line count.
 #OUT OFF Reset character count.
;
DARK Vector DARK to itself.

VOCABULARY EDITOR Create a new EDITOR vocabulary.
EDITOR ALSO
DEFINITIONS

Make it the current vocabulary so that following de finitions will be included
in it.

DEFER .SCREEN (--) Display the entire screen.

: (AT) (col row --) Do a carriage return in line e ditor mode.
 2DROP CR ;

: (BLOT) (col --) Fill the rest of line with spac es.
 C/L SWAP - Characters in the rest of this line.
 SPACES Output spaces.
;

: (DARK) (--) Clear the screen with line feeds.
 24 0 DO CR LOOP Send 24 carriage returns.
;

' (AT) IS AT Initialize AT,
' (BLOT) IS BLOT and the rest of the deferred words to support the dumbest possible terminal.
' (DARK) IS DARK
' NOOP IS -LINE
' CR IS .SCREEN

15.3. The Cursor Commands

124

The cursor in the line editor is a pointer pointing to the character position where the next editing

actions will occur. The cursor position is stored in a variable R#, as the offset from the beginning

of the screen buffer to the address of the current character. All cursor commands use or modify

this variable. Often the cursor is represented by a caret '^' on CRT display.

VARIABLE R# Defined in the nucleus.

: TOP (--) Go to the top of the screen.
 R# OFF Initialize R# to zero.
;

: C (n --) Move the cursor by n characters, right or left.
 R# @ Current cursor position.
 C/SCR 1- 1023, a 10 bit mask.
 AND Ensure the cursor is within the screen.
 R# ! Replace it.
;

: T (n --) Go to the beginning of line n.
 TOP Reset R#.
 C/L * Beginning of the nth line.
 C Set the cursor. Always within screen.
;

: CURSOR (-- n) Return the current cursor positio n.
 R# @ ;

: LINE# (-- n) Return the current line number.
 CURSOR C/L / Divide the cursor position by charact ers per line.
;

: COL# (-- n) Return the current column number.
 CURSOR C/L MOD The modulo of cursor position.
;

: +T (n --) Increment the current line by n.
 LINE# + Get the new line number.
 T Select it as the current line.
;

: 'START (-- addr) The buffer address of the star t of the screen.
 SCR @ The current screen number.
 BLOCK The address of the buffer.
;

: 'CURSOR (-- addr) The actual address of the cur rent character in the buffer pointed to by the curs or.
 'START Beginning of the screen.
 CURSOR + Add cursor offset to get the address in t he buffer.
;

: 'LINE (-- n) The address of the beginning of th e current line. 'CURSOR Address of the cursor.
 COL# - Subtract the column number to get back to t he beginning.
;

: #AFTER (-- n) eturn the number of characters af ter the cursor on the current line.
 C/L Characters per line.
 COL# - Characters after cursor.
;

: #REMAINING (-- n) Return the number of characte rs after the cursor on screen B/BUF Characters per

screen.
 CURSOR - Characters after cursor on screen.
;

: #END (-- n) Number of characters between the be ginning of current line to the end of screen.
 #REMAINING Characters from cursor to end of screen .
 COL# Characters from start of line to cursor on cu rrent line.
 + ;

125

15.4. Editing Buffers

PAD returns the address of a text buffer used by Forth system for string output and temporary

storage. The Starting Forth editor requires two additional text buffers: an insert buffer and a find

buffer. The insert buffer stores a text string which will be inserted into the screen during editing,

and the find buffer stores a string to be used in string search. These two buffers are assigned

immediately above the PAD buffer and they all float some distance above the top of the dictionary.

Since they are using the free memory space between the data stack and the dictionary, they do not

require fixed allocation in the RAM memory.

Some of other editing utility commands are also defined here.

VARIABLE CHANGED A variable indicating that the cur rent screen has been edited so that date stamp

can be applied automatically.

: MODIFIED (--) Mark the screen as updated and al so set the CHANGED flag.
 CHANGED ON Set CHANGED flag.
 UPDATE Set the UPDATE flag.
;

ASCII ^ CONSTANT EOS EOS is the character to denote the end of a string on input. It allows multiple

editing commands on one line.

: ?TEXT (addr -- addr+1 n)

Accept a string to addr. For a null string, do not disturb the string already
at addr.

 >R Save addr on return stack.
 EOS PARSE Scan the input stream for ^ or end of li ne.
 DUP Get the character count of the input string.
 IF If character count is not 0, do the string copy ing.
 R@ Retrieve addr.
 C/L 1+ BLANK Clear one line at addr.
 HERE COUNT The string is in the word buffer.
 R@ PLACE Copy the string to addr.
 ELSE 2DROP Clean the stack after PARSE.
 THEN
 R> Get the addr back.
 COUNT Replace it by addr+1 and count.
;

10 CONSTANT ID-LEN Length of the id stamp buffer.
CREATE ID ID-LEN ALLOT Id stamp buffer containing t he user name and date stamp.
ID ID-LEN BLANK Initialize the id stamp buffer.
84 CONSTANT C/PAD All text buffers are to be 84 cha racters long.

: 'INSERT (-- addr) Return the address of insert buffer.
 PAD C/PAD + 84 bytes above PAD.
;

126

Figure 15.1 The editing buffers.

: 'FIND (-- addr) Return the address of find buff er.
 'INSERT C/PAD + 84 bytes above the insert buffer.
;

: 'VIDEO (-- addr) Return the screen editor buffe r.
 'FIND C/PAD + 4 bytes above the find buffer.
;

: .FRAMED (addr --) Print a string at addr framed with single quotes.
 ." '" Print preceeding quote.
 COUNT TYPE Print the string.
 ." '" Print following quote.
;

: .BUFS (--) Display the contents of the insert a nd find buffers.
 CR ." I " Header for insert string.
 'INSERT .FRAMED Print insert buffer.
 CR ." F " Header of find string.
 'FIND .FRAMED Print find buffer.
;

: ?MISSING (n f -- n, or abort) If flag is false, print the find buffer and abort. Otherwise,

return only n.
 0= IF If flag is false, do the following.
 DROP Discard n.

127

 'FIND .FRAMED Print contents of find buffer.
 ." not found " This is used when a string cannot be found in the screen.
 QUIT Give up and return to the text interpreter.
 THEN ;

: KEEP (--) Copy the current line into the insert buffer.
 'LINE Address of current line.
 C/L 'INSERT PLACE Copy the line to insert buffer.
;

: K (--) Exchange the contents of the insert and find buffers.
 'FIND PAD C/PAD CMOVE Copy find buffer into PAD bu ffer.
 'INSERT 'FIND C/PAD
 CMOVE

Copy insert buffer to find buffer.

 PAD 'INSERT C/PAD
 CMOVE

Copy old find string to insert buffer.

;

: 'F+ (n1 -- n2) Add the length of the found stri ng to n1.
 'FIND Address of the find buffer.
 C@ Length of find string.
 + ;

: W (--) Abbreviation of SAVE-BUFFERS.
 SAVE-BUFFERS ;

: 'C#A (-- addr count) Return the address of the cursor and the characters after cursor on the curre nt

line.
 'CURSOR Address of the cursor.
 #AFTER Characters after cursor.
 MODIFIED Update flags.
;

: (I) (-- len 'insert len 'cursor #after)

Get input string into the insert buffer and leave a ddresses and lengths necessary
to do the insertion.

 'INSERT ?TEXT Get input text and copy it into the insert buffer.
 TUCK Tuck a copy of len under address of insert bu ffer.
 'C#A Push cursor address and character count on st ack.
;

15.5. Line Editing Commands

Line editing commands modify the contents of the current line in the current screen. Many of

these commands expect a string immediately following the command in the same input line. The

string may be a null string, i.e., the command is followed immediately by a carriage return. In this

case, the contents of the appropriate buffer are used in place of input string. The text string is

shown as <text>, which is a sequence of ASCII characters. Blanks or spaces can be included in

the string. The string is terminated either by a carriage return or by the carat character '^'.

: I (--) I <text> inserts text string on the cur rent line at the cursor.
 (I) Get the insert string.
 INSERT Insert it on the current line.
 C Move the cursor to the end of the inserted strin g.
;

: O (--) O <text> overwrites text string on the current line at the cursor.
 (I) Get the insert string.
 REPLACE Write over the current line with the inser t string.
 C Move cursor to end of inserted string.
;

: P (--) P <text> replaces the current line with <text> and blank fill the rest of the

line.
 'INSERT ?TEXT Get insert string.
 DROP Discard character count.
 'LINE C/L CMOVE Copy the entire line.

128

 MODIFIED Update flags.
;

: U (--) U <text> inserts a line under the curre nt line. Subsequent line in the screen

are pushed down by one line. The last line is lost .
 C/L C Move the cursor to next line.
 'LINE C/L OVER #END
 INSERT Insert a dummy line at the next line and pu sh all subsequent line down.
 P Put the insert string at the next line.
;
: X (--) Delete the current line and save it in t he insert buffer.
 KEEP Save the current line in the insert buffer.
 'LINE #END C/L DELETE Delete the current line.
 MODIFIED Update flags.
;

: SPLIT (--) Break the current line in two at the cursor.
 PAD C/L 2DUP BLANK Clear the PAD buffer.
 'CURSOR #REMAINING Address of cursor and character s to end of screen.
 INSERT Insert a line of blanks at the cursor.
 MODIFIED
;

: JOIN (--) Put a copy of next line after the cur sor.
 'LINE C/L + Beginning of the next line.
 C/L Copy one line,
 'C#A INSERT to the cursor.
 MODIFIED
;

: WIPE (--) Clear the screen to blanks.
 'START B/BUF BLANK Fill the screen with blanks.
 MODIFIED
;

: M (m n --) M copies the current line to nth lin e in the mth screen. M is neutralized because

the editor should not affect other screens and M mo ves the current line to another
screen.

 TRUE ABORT" Use G!" Always abort.
;

: G (screen line --) Get a line from another scre en and insert it in front of the current line.
 C/L * character offset to the line.
 SWAP IN-BLOCK + Get the source block from the in-f ile. Add offset to the source line.
 C/L 'INSERT PLACE First put the source line in the insert buffer.
 C/L NEGATE C Move the cursor to the line above.
 U Insert the source line.
 C/L C Move the cursor back.
;

: BRING (screen first last --)

Get a range of lines from another screen.
 1+ SWAP DO Scan the range of lines.
 DUP Source screen number.
 [FORTH] I Select the loop index in FORTH, not t he I defined above in EDITOR.
 G Get one line.
 LOOP
 DROP Discard the screen number.
;

15.6. String Editor Commands

The main task of the string editor is to locate a string inside the current screen and place the cursor

at the end of the found string. This allows you to modify strings in a screen quickly, and to make

local modifications as you debugs source code. The string pattern to be searched is put in the find

buffer.

: FIND? (-- n f) Get the find string from the inp ut stream and search for a matching string in

the screen starting at the current cursor position. Return the character offset

129

of the found string as n and a true flag if the str ing is found. Return a false
flag if not found, and n is meaningless in this cas e.

 'FIND Address of the find buffer.
 ?TEXT Get the input text into find buffer.
 'CURSOR #REMAINING
 SEARCH Search the screen from the cursor down to f ind a match.
;

: F (--) F <text> finds the text and leaves the cursor just pass it.
 FIND? Get the find string and do the searching.
 ?MISSING Quit with an error message "?" if string is not found.
 'F+ C Move cursor to the end of the found string.
;

: E (--) E <text> erases the string just found.
 'FIND C@ The character count of the found string.
 DUP NEGATE C Move the cursor to the beginning of t he found string.
 'C#A ROT DELETE Delete the found string.
;

: D (--) D <text> finds and deletes a string.
 F Find.
 E Erase.
;

: R (--) R <text> replaces the text string just found with the string in the insert buffer.
 E Erase the found string.
 I Insert the insert string.
;

: S (n --) n S <text> searches for the text throu gh all screens from the current up to screen

n. Each time a match is found, n remains on the st ack until screen n is reached.
 1 ?ENOUGH Abort if the data stack does not have at least one item on it.
 FIND? Search the current screen.
 IF 'F+ C EXIT THEN Found in current screen. Move cursor and quit.
 DROP Discard dummy number on stack when string is not found.
 FALSE Put a false flag on stack for do loop scanni ng.
 OVER SCR @ DO Scan a range of screens.
 N Next screen.
 TOP Beginning of next screen.
 'FIND COUNT Find string.
 'CURSOR #REMAINING Buffer address and count in th e next screen buffer.
 SEARCH Search the text string.
 IF Found the string.
 'F+ C Move cursor to end of found string.
 DROP TRUE Replace false flag with true.
 LEAVE Exit the do loop.
 ELSE DROP Discard the character offset if string is not found.
 THEN
 KEY? ABORT" Break!" If any key is received on the keyboard, quit the searching.
 LOOP Otherwise, continuing the search to the next screen.
 ?MISSING n should be on the stack.
;

: (TILL) (--) Search in the current line for the text string.
 'FIND ?TEXT Get the text string and put it in the find buffer.
 'C#A SEARCH Search current line from the cursor fo r the find string.
 ?MISSING If string can't be found, abort.
;

: TILL (--) TILL <text> deletes all text on the current line from cursor to the end of the

find string.
 'C#A (TILL) Search the find string.
 'F+ DELETE Delete from cursor to end of found stri ng.
;

: JUST (--) Justify. Delete up to but not inclu ding the text string.
 'C&A (TILL) Find the text string.
 DELETE Delete all characters between the cursor an d the starting character of the found

string.

;

: KT (--) Keep-Till. Copy all the characters be tween the cursor and the end of the text

string into the insert buffer.
 'CURSOR (TILL) Find the text string.

130

 'F+ The end of string.
 'INSERT PLACE Copy the characters into insert buff er.
;

15.7. Screen Editor

The line editor works on the source screen one line at a time. It serves well all the editing

functions. The only problem is that the text screen displayed on the terminal scrolls up with the

entering of new lines at the bottom of terminal screen. After some editing, compiling and testing,

the text screen starts to disappear over the top of the terminal and you must type L command to

re-display the text again. As the terminals getting smarter and smarter, it is nice if we can use

some of the extra functions in the terminal to keep the text screen at the top of the terminal all the

time. This is basically what a screen editor does. Any time the text screen is modified, the

modification will be written on the displayed text screen immediately.

If all the terminals were built the same way, it would be a simple exercise to write a screen editor.

However, terminals are built with different screen control commands. The screen editor must be

tailored to the specific terminal to use its specific cursor and display control commands. The

screen editor in F83 uses all the commands developed in the line editor for editing functions. The

terminal-specific functions are concentrated in four commands: AT, DARK, BLOT, and -LINE,

which manage a continuous display of the edited text screen. The display is updated

automatically as each command line is executed.

131

Figure 15.2 Screen editor display

15.8. The Screen Display Commands

The display on the terminal is assumed to have a 24 by 80 character format. The screen editor

displays the screen number on the top line or line 0 on the screen display. Lines 1 to 16 are used

to display 16 lines of text in the current screen. Line 17 display the current line. Lines 18 to 23

are used as a scrolling window for command input and character output. The text screen stays at

the top of display and always shows the updated text of the current screen under editing.

3 CONSTANT DX Column offset for screen text. Allow room for line numbers.
1 CONSTANT DY Row offset for screen text. Allow ro om for screen number.

: .LINE (--) Display the current line, with the c ursor shown as an up-arrow or caret.
 LINE# 2 .R SPACE Display the current line number.
 'LINE COL# >TYPE Display the text before cursor.
 ASCII ^ EMIT Display ^, current position of the cu rsor.
 'CURSOR #AFTER >TYPE Display the text after the cu rsor.
;

: REDISPLAY (line# --) Update the image of line n on the terminal.
 0 OVER DY + Column and row of line n on the displa y.
 AT Move the display cursor to the display coordina tes.
 DUP 2 .R SPACE Print the line number.
 DUP C/L * Character offset of line n.
 'START + Address of line n in screen buffer.
 C/L TYPE Display the entire line.
 SPACE . Display the line number.
 #OUT @ BLOT Erase the rest of the line.

132

;

: CHANGED? (line# -- f)

Return a true flag if the line has changed since la st display. It is sensitive
to case changes.

 C/L * Character offset to the line.
 DUP 'START + Address of the line in the buffer.
 SWAP 'VIDEO + Address of same line in the video bu ffer.
 C/L COMP Compare the lines in text screen and vide o buffer.
; Return true if two line are different.

: .ALL (--) Redisplay all lines which have change d, the screen number, the cursor line, and

scroll the command region.
 DISK-ERROR @ 0= If no disk error, display the scre en.
 IF
 DX 0 AT .SCR Display the screen number.
 #OUT @ BLOT Erase the rest of the line.
 [FORTH] Switch context to FORTH because
 ?STAMP Stamp the screen if not done.
 L/SCR 0 DO Scan all the lines in the screen.
 I CHANGED? Has this line been changed?
 IF I REDISPLAY If changed, redisplay the new lin e.
 THEN
 LOOP
 'START 'VIDEO B/BUF
 CMOVE

Update the video buffer.

 0 18 AT .LINE Display the current line under the displayed screen.
 0 19 AT -LINE Delete line 18 on display and scrol l up the rest of screen display.
 0 23 AT Position the display cursor at the bottom of display, assuming 24 line display.
 #OUT OFF Clear output character count.
 THEN
;

: EDIT-AT (--) Move the display cursor to show th e position of the editor cursor for editing

functions.
 CURSOR C/L /MOD Convert cursor offset to screen co ordinates.
 SWAP DX + Column number.
 SWAP DY + Row number.
 AT Move the display cursor.
;

: NEW (n --) Move the display cursor to the begin ning of line n and accept text for following

lines until a null line (a line begins with a carri age return) is entered, i.e.,
2 CR's gets you out of NEW.

 L/SCR SWAP DO Scan from line n down.
 [FORTH] I Loop index.
 [EDITOR] T Position editor's cursor.
 EDIT-AT Position the display cursor.
 >IN OFF Reset the input character offset.
 QUERY Wait for a line of input text.
 SPAN @ Number of characters in the input text.
 IF If not a null line,
 P Put the text in the current line.
 ELSE For a null line,
 [FORTH] I Get the current line number,
 REDISPLAY Put back the old line.
 LEAVE Quit here.
 THEN
 .SCREEN Refresh the display.
 LOOP
 .SCREEN
;

: GET-ID (--) Check the ID stamp field. If it is empty, prompt for user's id and date.
 ID ID-LENGTH Get the ID string address and length.
 -TRAILING NIP 0= Is the length 0?
 IF Yes. Prompt the user.
 CR ." Enter you ID: "
 ID-LEN 0 DO Display a string of dots.
 ASCII . EMIT
 LOOP
 ID-LEN BACKSPACES Backspace over the dots.
 ID ID-LEN EXPECT Input the id stamp to the id sta mp buffer.
 THEN
;

133

: STAMP (--) Put the stamp at the end of line 0 i n the current screen.
 ID Id buffer address.
 'START C/L + End of line 0.
 ID-LEN 1- - Backup the length of stamp text.
 ID-LEN 1-
 CMOVE Copy the stamp to screen.
;

: ?STAMP (--) Update the ID if the screen has cha nged and clear the change flag.
 CHANGED @ IF Changed?
 STAMP Stamp the screen.
 CHANGED OFF Reset changed flag.
 THEN ;

2VARIABLE AUTO Addresses of CR and STATUS to patch vectors for CRT and TTY, respectively.
VARIABLE EDITING? Set during editing.
VARIABLE CHANGED Set if the edited screen has been changed.

: INSTALL (--) Initialize the screen editor.
 EDITING? @ NOT IF If not in the editing mode, init ialize screen editor.
 ['] .SCREEN Address of the screen refresher.
 AUTO @ ! Vector it through AUTO.
 EDITING? ON Turn on editing flag.
 CHANGED OFF Turn off changed flag.
 THEN
 DISK-ERROR OFF Turn off the disk error flag always .
;

15.9. The Screen Editor Commands

FORTH DEFINITIONS The following screen editing comm ands should be made accessible from the common

FORTH vocabulary.

: DONE (--) Normal exit from the screen editor. U pdate the id stamp, tell you if the screen

was modified, flush the screen to disk file, and re move automatic screen refresh.
 [EDITOR]
 EDITING? @ IF If still in the editing mode,
 PREVIOUS
 EDITING? OFF turn off editing flag,
 CR SCR ? type the screen number,
 >UPDATE @ 0< NOT IF and look at the update field .
 ." Un" THEN Not updated. Print prefix.
 ." modified" Complete the message.
 ?STAMP Update the ID stamp.
 W Save contents to disk file.
 THEN
 DISK-ERROR OFF Turn of disk error flag to normal s crolling mode.
 AUTO 2@ !
 Revector CR
;

: ED (--) Re-enter the screen editor. Clear and initialize the display and begin automatic

screen refresh.
 [EDITOR] GET-ID Get id stamp.
 INSTALL Initialize the screen editor.
 EDITOR Make EDITOR the context vocabulary.
 'VIDEO B/BUF ERASE Clear the video buffer.
 DARK Home the cursor and clear CRT.
 .ALL Print the screen on CRT.
;

: EDIT (n --) Set n as the current editing screen and call ED to do screen editing.
 1 ?ENOUGH Abort if the stack has less than one ite m.
 SCR ! Store n in SCR, making screen n the current editing screen.
 [EDITOR] TOP Move editor cursor to top of screen .
 ED Do screen editing.
;

: (WHERE) (pos scr --) When an error occurred dur ing compilation, the position and screen number whe re

error occurred are saved on the data stack. (WHERE) uses these two numbers to
invoke the screen editor and show the screen to be edited.

 DISK-ERROR @ 0= Make sure the error is not caused by disk reading.
 IF

134

 EDIT Do screen editing.
 [EDITOR] 1- C Position the display cursor befor e the error.
 'WORD COUNT 'FIND
 PLACE

Put the word in trouble into the find buffer.

 THEN ;

15.10. Configuring The Terminal

Each terminal manufacturer has its own way of controlling the display on the terminal screen. To

use the full power of a screen editor, the screen editor must know how to position the display cursor

at any position on the display screen and a few other things like initialize the display, erase one line

and delete one line. In F83 system, terminal configuration commands are provided for a number

of popular terminals. If your terminal is not in this list, you will have to define the proper

commands. You can follow the pattern as provided. It is not a very difficult task.

