
Total control
with LMI FORTH

For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 Interpreter/Compilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft Windows^"^

• Editor and assembler included

• Uses standard operating system files

• 500 page manual written in plain English

• Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler
• Unique table-driven multi-pass Forth compiler

• Compiles compact ROMable or disk-based applications

• Excellent error handling
• Produces headerless code, compiles from intermediate states, and

performs conditional compilation
• Cross-compiles to 8080, Z-80, 64180, 680X0 family, 80X86 family,

80X96/97 family, 8051/31 family, 6303, 6809, 68HC11
• No license fee or royalty for complied application

m/
' Laboratory Microsystems Incorporated

Post Office Box 10430, Marina Del Rey, CA 90295
Phone Credit Card Orders to (310) 306-7412

Fax (310) 301-0761

Definitions |
Institute for Ap;
70 Elmwood

Rochester, NY

t •';< >; >j\' j - DIGI i" 940
ANDF\EW MJK'bfiK
304 LAMf'LirL l-.iAY
REDWOOD CITY CA 94062-391?

The Extensible Languages Publication

JY

30

i

November/December 1993

SILICON COMPOSERS INC

The SC32 Line-Up

SC32^ 32 bit Forth Microprocessor
■ 8 or 10 MHz operation.
■ 1 -cycle Instruction execution.
■ Multiple Forth words per clock cycle.
■ Contiguous 16 GB data and 2 GB code space.
■ Stack depths limited only by available memory.

SBC32 (Single Board Computer32)
■ 64 KB to 512 KB 0-wait-state static RAM.

■ 100mm X 160mm Eurocard size board.

■ SC/Forth32 Forth-83 based system included.

PCS32 (Parallel Coprocessor System32)
■ Full-length PC/XT/AT plug-in board.
■ 64 KB to 1 MB 0-wait-state static RAM.

■ SG/Forth32 Forth-83 based system included.

DRAMI032 (DRAM, SCSI, Serial, Parallel)
■ Eurocard size, plugs into SBC32 or PCS32.
■ Holds up to 16MB on-board DRAM.
■ 16-bit parallel, 4 serial ports, time/date.
■ Interfaces up to 7 SCSI devices.
■ Software drivers in source code form.

FAD32 (A/D Converter, WatchDog Timer)
■ Eurocard size, plugs onto SBC32 or PCS32.
■ 16 channels, 12 msec, 12 bit plus sign A/D.
■ Voltage generation, wdog timer, proto area.
■ Software drivers in source code form.

655 W. Evelyn Ave #7, Mtn View, CA 94041 (415) 961-8778

——— Definitions 2 VoL 1 No. 2

November/December 1993

ENCODER PRODUCTS COMPANY

Synergy Plus - An Intelligent Distributed Control System

+ Hardware
Al01218-8 inputs, 2 outputs, 16 digital I/O, PID routine

DIG 1248 - 48 digital I/O, +5 vdc logic

CTR1224 - 2 high speed 24 bit counters, 16 digital I/O, 3 modes

SI01232-2 serial I/O, 16 digital I/O, RS-232/RS-485 options

ROM 1244 - Byte FIFO interface to IBM (Forth, Lotus, Windows)

* MCB 1290 - 2 axes of servo control, slaving, fractional ratioing
* MCB 1290 plugs directly to any baseboard module via SBX

All modules include SBX interface, Bitbus communications, Diagonostic LEOs,
Watchdog, and many more standard features

+ Software
Multlasking operating system (DCX pre-emptive)

Resident interactive programming kernel (Forth-83)

Resident development interface and editor

Disc-based library of application utilities

Floating point arithmetic

dynamic memory management

state language programming

message passing

object oriented programming

many more available for your unique application

Integration Services - Turn-Key Systems
System specification

System design

Programming

Installation

1601B Highway #2 • Sandpoint, ID 83864

Call 800-366-5412

SI

Definitions 27 VoL 1 No. 2

November/December 1993

VENDOR'S COLUMN

New 68HC11

Interactive Cross

Compiler
FORTH, Inc.

FORTH, Inc. announced a new release
of its chipFORTH interactive cross-compiler
for the Motorola 68HC11 family of
processors. Hie new release incudes extensive
optimizations and improvements, including
a 32-bit "big model" host to support large
target programs. chipFORTH is widely used
for instrumentation, process control,
industrial sensors and other applications.

Elzabeth Rather, President of FORTH,
Inc. notes:

Perhaps the best-known is Federal
Express' Supertracker, a hand-held device
used by over50,000FedEx agents world wide
as the primary ir^ut device for their award-
winning package tracking system.

chipFORTH allows an engineer to
interactively develop and test high-
performance embedded applications for the
68HC11 using an IBM PC as a host.
chipFORTH connects to the target 68HC11
through the chip's serial port to provide
interactive, incremental programming
without an in-circtiit emulator or other extra

hardware and software. The package includes
the pF/x multitasking executive and
polyFORTH development environment
running under MS-DOS on a PC host, plus
all the tools necessary to develop and test
applications for the target. These tools include
a high-level FORTH cross-compiler, cross-
assembler and a complete target nucleus with
hundred of primitives. All of these, plus the
pF/x executive are also supplied in source
form.

The runtime library includes integer and
fixed-point fraction math, which offers
floating point-like capability without the

speed penalty; string handling; clock and
calendar; and input and output number
conversion. chipFORTH utilities and
programming aids include a string and full
screen editors and PROM programming
support

The product includes a development
board that provides 8K each ROM and RAM
and dual RS232 ports. chipFORTH is
configured to download and run a test
application on this board; a simple procedure
is provided to let the user reconfigure
chipFORTH for custom hardware and target
ad^ess space. The 68HC11 chipFORTH
package is offered at $1,995. for software,
hardware, documentation and telephone hot
line support Versions of chipFORTH are also
available for the 8031/51,80x96, and 68xxx
families of microcontrollers.

For more information, please contact:

FORTH, Inc.
Ill N. Sepulveda Blvd.
Manhattan Beach, CA 90266
(800) 55-FORTH or 310 372-8493.

Dash, Find & Associates

Decniiting,
Consulting,
Tech Checks

r>\SH,FlND
ASSOCIATES

Cbntad. us ab

Dash, Find & Associates

70 Elmwood Avenue

Dochester, NY 14611

(716>235-0168 (vdoe)

(716>3286426 (fax)
720502111 @compuserve.coin

Definitions 26 Vol. 1 No. 2

Definitions November/December 1993
Definitions is published 6 times a year
Copyright ©1993, Lawrence P.G. Forsley
Call for permission to reproduce any material via pint or electronic format.

Table of Contents
Article Page

Call for Papers 4

What's Up 5

Observation: Factoring & Complexity 7

New Micros, Inc.: new 68HC16 board 10

33+ MHz Forth Processor 13

Postscript vs. Forth 15

Interview with Dr. Glen Haydon 19

Palaeography of Extensible Languages 21

Forth, C and C++ 24

New 68HC11 Interactive Cross Compiler 26

What is Forth technology?
How do I program my laser printer in PostScript?

What language really works for rapid prototyping?
How do I find consultants or programmers?
Who really understands hardware and software?
How can I make Microsoft Windows work for me?

What works in real time for embedded systems?

These and more questions
are answered in Definitions.

Subscribe Today!

Subscriptions are
$25/year in North America, and
$35/year outside North America

Definitions is distributed bimonthly by the
Institute for Applied Forth Research, Inc.,
70 Elmwood Avenue, Rochester, NY 14611.

Definitions is published and edited by
Lawrence P.G. Forsley. Circulation and
advertising is handled by Brenda J.G.
Forsley. Send inquires to us at that address,
or at our phone: (716) 235-0168.

