Virtual Machine Generator

January 13, 2013

Copyright © 2002,2003,2005,2007,2008 Free Software Fatiml, Inc.
Permission is granted to copy, distribute and/or modifg tacument under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by tleeBoftware Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of therge is included in GNU Free Documentafion Licénse.

Software Version Date

0.0.0.1 01/01/13
Contents
[L__Vmgen documentation 3
L1 Introductioh e 4
L2 WOy IMMEIpreters? - . . . o oo o oo e e 5
L3 Conceplso 5
[1.3.1 Frontendand VMINterpretero v v v v it i 5
132 Datahandlifig o ot 6
L33 DISpatdn . . . oo oo 6
14 _1nvokingVmgeh 6
L5 Example oo o 7
[15.1 EXample Overvigw oot e 7
[1.5.2 _Using profiling to create superinstructions 7
[1.6 _InputFile FOrmat o o o 9
161 InputFile GrammBr. v v vt e e e e 9
[1.6.2 SIMpleinstructions oo e 11
[1.6.3 Superinstructions 17
64 SOre OpUMIZAION . . « « « o v o o oo e e e e e 18
[1.6.5 Register MachilleS oottt e e e 19
(1.7 _Errormessades it 20

Confidential vmgen
[1.8 Usingthegeneratedchdde i 20
181 VMengink o 21
[1.8.2 VMinstructiontable 29
[1.8.3 VMcodegeneratibn oo 31
[1.8.4 Peephole optimization 31
[1.85 VMdisassembler 32
[1.8.6 VM p[Qfle}’ .. 32
O HIN . . . o o 33
191 Floating POift v vt e e e 33
L0 TRETUIUIE « « . o o o o e e e e e e 33
LI CONMabt . . . o oot e e e 34
[2_Virtual machine implemenIaIiQd 34
2.1 _ArrayForthapplication files e 34
211 README 34
[2.1.2 simple.mini- example MINiProgram o oo e 35
[2.1.3 fib.mini- example MiNiProgramt i e 35
[2.1.4 test.mini - example mini program (tests everything)... 36
2.2 _Minispecificfilels 39
... 39
[2.2.2 Support.c - main() and other support funclions L 41
223 minih-commondeclaratidns 46
ini-i i INSIIUCHIONS o e e e e e 48
[2.2.5 mini-super.vmg - superinstructions (empty atfirsty 48
INLL-SCanNner e e e e e 49
[2.2.7 _mini.y - frontend (parser, VM code generator)ot 50
i i i ions not all@hip superinstructions 52
2.3 Genericsupportfiles 54
2.3.1 peephole.c-wrapperfile 54
2.3.2 profile.c-wrapperfile 57
[2.3.3 disasm.c-wrapperfile 60
[2.3.4 engine.c - wrapper file . 61
[2.3.5 _stat.awk - script for aggregating profile informdtion L. L. L. 63
[2.3.6 seq2rule.awk - script for creating superinstrugtion. 64
| — , I 64
Confidential Page 2 of 88

Confidential vmgen

41 GNUGENERALPUBLICLICENSE o o o e i s s, 68
411 SourceCode. o 69
[4.1.2 Basic PErmiSSIONS.« v v o v e e e 70

- S e e e e e e e 71
417 Additional Termb. o v o e 72
[4.1.8 Terminatioh. o v o 73

G111 Patends. oo oo 74
’ 11 75

[4.1.13 Use with the GNU Affero General Public LiCeNSe. o oo oo 75
14.1.14 Revised Versions ofthis LICEMASE. vt vt e 75
[4.1.15 Disclaimerof Warranly. 75
[4.1.16 Limitationof Liability. e 76
4.1.17 Interpretation ¢f Disclaimer of Warranty. ml 76
[4.2 GNU Free Documentation LICENSE o v v v v e e 77
421 APPLICABILITY AND DEFINITIONS o oo oo e e e e e e e e e e e e e 77
4.2.2 VERBATIMCOPYING o ottt e e e e e e e e e 78
423 COPYINGINQUANTITY . . . o oottt e e e e e e e e e e e e e 79
[42.4 MODIFICATIONS o ot e 79
14.2.5 COMBINING DOCUMENTS o o oot e e e e e e e e e e e e 80
42,6 COLLECTIONS OF DOCUMENTS i it e e e e 81
427 AGGREGATION WITH INDEPENDENTWORKS ot oot i oo 81
428 TRANSLATION 81
[42.9 TERMINATION ot ot e e 81
42,10 FUTUREREVISIONS OF THISLICENSE oot e e i 82
4211 RELICENSINGottt e e 82

1 Vmgen documentation

This documentation is for Vmgen (version 0.7.9-20120208é\nber 17, 2011), the virtual machine interpreter geoerat

Confidential Page 3 of 88

Confidential vmgen

1.1 Introduction

Vmgen is a tool for writing efficient interpreters. It takesimple virtual machine description and generates efficd@obde
for dealing with the virtual machine code in various waysgarticular, executing it). The run-time efficiency of theu#ing
interpreters is usually within a factor of 10 of machine cpdeduced by an optimizing compiler.

The interpreter design strategy supported by Vmgen is tidelithe interpreter into two parts:

» The front end takes the source code of the language to beeingpited, and translates it into virtual machine code.
This is similar to an ordinary compiler front end; typicaliy interpreter front-end performs no optimization, so it is
relatively simple to implement and runs fast.

* The virtual machine interpreter executes the virtual nraehbode.

Such a division is usually used in interpreters, for modtylas well as for efficiency. The virtual machine code is tglly
passed between front end and virtual machine interpreteemory, like in a load-and-go compiler; this avoids the ctaxity
and time cost of writing the code to a file and reading it again.

A virtual machine (VM) represents the program as a sequein¢Manstructions, following each other in memory, similar t
real machine code. Control flow occurs through VM branclritdions, like in a real machine.

In this setup, Vmgen can generate most of the code dealifgwiitial machine instructions from a simple descriptionhaf
virtual machine instructions (sge Tnput File Format), inticalar:

VM instruction execution
VM code generation Useful in the front end.
VM code decompiler Useful for debugging the front end.

VM code tracing Useful for debugging the front end and the VM interpreter.u Yaill typically provide other means for
debugging the user’s programs at the source level.

VM code profiling Useful for optimizing the VM interpreter with superinsttiens (se¢ VM profilér).

To create parts of the interpretive system that do not de&lVi instructions, you have to use other tools (e.g., bisord/or
hand-code them.

Vmgen supports efficient interpreters though various ogations, in particular

» Threaded code
e Caching the top-of-stack in a register
e Combining VM instructions into superinstructions

« Replicating VM (super)instructions for better BTB pretiibo accuracy (not yet in vmgen-ex, but already in Gforth).

As a result, Vmgen-based interpreters are only about arr ofd@agnitude slower than native code from an optimizing C
compiler on small benchmarks; on large benchmarks, whiehdpore time in the run-time system, the slowdown is often
less (e.g., the slowdown of a Vmgen-generated JVM inteepmter the best JVM JIT compiler we measured is only a factor
of 2-3 for large benchmarks; some other JITs and all otherjméeters we looked at were slower than our interpreter).

Confidential Page 4 of 83

Confidential vmgen

VMs are usually designed as stack machines (passing dated®®M instructions on a stack), and Vmgen supports such
designs especially well; however, you can also use Vmgeimfplementing a register VM (s¢e Register Machjnes) and stil
benefit from most of the advantages offered by Vmgen.