An example is shown here. You should consult the F83 listing for other terminals.

: SMART (--) Initialize vectored routines for the IBM PC.
 ['] CRLF Execution address of carriage return.
 ['] CR >BODY Vector address in the deferred word C R.
 AUTO 2! Store them in the AUTO area.
 ['] .ALL IS .SCREEN Vector .SCREEN to .ALL.
;

CODE IBM-AT (col row
--)

Position cursor at the specified location on CRT sc reen.

 AX POP DX POP AL DH MOV Copy col and row into DX.
 BH BH XOR Clear BH register.
 2 # AH MOV Cursor positioning code.
 16 INT Call BIOS.
 NEXT
 END-CODE

CODE IBM-DARK (--) Clear screen and home the curs or.
 2 # AX MOV Home code.
 16 INT Call BIOS.
 NEXT
 END-CODE

CODE IBM-BLOT (col --) Clear from cursor to end o f line.
 80 SWAP - Remaining characters on the line.
 SPACES Output that many spaces.
;

CODE IBM—LINE (--) Delete the current line and sc roll the rest of the screen.
 BP PUSH Save BP register.
 BH BH XOR Clear BH.
 3 # AH MOV 16 INT Call BIOS for cursor position.
 DH CH MOV Line number moved to CH.
 CL CL XOR Column number cleared to zero.
 24 256 * 79 + Bottom line and right-most column
 # DX MOV copied to DX register.
 7 # BH MOV
 6 256 * 1 + # AX MOV Code stored in AX.
 16 INT Call BIOS.
 BP POP Restore BP.
 NEXT
 END-CODE

: IBM (--) Initialize the screen editor for IBM P C.
 SMART Vector CR and .SCREEN.
 ['] IBM-AT IS AT Vector the rest of terminal speci fic commands.
 ['] IBM-DARK IS DARK
 ['] IBM--LINE IS -LINE
 ['] IBM-BLOT IS BLOT

135

;

136

Chapter 16. Viewing Source Screens

The source code about viewing is scattered in UTILITY.BLK, screen 7, EXTEND86.BLK screen

12, and KERNEL.BLK Screens 66 and 76.

Forth with its hosts of commands can be looked upon from two opposing points of view. For the

Forth advocates, it is called modularity because commands can be individually executed or

compiled to build higher level commands. For others it is called fragmentation, because functions

are scattered in hundreds of small bits and pieces. To decipher a colon command, you have to

know the exact functions of every command in this command. It is not an easy job to find them

because they seldom are grouped in one place.

F83 has more than 1000 commands in it. How can you find any particular command in this mess?

The designers of F83 provide us with a viewing facility which allows us to locate the source code

of all the commands in the dictionary and display the block of texts that contains the source of the

command we look for. To accommodate this facility, the format of Forth commands in the

dictionary is changed from the traditional form of name field, link field, code field and parameter

field to that as shown in Fig. 16.1.

16.1. The View Field

The view field is used to store information about where the source code of the command is located.

It is two bytes long and divided into two sub fields: the lower 12 bits contain the block number of

the source code and the upper four bits contain the file number of a DOS file containing the block.

Let's first examine some of the low level commands associated with the view field:

: VIEW# (-- addr) Return the view field in the cu rrent FCB.
 FILE @ Address of the current FCB.
 40 + Offset by 40 bytes to the view field.
;

: ,VIEW (--) Compile the view field in a new defi nition.
 VIEW# @ Get the view file number of the current fi le.
 4096 * Shift it to the upper 4 bit file number sub field.
 BLK @ + Add the block number of the screen under c ompilation.
;

: "CREATE (--) Create the header of a new definit ion. This definition was discussed in the

chapter on the vocabulary structure.

: >VIEW (cfa -- vfa) Go from code field to the vi ew field.
 >LINK Go to link field first.
 2- View field is two bytes ahead of the link field .
;

137

Figure 16.1 The view field and the view files.

: VIEW> (vfa -- cfa) Go from view field to code f ield.
 2+ To link field.
 LINK> From link field to code field.
;

16.2. The View Files

The view field in a command has a view file number in the view field. From this number the

viewing command will have to find the file and open it for viewing. The view file number for

different source files are assigned and pertinent information are stored in an array called

VIEW-FILES. In the file control block (FCB) in the definition of each source file, bytes 40 and

41 are used to store the view file number. This provides the file number to store into the view

field when the command was first compiled into the dictionary.

CREATE VIEW-FILES An array where the view files are arranged in sequential order so that the viewing

command can find and open the source file of a word definition.
32 ALLOT There is enough space to define 16 files f or viewing.

: VIEWS (n --) Assign the view file number on the stack to a file and store the fcb address in

138

the corresponding entry in the VIEW-FILES array.
 [DOS]
 ?DEFINE Search the dictionary for the word name fo llowing VIEWS. It must be a file name

and the fcb address is returned.
 2DUP 40 + ! Store number n into the view# field in the FCB of the file
 BODY> Get the execution address of the file defini tion.
 SWAP 2* The address offset into the VIEW-FILES arr ay.
 VIEW-FILES + ! Store the fcb address into the VIEW -FILES array.
;

Now, view files can be assigned view file numbers to fill the VIEW-FILES array:

1 VIEWS KERNEL86.BLK
2 VIEWS EXTEND86.BLK
3 VIEWS CPU8086.BLK
4 VIEWS UTILITY.BLK

These are the source files in the F83 system. All the commands loaded from these files can be

viewed. If you have some application programs in another file, you will have to assign a view file

number to it using the VIEWS command as above. After that, you can load in your application

and can view the commands loaded in from your file.

16.3. The Viewing Command

Assuming that all the source code files are on the default disk drive, it is very easy to display a

screen which contains the command you want to examine. The command is as following:
 VIEW <name>

where <name> is the name of the command you want to review. The command VIEW will locate

the word <name> in the dictionary and find out the file and the screen number of the source code of

this command. It will then open that file and read the screen from the file and display the screen

on the CRT terminal.

: @VIEW (cfa -- scr# file#) From the code field a ddress of a definition, find its view

field and return the screen number and the file num ber stored in the view field.
 >VIEW Get the view field address.
 @ DUP 4095 AND Mast off the top 4 bits in the view field and leave only the screen number.
 DUP 0= If the screen number is 0,
 ABORT" entered at
terminal"

abort because the word is not loaded from a file.

 SWAP 4096 / 15 AND Extract the view file number fr om the top 4 bits.
;

: VIEW (--) Allow the user to see the source scre en of the following word. If the VIEW# is

zero, then the current file is used. Otherwise, th e associated field is opened
and viewed.

 ' Find the cfa of the following word.
 @VIEW Get the screen number and the view file numb er.
 ?DUP IF If the file field is zero, use the current file. If not zero,
 2* VIEW-FILES + @ find the cfa of the view fil e in array VIEW-FILES.
 ." is in " Print the file name first.
 2DUP >BODY .FILE
 ." screen " . And also the screen number.
 EXECUTE Make the file our current file.
 OPEN-FILE Open it for reading.
 ELSE The definition is in the current file.
 ." may be in the
current file: "

 FILE? Print the file name,
 ." screen " DUP > and the screen number.

139

 THEN
 LIST Show the screen.
;

View file number 0 is reserved for the current file if it has not been assigned a view file number.

Up to 15 files can be stored in the VIEW-FILES array for viewing. If you have to use the second

drive to store some of the files, the drive number in their FCB must be assigned accordingly.

140

Chapter 17. WORDS

The source code in this chapter is in file UTILITY.BLK, Screens 3 and 5.

The command WORDS (VLIST in older Forth systems) displays all the commands defined in a

vocabulary. It is very useful in inspecting the dictionary contents, and also in determining the

progress of compilation when a large application is being loaded. The implementation of this

command in F83 system is slightly more complicated because the vocabulary is hashed into four

threads.

17.1. Output Formatting Commands

To display a sequence of variable length names on the CRT terminal or printed on a printer, it is

necessary to wrap a whole word around the end of a line instead of breaking a word. A few

commands allow us to detect the end of line condition and insert a carriage return before printing

the last word.

VARIABLE LMARGIN The column number of the left marg in.
0 LMARGIN !
VARIABLE RMARGIN The column number of the right mar gin.
70 RMARGIN !

: ?LINE (n --) If the current line does not have space for n more characters, move to the next

line.
 #OUT @ Current character count.
 + RMARGIN @ > IF Add n to it. If it is greater th an the right margin,
 CR Move to the next line.
 LMARGIN SPACES Align to the left margin.
 THEN ;

: ?CR (--) Move to next line if we had passed the left margin already.
 0 ?LINE
;

17.2. WORDS

In the parameter field of the command of a vocabulary command like FORTH, EDITOR, or DOS,

etc., there are four addresses pointing to the ends of four thread in the dictionary. They are the

link field addresses of the four newest commands defined in the vocabulary. To print out the

entire list of names in the vocabulary, we have to trace through these four threads and print out

command names in the descending order according to the addresses. These four addresses are

first moved to the top of the dictionary. The largest address is first used to print the name which

was defined last. This address is replaced by the next address in its thread, and the process is

repeated until all names are printed.

: LARGEST (addr n -- addr' val) Given an address and a number on the stack, return the

141

address and the value of the largest entry in the a rray.
 OVER 0 SWAP Add 0 and addr on the stack.
 ROT 0 DO Scan through the array.
 2DUP @ U< Compare contents of an array entry with the current largest value.
 IF If the entry is greater,
 -ROT 2DROP discard the old address and its value ,
 DUP @ OVER and replace them with the new address and its value.
 THEN
 2+ Next address to be scanned.
 LOOP
 DROP Discard the address used for scanning.
;

: WORDS (--) List the words in a vocabulary. It c an be interrupted by pressing any key.
 CR LMARGIN @ SPACES Align to the left margin.
 CONTEXT @ The context vocabulary.
 HERE #THREADS 2*
 CMOVE

Copy the array of thread ends to the word buffer.

 BEGIN Begin the printing loop.
 HERE #THREADS
 LARGEST

Pick the largest address in the thread array.

 DUP WHILE If it is not zero, print a name. Otherwi se, the vocabulary is exhausted.
 DUP L>NAME From the link field, move to the name field.
 DUP C@ 31 AND The length of the name.
 ?LINE Make sure there is enough room at the end o f a line.
 .ID Print one name.
 SPACE SPACE Add 2 spaces.
 @ SWAP ! Replace the largest address in the threa d array by the address of the next word

in the thread.
 KEY? IF EXIT THEN Exit if a key is pressed.
 REPEAT Continue until all names are printed.
 2DROP Discard the address and a value, which is ze ro.
;

ROOT DEFINITIONS WORDS must also be defined in the ROOT vocabulary.

: WORDS WORDS ; WORDS can now be accessed any wher e in the F83 system.

FORTH DEFINITIONS

142

Chapter 18. Disk File Utility

The source code in this chapter is in UTILITY.BLK, Screens 4, 7 and 8.

18.1. Displaying Screens In a File

The line editor allows us to examine and modify screens, one at a time. For large application

which requires many screens, it is necessary to have some commands which allow us to scan the

contents of a file so that we will know which screen to examine in detail. These cammands are

also useful in generating hardcopy of source code on a printer.

: .SCR (--) Print the current screen number and t he file name.
. " Scr # " SCR ? Print the screen number,
 8 SPACES FILE? and the file name.
;

: LIST (n --) List the specified screen in the 16 by 64 character format. Pressing a key stops

the printing. LIST also makes n the current screen .
 1 ?ENOUGH Make sure n is on the stack.
 CR DUP SCR ! Make n the current screen.
 .SCR Print screen number and file name.
 L/SCR 0 DO Scan 16 lines.
 CR I 3 .R SPACE Print the line number first.
 DUP BLOCK Get the screen from the file and return the buffer address.
 I C/L * + Line address in the buffer.
 -TRAILING >TYPE Print one line of text.
 KEY? ?LEAVE Quit if a key is pressed.
 LOOP
 DROP CR House keeping.
;

To print multiple screens on paper, it is nice to arrange three screens to a page. By convention,

the first screen number is a multiple of three so that a group of three screens forms a unit in

arranging your source code. TRIAD is the command to print screens in this style.

: TRIAD (n --) Print three screens on a page. The nth screen must be printed. The top screen

has a screen number modulo 3.
 12 EMIT Form feed.
 3 / 3 * Modulo 3 boundary.
 3 BOUNDS DO Print only 3 screens.
 I LIST One screen at a time.
 LOOP ;

The top line in a screen is usually a comment line. Besides the documenting function, it also

allows you to scan a range of screens and identify the contents of screens easily. F83 also puts an

ID stamp at the end of the top line. The command INDEX prints the top lines of a range of

screens. It is very handy as a substitute of a screen directory.

: .LINE0 (n --) Print line 0 of nth screen.
 DUP 3 MOD If n is evenly divisible by 3,
 0= IF CR THEN send out an extra line feed.
 CR DUP 3 .R SPACE Print the screen number.
 BLOCK Get the screen from file.

143

 C/L -TRAILING >TYPE Print the top line.
;

: INDEX (start end --) List the top lines in a ra nge of screens.
 2 ?ENOUGH It needs two parameters.
 1+ SWAP DO Scan the range of screens.
 I .LINE0 Print top line only.
 LOOP
 CR ;

: IND (n --) Start printing index lines from scre en n. Continue until a key is pressed.
 BEGIN Start with screen n.
 DUP .LINE0 Print one top line.
 1+ Increment n .
 KEY? UNTIL Stop when a key is pressed.
 DROP ;

18.2. Disk Buffers

Screens or blocks of 1024 bytes are the basic units for Forth program source code. The size of

block is convenient to develop modularized programs because the block of text fits comfortably

inside a standard CRT screen, while allow enough room to do loading and testing of the source

code. Since the screens can be compiled independently, it is the common practice to use a load

screen which loads other screens in the order that is required by the application. Therefore,

screens do not have to be arranged in a specific order. However, there are times when we would

like to move texts screens around and physically arrange them in some order, especially if the texts

are to be printed and communicated to other people. Disk copying utility in F83 enables you to

copy single or multiple screens within a file and also from one file to another.

To fully appreciate the disk copying utility in F83, it is necessary to understand fully the disk buffer

structure used in the F83 system to handle the traffic from and to the disk files. Let us briefly

review the F83 disk buffers.

In the high RAM memory, a number of disk buffers are assigned by the system at boot up time.

Each buffer is 1024 bytes in size to hold a block of text or data, corresponding to the data stored in

a corresponding block in a disk file. The number of disk buffers is specified in a constant

#BUFFERS. Immediately before the first disk buffer, there is an array storing the essential

information about the disk buffers. Each disk buffers has a corresponding entry in this array. An

entry consists of four cells for the block number, a pointer to the parent file, the address of the disk

buffer, and an update flag. Whenever a block is accessed, its array entry is moved to the

beginning of the array, indicating it is the most recently accessed buffer. The buffer with an array

entry at the end of the array is the least accessed buffer and will be re-assigned to receive other disk

block when necessary.

In doing multiple block copying, it is generally desirable to read/write all the disk buffers together

and in sequence to minimize the disk head movements and the start/stop of the disk drive. F83

144

disk copy utility tries to optimize the disk accessing, as it normally uses four disk buffers.

More detailed information on the disk I/O is covered in the chapters dealing with the nucleus and

DOS of the F83 system.

18.3. Single Block Copying

To copy one block of text or data to another block in the same disk file, the most efficient way is

not physically copying the block, but to bring the source block into one disk buffer and reassign

that buffer to the destination block with the update flag set. The data in the buffer will be flushed

into the destination block when the buffer is needed for other disk I/O transaction.

: ESTABLISH (n --) Set the block number of the mo st recently referenced block to n, thus assign the

buffer to the nth block.
 FILE @ SWAP Get the current file fcb.
 1 BUFFER# Get the address of the first entry in th e buffer pointer array.
 2! Store n into the first cell in that entry, forc ing the most recently referenced

block to become the nth block. The current file nu mber is store into the second
cell.

;

: (COPY) (from to --) The primitive word to copy one block to another.
 OFFSET @ Get the block offset number of the curren t file.
 + The actual block number of destination.
 SWAP Get the source block number to top of stack.
 IN-BLOCK Get the source block into the most recent ly referenced buffer.
 DROP The buffer address is not needed.
 ESTABLISH Claim this buffer for the destination bl ock.
 UPDATE Update the buffer so that it will be writte n back to the destination block.
;

: COPY (from to --) To be careful, copy a block a nd explicitly flush it to disk.
 FLUSH Empty the disk buffers to disk files. Impor tant when accessing multiple files.
 (COPY) Do the copying.
 FLUSH Flush the destination block.
;

18.4. Multiple Block Copying

When we copy a range of consecutive blocks from one place to another, complication arises if the

destination range overlaps with the source range. To avoid conflicts in the overlapped copying,

the direction of copying must be carefully selected.

VARIABLE HOPPED The number of screens to skip when copying.
VARIABLE U/D The direction of copying to avoid over lap.
DEFER CONVEY-COPY A deferred word. It will be used to copy within one file and copy between files.
' (COPY) IS CONVEY-COPY For the moment, define it t o copy blocks in the same file.

: HOP (n --) Specify the number of screens to ski p in copying.
 HOPPED ! ;

: .TO (n1 n2 -- n1 n2) Print a message while copy ing.
 CR OVER . Print n1.
 ." to "
 DUP . Print n2.
;

: (CONVEY) (blk n -- Move a range of screens in th e direction specified by U/D.

145

blk+-n)
 0 ?DO Copy n blocks. If n=0, exit immediately.
 KEY? ?LEAVE Stop if user hit a key.
 DUP DUP Source block number.
 HOPPED @ + Destination block number.
 .TO Print something to indicate that the computer is workin hard.
 CONVEY-COPY Copy one block a time.
 U/D @ + The next source block.
 LOOP
 FLUSH Flush the blocks still in the disk buffers.
;

: CONVEY (first last --)

Move a set of screens. First determine the directi on of copying to prevent
overlap. Move the blocks as a set whose size is de termined by the number of
available disk buffers.

 FLUSH Clear the buffers.
 HOPPED @ Get the screen number to skip.
 0< IF If copying from high block to low block,
 1+ OVER - Number of blocks to copy.
 1 Copy in the forward direction.
 ELSE Copying from low block to high block.
 DUP 1+ ROT - Number of blocks to copy.
 -1 Copy in the backward direction.
 THEN
 U/D ! Store the direction code into U/D.
 #BUFFERS /MOD Groups of blocks to be copied togeth er.
 >R (CONVEY) R> Copy the remainder blocks which do not fill the pipeline.
 0 ?DO Pipe the rest of block through all the buffe rs.
 #BUFFERS (CONVEY) Copy #BUFFERS blocks all at onc e.
 LOOP
 DROP Leftover block number.
;

If you know the destination block number and do not want to use HOP to specify the number of

blocks to be skipped, you can use the following commands to do the copying:
 <first> <last> TO <destination> CONVEY

where 'first', 'last', and 'destination' are block numbers indicating the range of source blocks and the

first destination block number.

: TO (first last -- first last)

Calculate the blocks to be hopped and store the num ber in HOPPED.
 SWAP Get 'first' to top of stack.
 BL WORD Read the next number.
 NUMBER DROP Convert the number to an integer.
 OVER - The hopping distance.
 HOP Store it in HOPPED.
 SWAP Restore the 'first last' order on data stack.
;

18.5. Multiple File Block Copying

F83 Version 2.0 and above was modified so that when screens are copied, it is always read from the

in-file and written to the current file. Therefore, it is not necessary to define special commands to

copy screens from one file to another. You must remember that when you OPEN a file, you

assign the file to both the current file and the in-file. If you open another file using the FROM

command, this file becomes the in-file which is always to be read. In the early versions of F83 the

role of in-file was not clearly defined, and many block copying commands had to be redefined in

the FILES vocabulary. The following discussion applies only to the F83 Versions 1.x.

146

One of the advantages in using the DOS operating system to host a Forth system is that we can

organize the disk storage into named files which help us using the disk storage more conveniently

by grouping related screens into separated files. However, it is often necessary to transfer

common utility from one file to another. The multiple file screen copying utility in F83 system

makes it easy to copy either single screen or a range of screens from one file to another by new

versions of COPY and CONVEY. These commands are redefined in the FILES vocabulary so

that they can be accessed independent of the existing COPY and CONVEY commands in the

FORTH vocabulary.

ONLY FORTH ALSO FILES
DEFINITIONS

Make FORTH and ONLY the resident vocabularies and F ILES the context and current
vocabulary.

: COPY (from to --) Copy a screen from the FROM f ile to the current file. The FROM file must be dec lared

by the FROM xxx commands, where xxx is the FROM fil e name.
 SWAP Get the source block number to top of stack.
 EXCHANGE Exchange the FROM file with the current f ile.
 BLOCK Read the source block from the FROM file.
 SWAP Get the destination block number to top of st ack
 EXCHANGE Restore the current file.
 BLOCK Get the destination block from the current f ile.
 B/BUF CMOVE Copy the contents of the source screen into destination screen buffer.
 UPDATE Update the destination block so it will be copied back to the current file.
;

: CONVEY (first last --)

Copy a range of screens from the FROM file to the c urrent file. The screen range
is the current file is offset from that in the FROM file by the number in HOPPED.

 ['] CONVEY-COPY >BODY Get the parameter field of t he word CONVEY-COPY.
 @ The execution address of (COPY).
 >R Save it on the return stack.
 ['] COPY Execution address of the COPY in the FILE S vocabulary, which does copy between

files.
 IS CONVEY-COPY Vector CONVEY-COPY to the COPY we j ust defined above.
 CONVEY Now, CONVEY will copy a range of screens fr om FROM file into the current file

because CONVEY-COPY is vectored to the new COPY com mand.
 R> ['] CONVEY-COPY
 >BODY ! Restore CONVEY-COPY to the old single file COPY.
;

This is an example in using a deferred word to do different thing by vectoring it to different

commands. The commands using the deferred word do not have to be change at all.

147

Chapter 19. Memory Dump

Source code discussed here is in the UTILITY.BLK file, Screens 28 to 30 and KERNEL86.BLK

screen 87.

