THInG -~ An Interactive and Extensible FORTH Compliler

¥igus D, Veil

Abstract

The FORTH programming approach has been acclaimed as an effective
productivity tool mainly due to its interactiveness and extensi-
bility. However, the advent of native-code compilers for the other
languages has resulted in guite unfavourable FORTH runtime bench-
mark comparisons. The Threaded High-level Interactive nanc-Compiler
(THINC) system has been implemented as an attempt to alleviate this
shortcoming while maintaining all the productive features of FORTH.

Introduction

To get a processor to solve computing tasks the gap between the
abstract deseription of that task and the processor hardware must
be “bridged” by a programming language and its compiler. The
easier the use of the language and the petter it utilises the
processor's hardware, the more efficient the processor will solve
the given computing task.

The FORTH language has made two significant contributions {11 to
the ease of programming: Interactiveness allows the user to imme-
diately see and check the results of the programmed command se-
gquences. Extensibility allows the user unlimited extending of the
available language, thus expanding it UP to match the programming
task rather than deviding the problem DOWN to the level of the key-
words. It is obvious that this approach will inherently lead to a
richer language, more reusable code and higher productivity.

Human communication would be very inefficient if limited to less
than 168 keywords!

At the hardware end of this “bridge” compilers recently available
for other languages (Pascal, C, etc) generate quite fast and com-
pact machine code. FORTH however has traditionally generated a
pseudocode in the form of vindirect threaded code (ITC)” i.e.

1iasts of addresses indirectly referencing the machine-code to
execute the required function [2]. At run-time these address

1ists are then executed by a software "inner interpreter” [31
While this allows any function to be called with & mere 2 bytes
on a B8-bit processor, it does result in a substantial degradation
of run-time speed.

To improve FORTH's run-time speed it has been suggested to replace
ITC with “direct threaded code (DTIC)" (4] Some FORTH vendors have
implemented “subroutine threaded code (STCY 151 which generates
iiste of subroutine calls thus replacing the software inner inter-
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prater with the processor's hardware JSBE-RET mechanism To achisve
faster run-time behaviour, highly processor-dependant approaches
have been taken (6l

It has alsc been suggested to use & second set of FORTH keywords
to allow the programmer to generate in-line machine-ocode in time-
critical parts of the program (7] I8l It has even besn suggested
to do a straight macro expansion for each FORTH word (9] [181

A gquite different approach has been made possible with the advent
of native FORTH chips. These provide the hardware to execute most
of the basic FORTH keywords in one or two clockcoyeles without the
intermediate steps of machine-code and micro-code [11)] Thig allows
a proceszor throughput exceeding 8 million FORTH instructions per
second! However, it is expected that the majority of systems will
still have to utilise the more conventional processors.

The THInC Concept

The THInC approcach to generating machine-code is essentially
different: Each FORTH keyword is in essence a small but highly
specialised compiler ("nano-Compiler”) that producezs the optimal
machine code to effect the function of that particular keyword.
The invocation of a keyword/compiler could compile some in-line
code, a8 subroutine call or no code at all ~ possibly effecting a
change of the compiler status only. The system consists of a
multitude of these "nano-Compilers” which each handle the code
generation for one traditional FORTH keyword. In true FORTH style
this allows the full power of the language to be used for code
generation while still maintaining enocugh system simplicity to
enable the user to understand, maintain and extend the compiler.

The structure of each nano-Compiler, which is identical for most
of the keywords, is inherently generalised and processorindepen-
dant. This allows further nano-Compilers to be added to the lan-
guage just like FORTH allows additional commands to be delined.
This results in an open and extensible FORTH compiler. This alsoc
allows an effortless implementation of THInC for any processor.

Most importantly, the THInC system is not a “post-processor” or
“code optimiser” but is a fully live interactive and extensible
FORTH programming environment,

The gensrated code can be for the host processor Mprogramming
environment®) or for a different processor ("cross-compiler®).

Implementation

The THInC system iz based on the concept of a two-stack machine;
each stack controlling one of the two basic domains of & pro-
cessor: data and instructions. It is interesting to note that
about the same time as efforis were made to put the first real
two-stack three-bus processor into silicon this concept surfaced
during work on very early versions of THInC [12]L If possible,
the top values of both stacks are held in processor registers.
This results in significant speed improvements.
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W¥hen a keyword is invoked, its "nano-Compiler” actively generates
code to effect the action of that word This is fundamentaily
different to FORTH were the machine-code belonging to a keyvword
is exwecuted or an indirect pointer to it is compiled. The code
compiled by THInC depends on the context the keyword is used in.
The addition function "+" iz a good examples of nano-Compiler
“intelligence™:

If it is requested to sdd two values assumed on the stack, it
could compile something like "(SP) fce ADD SP INC 8P INC® to
add the top of the dats-stack theld in Acc) to the second value
on the data-stack (pointed to by 3P and then adjusting SP.

If the nano-Compiler detects that the top value iz s literal (ie
1234 +%) it could compile *1234 Ace ADI” to immediately add 1234
to the Accumulator. However, if this literal was found to he "1°
it might be more efficient to compile: "Acc INCYT If the literal
was 8, which could happen if it is hidden in a constant changed
maybe for different software versions, no code would be generated
at all Similarly, a multiplication by 1 would produce no code,
while "2 *" would compile "fcc SHL”. This “strength reduction®
relieves the THInC programmer of having to replace "2 *" with
“2%" to optimise execution speed. Even if the "2* were hidden in
a constant, THInC would optimise just the same,

If both parameters of the addition were literals, the sum would be
computed at compile-time with no code generated at all. This “con-
stant folding” relieves the THInC programmer of tricks like *...

[ constanti 6 * constant2 / ] LITERAL .." to prevent these cal-
culations from being done at run-time.

These and other optimisation techniques reduce the code overhead
to less than 28% over hand-assembled unstructured code and achisve
a four- to six~-fold speed increase over indirect threaded FORTH.

THInC is written in THInC so that although more computation takes
place at compile time, the compilation speed is not degraded.

Other Features of THInC

In line with THInC's philosophy of giving the user as much pro-
gramming assistance as possible, numerocus error detection facili-

ties are provided:

A&s in FORTH, mismatched or incomplete conditional structures are
reported.

The pairing of ">R" and "R>" keywords is alsc checked to prevent
program crashes due to imbalance of the return-stack.

The code of a definition is matched against its stack comment to
detect any data-stack inconsistancies, a common programming error.

The user can control the system's reaction to detected compiling
errors by setting the error-mode to either "abort®, "warn" or
*ignore”,
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At the szame time & number of FORTH's restrictions were able to be
lifted:

Conditional constructe can now be used outside definitions. Even
if they are spread across several lines, execution is deferprsd
until the construct iz complete,

Alszo, conditional compilation is simply achieved by preceding
the usual conditionals with a literal value, e.qg.:

TRUE CONSTANT mode ..
mode IF ... ELSE ... THEN ..

The code within the "“BELSE" clause is then not compiled.

To allow the programmer to access processor-speciflic resources,
each THInC implementation has a number of nonstandard highlevel

words, e.49.:

*int-on®, "int-of f* to control CPY interrupts;
*T-@%, "T=, ete. to access a microcontroller's timer,
“init:* marks the start of the program (similar to "mainy” in Cl

The objective is to enable high-level access to all processor
resources, This provides the programmer with full control over
the processor without having to revert to assembly language.
THinC applications have been written without the use of a single
line of assembly code, This even applied to the notoriocusly
timecritical and difficult to debug interrupt routines.

Other features include an on-line screen-editor, a status line
displaying the dats-stack, vocabulary and other useful system
information.

Application Experience

To date THInC has been completely implemented for the 188 (THInCs@:
and B8848-family (THInC48) processors, the choice having been dic-
tated by applications on hand rather than preference,

THInCBE is fully interactive system for the I88 processor. 4 gpecial
effort went into efficiently simulating a second push/pull stack,

THInC48 is & cross-compiler as the 8848 processor {amily has sepa-
rate code and data spaces [13] and therefore cannot be run inter-
actively. It appears that THInC is the first high-level language
to be available for this processor family. It asllowed the software
for a dual 8749-based medical cardiac monitoring product to be
rewritten in record time while providing more user functions and
exceptional ease of code maintenance,

The THInC (Threaded High-level Interactive nano-Compiler) system is
hased on the same successful interactive and extensible user inter-
face as FORTH, This eliminates programmer retraining and allows well-
behaved programs to be ported without modifications.

First Australian Forth Symposium




Future Developments

Versions for the 68886, 8851-family and 8886/PC are currently un-
der development,

Further extensions of the THInC system may see data-type checking
and the avtomatic conversion of date-types.

Conclusion

4 code generating system has been presented that combines the
acclaimed FORTH programming approach with the generation of highly
optimised machine code. This combination could indeed prove a

better “bridge" between the computing task and the processor hard-
ware, thus resulting in higher programmer and system productivity.

It is thinkable that the efficient code generation and the availa-
bility of full processor control through processor-specific functions
may render it superflucus and inefficient to revert to the use of
assembly language when programming in THInC.

In contrast to traditional compilers THInC is user extensible in
true FORTH style. THInC was not only developed to provide faster
FORTH run-time execution, but also to allow the user to understand,
maintain and modify a compiler.

Just as FORTH brought interactivity, modularity and extensibility
to programming language design, THInC may bring these features to
native-code compiler design,
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Before | begin the paper, I'd like to give a brief background to my career as
an electronic engineer. | worked in a research position at the University from
which | graduated (U.W.A.) for six years and in 1982 | went freelance, finding work
mostly in the music industry before attaining the position of chief engineerin a
local electronic engineering company. It was in that position that | first used FORTH
in an industrial control application.

