Li.acx

(FAIE

FORTH AND PROGRAMMABLE CONTROLLERS

AIE is the designer and manufacturer of the RTIS500 programmable
controller. All the software layers which make up the unit have
been entirely implemented in FORTH.

What is a Programmable Controller ?

Programmable controllers originated approximately 20 years ago
out of the need to provide a more efficient way of implementing
large relay logic control systems. Input/Output modules provide
the signal conditioning between external devices i.e. limit
switches, proximity switches etc., and the internal program. Most
large programmable controllers are manufactured using bit slice
technology, which execute their own unique limited instruction
set like AND, OR and NOT operations on inputs/outputs and/or
internal flags.

The requirements of a programmalbe controller may be summarised
as follows :-

Hardware constructed for industrial environments, where
electrical interference is always present, and environmental
conditions are poor. i.e. (high temperatures, high levels of
dust and contaminates etc } .

Real time performance, execution of programs in the order of
50 to 100 msec, with faster control sometimes required.

A programming language specific to industrial control, which
is easily understood by personnel with no formal programming
eaxperience.

Concise documentation of programs to enable quick
commissioning , and efficient software maintenance.

Most programmable controllers provide the above features Lo
varying degrees, however the majority of units are suitable for
implementing relay logic systems only. Many systems attempt to
extend their functions to provide analog processing, however they
tend to be very akward and limited.

The RTI500 programmalbe controller steps well past conventional
controllers, into the realm of advanced control by providing PID
regulators, adaptive control, and feedforward control, with
future developments planned for auto-tuning PID regulators.

A software overview of the RTI500 is provided on figure 1.

First Australian Forth Symposium

39

T JHNO1d

E
=
1123
ol
&
£
2
€l 48 m
w , =
w . = mm
- ¢ E V) , | Aniaw w @
Atdini o dinm
] — i Rk WAAING wigm | =
! i NIATN t Ry ns1 TEHD 91 “ Y
DL e v | e 3 IS 1 i i
w o7 M | Tonay 3 2
1 o1sovy - EN . ' 5 <
4 20 adAy Sovd 8 : LD 2
i] ﬁ;ﬂ
21 SURETSoY g 91
Wi 1
|
VA 4
1) ; M m
M $ANALND i i -
j | wuom AIALNA Bo7 w m
i “TINED 91 e Q\M WL 0 ! R i w
T , ! ¢ IAIN@ | T
1 0020aY ! A ns1 TR 91
: ! s [
T W ooglvy %
iHoo | o
0 adiy govTd 91 e
uee
441 e
| |
1 1 rat
w W |
e | g
ZRA Ny AR HIATHG i | |
W 40 SN | H4i0 0s1 LRI Bl
w w J wwpoAy |
H 1 juvis
] oty oy |
RN WTE LT
['EN] #0 oo
14 @dAy sowmd 08 11 #dAy SovTy 26

40

e

= AIE

| R —————

S——

The software layers which combined together give the RTI500 great
flexibility, may be subdivided as follows :-

- Real time multiuser/multitasking operating system (figure 2}

%

=3

Priority task scheduler for task execution from 10
msec and upward.

Interrupt driven serial I/0 wused on the lowest
priority task level.

Virtually an unlimited number of tasks with fast
context switching between tasks.

Full interactive task control from the operator
terminal.

CLOCK INTERRUPT
EVERY 10 MSEC INCREMENT XCLOCK+ DECREMENT XCLOCK-

XBASE =

| TRESTART LEVEL 0 < LODK AT XAGAIND

2 YES

ADD TO XAGAIN THE CONTENTS OF XBASE
gﬁﬁ?ﬁﬁlC&ﬁEﬂT!iﬁﬁl RESTART LEVEL ©

H

4 LEVEL 0 (HIGH PRIORITY PLANT CONTRILD

SECOND CLOCK INTERRUPT

LEVEL 1 ¢ NORMAL PLANT CONTROLD

FIRST CLOCK T

LEVEL 2 (TERMINAL CIONTROLD

FIGURE 2

- Industrial Forth kernal provides over 800 words in 16
vocabularies.

- Table

driven assembler gsupports the complete 68000

instruction set, with error checking on instruction syntax.

First Australian Forth Symposium 41

- ?gyﬁigﬁéﬁi language for implementing process control svstems
guickly and efficiently.

a) PC element compiler (see figure 3)

b) PC element documentor for dynamically displaying the
application program.

c) PC element hardcopy documentor for printouts onto a

dot matrix printer. { see figure 4}

451

0 { PC elements source code)

1 PC HOIST-DRIVE

2 { START CONTROL AND SPEED REFERENCE

30011 // 01 Iy i 0 0 FL SR N all machine "on”
4 ¢ 0 F1 0 2 I1 { 0 1 Fl1L AHD \ auto cycle started
501 F1L © 3 1I1 1 0 0CCl CR

6 0001l 00Q01I2 GOF4 0O0C 1 cC i

7 0 0 02 RAMP N\ control acceleration

g 0 1 F1 1000 C 160 C | 0O 0O F4 SWITCH N\ f£full or Jog speed
9 ENDPC

10 VN LOTS OF COMMENTS may be added

11 N to describe the reasoning behind this PC element definition.
12 \ We c¢all a PC element definition a PBC word.

13 0 TASEK HOIST HOIST-DRIVE ENDTASK

14

15

FIGURE 3

First Australian Forth Symposium

[

§ 4
y&AlE
SOURCE CODE LISTING HOIST-DRIVE O

START PUSHBUTTON [sq § RUN
ag0 o 11 »wlﬁ é;ag 000 0 F1u
STOP PUSHBUTTON i g | auto cvcle started
G600 1 It ~04R | g
S— 4] |aND AUTO-RUN
0431.03 L - 000 1 Fil
RANUAL SELECT
gog 2 11
| IOR DRIVE-START
0451.04 L 000 0 o1
J06 PUSHBUTTON
000 3 11
0451.05
control acceleration
DRIVE-START RAMP DRIVE REFERENCE
0451.05 000 0 o1 —md ENABLE - goo o0 o2
SPEED-SETPOINT
000 0 1z ——d TNPUT
SPEED-LINMIT
0ot O Fé md + LI H
g C wed =L TH
i C ——aRATE
0431.07
full or jog speed
AUTO-RUN SWITCH SPEED-LINMIT
0451.04 000 L F3 g QN - 00 0 Fé
1000 ¢ ——
100 ¢ —
0651.08
3 ENDPC
10 5 LOTS OF COMMENTS may be acdded
11 Y to describe the reasoning behind this PC element definition
12 L We call & PC element definition & FC word.
13 R TASK HOIST

HOIST-DRIVE (PC 451.1)
ENDTASK
‘ .) FIGURE 4
First Australian Forth Symposium = 43

44

Additional Utilities -
al ILAN { industrial
communication
services, virtual
rransfers.

local
between one
terminal

Application programs may be promed by attaching a

area network } provides
or more RTIS20's for DISK
support, and PC data

Prom

burner to the serial port of the CPU.