Source code and text data can be displayed or printed using commands like LIST, SHOW, and

TYPE at the primitive level. Non-ASCII data like object code and numeric data cannot be display

conveniently. The dumping utility provided in F83 allows you to review the binary data in a

conveniently formatted form. Large area of memory and large numeric data set can be either

displayed on terminal or listed on printer.

19.1. The Dumb DUMP

A simple and primitive dump command is included in the kernel of F83 system. It helps you to

debug the system before it is fully checked out.

: DUMP (addr len --) Dump a range of memory from addr in bytes.
 0 DO Set up the loop.
 CR Start a new line.
 DUP 6 .R SPACE Print the address first.
 16 0 DO Dump 16 bytes.
 DUP C@ Get one byte.
 3 .R Print one byte.
 1+ Increment address.
 LOOP
 16 +LOOP Loop for more lines.
 DROP ;

19.2. The Smart DUMP

More sophisticated dumping routines present data in both numeric and ASCII forms because in

many cases the ASCII data are intermixed with binary data. It is convenient to have both types of

display side by side. It is also nice if one can scan the memory forward and backward. The

more elaborate dumping utility in F83 has many features not available in other systems.

: .2 (n --) Display a 2 digit number followed by a space.
 0 Make a double number of n.
 <# # # #> Convert two digits.
 TYPE SPACE Type two digits with a trailing space.
;

: D.2 (addr len --) Display a line of 2 digit num bers.
 BOUNDS
 OVER + SWAP Convert addr len to the limit-index f ormat.
 ?DO Skip if len=0.
 I C@ .2 Print one number.
 LOOP ;

: EMIT. (char --) Emit one character if it is pri ntable. Otherwise display a period.
 127 AND Mask off MSB.
 DUP Save a copy of char.

148

 BL 126 BETWEEN Is it between 32 and 126, the print able range?
 NOT IF DROP ASCII . If not printable, replace char with '.'.
 THEN
 EMIT Send either char or '.' .
;

: DLN (addr --) Dump 16 bytes of data starting at addr. Display address first, then 2 sets of

8 bytes, followed by the ASCII equivalent.
 CR New line.
 DUP 4 U.R 2 SPACES Display the address.
 8 2DUP D.2 SPACE Display 8 bytes.
 OVER + 8 D 2 SPACE Second set of 8 bytes.
 16 BOUNDS DO Scan 16 bytes
 I C@ EMIT Print ASCII characters.
 LOOP ;

: ?.N (n1 n2 -- n1) If n1=n2, display a downwards pointer, otherwise display the number.
 2DUP = n1=n2?
 IF ." \/" DROP Equal. Display pointer and drop n2 .
 ELSE 2 .R THEN Otherwise, display n2.
 SPACE ;

: ?.A (n1 n2 -- n1) If n1=n2, display a 'v' symbo l. Otherwise display one character.
 2DUP =
 IF ." V" DROP
 ELSE 1 .R THEN Display only one character.
;

: .HEAD (addr len --
addr1 len1)

Display the header field of a dump, making it easy to index into the data portion
of the dump.

 SWAP Get addr to top of stack.
 DUP -16 AND Mask off the least significant 4 bits in the address.
 SWAP Second copy of address.
 15 AND Preserve only the lower 4 bits.
 CR 6 SPACES Skip the address field.
 8 0 DO I ?.N LOOP Print numeric field markers.
 SPACE
 16 8 DO I ?.N LOOP Second set of field markers.
 SPACE
 16 0 DO I ?.A LOOP ASCII field markers.
 ROT + Leave addr1 and len1 on stack, enabling full line display.
;

: DUMP (addr len --) Dump a range of memory speci fied on stack. The dump is always in HEX, but the

current base is preserved.
 BASE @ -ROT Save base under addr.
 HEX Use hexadecimal conversion.
 .HEAD Print the display header.
 BOUNDS DO Scan the memory range.
 I DLN Display a line.
 KEY? ?LEAVE Quit if any key is pressed.
 16 +LOOP 16 bytes per line.
 BASE ! Restore the original base.
;

: DU (addr -- addr+64) Dump 64 bytes at the speci fied address and increment the addr so that next bl ock

of memory can be display next
 DUP 64 DUMP Dump 64 bytes in a block.
 64 + Increment addr.
;

: DL (line# --) Dump the specified line in the cu rrent screen to verify non-printable characters.
 C/L * Starting character count.
 SCR �LOCK Get the current block buffer address.
 + Address of the specified line.
 C/L DUMP Dump one line.
;

149

Chapter 20. Decompiler

The source code of the decompiler is in UTILITY.BLK, Screens 31 to 42.

A decompiler is a program which can translate an object program in machine executable form back

to the source program a human being can read. This is normally impossible because traditional

compilers produce more object code than source code, showing a 'code expansion'. However,

decompilation is rather easy in Forth because there is an one-to-one correspondence between the

source code and object code in Forth, as a word or a command in Forth is compiled to an execution

address in the object. Exception to this one-to-one relationship occurs in the control structures

and some other special compiler directives. A Forth decompiler must be able to deal with these

exceptions.

The final command doing the decompilation is SEE, which is used in the following fashion:
 SEE <name>

where <name> is the name of a Forth command. The decompiled source code will be displayed

on the terminal as a sequence of Forth commands similar to the original source code.

20.1. Positional Case Defining Command

This is the simplest among the CASE control structures effecting an n-way branching. In the

parameter field of the case command, there are a sequence of execution addresses. One address in

the list is selected by the number on the stack and executed. In this version of case, additional

range checking is also implemented for safety.

: OUT (n pfa --) Display an error message if the index is out of range for a case word whose paramet er

field address pfa is on th stack.
 CR ." Subscript out of
range on "

Initial error report.

 DUP BODY> Get the code field address first.
 >NAME Then the name field address.
 .ID Print the name of the case word
.." Max is " ? Print the range allowed by the cas e word.
 ." tried " . The index tried.
 QUIT Abort.
;

: MAP (n pfa -- addr) Given the pfa of a case wor d and the index n for case selection, return the ex ecution

address selected. Abort if the index is out of rang e.
 2DUP @ Fetch the range from pfa
 U< IF Is the index n within range?
 2+ SWAP 2* + Address of the execution code.
 ELSE OUT Abort if out of range.
 THEN ;

The case defining command is CASE: . It is used in the same way as a regular colon defining

command. The name of the new case command follows CASE:, and then a list of regular Forth

150

commands followed by ; . A range number should be on the stack before CASE: is encountered

to specify the number of branches in the case command.
 n CASE: <name> <list of FORTH words> ;

When the new case word <name> is executed, it uses the top item on the stack as an index to select

one of the Forth commands in the list and executes it.

: CASE: (n --) A positional case statement. The r ange n is used for error checking. At runtime,

the nth word is executed, depending on the value on stack when executed.
 CONSTANT Compile the range n as a constant.
 HIDE Smudge the name field as : would do.
] Now, use the colon compiler to compile the cases . Compilation will be terminated

by the ; command.
 DOES> (index --) At runtime, use the index to fi nd the execution address among the

compiled cases and execute it.
 MAP Return the address pointing to one of the case s compiled.
 PERFORM Execute it.
;

Because of the multitude of special compiler directives used in the F83 system, we need a big case

statement to handle all the exceptions. This CASE: defining command, though very simple by

borrowing facilities in the colon compiler, is extremely powerful to take care of a wide range of

n-way branching structures. The limitation is that all the cases must be defined as single

commands. This is not a problem because it is a good practice to modularize the cases into single

testable commands before putting them into a big case structure.

20.2. Associative Defining Command

An associative commands also has a list of values in its parameter field. At runtime a value on the

top of the data stack is compared with the list of values in the associative command. If a match is

found, the index of the matched value in the parameter field is returned. This is the inverse of an

array.

: ASSOCIATIVE: (n --) Store the maximum range of the associative array as a constant. The values wi ll

be compiled explicitly by the , (comma) command.
 CONSTANT Compile n as a constant.
 DOES> (value -- index) Search value in the param eter field and return the index if

found.
 DUP @ Get the range n.
 -ROT (n value pfa --)
 DUP @ Get another copy of n.
 0 DO Scan the list in parameter field.
 2+ Next number in the list.
 2DUP @ = Match?
 IF Yes.
 2DROP DROP Clear the stack.
 I 0 0 Put on the index and flags.
 LEAVE Quit the loop.
 THEN
 LOOP
 2DROP Return only the index. If no match, return n+1.
;

Associative and case commands are using to build tables to drive the decompiler.

151

20.3. Decoding Different Classes Of Commands

There are several types or classes of commands which execute differently and thus require different

actions to decode them. The decompiler does not have to do much other than printing the names

of the commands and taking care of the additional information compiled into the object code with

the command.

DEFER (SEE) A deferred word vectored to decompile d eferred words.
HIDDEN DEFINITIONS Hide all the supporting words in the HIDDEN vocabulary.

: .WORD (ip -- ip+2) Display the name of a colon word and increase the ip by 2.
 DUP @ Execution address.
 >NAME .ID Print the name.
 2+ ;

: .INLINE (ip -- ip+4) Display an inline literal and its value.
 .WORD Print the name.
 DUP @ . Print the value.
 2+ Increment ip again.
;

: .BRANCH (ip -- ip+4) Display a word that has an inline branch address.
 .WORD Print the name of the branch word.
 DUP @ OVER - . Print the branching offset.
 2+ Increment ip again.
;

: .QUOTE (ip -- ip+4) Handle the special case of COMPILE xxx .
 .WORD Print COMPILE.
 .WORD Print name of xxx.
;

: .STRING (ip -- ip') Display a word with inline string argument.
 .WORD Print name.
 COUNT 2DUP TYPE Type out the inline string.
 SPACE
 + Add the string length to ip to skip over the inl ine string.
 EVEN Align the cell boundary.
;

: DOES? (ip -- ip' f) Increment simulated ip and return a true flag if DODOES is called as the first

instruction in the parameter field.
 DUP 3 + Skip over the CALL DODOES code.
 SWAP @ Get the machine code.
 DOES-OP = Is it a CALL instruction?
; Return the flag.

152

Figure 20.1 Decoding different types of commands.

: .(;CODE) (ip -- ip') Decompile a DOES> word.
 .WORD Print name.
 DOES? Is it a DOES> word?
 IF ." DOES> " Yes. Print DOES>.
 ELSE DROP FALSE Otherwise, replace ip with a 0.
 THEN
;

: .UNNEST (ip -- 0) End of a colon definition.
 ." ; " Print ; .
 DROP 0 Replace ip with 0.
;

: .FINISH (ip -- 0) Display current word and quit .
 .WORD
 DROP 0 Replace ip with 0, indicating end of decomp ilation.
;

153

20.4. Sorting and Execution Tables

The associative commands EXECUTION-CLASS collects all the special cases that must be

decompiled differently from normal Forth commands like DUP, + , etc. At runtime if the address

pointed to by IP matches the address of a command in this table, the corresponding index will be

returned. This index will be used to select an execution address in the following case table and

the appropriate decompilation function will be invoked. These two tables make up the basic

mechanism of this table driven decompiler.

14 ASSOCIATIVE:
EXECUTION-CLASS

14 classes of special compiler words are to be proc essed.

' (LIT) , Each execution address must be compiled e xplicitly using , .
' ?BRANCH , ' BRANCH , ' (LOOP) , ' (+LOOP) ,
' (DO) , ' COMPILE , ' (.") , ' (ABORT") ,
' (;CODE) , ' UNNEST , ' (") , , (?DO) ,
' (;USES) ,

15 CASE: .EXECUTION-CLASS A giant case statement ha ndles the special case decompilation. Each entry

corresponds to an entry in the EXECUTION-CLASS asso ciative table. In case
of no match, .WORD will be executed, assuming a nor mal Forth word.

 .INLINE .BRANCH .BRANCH .BRANCH .BRANCH .BRANCH
 .QUOTE .STRING .STRING .(;CODE) .UNNEST .STRING
 .BRANCH .FINISH .WORD
;

CASE: must end with a ; , because it uses the colon compiler to do the compiling.

20.5. Decompiling Different Command Classes

When the decompiler is given a command to decompile, it has to determine first which type this

command is. If the command is simple, like constant or variable, all the decompiler has to do is to

tell you its name. Decompilation is only needed for the more complicated colon commands.

Therefore, we need another case and associative table pair to handle different types of commands.

: .PFA (cfa --) Given the code field address of a colon word, decompile the list of execution

addresses in its parameter field.
 >BODY Transform cfa into pfa.
 BEGIN Scan the parameter field.
 DUP @ Get an execution address.
 EXECUTION-CLASS Identify which class the word bel ongs.
 .EXECUTION-CLASS Decompile it.
 DUP Dup the ip or the flag.
 0= KEY? OR If it is 0 or a key was pressed, termi nate the loop.
 UNTIL Otherwise continue decompiling.
 DROP Last flag.
;

: .IMMEDIATE (cfa --) Indicate whether the curren t word is immediate or not.
 >NAME Get to the name field.
 C@ The count byte at the beginning of the name fie ld.
 64 AND Is the precedent bit set?
 IF Yes.
 ." IMMEDIATE" Print that it is immediate.
 THEN
;

: .CONSTANT (cfa --) Decompile a constant and pri nt its value.
 DUP >BODY ? Print its value first.

154

 ." CONSTANT " Print the type.
 >NAME .ID And the name.
;

: .VARIABLE (cfa --) Decompile a variable. Print its location and value.
 DUP >BODY . Print its location.
 ." VARIABLE " Type.
 DUP >NAME .ID Name.
 ." Value = " >BODY ? Value.
;

: .: (cfa --) Decompile a colon definition.
 ." : " Print the almighty colon.
 DUP >NAME .ID Name.
 2 SPACES
 .PFA Decompile the parameter field.
;

: .DOES> (cfa --) Decompile a word defined by a CR EATE-DOES> defining word.
 DUP >NAME .ID Name.
 ." DOES> " Type.
 BODY> Address of the high level runtime code or th e interpreter.
 .PFA Decompile the interpreter.
;

: .USER-VARIABLE (cfa --)

Decompile a user variable. Print its offset from t he base of user area and its
current value.

 DUP >BODY ? Offset.
 ." USER VARIABLE " Type.
 DUP >NAME .ID Name.
 ." Value = " >IS . Value.
;

: .DEFER (cfa --) Tell the user that this is a de ferred word and decompile its current definition.
 ." DEFERRED " Type.
 DUP >NAME .ID Name.
 ." IS " Deferred.
 >IS @ (SEE) Decompile the vectored word.
;

: .USER-DEFER (cfa --)

Tell the user that it is a user deferred word and d ecompile its current definition.
 ." USER DEFERRED " Type.
 DUP >NAME .ID Name.
 ." IS " Deferred.
 >IS @ (SEE) Decompile the current definition.
;

: .OTHER (cfa --) Decompile words whose type is n ot known.
 DUP >NAME .ID Print the name first.
 DUP @ Contents of code field.
 OVER >BODY = Is it pfa?
 IF Yes. Must be a code definition.
 DROP
 ." is code" Print type.
 EXIT Quit because we have no disassembler.
 THEN
 DUP DOES? IF Is it a 'does' word?
 DROP
 DOES> EXIT Decompile it as a DOES> word.
 THEN
 2DROP
 ." is unknown" Tell the truth also.
;

20.6. Command Classification

Different classes of commands are characterized by the inner interpreters which execute the

commands. Commands of the same class share the same inner interpreter, whose address is stored

in the code field of these commands. Inner interpreters are code routines in the Virtual Forth

155

Computer and generally they do not have names and cannot be referred to directly. However, we

can find the address of an inner interpreter by looking at the code field of any command in the

corresponding class.

6 ASSOCIATIVE:
DEFINITION-CLASS

Categorize different classes of words that the deco mpiler will handle. For
each class defined by the same defining word, the c ode field is identical.
Thus standard classes can be recognized.

 ' QUIT @ , Colon word.
 ' 0 @ , Constant.
 ' SCR @ , Variable.
 ' BASE @ , User variable.
 ' KEY @ , Deferred word.
 ' EMIT @ , User deferred word.

7 CASE: .DEFINITION-CLASS Define a table of routine s to handle decompilation of each class of definiti on.
 .: Colon word decompiler.
 .CONSTANT
 .VARIABLE
 .USER-VARIABLE
 .DEFER
 .USER-DEFER
 .OTHER Code and DOES> words
.;

20.7. The Decompiler SEE

: ((SEE)) (cfa --) Given an arbitrary code field address, decompile it based upon its definition

class. Upon completion, indicate whether or not th e word is immediate.
 CR DUP DUP @ Get the contents of the code field.
 DEFINITION-CLASS Determine the type of definition.
 .DEFINITION-CLASS Decompile it.
 .IMMEDIATE If it is an immediate word.
;

' ((SEE)) IS (SEE) (SEE) is a deferred word so that .DEFER and .USER-DEFER can make use of it before

it is actually defined. Now patch it in.
FORTH DEFINITIONS All the above supporting word are defined in the HIDDEN vocabulary. Now switch

context back to FORTH and declare it the current vo cabulary so that the decompiler
word SEE will be available to the user in the FORTH vocabulary.

: SEE (--) SEE <name> decompiles the word whose name follows SEE.
 ' Get the code field address of the word <name>.
 (SEE) Decompile it
;

156

Figure 20.2 Decompiling different types of commands.

157

Chapter 21. Printing Utility

The code discussed in this chapter is in UTILITY.BLK, Screens 43 to 48.

The printing utility in F83 is designed for an EPSON printer. Using the compressed character size

in the EPSON printer, 6 screens can be squeezed on a single 8.5" by 11" sheet of paper. You can

print 6 consecutive screens to a page, or 3 screens of source code with 3 corresponding shadow

screens to a page, which is nice to show source and comments side by side. To use these high

density printing formats, it requires that your printer can print 128 characters per line. If your

printer cannot handle 128 characters per line, the old faithful TRIAD should be used to print 3

screens to a page.

21.1. Variables and Setup

: EPSON (--) Set up the EPSON MX-80 printer to pr int 132 columns per line.
 CONTROL O EMIT Send control O to printer, initiali ze compressed mode.
;

DEFER INIT-PR Printer initialization. Default is EP SON printer.
' NOOP IS INIT-PR
DEFER FOOTING Print message at the bottom of a page .
66 CONSTANT L/PAGE Lines per page.
0 CONSTANT LOGO The screen number of the logo scree n where copyright notice can be stored and

displayed.
VARIABLE #PAGE Current page number during printing.

: PAGE (--) Do a form-feed and start a new page. It also increments the page number and resets

line and column numbers.
 DOES> Vectored word.
 PERFORM Do the form-feed in place of NOOP.
 1 #PAGE +! Increment page number.
 #LINE OFF Reset line number.
 #OUT OFF Reset column number.
;
PAGE Initialize itself.

: FORM-FEED (--)
 CONTROL L EMIT EPSON form feed control character.
;

: (PAGE) (--) Print enough linefeeds to get to th e next page.
 L/PAGE 66 lines.
 #LINE @ Current line number.
 OVER MIN ?DO Use the lesser of the two.
 CR Out put that many linefeeds.
 LOOP ;

' (PAGE) IS PAGE

: (SEMIT) (char --) Send a character to either pr inter or the console, but not both.
 PRINTING @ IF If printing flag is true,
 (PRINT) Send to printer.
 ELSE (CONSOLE) Otherwise, send to console.
 THEN ;

HIDDEN DEFINITIONS HIDDEN is a vocabulary collectin g words for internal usage to avoid cluttering

up FORTH vocabulary with all kinds of junk words.

CREATE SCR#S 14 ALLOT An array to hold a screen cou nt and up to six screen numbers to be printed.

: PR-START (--) Initialize all printing functions .

158

 PRINTING ON Start the printer.
 #LINE OFF Top of page.
 ['] (SEMIT) IS EMIT Re-vector EMIT to send charact ers to the printer.
 SCR#S OFF Reset screen numbers.
 1 #PAGE ! Page number starts from 1, not 0.
 INIT-PR Initialize the printer.
;

: PR-STOP (--) Stop the printer as the character output device.
 ['] (EMIT) IS EMIT Vector EMIT to (EMIT) to send c haracters to the CRT terminal.
 PRINTING OFF Turn off printing flag.
;

Vectoring the output command EMIT allows us to change the function of EMIT dynamically.

The power of vectored execution is quite vividly demonstrated here. The output character string

can be directed to any output device by defining individual device output commands and store

appropriate execution address in the parameter field of EMIT. EMIT was defined as a deferred

command, which takes an address in the parameter field and executes it. PR-START and

PR-STOP simply change the address in the parameter field of EMIT and the output can be directed

at will.

21.2. Print Two Screens Side By Side

: TEXT? (scr# -- f) Given a screen number, return true if the first character in the screen is print able

and the screen is not blank.
 BLOCK DUP C@ Get the first character in screen.
 BL ASCII ~ BETWEEN Is this character printable?
 IF Yes.
 B/BUF -TRAILING Count of non-blank characters.
 NIP Drop the buffer address.
 0<> Return true if not a blank screen.
 ELSE First character nonprintable.
 FALSE Push the false flag.
 THEN ;

: PR (scr# --) Add a screen to the SCR#S array an d also increment the screen count at the beginning

of SCR#S.
 DUP CAPACITY >= Is scr# out of range?
 IF DROP LOGO THEN Yes. Substitute with logo scree n.
 1 SCR#S +! Increment the screen count.
 SCR#S DUP @ Fetch the screen count.
 2* + ! Store scr into the appropriate cell in the SCR#S array.
;

: 2PR (scr1 scr2 line#
--)

Print the specified line from two screens given on the stack. First the line
in scr1, followed by the line in scr2.

 CR DUP 2 .R SPACE Print the line number.
 C/L * >R Save the character number.
 PAD 129 BLANK Clear the PAD buffer.
 SWAP BLOCK Buffer address of scr1.
 R@ + Address of first character in the specified l ine.
 PAD C/L CMOVE Copy one line from scr1 to PAD.
 BLOCK R> + Address of the first character of the l ine in scr2.
 PAD C/L + 1+ Second half of PAD buffer with an add itional space.
 C/L CMOVE Copy the line from scr2.
 PAD 129 -TRAILING
 TYPE

Print the entire 129 characters.