Advertising in this issue

Advertiser Page

Dash, Find & Associates 26

Encoder Products, Inc inside back cover

FORTH, Inc. 18,26

Forth Institute 4,6

Laboratory Microsystems, Inc back cover

Microprocessor Engineering, Ltd 22

Mountain View Press 9,19

New Micros, Inc. 10

Offete Enterprises 12

Orion Instruments 23

Silicon Conposers, Inc inside front cover

VME,Inc 17

November/December 1993

1994

Rochester Forth Conference

on

Rapid Prototyping
June 22nd - 25th, 1994

at the

University of Rochester

Call for Papers

There is a call for papers on all aspects of Forth technology, Its application and
Implementation, but especially as relates to rapid prototyping. Rapid prototyping allows
fast tumaround from product conception through design Into manufacturing and through
maintenance; the complete product cycle. It has become Increasingly Important with
ever shortening product life cycles and design times. Interactive, extensible languages
offer the most potent, and cost effective, rapid prototyping tools available.

Other sessions will cover standards, related languages, applications and new
processors. Standards Include the ANS X3/J14 as well as up and coming standards like
Open Boot. Related languages Include Kelthley's ASYST and Adobe's PostScript.

Submit a 100 word abstract by April 15th and a final 5 page paper by June 1st. Type
should be no smaller than 8 point. Author's kits will be sent Indicating preferred fonnat.
Longer papers will be considered for submission to the refereed Journal of Forth
Application and Research.

The Conference

Vendor Exhibits

Training seminars, beginner through advanced
Poster sessions

Programming in PostScript
X3/J14 ANS Forth Standard

Forth vs. C vs. C++

Forth under Windows

Object oriented technologies
The fourteenth annual Rochester Forth Conference will be held at the University of

Rochester In Rochester, New York. Registration, training seminars and vendors lx)oths
will begin the afternoon of Wednesday, June 22nd. On campus housing Is available.
Attendance will be limited. Register eariy.

For More Information, contact:. Lawrence P. G. Forsley
Conference Chairman

Forth Institute

70 Elmwood Avenue

Rochester, NY 14611 USA
(716)-235-0168 • (716)-328-6426 fax
EMail: Genie L.Forsley

Internet 72050.2111@compuserve.com

Definitions 4 Vol. 1 No. 2

November/December 1993

with the same stack diagram. It was
suggested thatiypedPorth could be a higher
level subset of Forth allowing developers to
drop into low level Forth and use words
returning variable numbers of argiunents as
long as the end result was type safe.

Other safety issues were raised as well.
It was generally conceded that denying
programmers access to the internals made C
and C++ safer languages than Forth. In an
era where the developer is increasingly the
limiting factor, safety is more of an issue. It
was suggested that use of the retum stack
for DO LOOPs and intermediate storage
were inherently unsafe. A safer, higher level
Forth which denied access to the return stack

would help to discourage conunon errors. A
separate DO LOOP and local storage stacks
would allow the retum stack to be used by
source level debuggers. A case can be made
for a higher level Forth in which all variables
are named local variables and no stack

manipulation is allowed. As above, words in
this language can be written in low level
Forth with full access to the stack.

Memory management is another issue.
While the standard provides for the standard
C memory management words: malloc and
b'ee, these are in the optional word set.
Current Forth memory management using
ALLOT and FORGET is extremely limited
since the only way to free memory is to free
all memory allocated after a particular point
in the dictionary. In programs using dynamic
creation and destmction of objects, this
cripples any effective memory management.
In general it is unclear when or if memory
allocated fiom a system will be released. The
standard Forth scheme of allocating space
in the dictionary is useless in a system where
frequent memory allocation random release
are used.

There are ways that C and Forth could
co-exist in the same program. A hybrid
program might take advantage of the speed,
safety and close ties with the operating

system available with C while using the
interactive and extensible nature of Forth to

accomplish tasks that neither language could
achieve on their own. Currently there are
several versions of Forth implemented in C
where the Forth systems executes Forth
within a C shell which manages interaction
with the operating system. It as also
suggested that a Forth which understood the
mechanisms of dynamic linking could act
as an integrator for C routines available in
dynamic libraries.

Cooperative hybrid programs raise
several issues. Most important is who is in
charge? Does the C program use Forth for
well defined tasks while retaining control or
does Forth retain control but execute some

or most of its words as C routines?

Development of good hybrid systems require
progranuners familiar with the details of
implementing both C and Forth applications.
It will be a major challenge. It is clear that
the C community will not be interested in
exploring such solutions until the Forth
conununity demonstrates the utility of the
approach.

Several issues are raised in this

discussion relative to some of the basic tenets

of Forth. How important is it that words be
allowed to retum a variable number of

arguments? Could a Forth be built where all
arguments were accessed through local
variables? What would the effect of making
the dictionary dynamic so that words might
be randomly undeHned? This would be
possible in a tokenized Forth. What would
be the effect of making redefinition of a word
global rather than incremental?

In the third and concluding part of this
article we will look at systems where this
has been done, including hybrid Forth and
C systems.

' Excerpted from "Working Group on C and C++",
Proceedings of the 1992 Rochester Forth
Conference on Biomedical Applications, pp 113-
1 IS. Chaired by Dr. Kent Brothers and written by
Horace Simmons.

Definitions 25 VoL 1 No. 2

November/December 1993

Forth, C and C++^
This is part 2 of a 3 part article

examining Forth, C and C++

While C compilers can produce code
that is faster than Forth this was not seen as

a critical advantage. Very little of the code
in a large program is executed often enough
to make significant differences in speed.
Both C and Forth allow the developer to
optimize critical sections of their code. For
the vast majority of
large programs today's
processors provide Foi
adequate speed. In the
future, speed will
become even less of an

Forth

and

C
Part 2 of 3C has a well Parti

established and very
uniform collection of

libraries for many functions developers
might wish to perform. Because C and Unix
developed together, almost all C compilers
offer emulation of library functions available
under Unix. These functions include routines

for managing files, manipulating strings and
managing memory along with hundreds of
other functions. Individually, many of these
library routines would be simple for a
developer to code. Together they form a vast
array of working, tested functionality on
which the developer can rely. The C libraries
illustrate the down side of the common

characterization of Forth: 'The good news is
you can write anything you want; the bad
news is you have to". The new ANSI
standard proposes many of the C library
functions as optional routines. This is a step
in the right direction, but C programmers can
count on these libraries to be available on

any system. Development and publication
of code implementing a number of standard
library functions would be a major
contribution.

Another advantage of C++ and modem
C is the use of prototypes and local variables.
The most common errors in Forth involve

mismanagement of the stack. Such errors
come in two forms. First, programmers
misuse the stack by failure to adequately
track the location of items on the stack. A

Forth word might start out with A B C on
the stack. At some point later, the developer
believes that the stack holds: BAA whereas

in fact it holds B C A. or B A. A second,

more subtle error involves misunderstanding
not the location of items on the stack but

their type. Imagine the
■m effects on a program
.fl running on a 32 bit system
, if the programmer believes
I that a variable on the stack

is an address when it is a
number or the programmer

-y believes the stack holds a
number when it holds a 32
bit float. Errors of this type

were seen to represent a significant majority
of errors found in Forth code. In modem C
and Pascal programs such errors cannot
occur. Developers access the stack only
through named local variables and thus
cannot make errors in stack access. Function
prototypes causes the compiler to test the
type of variables passed to each function.
As a result, the compiler will catch errors in
argument type. These features mean that a
C compiler will catch most errors that a Forth
programmer will have to test at run time.

In a strongly typed Forth system, stack
comments would be active and typed. It
would require all words to supply the
compiler with a description of the number
and type of stack arguments. The compiler
would check to make sure that type and
number of arguments were preserved. This
system would require eliminating all words
which retum a variable number of arguments
such as ?DUP, substituting ?IF. It would also
require that all branched IF statements retum

Definitions 24 Vol. 1 No. 2

November/December 1993

What's Up?
Definitions is well on its way with its

second issue. Observation: Factoring and
Complexity looks at a different way of
programming, and thinking: even beyond
the bounds of object oriented programming.
We have three Vendor's Columns this issue:
one following Randy Dumse's latest
68HC16 based-board 2ANew Micros, Inc.,
an Interview with Dr. Glen Haydon,
Mountain View Press, and a third
regarding FORTH, Inc.'s
chipFORTH for the 68HC11. W
The continuing work at the W
John's Hopkins Applied
Physics Laboratory by Marty M
Fraeman, John Hayes and
others is documented in a ii+

MHz Forth Processor. Randy ^
Dumse ponders PostScript ^
Programming with an actual PostScript
program in Postscript vs. Forth. Dr. Nick
Solnsteff completes his series on the history
and background of extensible languages
with Palaeography of Extensible
Languages. Finally, Horace Simmons and
Dr. Kent Brothers continue their discussion
from last issue with Forth, C and C++.