Three years ago | formed Jarrah Computers as a consulting
microprocessor engineering company and | have used FORTH as a key element
in the planning and development of the company. Jarrah Computers has
specialised in the development of custom designed industrial micro controliers -
from the 68705 family of single chip controllers to education systems and large
industrial control systems based on the Rockwell 65F11 - the 6502
implementation of a single chip FORTH.

FORTH has been used as the preferred development language for all of
these applications and has provided Jarrah Computers with a consistent
software environment for the wide range of development projects which it has
undertaken. ‘

The benefits to an engineering company of using FORTH in this way are
numerous. We have found that software routines developed when writing code for
one of the hardware systems can be used in many other places on different
machines. This has meant that all contract work, custom developments and
in-house developments have added to the Jarrah Computers pool of software
utilities. If, during the development of a program, a way is seen to optimise or
generalise the code of a Jarrah software module then it can be incorporated
into the library of software utilities almost immediately.

In this paper | shall discuss some specific uses to which Jarrah Computers
has put FORTH, namely the syntaxes surrounding the use of execution arrays
and our development of a system for the coding of time based events.

As the themes of this Symposium are FORTH as a productivity tool and
the impact of the NOVIX chips, | will address the productivity issue as an
introduction to the body of my paper and will conclude the paper with a
discussion of the impact and possible applications of the NOVIX.
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FORTH AS A PRODUCTIVITY TOOL

The business of writing software can be summed up as:

Writing the text which can be sent to a compiler which uses that text to
produce the desired program.

The choice of a language is largely the choice of which "high-level” text
phrases you prefer to write. The "power" of a high level language is measured in
terms of the ratio of the amount of code compiled to the number of language words

invoked to produce that code.

For example, languages such as BASIC, C, and Pascal provide compiling
facilities which allow the programmer to pass multiple arguments within complex
expressions, define field types, define sets (with automatic checking included) and
so on. These facilities are designed to produce greater programmer
productivity and FORTH is often criticised in this respect - that functions normally
expected of the compilers of other languages are not provided in FORTH.

However, FORTH has a facility that allows it to overcome the apparent
limitations of the simplicity of its own compiler - the Compiling and Defining
words. These words allow the programmer to create entirely new compiling
facilities and new high level syntaxes.

The compiling facilities of FORTH can be even more powerful than those
of high level languages because they can be tailored to the task at hand. In
FORTH, one uses the idea that a few compiling words are as much a part of the
application as the actual compiled code. The irony of the promise of high level
languages is that one ends up fitting the desired compiling facilities into those
provided in the language - the "power” features can often be a hindrance and are
sometimes irrelevant to the task.

When examining the question of software productivity, it is important to
remember that the business of creating software literally means writing
software. Software is a form of literature and much of the work is similar to the work
of writers of literature - sitting at a desk (or word processing terminal), thinking and
writing. And the productivity issue gets down to the faster the software can be
written, the more productive the system. This means that not only must the
program design and the management be efficient, but equally important the
physical act
of writing it down must not be too cumbersome.

Through the Compiling and further through the Defining words, the writer is
provided with an unparalleled opportunity to control what actually needs to be
written. If you write a compiling utility which allows you, for the rest of the
application, to describe things in a few words rather than a few paragraphs, there
is an enormous increase in productivity. Not only are the editing sessions easier,
all aspects of the writing process are simpler - the document is smaller, printouts
are easier to scan etc.
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The trade-off, in the productivity issue, between FORTH and other languages
is that in FORTH, all utilities must be developed, whereas with other languages
many utilities are provided as part of the purchased package. To decide
whether FORTH will provide productivity benefits in a particular application is
a difficult assessment, but in general FORTH is most productive in a development
environment where the tools required may not even exist yet, let alone be
available in some off-the-shelf package.

For instance if one is developing a data base application, a pre-written
package will allow you to start writing the application immediately. With
FORTH, a set of primitives which perform the file interfacing, menu generation,
query handiing etc. would have to be developed. An experienced FORTH
programmer, who had developed these tools, would be in a similar, if not better,
position than the package user, because they not only have the functions needed,
but those functions can be easily tailored to the specific job. FORTH is like a
financial investment - it may require a large contribution of time and effort at the
beginning, but the dividends will continue for some time.

My approach to writing software is what | refer to as "syntax driven”
programming, where the desired syntax (the "what-you-want-to-write-later” ) is used
as the basis of the design and implementation of the software, and | have found
it to be effective. Syntax driven programming has manifold benefits both
in technical execution and in project management.

Technically, it forces the words to have a consistent use, long before they are
written. Various different applications of sets of the words can be ftried to see if the
planned syntax is correct and that words work in different contexts. Through
refinement, the syntax becomes the data flow diagram, the module specification
and the implementation schedule all in one. From a project management point of
view, each member of the development team is aware of the overall system (as
there are always only a few words at the heart of a system) and benefits flow from
their interchanges.

The approach also leads to many good programming habits, principally
good naming and information hiding. An example of good naming syntax is with
my experience of finding a name for a word which changes the current file of a
resident DOS.

My first response to the name was "SET-CURRENT-FILE-TO", which I then
shortened to "SET-CURRENT-FILE" and then to "SET-FILE". Only when |
discovered the preferred name, which is USING, did | realise why it was better -
it's better in the overall syntax. In fact, it CREATES a syniax. To demonstrate the
advantages of USING, the problem with SET-FILE is that it is ambiguous as it
could work in two different contexis, either

(handle-parameters-on-stack) SET-FILE
or SET-FILE MYFILE

whereas USING MYFILE
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is never ambiguous because one tends to think the phrase
"USING MYFILE".

information hiding almost naturally develops out of syntax driven
programming because names come first and the specification of the named
words comes later. | have taken an example of the benefit of this information
hiding from a program which had to decide whether to move a vent. The
phrase | conceived was something like:

RANGE OUTSIDE-OF IF MOVE.VENT THEN

read as "If you're OUTSIDE-OF the RANGE of temperatures which is allowed at the
moment, then MOVE-VENT. The argument plan was:

RANGE  would push values,

OUTSIDE-OF would test these against the current temperature and set a flag for
the IF clause if movement was required.

IE MOVE-VENT THEN conditionally performs the action.

After implementation it turned out that all RANGE did was C@ twice -to
fetch the upper and lower limits. | almost dropped it as a definition at this point.

Later, it transpired that the algorithm needed further sophistication and
RANGE turned out to be the word which could provide the necessary extension.
RANGE was then developed as aword to fetch two numbers from a complex
number array, using a very complex calculation to even work out the index into
the array. During the development of this word, no integration difficulties were
experienced because during and after the changes RANGE always returned
two numbers on the stack. All of the words which expected RANGESs output
worked after the change as before.

This late (and very complex) change would not have been so easy if { had
dropped the original definition of RANGE - if | had not "hidden” the information
from the system behind the definition.

The software | will outline in this paper has all been developed using this
syntax driven approach. From the beginning of my experience of writing menu
interfaces for industrial controllers, | knew | wanted to write something like

THIS.MENU DOES (unrestricted FORTH )

(and its) KEYS (unrestricted FORTH )

to describe the operation of each menu. And | didn't want to have to remember
numbers associated with each menu, or set up execution arrays. That syntax
was ALL | wanted to write! Nine FORTH screens later, | had the syntax at my
disposal. Similarly in the timing system, the impetus was 1o declare time periods as
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SMINS or 26 SECS or 2HRS

and have words like AFTER and FOR which followed them. Again, [didn't want to
have to worry about where the current time (for this or that process) was being
stored, how time information was passed around and so on. And again, another
ten screens later it was implemented. This is how FORTH can truly increase
productivity.
EXECUTION ARRAYS
Execution arrays use vectored execution, which refers to the technique of

storing the address of a routine in a VARIABLE. To run the routine, the content
of the VARIABLE is fetched and executed. In FORTH this requires the phrase:

VARIABLE-NAME @ EXECUTE

Execution arrays are a set of vectored execution points, collected together
in an array. The ARRAY-NAME points to the base of the array, so to execute the
nTH element of an array we use the phrase:

2% ARRAY-NAME + @ EXECUTE (n -— )

| have found the word @EXEC useful in executing vectors in such arrays. It
expects the index into the array and the array base address on the stack and
executes that element of the named array.

- @EXEC (NA-— )
SWAP 2 % + @ EXECUTE ;

The address stored in the VARIABLE (or array) points to the beginning of the
CODE (the run-time colon code) of a FORTH word. To create and use execution
arrays requires the programmer to explicitly find out the addresses of the words
which are to be inserted into the array and store them into the correct locations
in the array.

This can be done with the phrase

" NAME-OF-ROUTINE Index-of-array 2 % ARRAY-NAME + |
This phrase must be repeated for each entry in the array.

For the Jarrah systems (logging and menu generation) | have developed
syntaxes which automatically perform the work involved in stuffing the
addresses of the executable Colon definitions into the arrays. The syntax
involves two steps:

1. Naming the loggers/menus.

2. Defining the operation of each logger/menu.

Both the menu system aﬁd the logging system have two functions each -
the menus have a display action and a keyboard response action, and the logging
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system has the log action and the display action. Accordingly two arrays are set up
for each.

Logging arrays: 'LOGS and 'SHOW
Menus arrays: 'DOES and 'KEYS

These names are always analogous to the keywords used to define the
functions and use a naming convention proposed by Leo Brodie in "Thinking
FORTH" - the ™" is short for "address-of".