The total
occcuplies a total of 256 kbytes.
The RTI500 could be described as
programmable controller, and

of AIE over the past 4 years.
considerable
based
computer
assembler
in boolean logic. It was
functionally different pieces of

systems.

would produce quite a powerful controller.
it was evident to us that

used Forth before,
obvious language to use for this

Just to give an insight into the
in PORTH}, twelve months ago we
Ivan Kramersh who's task it was
package called “auto batch” to

FORTH ©before he completed 90 % of the software in 6 months,
returned from commissioning our

has Jjust

system just described is entirely PROM resident,

a real
entire software system has been implemented by Mr.
Before joining AIE,
experience in implementing turnkey control
on programmable controllers which were hardwired to micro-
The microcomputers were programmed
whilst the programmable controllers were programmed
cbvious

and

a hyvbrid between a conventional
time microcomputer., The
Charles Esson
Mr. Esson had

systems
in macro
that cembining the two
control eguipment into one unit
Although never having
Forth was the
purpose.

systems extensibility (inherent
employved a graduate engineser Mr.

to add a flexible batch control
the RTISQ0. Never having used
and

first “autoc batch®

controllied pelletizing plant in Western Australia. The svstem ran

exceptionally well,

and we hope bto achieve considerable local and

internatioconal sales of the RTIS500 batching svstem as a result.

First Australian Forth Symposium

m%,m
b

= AlE |

What is a batching system ?

A batching system is one which combines a number of ingredients
defined by a specific formula to produce the end product.
Different formulae produce different products from the same basic
ingredients. i.e. (catmeal biscuits as apposed to muesli
biscuits). The RTIS00 batching system is PROM resident, and 1is a
an additional layer on top of the standard system. An example of
a batching system, and its configuration is presented below -

BIN | BIN | BIN | BIN

NQNUAL!
1

| EXTERNAL
| 1

First Australian Forth Symposium

45

s

& AlE

5

)&

| —

46

The sbove avatem may bes functionally decomposed into our basic

system elements as follows:

—
—
—
—
o
—
—

§ INPUT BINS AND
MANUAL STATIONS

FEEDERS
BCALES
FEEDERS
MIXERS
FEEDERS
EXTERNAL
EQUIPHMENT
Iin order to configure “Auto-Bateh” to the above system, the
following code must be executed:

1 BIN BINL O O FL EMP O O M4 sL

2 BIN BINZ O 1 FL EMP O 1 M4 50

2 BIN BINS O 2 FL EMP O 2 M4 sL

& BIN BIN4A O 3 F1 EMP O 3 M4 BL

5 MAN MANUALL O 4 F1 RT g 5 F1 Q7D

O O I1 BTN 1 3 C1 LHMP
0 6 Fi1 BUsSY O 7 F1 OKTP

i SCALE SCALE:L

1 0 F1 RTD 1 1 FL OTD O O 12 CRD

12 Fi1 BUSY 1 3 F1 OKTP 0O 0O M2 TARE

2 SCALE SCALEZ

1 4 F1 RTD 1 B F1L O7TD 0 1 12 CRD

16 F1 BUsy 1 7 Fi OKTP O 1 M2 TARE

BINI SCaLELl 1 PATH PATHLI-1

0 % 01l FFEED U 5 Q1 SFEED 2 © F1 FF

BINZ SCALEL 2 PATH PATHZ-1

O B Q1 FFEED O 5 01 SFEED 2 F1 FF

BINL SCALEZ 3 PATH PATHL-Z

0 2 01 FFEED O 2 01 SFEED 2 Fi FF

BINZ SCALEZ 4 PATH PATHZ-Z2

O 4 01 FFEED U 4 01 SBFEED 2 F1 FF

BINZ SCALEZ & PATH PATHE-Z2

0 1 01 FFEED O 1 01 SFEED 2 Fl1 FF

BIN4 SCALEZ & FATH PATH4A-2

00 01 FFEED O O Q1 SFEED 2 Fi FF

First Australian Forth Symposium

T
B ATE

H
T —

I MIXER MIXERL
3 0 F1 RTD 3 1 FL OTD
2 0 01 PUR 3 2 F1 DSA
2 X Fl1 ABRT & 4 F1 BUSY

IXER MIXERZ

Fl1 RTD 4 1 FI QTD

01 PUR 4 2 F1 DSa

Fi ABRT 4 4 F1 BUSY
Fi OKTP

LN S S S N
gre b O3

SCALEL MIXERLI 7 PATH PATH?

1 4 01 FFEED 1 4 01 SFEED 5 1 F1 FF
SCALEL MIXERZ & PATH PATHS

SCALEZ MIXERZ 9 PATH PATHS

i 0O 01 FFEZD 1 O 01 SFEED 5 3 Fi1 FF
MaNUAL 1 MIXERZ2 10 PATH PATHLO

0 7 01 FFEED O 7 01 SFEED 5 4 F1 FF

1 EXTERNAL EXTERNALL

MIXERL EXTERNALIL 11 PATH PATHI1Z1
i 7 01 FFEED 1 7 01l SFEED 5 & Fi FF
MIXERZ EXTERNALL 12 PATH PATH1Z
1 5 01 FFEED 1 5 01 SFEED 5 7 F1 FF

NOTE : All PC databasse points particular to & system element
follow directly after the elements definition and

all defined before the next element definition.

Concliusion

It is very satisfying to be able to say in hindsight,
asing Forth was an excellent decision. Taking

ceonsideration a time contraint of 4 man years, and a 256
kbyte limit on PROM space, (512 kbytes with the batching
sytem) it would have been impossible for us to implement the

RTIS500 software in any other language.

Extensions to the RTIS500 like the batching system, means that
future developments will widen our application base,
perhaps help to give Forth some of the credit it deserves.

Author : Gary Brown,
Systems Engineer.

Australian Industrial Electronics Pty. Ltd.,
47 Gatwick Rd.,

Nth Bavyswater,

Vic. 3183

Phone : 03 720 2511.

First Australian Forth Symposium

47

48

DESIGN PHILOSOPHY OF AN NC4P16-BASED MICROCOWPUTER
by Roy Hill

A little historicsl perspective may help to understand
why & very small {3 person) Australisn elesctronics
crganisation would be able to design, produce and market an
IBM type co-processor board that even the Americans would be

proud to claim as their own.

I wess introduced to amicros at a wvery easrly stage in
their development, by way of an evaluation board based on a
8582 processor. Those were the days when mieros were [irst
introduced to s “dazzled” indusiry with small, lismiited power
boards which enabled design engineers and OEH & to get their
hands on & workable development tool. My “tool" was a SYH-1,
nade by the now defunct Synertek Systems Ine. This board was
introduced to me by a colleague at the firm I had just left,
to take up teaching for TAFE. He also introduced me to the
exceedingly limited software available for the board - a
BASIC interpreter, =a Resident Assembler/Editor and Forth. I
had some previocus experience with BASIC (on a Data General
machine) &and with assembly, but this "Forth"” thing was a
totaslly new language. And Boy, did it take =some major
re~alignments of ay programeing paradigns. Prior to this I
slsgo had use of &8 Hewlett-Packsrd programmable calculator and
I wasn 't overly impressed with stacks. After sll, the HP was
g continual source of hardware problems, so that anything
that even resembled HP styles was enough to immedistely ring
alarm bells.