The 1994 Rochester Forth Conference
is coming up in June at the University of
Rochester. This year's theme is Rapid
Prototyping. Anyone trying to bring a
product to market in the rapidly changing,
global market knows how important
shortened product life cycles have become.
Extensible languages, with resident,
interactive operating systems on embedded
products as well as interactive languages
under host operating systems provide a r^id
way to market.

For many of you this will be your last

issue, unless you subscribe now! In the next
issue we will look at Open Boot, interview
Chuck Moore and discuss his latest
microprocessor developed in conjunction
with Dr. Ting, continue PostScript
programming, observe Forth on Trial, watch
Forth in near space and more. If you have
comments, please write. If you are interested
in our Vendor's Column or Consultant's
Spotlight, call us. We're here to support you!

As editor of this publication I have
found that although we are primarily for the
extensible language community, we run right

along side hardware. This is unique and
important. There is a gradual

blending of the interface between
hardware and software, and no

V languages better support that
crucial inleiface than the exten-

^ sible languages. Defmitions is
proud to be in the forefront of a

powing technological wave. One
which will impact not only the realm

of electronics, but may effect every area
of human endeavor. Perhaps, with the right
push, we'll see software and hardware
replaced by smartware!

Join us!

Subscriptions are $25/year in North
America and $35./year outside North
America.

Address:

Payment: □ check

ACCT#

□ VISA

Expires

November/Dctsmber 1993

Journal of Forth Application
and Research (JFAR)

JFAR is the only refereed journal de
voted to Forth-like languages. Special
topic issues have included object oriented
programming and real-time expert sys
tems. Call for a complimentary copy!

JFAR Issue #1 #2 #3 #4

Volume 2

Volume 3

Volume 4

Volume 5

Q Q □
□ O □ □
□ o □ □
O □ Q □

□ = $15.00 , 0= $20.00 (ConfProc)

Full Sets:
Volume 1 □ S30.
Volume 2 (3 issues) □ $40. S'flveSS.
Volumes (4issues) □ $50, 5fjve$15.
Volume 4 (4 issues) □ $50. Save $15.
Volumes (4issues) □ $50. S'nveSlS.
Volumes 1-4 □ $170. Save $35.
Volumes 1-5 □ $220. Save $50.

JFAR Subscriptions:

Volume 6
□ $60.00 Individual, USA
□ S65.00 Individual, North America
□ $75.00 Individual, Europe/Asia
□ $145.00 Corporate, North America
□ $160.00 Corporate, Europe/Asia

Note: No additional shipping charges en
SubscriptiCHis.

Order Form:

Address:.

Phone Work;.
Home:
FAX:

Rochester Forth Conference
Proceedings

The international Rochester Forth Appli
cations Conference has been held at the
University of Rochester for the past 13
years and has been attended by as many
as 175 people from around the world.
Most Conference Proceedings consist of
long papers by invited speakers address
ing the Conference theme and as many as
50 shorter papers on all topics of Forth
application and implementation.

□ $25. \9^\Forth Standards
□ $25. \9^2 Databases & Process Control
□ S25. \9M Real Time Systems
□ S20. {Vo\.'iM2)\9%5 Software Productivity
□ $20. (Vol.4,#2)I986Rffl/rimcA/
□ $20. {\o\.SM)\9^1 CompArchitecture
□ $25. \9^% Prog Environments
□ $25. \9i9 Industrial Automation
□ $25. \99^ Embedded System
□ S30. \99\ Automated Instruments
□ $30. 1992 Biomedical Applications
□ S30. \993 Process Control (fall'93)

Set of any 4 or more Proceedings
Save SSJProc.. up to $60.!

□ $20.00 Forth Ref Bibliography, 3rd Ed
□ $25.00 1988 ASYST Conference Proc
□ 562.00 Slack Computers: the New Wave

By: Dr. Philip J. Koopman, Jr.
□ iso.QO Scientific Forth

By: Dr. Julian Noble(with software on disk)

Purchase Subtotal:
Shipping Subtotal:
($5./book,15 Max. North America)

Grand Total:
□ MC □ VISA □ Check
Card#
Expiration Date:

Institute for Applied Forth Research, Inc.
70 Elmwood Avenue
Rochester, NY 14611
(716)-235-0168 voice (716)-328-6426 fax
72050.21ll@compuserve.com email

Definitions 6 Vol. 1 No. 2

November/December 1993

the interpreter is distributed throughout the
object space! Data objects are instantiated by
means of defining words which are the
analogues of type identifiers in conventional
languages such as C or Pascal.

In common with other extensible
languages, there is no rigid distinction
between compile-time and run-lime phases.
As can be seen from Fig. 2, processing of
Forth statements can move arbitrarily from
one to the other and back again. The
symmetry of the diagram is very striking.

DEFINITION OF
NEW DEFINING WORDS

New data structures can be easily
defined in Forth with the help of the create
... doe$> mechanism. As there is no syntax to
consider and the semantics (the individualized
new part of the interpreter) can be specified
in terms of Forth itself, the data abstraction
mechanism is both very elegant and simple.

Forth programming thus entails the
creation of a language for the application

(building of objects to represent the problem
environment and the means to make them
perform as required) and this language
becomes the application.

The creation of new control structures

which proved to be a major stumbling block
in the case of extensible languages, can be
easily done in Forth using the standard word-
definition mechanism. It is only necessary to
make the new word immediate, i.e.,
executable even during the compilation phase.

CONCLUSION

Forth is an extensible language par
excellence and has found a niche in the
evolutionary schema of programming
languages. Like the coelacanth. it will
probably outlive a lot of its contemporaries!

— Nicholas Solntseff

McMaster University

(THE END)

' W.l. van der Poel and I. Maarsen (eds.). Machine
Oriented Higher Level Languages, North Holland
Publishing Co., (1974), 535 pp.

Orion 8800 Emulator/Analyzer

m

♦ open 32-hit protected mode Forth
operating systems

♦ Full-speed, zero-wait-slate enulaibn

♦ 64K rcal-lint trace without slopping the CPU

♦Clip-On Emilation^"^ forsoldcred-in processors

♦ Up to 2 Mbytes of enulalion memory

♦ Super-fast parallel interface (128K <2 sec)

♦ XRAY.XDB and Siemi Systems support

Call lodiiyfornvre litenmire and

adiforyourFRHEcopyofour t
>uw guide, "Real-Time

S, — ® Techniques".
=*= Tel: 1-800-729-7700

INSTRUMENTS Fax: 415-327-9881

Definitions 23 Vol. I No. 2

November/December 1993

Jword » aclioiiL

INTERPRET

COMPILING
WORD

IMMEDIATE

WORD

Figure 2. Forth's Compile/Interpret
Cycle.

nrbe

FORTH

Forth as a programming language has
all the features of an extensible system. In
this, it is aided by the complete lack of syntax
- a Forth program is a sequence of words
which are compiled into a (threaded)
sequence of procedure addresses (or code
addresses). The Forth symbol table or the
dictionary is available to the user at all times
which is one of the distinguishing features
of extensible languages.

The Forth code-address or "inner"

interpreter is very small and efficient as
threading leads to "direct" execution of
procedure code. In the case of some
architectures, the inner interpreter can be
coded into a single machine instruction!

What makes extensibility almost trivial
in Forth is that every data object carries its
own interpreter with it as every word contains
a field which contains the address of the code

that provides the semantics. In other words,

ProForth for WiTidows
• Handle Windows with ease

• Create a window in 4 lines of code
• Use Windows interactively

ProForth is a 32 bit Forth for Windows 3.1 and Windows NT ProForth provides an interactive
development and debugging environment for Windows applications Simple structured
definitions for GUI objects and dialog boxes makes programming Windows easy. Using
Ih-oForth, turnkey applications can be generated that can include the use of timers and
multitasking as required for real time development. Hardware floating point is also supported.
ProForth has a 700 page, comprehensive, step by step manual and a large number of source
code examples.