The logging system syntaxes developed as follows. Firstly, for the logging
actions, the aim was to have a syntax of the form

TYPE-OF-LOGGER LOG
(for example AVETEMP LOG or SENSORS LOG etc.)
and secondly, for displaying data out of the log, the desired syntax was
(ADDRESS WITHIN LOG) SHOW

| decided to trial the system presuming that the TYPE-OF-LOGGER word
would simply push a number. This means that the word LOG must be the point of
vectored execution (using the 'LOGS array) - it uses the number pushed onto the
stack by the name and does the specific logging action for that name. As the log
type will itself be logged (so SHOW knows how to display the logged data), LOG
must be something like:

LOG
DUP LOGC,
( common logging )
'LOGS @EXEC ( specific part of logging )
{ common work after logging )

Common logging actions are, for example, log the time, date etc. and the
common work after logging is adjusting pointers, testing for wrap-around etc.

(This is another benefit of the execution array - that any generic code needed
in any of these words (setting up a menu or performing the key handler or the
logging or showing part of a logger) can be included in the definitions of the
vectored execution words.)

Moving on to how SHOW must work, it has an address on the stack when it
runs, so it must fetch the type byte out of the log and use it to execute the display
action for that particular logger. So it again must be the point of vectored
execution (using the 'SHOW array), and must be something like:

: SHOW
LOGC@
( common showing )
‘SHOW @EXEC ( specific part of showing )
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Having decided that this was a workable design for the names of each log
(i.e. to simply push a type number onto the stack), the design of the naming
process is aimost trivial. A temporary VARIABLE is used to hold the next logger (or
menu) name number. Each time a new functional is defined, a CONSTANT of the
value of the contents of the VARIABLE is created and the VARIABLE is incremented.
For the logging system, the word LOGGERS: puts a zero into the variable and LOG:
is the name creating word. This is how the naming process looks in its final form.

LOGGERS:
LOG: AVETEMP LOG: CONTROLSTATUS LOG: SENSORS

;LOGGERS

The next question was how are the logging and showing actions for each
logger to be specified, and their addresses inserted into the correct entries in the

relevant arrays. Again the desired syntax was something like

NAME LOGS: (standard FORTH)
SHOW: (standard FORTH) ;

Having proceeded this far with the syntax, | could deduce what LOGS: and
SHOW: as words must do. LOGS: must

1.  Fetch HERE and store it into the current index in the 'LOGS array.

2.  Compile the run-time colon code.
3. Setthe FORTH machine into the compile state.

and SHOW: must

1. Compile the run-time semi-colon code (to end the LOGS: definition)
2. Fetch HERE and store it into the current index in the 'SHOW array.
3. Compile the run-time colon code.

These words are now well enough specified to be written. Note that their
specification has been arrived at by following the course of what they MUST do to
make the SYNTAX work. Note also that using such a system, no headers except
those used for the names of the menus are generated.
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The following example shows the system in its completed form.

CONTROLSTATUS
LOGS: CONTROLSTATE C@ LOGC,
ERRORTEMP C@ LOGC,
SHOW: LOGC@®@ CASE
0 OF " Control Monitor” ENDOF
4 OF " Heat Monitor" ENDOF
50F ."Heater ON" ENDOF
6 OF " Heater OFF" ENDOF

8 OF “VENT ."ing" "STARTED ENDOF
10 OF ."VENT ."ilation " "CYCLE ENDOF
CASEND
LOGC®@ .ERRORTEMP )

And finally, to perform the logging, all that is needed is
CONTROLSTATUS LOG  AVETEMP LOG  etc.
The menu system followed a similar development, although it was much

more complicated as number handling was included as a part of the automatic
processing, and here is an example of it in its final form.

MENUS: ,
MENU: MAIN MENU: PROGRAM MENU: CONTROL
MENU: MANUAL  MENU: EDIT.CYCLE MENU: SET.TIME
‘MENUS

PROGRAM MENU

DOES: CLS  LN1.DATE.TIME
LN2 .* 1> Time 2> Cycle 3> Control"

KEYS: CASE "{" OF SET.TIME ENDOF
"2" OF EDIT.CYCLE ENDOF
3" OF CONTROL ENDOF
"P" OF MAIN ENDOF
CASEND >MENU ;

This concludes the explanation of the syntaxes which Jarrah Computers has
developed to facilitate the use of execution arrays. | think this compiling utility is a
good example of the FORTH-as-investment idea which | mentioned before. 1t
took considerable work to develop the system, so the "productivity” was low
during this phase.

Now that it has been developed, however, Jarrah Computers can write a
menu structure within hours of the design being completed - in fact the system
has been evolved so that programmers can sit down with the menu designs in
front of them and key the menu code in straight from the specification. The
boring (and therefore error prone) editing sessions and index tables needed to
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code the menus without the aid of the system can be discarded and programmer
productivity is now higher than was ever possible before.

its harder to assess the increase in productivity which flowed from the
development of the syntax for logging, because | never coded logs in any other
way - this was my first solution. lts simple to use, easy to modify and occupies
less than 800 bytes of code space.

TIME BASED OPERATIONS IN FORTH

The Timing system starts with what have been dubbed the TIME VARIABLEs
(TVs) - named SECS MINS HRS and DAYS. These words push indexes onto
the stack - they are numeric names for each of the time-period entities. The
implementation of the Time Variables depend on what is being used as the
basis for the timing (usually either a Real-Time-Clock or an interrupt), so
their implementation will vary, but they always push a number onto the
stack. The TVs may range from being the names of standard FORTH
VARIABLES to being offsets into an array (similar to FORTHs USER VARIABLES).

Subsequent to the definition of the Time Variables, a word called @TIME is
then defined which expects a Time Variable on the stack and returns its current
value. This word has obvious application and it also aids the transportability of the
system as it provides a level of information hiding. It is usually a small stub - for
example, in the two applications | have implemented, @TIME was defined as
C@ or @RTC respectively.

| have found it useful to define the words:

: @SECS SECS @TIME ;
: @MINS MINS @TIME ;
: @HRS HRS @TIME ;

as they are used so often it saves space and also they are more readable.

The next word in the lexicon is NEW, which expects a TV, along with a
previous value of the same TV on the stack. It returns both the new value of the TV
and a flag on top of it indicating if the value was different (i.e. if there is a NEW
value). NEW is therefore the first word which detects time based events - it
compares two different values of a single Time Variable and produces a flag
which represents information about time.

NEW ( nTV-—-n'Flag )
(Flag Trueifn'not=n)

Note that NEW can be run continuously and will only return a true flag the
first time it detects a new value of the TV. As NEW returns a flag, it is designed to
be followed with a conditional branch in syntaxes such as

(.. @SECS...)

and then SECS NEW IF ... ELSE ..... THEN 9 )
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and @HRS
BEGIN PAUSE .......... HRS NEW UNTIL (DROP)

The PAUSE after BEGIN is the multitasking link word which ensures that
other tasks will run while the above process is waiting to terminate. The
multitasking system used is a FORTH convention (if not standard), and the only
word which is overtly used in the Timing lexicon is PAUSE, which stops the
current task, proceeds through the round-robin of other tasks and finally
returns to the task in which the PAUSE was located. Some understanding of
how multitasking works is necessary to understanding the application (if not
the coding) of the Timing system.

The Time Variables, @TIME and NEW are enough to implement time
based regimes of operation. For instance, in the outer loop of a task where it is
desired to perform an action every second (called EACH-SEC), the invocation is

: TASKSETUP TASK-NAME ACTIVATE
@SECS
BEGIN SECS NEW IF EACH-SEC THEN PAUSE AGAIN ;

Note that the current (or last) value of seconds is always on the stack of
this particular task. This is a deliberate feature of the design, so that temporary
VARIABLEs and period VARIABLESs are not needed.

Similarly, tasks can be set up to execute EACH-MIN and EACH-HR routines,
or one task can handle them all:

: TIMINGSETUP
TIMING ACTIVATE
@HRS @MINS @SECS
BEGIN SECS NEW IF EACH-SEC THEN PAUSE
SWAP MINS NEW IF EACH-MIN THEN PAUSE
ROT HRS NEW IF EACH-HR THEN PAUSE
SWAP ROT AGAIN;

The arguments provided to NEW are enough to specify atime event. To
specify a time period, we simply need to add a count o the events. This is
achieved in the syntax

ntv

e.g. 30 SECS 4 MINS 2 HRS etc.

The next word in the lexicon is ELAPSED, which is similar to NEW in that it
returns a flag if the specified period of time has elapsed. Its detailed processing is
complex so | will just say that it uses @TIME to calculate the net elapsed time
(since its last invocation) and this is subtracted from the count to produce the flag.
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ELAPSED (¢TVn- ¢ TVn' Flag)
(Flag Trueifc' <0 )

To move from this blow by blow description of the words in the lexicon to a
more general description of the aims of the system, the types of functions which
industrial control programmers need, and the programming of which | was
attempting to simplify, are things like:

Wait for specified period.

Wait for specified period OR until condition occurs.

Wait for specified period and TIME how long it takes for condition to
occur.

Perform function until Time-of-Day = Specified time.

Perform function periodically, for X times.