However, = software company in Canads was offering some
utilities and & newsletter on & bi-monthly basis, so I rolled
up with my subs and “started Forth.” It took several
sgonising weeks become a convert to this terse and compact
new langusge. Anvene who 15 introduced to this langusge
either becomes &8 convert or protsgonist. I became a zeslous
covert, snxious to spread the word. I sttended & symposium at
Queensland Institute of Technology and delivered & paper on a
Forth package for the Apple 1I. Pasul Walker attended that
meeting and went away alsso inspired. That inspiration is
largely responsible for this Symposium. At this time, I also
hed cduse to have my Lowrey organ serviced by two loecal
serviees technicisns. The problem wis rather ticklisgh and
required several return vigita. On one of these visits the
two technicians noticed my SYH-1 gnd the fact that it was
running Forth. Their interest wezs immediately aroused and the
two technicians {(now known sg HMaestreo Pty Ltd) went away,
firmly convinced that Forth was a good thing. The next step
was to sctually use it in software development for seversl
projects and then to adapt that experience to experiments
with Forth on the IBM and finally, on a prototype Hovix board
from Computer Cowboys. From this prototype came Chris and
Dan g ides of s total Forth system, based on the NC4€18 and
capable of being used either ingide an IBH, ocutside any
computer with & serial port (including an IBH) and & small 5
volt power supply, or with =2 simple serisl terminal and

monitor.

The two main motivating festures for the whole project
were the existence of Forth and the existence of the Nuviz to

First Australian Forth Symposium

rups 3t on. As mnost people are well aware, Forth uses a

chrnigue called “Subroutine Threaded Code” to perform its
task. In essence this means that Forth programs spend a large
amount of their time entering and exiting subroutines. Charles
Hoors optimised the Novix to enter and exit subroutines in sas
few asm 1 clock cyvele - & fairly impressive sachievement when
compared with existing Von Heumann style processors. Hasstro
{(Chrig and Dan) decided that it would be a challengs to produce
s board based on the Hovix chip. Further discussions produced
the idea that & co- processor board for the IBM would offer =
iasrge software development advantage. Current HNovix boards
{including the development system produced by Hovix themselves)
were far too sexpensive to enable the average hobbyist to
respond to the new technology.

i

s

"
&
=

{

The three of us then thrashed out a specification for the
board that we hoped would be fFairly impressive. The
specification stated:-

{a} The board had to cost well below A$188¢ so that the
"average hobbvist” could afford it.
{bY The board had to be usable by both existing Forth
programmers and complete tyros.
{c) The bosrd had to produce some immediate
demonstration of the power of the Hovix combined
with Forth.
{cdy The board had to operate in as wide a variety of
combinations as possible: -
- Inside an IBH XT/AT (not a "friendly"”,
electronically speaking, environment)
~ From the RS232Z2 port of virtually any
existing computer
- From the serial port of a simple
Terminal/Honitor
Given this third point, some form of socurce code storage
had to be provided to enable spplications te be stored and
retrieved after power down. This took the form of providing an
cn~board EPROM Programmer.

{ey The board had to provide more capability than being
"just another evaluation bosard.”

Chris and Dan were prepared to produce the board for
virtuslly cost price, in order to cover the first point
mentioned above. Providing slow (but cheap) static RAM as the
memory for the board was one way of trimming costs. Howsver,
users salso had to be able to upgrasde to faster chips {and
hence, to higher throughput speeds), without major hardware
modifications to the bosrd. This was provided for with a
programmable syvstem clock and the ability to replace the
crystal with a faster version. This is discussed in detail
further in the text. Board layvout was also a criticsl fsctor -
long tracks mean high inter track capacitance and lower speeds.
Also, design of hardware address decoding prohibited the use of
too many gates, as the decoding delays would prove
unacceptable. The overall design took two months from initial
concepts to first prototype. Incidentally, the prototype worked
first time - an extremely satisfactory result, given the
complexity of the bosard. One of the first things that

First Australian Forth Symposium

49

50

designers learn about prototypes is "if they work - don’t
change them."” Did we? Yes, I'm afraid we did. Chris has long
been interested in speech synthesis and it was decided to add
an 8 bit A/D-D/A converter to the board and s small smplifier
circuit to produce speech. High quality speech, too. Not
Donald Duck with a mouth full of breadcrumbe type speech, but
recognizable as coming from an individusal. One of the first
triale was to record me saying “Welcome to the Haestro HNovix
board.” It's an uncanny feeling to hear an exact reproduction
of one’s own voice, with no tape recorder in eviderice.

A PROGRAMMABLE SYSTEH CLOCK

The 4 x 28 pin chips in the top right hand corner of the
board are the RAM chips. The manner in which these chips are
used is quite an interesting exercise in computer design.
These chips are 43258 type static RAMS. Whilst this paper is
not intended to be a treatise on computer design or advanced
electronies, it is helpful to understand how this board has
been to developed with two msin criteria in mind:-

1The board had to run at the highest economically
feasible speed, in order to make the most wuse of the high
spesd processor.

2The board had to use readily savailable components that
were not too costly to enable the average home enthusiast to
purchase.

For these reasons, it was decided to provide the kit
with 43256-128 RAM. These chips run at 120 ns and are
relatively cheap, but unfortunately, only allow the Novix to
run at 4 MIPS. For an extras $78, 43256-18086 chips {(running at
180 ns) will enable the Novix to run at 6 MIPS. The manner in
whieh Chris has designed this board enables users to make
their own cost/performance selection without requiring major
board modifications. Let me explain how this is going to be
done. The clocks of most computers are designed as shown
beloy in Figure 1.

ety =3

Mark

Space
w P —

Figure 1. The design of the ‘symmetrical’ clock found in most contputers — iy is usunily
(but not always) the same time as {;. If t; is longer than by, the clock is ‘asymmetrical’.
This is as far as most computers go, in order to allow for RAM (which uses t;) that is
slower than the processor being used.

“£2% 3= uysusally (but not slways) the ssame time as "tl".
This is known as a “symmetrieal clock.” If "t2” is longer
than "tl1", the clock is known as an “"asymmetrical clock.”
This is as far as most computers go, in order to allow for
RAM (which uses “t2") that is slower than the processor being
uysed. Let’s have a look at how the HNovix would work under a
symmetrieal clock with the chip running at 6 MIP5. To run at
8 MIPS, the Novix would a "t1" of about 75 ns. To provide RAM

First Australian Forth Symposium

having a similar §§$%§ would cost the earth {(about €48 PER CHIP
and vou 'd need four times s= many of them). This would placs
the cost of the %@ﬁrﬁ way beyond the purchasing ability of all
but the most dedicated. However, 1If we provide the board with

ann asvmmetrical clock, we can make use of slower {resd less
expensive) RAH.

=t ¥ K65 ns

f { 130 us

An asymmetrical clock suitable for use with 100 ns RAM chips.
Y 7

W by —3 =65 ns -4
L B 110 nsméé P ‘
RAM ¢ :
Asymmetrical clock suitable for use wstﬁ 324} ns RAM chips. %\\
) \
24

m\s

{5~
ns 8ns

f
|
The effect of fall-time” {15) i

and hardware decode delays
{t, } ont access time.

Figure 2. Using an asynunciricol systen clock (1) # 1)) allows the use of slower and less
expensive RAM.

Hote +that esch of the RAM access cyeles is 18 ns longer
than the actual designated speed of the chips. This is to allow
the hardware time to decode the actual address of the c¢hip
being “talked to" and also to allow for the fact that none of
the verticals on the diagram is truly vertical. It is more like
that shown in Figure 3¢c. If we alsc make the clock totally
programmable, with variable mark/space ratios, we can make
provision for almost any speed of RAM and introduce another
very interesting aspect of Novix Power. This is what has been
done on the HNovix board and its use is very much 1like the
sccelerator/brake combination on & car. HNormally, the HNovix
runs at the full speed of the clock, but by placing a value on
the top of the stack (which is done by just typing in the
number and executing the word CLOCK, the clock speed is changed
to the wvalue that was placed on the top of the stack. In
practical terms, this means that the board can be user
programmed to run &t anywhere from full speed to about 2
seconds per clock eycle. The advantages of being able to do
this may not be readily apparent, however, this mesns that:-

1 We can perform dynamic de-bugging of source
code, simply by slowing down the clock to its
slowest speed and examining the source code as
it executes.