;

: 2SCR (scr1 scr2 --) Print 2 screens across on a page. Call 2PR on a line by line basis.
 CR CR 4 SPACE Space between screens.
 OVER 4 .R Print header of scr1.
 61 SPACES DUP 4 .R Header of scr2.
 16 0 DO Scan down 16 lines.
 I 2PR Print.
 LOOP

159

 2DROP Discard the screen numbers.
;

21.3. Print 6 Screens on a Page

To print 6 screens on one page, one has to manage the screens and also put headings and footings

on the page, making it look good and convenient to read.

: P-HEADING (--) Print a heading for each new pag e.
 CR CR 5 SPACES Top blank.
 ." page#" #PAGE ? Print page number.
 8 SPACES
 FILE? CR Print the file name.
;

: P-FOOTING (--) Print the footing for each page and also do form feed.
 CR CR 58 SPACES Some space.
 ." Forth 83 Model" Footing.
 PAGE Form feed.
;

' P-FOOTING IS FOOTING

160

Figure 21.1 Two printing formats.

: PR-PAGE (--) Print a page worth of screens, 6 t o a page without shadows.
 P-HEADING Print the heading.
 SCR#S OFF Reset the screen count.
 SCR#S 2+ Address of first screen number to be prin ted.
 3 0 DO 3 screens per column.
 DUP @ Screen number for 1st column.
 OVER 6+ @ Screen number for 2nd column.
 2SCR Print two screens side by side.
 2 + Next cell in SCR#S array.
 LOOP
 DROP Discard the SCR#S pointer.

161

 FOOTING Print footing.
;

: PR-S-PAGE (--) Print a page worth of screens wi th shadows Source screen on the left and shadow

screens on the right.
 P-HEADING
 SCR#S OFF
 SCR#S 2+
 3 0 DO
 DUP @ Screen number of source.
 OVER 2+ @ Screen number of shadow.
 2SCR Print.
 4 + Next pair of screens.
 LOOP DROP
 FOOTING
;

: PR-FLUSH (-- f) Fill the SCR#S array with LOGO screen if a page is partially filled. Return true

flag if there is more to print.
 SCR#S @ Screen number.
 DUP IF Yes, more screens to print.
 BEGIN
 SCR#S @ Screen number again.
 5 < If screen number is less than 5, the SCR#S m ust be filled.
 WHILE 0 PR Fill the array with 0's.
 REPEAT
 LOGO PR Put the LOGO screen as the last.
 THEN
 0<> Return the flag.
;

21.4. SHOW

There are two versions of SHOW defined in the F83 system to print screen files. One version

prints consecutive screens and the other prints 3 screens of source with their respective shadows.

The first version is defined in the FORTH vocabulary and the second one in the SHADOW

vocabulary so that they are both accessible to you.

 1 20 SHADOW SHOW Print source with shadows.
 1 20 FORTH SHOW Print source without shadow.

FORTH DEFINITIONS Define the SHOW without shadow sc reens in the FORTH vocabulary.

: SHOW (first last --) Print 6 consecutive screen s on a page. Blank screens are not printed.
 [HIDDEN] PR-START Call PR-START in the HIDDEN vo cabulary to turn on the printer.
 1+ SWAP DO Run through the range of screens.
 I TEXT? Is this screen printable?
 IF I PR THEN Yes. Include it in the SCR#S array to be printed.
 SCR#S @ Get the number of screens in SCR#S array.
 6 = Full?
 IF PR-PAGE THEN Yes. Print one page.
 LOOP
 PR-FLUSH Fill the last page.
 IF PR-PAGE THEN Print it if necessary.
 PR-STOP Turn off the printer.
;

SHADOW DEFINITIONS Now get the SHADOW vocabulary to define the second version of SHOW with shadow

screens.

: SHOW (first last --) Print 3 source screens wit h their shadow screens.
 [HIDDEN ALSO] Push HIDDEN into the resident voca bulary array so that other vocabulary can be

invoked while HIDDEN is still available for searchi ng.
 PR-START Turn on printer.
 1+ SWAP DO
 I TEXT? A valid source screen?
 IF Yes.
 I PR Put it in SCR#S array.
 [SHADOW] We need some words in the SHADOW voca bulary.

162

 >SHADOW Get the number of shadow screen.
 PR Put it in SCR#S also.
 THEN
 SCR#S @ 6 = End of SCR#S?
 IF PR-S-PAGE THEN Yes. Print page with shadows.
 LOOP
 PR-FLUSH
 IF PR-S-PAGE THEN
 PR-STOP
;

ONLY FORTH ALSO
DEFINITIONS

Reset the vocabulary order and make FORTH a residen t vocabulary as well as the
context (transient) and current vocabulary.

: LISTING (--) Print the entire current file with shadow screens.
 0 First source screen.
 CAPACITY Last screen in current file.
 2/ 1- Last source screen in file.
 [SHADOW] We want the SHOW with shadow, which is in SHADOW vocabulary.
 SHOW Print the entire file in the shadow screen fo rmat.
;

Source screens printed with their corresponding shadow screens side by side serve very well as

program reference and documentation.

163

Part IV. 8086 Specific Utilities

Chapter 22. Debugger

The source code of the debugger is in CPU8086.BLK, Screen 18 to 20, and in UTILITY.BLK,

Screen 49 to 51.

The debugger in F83 is designed to let you single step through the execution of a high level

command. To invoke the debugger, type
DEBUG xxx

where xxx is the name of the colon command you want to trace. DEBUG patches the NEXT

routine with a special routine DEBNEXT to display the contents of the data stack at every step

when DEBNEXT is encountered. The real single step action occurs only when the command xxx

is executed. When xxx is executed, you will get a single step trace showing the commands within

xxx that is about to be executed, and the contents of the data stack. At each step, you can use

the commands C (continue), F (Forth) , and Q (quit) to control the stepping process.

F allows you the execute any Forth command to poke around, until you type
RESUME

to continue with the debugging. Q stops the debugging process and restores xxx to its original

condition.

22.1. Low Level Supporting Commands

VOCABULARY BUG The vocabulary holding all the debug ger supporting words.
BUG ALSO DEFINITIONS Declare BUG as the current voc abulary to add new words to it.
VARIABLE 'DEBUG A variable holding the code field a ddress of the word to be

traced.
VARIABLE <IP Lower limit of tracing range for IP, t he interpretive pointer.
VARIABLE IP> Upper limit of IP for tracing.
VARIABLE CNT Count of tracing through debug NEXT.
ASSEMBLER HEX Invoke the assembler to use the LABEL word in ASSEMBLER

vocabulary.

LABEL FNEXT A machine code subroutine restoring NEX T back to its original form.
 0AD # AL MOV AD is the machine code of indirect ju mp.
 AL >NEXT #) MOV Put this jump code in >NEXT.
 D88B # AX MOV The address of the real NEXT code.
 AX >NEXT 1+ #) MOV Put this address after the jump code. This is the original NEXT
.RET

LABEL DNEXT A copy of NEXT that gets executed durin g debugging in place of the regular NEXT.
 AX LODS Load IP into AX and increment IP by 2.
 AX W MOV Copy IP into W register.
 0 [W] JMP Indirect jump through W register.

LABEL DEBNEXT The debugger's version of NEXT. If IP is between <IP and IP>, the contents of

the execution variable 'DEBUG are executed. The wor d pointed to by 'DEBUG must

164

drop the IP pushed on data stack by DEBNEXT and mus t be terminated by PNEXT for
more tracing.

 <IP #) IP CMP U> IF IP greater than <IP?
 IP> #) IP CMP
 U<= IF IP less than IP>? If both true, do the fol lowing:
 CNT #) AL MOV
 AL INC
 AL CNT #) MOV Increment CNT.
 2 # AL CMP AL=2?
 0= IF Yes. Do the following every other time.
 AL AL SUB
 AL CNT #) MOV Clear CNT counter.
 FNEXT #) CALL Restore the original NEXT.
 IP PUSH Push current IP on data stack.
 'DEBUG #) W MOV Copy the execution address in ' DEBUG to W register.
 0 [W] JMP Indirect jump through W. The trace ro utine is executed.
 THEN
 THEN
 THEN
 DNEXT #) JMP None of the about cases are true. Exe cute the regular NEXT.

CODE PNEXT (--) Patch the regular NEXT in FORTH to jump to DEBNEXT. This puts us in the debug

mode and allows for tracing single steps.
 0E9 # AL MOV E9 is the machine code of JMP.
 AL >NEXT #) MOV Copy this code into >NEXT.
 DEBNEXT >NEXT 3 + - #
 AX MOV

 AX >NEXT 1+ #) MOV Copy the address of DEBNEXT to the cell next to >NE XT. >NEXT is now patched to
execute DEBUG by jumping to DEBNEXT.

 NEXT
 END-CODE

FORTH DEFINITIONS Next instruction must be defined in FORTH vocabulary.

CODE UNBUG (--) Restore FORTH's NEXT to its orig inal condition and disable tracing.
 FNEXT #) CALL Call FNEXT to fix NEXT.
 NEXT
 END-CODE

22.2. High Level Trace Commands

BUG ALSO DEFINITIONS Put the following words in the BUG vocabulary. Only the very last word TRACE

needs to be in the FORTH vocabulary for ease of acc essing.

: L.ID (nfa len --) Print the name of a word left justified in a field of at least ten characters.
 SWAP DUP .ID Print the name.
 DUP NAME> Get the code field address.
 1- - + SPACES Fill in spaces.
;

VARIABLE SLOW When true, step continuously. When fa lse, single step.
VARIABLE RES When true, resume debugging.

: (DEBUG) (low-addr hi-addr --)

Prepare to trace the words between the specified ra nge for IP pointer.
 1 CNT ! Store 1 into CNT to run DEBNEXT every othe r time through NEXT.
 IP> ! Set the high limit of IP.
 <IP ! Set the low limit.
 PNEXT Patch NEXT to DEBNEXT.
;

: 'UNNEST (pfa -- pfa')

From the starting address of a parameter field, fin d the end of this field indicated
by UNNEST.

 BEGIN
 1+ DUP @ Get the execution address of the next wo rd.
 ['] UNNEST Is it UNNEST?
 UNTIL Exit if UNNEST is found and leave its addres s on stack.
;

: TRACE (ip --) Display the contents of the data stack and the name of the next word about to

execute in the routine being debugged. It then wai ts for a key unless SLOW is
true. If the key is C, F, or Q, special action is t aken; otherwise, a single step

165

is performed.
 >R Save ip.
 .S Display the data stack.
 R> Restore ip.
 CR @ >NAME Get the name field of the word pointed to by ip.
 10 L.ID Print its name.
 SLOW @ NOT If SLOW is false,
 KEY? OR or a key is received, do the following:
 IF
 SLOW OFF Reset SLOW flag.
 RES OFF Reset RESume flag also.
 ." -->" Print a prompting message.
 KEY Wait for a key here.
 UPC Change the key code to upper case always.
 ASCII C OVER = IF If the key is C,
 SLOW @ NOT complement SLOW.
 SLOW ! THEN
 ACSII F OVER = IF If this key is F,
 DROP throw away the key code,
 BEGIN and entry a Forth interpreter loop.
 QUERY RUN Interpret any Forth command.
 RES @ Continue if RES is false.
 UNTIL
 THEN
 ASCII Q OVER = If the key is Q,
 ABORT" Unbug" abort debugger.
 DROP THEN
 PNEXT Patch NEXT again to continue tracing the nex t word.
;

' TRACE 'DEBUG ! Vector 'DEBUG to execute TRACE. T his is the function of DEBNEXT.

FORTH DEFINITIONS Put the final debugger commands i n the regular FORTH vocabulary so that the user

can invoke it conveniently. Other debugging words are hidden in the BUG
vocabulary.

: DEBUG (--) Patch NEXT to DEBNEXT and set the r ange of IP to be debugged.
 ' Get the execution address of the next word follo wing DEBUG.
 2- Convert cfa to pfa.
 DUP [BUG] 'UNNEST Find the IP range.
 (DEBUG) Set IP range and patch NEXT.
;

: RESUME (-- 0) Turn on RES to enable tracing to continue.
 [BUG] RES ON Set RES flag.
 0 Leave a dummy stack item to replace the key code dropped.
 PNEXT Patch NEXT to continue debugging.
;

ONLY FORTH ALSO
DEFINITIONS

Re-initialize the vocabulary searching order.

166

Chapter 23. Multitasker

The source code of the multitasker is in CPU8086.BLK, Screen 22-23, and in UTILITY.BLK,

Screen 52-54.

23.1. Multitasking

Multitasking is the technique to use one computer to do several things at the same time. Most of

the microcomputers run rather inefficiently in the single user, interactive mode, because the

computer wastes most of its time in waiting you to type in commands. This waiting time can be

utilized to perform useful work, like printing a long file, keeping a timer clock, watching over the

heater or the air conditioner and other instruments, etc. If properly scheduled, all these activities

can be handled by a single computer, allocating each task sufficient time to do its work and still

satisfies your programming needs.

Most mainframe computers and minicomputer operating systems have the multitasking function

and can support many users and tasks to run at the same time. They use rather complicated

hardware and software to schedule and run the tasks, and to manage a host of peripheral devices

like disk drives, tape drives, printers, plotters, etc. Scheduling and resource allocation are big

headaches in these operating systems, contributing a fair share to the complexity in the operating

system.

People generally conceive Forth as a toy language only suitable for single user microcomputers.

This is probably due to the limited capability presented in the public domain figForth model, which

has become the most widely distributed Forth dialect. However, in many more expensive

commercial Forth implementations, especially those developed by Charles Moore himself and later

marketed by Forth, Inc. under the trade name polyForth, multitasking was a standard feature using

the very simple but effective round-robin scheduling technique.

F83 also includes the elementary commands to implement multitasking. The basic system design

takes the task switching into consideration, so that tasks can be easily added to the system when

needed. Task switching is very fast because of the brevity of code involved. Here we will go

through the entire system to describe the multitasker in great details.

23.2. User Variables and the User Area

Special commands managing multitasking or multiuser Forth system are collected in a special

167

vocabulary USER. Some of them have the same names but different functions as other regular

Forth commands. They have to be used with care. They allocate space for user variables in the

user area which is a unique memory area for every task in the system.

VARIABLE #USER Count of the number of user variable s allocated in a user area.
VOCABULARY USER Declare the user vocabulary.
USER DEFINITIONS Put all subsequent words in the US ER vocabulary.

: ALLOT (n --) Allocate space in the user area f or a task.
 #USER +! Move the user area pointer forward for n bytes.
;

: CREATE (--) A special header builder for user variables.
 CREATE Build a regular header.
 #USER @ , Compile the current user area pointer in the parameter field, to be used as the

offset of the user variable from origin of the user area.
 ;USES Get the code field address of the new user v ariable.
 DOUSER-VARIABLE , Patch the code field using DOUSE R-VARIABLE as the runtime interpreter for user

variables.

: VARIABLE (--) New defining word for user varia bles.
 CREATE This is the newly defined CREATE.
 2 ALLOT Allocate two bytes in the user area, not o n top of dictionary.
; Allocate two bytes in the user

: DEFER (--) New defining word for deferred wor ds in the user area.
 VARIABLE Create a new user variable.
 ;USES Patch code field with
 DOUSER-DEFER , address of the runtime routine DOUS ER-DEFER.

When tasks are switched, the environment of the task currently under execution must be preserved

before the task is put to sleep, so that when the task is woke up the next time around it will be able

to pick the execution sequence where was left off and continue the task until finished or put to sleep

again. What defines the environment of a task is a set of parameters stored in a set of 'user

variables' and an area where the data stack and the return stack used by the task are allocated. Each

task must have its own copy of these user variables and stacks. As the essential information are

stored independently for each task, task switching becomes very easy because only a minimal

amount of information has to be preserved explicitly during task switching.

Following is the list of user variables needed in every task:

Table 23.1. User Variables

TOS Top of data stack.
ENTRY Entry point to be jumped to when the task is activated.
LINK Point to next task in the round- robin circle.
SP0 Origin of the data stack.
RP0 Origin of the return stack.
DP Top of dictionary.
#OUT Number of characters emitted.
#LINE Number of lines typed.
OFFSET Block offset from block 0 in the current fil e.
BASE Numeric base for I/O conversion.
HLD Point to the last character converted in the PA D buffer.
FILE Point to FCB (file control block) of currently opened file.
IN-FILE Point to the FCB of the input file.
PRINTING A flag. True if printer is active.
EMIT Send a character to the output device currentl y active.

168

One should note that these user variables have their names in the main dictionary while the

parameters are stored in the user area. Only one copy of the names needs to be defined. Every

user or task will have its own copy of the user variables. The functions of these user variables will

become apparent in the following sections.

23.3. Pause and Restart

PAUSE and RESTART are the two most crucial commands in the task switching process.

(PAUSE) stops the current task and passes control of the CPU to the next task in the round-robin

loop. It saves all necessary information in the user area so that the task can continue the next time

it gains the control of the CPU.

CODE (PAUSE) Stop executing the current task and pa ss control to the next task.
 IP PUSH Save the Interpretive pointer on the data stack.
 RP PUSH Save the return stack pointer.
 UP #) BX MOV Fetch the user area pointer into BX r egister.
 SP 0 [BX] MOV Save the data stack pointer in user variable TOS.
 BX INC BX INC
 BX INC BX INC Increment BX and point it at the u ser variable LINK.
 0 [BX] BX ADD Calculate the address of the user ar ea from the offset in LINK.
 BX INC BX INC Now point to the ENTRY user variabl e of the next task.
 BX JMP Execute the next task.
 END-CODE

CODE RESTART The reverse of (PAUSE). Retrieve the stored information and start executing the

task left asleep during the last pass.
 -4 # AX MOV Store -4 in the AX register for later use.
 BX POP Pop the LINK address of the next task to be waked up.
 AX BX ADD Point BX to the TOS user variable.
 BX UP #) MOV Copy this address into UP as the user pointer for the next task.
 AX POP AX POP Discard two items from the stack. T hey were pushed on the stack by the interrupt

routine waking up this task.
 0 [BX] SP MOV Restore the data stack pointer.
 RP POP Restore the return stack pointer.
 IP POP Restore the interpretive pointer.
 NEXT IP contains the pointer pointing to the next word t o be executed in this task.

NEXT will continue the execution left off last time .
 END-CODE

CODE PAUSE A dummy word allowing multitasker to be switch on and off.
 NEXT In the single user mode, PAUSE returns immedi ately without doing anything.
 END-CODE However, its code field will be patched s o that the word. (PAUSE) will be invoked

in the multitasking mode of operation.

A few more commands are defined to manipulate data stored in the user area to control the tasks:
HEX 80 CONSTANT INT# 8086 software interrupt number , used to wake up a task.

169

Figure 23.1 The round-robin task scheduler.

: LOCAL (base addr -- addr1)

Get the address of a user variable in another task' s user area.
 UP @ The origin of current user area.
 - Offset of current user variable from its origin.
 + Add offset to the origin of the other user area (base), returning the address

of the same user variable in the other task.
;

: @LINK (-- addr) Return a pointer to the entry point in the next task.
 LINK Address of LINK in this task.
 DUP @ + Get the ENTRY in the next task.
 2+ LINK field in the next task.
;

: !LINK (addr --) Set the LINK field of the curr ent task, given the origin of the user area of the

next task.
 LINK - The relative distance from LINK to the othe r task.
 2+ Relative distance from this LINK to the other L INK.
 LINK ! Store it in the current LINK.
;

: SLEEP (addr --) Make the addressed task pause indefinitely.
 E990 90 is NOP and E9 is JMP in 8086 machine instr uction. JMP (link) passes CPU to

the next task whose address is in the LINK field ri ght after the ENTRY field.
 SWAP Get the task address to top.
 ENTRY LOCAL Get the address of the ENTRY field in the target task.
 ! Store the sleep code in its ENTRY field and forc e that task to pass control

immediately to its next task.
;

: WAKE (addr --) Wake up a task so that it will execute in its next turn.
 80CD Machine instruction INT 80H which wakes up th is task by a software interrupt with

vector number 80H.
 SWAP Get the task's user area address.
 ENTRY LOCAL ! Store that wake code in the ENTRY fi eld of the target task and make it an active

170

member in the round-robin loop.
;

: STOP (--) Make the current task pause indefini tely.
 UP @ Get the address of the current task.
 SLEEP Put it to sleep.
 PAUSE Stop right now.
;

23.4. The Multitasker

The Forth multitasker is implemented using a round-robin scheduler and dispatcher technique.

All tasks are linked into a loop. A task must use the PAUSE command explicitly to relinquish

CPU control to the next task. If a task does not need the CPU service, it will pass the CPU control

directly to the next task. When a task needs CPU, it will put a wakeup code in the ENTRY field in

its user area. Next time when the control of CPU is passed to it, it will be able to grab the CPU

and restart or continue on the execution left off last time. Each task therefore must include

PAUSEs at suitable intervals to let other tasks have a piece of the action. Otherwise a task can

hold onto the CPU indefinitely and no other task can use the CPU. The cooperative nature of this

scheme thus requires that each task be designed to pause regularly. The advantage is that each

task can stop and restart at known points and the commands to do the multitasking are simple and

fast.

CODE MULTI (--) Install the multitasker's schedu le/ dispatcher loop by patching the appropriate

interrupt vector and enabling PAUSE.
 ' (PAUSE) @ # BX MOV Copy the contents of code fi eld of (PAUSE) to BX register. It is the starting

address of the (PAUSE) code routine.
 BX ' PAUSE #) MOV Patch the code field of PAUSE wi th code of (PAUSE) so that the task will pause

at PAUSE.
 ' RESTART @ # BX MOV Get the RESTART code address.
 DS AX MOV
 AX PUSH Save DS register on data stack.
 AX AX SUB Clear AX register.
 AX DS MOV Clear DS register.
 CS AX MOV Copy code segment into AX.
 AX INT# 4 * 2+ #) MOV Store the code segment in the second cell of the in terrupt vector for this task.
 BX INT# 4 * #) MOV Store the RESTART address in th e first cell of the interrupt vector. Hereafter,

INT 80H will activate this task
 AX POP
 AX DS MOV Restore the data segment register.
 NEXT
 END-CODE

: SINGLE (--) Remove the multitasker's scheduler /dispatcher loop.
 ['] PAUSE >BODY Get the parameter field address of PAUSE, which points to a simple NEXT routine.
 ['] PAUSE ! Restore the code field of PAUSE so tha t PAUSE will return immediately rather

than go through (PAUSE) for the multitasker.
;

23.5. Task Definition

A task must be first defined as a command in the dictionary. At the same time, user area and

space for two stacks must also be allocated for this task. The new task must then be installed in

the round-robin loop. When functions must be performed by this task, a command to be executed

by this task must be passed to it and the task must be waken. The tools to create and activate new

171

tasks are discussed in this section.