Perform function periodically, terminated by

Time-of-Day = Specified time.

efc.

o N -

R

After considerable analysis it transpired that all of these functions could be
expressed in three main syntaxes:

(PERIOD) FOR CONDITION MONITOR

(PERIOD) FOR CONDITION DETECTED
IF ... ELSE ... THEN

(PERIOD) FOR CONDITION TIMED
IF ... ELSE ... THEN

All of these constructs use the same initial syntax (a period is specified and
then the word FOR is stated), but they use different terminating words -
MONITOR, DETECTED or TIMED. Their actions are similar in that they will all wait
in a loop and terminate when either the specified period has timed out or the
condition clause has left a true flag. The difference between them is what is left on
the stack at the end of the process:

MONITOR ieaves nothing on the stack.

DETECTED leaves a flag which is true if the condition occurs and
false if the loop timed out.

TIMED leaves the same flag as DETECTED, and the time it took
for the condition to occur will be left under a true flag.

FOR, MONITOR, DETECT and TIMED are compiling words and they all
compile various words around and inside a BEGIN ... UNTIL loop. FOR
compiles BEGIN, PAUSE and ELAPSED and the terminating words compile
OR and UNTIL and various stack manipulators to provide the final stack values.
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As an example of the uses of these syntaxes, the word AFTER can now be easily
defined as:
:AFTER FOR 0 MONITOR ;

This is another way of writing MONITOR nothing, and it forces a full wait for
the period specified before AFTER, as the condition clause (0) is always false.

The four words represent different levels of timing information:
AFTER simply consumes the specified period of time.
MONITOR will use up the time or break if a condition occurs.
DETECTED lets you know if the condition occurred or not.

TIMED lets you know if the condition occurred, and also provides the amount
of time that elapsed before it occurred.

I have found when developing time based algorithms, that the control
words can be developed from a simple “get-it-running” solution intc a more
“intelligent” or "adaptive” program by utilising these different control structures at
different points in the development. For example, this heating algorithm

: HEAT
CLOSE-HOUSING
PHASE# 2 >
IF 180 SECS FOR HEATED COLDER OR MONITOR THEN
HEATED NOT
IF HEATER ON (Do heating process ......)
THEN ;

performs a wait before evaluating whether to turn the heater on.

In my first version of the code, | simply used

: HEAT
CLOSE-HOUSING
PHASE# 2 >
IF 3 MINS AFTER
THEN ...... '

Then | realised that it could be made smarter to break if either the environment
had heated up (in which case no active heating would be required) or it had
become even colder (in which case, it should stop waiting and start the heater
immediately). The FOR .... MONITOR construct followed by the HEATED NOT test
provides all of these functions in the most efficient manner- FOR ... DETECTED
could be used, but more (redundant) flag checking would have to be done.

The next example, using the DETECTED syntax, provides a demonstration of
using the Timing words inside a standard FORTH DO ... LOOP construct.
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: DO-WATERING
#VALVES 0 DO NEXT-VALVE ON
LAST-VALVE OFF
@VALVE-TIME FOR OVERPRESSURE DETECTED
IF OVERPRESSURE! LOG THEN
LOOP LAST-VALVE OFF

This algorithm is a functional description of the control algorithm of the first
major program | ever wrote. That version used VARIABLESs in which to hold step
counters, the amount of time-left for the step, pointers to first and last valves and
so on. The above version uses NO variables, uses one phrase of the Timing
syntax and a single FORTH DO ... LOOP. And it does the control process better!

Just as any AFTER period can be improved by replacing it with a FOR ...
DETECTED loop, so a FOR .... DETECTED loop can often be improved by
replacing it with a FOR ..... TIMED loop. For example, in an a control application
where a motor is moving a physical device, the job often reduces to

ActivateMotor
Wait-for-Sensing-Switch-Closure (or Opening}.
De-ActivateMotor

This is a classic application for FOR .... DETECTED:

MOTOR ON
10 SECS FOR SWITCH.CLOSED DETECTED NOT
MOTOR OFF
IF MOTOR.ERROR LOG
THEN ...

Note that NOT can be used freely in the syntax - one can write
SWITCH.CLOSED NOT DETECTED and so on. Also note that any actions are
allowed after DETECTED and before the IF ... ELSE .... THEN clause - in the above
example it is important to turn the motor off immediately that the loop terminates.

It then occurred to me that the controller could measure the amount of
time conditions took to occur after actions, and then build up averages of these
numbers. Through this method of data collection, the controller can develop an
idea of the typical performance of the physical system to which it is connected. An
example

MOTOR ON
10 SECS FOR SWITCH.CLOSED TIMED
MOTOR OFF
IF Use Number to update AVERAGE
ELSE MOTOR.ERROR LOG
THEN
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The final aspect of Timing which | will address is a few words to allow the
above constructs to incorporate statements about the Time-of-Day. This lexicon
uses a key concept used in the first FORTH timing system | ever encountered (Bill
Ragsdale's article in FORTH Dimensions Volume 5 Number 5), the idea of
storing real time as a single precision number, representing the current Minute-of-
Week, which he called MOW. Whilst this ideacan be extended as farasa
Minute-of-Month, | use a cut-down version of his system, the Minute-of-Day {(which
I call MoD) as this is the most appropriate for a system based on a real-time
24-hour clock.

The advantage of converting the Hour Number and the Minute Number into
a single precision number on the stack is that comparing times and calculating
differences between times etc. can all be easily performed using FORTHSs
standard arithmetic operators. (-, +, <, & >.)

The words | use are:

:>MoD ( #HRS #MINS -- MoD )
SWAP 60 % + ;

: @MoD ( --Current MoD )
@HRS @MINS >MoD ;

PAST and BEFORE both expect a Time-of-Day as two numbers on the
stack (Mins on top) and compare this time with the current Time-of-Day. PAST
returns a true flag if the current Time-of-Day is greater than or equal to the stated
time, and BEFORE returns a true flag if the current Time-of-Day is less than or
equal to the stated time .

: PAST ( #HRS #MINS -- flag )
>MoD @MoD > NOT ;

: BEFORE ( #HRS #MINS -- flag )
>MoD @MoD < NOT ;

BETWEEN expects two Time-of-Day s on the stack and returns a true flag if
the current Time-of-Day is between the two input times.

: BETWEEN
>MoD >R >MoD R> 2DUP > @MoD SWAP
IF SWAP OVER < NOT SWAP > NOT OR
ELSE WITHIN
THEN ;

These words allow statements like
BEGIN PAUSE ............. 18 30 PAST UNTIL

which will remain in the loop until 6:30 P.M., and
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3 MINS FOR VERY.HOT
LATE.CYCLE AND
6 00 1500 BETWEEN AND DETECTED
IF ... ELSE ... THEN
a condition clause which will be detected only if the conditions VERY.HOT &
LATE.CYCLE are met and its between 6 A.M. and 3 P.M.

The logging syntaxes described earlier and the Timing syntaxes work very
well together. Logging is often based on Time, with the logging requirements often
generically stated as

log THIS, every X pericd for N readings
log THAT, every Y period for M readings

and so on. This can be easily accomplished by using AFTER and LOG ina DO ...
LOOP construct. For example, to log the tire pressure every 30 minutes for 50
readings,

50 0 DO TIREPRESSURE LOG 30 MINS AFTER LOOP etfc.

To log something every so often until a specified time-of-day rather than fora
specified number of readings, we use AFTER and LOG inside a BEGIN .... UNTIL
loop, for example to log the average temperature every 2 minutes until 6.00 P.M.

BEGIN 2 MINS AFTER AVETEMP LOG 1800 PAST UNTIL

These timing words are not restricted to the above syntaxes and can be
used in free-standing FORTH expressions. For example, the time-variables
specify the time scale which a process uses. If for instance 1 MINS is specified,
then on the next change of minute, a process will terminate. If it starts at the 58th
second of a minute, the total period waited is 2 seconds. To be able to specify a
minute-as 60 SECS, or an hour as 60 MINS, | developed the words HOURS and
MINUTES, defined as

: HOURS 680 % MINS ;
: MINUTES 860 % SECS ;
used as 3HOURS FOR...

and 15 MINUTES FOR ..... elc.

(The naming idea here was that writing the name in a higher resolution
(HOURS instead of HRS & MINUTES instead of MINS), generates a timing loop
of consequently higher resolution.)

As another example, | have found it useful in some cases to add a guard
clause to the beginning of a FOR .. DETECTED loop, to prevent it breaking out of
the loop for a certain minimum time. The word GUARDED suggested itself, used

as:
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30 SECS 10 GUARDED FOR ...

which would wait for a total of 30 seconds, but would "guard” the first ten seconds
against the break. GUARDED simply compiles an AFTER of the period specified
and subtracts this period from the total period, ready for FOR. In the above
example, it would compile code equivalent to:

10 SECS AFTER (30-10 =) 20 SECS FOR .....
and can be defined as

: GUARDED
ROT OVER - ROT ROT OVER AFTER ;

As a final example, the word TILL can be easily defined, to afzew Time-
of-Day specification of the end of a FOR loop, used as

1500 TILL o, MONITOR etc.
and defined as
s TILL
>MoD @MoD - DUP 0< IF 1440 + THEN MINS
[COMPILE] FOR ;

To conclude this section, the Timing words outlined in this paper:

SECS MINS HRS DAYS
@TIME NEW ELAPSED
FOR MONITOR DETECTED TIMED
PAST BEFORE  BETWEEN

allow description of all of the “"desired" process control functions listed above,
and they cover the many different ways of talking about time - in terms of elapsed
periods, in terms of Time-of-Day, in terms of "when condition occurs” etc. They
form a consistent, and re-usable lexicon.