2 There are numerous advantages in having the
processor operate slowly - educational,
demonstrations data and return stack examination

First Australian Forth Symposium

51

52

<.

at , where the on-loocker can see the instructions
being pe

rformed in resl tise.

A/D ARD D/& IRTERFACE

The sddition of the A/D-D/A& converter and
sssociated support circuitry on-board salso means that
it is possgible to develop applications for data
scquisition/ control and roboties. The possibilities
of high speed video capture and sgsopisgted
applications are within the grasp of the hobbyist.

The final design consideration was that the whole
board had to be capable of being built as kit - cnce
agein to keep the cost factor down.

BOARD LAYOUT

The board is designed to occupy one of the 8 bit
slots in an IBM PC. However, the provision of a serial
port that handles a standard RS5232Z interface means
that it can alsoc be used in an external mode.

The Novix is the square PGA chip (IC1) in the top
Left Hand Corner. To its immediate left are the two
Data Stack chips (High and Low bytes - IC's 13 and
14). On its right sre the two Parameter Stack chips
(IC's 11 and 12). The main memory chips are the four
RAM chips below the Nowvix (IC's 28 - 33 inclusive),
whilst the system ROM (two x 27512 EPROMS) flanks the
main memory {(IC s 34 and 35).

The A/D and D/A section is located on the top
Right Hand side of the board, and uses the Analog
Devices AD7588 chip. This is a fairly fast 8 bit A/D-
D/A converter and its I/0 lines are alsoc taken ocut to
the DB25 connector on the extreme RHS of the board.

All that remains is to demonstrate its
versatility and wait for users to start feeding back
the spplications to which they are putting the Maestro
SuperComputer.

First Australian Forth Symposium

£

BREER BUYS 48-47

BaTa STACK BatTa BuS
HEMORY e
ADDEZSS BUS AB-AT
F
BETURR STACK , BATH BuE
nEnaRY pe-21%

<

LOCK SEHERATOR

B oroRY
®oOpOURT

REFT LumFUTER

geefal LimK

gtas wiey N f s

2ELLRnAAL -‘t
=28 HZ ¥5 ¥ &

fﬁf} &T4 BUZ
= L M nsTRUCTI ON
HOUVIX se-nis AND DATA
11 nceeis [FE) HEHORY
S Haly OR RO
ABBRERE Rﬁa
TI-- «->I
BELEY IRTERRUPT -
ieinzs p13PLAY l{-——- -
Leufe af PR
et
KEVEOARD INTERFPACE g(& e
TT (1315 -
4EDRTST
T8 STYLE RKEVEOAXS | fETeR -
A -

BLOCK DIAGRAM OF THE SUPERMICRO

FAST Ral

F?&QQ&& 14351
3#&?‘ LFRERS

H
§ (ﬂ&!&‘t §2§§ § E

FEFY
i/

gses
c8es
#gag
gase
4888
4688
2858
1589
a978
2886

g a:@@&.{ La%

ABBREZZ BDELEDER
i 87 8

U

2¥geEe

Eadild

OF 8 SELECTS

i

ROnH

FIGURE 3 - BLOCK DIAGRAM OF THE SUPERCOMPUTER

First Australian Forth Symposium

Fyee

EQUERCE
$CREENS

8gg8

8BIELCT
LobE

&888

53

PROTOCOL TESTING
USING FORTH

S.A. Leask and R.A. McNaughton
Telecom Research Laboratories
Clayton, Victoria.

1 Introduction

A communications protocol is a set of rules which governs the communication between two
or more entities such as computers, telephone exchanges, etc. A protocol may be simple or
complex, depending on the requirements of the communication. A protocol’s complexity may
be gauged by how elaborate these rules are, and by how much information is transferred between
the entities to perform a given task, e.g. to set up a connection. The more complex protocols
require sophisticated tools to verify their correct operation and analyze their performance.

In December 1986, Telecom Research Laboratories and Siemens AG (Germany) embarked on
a joint project to develop a test system for the Integrated Services Digital Network (ISDN)
Access protocol. Currently, a second project is underway to develop a test system for the
Common Channel Signalling number 7 (CCS7) protocol, which is used for the signalling between
telephone exchanges. Both these systems are based on the Siemens K1195 Protocol Tester using
the FORTH programming environment.

The FORTH language is particularly suited to this type of application. The khigh level nature and
extensibility of the language allow for quick prototyping. In addition, the FORTH interpreter
gives the programmer considerable power in interactive testing of his application.

This paper describes the various ways in which FORTH has been used in these projects, and
examines its strengths and weaknesses. The programming environment under which the test
software was developed is also discussed.

2 What should a protocol tester do

The primary function of any protocol tester is to monitor the data passing between two com-
municating entities (Figure 1a). In this role, the tester is a passive device, taking no active part
in the communication. However, it has access to all the data being transferred, and uses this to
perform the following functions.

Monitoring: The data exchanged between the two devices under test (DUTs) is displayed
in a meaningful way. A range of display formats should be available, ranging from a
primitive hex dump of the data to a comprehensive mode where the value of every bitfield
is reported, along with a textual description of the value. Filters should also be provided,
allowing only certain events to be reported. In this way, the tester can reduce the amount
of output provided so that only the events of interest are displayed. Triggers, which allow

First Australian Forth Symposium

K118s

PROTOCOL
TESTER
DEVICE DEVICE
URDER UHDER
TEET TEST
1 | #2

Figure la. Using the protocol tester as a monitor.

BEVICE 1195
igsf’g PROTOCOL
SRSt = | TESTER

Figure 1b. Using the protocol tester as a simulator.

a user-programmable action to be performed when a particular event occurs, may also be
provided.

Logging: In addition to on-line display, a protocol tester should provide facilities to record the
data onto a permanent medium such as magnetic tape or disk. This permits the storage
of larger amounts of data than can be stored in memory, as well as allowing the data to
be analysed off-line at a later stage.

Analysis: In both on-line and off-line modes, the tester should be capable of performing some
level of analysis on the received data. This analysis may consist of generating some stan-
dard performance criteria, e.g. data throughput, or some user-defined criteria e.g. the
proportion of attempted call setups which were successful.

For more comprehensive testing, the protocol tester may take the place of one of the sides of
the communication link (Figure 1b). In this mode, the tester takes an active role in the com-
munication, subjecting the device under test to a known set of stimuli, and then checking that
it generates the correct response. This mode of operation is known as simulation or ermulation,
the distinction being that a simulation performs a user-programmed protocol behaviour { pos-
sibly incorrect, to check for correct error handling), while an emulation performs a correct,
hard-coded protocol behaviour.

In the simulation and emulation modes, all the facilities available in monitor mode remain
available. In fact, some of the analysis functions may be used to test the performance of the
tester in these modes!

Finally, a protocol tester should provide sufficient support for the user to program a simulation.
This support consists, in the case of a FORTH environment, of words to

First Australian Forth Symposium

55

56

-
MAIN CPU E FRONT END CPUS WTERFACE g’f«w* CORNECTOR
512 Koyte AAM| | |1 Moyte RAM \— | Mooues
CHY CONT, | DA CONT, LEVEL V.114%.21
DK LT % USARTS s FEANG. V.24/V.28
CRIARTE i1 couTERS 1aTORS 5 Vi3s V.38
CLOCKNIDED i maERs sAlL 188C

g 0 ¢

STANDARD VME BUS

n U U3

e A TOUE
DUAL (PHINTER} (REMOTE)
% foeey | OONEOE DISPLAY ! *

Figure 2. Hardware configuration of the Kil95

Recognize particular events, e.g. to detect the receipt of a particular frame.