Forth Cross Compilers
Use your PC to edit and compile Forth source code, then download and debug it interactively
on a wide range of target processors.

Microprocessor Engineering Limited
133 Hill Lane. Southampton SOl 5AF England

Tel: +44 703 631441 Fax: +44 710 339691

Definitions 22 VoL I No. 2

November/December 1993

Factoring and
Complexity'

Imagine, if you will, a brick: a single
brick. Hold it in your mind's eye. Add a
second brick. What is its relationship to the
first? Add a third brick. Keep them all
equally in your mind's eye. How do you
arrange them? Add a fourth brick. Don't let
the edges become fuzzy. Keep your focus
on all four bricks equally. Has their
orientation changed as you've added the
fourth? Add a fifth brick. Are they becoming
harder to keep equally in
focus? Add a sixth brick.

orientation? Is your focus
shifting from one to ^
another? Are you losing --i;-- • j-'
the individuality of each ||
brick? Add a seventh if L'ij.'.'.j'vj ^ A't
brick. ' ?

Most people find this *' '
exercise difficult by five or six bricks,
regardless of how they arrange them. A
psychologist. Dr. Miller^, conjectured that
people can keep seven, plus or minus two,
independent objects in mind at the same
lime before they need to be categorized, or
chunked. At seven or so bricks, most of us

fall back on a brick wall, or a pile of bricks,
where any number of bricks can be
represented or queried individually, but we
can't have the bricks and their individuality
simultaneously.

This is how people naturally categorize
the world around them. This isn't how

programming languages are intended to be
used. nor. how code is organized. Programs
written in languages, like C and FORTRAN,
are thought of in tenns of lines or pages of
code. There is no correspondence between
how we organize items and the organization
most programming languages force upon us.

Forth is an exception. Most good Forth

code fits on a single line. Curiously, a line
holds five to nine words between the onset

of a colon definition and its ending
semicolon. There is a good impedance match
between human thinking and Forth's
organizational strategy.

Forth's interactiveness allows, even

demands, play. One can play with Forth
words. Our aliendon spans are limited, and
although the human mind is no longer
stretched by hours or days awaiting a
FORTRAN mainframe edit, compile, link
and test, even 30 seconds is loo long. Forth's
immediate responsiveness matches our

limited attention span.

Given the ability to
organize our thoughts in a
computer similar to how

we think, we can interact
with, and edit, our

, }i ' ' programs as if they were
• " thoughts.

li -r.: 1! I The French math

ematician, Descartes,

wrote a long letter to a friend, at the end of
which be apologized for having not had the
time to write a shorter letter. We rarely have
time to write a proper program, let alone the
luxury of rewriting one, save to fix bugs. Yet,
what is a program in Forth? A collection of
words: a collection we constantly name,
rename and rewrite. We give old words new
meaning.

Forth encourages the discipline of

rewriting, and gives us the tune to do so.

Dr. C.H. Ting pointed out that talk show
host Johnny Carson often had a pencil in his
hand. A pencil with an eraser on cither end.
As Ting noted, "the important part of a pencil
is the eraser".' What you take away is more
important than what you leave. Similarly, Dr.
Alan Furman stated the aphorism'':

To gain knowledge, add something
every day. To gain wisdom, remove

Definitions 7 Vol. 1 No. 2

November/December 1993

something every day.

^ith each rewriting our understanding
of our words grows before us as we hone
them further, like tools. With each honing
the tool becomes more precise, sharper, and
the code often smaller. Our knowledge of
our application gained by working with that
application becomes wisdom.

Dr. Kent Brothers, one of the authors

of VP-Planner, a successful, until legally
challenged, clone of Lotus 1-2-3, described
at the 1990 Rochester Forth Conference^
how they developed VP-Planner. He pointed
out that each time Lotus came out with a

new release, so would they. With each
release Lotus became larger. With each
release the code for VP-Planner got smaller.

The parameter stack is the primary
method of parameter passing in Forth. Dr.
Glen Haydon, author of All About Forth,
observed that the use of the stack for

unnamed parameters is akin to using
pronouns in English. An item's position on
the stack is but a place holder: its meaning
is determined by the context of the word,
much as the referent for a pronoun is found
in the context of a sentence. Similarly,
multiple pronouns and their indirection are
contusing in a sentence, just as stack depths
greater than three are unwieldy in Forth.

Few speak of reading computer
programs. We speak of writing, debugging,
documenting or maintaining code: but rarely
reading. We don't think of computer code
as for people: its for computers: but
computers don't think, people think.
Ultimately code is for people.

I have read a great deal of Forth code
during the past nineteen years, some of it
mine, but the majority written by others. I
have been often struck by the prograimner's
signature: not the one left by his or her
initials, but by the way in which their
thoughts are expressed: particularly in
Forth. Some write code which is very
monolithic. It consists of a few, large

definitions which do everything. Others
write code made up of small well-factored
pieces.

Charles Moore, the first discoverer of

Forth^ writes spare, well-honed code. His
definitions are rarely more than one line
long. His programs are rarely laiger than a
few pages^. Moore wrote a BASIC compiler"
in 1981, which was elaborated on by Michael
Perry.' Although it imposes a few
restrictions, such as separating keywords
with spaces and requiring integer arithmetic,

the BASIC compiler source is less
than 100 lines long and compiles to 1550
bytes.

This style is reminiscent of Haiku
poetry, where the constraints of form are as
artificial as Haiku itself, but as real as the

real time constraints the program must live
within.

Poetry isn't easy to read. It requires
work. Good poetry has subtlety, depth and
shades of meaning. Good Forth code has
subtlety and depth, although plays on words
may be lost on the in silico interpreter.

When I read Forth code I look at

structure/or structure. The first is form, the
second content. Form shows as tight or
rambling code, lengths of words, and naming
of expressions. Content appears as what the
code does, and how it does it. In Forth, Form
and Content are curiously intertwined. Is a
compiler directive or a defining word strictly
either? They are an example of Content
directing Form directing Content.

As with all good writing, good Forth
code shows clarity of thought through
lucidity of expression.

Einstein once observed, "Things
should be made as simple as possible, but
no simpler", which is to say just complex
enough. Several metrics for measuring
software complexity have been developed,
including Tom McCabe's cyclomatic metric
index, known as McCabe's Metric, which

Definitions 8 VoL 1 No. 2

November/December 1993

Palaeography of
Extensible Languages
(Part 2)
WHY DID EXTENSIBLE

LANGUAGES BECOME EXTINCT?

The development of extensible
languages was motivated by the desire of
their creators to avoid the large and
cumbersome programming languages such
as PL/1 which tried to provide in one package
all of the features of

Algol, Fortran, and

COBOL. The proponents
of extensible languages
pointed out that
generality easily slips
into inefficiency. To
overcome this ten

dency, they advocated
that expensive features
should be made avail

able only to those that
need them.

It is good to remember that a
programming-language designer cannot
foresee all of the potential users' needs.

Why did extensible languages die out?

There were many reasons for this, the
most important of which are:

• Language extension via a
theoretically sound metalanguage is a non-
trivial operation;

• Portability could not be achieved
because of the lack of a common platform;

• Well-designed programming
languages, such as Pascal, provided good
data-definition facilities;

• Machine-oriented languages' for
systems prograrruning provided access to
machine features.

"When I u

Lewis C

se a word/*
Humpty Dumpty said, in a

rather scornful tone,
"it means just what I chose
it to mean - neither more

nor less,**

SUCCESSES OF EXTENSIBLE

LANGUAGES

Although extensible languages died out
as a group, their significant influence on
subsequent programming-language design
cannot be overlooked. They provided the
prograiruning-language community with a
better understanding of

• macro processor mechanisms

• machine dependencies

• problems
associated with port
ability.

• abstract data

structures.

FAILURES OF

EXTENSIBLE

LANGUAGES

arrol (1896)

Through the Looking Glass and What Alice
Found There.

Attempts to

create a widely usable
extensible language
ended in failure for a

number of both experimental and theoretical
reasons. The three most important of these
are:

• Inability to provide user-level
extensibility;

• Inability to describe control-
structure extensibility;

• Total absence of compiler and
prog-ram exchange.