The timing system is less of an example of using FORTH for productivity
gains, than an example of how the total lexical freedom possible in FORTH allows
the programmer to describe the problem exactly as desired, unfettered by any a
oriori high-level "rules” or "power” utilities. This is a language of time within
FORTH, which can express time logic, manipulate time periods and execute time-
based actions.

| will conclude this paper with a discussion of the implication and
applications of the NOVIX chip as | see them.

First Australian Forth Symposium 117




THE IMPACT OF THE NOVIX
&
SOME AREAS OF APPLICATION

IMPACT

A processor of this net execution speed is obviously going to find and even
attract many applications. The machine is already providing not only a very fast
working environment, butalso a general focus for those interested in FORTH. It
is galvanising a lot of effort behind the language and will continue to do so.

| think the NOVIX will attract all people interested in fast processors, in
particular, the writers of assemblers and compilers. This means that a lot of
people outside of the FORTH community will get to know the language.
Furthermore, | believe that there is a good chance some of these people will
be converted to FORTH by the NOVIX, and so the general FORTH
community will grow.

As well as the sheer execution speed of the processor, the NOVIX has other
attractive features - the square root function, very fast multitasking, and the
optimising compiler to name but a few.

The optimising compiler means that FORTH text is compiled into very fast,
compressed code and, according to all accounts, it generates truly optimal code.
This is why, when Daniel L. Miller came to write an implementation of the C
language for the NOVIX (see BYTE April 1987 p 177), he did not write a C
compiler which directly generated native NOVIX opcodes, but chose to write a
program which converted C textinto FORTH text. The resulting FORTH text file
is then fed into the optimising NOVIX compiler. This turmed out to be the most
efficient way of generating the target code.

As he points out, not only does this code run very quickly on the NOVIX,
but a new level of transportability has been added to the C code - at the FORTH
text level the code can be fed into ANY machine that interprets and runs FORTH.
This feature will again attract many people into the FORTH environment that may
not have been previously interested, and the transportability of the interstitial
text files is a benefit in itself.

APPLICATIONS
1. Hardware-in-Software

The potential areas of application of the NOVIX range of chips are
numerous. The first area of exploration must be the concept of executing
hardware systems in software. The application of the NOVIX may be similar to
‘the Transputer in this respect - it has found much work in the software-doing-the-
job-of-hardware driver area. (Graphics engines and Disk controllers).
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The floppy disk controller provides a good example of this. In this interface,
the use of Timer chips for various wait times and hardware to wait-for-condition-
and-set-bit is standard. The promise of the NOVIX in this area is that ALL of this
work could be done in software - the timers, the detectors and so on. The NOVIX
promises even more power, through its ability to swap between controlling different
types of drives by simply changing ROMs (or even just VOCABULARYs). Through
the use of multitasking, it should be possible to control different drives
simultaneously.

Other areas of hardware research in which the NOVIX could play a part are:

1. Digital Signal Processing -This was one of my first interests in
digital computing. | had been involved in analog processing for some
time, and only with the release of the Texas Instruments 32010 did |
decide to "convert" {o digital.

However, on detailed inspection, although the 320 could do an
accumulating multiply in 200 nS, it had drawbacks which rendered it
almost unusable for the applications | was envisaging. These

rawbacks included such things as the Harvard architecture, which
makes immediate loads impossible.

When | looked at trying to design a full system on a 320, the tasks of
handling (even minimal) keyboard inputs, scanning (even minimal)
timers or interrupts and so on would take so much time that the
processing power of the device was lost. The 320 is not that good at
anything BUT accumulating multiplies in 200 nS.

The NOVIX however is the reverse case. It takes about 2 MICRO
seconds to do an accumulating multiply, but everything else in the
processing can be handled quicker. The speed of the machine
promises the ability to write keyboard scanners, hardware polling
routines and so on, all without disturbing the timing of the other ("main”)
tasks.

The potential of having a MultiTasking system running fast enough to
control hardware is tremendously exciting. In a disk drive interface, the
555 timer hardware could be implemented as a TASK, with another
major task setting the functional tasks in motion, and waiting for their
termination and so on.

2. Network controliers and protocol converters are another area
for application of the same basic idea. Again the ability of the NOVIX to
set up an analog of a hardware system (in digitall), and the ability to
switch between different flavours of hardware simulation with the
speed of setting a new execution vector, or a different vocabulary, is the
key feature of the NOVIXs in this application. A device which can
interface and convert between different machine protocols and which
can be changed with the ease of a re-edit (rather than a re-build) must
be attractive commercial property.
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2. Processor Simulations

Ever since | first wrote a time critical piece of assembler code and had to
count the cycle times of every instruction many times, | have had a peculiar
sensitivity to how many machine clock cycles it takes a processor to execute its
opcode. This is why | was attracted to (and still use) the 6502 - most instructions
take 3 or 4 cycles, some take 2 and some take 5 to 7. When | was asked to convert
my code onto another processor, | couldn't find one at that time which would end
up running it anywhere near as fast (including the Z80, 6809 and 8086). When !
read the clock cycle times for the 80186 and the 68000, | laughed - microcode was
getting out of hand. One instruction takes 135 cycles! This is obviously running a
small program on-board. The point of the 6502 is that a sub-routine running a
couple of dozen opcodes will run faster than a lot of instructions on other
processors.

The NOVIX is, quite frankly, the answer to this problem. The first few layers
of definitions in a NOVIX application {for example : OVER >R DUP R> SWAP ;)
are effectively new opcodes. These definitions takes the place of the standard
MicroCode. These words take only a few clock cycles to run (5 in the above
example) and so hand tailored "opcodes” can be written.

As an example of this idea of switching between different types of
operation with the flick of a vector, | have considered the idea of writing NOVIX
programs so that the machine would execute the native opcodes of various
processors. We could have VOCABULARYs named 8088, 68000, 6502 etc. Given
the clock cycle consumption of these chips mentioned above, this idea should
be entirely possible and it would be interesting to see how fast the simulations
run. This general idea suggest applications of the NOVIX in processor research,
development and simulation.

3. Industrial Controliers.

Modern industrial control has two levels of processors - so called Field
processors and Control processors. The field devices handle sub-sections of
the plant and/or perform specialised analysis of a specific process, and the
Control processors handle operator interfaces, alarm processing, trending and
complex mathematical control process modelling to determine optimal loop tuning.

The trend in industrial control at the moment is towards more processing
power at lower levels in the system (as in most areas of this industry), and more
"expert” judgments are being expected of not only the main Control processor, but
also of the Field controllers.

The NOVIX presents itself as a candidate in both of these areas - its speed
of multitasking makes it an ideal field instrument, and its sheer computing power
makes it at least considerable as a solution to the Control computer job. Future
application software developments will determine how far the chip makes it into this
area.
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4. Multiprocessing.

| think that the most important aspect of multiprocessing is
architecture, because it underlies the whole machine and it often forces the
software into certain a priori structures. A highly desirable feature of the
processors in such an environment is minimum chip count, because as the
number of processors increase, the hardware and the support circuitry (power
supplies, connectors etc.) can expand beyond feasibility. This thinking underlays
the design of the Transputer - only memory chips need to be added to the
transputer chip to get a functioning unit complete with four bi-directional serial
lines and so on.

The NOVIX, in contrast, is a processing engine - it is a bare CPU in terms of
hardware functions and support. This is the basis of its processing power but it
makes it more difficult to implement as a sub-unit. It has no interrupt priority
handlers, timers, communication channels etc. as part of its make-up. This
means that boards incorporating a NOVIX must have quite a large amount of
support circuitry.

It is interesting to compare the NOVIX to the 65F11 in this respect. The F11 is
based on the 6502, an old processor, but what made it attractive from a hardware
development point of view is  its on-chip features (FORTH kernel, serial channel, 8
level interrupt handler etc.) and a minimum hookup of five external chips. I have
considered quite a few different designs for multiprocessing using the F11 and

they are feasible due to these minimal support hardware requirements.

An idea which keeps going through my mind in this respect is to get the
stacks on-chip. This would be a major leap forward in terms of using the, NOVIX
in a multiprocessing environment.

That much said, multiprocessing is certainly possible on the NOVIX. The
ports could be used to great advantage, especially to implement banks of
memory. These could be a useful expansion for the NOVIX in any case and they
would be very useful in applying the NOVIX to multiprocessing. Multiple machines,
each running multiple memory banks, with some common banks for
communication and data passing, is, | feel, the most viable approach to a
hardware architecture for multiprocessing with the NOVIX.

From a software point of view, the NOVIX is a very interesting candidate
on which to develop a multiprocessing operating system. Each processor could
have a common kernel (say the 8 K system now) and so could make calls to
each others kernels very easily (via a two-byte address packet!).

Again low-level high-speed multitasking is critical to this implementation -
without it, it would be very cumbersome to even build an architecture. Each
multitasking processor could have one task dedicated to communicating to the
other processors and through this connection the various processors can CoO-
ordinate to become a single bigger machine. In this respect [ think the NOVIX s
in a better position than the Transputer which is limited to a certain extent by using
hardware to perform the communications.
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To conclude my paper, | would like to thank all of the people involved with
the organisation of this first ever Australian FORTH symposium, and alf the
delegates who have attended. | hope we can use this opportunity to get to know
one another and develop the basis for a strong, interactive (and hopefully highly
productive) Australian FORTH community.

Finally, | would sincerely like to thank Charles Moore, firstly for attending our

symposium and providing us with the benefit of his experience and unique
insights, and also for inventing FORTH.
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Forth Engines vs Assembly

( Forth Applications in industrial control )

by Ray.Gardiner

Ardmona Fruit Products Co-op Co Lid.
PO Box 196, Mooroopna 3629
Victoria, Australia.