: TASK: (size --) Create a new named task and in itialize its user variables.
 CREATE Build an header for the task.
 TOS Address of the user area for the current task.
 HERE The user area of the new task.
 #USER @ Size of the user area.
 CMOVE Copy the current user variables into the new user area for the new task.
 @LINK New user area.
 UP @ -ROT Save the current user area pointer at th e bottom of the data stack.
 HERE UP ! Put new user area address in the user ar ea pointer UP.
 !LINK Store address of current user area in the LI NK field of the new task.
 DUP HERE + Address of the space after the new user area and dictionary space.
 DUP RP0 ! Initialize the return stack pointer of t he new task.
 100 - SP0 ! Initialize the data stack pointer of t he new task.
 SWAP UP ! Restore the user area pointer to the cur rent user area.
 HERE ENTRY LOCAL !LINK Store the address of the new task in the LINK field of the current task.
 HERE #USER @ + Starting address of the dictionary for the new task.
 HERE DP LOCAL ! Initialize the dictionary pointer of the new task.
 HERE SLEEP Put the new task to sleep first.
 ALLOT Allocate space for the new task according to the size parameter given on the stack

initially.
;

: SET-TASK (ip task --)

Assign an existing task to execute the code pointed to by ip on stack.
 DUP SP0 LOCAL @ Get the top of data stack of the t ask to be used.
 2- Decrement stack pointer preparing a push.
 ROT OVER ! Push ip on data stack.
 2- Prepare another push.
 OVER RP0 LOCAL @ Get the new tasks return stack po inter.
 OVER ! Push it on the data stack.
 SWAP TOS LOCAL ! Store the data stack pointer in t he TOS field of the new task. These actions

simulate (PAUSE) in a way that when the new task is waken the code pointed to
by ip will be executed.

;

: ACTIVATE (task --) Assign the invoked task to execute the following co de, and wake the task making

it ready to execute these code.
 R> Address of the next code to be executed.
 OVER SET-TASK Assign this code to the task.
 WAKE wake the task.
;

23.6. Background Tasks

A background task is some functions the computer does in the background, while still allowing you

to use the computer interactively doing programming or execute other programs. F83 allows you

to create many of such tasks to run concurrently, using the task defining and control commands.

Here are some examples illustrating the command sequence to create background tasks and activate

them.

: BACKGROUND: (--) Create a new task with 400 by tes of dictionary space. Initialize this task to

execute the following code.
 400 TASK: Define a new task with the name followin g.
 HERE IP for code to be compiled so that it can be executed by the new task.
 @LINK 2- Address of the new task.
 SET-TASK Initialize the new task.
 !CSP Compiler error checking initial- ization.
] Turn on the compiler to compile following code t o be executed by the new task.
;

BACKGROUND: SPOOLER (--) Create a new task named spooler which will print the current file.
 1 First screen to be listed.
 CAPACITY Last screen in the current file.
 SHOW List the entire file.

172

 STOP Stop the task here. STOP is needed at the en d of a task.
;

Executing SPOOLER will print out the entire current file on the printer while you can still use the

terminal for normal activities. Low level input/output commands in SHOW contain enough

PAUSE commands to alternate the spooling task with the terminal task to allow you seemingly full

control over the computer while it is also printing a long file. SPOOLER can also be assigned a

different function by the following command:

: SPOOL-THIS (--) Assign new functions to an exi sting task.
 SPOOLER ACTIVATE Force the task SPOOLER to execute the following code:
 3 15
 [SHADOW] SHOW Invoke the special SHOW command i n the SHADOW vocabulary to print shadow screens

along the source screens.
 STOP Terminate the task.
;

Another example is to use the computer to keep a counter which keeps the number of circles the

multitasker running around the round-robin loop:

VARIABLE COUNTS

BACKGROUND: COUNTER Define a new background task.
 BEGIN Beginning of an infinite loop.
 PAUSE Allow other tasks to run once.
 1 COUNTS +! Increment the counter.
 AGAIN ;

The task COUNTER executes an infinite loop, so STOP is not required at the end of the command.

However, note that you must use PAUSE in the loop, or no other task will be executed. PAUSE is

built in all the input/output commands, so that tasks which do I/O like SPOOLER do not have to

use PAUSE explicitly.

173

Chapter 24. 8086 Assembler

The source code of the assembler is in CPU8086.BLK, Screen 3 to 17, and KERNEL86.BLK,

screen 80.

The assembler in Forth allows you to define commands which will be executed at the raw machine

speed and make use of all the resource in the host computer hardware system. It is often used to

optimize a system or application program by recoding the critical or most often executed

commands to improve the performance of the program. A high level command can be substituted

by a machine code command if the interface to the system, most notably the stack effect is kept the

same.

The assembler is invoked by the defining command CODE which creates a header in the dictionary

and makes the code field pointing to the parameter field. Machine instructions can then be

assembled into the parameter field by a set of machine code commands with mnemonic names

similar to those used in regular assembler of the host processor. These machine code commands

are executed by the text interpreter and the net effect is to add new machine instructions to the

parameter field so that when the new CODE command is executed, these machine instructions are

executed in sequence. A CODE command must be terminated by the inner interpreter NEXT or

its derivative to return control to the calling command. The code command must be terminated

with a command like END-CODE or C;, which makes the new command available for execution or

compilation.

24.1. Assembly Tools

A set of tool commands are needed to assemble a machine code command in its most primitive

form. If you know the host processor well enough, you can hand code a routine and generate a

Forth CODE command without using the assembler.

VARIABLE AVOC A variable holding the old context vo cabulary during assembling.

: CODE (--) The defining word that starts the as sembling process to build a machine code word.
 CREATE Create the name field, link field, and code field for a new entry in the dictionary.
 HIDE Smudge the header to hide the new word before it is completed.
 HERE DUP 2- ! Store the pfa into code field. This is required for indirectly threaded code.
 CONTEXT @ AVOC ! Save the old context vocabulary.
 ASSEMBLER Use the ASSEMBLER as the context vocabul ary to assemble machine code.
;

: LABEL (--) Mark the start of a subroutine. Ret urn its address when the label is invoked.
 CREATE Create the header.
 ASSEMBLER Select context vocabulary.
;

232 CONSTANT DOES-OP Op-code for CALL instruction u sed in DOES>.
3 CONSTANT DOES-SIZE A CALL instruction consumes 3 bytes.

174

: DOES? (ip -- ip+3 f) Return a true flag with the IP moved over the CALL instruction.
 DUP DOES-SIZE + IP incremented by DOES-SIZE.
 SWAP C@ Code at IP.
 DOES-OP = True if the opcode is CALL.
;

ASSEMBLER DEFINITIONS All the assembler tool words are to be collected in this vocabulary.

: END-CODE (--) Terminate a code definition, mak e it available and also restore context

vocabulary.
 AVOC @ CONTEXT ! Restore the old context vocabular y.
 REVEAL Unsmudge the header, making the word availa ble to the text interpreter.
;

: C; (--)
 END-CODE Synonym for END-CODE.
;

The following set of deferred commands are used in assembling machine instructions or

constructing structures in the code commands. They are defined as deferred commands so that

they can be shared by the assembler and the metacompiler.

DEFER C, (byte --) Assemble a machine code byte to the dictionary.

FORTH ' C, ASSEMBLER IS C, Vector it to the FORT H C, .

DEFER , (n --) Assemble a cell to the dictionary .

FORTH ' , ASSEMBLER IS , Vector to the FORTH , (c omma).

C, and , are the primitive Forth assembler. Using them alone, you can generate code commands

without using an assembler. However, the machine instrctions and operands have to be hand

coded and stored into the dictionary by , and C, .

DEFER HERE (-- addr) Return a pointer to the top of dictionary, the address of the next code

to be assembled.

FORTH ' HERE ASSEMBLER IS HERE

DEFER ?>MARK Set up forward branch with error check ing.
DEFER ?>RESOLVE Resolve a forward branch with error checking.
DEFER ?<MARK Set up a backward branch with error ch ecking.
DEFER ?<RESOLVE Resolve a backward branch with erro r checking.

24.2. 8086 Register Definitions

Registers are used as operands, which are inserted into the register field in a machine instruction.

They are thus defined as constants. The register constants are defined in the following format to

facilitate the building of machine instructions which uses the corresponding register, as shown in

Fig. 24.1. The lower byte may become a byte instruction or the second instruction byte to specify

addressing mode. The upper byte with the mode field is used only during assembly.

175

Figure 24.1 Register addressing mode constant.

OCTAL 8086 codes are best represented in octal due to the 3 bit fields.

: REG (mode reg# --) Use the addressing mode and the register number to generate the proper register

field to be defined as register constants.
 11 * SWAP Fill both reg and r/m fields.
 1000 * OR The addressing mode field.
 CONSTANT Defined as a constant to be inserted into register accessing code.
;

: REGS (n mode --) Define a set of register word s which differ only in the register number.
 SWAP 0 DO Scan through n registers.
 DUP I REG Define each register as a constant.
 LOOP
.DROP Discard mode
.;

Using the powerful REGS, we can define all the registers with all possible addressing modes as

distinct Forth commands. They return the appropriate register constants to be used by machine

code assembler commands to construct machine instructions.

10 0 REGS Define operands addressing only bytes in the registers.
AL CL DL BL AH CH DH BH

10 1 REGS Define operands addressing word registers .
AX CX DX BX SP BP SI DI

10 2 REGS Define indexed addressing operands.
[BX+SI] [BX+DI] [BP+SI]
[BP+DI] [SI] [DI] [BP] [BX]

4 2 REGS Duplicated definitions.
 [SI+BX] [DI+BX] [SI+BP]

176

[DI+BP]

4 3 REGS Segment register addressing operands.
ES CS SS DS

3 4 REGS Immediate addressing operands.
#) S#)

Four registers are of special interests to the Forth system because they are used as registers in the

Virtual Forth Computer. They are assigned generic names more appropriate in the manipulation

of the Forth machine:

BP CONSTANT RP The return stack pointer.
[BP] CONSTANT [RP] Indirect addressing mode.
SI CONSTANT IP The interpretive pointer.
[SI] CONSTANT [IP]
BX CONSTANT W The current word pointer.
[BX] CONSTANT [W]

The data stack pointer uses the SP register which already has the correct name; therefore, it does

not need a new name.

24.3. Addressing Mode Operators

: MD (mode --) Define words which will test vari ous addressing modes.
 CREATE Make header.
 1000 * , Compile a template of addressing mode.
 DOES> (mode-field -- f)
.@ Get the template
.SWAP 7000 AND Mask over the mode field
.= 0<> Return true if the mode matches
.;

0 MD R8? (operand -- f) Is it in byte register m ode?
1 MD R16? (operand -- f) Is it in word register mode?
2 MD MEM? (operand -- f) Is it in memory address ing mode?
3 MD SEG? (operand -- f) Is it in segment addres sing mode?
4 MD #? (operand -- f) Is it in immediate addres sing mode?

: REG? (operand -- f) Test for either byte or wo rd addressing mode.
 7000 AND Mask the mode field.
 2000 < Byte or cell.
 < 0<> Return the flag.
;

: BIG? (n -- f) Test the size of address offset. Return true if n>255.
 ABS Absolute offset.
 -200 AND Examine upper byte.
 0<> True if not zero.
;

: RLOW (n1 -- n2) Retain only the low r/m field.
 7 AND ;

: RMID (n1 -- n2) Retain only the middle registe r field.
 70 AND ;

VARIABLE SIZE A flag. True for 16 bit and false fo r 8 bit number.

: BYTE (--) Reset SIZE to indicate byte operatio ns.
 SIZE OFF ;

: OP, (n opcode --) OR the operand and the opcod e and assemble the machine code.
 OR C, ;

: W, (opcode operand --) Assemble opcode with the W field set if operand indicates a word register.

177

 R16? 1 AND Set W field according to word mode.
 OP, Assemble.
;

: SIZE, (opcode --) Assemble the opcode with W f ield determined by SIZE.
 SIZE @ 1 AND Set W field using SIZE.
 OP, Assemble.
;

: ,/C, (n f --) Assemble a cell if f is true. Ot herwise assemble a byte.
 IF , f is true. Assemble a cell.
 ELSE C, f is false. Assemble a byte.
 THEN ;

: RR, (operand1 oprand2 --) Assemble a register to register instruction.
 RMID Operand1 to r/m field.
 SWAP RLOW Operand2 to reg field.
 OR Register to register operand.
 300 Register to register mode.
 OP, Assemble the reg-reg second instruction byte f or addressing.
;

VARIABLE LOGICAL True while assembling logical inst ructions.

: B/L? (n -- f) BIG? of LOGICAL.
 BIG? LOGICAL @ OR
;

: MEM, (disp mr rmid --) Assemble a memory refere nce instruction. It takes a displacement, and

memory/ register, and a register a arguments and en code them into an
instruction.

 OVER #) = Is it in immediate indirect mode?
 IF Yes.
 RMID 6 OP, Assemble immediate indirect instructio n.
 DROP No need of mr now.
 , Assemble disp, which is the immediate value.
 ELSE Not immediate indirect.
 RMID OVER RLOW OR OR together the registers.
 -ROT Save it.
 [BP] = mr=[BP]?
 OVER 0= AND AND disp=0?
 IF
 SWAP Get the register field to top.
 100 OP, Byte displacement mode instruction. Mode 1.
 C, With the byte displacement.
 ELSE
 SWAP Examine disp.
 OVER BIG? More than 8 bits?
 IF Yes.
 200 OP, Mode 2 instruction.
 , With cell displacement.
 ELSE
 OVER 0= Is disp=0?
 IF Yes.
 C, Assemble byte instruction.
 DROP No displacement.
 ELSE All tests failed to reach here.
 100 OP, Assemble mode 1 instruction anyway.
 C, Append a byte displacement.
 THEN
 THEN
 THEN
 THEN ;

: WMEM, (disp mem reg op --) Assemble a word memory reference instruction.
 OVER W, Pack the word referencing bit into reg and assemble opcode.
 MEM, Use MEM, to assemble the right mode instructi on.
;

: R/M (mr reg --) Assemble either a register to register or register to memory instruction.
 OVER REG? Is it in a register mode?
 IF RR, Yes. Assemble a register to register instr uction.
 ELSE MEM, Else assemble a memory referencing instr uction.
 THEN
;

178

: WR/SM (rm reg op --) Assemble either a registe r mode instruction with size field, or a memory
mode instruction with size from SIZE.

 2 PICK Get the mode.
 DUP REG? Is it register mode?
 IF Yes.
 W, Squeeze in the word bit.
 RR, Assemble a register-register instruction.
 ELSE Not register mode.
 DROP Discard mode.
 SIZE, Use SIZE for word bit.
 MEM, Assemble memory instruction.
 THEN
 SIZE ON Set default size to 16 bits.
;

VARIABLE INTER True if doing inter-segment jump, ca ll, or return.

: FAR (--) Set INTER true.
 FAR ON ;

: ?FAR (n1 -- n2) If INTER is true, set the far b it in the instruction.
 INTER @ If INTER is true,
 IF 10 OR THEN set bit 3 in the instruction.
 INTER OFF Reset far flag.
;

179

Figure 24.2 8086 instruction types.

180

24.4. Defining Commands To Generate Opcodes

8086 is a rather complicated microprocessor. It was designed to be 8080 downward compatible so

that it must be able to execute all the 8080 instructions. With lots of 16 bit machine instructions

and operators for the extra registers and different mode of operation, the instruction set becomes

very big. Consequently, the assembler also becomes complicated in order to take care of these

diverse types of instructions. There are 14 identifiable classes of instructions in 8086. A

defining command is used to generate opcodes for each class of instructions

: 1MI (opcode --) Define one byte constant instr uctions.
 CREATE C, Create header and compile the opcode.
 DOES> (--)
 C@ Fetch opcode from the parameter field of the as sembler word.
 C, Assemble it.
;

HEX
37 1MI AAA 3F 1MI AAS 98 1MI CBW F8 1MI CL C
FC 1MI CLD FA 1MI CLI F5 1MI CMC 99 1MI CW D
27 1MI DAA 2F 1MI DAS F4 1MI HLT CE 1MI IN TO
CF 1MI IRET 9F 1MI LAHF F0 1MI LOCK 90 1MI NO P
9D 1MI POPF 9C 1MI PUSHF F2 1MI REP F2 1MI RE PZ
9E 1MI SAHF F9 1MI STC FD 1MI STD FB 1MI ST I
9B 1MI WAIT D7 1MI XLAT
OCTAL

: 2MI (opcode --) Define ASCII instructions.
 CREATE C, Header and parameter field.
 DOES> (--)
 C@ C, Assemble the opcode.
 12 C, Assemble the ASCII mode byte.
;

HEX D5 2MI AAD D4 2MI AAM OCTAL

: 3MI (opcode --) Define branch instructions wit h one byte offset.
 CREATE C,
 DOES> (addr --)
 C@ C, Assemble opcode.
 HERE - 1- Offset from current address.
 C, Assemble the offset.
;

HEX
77 3MI JA 73 3MI JAE 72 3MI JB 76 3MI JB E
E3 3MI JCXZ 74 3MI JE 7F 3MI JG 7D 3MI JG E
7C 3MI JL 7E 3MI JLE 75 3MI JNE 71 3MI JN O
79 3MI JNS 70 3MI JO 7A 3MI JPE 7B 3MI JP O
78 3MI JS E2 3MI LOOP E1 3MI LOOPE E0 3MI LO OPNE
OCTAL

: 4MI (opcode --) Define LDS, LEA, LES instructio ns.
 CREATE C,
 DOES> (disp mr rmid --)
 C@ C, Assemble opcode.
 MEM, Memory reference.
;

HEX C5 4MI LDS 8D 4MI LEA C4 4MI LES OCTAL

: 5MI (opcode --) Define string instructions.
 CREATE C, Store opcode.
 DOES> (--)
 C@ SIZE, Assemble opcode with size bit.
 SIZE ON Enable word addressing.
;

181

HEX A6 5MI CMPS A4 5MI MOVS AE 5MI SCAS OCT AL

: 6MI (opcode --) Define string instructions wher e byte/word mode is determined at assembly time.
 CREATE C, Store opcode.
 DOES> (mr --)
 C@ Opcode.
 SWAP W, Use mr to decide the word bit and assemble accordingly.
;

HEX AD 6MI LODS AA 6MI STOS OCTAL

: 7MI (opcode --) Define multiply and divide ins tructions.
 CREATE C, Store opcode.
 DOES> (r/m --)
 C@ The opcode will be put in the reg field of the second byte.
 366 The real first byte opcode.
 WR/SM, Assemble the whole mess.
;

HEX 30 7MI DIV 38 7MI IDIV 28 7MI IMUL 20 7 MI MUL
.10 7MI NOT OCTAL

: 8MI (opcode --) Define input/output instruction s.
 CREATE C, Opcode.
 DOES> (port --)
 C@ Opcode.
 OVER R16? Is the port# a 16 bit number?
 1 AND OR OR the word bit to opcode.
 OVER # = Is there an immediate operator?
 IF Yes, a port# is given.
 C, Assemble opcode.
 C, Assemble port number.
 ELSE Implied port.
 10 OR Set the implied port bit in opcode.
 C, Assemble one byte i/o instruction.
 THEN
;

HEX E4 8MI IN E6 8MI OUT OCTAL

: 9MI (opcode --) Define increment/decrement ins tructions.
 CREATE C, Store opcode.
 DOES> (reg --)
 C@ Get opcode first.
 OVER R16? Mode 1 operation?
 IF Yes.
 100 OR Opcode for one byte inc/dcr instruction.
 SWAP RLOW Retain only r/m field.
 OP, Assemble one byte instruction.
 ELSE Other modes.
 376 First byte opcode.
 WR/SM, Use stored opcode as second byte instructi on.
 THEN
;

HEX 08 9MI DEC 00 9MI INC OCTAL

: 10MI (opcode --) Define Shift/rotate instruction s.
 CREATE C, Store opcode.
 DOES> (reg -- , or reg CL --)
 C@ Stored opcode.
 OVER CL = Top register is CL?
 IF Multiple bit shift.
 NIP Discard CL because it is implied.
 322 Number of bits shifted in CL.
 ELSE Single bit shift.
 320
 THEN
 WR/SM, Assemble the two-byte instruction.
;

HEX 10 10MI RCL 18 10MI RCR 00 10MI ROL 8 1 0MI ROR
.38 10MI SAR 20 10MI SHL 28 10MI SHR OCTAL

182

: 11MI (opcode1 opcode2 --) Define call/jump inst ructions.
 CREATE Header.
 C, Indirect call/jmp opcode.
 C, Direct call/jmp opcode.
 DOES> (addr --)
 OVER #) = Immediate address?
 IF Yes.
 NIP Discard #) mode operator.
 C@ Get the opcode.
 INTER @ IF If it is intersegment addressing,
 1 AND and a jump?
 IF 352 Yes. Jump opcode.
 ELSE 232 THEN No. Call opcode.
 C, Compile jmp/call opcode.
 SWAP , , Compile offset and segment.
 ELSE Not intersegment addressing.
 SWAP Target address addr.
 HERE - 2- Displacement.
 SWAP (disp opcode --)
 2DUP 1 AND Is it JMP?
 SWAP BIG? NOT AND And disp<256?
 IF If so, assemble short jump.
 2 OP, Short jump opcode.
 C, Byte displacement.
 ELSE Long jump or call.
 C, Opcode.
 1- Offset for three-byte instruction.
 , Long displacement.
 THEN
 THEN
 ELSE Not immediate addressing.
 DUP S#) = Is it intrasegment addressing?
 IF DROP #) THEN Yes. Restore the immediate addre ss code.
 377 C, Assemble opcode.
 1+ C@ Get the initial r/m mode code.
 ?FAR Add the intersegment far bit if necessary.
 R/M Append it to the opcode.
 THEN
;

HEX 10 EB 11MI CALL 20 E9 11MI JMP OCTAL

: 12MI (reg-op seg-op r/m-op --) Define push and pop instructions.
 CREATE Header.
 C, C, C, Store three different opcodes for push or pop.
 DOES> (reg --)
 OVER REG? Register mode?
 IF Yes.
 C@ Register mode opcode.
 SWAP RLOW OP, Assemble it.
 ELSE
 1+ Point to the second opcode.
 OVER SEG? Segment register mode?
 IF Yes.
 C@ Get segment opcode.
 RLOW Save only r/m field.
 SWAP RMID Put in the reg field.
 OP, Assemble.
 ELSE
 COUNT Get second opcode and point to the third o pcode.
 SWAP C@ Get the third opcode.
 C, Assemble the third opcode as the first byte o f instruction.
 MEM, Assemble the addressing mode, second byte o f instruction.
 THEN
 THEN
;

HEX 8F 07 58 12MI POP FF 36 50 12MI PUSH OCTA L

: 13MI (op1 op2 --) Define arithmetic and logic instructions.
 CREATE Make header.
 C, C, Store opcodes.
 DOES> (operand1 operand2 --)
 COUNT >R Fetch and store opcode1.
 C@ LOGICAL ! Save opcode2 in LOGICAL.
 DUP REG? Is operand2 a register?