Programming-language theory was still
in its early stages of development in the late
sixties and this led to the first two failures.

At the same time, computing was totally
dependent on the main frame and the
programming language community was
divided into a number of camps that could
not exchange programs or systems. Hence,
the signal lack of portability.

Definitions 21 VoL I No. 2

November/December 1993

D: Ten us a little mwe about the WISCyi6.

Q: The WJSC/16 is about as simple as it can
be and still have the necessary functions
available. Everything is connected to a single
16-bit bus. The source and destination codes

are chosen before enabling the particular
functions. A 32-bit microcode is stored in
RAM. Two stacks of 512 words each are
included. The machine is 16-bit word

addressed. Software utilities allow a byte
swap within a 16-bit word. We have found
that wasting one bytefor ASCII characters is
a small price to pay for the added total space

This may
be your
last issue
if

you

haven't

already
subscribed!

Subscribe Now!
Next issue includes articles on:

More Postscript
Charles Moore and C.H.Ting's

P21 microprocessor
Forth under Microsoft Windows

Forth in Near Space
What's up with the Harris RTX

miaoprocessor

Practical Factoring
ASYST: A Scientific Software

System

FORTH on Trial

and more

available. The clock speed is derived from
the host. The limiting speed is the ALU chip,
the 74181. Everything is common TIL. The
total chip count is 84 dips of the 7400series
and no MSI. The WISC/16provides an ideal
tool to learn how to connect your processor
and application with Forth software as the
glue. Half or more of the WISC/16 sales are
overseas.

D: What else do you have to offer your
customers?

G: MVP is one of the few places where a
knowledgeable Forth user answers the phone.
I am the author of the latest edition of All
About Forth, which includes a functional
definition for 7 public domain
implementations arul the actual source code
for four implementations. The appendices in
All About Forth include the Installation

Manual, 79-Standard and 83-Standard
documents. The combiruition makes the book

an ideal general reference for all Forth users.

Soon after the ANS Forth Standard is
adopted, common fitnctions will be added to
All About Forth along with an
implementation. It will be a 32-bit model
using DPMI (DOS Protected Mode
Interface). This implementation has been used
to address as much as a 28 megabytes of
linear address space on a standard Intel
based system. The 64K and segment
considerations are no longer a problem.
There is minimal perceptible time penalty for
this implementatioru Mf/» the DPMI on the
Intel maclune one does not have to go to a
Motorola 68K or other processor to get a 32-
bit linear address space.

I am also aware of many fine
proprietary Forth implementations and can
put many of them into perspectivefor use with
your applications We welcome ir^uires. We
also offer technical typesetting arul other help
in preparing manuscripts, articles and books.

Glen can be readied: 1-(415) 747-0760 voice (if

he can get it in 4 rings) or voice mail, fax, and
BBS.

Definitions 20 VoL 1 No. 2

November/December 1993

measures control structures. Dr. Ibm Hand,
while a professor at Florida Institute of
Technology, took John Cassidy's assembler
written in Forth for the Intel 8080'®
microprocessor and applied McCabe's
metric. Hand noted that an 8080 assembler
written in Pascal or C typically has a value
far larger than 50, wha*eas:

Cassady's assembler has a rrtetric of
0: there were no control structures.

Hand found if he applied other
conventional measures of complexiQr, such
as the number of vaiietles, Cassady's
assembler still had a metric of 0.

An assembler written in Forth has no
complexity!

Forth allows us to write programs with
no complexity: yet they still get the job done.

When I was teaching at the University
of Rochester I told my students the best code
was no code. If there was no code, there was

nothing to write, nothing to debug, nothing
to document, nothing to maintain. Though
they complained, I maintained that if they
solved the problem before them without
code they woujd get an A; but for the
meantime they could approach it
asymptotically.

How is this possible in Forth? The key
is proper problem factoring and using
Forth's inherent properties: the text or outer
interpreter for parsing and organizing items
in a dictionary; the stack for parameter
passing; and, most importantly, defining and
compiling words to create structures which
make structures.

The best code, is no code!

—^L. P. G. Forsley

' This article is based upon a presentation by
Lawrence P. G. Forsley, "Rhyme, Reason and the
Tao of F(*th", Proc. of the 1992 Rochester Ibrth
Conference on Biotnedical Applications, pp. 34-
40.

^ Miller, G. Psychology of Communication: Seven
Essays, Basic Books, New York: 1967.

^ G.H. ling in the question period following the
talk on "Rhyme, Reason and the Tao of FiHth".

* Alan Furman in the same question period.

' K. M. Brothers, "The F(^ System Behind VP-
Planner: Designing fw Efficiency in the Face of
Complexity", Proc. of the 1990 Rodtester Forth
Conference on Embedded Systems, pp 5-12.

* Moore, €., "FORTH: A New Way to Program a
Minicomputer" Journal of Astronomy and
Astrophysics, Supplement 15:1974. pp. 497-511.

^ Personal conversation with Charles Moore on

December 2,1993. He noted that one exception
was a was a laige database package he wrote while
at FORTH, Inc.

' Moore, C., "ft-ogramming a BASIC Compiler
in FORTH", 1981 FORMLPROC, Vol 2, Forth
Interest Group, San Jose, CA.: 1981. pp 513-519.

' Perry, M., "Charles Moore's BASIC Compiler
Revisited", FbrthDimensians,V(A III No. 6, Forth
Interest Group, San Jose, CA.: 1982. pp 175-178.

'®Hand, T, "Software Metrics for Falh", Proc. of
the 1988 Rochester Forth Conference on
Programming Environments, pp. 67-68.

THE FORTH SOURCE

Hardware & Software

MOUNTAIN VIEW

PRESS

Glen B. Haydon, M.D.
Route 2 Box 429

La Honda, CA 94020

(415)747-0760

Definitions 9 VoL 1 No. 2

November/DocL'mber iyy3

New Micros, Inc.
New Micros has released ils first

revision 68HCI6 board, the NMIX-0()26.

The NMlX-()()26 is a highly featured CPU
board in the NMI Eurocard board series.

The NMIX-()026 has hardware feature of the

68()()() single-chip computers while
maintaining some software compatibility
with earlier 68HC1 1 designs. The 68HC16
CPU is (largely) source compatible with the
•HCI I. The -HClb is a 16-bit CPU while

the'HCl l is an 8-bit design.

Software throughput is enhanced, not
only by the wider data-path, but also by the
higher clock speeds, up to 16.78 MHz
operation from 32 KHz osc. Address and
data space arc also larger in the "HCI 6. Each
can be as large as I Megabyte.

The "HCIb chip also provides
Programmable Chip Selects, which were not
available on the 'HCI I (at least the original
68HC11A8 and Ey variants). The Watchdog
Timer and Cl(x:k Monitor features have been

supplemented with a Bus Monitor as well.

Like the 'HCI I. the 'HCI6 has 8 A/D

channels. However, the 'HCI6 offers 8 or

10 bit accuracy. The 'HCI6 has the same
compliment of serial channels as the 'HCI 1:
one Asynchronous Serial channel and one
Synchronous Serial Channel. Twice as many
free running 16-bit timers are in the newer
chip. The Input Captures. Output Compare
and Pulse Accumulators arc provided in the
same quantity on both chips. Two Pulse
Width Modulated outputs are provided on
the 'HClb. These make possible a "tow
cost" D/A-like output. Many applications
with slow response limes will see this signal
as an analog level. A simple filler can be
used to "round off the edges" for systems
with faster responses. A host of parallel lines
are also available on the new part. Since the
'HCI 6 is packaged in a 132-pin PQFP. many
more connection points are available which
could not be accommodated on the original
•HCI I 52-pin PLCC.

The NMIX-0()26 has a small I"x3.5''

prototype area on the end of the

100x160mm Eurocard format. Connectors

and interface circuitry can be added there.
This is about half the prototyping area which
was available on the NM!X-0()21. 'HCI I

based boards. The larger processor socket
and additional memory requirements
required enlarging the active component
area of the board.

The NMlX-0026 still maintains a good
deal of compatibility with the New Micros
NMITand NMIS series computers. The 32-
pin JEDEC memory sockets have the same
pinouts on all versions, and the jumpers for
the sockets are the same as found on other

boards with 32-pin sockets.