ABSTRACT

Programming real time control systems in Forth allows the interactive development
and interactive debugging of hardware interfaces. The paper explores the issues of
development techniques, software maintenance, execution time speed and complexity.

First Australian Forth Symposium




ntroduction.

The target audience for this paper is the software/hardware applications programmer who is
interested in using Forth for real time process control or machine control applications.

There is now available a full range of development environments for generating Forth based
applications these include many multi-tasking and multi-user systems. As well as simple low

cost single board systems. Most applications can be prototyped and tested interactively, allowing
the programmer to concentrate on solving the problem.

The traditional trade-offs involved when comparing assembler with high-level can be
discounted completely with the availability of 16 bit and soon 32 bit Forth engines.

and writing an industrial control system with Forth is fast and easy when compared
with other available techniques.

The factors to consider when choosing a language for real-time control systems.

1. INTERACTIVE DEVELOPMENT AND DEBUGGING.
( the development cycle )

2 .MAINTAINABLITY

3..DOES THE LANGUAGE HELP TO DEFINE THE SOLUTIONT.

No, I haven't forgotten execution time speed. Forth engines have rendered this subject obsolete!

For the sake of completeness, there is a special section of the paper devoted to discussion of
execution time speed.

The ability to mix Forth and assembler to achieve desired performance
levels is essential where conventional processors are used.

Ray Gordiner april 1988
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DEFINE THE
—» PROBLEM TO BE
SOLVED

|

DEFINE THE
—»  INTERFACES

,| PROTOTYPE
THE INTERFACES

i

NAME THE
—+  INTERFACE
WORDS

EXPLORE THE
PROBLEM

i

«— IS IT SIMPLE?

v

Application development cycle.

The steps involved in writing the application are usually as follows.

It is quite normal here to be given the solution
rather than to be told what the problem really is.

Are you fixing the results of another
problem!.

What does your program have to talk to?
Is there an operator?. What is the interface
to the operator?. :
What are the /O devices. Coils/Sensors.?
What are the timing contraints?

(how fast? and how often? )

What analog /O is involved?
What resolution? Are results required in
engineering units?

This involves connecting to the actual system
and establishing a development environment.
Checking voltages and currents to ensure that
1/0 devices are correctly connected and
working is made easier by writing short

test words.

Give each ACTION a meaningful name, it
helps if each name is readily understood by
others who are involved with the system.
Warning!! don't get carried away with hiding
the underlying hardware!. Keep it simple,
just hiding addressess is usually enough.

This is the creative bit. You can test anything
instantly! and see immediate results. Try to explore
the limits of the system. Always aim for simplicity.
(Lateral thinking ability also helps in this phase!)
Don't regard the hardware as fixed. Try to replace
hardware with software wherever you can.

This is the hard bit, be ruthless in the search for
simplicity. Be prepared to back-track as far as
needed. (Caution: most people will not appreciate
having the problem itself re-defined!)
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Write the first draft of the program, in the
process. Take care to factor the hardware
dependant sectons. The higher levels in the
software will be self-documenting IF you
have exercised care in the choice of names.

Write manuals and operator instructions.

e e Burn eproms, install hardware, run all cabies
IMPLEMEN etc. The things which have changed since you
; , first prototyped the interfaces will now test
YOUR SOLUTION how well you have factored the hardware.

This stage involves testing exhaustively all

PRODUCTION of the system. Organize, if possible to TEST

— changes off line, p om appr
TRIALS having to work in a start/stop environment.

”ifgzis lﬁnail stage of the development cycle
should only involve things like changing
<«— FINE TUNING timing, small details of operator interface,
and optimizing small sections of code.
Resist the temptation to engage in massive
re-writes. (that can be done later!)

Unfortunately, most systems evolve and
change over time, rarely will you ever be
able to say that's it, all finished.

Usually it happens about a year or two later
that some unforseen change is required.

That's when you really find out if you did

it right!.

Which leads us neatly into the next topic....maintainability.....

y Gordiner april 1
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MAINTAINABILITY

It has been said that 90% of the world wide programming dollars goes into software maintenance.
Briefly, let us explore why this is so.

The main reason software maintenance is so important is that all real world applications exist in a
dynamic environment;...change occurs coninuously. The type of changes that a real time control
system must cope with are:

1...Additional features, and capabilities. These are usually things that weren't required (!) at the
time the original program was designed and written.

2...Removal of unwanted capabilities, This may be part of a marketting strategy. Or sometimes
if memory space is at a premium, required to make room for new features.

3...Bug fixes, some uni ional £ es need to be purged.
4., Hardware changes, often an application may be moved to a different hardware environment.

...The design of the application changes to cope with changes in plant layout. equipment changes.

L

6...In a manufacturing environment the application may have to cope with product changes, new
products may need to be added to the applications capability.

Steps to writing maintainable sofiware.
1. Hide the hardware interfaces. ( don't go overboard here, just hide enough to ease readablilty

and maintenance) .

Use names to describe addresses.
Factor the hardware interface carefully so that changes can be confined.
Purge "magic” bers the 1.

example:
We wish to read temperatures from a variety of loactions.

0 CONSTANT OFFICE
1 CONSTANT AMBIENT
2 CONSTANT PROCESS

: READ-A/D  ( channel number --- a/d-value)}
SELECT-CHANNEL
START-CONVERSION
BEGIN COMPLETE? UNTIL
READ ;

: TEMPERATURE ( -number —-- temperature §
READ-A/D
CONVERT-TO-DEGREES-C

We can use this as follows,

PROCESS TEMPERATURE .

We have factored out the parts which will change if (when) the hardware is changed.

Bay Gardiner april 1988
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§ Does the language help define the solution?

The final software will be a reflection of how well we understood the problem.

By allowing the problem to be probed interactively and viewed from different angles Forth
leads to a greater understanding of the problem.

The careful selection of names allows the programmer to “think” about a problem in a
high level way.

SIMPLICITY.
A correct solution to a problem is ALWAYS the simplest. This search for simplicity scems (o be
encouraged by Forth itself. Usually with startling results. Forth itself is a simple solutionto a

complex problem.

When starting out on a new project it is usual to get mislead by the detail and complexity of the
issues to be absorbed. It takes practice and patience to strive for that special view of a problem
which leads to a deeper insight and understanding.

-~ For more reading on this subject I can highly recommend Leo Brodies "Thinking Forth".

Some real applications

A peach pitting machine which detects split stones and selectively activates pneumatic cylinders
to use one of two pitting methods. ( networked data collection, macintosh display)

A high speed cherry dispensing system that measures each cherry to correct the count per can
for small fragments and ensure accurate count per can. (240 cans/min)

Sawmill control systems with aut ic gaging for multiple saw blades.

Plant transplanter control systems which detect when the machine jams and automatically
unjam. ( multiple cpu's networked for synchronization)

Carton palletiser control systems with multiple pattern selection and video display of pattern .
Boiler control systems, oxygen sensing probe and automatic fuel air ratio trim.

Irrigation control systems.

Automated foundary equipment, gas generators for mould curing systems.

Peach pit detection and sorting systems.

Remote site repeater control systems. Packet radio based distributed control systems.
Research / Laboratory applications.

Underwater data logging system.

Laser pulse control,
Geological microscope data logging.

Current projects; Automated welding monitor, e , Peach imaging system,
Programmable data logger, Geological survey equipment, LPG gas dispensing system,

Ray.Gardiner aprd 1958
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é??ﬁ@ﬁ%ﬁ Example

Product moves at 1000 bottles per minute past phot whi underfilled bottles
The underfill is a result of some m ical pro on the upstream 150 head bottle filler.

We want to automatically stop the line under the following circumstances.

more than X bottles in ion were =riiiled
more than Y bottles were underfilled in the last 1000.

fibre optic photocelis

2. Low level
3. Bottle synchronization 150 HEAD FILLER

0
00 -« [

For interest, this is a subset of the "real” application. In the real application we also want to
identify which head is underfilling. As well as logging the dataonto a PC disk for later analysis.
The flavour of the application (sic) is not diluted by leaving these finer points out of discussion.
( the actual bottle in this instance is sometimes known as a stubbie!}

Tay Dardiner april 1968
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% Application Example

LE-COUNT
LE-DATA 1000 ALLOT

BLE UNDER { numnber underfilled in last 1000 )
%ML& IN-A-ROW { rumber underfilled in succession )
VARIABLE UNDERFILLED-LIMIT
‘%?MLE PER-1000-LIMIT

( PB is port address for 16 bit sensor interface }
MBOTTLE (--flagg PB @ 1 AND;
- JUNDER (---0orl) PB@ 2 AND ;
- IRESTART (---flag) PB @ 4 AND ;
: STOP-LINE PB @ 8OR PB!; ( energize line interlock relay )
: START-LINE PB @ 8-1 XOR ANDPB! ;
: WATT-FOR-RESTART BEGIN 7TRESTART W& START-LINE .

: UPDATE-HISTORY (n--)
BOTTLE-COUNT @ BOTTLE-DATA + |
BOTTLE-COUNT @ 1+ 1000 MOD BOTTLE-COUNT !