There are many potential uses of the instruction descriptibat are not implemented at the moment, but we are open for
feature requests, and we will consider new features if soimeasks for them; so the feature list above is not exhaustive.

1.2 Why interpreters?

Interpreters are a popular language implementation tgolerfiecause they combine all three of the following advastag
« Ease of implementation
« Portability
« Fast edit-compile-run cycle

Vmgen makes it even easier to implement interpreters.

The main disadvantage of interpreters is their run-timeedpéHowever, there are huge differences between differdet-i
preters in this area: the slowdown over optimized C code ognams consisting of simple operations is typically a faofo
10 for the more efficient interpreters, and a factor of 100@e less efficient ones (the slowdown for programs exegutim-
plex operations is less, because the time spent in libriotesxecuting complex operations is the same in all impletagom

strategies).

Vmgen supports techniques for building efficient intererst

1.3 Concepts

e Frontend and VM interpreter: Modularizing an interpretsystem
« Data handling: Stacks, registers, immediate arguments

« Dispatch: From one VM instruction to the next

1.3.1 Frontend and VM interpreter

Interpretive systems are typically divided into a front ¢hdt parses the input language and produces an intermeelpate
sentation for the program, and an interpreter that exetiéeimtermediate representation of the program.

For efficient interpreters the intermediate represemaifachoice is virtual machine code (rather than, e.g., atrattssyntax
tree). Virtual machine (VM) code consists of VM instructsoarranged sequentially in memory; they are executed inesegu

by the VM interpreter, but VM branch instructions can chattgecontrol flow and are used for implementing control struc-
tures. The conceptual similarity to real machine code tesulthe name virtual machine. Various terms similar to t&far

real machines are used; e.g., there are VM registers (l&kesiruction pointer and stack pointer(s)), and the VMrinsion
consists of an opcode and immediate arguments.

In this framework, Vmgen supports building the VM intergreand any other component dealing with VM instructions. It
does not have any support for the front end, apart from VM gwmteeration support. The front end can be implemented with
classical compiler front-end techniques, supported bistile flex and bison.

The intermediate representation is usually just inteimti¢ interpreter, but some systems also support saving file, either

as an image file, or in a full-blown linkable file format (e.@/M). Vmgen currently has no special support for such fesur
but the information in the instruction descriptions can bipful, and we are open to feature requests and suggestions.

Confidential Page 5 of 883

Confidential vmgen

1.3.2 Data handling

Most VMs use one or more stacks for passing temporary dateeleet VM instructions. Another option is to use a register
machine architecture for the virtual machine; we beliew ttsing a stack architecture is usually both simpler artefas

However, this option is slower or significantly more compiexmplement than a stack machine architecture.
VVmgen has special support and optimizations for stack VMing their implementation easy and efficient.

You can also implement a register VM with Vmgen (§ee Regldi@chinek), and you will still profit from most Vmgen
features.

Stack items all have the same size, so they typically will evade as an integer, pointer, or floating-point value. Vmgen
supports treating two consecutive stack items as a sindle vaut anything larger is best kept in some other memorg are
(e.g., the heap), with pointers to the data on the stack.

Another source of data is immediate arguments VM instrastign the VM instruction stream). The VM instruction stream
is handled similar to a stack in Vmgen.

Vmgen has no built-in support for, nor restrictions agagestbage collection. If you need garbage collection, youdriee
provide it in your run-time libraries. Using reference cting is probably harder, but might be possible (contact ysif are
interested).

1.3.3 Dispatch

Understanding this section is probably not necessary fagiémgen, but it may help. You may want to skip it now, and read
it if you find statements about dispatch methods confusing.

After executing one VM instruction, the VM interpreter hasdispatch the next VM instruction (Vmgen calls the dispatch
routine ‘NEXT"). Vmgen supports two methods of dispatch:

switch dispatch In this method the VM interpreter contains a giant switclesteent, with one case for each VM instruction.
The VM instruction opcodes are represented by integers, (@.gduced by amnum) in the VM code, and dispatch
occurs by loading the next opcode, switching on it, and catig at the appropriatease; after executing the VM
instruction, the VM interpreter jumps back to the dispatotie:

threaded code This method represents a VM instruction opcode by the addiethe start of the machine code fragment
for executing the VM instruction. Dispatch consists of lmagthis address, jumping to it, and incrementing the VM
instruction pointer. Typically the threaded-code dishatode is appended directly to the code for executing the VM
instruction. Threaded code cannot be implemented in ANSIUEjt can be implemented using GNU C's labels-as-
values extension.

Threaded code can be twice as fast as switch dispatch, diegendthe interpreter, the benchmark, and the machine.

1.4 Invoking Vmgen

The usual way to invoke Vmgen is as follows:
vngen inputfile

Herei nput fi | e is the VM instruction description file, which usually ends.imng. The output filenames are made by
taking the basename bhput fi | e (i.e., the output files will be created in the current workdtigectory) and replacingv ng

Confidential Page 6 of 83

Confidential vmgen

with-vm i ,-disasmi,-gen.i,-labels.i,-profile.i,and-peephole.i.E.g.,vngen hack/foo.vny
will createf oo-vm i ,foo-di sasmi,foo-gen.i,foo-1abels.i,foo-profile.i andfoo-peephole.i.

The command-line options supported by Vmgen are

--help
-h Print a message about the command-line options
--version

-v Print version and exit

1.5 Example

« Example overview

 Using profiling to create superinstructions

1.5.1 Example overview

There are two versions of the same example for using Vmgemen- ex andvngen- ex2 (you can also see Gforth as
example, but it uses additional (undocumented) featuresasso differs in some other respects). The example impiésne
m ni , a tiny Modula-2-like language with a small JavaVM-liketuial machine.

The difference between the examples is thajen- ex uses many casts, anthgen- ex?2 tries to avoids most casts and
uses unions instead. In the rest of this manual we usuallyiorejust files invngen- ex; if you want to use unions, use the
equivalent file invngen- ex2.

You can build the example by cding into the example’s dirggtand then typingrake; you can check that it works with
make check. You can runrunm ni programs like this:

Amni fib.mni
To learn about the options, typé m ni - h.

1.5.2 Using profiling to create superinstructions

| have not added rules for this in tiMakef i | e (there are many options for selecting superinstructioms | aid not want to
hardcode one into thieakef i | €), but there are some supporting scripts, and here’s an dgamp

Suppose you want to useé b. m ni andt est. m ni as training programs, you get the profiles like this:
make fib.prof test. prof

It takes a few seconds and then you can aggregate these prafitest at . awnk:
awk -f stat.awk fib.prof test. prof

The result contains lines like:

Confidential Page 7 of 88

Confidential vmgen

2 16 36910041 | oadl ocal lit

This means that the sequeroead| ocal | it statically occurs a total of 16 times in 2 profiles, with a dyn@aexecution
count of 36910041.