Definitions 10 Vol. / No. 2

November/December 199.1

Interview with Dr.

Glen Haydon

Mountain View Press

I caught Glen Haydon. owner of
Mountain View Press on a late October

moming. I interviewed him at his Shangri-
La West, overlooking the Pacific ocean
while he was resting in his hot tub. Over
the years Glen has built a glass and redwood
home at the end of a long dirt
road in the hills behind p—
Stanford University. All j

Jon Ross, the first pp
managing editor of the Joumal ^
of Forth Applications and AnAnnoi
Research, lived with Glen for oiti

several years while working
on his MBA. During this time
he used his considerable

construction skills on Glen's Thi

home. BEvisfi

All A

REVISED

uml uppliciiiions. Wefi'nturc rhc MVP Forth
iinplcinciilaiioii ik'si^ncdfor bci-iiiiu'r.s. The
MVP Forth kernel has hecii stable since

I9S.I. Some more recent applications have
been added in the current distribution. We

also handle books from otherpublishers and
a number of other implementations: FPC.
Jifi-Forth. eForth from Tin}'. Py^my from
Sarf>ent. Yerkes {which is a public domain
version of Neonfor the Macintosh) and Rick
vanNorman's 32-hit F32. These

implementations and others are available on
our bulletin hoard. We use the simple
Procomm bulletin hoard software. Contact

us for more information.

bout

FORTH
An Annotated Glossary

bout

 AND UPDATE

Glen's formal training
was in physics, biology and
medicine. He has experience
in programming and hardware design. He
is also an amateur astronomer with a 12 inch

reflector telescope under a converted grain
silo dome. He usually answers the phone
himself and can handle inquiries in both
English and German.

Mountain View Press, known simply
as MVP. has been around for over 12 years.

Glen took it over from Roy Martens about
3 years ago and made it a division of his
cotnpany. Epsilon Lyra. WISCTechnologies
and Haydon Enterprises are also division
of Epsilon Lyra.

D: What does MVP do'?

G: We publish and sell hardcopy
documentation for Forth implementations

D: What about hardware?

ITH 0: We di'itrihute the WISC
Technolo\>v products. The

idGiossary wiSC/16 'is available in

several forms including

printed circuit boards. The
WISC/32 is available with

the Harris chip on a single
board for evaluation. We

^UPOATK) y,„yJ paieuts de.signs.

The WISCII6 is a good
leaching tool.

D: WhoisusingtheWISC?

G: Several .schools are using the WISC/16
in their undergraduate and graduate

engineering clas.ses. Some have bought the
bar circuit boards and populated them while
other have bought the a.s.sembled and tested

boards. A few people have found wire
wrapping their own boards rewarding. It
usually lakes 20 to 30 hours to wire wrap.
By adding hardwarefunctions one at a time,
eachfunction can be tested as you progre.ss.
The basic Forth concept of factoring and
testing each function is done in hardware.

We use a PC as a host for the development
hardware and use a little bit of glue to allow
the ho.si to acce.ss a single central bus. All
functions arc accessed from the central bus.

Definitions

November/December 1993

From NASA space systems
to package tracking for
Federal Express...

chipFORTH
...gives you maximum
performance, total control for
embedded s^plications!

' Total control of size

and content.

> Configurable for custom hardware.

> Fast— compiles and downloads
entire jprogram in seconds.

• Includes all target source, extensive
documentation.

> Full 32-bit host, interactive
development from any
DOS-based PC.

Go with the system the pros
use... Call us today!

FORTH, Inc
111 N. Sepuiveda Blvd. #300

Manhattan Beach, OA 90266

1-800-55-FORTH

there was a good chance the path might be
too complicated for some PostScript
versions. In the end I settled for moving it
outside the repeat. I simply stroked the
whole path at once. (Once for horizontal
lines, once for vertical.) I saw no quick
means of changing the structure which
would leave such an easily understandable
example intact

The first printed page (which was not
solid white) was almost solid black. At that
time I had not added the setllnewidth

command. I initially set it to .01, which was
a very 6ne line. Later I decided .1 was more
aesthetically pleasing. When the line width
was handled, I focused on the problem of
the page being only 2/3's drawn. I had
reversed the order on the X and Y inputs to
the rlineto and rmoveto commands.

Finally, I had used .1 setgray and had
very dark lines. I changed the command to
S setgray and achieved the desired results.

For someone regularly using
PostScript, with an interactive environment,
the whole procedure should have only taken
10 minutes. Such is the nature of

pmgramming, it is not for the faint hearted
or those without the necessary tools at hand.

In the next issue, I will discuss a few
better development tools operations, and
where these tools can be obtained.

—^R. Dumse

Definitions 18 VoL 1 No. 2

November/Decendwr 1993

Since the memory map of the 'HC16
is 16-bit, the minimum conHguration of
sockets would require four, two for RAM
and two for ROM. Four 32-pin JEDEC
memory sockets are provided on the board.
Any 28-32-pin JEDEC device can be used
in any sockets. In fact, 1 Megabytes of
Pseudo Static RAMs (PSRAM) can be
installed in the two RAM sockets, each with
512 Kbytes.

The previous 8-bit boards had three
memory sockets by design. Hiis allowed one
RAM for variable storage, etc.; one ROM
for language monitor or operating system;
and one open socket intended for the target
code. This could be RAM during
development and then EPROMed for
production. The three sockets Et neatly on
the chosen Eurocard format.

This is not possible with the 'HC16 and
its 16-bit memory access. The power supply
section of our previous designs was deleted
to make room for four sockets. This allows

two 8-bit RAMs and two 8-bit ROMs to be

present in memory at one time. The
increased size of the usable memories,

however, may relieve some of this lack of
sockets, as a large, battery-backed RAM can
simulate both program space and data space.
The programmable chip selects make
moving memory devices possible without
actually moving them from their sockets.

A new scheme was needed for the bus

expansion cards. The old 34-pin Vertical
Stacking Connectors (VSC-34) so familiar
on the 8-bit cards was expanded to a 60-pin
JEDSTACK Vertical Stacking Connector
(VSC-60). It was done in such a way 8-bit
peripherals will still work in the lower 34
pins of the VSC-60, yet new memory cards
can be added which will take advantage of
the entire 16-bit data-bus and address bus.

Previously, the best sellers in the New
Micros series of single board computes have

been boards based on the 8-bit F68HC11.

As mentioned, the 68HC16 is a faster, 16-
bit version of the popular 68HC11. The
transition from 8-bit to 16-bit was not a

smooth one. This was not an easy board for
NMI to make. Uiey had plarmed to come
out with it much earlier, but the greatest part
of the delay turned out to be something
beyond their control.

Randy Dumse, president of New
Micros, Inc. found:

Die prototype house who made our fast
turn protoboards made several defective
PCB's in a row. We spent valuable resources
trying to figure out why the design didn't
work. Die software never seemed "to boot".
However, it turned out the PCB was full of
shorts.

Shorts on the data-bus caused the chip
to go into odd operating modes on power-
up. It was a ticklish problem to isolate, since
the board is seldom questioned Erst Finally,
the software development continued without
the prototype hardware using a Motorola
EVM boaM. A close implementation of the
F68HC11 MAX-FORTH was ported to the
•HC16.

The lead spacing on the 132-pin PQFP
is .05" and is made for surface mount

attachment. NMI found a socket made by
AMP which allows several-time replacement
of the IC despite the delicate leads.
Successful insertion and removal should be

possible about 20 times. Although this is far
less than other devices, it is better than
having a Single Board Computer in which
the CPU could never be removed.