: LOOK (—)
BEGIN 7BOTTLE UNTIL
UNDER? DUP IN-A-ROW + UPDATE-HISTORY ;

: UNDERFILLED? (--1)
IN-A-ROW @ UNDERFILLED-LIMIT @ > ;

: UNDER-IN-LAST-1000 (--n)
BOTTLE-DATA DUP 1000 + SWAPDO [ @ +LOOP ;

. LAST-1000? (- f)
UNDER-IN-LAST-1000 PER-1000-LIMIT @ > ;

: SHOW-DATA (--) ( dump data to terminal for ézagﬁcsi;» 3

: DECIDE  ( optionally stops the line )

: BOTTLER ( this runs the application )

CR BOTTLE-COUNT 7 IN-A-ROW ? UNDER-IN-LAST-1000. ;

LOCK
UNDER-FILLED? LAST-10007 OR
IF STOP-LINE WAIT-FOR-RESTART THEN;

- INITIALIZE ( set up variables )
0 UNDER ! 0IN-A-ROW ! BOTTLE-DATA 1000 0 FILL
25 PER-1000-LIMIT ! 5 UNDERFILLED-LIMIT! ;

INITIALIZE START-LINE
BEGIN DECIDE AGAIN;
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applications of Asyst in Digital Signal Processin

by

». Prandolini, M.P.Moody and J. Miocrandi®*

ASVST is a FORTH based software package which consists of a
Mathematics and Graphics Module, a Data Acquisition Module,
a Data Analysis Module and a General Purpose Interface Bus
(GPIB) Module. The wide range of inherent functions and the
flexibility of programming allow sophisticated turn—-key
signal processing algorithms to be produced in relatively
short time.

This paper discusses the use of ASYST in digital signal
processing applications and describes one example in the
area of speech processing.

i. INTRODUCTION

The applications of Digital Signal Processing {(pspl
techniques are becoming increasingly diverse and
sophisticated. Researchers in various fields require DSP
algorithms to analyse data, while researchers in DSP
applications require a system which makes the use of
standard DSP algorithms and graphics easy and simple. Asyst
is such a system. It allows DSP algorithms to become a tool
for researchers, engineers and educators.

2. OVERVIEW OF ASYST

Ssome of the features of ASYST which make it particularly
useful for non-real-time Digital Signal Processing (DSP) are
discussed below. Each of the four Modules are addressed
with a few examples to illustrate the way in which programs
can be written, and to show the ease with which the system
can be used.

2.1 Module 1: Mathematics and Graphics

The Base Module [1] contains the FORTH kernel. It can be
used in interpretive mode or can be used to define or
compile new programs or ‘words’. Programs can call
previously defined words or inherent words, so it is easy to
write programs in modular form. This flexibility is useful
when developing DSP algorithms which <c¢all functions
regulariy. Stack based (Reverse Polish) arithmetic is used

* Senior Tutor, Head of School and Tutor respectively in the
School of Electrical and Electronic Systems Engineering,
Queensland Institute of Technology. Brisbane.
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in which any function performed replaces the arguments on

the stack. For example, Y X + replaces variables X and Y
with their sum. X and Y could have been defined as real,
integer or complex variables, vectors or arrays of any
dimengion. Matrix multiplication of three compatible

complex matrices, for example, is as easy as A B C * *.

Such functions as MAX, MIN, MEAN are inherent.

Extensive graphics is also provided in the base Module. The
word Y.AUTO.PLOT plots an array with scaled X and Y axes,
labels, tick marks and grids.

2.2 HModule 2: Data Analvsis

The Data EAnalvesis HModule f2] 4inecludes operatiocn on
polvnomials, vectors, matrices, eigenvalues, eigenvectors
and graphs. Features that =are of interest to DEP
applications include polynomial integration ~ and
differentiation, root extraction, determinants, solution of
simultaneous equations, least square polynomial fits, data
smoothing, peak detection, convolution, £iltering, Fast
Fourier Transformse and contour plots. The use of some of
these features will be discussed further in later Sections.

2.3 HModule 3: Data Aequisition

The Data Acquisition Module [3] allows I/O board independent
code to be written which addresses a range of I/0 boards to

be controlled by scoftware. Once configured, Analogue to
Digital (A/D), Digital to Analogue (D/A) and Digital I/0 are
easily implemented. The I/0 can operate in the foreground,

background or via Direct Memory Access (DMA) control.

2.4 Module 4: General Purpose Interface Bus (GPIB)

The GPIBE Module [4] contains drivers for interfacing (via a
GPIB board) the host computer to measurement equipment
fitted with a GPIB. Thisz allows data to be captured and
processed using the £full power of ASYST.

3. DIGITAL SIGNAL PROCESSING WITH ASYST

Digital Signal Processing (DSP) is the term given to the
processing of discrete data using mathematical techniques.
The discrete data are most commonly captured time samples,
for example, during a test on a vibration system; however
they may take many other forms, such as a ‘'snapshot’' of
complex voltages on the elements of an antenna array {the
independent variable is spatial), or may be two dimensional,
such as pixels on an image taken from a photograph.

Many transformations of data are used in DSP to provide
estimates of various parameters. The most common of these
is the Fourier Transform, which is an estimate of the
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magnitude and phase of spectral components of the signal.
fistorically, DSP was concerned with seismic, demographic
and financial data, and analogue systems simulations since
these werse acceptably performed in non-real—-time. The
availability of fast computing devices has meant that D8P
has spread into many other fields such as medical
engineering, acoustics, sonar, imaging, speech recognition,

data communications and control automation [4,5]. Many of
these can now be processed in real-time with special purpose
DroCessors.

2.1 D8P Algorithme using ASYST

In order to demonstrate the simplicity and flexibility of
ASYST for DSP applications, the implementation of some
typical algorithms will be discussed.

3.1.1 Waveform Generation

Any mathematically defined waveform may be produced by using
the standard mathematics supplied. For example, 100 points
cf a sine wave may be defined by first producing a scaled
ramp of time values, and converting to g sinewave: ‘100 ramp
166 /1 - 2 ® PI ® SIN'.

Complex waveforms such as Pseudo Random Binary Segquences
{PEBS) may be generated from their generating polynomials
directly, by s=imply dividing a residue polynomial into
unity. Such sequences are used in spread spectrum
communications, data encryption, error correction, circuit
analyvsis, system identification, and radar.

3.1.2 Waveform Inspection

After data is captured by the Data Acqguisition Module, it
may be necessary to loock at the data graphically to select
points of interest. A ‘SCROLL’ function allows an arrav to
be moved across the screen, zoomed or contracted, and
cursors placed to make measurements. The part of the array
selected may then be processed in some of the ways
previously mentiocned.

3.1.3 Fast Fourier Transform

The Fast Fourier Transform is an efficient algorithm for
calculating the spectral {(periodic) properties of a sample
of data points. In order to coptimize the efficiency of the
algorithm, the number of points is constrained to be a power
aof two {i.e. 16,32,64 ete.}. The result of the
transformation is the spectrum, oy the magnitude and phase
of the fundamental and harmonic components of a waveform
assumed to be a repetitive version of the data points within
the observation window. The word 'FFT°' will produce the
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complex spectrum (i.e. magnitude and phase) of an array of
real or complex data points.

3.1.4 Convolution and Correlation

There are several ways in which to compute a convolution or
& correlation. Convolution in one domain is equivalent to
multiplication in the other. For example, filtering in the
frequency domain can be performed by either multiplication
by a transfer function in the frequency domain or by
convolution with an impulse response in the time domain.
Correlation is similar to convolution, except for a reversal
in order of one set of data points. Correlation is normally
used to determine the degree of similarity of two sets of
pointe.

Convolution and correlation may be periodic or aperiodic,
depending on the way in which it is caleculated. Aperiodic
convolution may be computed by the word ‘CONV.APER', while a
periodic result may be caleulated most efficiently by the
algorithm °‘ARRAY A FFT ARRAY B FFT * IFFT, i.e. the result
is the inverse Fourier Transform of the product of the
Fourier Transforms.

Periodic correlation is performed by conjugating one of the
Transforms before multiplication, i.e. "ARRAY A FFT ARRAY B
FFT CONJ * IFFT’', while aperiodic eprrelation may be
performed in the same way using arrays padded with zeros.

3.1.8 Homomorphic Processing

Homomorphic processing is commonly used to separate
excitation functions from the response (O those functions.
Two common examples of its use is in echo removal and speech
‘analysis for pitch £requency and wveocal tract response.
Blind deconvolution can also be performed in order to remove
the effects, for example, of room acoustics from recorded
signals. In all of these cases, the resultant signal is the
convolution of a pulse train (vocal cord vibration, echo
epochs), with a response to these pulses (vocal tract
response, original signall. gince the waveforms are
convolved in the time domain, they are therefore multiplied
in the freguency domain. If the logarithm of the spectrum
is taken, this product becomes the sum of two logarithmic
functions, which can be separated by ordinary linear
filtering. An inverse transformation can be performed on
either of the separated signals to produce either the train
of impulses or the response. An intermediate result in this
type of processing is called the CEPSTRUM (SPECTRUM
reversed). It is computed by the following: 'FFT LN IFFT’,
i.e. the inverse Fourier Transform of the Logarithm of the
Fourier Transform of the original signal. The CEPSTRUM is a

time domain signal.
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3.1.86 Digital Filtering

Filtering by any arbitrary filter response can be performed
directly from the product in the frequency domain of the

signal spectrun by an array of {complex) filter
coefficients: YARRAY FFT FILTER_COEFF *= IFFT’. Various
prototype filters based on theilr analogue egquivalents can be
designed.