L]

Perform data transmission e.g. to send a particular frame.

L]

[]

Construct frames prior to transmission in a user-friendly way (as distinet from requiring
that the data be specified as a pre-coded string)

[

start, stop, and recognize the expiry of timers.

3 Hardware Configuration

The Siemens K1195 Protocol Tester is a multi-processor VME bus based data test computer,
which uses a multi-tasking real time software environment (Figure 2).

Motorola 68000 microprocessors are used on each CPU board (running at 8 MHz), each of
which maintains its own FORTH dictionary. This allows the simultaneous execution of a FORTH
application on each CPU.

The main CPU board contains 512 Kbyte of on-board RAM, and performs such tasks as CRT
control, floppy disk control, management of the real time clock, and generation of external video
signals. A 64 Kbyte buffer is reserved for the system’s text editor, the software for which is
contained in the main CPU’s FORTH dictionary.

The other CPU boards are used as front-end processors for the data streams being analysed, and
are capable of both receiving and transmitting on those streams. Each of these boards contain 1
Mbyte of RAM, and their FORTH dictionaries contain the application software for the protocol
testing. Any user-programmed software { either additional FORTH words or simulation test
scripts) is placed in the RAM of the front-end CPUs.

For large applications, 1 Mbyte may not be sufficient storage for the FORTH dictionary. In
this case, a standard memory extension card for the VME bus may be inserted into one of
the spare card slots. Software support exists in the basic K1195 FORTH dictionary to allow
such a memory extension to be linked to any of the CPU boards. This software renders the

First Australian Forth Symposium

discontinuity of memory addresses between the top of the CPU RAM and the bottom of the
memory extension RAM invisible to the programmer. In the case of the ISDN protocol test
system, a memory extension card is required to run the software.

Two auxiliary serial RS232 ports are also provided. The first of these is used to connect to
a printer, allowing both source file listings and dumps of data traffic to be printed. The data
traffic may be printed in any of the formats provided by the monitor function.

The second of these ports can be connected to a remote terminal or network control centre,
allowing the K1195 to be operated remotely in a master/slave configuration.

4 FORTH Flavour

The “flavour” of FORTH used on the K1195 is based on FORTH-79, Fig-FORTH, and 68k
FORTH with considerable enhancements. These enhancements reflect the specific system design
of the K1105 as a self-contained computer, in addition to providing support for data communi-
cations. They include disk file system tools, a text editor, display enhancements, and support
for timer manipulation, configuration of the test ports, and receipt and transmission of data on
these ports.

The structure of a K1195 FORTH dictionary entry is shown in Figure 3. The K1195 uses 32
bits for each address, which requires that each dictionary entry has a code field size and a link
field size of four bytes each. If the dictionary entry has been generated by a colon definition, the
parameter field will be a multiple of 4 bytes long. To avoid accessing or writing to odd memory
locations, the name field is a multiple of two bytes long. The name string, like all strings used
on the K1195, is stored with the first byte containing the length of the string, and subsequent
bytes containing the string characters. If the entry’s name has an even number of characters,
and hence the name string uses an odd number of bytes), an unused byte is placed before the
name field to ensure the link field is aligned to an even address.

5 Development Environment

The task of developing software for the K1195 (once a specification and design has been com-
pleted) consists of the following steps.

writing an initial version of source code in FORTH

@

compiling this code to add new words to the existent dictionary.

L]

Debugging the software, and making subsequent modifications to the source code, followed
by recompilations.

[]

Saving a binary image of the dictionary once debugging is complete, which may be copied
directly intc memory at a later stage.

@

it is possible to perform all of these steps on the K1195, using the editor, the K1195 filesystemn,
and the FORTH interpreter. However, due largely to inadequacies in the K1195 filesystem, it

First Australian Forth Symposium

57

58

PREAMETER FIELD

in bytes
I %
;g?xm% .
) COUE FIELD T increasing
v memory
Cra - 4 bytes
LINK FIELD
LEB ol 4 bytes
MEAME FIELD
g 2n bytes %
Figure 1. H1195 FORTH dictionary entry

was decided to make use of a UNIX host { initially a VAX 750 running UNIX 4.3 BSD, followed
by a microVAX running ULTRIX,) for a large part of the development. The development and
subsequent management of the FORTH source code was therefore facilitated by the use of more
sophisticated text editors, a hierarchical directory structure, a range of standard UNIX text
utilities { such as “grep” for locating occurrences of a string in a file, “sed”, a stream editor for
multiple changes, etc.), and the RCS revision control system for maintaining different versions
(both release and intermediate) of the software.

The K1195 was used to perform compilation and debugging of the software, although it was
possible to obtain a FORTH interpreter for the UNIX host. This was because the software
made considerable use of the data communication specific enhancements in the standard K1195
FORTH dictionary, which were not available on the UNIX host. Testing on the UNIX host could
therefore only verify the correct operation of a small part of the software, leaving any words
which manipulated the K1195 hardware untested. In fact, the nature of the development meant
that these words were more experimental and hence were likely to contain the most errors!

Files were transferred between the UNIX host and the target K1195s by means of an asyn-
chronous data transfer package called “rfilex”. The machines were connected by a direct line
between a terminal port on the UNIX host and the remote port on the K1195. In addition
to transferring the source files, “rfilex” converted them into the correct format required by the
K1195 filesystem, and stored them on 3.5 inch floppy disks. One K1195 was used exclusively for
the purpose of up/downloading files, and the disks so produced were compiled on other K1195s.

First Australian Forth Symposium

6 Productivity Aspects

The exponents of FORTH claim that it has compactness, extensibility, an interactive interface,
speed and a top down approach. Our experience has found the first three to be useful but the
last two to be in some doubt.

The main advantage that using FORTH brought to the project was its interactive interface. This
was useful for trying various options and i iately being able to verify the results, and for
patching the software without having to do a complete recompile. Of course, anything altered
interactively also had to be added to the source code and ultimately recompiled and tested but
there was a high probability changes made this way would work first time. Care had to be taken
though, to keep track of what changes had been made interactively and to make sure they all
did eventually get put in the source code.

It is difficult to compare the compactness of FORTH code with some other language because
the software would certainly have been designed differently if say C was used. Also, using C
would mean that the overhead of maintaining a dictionary would not be required but a more
complex support environment and a means of executing the code would be.

FORTH is certainly extensible. Later sections of this paper will explain features that were added
to FORTH to ease the development of this software. There are dangers in this approach though.
If the extensions are machine specific, then the software loses its portability and in this case all
development and testing had to be performed on the target hardware which was quite expensive.
If the extensions are not machine specific, they still add to the final code size and speed and
make it harder for another programmer to understand what is going on.

7 Disadvantages of FORTH

The main disadvantage of FORTH on this project (which involved several programmers) was
the way that one person’s code could inadvertently modify another persons and the lack of any
rigid interfaces between different parts of the software. This meant that there was a substantial
integration phase that had to be performed, where all the different parts of the software were put
together and run. This was usually done just before a deadline was due and it meant that testing
time was often spent rewriting software because of a misunderstanding between programmers.
If & language such as Modula-2 was used, that forced the interfaces between modules to be
explicitly defined, these episodes would probably have been minimised.