The numbers can be used in various ways to select supedtistrs. E.g., if you just want to select all sequences with a
dynamic execution count exceeding 10000, you would useditenfing pipeline:

(profile-fib-tesg) =
make fib.prof test. prof
awk -f stat.awk fib.prof test.prof| \
awk ' $3>=10000' | #sel ect sequences \
fgrep -v -f peephol e-bl acklist| #elimnate wong instructions \
awk -f seq2rul e.awk| #transform sequences into superinstruction rules \
sort -k 3 >mni-super.vng #sort sequences

Confidential Page 8 of 83

Confidential vmgen

The file peephol e- bl ackl i st contains all instructions that directly access a stack ackspointer (for mini:cal | ,
r et ur n); the sort step is necessary to ensure that prefixes preseg uperinstructions.

Now you can create a version of mini with superinstructiopgust saying hrake’

1.6 Input File Format

Vmgen takes as input a file containing specifications of airtnachine instructions. This file usually has a name ending i
. vng.
Most examples are taken from the examplgirmgen- ex.

* Input File Grammar
e Simple instructions
e Superinstructions
» Store Optimization

* Register Machines: How to define register VM instructions

1.6.1 Input File Grammar

The grammar is in EBNF format, with| b meaning “a or b”{ ¢} meaning 0 or more repetitions of c ahd] meaning 0 or
1 repetitions of d.

Vmgen input is not free-format, so you have to take care wheveput newlines (and, in a few cases, white space).

description: {instructionjcomment|eval-escape|c-escape}
instruction: simple-inst|super-inst

simple-inst: ident '(’ stack-effect)’ newline c-code newline newline
stack-effect: {ident} '--’ {ident}

super-inst: ident '="ident {ident}

comment: '\’ text newline

eval-escape:’\E ' text newline

c-escape:’\C ' text newline

Note that the \s in this grammar are meant literally, not ady@ encodings for non-printable characters.
There are two ways to delimit the C code in simple-inst:

« If you start it with a {’ at the start of a line (i.e., not even white space beforeyit)) have to end it with a}” at the
start of a line (followed by a newline). In this case you mayehampty lines within the C code (typically used between
variable definitions and statements).

Confidential Page 9 of 883

Confidential vmgen

* You do not start it with{'. Then the C code ends at the first empty line, so you cannat baypty lines within this
code.

The text inconment , eval - escape andc- escape must not contain a newliné.dent must conform to the usual con-
ventions of C identifiers (otherwise the C compiler wouldlkson the Vmgen output), except that identstrack- ef f ect
may have a stack prefix (for stack prefix syntax,[see Eval eggap

Thec- escape passes the text through to each output file (withouttli®): This is useful mainly for conditional compilation
(i.,e.,youwrite\ C #i f ...’ etc.).

In addition to the syntax given in the grammer, Vmgen als@esses sync lines (lines starting witH i ne’), as produced
by ‘m4 - s’ and similar tools. This allows associating C compiler em@ssages with the original source of the C code.

(MAm)= cie)
Mi=md -s #recomrended if supported
#MA=n

Vmgen understands a few extensions beyond the grammarlggrenbut these extensions are only useful for building @&for
You can find a description of the format used for Gfortpin m

Eval escapes The textineval - escape is Forth code that is evaluated when Vmgen reads the linewybnormally use
this feature to define stacks and types.

If you do not know (and do not want to learn) Forth, you candtiile text according to the following grammar; these rules
are normally all Forth you need for using Vmgen:

text: stack-decl|type-prefix-decl|stack-prefix-decl|set-flag

stack-decl: ’'stack ' ident ident ident

type-prefix-decl: ’'s" ' string'" ' ('single’ | double) ident 'type-prefix’
i dent

stack-prefix-decl: ident 'stack-prefix’ string

set-flag: (’store-optimzation’|’include-skipped-insts’) ("on’ |’ off’")

Note that the syntax of this code is not checked thoroughigré are many other Forth program fragments that could be
written in aneval - escape).

A stack prefix can contain letters, digits, or,’and may start with ar#’; e.g., in Gforth the return stack has the stack prefix
‘R ". This restriction is not checked during the stack prefix wi&tin, but it is enforced by the parsing rules for stack isem
later.

If you know Forth, the stack effects of the non-standard wanslolved are:

stack ("nanme" "pointer" "type" --) (nanme execution: -- stack)
type-prefix (addr u itemsize stack "prefix" --)

single (-- itemsize)

double (-- itemsize)

stack-prefix (stack "prefix" --)

store-optimzation (-- addr)

i ncl ude- ski pped-insts (-- addr)

Anitem si ze takes three cells on the stack.

Confidential Page 10 of 83

Confidential vmgen

1.6.2 Simple instructions

We will use the following simple VM instruction descriptisas examples:

(simple-instructiongl) = @53)
\ sinmple VMinstructions:
add (il1i2--1i)
=01+ 2;

sub (P12 -- i)
i =102

mil (i1i2--i)
i = i1xi2;

lessthan (i1 i2 -- 1)
i = i1<i2;

equals (i1i2--1i)
i = il==i2;

not (i1 --12)
i2 =1i1;

negate (il -- i2)
i2=-il;

(lit @zd)
drop (i --)

print (i --)
printf("%d\n", i);

Confidential Page 11 of 83

Confidential vmgen

The first line specifies the name of the VM instruction (esgb) and its stack effect (e.g.1 i 2 -- i). The rest of the
description is just plain C code.

The stack effect specifies that sub pulls two integers fraadtita stack and puts them in the C variablésandi 2 (with the
rightmost item {(2) taken from the top of stack; intuition: if you pusii, theni 2 on the stack, the resulting stack picture is
i 1 i 2)and later pushes one integel On the data stack (the rightmost item is on the top afters)ard

How do we know the type and stack of the stack items? Vmgenpredizes, similar to Fortran; in contrast to Fortran, you
have to define the prefix first:

(type-prefiXiza = @83)
\ type prefix definitions:
\E s" Cell" singl e data-stack type-prefix i

\E s" char *" single data-stack type-prefix a
\E s" Inst =" single data-stack type-prefix target

This defines the prefik to refer to the typeCel | (defined ad ong in mi ni . h) and, by default, to theat a- st ack. It
also specifies that this type takes one stack iteim@! e). The type prefix is part of the variable name.

Before we can uséat a- st ack in this way, we have to define it:

(stack-definitionB2E) = [@s3)
\ stack definitions:
\ E stack data-stack sp Cell

This line defines the stack data-stack, which uses the stiokepsp, and each item has the basic typel | ; other types
have to fit into one or two Cells (depending on whether the igpgngle or double wide), and are cast from and to Cells
on accessing the data-stack with type cast macrog (see VMa&ngBy default, stacks grow towards lower addresses in
Vmgen-erated interpreters (§ee Stack growth direjction).

We can override the default stack of a stack item by usingck gteefix. E.g., consider the following instruction:

(lit)= @)
lit (# -- i)

The VM instructionl i t takes the itenh from the instruction stream (indicated by the préf)xand pushes it on the (default)
data stack. The stack prefix is not part of the variable naraek$refixes are defined like this:

(stack-prefixzd = [@s3)
\ stack prefix definitions
\E inst-stream stack-prefix #
\ E data-stack stack-prefix S

This definition defines that the stack prefixspecifies the “stacki’ nst - st r eam Since the instruction stream behaves a
little differently than an ordinary stack, it is predefinedd you do not need to define it.

The instruction stream contains instructions and their @diate arguments, so specifying that an argument comestfrem
instruction stream indicates an immediate argument. Ofsggunstruction stream arguments can only appear to theflef

- - in the stack effect. If there are multiple instruction strearguments, the leftmost is the first one (just as the iotuiti
suggests).