The biggest problem with the design
was accorrunodating the chip selects. On-
chip progranunable chip-selects should
make the ultiihate in flexibility. For the most
part this is true. Unfortunately, the
architecture, had one drawback: mixed 8-bit
and 16-bit selects. There are no provisions

Definitions 11 VoL 1 No. 2

November/December 1993

for priority with the internal chip selects. An
8-bit access occurring at the same memory
location as a 16-bit access, causes a full 16
bit transfer. Since the board can cany the iiill
addressable space of 2M RAM, if the chip
selects are set for full access to memory, there
is no space in the memory map.not covered
by a 16-bit access chip select. Therefore,
addressing S-bit peripherals is also difficult

As Randy points out

The design assumption made by NMI
was that anyone willing to pay the cost
differential to step up from the 'HCll to the
'HC16 needed additional processing speed

Processing speed was preserved by
adopting a 16-bit bus despite die problem of
overwriting "paired" bytes on 8-bit
operations. This was fixed in software for
NMI's 'HC16 FORTH and will be in

hardware on a second generation of the board
which will use 8-bit chip-selects. All memory
will be accessed as 8-bit wMch will remove

boundary access and single byte write

Offete Enterprises
Highlights
eForth and Zen

C.H.Tmg, $15

The First Course

C.H.Ting, $25

The Forth Course,

Richard H. Haskell, $25

Forth Notebook Vols 1 & 2,

C.H.rmg, $25
More on Forth Engines
VoL 1-17, $15. each

ePORTH discs $25

8086/PC, 8051, PIC17C42,

Transputer and others

Offete Enterprises
1306 South B Street

San Mateo, CA 94402
(415) 574-8250

problems. The 16-bit bus speed will be
maintained for on-boundary accesses, by
having two 8-bit memory accesses in parallel.
Although this will use two more of the
processor chip select pins otherwise available
for the user, it preserves performance.

In addition, the programmable chip
selects don't easily allow fiill access to the
2M space. Since the 'HC16 does not have 24
address lines, but its 68000oriented hardware
does, the upper address lines were "faked"
by copying the top address line the •HC16
does have. Unfortunately, this means the
largest possible chip select is half-a-Meg.
FORTH tests which half of 1 Meg memory
space is being accessed and automatically
adjusts the chip select

Randy notes:

There is still more to be learned by chip
manufacturers about combining hardware
with software. These chip selects prove that.
While well thought out, not every possible use
is obvious.

Versions of the board are also planned,
which will accommodate the new 68HC16

parts, such as the MC68HC16Y1 with the
Time Processing Unit (TPU). The
MC68HC16Y1 comes in a 160-pin PQFP.
Hie TPU is a small "co-processor" which
manages additional timers. The RAM in the
MC68HC16Y1 can be used as emulation

control stores to develop new "micro-code"
for the TPU. Developing a FORTH interface
to maximize this unique feature of this part is
a challenge, yet to be realized. Still, the
development of this new line of processors
continues at NMI, having far reaching
consequences for future 16 and 32-bit boards
from the company.

Next issue we will talk to NMI about

their newly proposed Easy-A Multidrop
Protocol standard.

For More Information:

New Micros, Inc.

1601 Chalk HUl Road

Dallas, TX 75212-3804
(214) 339-2204

Definitions 12 VoL 1 No. 2

November/December 1993

output. I wrote the text in an editor and
downloaded it to the printer. I was "blind"
to any en-or messages. I tried to change from
the parallel port to the serial port, so I could
see the error messages. The last time I did
that was on an NEC890 printer, but now I
use an NEC95 printer. The setup was
different, and I decided it would take half
an hour to figure out the "secret" difference
which alluded me on the first try. In the end
I settled for the tried and true, trial and error
method of debugging. This method will
always produce results - slowly - but
faithfully

My first indication of a problem was
when the download ended with a

"WAITING" message on the printer fiunt
panel, followed by a several minute delayed
return to "READY PS". There was no

output. A rereading of all the commands used
did not reveal any anomalies. By
conunenting out essentially all the program
(using %) except the showpage at the end.

I was able to spit out a blank page. Good.
That proved the transfer method through the
parallel port was working. Next, individual
lines were uncommented and clean pages
were occasionally received. This produced
about 6 pages of blank paper. To my surprise,
the code I most suspected was giving no
problem. The simplest code was the
problem. The procedure being passed to the
repeat command would not interpret
without error. Originally, I had a stroke
command in the repeat loop between the
rlineto and the rmoveto. Only one path was
to be generated at a time. It turns out, since
stroke uses up the path, it essentially
eradicates the current point, so the rmoveto
did not know where the starting point was.
This error prevented output

It is not a good idea to let the paths
become too complicated in PostScript I used
the stroke in the procedure to be sure the
path was only one segment long. By
removing it outside the repeat phrase, I felt

15 MIPS

HARRIS RTX 2000

SINGLE BOARD

SOLUTIONS

VMEbus Master 128kb RAM/ROM, Dual RS-232, 20MB/sec 16 bit
Parallel Port, 6 Mb/sec VMEbus

PC/AT Master Up to 768Kb RAM/ROM, RS-232 & RS-485, Keyboard
Port, Direct access to PC/AT Peripheral Boards

Credit Card size SBC 128kb RAM/ROM, 1.25M baud Async Serial,
Power Monitor, Watchdog Timer.

538A Valley Way Milpitas, CA 95035
(408)946-3833

Definitions 17 Vol 1 No. 2

November/December 1993

after the scaling. Making the line width 1/10"
of the quadrille cell size was an arbitrary
choice. For a sharper line on the page, a
smaller line width can be chosen, according
to the minimum resolution of the printer
being used.

With these preliminaries out of the way,
the actual lines can be drawn. PostScript has
some of the feel of the old turtle graphics.
To establish a first position and origin. 0 0
moveto can be used.

From this known position, lines can be
traced out in relative position. The moveto
command uses absolute coordinates. There

are also a whole set of relative commands.

The rlineto command uses the current

position and the supplied x and y values to
calculate a new position, relative to the first.
In turde graphics terms, the pen is down
during this move. There is a noticeable
relationship between the turtle graphics
approach and the operation of PostScript.
The rlineto describes a path, but does not
actually draw any "dark bits" in the buffer
being readied for the paper. This will be done
by the stroke command after the path is
described. The PostScript "turtle" only
draws potential for color, not the actual color
itself.

After the rlineto command, a return to

the next line's position is used. It is important
not to create a path with this move, which
would be darkened with the stroke. The

command to do this is rmoveto. It is the

relative counterpart to the absolute moveto
command. In this case, the rmoveto both

reposidons the "turtle" back to the left of
the screen and moves one-unit-step up the
page. In turde graphics tenns, the pen is up
in this move.

The repeat command takes two
parameters, a count and a procedure. The 45
horizontal lines on the page can be added to
the path using repeat.

Finally, the stroke turns the path into

drawn lines in the memory image which will
be the dark traces on the paper. As
mentioned, this is a different step from the
turde graphics concepts. The path created
with rlineto (or a host of other drawing
commands available in PostScript) need
either to be stroked or filled before the bits

in the output buffer are set dark (according
to the setgray level). Stroking traces the path
with a line whose width is controlled by
setlinewidth. In this case, the paths are
meant to be stroked with the stroke

command.

The same procedure is used to set the
vertical rules. Finally, after the drawing is
done, the original graphic state is restored,
with the grestore command, and the output
buffer transferred to the paper in the printing
process with the showpage command.

Tbe complete program follows:

^ve

.9 setgray
18 18 scale

.1 setlinewidth

0 0 moveto

45 { 36 0 rlineto -36 1 rmoveto } repeat
stroke

0 0 moveto

37 { 0 44 rlineto 1 -44 rmoveto } repeat
stroke

grestore

showpage

Well, was it worth the effort? This
program took about an hour to write and an
hour and a half to debug. It's really
questionable if it wouldn't have been better
to get the straightedge out and do the work
by hand. Why did it take two and a half
hours? First, since I don't program in
PostScript very often, 1 had to look up almost
every command. For instance, I couldn't
remember which end of the gray scale .1
setgrey produced. I thought it would be very
light and it was actually very dark.

The second reason is that I didn't have

an on screen viewer for the PostScript

Definitions 16 VoL 1 No. 2

November/December 1993

33+ MHz Forth

Processor
Native Forth instruction set processors

provide a high level language with efficient
instruction execution, For example, complex
instruction set computers, CISC, like the
Motorola 680(X), take tens of clock cycles/
instruction. Even reduced instruction set

computers, RISC, like the SUN SPARC,
average one or two clock cycles/instruction.
By comparison, multiple Forth instructions
can be executed per clock cycle, some
reporting an average of 1.5 instructions/clock
cycle!