FORTH has no range checking, pres ly in the interests of speed. This meant that a store
operation could be performed using any number on the stack as an address, even if this was
illegal or in & part of memory that you had nothing to do with. In the first case, if the address
was odd and you were attempting to store a full word, the machine would crash requiring a
reboot (this was later modified so that a reboot was not required but you were still returned
to the FORTH interpreter from your application). In the second case, the error may not be
discovered until the code that was modified was then executed, often only revealing very subtle

bugs.

There is an overhead involved every time a FORTH word is called from another FORTH word.
The CFA of the called word must be fetched from the PFA of the calling word and transferred to

First Australian Forth Symposium

59

60

and the return address saved on the return stack. This overhead proved to be too expensive in a
number of cases, resulting in some words being coded directly in assembler. It also meant that
FORTH’s top down design approach could not always be used because it resulted in too much
nesting. In one extreme case (moving a byte from one location to another and post-incrementing
the source and destination pointers) can be up to a hundred times slower in FORTH than the

single assembly language instruction requirved.
¥ g

Also on the subject of design, it is possible to manipulate the return stack and force a word to
not return to the word that called it, but to the word that called the calling word or some other
word. This is useful sometimes to reduce the amount of nesting of IF statements for example,
but when it comes to debugging it makes the debate about GOTOs and “spaghetti code” in
BASIC seem trivial. Care must also be taken in jumping out of loops because the return stack
is used here as well.

As a final point on the FORTH environment, you can easily be initially impressed by the amount
of control the FORTH interpreter gives you over the stack, the return stack and the complete
memory and resources of the machine. But after laboriously tracking down bugs that turn out
to be simple coding or typing errors, you begin to appreciate the more traditional approaches
that take some of this control away from you and perform some of the more tedious tasks such
as stack manipulation for you.

8 Generic Design

Telecommunication protocols are usually standardised by international bodies such as the CCITT.
However, in many cases, certain design decisions are left to the national telecommunications
provider, e.g. Telecom. Differences in protocol specifications are therefore commonplace in
different countries.

To be useful for more than one national variant of a protocol, testing software should be designed
8o that a minimum of source code has to be rewritten to adapt it to a new variant of the protocol.
This has led to a design strategy of representing a protocol specification in a descriptive rather
than a procedural way i.e. by use of data instead of instructions.

An example of this strategy can be found in the way the structure of data frames is represented.
A procedural method for coding a data frame would require a new FORTH word for each
national variant of the frame structure. A descriptive method would only require one FORTH
word, which would code the frame according to data found in defined tables. Changing the table
contents would alter the structure of the coded frame. The table contents may be likened to a
blueprint of the frame structure.

It should be pointed out here that a descriptive method involves a specification of how the data
in the tables is to be organised, and such a specification limits the differences in the protocol that
can be catered for. A simple data organisation can only be used where the protocol differences
are minor. In general, as the differences in the variants of the protocol increase, the data
representation of the protocol must become more elaborate.

Fortunately, national variants of the ISDN Access and CCS7 protocols are similar enough to
allow the descriptive method to be widely used throughout the software without the data or-

ganisation becoming prohibitively complex.

First Australian Forth Symposium

FORTH is well suited for both procedural and descriptive methods of protocol specification.
Two ways may be used to implement a descriptive method. By using pointers to data tables,
and having several versions of these tables in memory, the protocol specification may be changed
quickly by altering these pointers to address a different set of tables. A more memory efficient
way is to use only one set of tables, obviating the need for pointers, and to overwrite the table
contents every time a new protocol specification is required. The disadvantage here is that this
can only be done when the software is compiled.

The basic K1185 FORTH dictionary contains the words DOER and MAKE to facilitate the
procedural method of protocol specification. When the FORTH interpreter encounters a colon
definition, a new word is both declared (it may be used by following words } and defined (its
actions are specified). The DOER and MAKE words enable other FORTH words to be declared
and defined at different times in the compilation. Such words may then be redefined if required.

An example is appropriate here.

A word { CLEAR_CALL Jis declared by the FORTH sequence

DOER CLEAR_CALL

This creates a dictionary entry for the word CLEAR_CALL, which may then be used in subse-
quent definitions. At this stage, CLEAR_CALL performs no action. At a later stage, this word
may be defined to perform some action by using MAKE, for example

MAKE CLEAR_CALL
BREAK CONNECTION
FREE_RESOURCES
RESET_TIMERS

Now, whenever CLEAR_CALL isinvoked, the words BREAK_CONNECTION, FREE_RESOURCES,
and RESET_TIMERS will be executed. This is true even for words which invoke CLEAR_CALL
which were defined before the MAKE operation.

To change to a different variant of the protocol, in which a call clearing sequence consists of
different actions, the following code may be executed

MAKE CLEAR_CALL
SEND_CLEAE_REQUEST
WAIT_FOR_CLEAR_ACKNOWLEDGE
FREE_RESOURCES

Another form of procedural specification is the use of pointers containing the addresses of
FORTH words which execute the protocol. If a different protocol behaviour is required, a
new word can be defined to execute this, and the pointer reset to contain the address of this

new word.

First Australian Forth Symposium 61

62

All of the above methods have been used successfully in the protocol testing projects to imple-
ment different protocol variants. The choice of one of these methods over another depends on
which aspect of the protocol definition is being represented. For example, the use of pointers
to data tables was considered the most suitable method of coding data frames, while vectored
execution i.e. using arrays of addresses of FORTH words was deemed most suitable for decoding
and displaying received frames.

9 C-FORTH Interface

FORTH compares favourably with other high level languages in terms of execution speed. How-
ever, in certain parts of protocol testing software, the speed requirements cannot be met by
using FORTH alone. This is particularly true when analysis is being performed on a high speed
data stream.

To improve the speed performance of a FORTH based program, the number of levels of nesting
of FORTH words can be reduced. Ideally, for time critical procedures in the software, this should
be reduced to one level by coding the procedure in assembler, and storing the resultant machine
code in the parameter field of a FORTH word. The code field of that word should contain the
word’s PFA. This is the method by which the lowest level FORTH words in the dictionary are
defined. The problem here is that while execution time is reduced, the time taken to develop
software in assembler is many times that taken using FORTH.

To overcome this problem, a C - Motorola 68000 cross compiler was used on the UNIX host.
This approach has the dual advantages of decreasing software development time, while allowing
a proportion of the software testing to be done on the UNIX host, taking advantage of debuggers
such as “dbx”.

The process of running a C program on the K1195 involves three stages:

e Compiling the program into 68000 executable machine code
e Loading the compiled machine code into the K1195 RAM

o generating FORTH dictionary entries to execute the code and access any variables

This process is illustrated in Figure 4.

The distribution of the software between C and FORTH was determined by the speed require-
ments of individual modules in the software. Time critical modules (generally those which
are required to process data while it is being received by the K1195) were developed using C.
Other modules were written in FORTH. In addition, the user interface to the software was kept
entirely in FORTH to give the end user of the K1195 the full flexibility of the language.

A range of utilities, both in FORTH and C, were developed to provide a usable cross-compile
environment. The first of these was a FORTH word designed to load a binary file generated on
the UNIX host into the K1195°s memory.