Confidential Page 12 of 83

Confidential vmgen

Explicit stack access This feature is not needed and not supported in the 0.7.%weo$ vmgen that is documented here
(and that is invoked by default).

Not all stack effects can be specified using the stack effemtifications above. For VM instructions that have othecksta
effects, you can specify them explicitly by accessing tlaglspointer in the C code; however, you have to notify Vmgen of
such explicit stack accesses, otherwise Vmgens optiroizatiould conflict with your explicit stack accesses.

You notify Vmgen by putting . . with the appropriate stack prefix into the stack comment.nTthe VM instruction will
first take the other stack items specified in the stack efféotC variables, then make sure that all other stack itemthdr
stack are in memory, and that the stack pointer for the statk$to the top-of-stack (by default, unless you changethek
access transformation: gee Stack growth direction).

The general rule is: If you mention a stack pointer in the Cecofia VM instruction, you should put.a . for that stack in
the stack effect.

Consider this example:

(unused-stack-adjugsa) =
return (#iadjust S:... target afp il -- i2)
SET | P(target);

sp = (Cell *)(((char =)sp)+iadjust);
fp = afp;
i 2=i1;

First the variables ar get af p i 1 are popped off the stack, then the stack poisteris set correctly for the new stack
depth, then the C code changes the stack depth and doestotigs; and finally 2 is pushed on the stack with the new depth.

The position of the . . within the stack effect does not matter. You can use severas, for different stacks, and also
several for the same stack (that has no additional effetctjod use. . . without a stack prefix, this specifies all the stacks
except the instruction stream.

You cannot use . . for the instruction stream, but that is not necessary: Atstaet of the C code, IP points to the start of
the next VM instruction (i.e., right beyond the end of thereat VM instruction), and you can change the instructiomjegi

with SET_| P (sed VM enging).

C Code Macros Vmgen recognizes the following strings in the C code pariropée instructions:

SET_IP As far as Vmgen is concerned, a VM instruction containing #rids a VM basic block (used in profiling to delimit
profiled sequences). On the C level, this also sets the si&girupointer.

(branchiZzg = @83)
branch (#target --)
SET | P(target);

Confidential Page 13 of 83

Confidential vmgen

SUPER_END This ends a basic block (for profiling), even if the instroatcontains nGET _| P.

(endzd = (@8a)
end (i --)
/+* SUPER_END woul d i ncrenment the next BB count (because |IP points there);
this would be a problemif there is no followi ng BB
Instead, we do the following to add an end point for the current BB: =*/
#i fdef VM _PROFI LI NG
bl ock insert(IP); /* we also do this at conpile tinme, so this is unnecessary x/
#endi f
return i;

INST_TAIL; Vmgen replaced ‘NST_TAI L; 'with code for ending a VM instruction and dispatching thetéM instruc-
tion. Even without al' NST_TAI L; ’ this happens automatically when control reaches the erideo€ code. If you
want to have this in the middle of the C code, you need to USST _TAI L; '. A typical example is a conditional
VM branch. In this example] ‘NST_TAI L; ' is not strictly necessary, because there is another onkdithpafter the
if-statement, but using it improves branch prediction aacy slightly and allows other optimizations.

(zbrancHIzg) = @8a)
zbranch (#target i --)

if (i==0) {
SET | P(target);
I NST_TAI L;

}

SUPER_CONTINUE This indicates that the implicit tail at the end of the VM in&ttion dispatches the sequentially next
VM instruction even if there is &ET_1| P in the VM instruction. This enables an optimization that & ypet imple-
mented in the vmgen-ex code (but in Gforth). The typical &ayibon is in conditional VM branches.

(unused-branctiZd) =
unused- branch (#target i --)
if (i==0) {
SET | P(target);
| NST_TAI L;

}
SUPER_CONTI NUE;

Confidential Page 14 of 83

Confidential vmgen

Note that Vmgen is not smart about C-level tokenization, m@mts, strings, or conditional compilation, so it will irpeet
even a commented-o®UPER_END as ending a basic block (or, e.gRESET | P;" as ‘SET_I P;’). Conversely, Vmgen
requires the literal presence of these strings; Vmgen willsee them if they are hiding in a C preprocessor macro.

C Code restrictions Vmgen generates code and performs some optimizations timelassumption that the user-supplied
C code does not access the stack pointers or stack itemdyatrattesses to the instruction pointer only occur thropghial
macros. In general you should heed these restrictions. w#awi€you need to break these restrictions, read the fotigw

Accessing a stack or stack pointer directly can be a probtersdveral reasons:

« VVmgen optionally supports caching the top-of-stack itema iocal variable (that is allocated to a register). Thises t
most frequent source of trouble. You can deal with it eithenbt using top-of-stack caching (slowdown factor 1-1.4,
depending on machine), or by inserting flushing code (.6, spTOS(sp[...] = spTOS);’) at the start and
reloading code (e.g.] F_spTOS(spTOS = sp[0])’) at the end of problematic C code. Vmgen inserts a stack
pointer update before the start of the user-supplied C cmdihe flushing code has to use an index that corrects for that.
In the future, this flushing may be done automatically by ricgriig a special string in the C code.

(stack-cachin@g)= @s83)
\ The following VMinstructions also explicitly reference sp and
\ therefore may have to do sonet hing about spTOS cachi ng.

call (#target #iadjust -- targetret aoldfp)

[+ 1 F_spTOS(sp[2] = spTOS);*/ [+ unnecessary; vngen inserts a flush anyway x/
targetret = I P;

SET | P(target);

aol dfp = fp;

sp = (Cell *)(((char =*)sp)+iadjust);

fp = (char *)sp;

[+ | F_spTOS(spTOS = sp[0]); =/ /* dead, thus unnecessary; vngen copies aoldfp there =/

return (#iadjust target afp il -- i2)

[+ 1 F_spTOS(sp[-2] = spTOS); =*/ [* unnecessary; that stack itemis dead */

SET | P(target);

sp = (Cell *)(((char =)sp)+iadjust);

fp = afp;

i 2=i1;

/* 1 F_spTOS(spTOS = sp[0]); =/ /* dead, thus unnecessary; vngen copies i2 there */

\ loadl ocal and storelocal access stack itens bel ow spTGCS, so we can
\ ignore spTOS cachi ng.

| oadl ocal (#ioffset -- i)
i = *x(Cell =) (fp+ioffset);

storelocal (#ioffset i --)
*(Cell =)(fp+tioffset) =i;

Confidential Page 15 of 83

Confidential vmgen

* The Vmgen-erated code loads the stack items from staakigreindexed memory into variables before the user-sagpli
C code, and stores them from variables to stack-pointemiad memory afterwards. If you do any writes to the stack
through its stack pointer in your C code, it will not affecetiariables, and your write may be overwritten by the stores
after the C code. Similarly, a read from a stack using a stagkt@r will not reflect computations of stack items in the
same VM instruction.

e Superinstructions keep stack items in variables acrassmiole superinstruction. So you should not include VM
instructions, that access a stack or stack pointer, as coemp®of superinstructions (Jee VM profjler).

You should access the instruction pointer only throughpecgal macros (P, * SET_| P, ‘1 PTOS); this ensure that these
macros can be implemented in several ways for best perfarenahP’ points to the next instruction, and PTOS' is its
contents.