The Johns Hopkins FRISC3 was
licensed by Silicon Composers and is
commercially available as the SC32. FRISC3
was produced in 1987, and first silicon was
available in 1988. It is a 32 bit

Forth processor, with single
cycle subroutine calls and the
ability to embed the
subroutine return in some

operations giving a free
subroutine return. It has two

on chip stack buffers, each of
which is 16 elements deep
with overflow into memory.
Considerable simulation of Forth Programs
show that a register bank of 16 is optimal.
Dynamic studies of stack nesting depth by
Koopman' and Hayes* indicate that the
execution, or return stack, rarely exceeds a
depth of 16.

Marty Fraeman and John Hayes of the
John Hopkins Applied Physics Laboratory
have been using the Chipcrafter silicon
compiler (now known as EPOCH) from
Cascade Design Automation of Seattle,
Washington to develop a new version of the
SC32, referred to here as the FRISC4. It will
be like the SC32, with similar instruction set
but a higher level of integration. Silicon
Composers will fabricate the part for their
customers and the Applied Physics
Laboratory.

The FRISC 4 instruction set includes a

DOES> instruction, which is a data
subroutine call which pushes the return
address on the parameter stack in one cycle.
There are four branch instructions including
DOES> and subroutine call. This is a byte
addressed machine, with load and store byte
instructions.

There is better math support including
a barrel shifter and a leading zero counter for
floating point normalization and image
compression. For example, one lossy
algorithm does log compression and saves the
exponent. There is better hardware for
multiply and divide. Since a multiply can be
done 2 bits/clock, a 32 x 32 multiply with a
64 bit product will take 16 clock cycles. The
divide step is 1 bit/clock, or 32 clock cycles
for a full register divide of 64 bits by 32.

In modifying the original
architecture, John Hayes
noted:

BiiiSSP To first order, the 16 deep
stacks capture most data
accesses.The stackbuffers got
us down to 1 cycle/instruction.
But, you now have a memory
access problem, where you

access memory every processor cycle. Our
Forth program measurements show 10%
of the memory accesses are data and no
programs had greater than 20% data
accesses. Writes are rarer (a few percent)
This is old information but we 're exploiting
it now.

Forth programs run in simulation
showed combined instruction/data caches

were better than instruction only caches.
Currently there is an instruction data cache
of 4 kbytes. For all of the benchmaiks there
was a hit rate of over 90%, although we
prefer to use an effective cycle lime
measurement which takes into account the

miss penalty and hit ratio.

Cache could be a big win in space
because there are very few space-rated

Definitions 13 VoL 1 No. 2

November/December 1993

memory parts. For example, United
Technologies Microelectronics Corporation
(UTMC) seUs 55 nsec 32K x 8, radiation
hard memoriesi However, the FRISC4 on-

chip cache is at least twice as fast as the
external memory part, and may use less
power.

Processor cost is partly a function of
die size. The larger the die size, the lower
the yield, and the higher the cost. The
FRISC4 die will be smaUer than the SC32

die which is about 10 mm on a side. There

may be a cache-less version for both
radiation hard and commercial versions of

the processor.

John also wanted an interface which

required less "glue" logic and could take
advantage of many memory families. A real
simple system could he built without
additional chips. Ihis is especially important
in space, and other applications, which put
a premium on power consumption. He
designed a programmable bus interface
where:

I divided the 4 gigabyte address space
into 16 regions. Each region has a
programmable number of wait states, with
a 6 bit register per region. There is a very
shallow, write bi^er32 bits wide and 1 word
deep.

The new processor has the ability to
boot from an external byte wide inteiface
(the SC32 needs a 32 bit wide EPROM).
There is a programmable on-chip inteirupt
controller, responding to edge, or level
inputs, with at least 6 external and 2 internal
interrupts. It includes an on chip UART with
a progranunable baud rate, 1 start, 8 data and
1 stop bit. This additional functionality
requires extra pins. Whereas the SC32 is
available in an 84 pin package, the FRISC4
will require at least 144 pins in a square
package

The processor core was finished in
September 1992 and was executing

programs on a simulator. The interrupt
controller, byte wide boot, bus interface, 4
kbyte direct map cache and a UART have
been designed and implemented. Error
correcting code (ECC) hardware has been
added on chip which can detect double bit
and detect and correct single bit errors. This
feature is enabled or disabled in software.

When used, 7 additional memory bits are
required. Marty Fraeman points out'

There will be minimal impact on
performance since we 're usually running out
ofcache.

The ECC was inspired by radiation
problems encountered with the Freja satellite,
(see Forth in Space, Volume 1, No. I). John
notes that there is a potential conflict in:

simultaneously designing a fast
commercial processor while building a low
power space processor. However, both like
rich features, except ECC, which is less
important on the ground.

Also under consideration is a dual

counter timer and a parallel port

It is expected that FRISC4 will see
silicon by the middle of 1994. The p-ocessor
will be implemented in .7 micron silicon.
Simulation shows that a 33 MHz clock rate

is possible. As John notes:

somewhere on the curve we ought to
get 40 MHz parts.

For more information contact

Dr. George Nicol
Silicon Composers
655 W. Evelyn Ave#7
MtnView,CA 94041

(415)-961-8778

* Knx^man, P., Steuk Computers: the new wave,
John Wiley and Sons: 1989. pp 139-144.

^ Hayes, J. and Lee, S., "The Architecture of the
SC32 Forth Engine", Journal of Forth Application
and Research, Vol 5 No 4:1989. p 504.

Definitions 14 VoL 1 No. 2

November/December 1993

PostScript vs. Forth
Imagine you are working late one night

and go to your drawer for some quadrille
paper and there is none. There's none in the
supply cabinet, either. You are faced with the
dileiruna, give up on the deadline, or, get out
the straightedge and eversharp and carefully
hand make your own ruled paper. Now the
former is not career enhancing, and the later
requires several hours of tedium. But wait!
There's that PostScript printer on the
network. Why not program it to make what
you need. Will that be faster? Well, it's worth
a shot

wait there's another way. Why not make 1/
4" the new unit-of-measure. TTie PostScript
operator scale can set the coordinate system
to any desired size. So the command 1818
scale would cause a unity graphic step to be
represented as a 1/4" step. Hence, an 8.5 x
11" sheet becomes a matrix of integer tracks
ranging from 0,0 in the lower left to 36,44
in the uppo* right comer.

Last time we

compared PostScript to
Forth and found there

were many similarities,
both superficial and
fundamental in the two

stack-oriented, extensible
languages. Both
PostScript and Forth
defining words were
shown in action. In this

issue a real code example
will he given. In a column
this short, it is not practical
to teach the whole

language, so words will be used and
explained as necessary, but not in the
sequential and thoroughly complete manner
that might appear in a text book.

Before using the scale operator, the
graphics condition of the machine should be
saved in its pristine condition. This is to
ensure the following pages come out in
regular size, without concern for the context
of the previous use of the printer. The

command to save the

graphic state is gsave.

The line to he used to

draw the rules should not

be at 100% intensity. The
setgray command can
select the appropriate
intensity so the lines will
not ovapower the writing
yet to come (the lines you
want to draw on the

paper). Intensity of the
drawing can range from 0
to 1. The lower the value

the blacker the drawing.
The default setting is 0, for black. In the
example it is set to a light level of .9 by the

I
command, .9 se^ray.

Referring to the PostScript Reference
manual, you discover the default unit of
measure in PostScript is the "point". A
"point"? What's that? Well, in typography
it's the unit of choice for describing text sized
things. Oh, like point sizes in fonts? Yes,
that's it exactly. How many points to the
inch? A point is (close enough for almost all
purposes) 1/72 of an inch.

The scaling is accomplished next by the
previously described 18 18 scale.

If the quadrille is to be 1/4" spacings,
there would be 18 points between lines. But

Left on its own, the width of the line

drawn is determined by the default line width
setting of 1. Before the scale, this was 1
point. After the scale, it is 1/4". This setting
of the line width is not acceptable. The entire
paper would be blackened. There would he
no white space between the thick, 1/4" lines
placed every 1/4". The setlinewidth
conunand is used to narrow down the line

Definitions 15 Vol 1 No. 2