CLOAD (filename - - }

First Australian Forth Symposium

C source program

¥

C cross compiler

Binary file Interface file
UNIX host
K1195
FORTH
DICTIONARY
Pws FORTH
CLORD Additional interpreter
FORTH
words

Interface words
to C-generated
code

C-generated
machine code
and data

FYY YN

Figure 4. Development process using the C cross compiler.

CLOAD examines the specified file, firstly checking that the magic number in the file header is
that of a binary file suitable for execution. If it is, the header is then consulted for the sizes in
bytes of the three segments of the program (text, data, and BSS), as well as the address at
which the binary is to be loaded. The text and data segments are then copied to this address,
and memory is reserved for the BSS segment. Finally, the start address and the three segment
sizes are reported to the K1195 screen.

FORTH words are also required to interface to this binary code, i.e. to call procedures and
access data. In order to automate this, the C cross compiler was modified so that if the source
file being compiled contained the dummy enumerated type

enum FORTH_IF;

an auxiliary file would be produced. This file contains a line for each variable, pointer, array,
function, or structure offset defined in the C program. Each of these lines is of the form

number symbol_type identifier

The identifier is the same as that used in the C program. The number depends on the symbol
type. If for example, the symbol type is that of a variable, the number is the address where the
variable is stored. If it is a structure offset, the number is the number of bytes to be offset. If
it is a function, the number is the address of the entry point to that function.

First Australian Forth Symposium

63

64

The following symbol types are currently supported.

SYMBOL TYPE DESCRIPTION

CL long variable address (4 bytes)
CW short variable address (2 bytes)
ce byte variable address (1 byte)
COL structure offset to a long variasble
cov structure offset to a long variable
coc structure offset to & long variable
CFH entry point to a {-defined function
CB base address of a atructure

8 gtructure type

CARY base address ¢f an array

CPTR pointer address

To further facilitate the use of the cross compiler, FORTH words were defined for each of the
supported symbol types. These words are compiling words, and allow the auxiliary file to be
used directly as a FORTH source file to generate the required interface words. For example,
executing the line

OxB8000 CL varisble_nanme

will cause a dictionary entry of name “variable name” to be created, the run-time action of
which will be to return 68000 (hex) on the stack, in much the same way as a standard variable
returns the address where the value is stored. Executing the line

088100 CF¥ function_name

will cause a dictionary entry of name “function.name” to be created, the run-time action of
which will be to begin execution of the machine code starting at address 68100 (hex). Executing
the line ‘

20 COL offset_name

will cause a dictionary entry of name “offset_name” to be created, the run-time action of which
will be to add 20 to the value on the top of the stack, thereby offsetting a base address of a
structure to generate the address of one of its elements.

This process automatically generates an interface word for each function, variable, structure
base, structure generator, structure offset, array, and pointer declared in the C program. If
FORTH interface words are not required for all of these, the appropriate lines may be deleted
from the auxiliary file prior to downloading to the K1195,

First Australian Forth Symposium

tash Table NFA Lists Main Dictionary

0 PrA
& & LFA
& ® CFA
NFA
. PEA
0 LFA
E] 2 & CFA
™ | 4 1

L] &
NFA
) PEA
& E LFA
CFA

@&
—3) NFA

FIGURES. -~ Hash Table Structure .

10 FORTH Software Development Utilities

During the course of the protocol testing projects, a range of utilities have been developed in
FORTH which have become part of the standard K1195 FORTH dictionary. These utilities have
enabled the software development to proceed in a faster, more efficient, more structured, and
less error-prone manner. As such, they serve as excellent examples of how the extensibility of
FORTH enables the programmer to improve the language and overcome many of the deficiencies

of standard FORTH.

10.1 Fast Compiler

When the FORTH interpreter compiles a colon-defined word, it must search the dictionary to
find each of the component words of the definition, so that their Code Field Addresses (CFAs)
may be placed in the Parameter Field of the new word. This process originally employed a
linear search algorithm, which became slower as the compilation proceeded and more words
were added to the dictionary.

By using a hash table to improve the search algorithm, the compilation time for a large appli-
cation { the ISDN protocol test software) was reduced by approximately two thirds. When a
word is encountered, it is only compared to those dictionary entries whose names are hashed
to the same value. The Name Field Addresses (NFAs) of these words are chained together as
shown in Figure 5. When a new word is added to the dictionary, the hash function is evaluated
using its name, and its NFA is then added to the head of the appropriate chain. The number of
NFAs stored in each link of the chain (three) was chosen to minimise the amount of storage
required by the hash table and linked lists for a given number of dictionary entries,

First Australian Forth Symposium

65

66

10.2 C-like Structures

In order to allow more readable FORTH code to be produced, a series of words were defined to
implement C-like data structures. In addition, these words allowed multiple instances of a set
of data without the overhead of & new set of FORTH variables for each instance. These words
are as follows.

STRUCTURE (- ~03
END_STRUCTURE (n - -)
CHAR {n~-n+13
SHORT {n=-=n+2:7

- LONG {n=-=n=+4}
CHAR_ARRAY (n\m - -n+n)
SHORT ABRAY {(n\m - - n + 2¢m }
LOBG_ARRAY (o %\ m -~ - n + 4%pm }

The usage of these words is best explained by example. Consider the following

fine the word DATE to be s structure)

STRUCTURE DATE { de
{ generator with the following contents)
(4

LONG DAY bytes)

LONG MONTH { 4 bytes }

LONG YEAR { 4 bytes }

8§ CHAR_ARBAY DAY _HAME { 7 bytes }

4 CHAR_ARRAY MUNTH_NAME { 4 bytes)
END_STRUCTURE { end the structure definition }

The code between the words STRUCTURE and END.STRUCTURE defines the size of the
structure. This is done by updating the top element of the stack as each structure element is
encountered. When the structure definition is complete, the size is assigned to the word DATE.
The following line

DATE TODAYS_DATE { generate an instance of the structure }

then generates a dictionary entry with name TODAYS_DATE, and reserves enough memory to
fit an instance of the structure. When TODAYS_ DATE is executed, the base address of this
memory is returned. The element operators; DAY, MONTH, etc., then add the appropriate
offset to this base address, thereby returning the address of the required element. The following
lines of code

1988 TODAYS _DATE YEAR | (set the year to 1988)
TODAYS_DATE MONTH € (return the month)

illustrate the use of these operators to access the required structure elements.

First Australian Forth Symposium

10.2 BModules

One of the greatest criticisms levelled at FORTH is its lack of local variables and procedures i.e.
every variable and procedure is global and may be accessed by any subsequent FORTH word.
This property of FORTH prevents good software modularisation, where only a well defined
interface to each module is visible to other modules.

To overcome this deficiency, the following words were defined.

MODULE
END_MODULE
EXPORT

The use of these words is illustrated below.

MODULE module_nanme
{ definitions of FORTH words internal to this module)

EXPORT word_1

EXPORT word_2

EXPORT word 3
END_MODULE

The word MODULE marks the current top of the dictionary for later use by EXPORT. EXPORT
is used to specify which of the words defined in this module are to be visible to other subsequent
FORTH words. This is done by linking the following word to the previous word specified by
EXPORT, or, if the word is the first to be exported in the current module, by linking it to the
last word defined before the module was begun. END MODULE causes the last word specified
by EXPORT to be marked as the latest defined word in the dictionary, so that the next “normal”
word defined will be linked to it. The implementation of these words requires all the EXPORT
operations to be done just prior to the END MODULE word.