Stack growth direction By default, the stacks grow towards lower addresses. Yowhange this for a stack by setting
thest ack- access-t r ansf or mfield of the stack to an xti(t ermum - - i ndex) that performs the appropriate index
transformation.

E.g., if you want to letlat a- st ack grow towards higher addresses, with the stack pointer aysaynting just beyond the
top-of-stack, use this right after definidgt a- st ack:

(unused-stack-transforitg) =
\E : sp-access-transform(itemum-- index) negate 1- ;
\E ' sp-access-transform’ data-stack >body stack-access-transform!

This means thasp- access-t r ansf or mwill be used to generate indexes for accesslag a- st ack. The definition

of sp- access-transf or mabove transforma into - n- 1, e.g, 1 into -2. This will access the 0th data-stack element
(top-of-stack) at sp[-1], the 1st at sp[-2], etc., whichhie typical way upward-growing stacks are used. If you nedtfereint
transform and do not know enough Forth to program it, let mmakn

(stack-organizatiofsH) = [@s3)
\ The stack is organized as follows:
\ The stack grows downwards; a stack usually looks like this:

\" hi gher addresses

L e I bott om of stack

\ | ocal s of main

\ return address (points to VM code after call)
\ +->oldfp (NULL)

\' | internediate results (e.g., 1 for a call like 1+foo(...))
\ | argunents passed to the called function

\' | locals of the called function

\ | return address (points to VM code after call)
\' +--oldfp <-- fp

\ internmediate results <-- sp

L i R top of stack

\ lower addresses

Confidential Page 16 of 83

Confidential vmgen

1.6.3 Superinstructions

Note: don't invest too much work in (static) superinstrans; a future version of Vmgen will support dynamic supérins
tions (see lan Piumarta and Fabio Riccardi, Optimizing ifhreaded Code by Selective Inlining, PLDI'88t p: / / dI .
acm org/citation. cfn?i d=277743), and static superinstructions have much less benefit trctraext (preliminary
results indicate only a factor 1.1 speedup).

Here is an example of a superinstruction definition:
(lm= (@88)

Il = loadlocal lit

Confidential Page 17 of 83

http://dl.acm.org/citation.cfm?id=277743
http://dl.acm.org/citation.cfm?id=277743

Confidential vmgen

I 1 is the name of the superinstruction, dndadl ocal andl it are its components. This superinstruction performs the
same action as the sequeraeadl ocal andlit. Itis generated automatically by the VM code generatiorcfioms
whenever that sequence occurs, so if you want to use thisisapaction, you just need to add this definition (and eVt t
can be partially automatized, §ee VM profiler).

Vmgen requires that the component instructions are simptelictions defined before superinstructions using thepoorants.
Currently, Vmgen also requires that all the subsequencéiseastart of a superinstruction (prefixes) must be defined as
superinstruction before the superinstruction. I.e., ifi y@nt to define a superinstruction

foo4 = | oad add sub nul
you first have to defineoad, add, sub andmnul , plus

| oad add
| oad add sub

f oo2
f oo3

Here,f 002 is the longest prefix df 003, andf 003 is the longest prefix df 004.

Note that Vmgen assumes that only the code it generatessascstck pointers, the instruction pointer, and varicarskst
items, and it performs optimizations based on this assumpfTherefore, VM instructions where your C code changes the
instruction pointer should only be used as last componeri¥j &nstruction where your C code accesses a stack pointeigho
not be used as component at all. Vmgen does not check théseti@ss, they just result in bugs in your interpreter.

The Vmgen flag ncl ude- ski pped- i nst s influences superinstruction code generation. Currendyetiis no supportin
the peephole optimizer for both variations, so leave thidlane for now.

1.6.4 Store Optimization

This minor optimization (0.6%—-0.8% reduction in executestiuctions for Gforth) puts additional requirements o@ it
struction descriptions and is therefore disabled by défaul

What does it do? Consider an instruction like
dup (n-- nn)

For simplicity, also assume that we are not caching the fegtazk in a register. Now, the C code for dup first loads n from
the stack, and then stores it twice to the stack, one timegadliress where it came from; that time is unnecessary, but gc
does not optimize it away, so vmgen can do it instead (if yon tun the store optimization).

Vmgen uses the stack item’s name to determine if the stackdtetains the same value as it did at the start. Therefoyeuif

use the store optimization, you have to ensure that stacisiteat have the same name on input and output also have tiee sam
value, and are not changed in the C code you supply. l.e.ptleaving code could fail if you turn on the store optimizatio

addl (n -- n)
n++;

Instead, you have to use different names, i.e.:

addl (nl1 -- n2)
n2=nl+1;

Confidential Page 18 of 83

Confidential vmgen

Similarly, the store optimization assumes that the stadktpois only changed by Vmgen-erated code. If your C codagba
the stack pointer, use different names in input and outpwkstems to avoid a (probably wrong) store optimizationtusn
the store optimization off for this VM instruction.

To turn on the store optimization, write
\E store-optimzation on

at the start of the file. You can turn this optimization on dr@tween any two VM instruction descriptions. For turningff
again, you can use

\E store-optimzation off

1.6.5 Register Machines

If you want to implement a register VM rather than a stack VNhw‘mgen, there are two ways to do it: Directly and through
superinstructions.

If you use the direct way, you define instructions that taleerttgister numbers as immediate arguments, like this:

add3 (#srcl #src2 #dest --)
reg[dest] = reg[srcl]+reg[src2];

A disadvantage of this method is that during tracing you cely the register numbers, but not the register contentsafyt

with an appropriate definition gfr i nt ar g_sr ¢ (sed VM enging), you can print the values of the source regisin entry,
but you cannot print the value of the destination registegxin

If you use superinstructions to define a register VM, you de$imple instructions that use a stack, and then define superi
structions that have no overall stack effect, like this:

| oadreg (#src -- n)

n = reg[src]l;

storereg (n #dest --)

reg[dest] = n;

adds (n1 n2 -- n)

n = nl+n2;

add3 = | oadreg | oadreg adds storereg

An advantage of this method is that you see the values andisiothje register numbers in tracing. A disadvantage of this
method is that currently you cannot generate superingtngtdirectly, but only through generating a sequence opkm
instructions (we might change this in the future if theregsnénd).

Could the register VM support be improved, apart from theéssmentioned above? It is hard to see how to do it in a general
way, because there are a number of different designs tHetetlit people mean when they use the term register machine in
connection with VM interpreters. However, if you have ideasequests in that direction, please let me know [see Ctjntac

Confidential Page 19 of 83

Confidential vmgen

1.7 Error messages

These error messages are created by Vmgen:

can only be on the input side

You have used an instruction-stream prefix (usually ‘#'gathe ‘-’ (the output side); you can only use it before (thpuit
side).

the prefix for this superinstruction nust be defined earlier

You have defined a superinstruction (e.g. abc = a b ¢) withefimishg its direct prefix (e.g., ab = a b), §ee Superinsiragtio
sync |ine syntax

If you are using a preprocessor (e.g., m4) to generate Vmygart code, you may want to create #line directives (aka sync
lines). This error indicates that such a line is not in th ayréxpected by Vmgen (this should not happen; please rdport t
offending line in a bug report).

syntax error, wong char

A syntax error. If you do not see right away where the erroitimay be helpful to check the following: Did you put an
empty line in a VM instruction where the C code is not deliil®yy braces (then the empty line ends the VM instruction)? If
you used brace-delimited C code, did you put the delimitiragcbs (and only those) at the start of the line, without piiee
white space? Did you forget a delimiting brace?

t oo many stacks
Vmgen currently supports 3 stacks (plus the instructiogestr); if you need more, let us know.
unknown prefix

The stack item does not match any defined type prefix (aft@pstig away any stack prefix). You should either declare the
type prefix you want for that stack item, or use a differenetppefix

unknown prinitive

You have used the name of a simple VM instruction in a supgtiogon definition without defining the simple VM instruati
first.