183

 IF Yes.
 OVER REG? Is operand1 also a register?
 IF Yes. A reg-reg math/logic operation.
 R> Get opcode1.
 OVER W, Assemble opcode1 with w field.
 SWAP RR, Assemble addressing byte.
 ELSE Operand1 is not a register.
 OVER DUP MEM? Memory referece?
 SWAP #) = OR Or memory indirect?
 IF Yes.
 R> 2 OR Assemble opcode1 with direction field.
 WMEM, Memory referece.
 ELSE Not memory referencing.
 NIP Discard operand1.
 DUP RLOW 0= Is operand2 the accumulator?
 IF Yes.
 R> 4 OR One byte math instruction. Fill th e math field (bit 2).
 OVER W, Fill in the w field.
 R16? ,/C, Assemble the byte or word immediate value.
 ELSE Operand2 is not the accumulator.
 OVER B/L? Big and long?
 OVER R16? Operand2 a 16 bit register?
 2DUP AND True for 16 bit logic instruction.
 -ROT Save the flag.
 1 AND W field.
 SWAP 16 bit-logic flag.
 NOT 2 AND Sign extension field.
 OR Combine s and w fields.
 200 OP, Assemble first byte opcode.
 SWAP RLOW r/m field.
 300 OR Mode 3.
 R> OP, Second byte mode instruction.
 ,/C, Third byte or word value.
 THEN
 THEN
 THEN
 ELSE Operand2 is not a register.
 ROT DUP REG? Is operand1 a register?
 IF R> WMEM, Yes. Assemble memory referencing mat h instruction.
 ELSE Not memory referencing. Must be immediate v alue.
 DROP It is not a register. Discard it because it is a memory code.
 2 PICK Pick the displacement.
 B/L? Larger than 255?
 DUP NOT 2 AND Fill in the s field.
 200 OR SIZE, Assemble first instruction with w field.
 -ROT Save the BIG? flag.
 R> MEM, Assemble the mode byte.
 SIZE @ Must be BIG and word size.
 AND ,/C, Assemble the immedate value.
 SIZE ON Reinitialize SIZE to 16 bit.
 THEN
 THEN
;

HEX 0 10 13MI ADC 0 00 13MI ADD 2 20 13MI AND
 0 38 13MI CMP 2 08 13MI OR 0 18 13MI SBB
 0 28 13MI SUB 2 30 13MI XOR OCTAL

: 14MI (--) Returns.
 CREATE C, Compile the opcode.
 DOES>
 C@ Get opcode.
 DUP ?FAR Add the intersegment bit if necessary.
 C, Assembler opcode.
 1 AND 0= If it has immediate offset,
 IF , THEN Assemble the address offset.
;

HEX C3 14MI RET C2 14MI +RET OCTAL

24.5. Special Opcodes

A small number of instructions do not belong to any of the above types. They are defined

184

individually as colon commands which have to do special assembly work to assemble their

respective machine instructions.

HEX

: ESC (source opcode --)

Escape to external device.
 RLOW Retain only the low register field.
 0DB OP, Assemble the ESC opcode.
 R/M, With the r/m code.
;

: INT (n --) Assemble an interrupt instruction.
 0CD C, INT, interrupt instruction.
 C, n, the interrupt vector number.
;

: SEG (seg --) Assemble a segment instruction.
 RMID Mask over the segment field.
 26 OP, Opcode for segment instruction.
;

: XCHG (mr1 mr2 --) Assemble register exchange in struction.
 DUP REG? mr2 a register?
 IF DUP AX = And the AX register?
 IF mr2=AX.
 DROP AX is implied.
 RLOW 90 OP, Assemble opcode 90 with mr1.
 ELSE m2 is not AX.
 OVER AX = Is m1 AX?
 IF m1=AX.
 NIP No need of m1 anymore.
 RLOW 90 OP, Assemble XCHG with m2.
 ELSE Neither is AX.
 86 WR/SM, Assemble XCHG with a mode byte.
 THEN
 THEN
 ELSE mr2 is not a register.
 ROT 86 WR/SM, Assemble XCHG with mode byte.
 THEN
;

: CS: CS SEG ; Code segment override.
: DS: DS SEG : Data segment override.
: ES: ES SEG ; Extra segment override.
: SS: SS SEG ; Stack segment override.

: MOV (source dest --) Assemble a MOV instruction, the most complicated in struction in 8086.
 DUP SEG? Is dest a segment register?
 IF 8E C, Assemble segment MOV,
 R/M, and the mode byte with source.
 ELSE DIP REG? Is dest a register?
 IF Dest is a register.
 OVER #) = Source is from memory?
 OVER RLOW 0= AND And dest is AX?
 IF A0 SWAP W, Yes. Assemble mem to AX MOV,
 DROP discard dest, and
 , assemble memory address.
 ELSE OVER SEG? Is source a segment register?
 IF Yes.
 SWAP 8C C, Assemble segment to r/m MOV,
 RR, with the mode byte.
 ELSE Source and dest are not segment register.
 OVER # = Immediate source?
 IF NIP Yes. Discard # code.
 DUP
 R16? Is dest 16 bit?
 SWAP
 RLOW reg field of dest.
 OVER 8 AND OR Combine reg field and w field.
 B0 OP, Assemble immediate to reg MOV,
 ,/C, with the immediate value.
 ELSE Not immediate source.

185

 8AOVER W, Assemble segment to r/m MOV,
 R/M, with a mode byte.
 THEN
 THEN
 THEN
 ELSE Dest is not a register. Treat it as memory r eference.
 ROT DUP SEG? Is source a segment register?
 IF 8C C, Yes. Assemble segment to memory MOV,
 MEM, with memory reference mode byte.
 ELSE DUP # = Immediate source?
 IF DROP Yes. Discard immediate code.
 C6 SIZE, Assemble immediate to reg/mem MOV,
 0 MEM, with a mode byte having 0 reg field ,
 SIZE @ ,/C, and the immediate value.
 ELSE OVER #) = s dest a memory reference?
 OVER RLOW 0= AND And the source is AX?
 IF A2 SWAP W, Assemble AX to memory MOV.
 DROP Memory code #).
 , Memory address.
 ELSE Non of above. Must be register to re/m M OV.
 88 OVER W, Assemble reg-r/m MOV instruction,
 R/M, with the mode byte.
 THEN
 THEN
 THEN
 THEN
 THEN
 SIZE ON Default size is 16 bit words.
;

: TEST (source dest --)

Assemble TEST instruction which AND source with des t and set the status register.
 DUP REG? Is destination a register?
 IF OVER REG? And is source also a register?
 IF Both operands are registers.
 204 OVER W, Assemble opcode.
 SWAP RR, Assemble reg to reg mode byte.
 ELSE Source is not a register.
 OVER DUP MEM? Is source a memory reference
. SWAP #) = OR or an immediate address?
 IF 204 WMEM, Assemble memory to register code an d mode byte.
 ELSE Immediate data.
 NIP DUP
 RLOW 0= Is the source AL register?
 IF 250 Yes. Code for AL reg and immediate data mode.
 SWAP W, C, Assemble code and the immediate byte.
 ELSE Memory-immediate data mode.
 366 OVER W, Assemble code 366 with the word field.
 DUP RLOW 300 OP, Assemble immediate byte value .
 R16? ,/C, If 16 bit data, assemble high byte.
 THEN
 THEN
 THEN
 ELSE Destination is not a register.
 ROT UP REG? Is source a register?
 IF 204 WMEM, Yes. Assemble reg-mem TEST instruct ion.
 ELSE Immediate value.
 DROP 366 SIZE, Immediate data and reg/mem mo de.
 0 MEM, Memory reference.
 SIZE @ ,/C, If 2 bytes operand, assemble the sec ond byte.
 SIZE ON Activate 16 word mode.
 THEN
 THEN
;

24.6. Structures in Code Commands

Structures similar to those in the regular colon commands can also be assembled in code commands.

However, the structures in code commands are constructed using the branching and looping

machine instructions. The test condition for branching is not a flag on top of the data stack but the

186

condition flags kept in the CPU status register.

Forward and backward branching are constructed using some commands similar to the MARK and

RESOLVE in the colon compiler.

: A?>MARK (-- f addr) Set up a forward branch in code definition.
 TRUE Leave a flag on stack for error checking.
 HERE Address to branch from.
 0 C, A dummy byte later to be resolved to a branch ing offset.
;

: A?>RESOLVE (f addr --) Resolve a forward branc hing.
 HERE OVER 1+ - Calculate the branching offset.
 SWAP C! Store it after the branch instruction.
 ?CONDITION Abort if the flag is not true.
;

: A?<MARK (-- f addr) Set up a backward branch i n code definition.
 TRUE Set the flag.
 HERE Leave current address on stack.
;

: A?<RESOLVE (f addr --) Resolve a backward bran ch.
 HERE 1+ - Backward branch offset.
 C, Assemble the offset. Complete the branching instruc tion.
 ?CONDITION Abort if flag is not true.
;

The branching instructions are vectored through the commands >MARK, >RESOLVE, <MARK,

and <RESOLVE. The execution routines vectored by these commands can now be resolved by

pointing them to the above structure commands just defined in the assembler.

' A?>MARK ASSEMBLER IS ?>MARK
' A?>RESOLVE ASSEMBLER IS ?>RESOLVE
' A?<MARK ASSEMBLER IS ?<MARK
' A?<RESOLVE ASSEMBLER IS ?<RESOLVE

Conditionals in the assembler are machine codes to be assembled by the structure commands like IF,

UNTIL, and WHILE. The conditionals are defined as constants to be assembled:

HEX
75 CONSTANT 0= 74 CONSTANT 0<>
79 CONSTANT 0< 78 CONSTANT 0>=
7D CONSTANT < 7C CONSTANT >=
7F CONSTANT <= 7E CONSTANT >
73 CONSTANT U< 72 CONSTANT U>=
77 CONSTANT U<= 78 CONSTANT U>
71 CONSTANT OV
DECIMAL

: IF (opcode -- f addr) Assemble a conditional b ranch instruction to start a forward branch.
 C, Assemble conditional opcode.
 ?>MARK Set up forward branch.
;

: THEN (f addr --) Close a conditional branch.
 ?>RESOLVE ;

: ELSE (f1 addr1 -- f2 addr2) Resolve forward branch for IF and set up another f orward branch to THEN.
 0EB Unconditional branch opcode.
 IF Assemble it here.
 2SWAP THEN Resolve forward branch from IF.
;

187

: BEGIN (-- f addr) Set up a backward branch.
 ?<MARK ;

: UNTIL (f addr opcode --) Resolve the backward branch to BEGIN.
 0EB Unconditional branch.
 UNTIL Let UNTIL do the resolving and assembling.
;

 C, Assemble the conditional opcode.
 ?<RESOLVE Resolve the branch offset.
;

: AGAIN (f addr opcode --) Resolve the backward branch with an unconditional branch instruction.

: WHILE (-- f addr) Forward branch.
 IF ;

: REPEAT (f1 addr1 f2 addr2 --) Branch back unconditionally.
 2SWAP Get the BEGIN location.
 AGAIN Assemble unconditional branch to BEGIN.
 THEN Resolve WHILE clause.
;

: DO (n -- addr) Set up an assembler do-loop.
 # CX MOV Assemble an instruction setting up the lo op counter.
 HERE Leave address for branch instructions.
;

: NEXT (--) The inner interpreter.
 >NEXT #) JMP Assemble an indirect jump.
;

DECIMAL

188

Chapter 25. Metacompiler

The source code discussed in this chapter is in the file META86.BLK and KERNEL86.BLK,

Screen 1 to 10.

Metacompilation is a special feature of Forth to generate a new Forth system by an existing Forth

system. It is impossible in other operating systems and languages because of the complexity in

the conventional operating systems and language compilers. The most you can do in those

environment is to do a 'sysgen', which allows a user to delete unnecessary or unused features in the

full system and build a simpler system tailored to your application. The simplicity and

conciseness of a Forth system give you much more freedom in selecting and eliminating features to

suit your application. Metacompilation enables you to create a new system precisely customized

to your needs, and the new system can be targeted to a different computer even with different

CPU's.

25.1. Concept of Metacompilation

The theory behind Forth metacompilation is rather straightforward. Commands in the Forth

dictionary can be compiled or assembled according to the specifications of the target machine. A

new dictionary can be created for the target machine containing all the commands which are

necessary for execution on the target machine. This new dictionary can then be transferred to the

target machine and executed on the target machine. The new dictionary will, of course, contain

the required nucleus to operate on the new host CPU with necessary interpreter, compiler, and

applications. A special initialization routine must also be included to power up the new target

system. The metacompilation is the process to generate the new dictionary for the target

computer.

Currently F83 has been implemented on 8080, 8086/88, and 68000 microprocessors running under

CP/M and MS-DOS operating systems. Metacompilation was used extensively to transport the

F83 model to different CPU's and to different operating systems. The metacompiler used to create

a F83 system is included in the F83 system so that you can use it to rebuild the system or to

generate new systems suitable for your applications. The authors of F83 intended that you will

modify their F83 systems to explore new uses of Forth and to develop commercial products for

public utilization

Metacompilation is considered to be the highest level of extensibility in Forth. The first level of

extensibility is to use predefined defining commands like : and CODE to add new commands to the

189

existing system. The second level of extensibility is to create new defining commands which can

be used to compile new classes of commands or data structures to the dictionary, and to interpret

them according to your specifications. The third level of extensibility, metacompilation, is to

regenerate the entire Forth system with whatever extensions you might attach to it. This activity

has been the privilege of large corporations and large teams or systems programmers at the

expenses of billions of dollars, to build computer operating systems. In Forth, this privilege is

accorded to us ordinary souls in the form of a metacompiler.

The most fundamental issue in metacompilation is that the target Forth system occupies an

addressing space entirely different from the regular memory space the host Forth system addresses.

The virtual address space of the target Forth system must be mapped to the real memory in the host

Forth system. The metacompiler must be able to build the new system in the virtual memory

space and resolve all the addresses and linkage accordingly. For one thing, the commands in the

new system cannot be executed, and the new dictionary cannot be searched like normal Forth

dictionary. Searching must be done through one or more symbol tables, and compiler directives

must be defined in special vocabulary to help building structures in the commands belonging to the

target system. These are non-trivial tasks.

25.2. Vocabularies for Metacompilation

The main purpose of metacompilation is to build new commands in the new target system using

source code in the existing Forth system. It is thus necessary that a Forth command should

execute differently depending upon when and where it is invoked. Multiple commands of the

same name is a bad practice in normal Forth programming, but it is absolutely necessary in

metacompilation. It is accomplished by using many vocabularies to house different commands of

the same names. Any of these commands can be invoked by selecting a specific vocabulary

searching order.

190

Figure 25.1 The chicken-egg cycle of meta-Forth

ONLY FORTH ALSO Start with the normal FORTH and ROO T vocabularies.
VOCABULARY META Define META vocabulary which will contain all the w ords to effect metacompilation.

Many of them are re-definitions.
META ALSO META vocabulary will be searched before F ORTH vocabulary and ONLY vocabulary.
META DEFINITIONS Let META also be the current vocab ulary so that new words will be added to META.

: [FORTH] An immediate version of FORTH.
 FORTH
; IMMEDIATE Declare [FORTH] as immediate so that i t will be executed during compiling.

: [META] An immediate version of META.
 META ; IMMEDIATE

: SWITCH (--) Exchange the saved values of CONTE XT and CURRENT with themselves. It should always

be used in pair to save and restore the CONTEXT and CURRENT vocabularies. Between
the pair one can change vocabulary and select new v ocabulary definitions.

 NOOP NOOP Two cells to save the current CONTEXT an d CURRENT vocabularies.
 DOES> (--)
 DUP @ Contents of the first cell of NOOP
 CONTEXT @ Context vocabulary.
 SWAP CONTEXT ! Copy save context to CONTEXT.
 OVER ! Save CONTEXT to NOOP cell.
 2+ Address of second NOOP cell.
 DUP @ Fetch saved current vocabulary.
 CURRENT @ Current CURRENT vocabulary.
 SWAP CURRENT ! Save it in second NOOP cell.
 SWAP ! Restore CURRENT.
;

VOCABULARY TARGET A vocabulary to hold the symbol t able for all definitions in the target system.
VOCABULARY TRANSITION A vocabulary holding special case compiling words like ." and [.
VOCABULARY FORWARD A vocabulary holding all forward references as deferred words.
VOCABULARY USER A vocabulary holding the USER versi on of defining words.
ONLY DEFINITIONS Add all the vocabulary names to th e ONLY vocabulary so that they are always

accessible and that all words in every vocabulary a re accessible.
FORTH ALSO META ALSO Collect vocabulary names from both FORTH and META vocabularies.

191

: META META ; META in ONLY calls META in FORTH.
: TARGET TARGET ; And so forth.
: TRANSITION TRANSITION ;
: ASSEMBLER ASSEMBLER ;
: FORWARD FORWARD ;
: USER USER ;
ONLY FORTH ALSO META ALSO
DEFINITIONS

Restore the search order as META, FORTH and ONLY.

Figure 25.2 Supporting vocabularies for metacompilation

A few useful commands are defined to re-order the vocabularies in the searching sequence to locate

specific commands in a specific vocabulary.

: IN-TARGET Search only the symbol table.
 ONLY TARGET DEFINITIONS
;
: IN-TRANSITION Search TRANSITION, TARGET, and FORW ARD in that order.
 ONLY FORWARD ALSO
 TARGET DEFINITIONS ALSO
 TRANSITION ;

: IN-META The normal environment in doing metacompi lation.
 ONLY FORTH ALSO
 META DEFINITIONS ALSO
;

: IN-FORWARD Used when a word is undefined and must be compiled on the fly.
 FORWARD DEFINITIONS ;

25.3. Accessing Memory In The Target System

192

During metacompilation, the dictionary of the target system is in a virtual memory space to which

new commands can be added but are not accessible for other purposes. These new commands can

never be executed because the target system will only be useful in the target computer which may

be a totally different machine from the host computer performing the metacompilation. The target

virtual memory is mapped onto the host memory space by a constant offset and a variable

dictionary pointer:

0 CONSTANT TARGET-ORIGIN The offset address in the host memory where the tar get dictionary begins.

The value of TARGET-ORIGIN Must be assigned before metacompiling.
VARIABLE DP-T The dictionary pointer for the target system during metacompilation.

All memory accessing commands in Forth must be redefined for meta- compilation to access the

memory of the target system.

: THERE (taddr -- addr) Map a target address to a host address.
 TARGET-ORIGIN + Add offset.
;

: C@-T (taddr -- char) Fetch a byte from given t arget address.
 THERE C@ ;

: @-T (taddr -- n) Fetch a word from given targe t address.
 THERE @ ;

: C!-T (char taddr --) Store a byte at the target address.
 THERE C! ;

: !-T (n taddr --) Store a word at the target ad dress.
 THERE ! ;

: HERE-T (-- taddr) Return target address of the next available dictionary byte.
 DP-T @ ;

: ALLOT-T (n --) Allocate more space in the targ et dictionary.
 DP-T +! ;

: C,-T (char --) Add a byte to the target dictio nary.
 HERE-T C!-T Compile one byte.
 1 ALLOT-T Move target dictionary pointer.
;

: ,-T (n --) Add a word to the target dictionary .
 HERE-T !-T Store one word.
 2 ALLOT-T Move pointer.
;

: S,-T (addr n --) Add a string to the target di ctionary.
 0 ?DO Scan the length of string.
 DUP C@ Fetch one character.
 C,-T Compile one byte.
 1+ Increment addr.
 LOOP
 DROP Discard addr still on stack.
;

25.4. Branching Constructs

Two sets of commands setting up and resolving branches are needed in the metacompiler: one for

colon commands and one for code commands.

193

: ?>MARK (-- f addr) Set up a forward branch in colon definition.
 TRUE Flag.
 HERE-T Address for the forward branch.
 0 ,-T Reserved for forward branch address.
;

: ?>RESOLVE (f addr --) Resolve a forward branch .
 HERE-T Address to branch to.
 SWAP ! Store at the from address.
 ?CONDITION Error checking.
;

: ?<MARK (-- f addr) Set up a backward branch.
 TRUE Put the flag on the stack,
 HERE-T with the current dictionary address.
;

: ?<RESOLVE (f addr --) Resolve a backward branc h.
 ,-T Store the address to be branched to.
 ?CONDITION Error checking.
;

The following branching commands are to be used in the assembler to set up branches in code

commands.