4. A TYPICRL DEP APPLICATION

ASYST is a useful tool since a turn~key system can be
generated which may be invoked by single words. In order to
demonstrate this, an algorithm has been written which
captures a speech signal, allows selection of part of the
sample for further processing wvwia the SCROLL and CURSOR
functions, caleculates the CEPSTRUM and plots spectra,
cepstra, vocal tract response, excitation function and a
coloured spectrogram. This type of system has been used in
the forensic analvsis of tape recordings for edit detection
and speaker didentification. Since ASYST generates resident
code, the results are computed rapidly., and at single key
strokes if desired.

Some typical results {screen dumps) are displaved below.
Reproduction in black and white has disguised some of the
effects evident in colour. Figure 1 is the captured time
signal of speech using a data acquisition board. Figure 2 is
the spectrum of this signal, note that there are several
frequency spikes which make up the fundamental pitch
freguency and the spectrum of the wvocal tract response.
Figure 3 is the logarithm of the spectrum. The inverse FFT
is the cepstrum, Figure 4. By modifying the cepstrum,
(Figure 5), the smoothed log spectrum results (Figure 6).
Exponentiation gives the cepstrally smoothed spectrunm
showing clearly the formant frequencies (Figure 7). The
vocal tract response, Figure &, results from the invers-
Fourier transform. The difference between Figure & and
Figure 3 i3 the excitation log spectrum, Figure 9. Its
anti-logarithm (Figure 10) gives the excitation function,
Figure 11.

5.  CONCLUSION

ASYST is a useful tool for research, development and general
signal analysis tasks. Its large suite of commands, its I/0
capability and computation speed allow complex algorithms to
be written quickly and efficiently.

It has been found to be very useful in the teaching
environment, since the powerful automatic plotting routines
allow results to be reviewed as they are produced. The I/0
interface allows students to process real signals. Other
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DSP software packages are also available, such as SIG and
ILS, however, the flexibility of ASYST allows greater
freedom for the student to try his/her own ideas. ASYST has
proven to be an excellent asset for DSP applications.
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Forth and Prolog on the Forth Machines

L. L. Odette
Applied Expert Systems, Inc.
One Cambridge Center
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Abstract

Our research focus is the problem of engineering expert system technology into
systems with severe resource bounds, difficult performance constraints, and
non-standard hardware. Good examples are embedded systems for intelligent
real-time data acquisition and control. We argue that Forth can profitably be
viewed as a platform language for both the real-time and knowledge-base
portions of such systems. This paper describes our development work on a
Prolog compiler that emits code for an abstract Prolog machine. The Prolog
machine is implemented in Forth; versions have been built for the Novix Forth
engine and a version is in development for the Harris RISC-based real-time
control processor.
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introduction

Commercial development environments with effective support for developing
knowledge-based systems are best suited for large and complex applications (PICON,
Hawkinson et al., 1985 G2, Wolfe, 1987 ). Knowledge-based systems of intermediate
size, which might be the basis of intelligent real-time controllers, are difficuit to move off
the high-end machines once developed. There are even fewer delivery paths for smaller
knowledge-based systems, which need to be engineered into products and then
delivered in quantity.

One of the most difficult tasks in engineering intelligence into real-time applications is
balancing the requirements for performance, functionality, and integration. For example,
a good approach to achieving high performance and a high degree of integration is to
use a single special purpose programming language for both real time processing and
representation and reasoning, running on a single high speed ;Jrscgésﬁs (eg. Wright et
al., 1986). However, these choices may conflict with achieving the necessary
functionality (if the representation and reasoning language is too primitive), delivering on
time/budget (if the programming tools are limited or if the special processor or its memory
is too expensive), or deploying on multiple target machines (if the single special
programming language is not portable).

The risk averse will usually trade off functionality and performance for the ability to
integrate the application with an existing technology infrastructure. The more agressive
will sacrifice integration for functionality and performance because it may enable a
solution unattainable otherwise. We believe the price-performance gulf between the two
approaches can be bridged by Forth technology.
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Approach

Our basic strategy is to maintain a conventional approach to real-time systems where
possible. We have therefore focussed on issues of functionality, integration and
performance of the representation and reasoning component of the system. To achieve
the necessary functionality with a high degree of integration, we use a realtime
language (Forth) as a platform on which to implement a standard Al language (Prolog).
By choosing the right platform language we are able to maintain high perfgrmance.

Threaded languages like Forth meet many of our design criteria for performance and
integration. Of particular significance for the implemention of high level languages is the
oft-made observation that Forth is well suited to simulating abstract machines. This
capability provides portability, since Forth implementations exist for so many machines,
and reduces the performance impact of implementing one high level language in
another.

The fact that hardware support for subroutine threading is found in several new
machines from the RISC school of machine architecture means that the upper bound on
performance is very high; ultimately performance of languages like Lisp and Prolog on
inexpensive Forth machines may be competitive or even superior to implementations
available on high powered and high priced workstations.

Our strategy for achieving the functionality of the representation and reasoning
component that is required to build knowledge-based systems is to implement standard
Al languages (Lisp, Prolog, OPS5) using the threaded code technique and then build the
expert system application in that language. The deciding factors in choosing an Al
development language are that the language be well known, and that there is available
a body of literature describing solutions to common programming problems in Al. The
languages Lisp, OPS5 and Prolog meet these criteria. OPS5 and Prolog also have
small kernels so it is relatively easy to implement a complete version of either language,
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and both languages may be simulated on abstract machines (Warren, 1983; Forgy,
1982).

Our particular focus is compiling Prolog to Forth. The Prolog implementation

language is well thereby suited for developing real-time applications in its own right (and
there exits an extensive body literature on Forth solutions) and provides portability and
performarnice. Our previous work has shown that such an implementation strategy can
produce code that is compact and fast (figure 1), and the representation and reasoning
component is tightly integrated with the real-time component because they share the
same run-time mechanisms.

Real-Time Prolog

A mutti-pass Prolog compiler has been implemented which ultimately compiles to the
Forth language. Early versions of the compiler (Odette, 1987) produced code for a
Prolog Virtual Machine (PVM), based on the machine described by Bowen et al. (1983).
This PVM is a stack machine (0-address) and while not as sophisticated as the Warren
Prolog machine, it is a good fit with Forth (a stack machine), and very portable.

The Prolog compiler described above has been ported to a prototype version of the
Novix Forth engine and timed at 6,000 LIPS (Logical Inferences Per Second -- a
measure of function calling speed determined with a standard program called "naive
reverse®) with a clock rate of 4 MHz (Odette and Wilkinson, 1986).

A compiler based on the Warren Abstract Machine (WAM; Warren, 1983) has also
been developed; this version runs twice as fast (12KLIPS at 4MHz.). Improvements on
the Novix design by Harris Semiconductor have led to a Forth engine designed to run at
15 MHz. (Jones et al., 1987), suggesting that this hardware could support a Prolog at
50,000 LIPS. This is much faster than C language implementations of the Warren
machine on the VAX (Gabriel at al., 1985), almost twice as fast as the best Prolog
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compiler code on the Intel 80386 class machines, and approaches the speed of
compiled Prolog code on Sun workstations.

Our current efforts involve the development of a complete Prolog system for use with
the Harris FORCE chip set. The Prolog compiler is written in Prolog and compiles the
source code to the instructions for the U.C. Berkeley Programmed Logic Machine (PLM;
Fagin and Dobry, 1985). The PLM is a variation on the WAM.

The Prolog compiler runs on an IBM PC and emits PLM instructions into an ASCII
text file. The PLM code is then used as input to the FCompiler (Silicon Composers,
1988), a cross-compiler that will compile a subset of Forth for the Harris Force chip set
(Forth Optimized Risc Computing Engine). The result of the cross-compilation is an
image file that can be uploaded from the PC into a plug-in Force co-processor board.
The development system architecture for the Prolog language is illustrated in figure 2.

An example of an application that is a good candidate for this approach is the
astronaut interface designed for a series of spacelab experiments (Paloski et al., 1986,
1987). This application is currently based on a full Clocksin and Mellish (1981) Prolog
interpreter, implemented in Forth (Odette and Paloski, 1987) and running on an IBM PC
clone with interfaces to special purpose hardware for data acquisition, communications
and control. The Prolog interpreter provides an interface for executing Forth programs
from Prolog . In contrast with the development environment of figure 2, the interpreter
approach means that both knowledge base and real-time components are interactive.

The Forth and Prolog code comprise a real-time knowledge based system designed
1o aid crew members in performing a series of experiments aboard the First international
Microgravity Laboratory (IML-1) Spacelab mission. The series of experiments are known
collectively as the Microgravity Vestibular Investigation and are designed to study the
role of the inner ear in Space Motion Sickness. The astronaut interface helps an
astronaut to properly configure the on-board physiological data acquisition and control
system. The knowledge based component of the system is designed to reduce the
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impact of task complexity and scheduling conflicts on the quality of data collection. In
addition, an embedded knowledge base, with information about the mission objectives
and strategies for meeting them, may be able to help reduce mistakes in the very likely
event that astronauts experience motion sickness and disorientation (indeed, the study
is designed to increase the understanding of space sickness).

The IML-1 mission was originally scheduled to fly in May, 1987, but due the Space
Shuttle Challenger accident, IML-1 has been postponed until April, 1991. The astronaut
interface to the IML-1 application is expected to fly at that time and achieve its mission
objective for real-time data acquisition and control with an embedded knowledge base --
all of this in Forth, residing in 64K bytes.

The impact on performance of a Prolog compiler and special Forth hardware would
be significant. The knowledge base component (in Prolog) would execute 200-500
times faster, and the Forth code itself would speed up by a factor of 30 to 100. These
kinds of performance improvements would enable far more sophistiéated applications
than are currently possible.
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Figure 2: Prolog Language
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