10.4 Fast bulfer routines

Timing analysis of protocol testing software shows that a considerable amount of time is spent
manipulating data buffers. One example of this is when a frame is being decoded, and the buffer
it iz stored in is scanned, byte by byte, while each field of the frame is extracted and displayed.
Another is when a frame is being coded for transmission. Here, each byte is coded and placed
in the next available location in the transmission buffer.

The following words were defined to facilitate buffer operations. They were coded in assembler
to optimise their speed. Their use has lead to speed improvements of 20-30% in typical frame
decoding/coding operations.

CP_SET { Buffer Start Address \ Count --- }

First Australian Forth Symposium

67

68

usad ¢ remaining
i
i
first byte curgent byts {i’:?% last bytse

current bit (B8P}

Figure 6. Use of pointers in fast buffer routines.

Injtialize four internal system variables which will enable the
gpecified buffer to be managed by the system. The current pointer
will be set to the start of the buffer and the Bit Pointer will

be gset to bit 0.

CP_START (---)
Will move the current position to the start of the bulfer.

CP_END (---)
¥ill move the current position to the end of the buffer.

7CP_REMAIN (--- COUNT }
Returns the remaining length of the current buffer.
{ See Figure 6.)

?CP_USED (--- COUNT) ‘
Returns the used length of the current buifer.
{ See Figure 6.)

¢P (--- POINTER)
Returns address of the current position within the managed buffer.

NEWCP (pointer --- flag)
Sets current position to the supplied address if it is within the
buffer. A -1 is returned if the ney position was within the
buffer, or a 0 is returned if the position was outside the buffer
and the current position wasn’t changed.

CP++ { --- flag)
Tries te move the current position within the buffer one

byte towards the end of the buffer. A -1 is returned on success.

CP-- (--- flag)

First Australian Forth Symposium

Tries to move the current position within the buffer one
byte towards the start of the buffer. A& -1 is returned on success.

+CP (OFFSET --- flag)
Tries to move the current position by OFFSET bytes. A positive
OFFSET will move the current position towards the end of the buffer.
If the resulting position is within the ed buffer a -1
js returned on stack, if not, the position is unchanged
and a 0 is returned.

@cp (--- BYTE)
Returns the byte from the current position within the managed buffer.

{CP { BYTE ==)

Stores the byte on the stack in the current position of the managed buffer.

ecp++ (--- BYTE \ flag)

1cp++ (BYTE --- flag)

g¢cp-- (--- BYTE \ flag)

icp-- (BYTE --- flag)
These words combine the byte fetch or store operations with a
post-decrement or post-increment on the current position pointer.

10.5 Fast Bit Stream Routines

The byte operated on is that at the current position within the managed buffer. The Bit Pointer
(BP) is set to Bit O whenever the current pointer is moved.

BP { --- bit number)}
Returns the bit number currently pointed to. (see Figure 6. J

BP++ { ===}
Tries to move the Bit Pointer within the byte one bit towards Bit 7.
The pointer will not be moved past Bit 7.

BP-- (---)
Tries to move the Bit Pointer within the byte one bit towards Bit 0.
The pointer will not be moved past Bit o.

+BP (OFFSET ---)
Tries to move the Bit Pointer by OFFSET bits. A positive OFFSET will
move the Bit Pointer towards Bit 7 and a negative OFFSET will move
towards Bit O. The pointer will not be moved past either Bit 7 or

Bit O.

GBP++ (number bits --- bits)
Will fetch the number of bits specified from the current
Bit Pointer position.

First Australian Forth Symposium

69

The Bit Psintsr iz moved to point at the bit following the last
fetched but will not be moved past Bit 7.

iBPe+ { bits \ number bits --- }
Will store the number of bits from the low order bits of the supplied
valae at the current Bit Pointer position. The Bit pointer will be
moved to point at the bit following the last bit steored, but will
not be moved past Bit 7.

10.6 String table generators

Standard FORTH allows tables to be conveniently generated by use of the , (comma) word.
This word stores the top stack value on the top of the dictionary, and advances the dictionary
pointer. In the following example, a table is generated containing the values 1, 2, 3, and 4. The
base address of this table is returned by the word TABLE START.

CREATE TABLE BTART 1 , 2, 3 , 4,

However, creating a table of string addresses is more complicated, as the strings themselves
must be stored somewhere. Ideally, the strings should be stored starting directly above the
table, but the size of the table is not known until the final table entry is declared. To facilitate
this procedure, the following words have been defined.

INIT STR_TiB
END_STR_TAB

&
B

INIT STR_TAB is used to reset a pointer to the start of an unused portion of memory. Each
string which is to have its address stored in the table is then declared using the ,” word, as
in ,” string” . Note that the string is delimited by the next occurrence of the ” character.
As each string is encountered, it is temporarily stored in the unused portion of memory, along
with the address of the table entry which will eventually contain the string’s address. The
dictionary pointer is advanced by one table location, but nothing is stored in the table yet.
When END STR_TAB is encountered, all the strings are copied directly above the top of the
table, and their starting addresses are stored in the table. The following example illustrates the

use of these words,

CREATE TABLE_START
INIT_STR_TAB

Lt ostringl®

P ostring2”

L stringd”
END_STR_TARB

The dictionary pointer is advanced to just past the last byte in the last string. In this manner,
the strings themselves become embedded in the dictionary.
70 First Australian Forth Symposium

@ @

10.7 Debugging utilities

The following words form part of the standard K1195 dictionary, and have been used extensively
to assist in the debugging of the protocol testing software.

FIND (- -)
Usage: FIND word
Reports all dictionary entries which use the specified word.

DECOMP (- -)
Usage: DECOMP word
Reports all the component words used in the definition of the
specified word.

ALTER (- -)
FROM (- -)
T0 ¢(--)
Usage: ALTER wordl FROM wordZ TO word3
Causes the first cccurrence of word2 in the definition of wordi
to be overwritten by wordd.
UNALTER (- -)
Usage: UNALTER
Causges the last ALTER operation to be reversed.
NULLIFY (- -)
Usage: NULLIFY word
Alters the delinition of the specified word so that it does
nothing.
CHANGE (- -)
NG (- -)

Usage: CHANGE wordl INTO word2
Alters the definition of wordl so that it exescutes wordZ only.

SEARCH { string_address - -)
Usage: " string"® SEARCH
Reports all words in the dictionary which contain the given

string as part of their names.

11 Conclusions

FORTH appears to have limitations when it is used in a large, multi-programmer environment.
There is insufficient protection of one persons code from modification by someone else’s and
there is no formal, enforceable method of defining the interfaces between modules of code.

However, FORTH does have definite advantages in the prototyping environment. The interpre-
tive interface and the ability to modify the code currently in memory make quick “hacks” and

First Australian Forth Symposium

71

72

trial and error solutions quite feasible. Also, FORTH’s extensibility allows new features to be
added to the language and these can overcome some of the above problems, but they make the
code less portable. Even when C was used for its speed, the FORTH interface was retained for
these advantages.

1Z References

i. K1185 User Manual, Siemens AG

2. Leo Brodie - Btarting FORTH
Prentice-Hall Inc., 1887

Z. Anita Anderson, Martin Tracy - Mastering FORTH
Brady Communications Company, 1084.

4. 5.Leask - IBDK Access Signalling Emulator
IREECON, Sydney, September 1987.

5. B.Dingle, W.Bartelt - IBDH Access Testing
IREECON, Sydney, September 1087.

13 Acknowledgement

The permission of the Chief General Manager, Telecom Australia to publish this paper is hereby
acknowledged.

— End -——
March 31, 1988

First Australian Forth Symposium