: M?>MARK (f addr --) Set up a forward branch in code definition.
 TRUE
 HERE-T Leave current address.
 0 C,-T Reserve one byte for branching offset.
;

: M?>RESOLVE (f addr --) Resolve a forward branc h in code definition.
 HERE-T Current address.
 OVER 1+ - Offset to the mark.
 SWAP C!-T Store into the reserved space.
 ?CONDITION Error checking.
;

: M?<MARK (-- f addr) Set up a backward branch i n code definition.
 TRUE Push flag on the stack,
 HERE-T with the dictionary address.
;

: M?<RESOLVE (f -- addr) Resolve a backward bran ch in code definition.
 HERE-T 1+ - Offset from addr.
 C,-T Assemble offset after the branching instructi on.
 ?CONDITION Error checking.
;

These assembler branching commands are to be used to build code commands in the target system.

The regular Forth assembler can be used for target metacompilation if the branching commands are

smart enough to assemble structures in the virtual memory space of the target system. They are

made smart by patching the executing addresses of the above commands into the corresponding

deferred commands in the regular assembler:

' C,-T
 ASSEMBLER IS C,
' ,-T
 ASSEMBLER IS ,
' HERE-T ASSEMBLER IS HERE
' M?>MARK ASSEMBLER IS ?>MARK
' M?>RESOLVE ASSEMBLER IS ?>RESOLVE
' M?<MARK ASSEMBLER IS ?<MARK
' M?<RESOLVE ASSEMBLER IS ?<RESOLVE

194

All the tools provided in the assembler are now available for the metacompiler to build the nucleus

portion of the target system.

25.5. Forward Reference

Forth normally does not allow forward referencing to commands that is not yet defined in its

dictionary. This is a good practice to ensure that any defined command is immediately available

for execution, testing and compiling. However, it presents a problem in metacompilation because

we have to have defining commands to compile new commands into the target system, while these

defining commands can only be defined much later in the metacompiling process. The defining

commands must be made available at the very beginning of compiling the target system. F83

allows forward referencing to commands not yet defined by creating deferred commands which

will be resolved and made executable at a later stage when the tools are available. The deferred

commands will be linked together in a list stored in the FORWARD vocabulary. At the end of

metacompilation, the list of forward references will be examined and vectored to executable

commands.

: MAKE-CODE (pfa --) Take the code field address pointed to by pfa and compile it in the target

system.
 @ Fetch cfa from pfa.
 ,-T Compile to target dictionary.
;

: LINK-BACKWARDS (pfa --) Extend the linked list of unresolved forward references.
 HERE-T Current dictionary address.
 OVER @ ,-T Store the address pointed to by pfa int o current dictionary.
 SWAP ! Store current dictionary address into pfa, thus extending the linked list.
;

: RESOLVED? (pfa -- f) Return a true flag if the word whose pfa is on the stack is already resolve.
 2+ Flag indicating that the word is resolved.
 C@ Get it on stack as the flag.
;

: FORWARD-CODE (pfa --) If a forward reference i s resolved, compile the code. Otherwise link it

to the forward reference list.
 DUP RESOLVED? A resolved forward reference?
 IF MAKE-CODE If so, compile.
 ELSE LINK-FORWARD Else link.
 THEN
;

: FORWARD: (--) Define a forward reference word and initialize it to be unresolved.
 SWITCH Save the current vocabularies.
 FORWARD DEFINITIONS Make FORWARD the current an d context vocabulary to build the forward

reference word.
 CREATE Make the header.
 SWITCH Revert back to the original environment.
 0 , Dummy execution address.
 0 C, Unresolved flag.
 DOES> (--)
 FORWARD-CODE When a forward reference word is exec uted, either compile it to dictionary

or link to the list of unresolved references.
;

195

25.6. Compiling New Commands to Target System

VARIABLE WIDTH The maximum length of the names in t arget definitions.
31 WIDTH ! It is initialized to allow 31 characters in names.
VARIABLE LAST-T A variable pointing to the name fie ld of the most recently defined word

in target.
VARIABLE CONTEXT-T Pointer to the array of context and resident vocabularies in the target.
VARIABLE CURRENT-T Pointer to the vocabulary where new definitions are to be linked.

: HASH (str-addr voc-addr -- thread)

From the name of a definition and the address of th e current vocabulary,
return the thread address to link the new definitio n.

 SWAP 1+ C@ Get the first character in the name.
 3 AND Only four threads are implemented.
 2* + Return the address of the thread in the body of the vocabulary.
;

: HEADER (--) Create a header in the target dict ionary. It makes a header out of the

next word in the input stream and fixes up all the appropriate pointers
to link it into the target dictionary.

 BL WORD Get the name.
 C@ 1+ WIDTH @ MIN The length of the name field.
 ?DUP IF If length is not zero, make the header.
 ALIGN Align new header to word boundary.
 BLK @ Current block number.
 4096 + The view field with the block number and t he file number, assumed to be

1.
 ,-T Compile the view field.
 HERE CURRENT-T @ HASH Find the thread to link th e new word.
 DUP @-T ,-T Compile the link field.
 HERE-T 2- The link field address of the new word in the target dictionary.
 SWAP !-T Update the top of linking thread in the current vocabulary.
 HERE-T Save a copy of the name field address.
 HERE ROT S,-T Move the name from host to target.
 ALIGN Make sure the code field fall on even word boundary.
 DUP LAST-T ! Update the LAST-T with new name fiel d address.
 128 SWAP THERE CSET Set the delimiting bit in th e first (count) byte of the name field.
 128 HERE-T 1- THERE CST Set the delimiting bit i n the last byte of name field.
 THEN
; No header will be created if WIDTH is set to zero.

: TARGET-CREATE (--) Create a header in target a nd an entry in the symbol table. The new word

is initialized as resolved so that it will be compi led to the target when
invoked.

 >IN @ Save the input stream pointer.
 HEADER Create the target header.
 >IN ! Restore the input pointer to reuse the name of the new definition.
 IN-TARGET CREATE Create an entry in the symbol tab le, TARGET vocabulary.
 IN-META Return to metacompiler.
 HERE-T , Compile the execution address of the new target word to pfa of the symbol

table entry.
 1 C, Compile the resolved flag.
 DOES> (--) When the entry in the symbol table is executed, the execution address

of the target word will be compiled to the target d ictionary.
 MAKE-CODE Compile the contents of the pfa to targe t dictionary.
;

: RECREATE (--) Same as TARGET-CREATE, but don't advance the input stream pointer so that

the name of word can be used again.
 >IN @ Save the input stream pointer.
 TARGET-CREATE Create headers in target and symbol table.
 >IN ! Restore input stream pointer.
;

: CODE (--) Set up to assemble a new code defini tion to the target dictionary. The

target cfa is set to target pfa.
 TARGET-CREATE Make the headers.
 HERE-T 2+ Parameter field address of the new code word.
 ,-T Compile code field in the target code word.
 ASSEMBLER !CSP Set trap for error checking.
;

: LABEL (--) Remember the current target diction ary address and assign it a name so

that a subroutine can be called from a code definit ion.

196

 ASSEMBLER DEFINITIONS
 HERE-T CONSTANT Assign a name to the target addres s.
;

ASSEMBLER DEFINITIONS Go back to the Forth assemble r.

: END-CODE Redefine the code word terminator for t he target compiler.
 IN-META Specify metacompiling environment.
 ?CSP Do error checking by comparing stack depth at the beginning and end of

a code definition.
;
META Return to metacompiler.
IN-META And reorder the vocabularies as needed by t he metacompilation.

25.7. Transition Compiler Directives

Compiler directives, which build structures in the target commands or performing special actions

other than compiling execution addresses, cannot be executed immediately within the target

compilation environment. The compiler directives in the normal Forth cannot be used either,

because structures and special conditions must be built in the target system. These metacompiler

directives are all put in the TRANSITION vocabulary and are executed from there. When these

compiler commands are encountered, nwq commands are compiled into the target dictionary. The

corresponding commands in the TRANSITION vocabulary are executed so that the special

condition in the target command can be dealt with immediately.

 : 'T (-- cfa) Look up the next word in the input stream only in the target vocabulary.

Preserve original context.
 CONTEXT @ Save context vocabulary.
 TARGET DEFINED Look up next word in the TARGET voc abulary. (context cfa f --)
 ROT CONTEXT ! Restore context.
 0= ?MISSING Abort if the word cannot be found.
;

: [TARGET] (--) Force the compilation of a TARGE T word regardless of the current CONTEXT

vocabulary.
 'T Find the word in TARGET vocabulary.
 , Compile its execution address.
;

: 'F (-- cfa) Look up the next word in the input stream only in the FORWARD vocabulary.

Preserve current context.
 CONTEXT @ Save context on stack.
 FORWARD DEFINED Search FORWARD vocabulary for the next input word.
 ROT CONTEXT ! Restore context.
 0= ?MISSING Abort if word cannot be found in the F ORWARD vocabulary.
;

: T: (--) Define a new compiler directive word i n the TRANSITION vocabulary. It

is otherwise the same as : .
 SWITCH Save the current CONTEXT and CURRENT vocabu laries.
 TRANSITION DEFINITIONS Make TRANSITION the curren t vocabulary.
 CREATE Define the following word in the TRANSITION vocabulary.
 SWITCH Restore original context.
] Compile the body of the new word.
 DOES> This is how the new word defined by T: shoul d be executed:
 >R Push the parameter address of the new word on the r eturn stack. The list

of execution addresses compiled in the parameter fi eld will be executed
in sequence. Similar to what NEST might have done.

;

: T; (--) Terminate a word defined by T:.
 SWITCH Save context.
 TRANSITION DEFINITIONS Change context to TRANSITI ON.
 [COMPILE] ; Compile end of word definition.
 SWITCH Restore context.

197

; IMMEDIATE

Following are the string commands for inline comments and documentation:

T: ((--)
 [COMPILE] (Inherit (from host to TRANSITION.
 T;

T: (S (--)
 [COMPILE] (S Inherit (S from host.
 T;

T: \ (--)
 [COMPILE] \ Inherit \ from host.
 T;

Special commands are needed to compile string literals into the target dictionary:

: STRING,-T (--) Scan the input stream for a " a s the string delimiter and compile the string into

target dictionary.
 ASCII " PARSE Parse input text to ".
 DUP C@ 1+ Length of string just parsed.
 S,-T Move the string and compile into the target d ictionary.
 ALIGN Align to cell boundary.
;

FORWARD: <(.")> Runtime forward reference for the c ode compiled by ." .

T: ." Compile the runtime code <(.")> and a string literal in the target dictionary.
 [FORWARD] <(.")> Compile the forward reference.
 STRING,-T Compile the string literal.
;

FORWARD: <(")> Runtime forward reference for the co de compiled by " .

T: " Compile the unknown runtime code <(")> with a string literal.
 [FORWARD] <(")> Compile the forward reference word <(")>.
 STRING,-T Compile string literal from input stream .
;

FORWARD: <(ABORT")> Runtime forward reference for A BORT".

T: ABORT" Compile the unknown runtime code for abor t, followed by a string.
 [FORWARD] <(ABORT")> Compile the abort code.
 STRING,-T With the string literal.
;

FORWARD: <(;USES)> Forward reference for code routi ne compiled by ;USES.
FORTH VARIABLE STATE-T True if in the compiling sta te inside a colon definition. False if outside

or in the interpreting state.

T: ;USES (--) Compile a code field whose runtime routine already exists. It is similar to ;CODE

otherwise.
 [FORWARD] <(;USES)> Compile the code field using the address of <(;USES)>.
 IN-META Force the context of metacompiler.
 ASSEMBLER Invoke assembler to start assembling cod e routine.
 !CSP Install error checking.
 STATE-T OFF Assembler words are interpreted, not c ompiled.
 T;

T: [COMPILE] (--) Compile a TARGET word rather t han execute its TRANSITION counterpart.
 'T Find the next word and return its execution add ress.
 EXECUTE Execute the word in the symbol table vocab ulary TARGET. The effect is to compile

the word into the target dictionary.
;

FORWARD: <(IS)> Forward reference to the runtime ro utine of IS.

T: IS (--) Compile the unknown address of <(IS)> .
 [FORWARD] <(IS)> T;

198

: IS (cfa --) This is the version of IS in the m etacompiler which actually patches the forward
reference.

 'T Find the cfa of the next word to be patched.
 >BODY @ The execution address pointing to executio n routine.
 >BODY !-T Patch in with the cfa on stack. Thus res olve the forward reference.
;

T: ALIGN Align the dictionary pointer to word bound ary.
 T; This is not needed in 8086, which is a true byt e machine.

T: EVEN (n -- n') Make the number n even.
 T; Noop in 8086 or 8080.

25.8. Defining Words In Metacompiler

FORWARD: <VARIABLE> Forward reference for runtime r outine of CREATE and VARIABLE.

: CREATE Create a target word using the runtime rou tine for VARIABLE and a host word to

return the HERE address in target.
 RECREATE Create target word and an entry in the sy mbol table vocabulary TARGET The input

pointer is not advanced.
 [FORWARD] <VARIABLE> Compile code field in target.
 HERE-T CONSTANT Define the pfa as a constant in th e host.
;

: VARIABLE Define a variable in the target.
 CREATE Use the above CREATE.
 0 ,-T nitialize the parameter field.
;
 FORWARD: <DEFER> Forward reference for the runtime routine of DEFER.

: DEFER Define a deferred word or an execution vect or in the target.
 TARGET-CREATE Create a target word and a symbol ta ble entry.
 [FORWARD] <DEFER> Compile code field.
 0 ,-T Compile a dummy parameter to hold execution address.
;

: DIGIT? (char -- f) Return true if the character is a digit in current base.
 BASE @ DIGIT Convert the char using current BASE.
 NIP Only the flag is needed. Discard the result o f conversion.
;

: PUNCT? (char -- f) Return true if the character is a valid punctuation character for numbers such

as leading - or decimal point.
 ASCII . OVER = SWAP A period?
 ASCII - OVER = SWAP Or a minus sign?
 ASCII / OVER = SWAP Or a / ?
 DROP OR OR Return the flag.
;

: NUMERIC? (addr len --
f)

Return true if the string is a valid number in the current base. At least one
valid digit should be present in the string.

 DUP 1 = Only one character?
 IF Yes.
 DROP Discard len .
 C@ DIGIT? Is it a valid digit?
 EXIT No other action needed.
 THEN
 1 -ROT Initial flag.
 0 ?DO Scan the length of the string.
 DUP C@ Get one character.
 DUP DIGIT? Is it a digit?
 SWAP PUNCT? Or a punctuation?
 OR ROT AND AND the test results to flag.
 SWAP 1+ Increment addr.
 LOOP
 DROP Discard addr.
;

199

25.9. User Variables

User variables are collected in a table called user area for multitasking context switching. All the

variables pertinent to the independent operation of a task have to be preserved for each user or task

when it relinquishes control of CPU to other tasks, so that when it regains the control of CPU the

task can continue from where was left off. The managing of the user area requires redefining

many dictionary accessing commands. These redefinitions are collected in a separated vocabulary

USER. The target compiler must have its own versions of these commands to compile user

variables in the target system.

FORTH VARIABLE #USER-T A variable in FORTH to count the number of user variables defined in the

target system.
META ALSO Revert to metacompiler.
USER DEFINITIONS Following words are added to the U SER vocabulary.

: ALLOT (n --) Allocate space in the user area.
 #USER-T +! Add n to the user area counter.
;

FORWARD: <USER-VARIABLE> Forward reference for the runtime routinE of USER-VARIABLE.

: VARIABLE (--) Create a user variable in the us er area.
 SWITCH Save context.
 RECREATE Create headers in target and symbol table .
 [FORWARD] <USER-VARIABLE> Compile code field point ing to <USER-VARIABLE>.
 #USER-T @ Current user area pointer.
 DUP ,-T Compile the pointer in parameter field.
 2 ALLOT Move user area pointer.
 META DEFINITIONS Change current vocabulary to META .
 CONSTANT Create a constant in META holding the use r area pointer.
 SWITCH Restore context.
;

FORWARD: <USER-DEFER> Forward reference for runtime routine of user deferred words.

: DEFER (--) Create a user deferred word or a ta sk local execution vector.
 SWITCH Save context.
 TARGET-CREATE Create target and symbol table entri es.
 [FORWARD] <USER-DEFER> Compile code field pointin g to <USER-DEFER>.
 SWITCH Restore context.
 #USER-T @ ,-T Compile the user area pointer.
 2 ALLOT Move user area pointer.
;

ONLY FORTH ALSO META ALSO
DEFINITIONS

Restore the metacompiling environment.

25.10. Vocabulary

The defining command VOCABULARY creates new vocabularies when the target system is

brought up and running. In the parameter field of the vocabulary command, four cells are used to

store the addresses of the ends of four dictionary threads for the hashing algorithm. The last cell

stores the VOC-LINK address, which points to the vocabulary defined immediately before the

currently defined vocabulary. This way, all the vocabularies defined in the running system are

linked together themselves. This vocabulary linkage is necessary when vocabularies have to be

trimmed by FORGET.

200

FORTH VARIABLE VOC-LINK-T A variable linking all de fined vocabularies together.

FORWARD: <VOCABULARY> The forward reference for the runtime routine of VOCABULARY.

: VOCABULARY (--) Create a vocabulary in the tar get system.
 RECREATE Create headers.
 [FORWARD] <VOCABULARY> Compile code field.
 HERE-T Save the parameter field address of the def ined vocabulary.
 #THREADS 0 DO 0 ,-T LOOP Initialize four threads in the vocabulary.
 HERE-T VOC-LINK-T @ ,-T Store previous vocabulary pfa after the thread field.
 VOC-LINK-T ! Store pfa of this vocabulary into VOC -LINK-T and extend the vocabulary

linkage.
 CONSTANT Define a constant in the host.
 DOES> (--)
 @ Fetch the starting address of the thread field in t he vocabulary.
 CONTEXT-T ! Store it in the context variable to ma ke it the context vocabulary.
;

: IMMEDIATE (--) If heads are compiled in target , set the precedent or immediate bit in

the name field.
 WIDTH @ IF If heads are compiled,
 64 Precedent bit.
 LAST-T @ THERE Address of the name field.
 CTOGGLE Flip the precedent bit.
 THEN ;

25.11. Resolving Forward References

: FIND-UNRESOLVED (-- cfa f) Search for a word in the FORWARD vocabulary and ret urn the status.
 'F Find the next word in the input stream in the FORWA RD vocabulary.
 DUP >BODY Get the parameter field address.
 RESOLVED? Return the a true flag if the word is re solved.
;

: RESOLVE (taddr cfa --) Run through the linked list of forward reference and resolve each of them

with the given address.
 >BODY The parameter field address from cfa.
 2DUP
 TRUE OVER 2+ C! Store the 'resolved' flag in the t hird byte of the forward reference word

in FORWARD.
 @ Address of the last member in the linked list of un resolved reference.
 BEGIN Run down the list.
 DUP If address is not 0, go do the resolving.
 WHILE
 2DUP @-T Get the next unresolved reference.
 -ROT Replace the old one.
 SWAP !-T Resolve the old reference.
 REPEAT
 2DROP Clear stack.
;

: RESOLVES (taddr --) The command used by user t o resolve forward reference.
 FIND-RESOLVED Search the next word in the FORWARD vocabulary and determine if it is

resolved.
 IF Yes. Resolved.
 >NAME .ID Print its name.
 ." Already resolved." And a message.
 DROP No need of taddr.
 ELSE Not resolved.
 RESOLVE Then resolve the references.
 THEN
;

At the end of metacompilation, all the forward references must be resolved before the target system

is saved. Otherwise, the target system will surely crash when it is executed. There is a long list

201

of reference to be resolved. Following is a short list of examples for illustration. You should

consult the source listing for the complete list.

' (.") RESOLVES <(.")>
' (") RESOLVES <(")>
' (;CODE) RESOLVES <(;CODE)>
' (;USES) RESOLVES <(;USES)>
[FORTH] ASSEMBLER DOCREATE META RESOLVES <VARI ABLE>
[FORTH] ASSEMBLER DOUSER-DEFER META RESOLVES < USER-DEFER>
etc., etc.

Deferred commands and many system variables need also be initialized:

' (LOAD) IS LOAD
' CRLF IS CR
' (KEY?) IS KEY?
etc., etc.

' FORTH >BODY CURRENT !-T
' FORTH >BODY CONTEXT !-T
HERE-T DP UP @-T + !-T
etc., etc.

25.12. Redefining Host Commands

Many important commands in the host or Forth vocabulary are redefined to be used in

metacompilation. To use the host versions of them explicitly, they are redefined as host

commands prefixed with an 'H' character before the regular name.

: H: [COMPILE] : ;

H: ' 'T >BODY @ ;

H: , ,-T ;

H: C, C,-T ;

H: HERE HERE-T ;

H: ALLOT ALLOT-T ;

H: DEFINITIONS
 DEFINITIONS
 CONTEXT-T @ CURRENT-T !
;

:]]] ; Alias of], which will be used by the target compiler.

: [[[COMPILE] [
;
FORTH IMMEDIATE META]] has to be stopped by the FO RTH [, which takes an alias of [[.

FORWARD: DEFINITIONS Making both [and DEFINITIONS forward references so that the target compiler

can assign compiler functions to them.
FORWARD: [

25.13. Running The Metacompiler

Metacompilation is a complicated process and should be used only when you have to tailor the

202

Forth system to very specific application. Since F83 systems were generated using

metacompilation and the authors were kind enough to provide us with the complete source of the

metacompiler and the actual loading commands to generate the F83 system, we have an excellent

guide and example to follow. It is worthwhile to review the loading sequence in generating the

F83 system. When you do metacompiling of your own system, you probably should follow this

sequence as close as possible, making minimal changes and modifications in the kernel and adding

your applications on top of the kernel. After you have gone through this process several times and

obtain working systems, then you can start re-work the kernel.

To fire up the metacompiler, you must first prepare a disk with F83.COM, META86.BLK, and

KERNEL86.BLK files on it. Type
 F83 META86.BLK
and 1 LOAD

to bring up the F83 system, which in turn will load the first screen in the META86.BLK, the load

screen of the metacompiler. The loading command in screen 1:
 3 21 THRU

loads the metacompiler, containing all the commands discussed in this chapter. After the

metacompiler is loaded, we are ready to generate the kernel Forth or the minimal Forth operating

system. The following command in screen 1 of META86.BLK open the KERNEL86.BLK file

and compile the kernel Forth:
 ONLY FORTH DEFINITIONS ALSO
 FROM KERNEL86.BLK 1 LOAD

Since it will need the KERNEL86.BLK file, this file must also be on the disk. If your disk is not

big enough to hold all these files, you should delete the FROM ... line from the screen 1 in

META86.BLK. After the metacompiler is loaded, you can change disk and type it in on the

keyboard to load the kernel.