In addition, the C compiler can produce errors due to coddymed by Vmgen; e.g., you need to define type cast functions.

1.8 Using the generated code

The easiest way to create a working VM interpreter with Vmiggprobably to start witlvrgen- ex, and modify it for your
purposes. This chapter explains what the various wrappiganerated files do. It also contains reference-manua styl
descriptions of the macros, variables etc. used by the getbcode, and you can skip that on first reading.

* VM engine: Executing VM code

* VM instruction table

* VM code generation: Creating VM code (in the front-end)
» Peephole optimization: Creating VM superinstructions

* VM disassembler: for debugging the front end

* VM profiler: for finding worthwhile superinstructions

Confidential Page 20 of 83

Confidential vmgen

1.8.1 VM engine

The VM engine is the VM interpreter that executes the VM cdtlis. essential for an interpretive system.

Vmgen supports two methods of VM instruction dispatch: alded code (fast, but gcc-specific), and switch dispatchv(slo
but portable across C compilers); you can use conditiomalpdation (‘def i ned(__GNUC__) ") to choose between these
methods, and our example does so.

(dispatchzl) = ®2)
/+ different threading schenes for different architectures; the sparse
nunbering is there for historical reasons =/

/* here you select the threading schenme; | have only set this up for
386 and generic, because | don’'t know what preprocessor nmacros to
test for (Gorth uses config.guess instead). Anyway, it’'s probably
best to build themall and select the fastest instead of hardw ring
a specific schene for an architecture. E. g., schene 8 is fastest
for GGorth "make bench" on a 486, whereas schene 5 is fastest for
"mni fib.mni" on an Athlon x/

#i f ndef THREADI NG_SCHEVE

#defi ne THREADI NG_SCHEME 5

#endi f /+ defi ned(THREADI NG_SCHEME) */

#ifdef __ GNUC__

#i f THREADI NG_SCHEME==1

/* direct threading schenme 1: autoinc, long |latency (HPPA, Sharc) =*/
(NEXT-PO-1253

(IP-1z7d

(SET-IP-1z69)

(NEXT-INST-135I)

(INC-IP-1pP&9)

(DEF-CAZZd)

(NEXT-PIZ5d)

(NEXT-P2-125H)

#endi f

#i f THREADI NG_SCHEME==3

/* direct threading schenme 3: autoinc, |ow |l atency (68K) =*/
(NEXT-P(228)

(IP-2279)
(SET-IP-1269)
(NEXT-INSTZ5R)
(INC-IP-2[760)
(
(
(

H*

DEF-CARZd)
NEXT-P1-1250)
NEXT-P2-1256)

#
#
#
#
#
#
#
#endi f

Confidential Page 21 of 83

Confidential vmgen

#i f THREADI NG_SCHEME==5

/* direct threading schene 5: early fetching (A pha, MPS) =/
define CFA _NEXT

(NEXT-PO-2z5H)
(IP-2l279)

(SET-IP-1z69)

(NEXT-INST-15I)

(INC-IP-1pP&9)

(DEF-CAZ49)

(NEXT-P1-2Z758)

(NEXT-P2-1250)

#endi f

#i f THREADI NG_SCHEVE==8

/* direct threading schene 8: 1386 hack =/
(NEXT-P(228)

(IP-2279)
(SET-IP-1269)
(NEXT-INSTZ5R)
(INC-IP-2[760)
(
(
(

H*

#

#

#

#

(DEF-CAZZ9)

(NEXT-P1-Z259

(NEXT-P2-225)

#endi f

#i f THREADI NG_SCHEVME==9

/* direct threading schene 9: prefetching (for PowerPC) */

/+* note that the "cfa=next _cfa;" occurs only in NEXT _P1, because this
wor ks out better with the capabilities of gcc to introduce and
schedul e the ntctr instruction. =*/

(NEXT-PQ2Z8)

(IP27B

(SET-IP-2z6H)

(NEXT-INST-Z263

(INC-IP-3[58

(DEF-CAZZ0)

(NEXT-P1-%50)

(NEXT-P2-125H)

define MORE VARS I nst next _cfa;

#endi f

#i f THREADI NG_SCHEME==10

/* direct threading schenme 10: plain (no attenpt at scheduling) =/

(NEXT-P(2Ze

(IP-2279)

(SET-IP-1269)

Confidential Page 22 of 83

Confidential vmgen

(NEXT-INSTZR)
(INC-IP-2[z60)

(DEF-CAZ40)

(NEXT-PIz50)
(NEXT-P2-35)
#endi f

#define NEXT ({DEF_CA NEXT_P1; NEXT_P2;})
#(IPTOSZE)

(jJump-INST-ADD Fe9B)
#(jump-LABELZ3)

#el se /* ldefined(__GNUC)
/* use switch dispatch */
#(DEF-CAZ40)

NEXT-PQz28)

NEXT-P 1254

#(

{
(NEXT-P2259)
(SET-IPz8l)

(IP 278
(NEXT—INS'IZEE)
{
{
(
{

#
#
#
#
#
#
#
#(switch-INST-ADDIRO0)
#(switch-LABEIDZ3)

#endi f /+ !defined(__ GNUC)

For both methods, the VM engine is contained in a C-levelfionc Vmgen generates most of the contents of the function fo
you (name-vm.i), but you have to define this function, andnoseand variables used in the engine, and initialize theléas.

In our example the engine function also includes name-al{sk¢ VM instruction table).

In addition to executing the code, the VM engine can optignallso print out a trace of the executed instructions, their
arguments and results. For superinstructions it printsriee as if only component instructions were executed athasvs to
introduce new superinstructions while keeping the tracesparable to old ones (important for regression tests).

It costs significant performance to check in each instroctibether to print tracing code, so we recommend producieg tw
copies of the engine: one for fast execution, and one foirtgacSee the rules for engine.o and engine-debug.o in vmgen-
ex/Makefile for an examplé¢ (engine.c - wrappei file).

The following macros and variables are used in name-vm.i:

LABEL(inst_name) This is used just before each VM instruction to prowde a juonwitch label (the:'’ is provided
by Vmgen). For switch dispatch this should expanddase | abel : ’; for threaded-code dispatch this should just

expand to I'abel : ’. In either case label is usually thenst _nane with some prefix or suffix to avoid naming
conflicts.
(jump-LABELZ?) = @)

define LABEL(nane) | _##nane:

Confidential Page 23 of 83

244

Confidential vmgen

(switch-LABEIDZg) = (k)
define LABEL(nane) case |_##nane:

LABEL2(inst_name) This will be used for dynamic superinstructions; at the motniis should expand to nothing.