Screen 1 of the KERNEL86.BLK file is the loading screen of the kernel. The commands:
 ONLY FORTH META ALSO FORTH

include the META vocabulary in the search order and we are ready to compile the kernel.

However, we have to first allocate memory space to store the target kernel Forth system. This is

done by:

256 DP-T ! Initialize the dictionary pointer and le ave 256 bytes at the bottom of the

dictionary for interrupt vectors.
HERE 12000 + The physical address of the target dic tionary.
' TARGET-ORIGIN >BODY ! Store it in the constant, t he address offset into the target dictionary.
IN-META Establish the metacompiling environment.
2 92 THRU Load the entire kernel FORTH system.

We should pay special attention to the last screens in the KERNEL86.BLK file, where all the

forward references are resolved, all the deferred commands are vectored to proper executable

commands, and all the system variables are initialized. To make a target system run properly,

these things have to be done correctly.

203

After the kernel Forth is metacompiled, it must be saved on the disk as an executable object file.

It is saved and given the name KERNEL.COM:

META 256 THERE The physical address where the targe t dictionary starts.
HERE-T The logical address of the end of the target dictionary, which is the length

of the target dictionary in bytes.
ONLY FORTH ALSO DOS Switch to DOS vocabulary to acc ess the SAVE command.
SAVE A:KERNEL.COM Copy the target dictionary into K ERNEL.COM, which is executable.
FORTH

At this point, we have generated a minimal Forth system and put it in an object file KERNEL.COM.

This is a usable Forth system containing the text interpreter and colon compiler. However, its

function is limited and not quite usable as a system to do programming and development work. If

you wanted to develop a Forth application, this kernel serves well as the foundation to support your

application. You can load the application program on top of the kernel and it will become a

product you can sell. As a product, F83 system has lots of bells and whistles to add to the kernel.

The sequence to add applications to the kernel Forth is as following.
BYE Exit F83 and return to the DOS environment.

Copy the KERNEL.COM file to a disk which contains a file with all the application programs. In

this file, screen 1 must be a load screen which will load all the application programs. In the case

of F83 system, this file is EXTEND86.BLK. Moreover, EXTEND86.BLK will load programs in

UTILITY.BLK and CPU8086.BLK. Therefore, you will have to copy these two files to the disk.

If your disk does not have enough room for all these files, you can delete the loading commands in

screen 1 of the EXTEND86.BLK file and type them on the keyboard after switching disks.

To load the application on top of the kernel, type:
 KERNEL EXTEND86.BLK
and 1 LOAD

The object file KERNEL will be loaded into the memory and the kernel Forth will be booted. It

then loads the first screen in EXTEND86.BLK which loads in all the utility making up the entire

F83 system. In this screen you will find the following loading commands:

3 LOAD Load basic utility words and the ONLY-ALSO v ocabulary mechanism.
6 LOAD Load DOS file management words.
FROM CPU8086.BLK 1 LOAD Load the 8086 assembl er, and some CPU specific words to support I/O,

debugger, and multitasker.
FROM UTILITY.BLK 1 LOAD Load all the utility we discussed in Part III.

The F83 system is now complete and it is also saved on the disk in a file named F83.COM
 SAVE A:F83.COM

This process is what was needed to build the F83 system. You have to follow it closely in

building your own Forth system.

204

Index

' 103 'C#A 127 !FCB 116 !FILES 119
!LINK 169 !-T 192 " 108,197 "CREATE 74
30,86 #) 30 #> 85 #AFTER 124
#BUFFERS 63 #END 124 #OUT 167 #PAGE 157
#REMAINING 124 #S 86 #THREAD 78 #TIB 88
#USER 167 #USE-T 199 #VOC 73 (92
(!FCB) 116 (") 47,107 ((SEE)) 155 (.") 47,107
(.) 86 (?DO) 49 (?ERROR) 109 (?LEAVE) 47
(+LOOP) 49 (ABORT") 109 (ABORT) 94 (AT) 123
(BLOCK) 70 (BLOT) 123 (BUFFER) 70 (CHAR) 58
(CONSOLE) 56 (CONVEY) 145 (COPY) 144 (D.) 87
(DARK) 123 (DEBUG) 164 (DEL-IN) 58 (DO) 49
(EMIT) 57 (FIND) 76 (I) 127 (KEY) 56
(KEY?) 56 (LEAVE) 50 (LIT) 47 (LOAD) 120
(LOOP) 49 (NUMBER) 85 (NUMBER?) 84 (PAGE) 157
(PAUSE) 168 (PRINT) 57 (SEE) 151 (SEMIT) 157
(SOURCE) 89 (TILL) 120 (U.) 86 (UD.) 86
(WHERE) 124 , 102,174 ," 108 ,/C, 177
,-T 192 ,VIEW 136 . 86 ." 108,197
.(92 .(;CODE) 152 .: 154 .2 147
.ALL 132 .BRANCH 151 .BUFS 126 .CONSTANT 153
.DEFER 154 .DEFINITION-CLASS 155 .DOES> 154 .EXE CUTION-CLASS 152
.FILE 119 .FINISH 152 .FRAMED 126 .IMMEDIATE 15 3
.INLINE 151 .LINE 131 .LINE0 142 .NAME 118
.OTHER 154 .PFA 153 .QUOTE 151 .R 86
.SCR 142 .SCREEN 123 .STRING 151 .TO 145
.UNNEST 152 .USER-DEFER 153 .USER-VARIABLE 154 . VARIABLE 154
.WORD 151 /STRING 90 : 99 ; 100
;USES 197 ?.A 148 ?.N 148 ?<MARK 112,174,193
?<RESOLVE 112,174,193 ?>MARK 112,174,193 ?>RESOLV E 112,174,195 ?BRANCH 48
?CHAR 121 ?CONDITION 112 ?CR 140 ?DEFINE 119
?DO 113 ?ERROR 108 ?FAR 189 ?LEAVE 113
?LINE 140 ?MISSING 103,126 ?STACK 96 ?STAMP 133
?TEXT 125 @LINK 169 @-T 192 @VIEW 138
[101,201 [[201 ['] 106 [COMPILE] 103,197
[FORTH] 190 [META] 190 [TARGET] 196] 100
]] 201 +LOAD 26 +LOOP 113 +T 127
+THRU 26 <# 85 <(")> 197 <(.")> 197
<(;USES)> 197 <(ABORT")> 197 <(IS)> 197 <DEFER> 198
<IP 163 <MARK 112 <RESOLVE 112 <USER-DEFER> 199
<USER-VARIABLE> 199 <VARIABLE> 198 <VOCABULARY> 200 --> 26
>BUFFERS 63 >END 63 >IN 88 >MARK 112
>NEXT 31, 43 >RESOLVE 112 >SIZE 63 >TYPE 92
>UPDATE 69 >VIEW 136 10MI 181 11MI 182
12MI 182 13MI 182 14MI 183 1MI 180
1PUSH 32,43 2MI 180 2PR 158 2PUSH 32,43
2SCR 155 3MI 180 4MI 180 5MI 180
6MI 181 7MI 181 8MI 182 9MI 182
A 16,23 A: 120 A?<MARK 186 A?<RESOLVE 186
A?>MARK 186 A?>RESOLVE 186 ABORT 94 ABORT" 109
ABSENT? 69 ACTIVATE 171 AGAIN 113,187 ALIGN 198
ALLOT 102,166,199 ALLOT-T 192 ALSO 12 APUSH 43
ASCII 106 ASSEMBLER 173 ASSOCIATIVE: 150 AT 23, 123
AUTO 133 AVOC 173 B 23 B/BUF 63
B/FCB 63 B/L? 177 B/REC 63 B: 120
BACKGROUND: 34,171 BACKSPACES 57 BACK-UP 58 BASE 82
BDOS 56 BEGIN 113,187 BIG? 176 BLK 89
BLOCK 70 BLOT 24,123 BOOT 94 BRANCH 48
BRING 128 BS-IN 58 BUFFER 70 BUFFER# 63
BUG 10,163 BYE 35 BYTE 176 C 19,124
C!-T 192 C, 102,174 C,-T 192 C/PAD 125
C; 174 C@-T 192 CAPACITY 16,65 CAPS 121
CAPS-COMP 60 CASE: 150 CC 59 CC-FORTH 59
CHANGED 125,133 CHANGED? 132 CHAR 59 CLOSE 115
CLR-FCB 65 CNT 163 CODE 30,52,173,195 COL# 124
COLD 94 COMP 60 COMPARE 60,122 COMPILE 102
Compiler 98 CONTEXT 73 CONTEXT-T 195 CONTROL 10 6
CONVERT 84 CONVEY 23,145,147 CONVEY-COPY 144 COP Y 23,144,146
COUNTER 34 COUNTS 34 CREATE 167,198 CREATE-FILE 22,118
CR-IN 58,58 CURRENT 73 CURRENT-T 195 CURSOR 124

205

'CURSOR 124 D 23,129 D. 87 D.2 147
D.R 87 DARK 24 DARK 123 DEBNEXT 163
DEBUG 18 DEBUG 28 DEBUG 165 'DEBUG 163
Debugger 163 Decompiler 149 DEFAULT 117 DEFER 1 67
DEFER 199 DEFINE 120 DEFINED 78 DEFINITION-CLASS 155
DEFINITIONS 74 DEFINITIONS 201 DELETE 115 DELETE 122
DEL-IN 59 DIGIT 82 DIGIT? 198 DIR 118
DISCARD 69 DISK-ERROR 63 DL 26 DL 148
DLITERAL 103 DLN 148 DO 113 DO 187
DOCONSTANT 45 DOCREATE 44 DODEFER 46 DODOES 46
DOES? 151 DOES? 174 DOES-OP 174 DOES-SIZE 174
DONE 25 DONE 133 DONE? 96 DOS 10
DOS 115 DOS-ERR? 117 DOS-FCB 118 DOUBLE? 84
DOUSER-VARIABLE 45 DP 73 DPL 82 DP-T 192
DPUSH 43 DU 26 DU 148 DUMP 25
DUMP 147 DUMP 148 DX 131 DY 131
E 129 ED 24 ED 133 EDIT 24
EDIT 124 EDIT-AT 124 EDITING? 133 EDITOR 10
EDITOR 123 ELSE 113 ELSE 186 EMIT. 147
EMPTY-BUFFERS 72 END-CODE 30 END-CODE 52 END-COD E 174
END-CODE 196 ENTRY 166 EOS 125 EPSON 17
EPSON 157 ESC 184 ESC 193 ESTABLISH 144
EVEN 198 EXECUTE 43 EXECUTION-CLASS 152 EXIT 44
EXPECT 59 F 19,23,129 'F 196 'F+ 127
F83 1,35 FAIL 82 FAR 178 FCB 65
FCB1 65,115 FCB2 115 FILE 70 FILE: 119
FILE? 119 FILE-IO 67 FILE-READ 66 FILE-SIZE 117
FILE-WRITE 66 FIND 78 'FIND 126 FIND? 128
FIND-UNRESOLVED 200 FIRST 63 FLUSH 23,72 FNEXT 164
FOOTING 157 FORM-FEED 157 FORWARD 190 FORWARD: 194
FORWARD-CODE 194 FOUND 123 FROM 22,120 G 128
GET-ID 132 H: 201 HASH 76,195 HEADER 118,195
HERE 102,174 HERE-T 192 HIDDEN 10 HLD 82
HOLD 85 HOP 22,145 HOPPED 145 I 23,50,127
IBM 134 IBM-AT 134 IBM-BLOT 134 IBM-DARK 134
IBM--LINE 134 ID 125 ID-LEN 125 IF 113,186
IMMEDIATE 102,200 IN-BLOCK 71 IND 143 INDEX 17, 143
IN-FILE 70 IN-FORWARD 191 INITIAL 120 INIT-PR 1 7,157
IN-META 191 IN-RANGE 65 INSERT 122 'INSERT 125
INSTAL 133 INT 184 INT# 168 IN-TARGET 191
INTER 178 INTERPRET 95 IN-TRANSITION 191 IP 30
IP> 163 IS 19,198 J 23,50 JOIN 128
JUST 129 K 127 KEEP 127 KERNEL 35
KEY 57 KEY? 57 KT 129 L 17,23
L.ID 164 L/PAGE 157 LABEL 31,195 LARGEST 140
LAST-T 195 LATEST? 68 LEAVE 113 LENGTH 60
LIMIT 63 'LINE 124 -LINE 24,123 LINE# 124
LINK 167 LINK-BACKWARDS 194 LIST 13,23,142 LISTI NG 162
LITERAL 103 LMARGIN 140 LOAD 23,120 LOCAL 169
LOGO 157 Long string 61 LOOP 113 M 128
M?<MARK 193 M?<RESOLVE 193 M?>MARK 195 M?>RESOLV E 193
MAKE-CODE 194 MAKE-FILE 116 MAXREC# 65 MD 176
MEM, 177 META 190 MISSING 70 MODIFIED 125
Modularity 99 MORE 22,117 MOV 184 MOVE 60
MULTI 170 N 23 NEST 44 NEW 23,132
NEXT 31,43,187 NUMBER 85 NUMBER? 84 NUMERIC? 19 8
O 127 OFFSET 167 OK 120 ONLY 12
OP, 176 OPEN 16,120 OPEN-FILE 117 ORDER 13
OUT 149 P 23,127 PAGE 157 PARSE 91
PARSE-WORD 91 PAUSE 168 P-FOOTING 159 P-HEADING 159
P-IN 58 PLACE 90 PNEXT 164 PR 158
PR-FLUSH 160 PRINTING 167 PR-PAGE 160 PR-S-PAGE 160
PR-START 157 PR-STOP 158 PUNCT? 198 Q 19
QUERY 59 QUIT 94 R 129 R# 124
R/M 177 READ 116 READ-BLOCK 66 REC/BLK 63
RECORD# 65 REC-READ 66 RECREATE 195 REC-WRITE 6 6
REDISPLAY 131 REG 175 REG? 176 REGS 175
REPEAT 113,187 REPLACE 122 RES 164 RESET 115
RES-IN 58 RESOLVE 200 RESOLVED? 194 RESOLVES 20 0
RESTART 168 RESUME 165 RLOW 176 RMARGIN 140
RMID 176 ROOT 10 RP 30 RP0 167
RR, 177 RUN 95 S 129 S#) 30
S,-T 192 SAVE 118 SAVE-BUFFERS 23,71 SAVE-SYSTEM 34,118
SCAN 90 SCR#S 157 SEARCH 115,122 SEARCH0 115
SEE 14,155 SEG 184 SELECT 116 SET-DMA 65
SET-IO 66 SET-TASK 111 SHADOW 10,18 SHOW 18,161

206

SIGN 85 SINGLE 170 SIZE 176 SIZE, 177
SKIP 89 SLEEP 34,169 SLOW 164 SMART 134
SOURCE 89 SP 30 SP0 169 SPACE 57
SPACES 57 SPLIT 128 SPOOLER 34 SPOOL-THIS 34
STAMP 133 'START 124 STOP 170 STRING,-T 197
SWITCH 119,190 T 22,124 'T 196 T: 196
T; 196 TARGET 190 TARGET-CREATE 195 TARGET-ORIGI N 192
TASK: 171 TEST 185 TEXT? 158 THEN 113,186
THERE 192 THRU 26 TIB 59,88 'TIB 88
TILL 23,129 TO 145 TOP 124 TOS 169
TRACE 164 TRANSITION 190 TRIAD 142 TYPE 57
U 23, 128 U. 86 U.R 86 U/D 144
UD. 87 UD.R 87 UNBUG 164 UNNEST 44
'UNNEST 164 UNTIL 113,187 UP 45 UPC 60,121
UPDATE 23,69 UPPER 32,60 USER 10,167,190 VARIABL E 167,198,199
'VIDEO 126 VIEW 13,138 View field 136 VIEW# 65,136
VIEW> 137 VIEW-FILES 137 VIEWS 137 VOCABULARY 7 3,199
VOC-LINK 73 VOC-LINK-T 200 VOCS 10 W 30,127
W, 176 WAKE 34,169 WHERE 24,109 WHILE 113,187
WIDTH 195 WIPE 128 WMEM, 177 WORD 92
'WORD 92 WORDS 9,141 WR/SM 178 WRITE 116
WRITE-BLOCK 66 X 23,97,128 XCHG 184

	Inside F83
	Contents
	Figures
	Tables
	Part I. Introduction to F83 System
	1. The Heritage of F83
	1.1. The Root of F83
	1.2. Advancements in Forth-83 Standards
	1.3. Creators of the F83 Systems
	1.4. Features of F83 System

	2. Browsing F83 System
	2.1. Listing the Command Names
	2.2. Vocabualry
	2.3. Viewing Source Code of Command Definitions
	2.4. Shadow Screen Documentation
	2.5. Files in F83
	2.6. Printing Utility
	2.7. Debugger

	3. Using the F83 System
	3.1. Create Your Own File
	3.2. The Editor
	3.3. Loading and Testing Program
	3.4. Memory Dump
	3.5. Debugging Your Program
	3.6. The 8086 Assembler
	3.7. Multitasker
	3.8. Save A System Image
	3.9. The Metacompiler

	Part II. The Forth Kernel
	4. Interface to the Host Computer
	4.1. Virtual Forth Computer
	4.2. Forth Computer Hosted on 8086
	4.3. Inner Interpreters
	4.4. Interpreters for In-Line Data and Strings
	4.5. Interpreters for Control Structures

	5. The Forth Nucleus
	5.1. 8086 Assembly Language in Forth
	5.2. Code Definitions in Forth Nucleus
	5.3. Examples of Code Definitions

	6. Terminal Input and Output
	6.1. The BIOS I/O Calls to the Operating System
	6.2. Terminal Output Commands
	6.3. Interpreting Control Characters
	6.4. More Sophisticated Input Commands
	6.5. String Commands

	7. The Virtual Memory
	7.1. Mass Storage and Virtual Memory
	7.2. Disk Buffers
	7.3. The File Control Block (FCB)
	7.4. Read and Write Disk Files
	7.5. Disk Buffer Management
	7.6. Saving Disk Buffers to Disk Files

	8. Dictionary and Vocabulary
	8.1. Threading of the Dictionary
	8.2. Hashing and Searching the Dictionary

	9. Number Input and Output
	9.1. Representation of Numeric Data
	9.2. Input Number Conversion
	9.3. Output Number Conversion
	9.4. Double Integer Output

	10. Word Parsing
	10.1. Text Processing
	10.2. Input Stream and Input Buffers
	10.3. Low Level Parsing Commands
	10.4. High Level Parsing Commands
	10.5. String Commands Defined Using PARSE
	10.6. End of Buffer Condition

	11. Text Interpreter
	11.1. The Operating System of Forth
	11.2. Entering the Text Interpreter
	11.3. INTERPRET
	11.4. DONE? and X

	12. Compiler
	12.1. The Colon Definitions
	12.2. Colon and Semicolon
	12.3. The Compiler Loop
	12.4. Low Level Supporting Commands
	12.5. Immediate Commands

	13. Structures in Colon Definitions
	13.1. Compiler Directives
	13.2. Compiling Numeric Data Structures
	13.3. Compiling String Literals
	13.4. Compiling Control Structures
	13.5. Address Calculation for Control Structures
	13.6. Control Structure Compiler Directives

	Part III. Utilities in F83 System
	14. The MS-DOS Files
	14.1. CP/M-DOS File Primitive Commands
	14.2. The File Control Block
	14.3. High Level File Commands
	14.4. Save Core Image to a File
	14.5. Directory Accessing
	14.6. System Level File Commands

	15. Text Editor
	15.1. String Utility
	15.2. Terminal Dependent Deferred Commands
	15.3. The Cursor Commands
	15.4. Editing Buffers
	15.5. Line Editing Commands
	15.6. String Editor Commands
	15.7. Screen Editor
	15.8. The Screen Display Commands
	15.9. The Screen Editor Commands
	15.10. Configuring The Terminal

	16. Viewing Source Screens
	16.1. The View Field
	16.2. The View Files
	16.3. The Viewing Command

	17. WORDS
	17.1. Output Formatting Commands
	17.2. WORDS

	18. Disk File Utility
	18.1. Displaying Screens In a File
	18.2. Disk Buffers
	18.3. Single Block Copying
	18.4. Multiple Block Copying
	18.5. Multiple File Block Copying

	19. Memory Dump
	19.1. The Dumb DUMP
	19.2. The Smart DUMP

	20. Decompiler
	20.1. Positional Case Defining Command
	20.2. Associative Defining Command
	20.3. Decoding Different Classes Of Commands
	20.4. Sorting and Execution Tables
	20.5. Decompiling Different Command Classes
	20.6. Command Classification
	20.7. The Decompiler SEE

	21. Printing Utility
	21.1. Variables and Setup
	21.2. Print Two Screens Side By Side
	21.3. Print 6 Screens on a Page
	21.4. SHOW

	Part IV. 8086 Specific Utilities
	22. Debugger
	22.1. Low Level Supporting Commands
	22.2. High Level Trace Commands

	23. Multitasker
	23.1. Multitasking
	23.2. User Variables and the User Area
	23.3. Pause and Restart
	23.4. The Multitasker
	23.5. Task Definition
	23.6. Background Tasks

	24. 8086 Assembler
	24.1. Assembly Tools
	24.2. 8086 Register Definitions
	24.3. Addressing Mode Operators
	24.4. Defining Commands To Generate Opcodes
	24.5. Special Opcodes
	24.6. Structures in Code Commands

	25. Metacompiler
	25.1. Concept of Metacompilation
	25.2. Vocabularies for Metacompilation
	25.3. Accessing Memory In The Target System
	25.4. Branching Constructs
	25.5. Forward Reference
	25.6. Compiling New Commands to Target System
	25.7. Transition Compiler Directives
	25.8. Defining Words In Metacompiler
	25.9. User Variables
	25.10. Vocabulary
	25.11. Resolving Forward References
	25.12. Redefining Host Commands
	25.13. Running The Metacompiler

	Index