(LABEL2228) = ©2)
#def i ne LABEL2(Xx)

NAME(inst_name_string) Called on entering a VM instruction with a string containithg name of the VM instruction
as parameter. In normal execution this should be expandttanmp but for tracing this usually prints the name, and
possibly other information (several VM registers in ourrexde).

(NAMER4d) = ©2)
#i f def VM _DEBUG
#define NAME(_x) if (vm.debug) {fprintf(vmout, "%: % 20s, ", ip-1, x); \
fprintf(vmout,"fp=%, sp=%", fp, sp);}
#el se
#def i ne NAME(_Xx)
#endi f

DEF_CA Usually empty. Called just inside a new scope at the stariiflanstruction. Can be used to define variables that
should be visible during every VM instruction. If you defifigstmacro as non-empty, you have to provide the finishing
‘; "in the macro.

(DEF-CAZ4g) = @D
defi ne DEF_CA

NEXT_PO NEXT_P1 NEXT_P2 The three parts of instruction dispatch. They can be definatifierent ways for best
performance on various processors (see engine.c in thegdgamengine/threaded.h in GforthNEXT PO’ is invoked
right at the start of the VM instruction (but afteDEF CA’), * NEXT_P1’ right after the user-supplied C code, and
‘NEXT_P2’ at the end. The actual jump has to be performedMEXT P2’ (if you would do it earlier, important parts
of the VM instruction would not be executed). The simplegiar is if ‘NEXT_P2’ does everything and the other
macros do nothing. Then also related macros lIke’;* SET | P’, 1 NC | P' and ‘| PTCS' are very straightforward
to define. For switch dispatch this code consists just of gojoothe dispatch codedbt o next i nst; ' in our
example); for direct threaded code it consists of somettikeg ({cfa=*ip++; goto *cfa;})’. Pulling code (usually tle
‘cfa=*i p++;) up into ‘NEXT_P1’ usually does not cause problems, but pulling things up iNEXT_PO’ usually
requires changing the other macros (and, at least for Géorthlpha, it does not buy much, because the compiler often
manages to schedule the relevant stuff up by itself). An evere extreme variant is to pull code up even further, into,
e.g.,NEXT_P1 of the previous VM instruction (prefetching, useful on PORES).

(NEXT-P(2Ze) = @D
defi ne NEXT_PO

Confidential Page 24 of 83

Confidential vmgen

753 (NEXT-PO-1253) = @
define NEXT_PO ({cfa=xip++;})

(NEXT-P0-22508) = 2
define NEXT_PO ({cfa=xip;})

253 (NEXT-P1Z59 = 2

define NEXT_P1

254 (NEXT-P1-1250) = (1)
define NEXT_P1 ({cfa=*ip++;})

75 (NEXT-P1-2258 = (201
define NEXT_P1 (i p+t)

(NEXT-P1-350) = @)
define NEXT_P1 ({cfa=next _cfa; ip++; next_cfa=*ip;})

259 (NEXT-P2259 = 1)

define NEXT_P2 goto next _inst;

(NEXT-P2-125R) = @)
define NEXT_P2 ({goto *cfa;})

25 (NEXT-P2-225) = @)
define NEXT_P2 ({goto *x(ip-1);1})

251 (NEXT-P2-35) = @1
define NEXT_P2 ({cfa=*ip++;, goto *cfa;})

(NEXT-INSTZBR = 1)
define NEXT I NST (*ip)

25 (NEXT-INST-D5) = @
define NEXT_I NST (cfa)

Confidential Page 25 of 83

264

26d

260

266

Confidential vmgen

(NEXT-INST-Z63) = @)
define NEXT_I NST (next _cfa)

INC_IP(n) Thisincrements IP by n.

(INC-IP 8B = 1)
define INC | P(const_inc) (ip+=(const_inc))

(INC-IP-1[260) = @D
define INC | P(const_inc) ({cfa=lIP[const_inc]; ip+=(const_inc);})

(INC-IP-2[260) = 1)
define INC | P(const_inc) ({ip+=(const_inc);})

(INC-1P-3[268) = @)
define INC | P(const_inc) ({next_cfa=IP[const _inc]; ip+=(const_inc);})

SET_IP(target) This sets IP to target.

(SET-1RZ8l) = @D
define SET_I P(p) (ip=(p))

(SET-IP-1p6g) = 1)
define SET_I P(p) ({ip=(p); NEXT_PO;})

(SET-1P-2z6H) = @D
define SET_I P(p) ({ip=(p); next_cfa=+ip; NEXT_PO;})

Confidential Page 26 of 83

273

2/(0

Confidential vmgen

vm_A2B(a,b) Type casting macro that assigns ‘a’ (of type A) to ‘b’ (of tyBe This is mainly used for getting stack items
into variables and back. So you need to define macros for @ampination of stack basic type (Cell in our example)
and type-prefix types used with that stack (in both direcfjoRor the type-prefix type, you use the type-prefix (not the
C type string) as type name (e.g., ‘vm_Cell2i’, not ‘vm_Q€Iell"). In addition, you have to define a vm_X2X macro
for the stack’s basic type X (used in superinstructionsk Stack basic type for the predefined ‘inst-stream’ is ‘C&il’
you want a stack with the same item size, making its basic ‘@pt usually reduces the number of macros you have
to define. Here our examples differ a lot: vmgen-ex uses ¢astese macros, whereas vmgen-ex2 uses union-field
selection (or assignment to union fields). Note that cadtoags into integers and vice versa changes the bit pattern
(and you do not want that). In this case your options are tausemporary) union, or to take the address of the value,
cast the pointer, and dereference that (not always possibtesometimes expensive).

(vm-A2B(a,blprd = @8)
/* type change nmacros; these are specific to the types you use, so you
have to change this part =/

#define vm Cel | 2i (_cel |, x) ((x)=(long)(_cell))

#define vm Cel | 2target (_cell,x) ((x)=(lnst *)(_cell))

#defi ne vm Cel | 2a(_cel I, x) ((x)=(char =*)(_cell))

#define vm.i 2Cel | (x, _cell) ((_cell)=(Cell)(x))

#define vmtarget2Cel |l (x, _cell) ((_cell)=(Cell)(x))

#def i ne vm a2Cel | (x, _cell) ((_cell)y=(Cell)(x))

#define vm Cel | 2Cel | (_x, _y) ((y)=(Cell)(_x))

/* the cast in vmCell2Cell is needed because the base type for
inst-streamis Cell, but *xIP is an Inst =/

vm_twoA2B(al,a2,b) vm_B2twoA(b,al,a2)lype casting between two stack items (al, a2) and a variabfealtype that
takes two stack items. This does not occur in our small exesygdut you can look at Gforth for examples (see
vm_twoCell2d in engine/forth.h).

stackpointer For each stack used, the stackpointer name given in the detration is used. For a regular stack this must
be an |-expression; typically it is a variable declared asiatpr to the stack’s basic type. For ‘inst-stream’, the aam
is ‘I P, and it can be a plain r-value; typically it is a macro thastcts away the differences between the various
implementations oNEXT _P*.

(IPEmH= (1)
define IP ip

(IP-1p7d)= (201
define IP (ip-1)

(IP-2279) = (201
define IP (ip)

Confidential Page 27 of 83

Confidential vmgen

IMM_ARG (access,value) Define this to expland to “(access)”. This is just a placebofdr future extensions.

(IMM-ARG[Z83) = @9
[+ for future extensions */
#defi ne | MM ARG access, val ue) (access)

stackpointerTOS The top-of-stack for the stack pointed to by stackpointégyolu are using top-of-stack caching for that
stack, this should be defined as variable; if you are not usipgpf-stack caching for that stack, this should be a macro
expanding to ‘stackpointer[0]’. The stack pointer for thregqefined ‘inst-stream’ is called ‘IP’, so the top-of-stagk

called 'IPTOS'.
(spTOEED) = ®2)
#i f def USE spTOCS
Cel | spTCS;
#el se
#def i ne spTOS (sp[0])
#endi f
(IPTOSZ89 = k1)

define | PTOS NEXT_| NST

IF_stackpointerTOS(expr) Macro for executing expr, if top-of-stack caching is usedtfe stackpointer stack. l.e., this
should do expr if there is top-of-stack caching for stachkperi, otherwise it should do nothing.

284 (IF-spTOSe8d) = ©2)
#defi ne USE spTGCS 1

#i f def USE spTOS
#define I F_spTOS(x) x
#el se

#define | F_spTOS(x)
#endi f

SUPER_END This is used by the VM profiler (s¢e VM profiler); it should nat dnything in normal operation, and call
vm count _bl ock(| P) for profiling.

(SUPER-EN[ZBe = ©2)
#i fdef VM _PROFI LI NG
#defi ne SUPER END vm count bl ock(1 P)
#el se
#defi ne SUPER_END
#endi f

Confidential Page 28 of 83

294

Confidential vmgen

SUPER_CONTINUE This is just a hint to Vmgen and does nothing at the C level [G&€ade Macrds

MAYBE_UNUSED This should be defined as attri bute__((unused)) for gcc-2.7 and higher. It suppresses the
warnings about unused variables in the code for superictgins. You need to define this only if you are using superin-
structions.

(MAYBE-UNUSEIZ93 = ©2)
#if defined(__GNUC_) && ((__GNUC__==2 && defined(__GNUC_MNOR) && _ GNUC_M NOR__>=7)|]| (_
#define MAYBE UNUSED attribute_((unused))
#el se
#defi ne MAYBE_UNUSED
#endi f

VM_DEBUG If this is defined, the tracing code will be compiled in (slovireterpretation, but better debugging). Our
example compiles two versions of the engine, a fast-runaimgthat cannot trace, and one with potential tracing and
profiling.

vm_debug Needed only if 'VM_DEBUG' is defined. If this variable conteitrue, the VM instructions produce trace output.
It can be turned on or off at any time.

vm_out Needed only if ‘'VM_DEBUG'’ is defined. Specifies the file on whi print the trace output (type ‘FILE *').

printarg_type(value) Needed only if 'VM_DEBUG' is defined. Macro or function foripting value in a way appropriate
for the type. This is used for printing the values of stackigeduring tracing. Type is normally the type prefix specified
in a type-prefix definition (e.qg., ‘printarg_i’); in supesimuctions it is currently the basic type of the stack.

1.8.2 VM instruction table

For threaded code we also need to produce a table contalmrigliels of all VM instructions. This is needed for VM code
generation (s€le VM code generaiion), and it has to be doriangine function, because the labels are not visibledrutsi
It then has to be passed outside the function (and assignedit@r i i), to be used by the VM code generation functions.
This means that the engine function has to be called firstadywe the VM instruction table, and later, after generativg
code, it has to be called again to execute the generated VB (¢@3, this is ugly). In our example program, these two modes
of calling the engine function are differentiated by theueabf the parameteérp0 (if it equals 0, then the table is passed out,
otherwise the VM code is executed); in our example, we passatile out by assigning it te/m _pr i ni and returning from
‘engi ne’.

In our examplengen- ex/ engi ne. c¢), we also build such a table for switch dispatch; this is fyadilone for uniformity.
For switch dispatch, we also need to define the VM instruatipcodes used as case labels in an enum.

For both purposes (VM instruction table, and enum), thatdee- | abel s. i is generated by Vmgen. You have to define
the following macro used in this file:

INST_ADDR(inst_name) For switch dispatch, this is just the name of the switch Iéitwe same name as usedlirABEL (i nst _nane) ")
for both uses of name-labels.i. For threaded-code dispihistis the address of the label definedli®BEL (i nst _nane) ’);
the address is taken with ‘&&'.
(jump-INST-ADDRIH = @)
define | NST_ADDR(nane) (Label)&&l ##nane

Confidential Page 29 of 83

Confidential vmgen

(switch-INST-ADDRO) = (k)
define | NST_ADDR(nane) | _##nane

Confidential Page 30 of 83

Confidential vmgen

1.8.3 VM code generation

Vmgen generates VM code generation functione@me- gen. i that the front end can call to generate VM code. This is
essential for an interpretive system.

Fora VM instructionk (#a b #c -- d)’, Vmgen generates a function with the prototype
void gen _x(Inst *xctp, a_type a, c_type c)

Thect p argument points to a pointer to the next instructient p is increased by the generation functions; i.e., you should
allocate memory for the code to be generated beforehandstartdwith* ct p set at the start of this memory area. Before
running out of memory, allocate a new area, and generate devdl-jump to the new area (this overflow handling is not
implemented in our examples).

The other arguments correspond to the immediate argumettits ¥M instruction (with their appropriate types as definned
thet ype_pr efi x declaration.

The following types, variables, and functions are usedane- gen. i :

Inst The type of the VM instruction; if you use threaded code, ihisoi d *; for switch dispatch this is an integer type.

vm_prim The VM instruction table (typel: nst *, sed VM instruction table).

gen_inst(Inst **ctp, Insti) This function compiles the instruction i. Take a look at ivimgen- ex/ peephol e. c. ltis
trivial when you don’t want to use superinstructions (jur tast two lines of the example function), and slightly more
complicated in the example due to its ability to use supénictions (seg Peephole optimization).

genarg_type_prefix(Inst **ctp, type type_prefix) This compiles an immediate argument of type (as defined yyee- pr ef i x
definition). These functions are trivial to define (§&&@port. c - nai n() and of her _support functi ons).
You need one of these functions for every type that you ussasediate argument.

In addition to using these functions to generate code, youlditallBB_BOUNDARY at every basic block entry point if you
ever want to use superinstructions (or if you want to use tioéiling supported by Vmgen; but this support is also useful
mainly for selecting superinstructions). If you uBB_BOUNDARY, you should also define it (take a look at its definition in
vngen-ex/ mni.y).

You do not need to caBB_BOUNDARY after branches, because you will not define superinstmgtioat contain branches

in the middle (and if you did, and it would work, there would e reason to end the superinstruction at the branch), and
because the branches announce themselves to the profiler.

1.8.4 Peephole optimization

You need peephole optimization only if you want to use supstrictions. But having the code for it does not hurt much if
you do not use superinstructions.

A simple greedy peephole optimization algorithm is usedstgerinstruction selection: every timen_i nst compiles a
VM instruction, it checks if it can combine it with the last VMstruction (which may also be a superinstruction resgltin
from a previous peephole optimization); if so, it changesldst instruction to the combined instruction instead ging
down i at the current‘ct p’.

The code for peephole optimization isingen- ex/ peephol e. c. You can use this file almost verbatim. Vmgen generates
fil e-peephol e. i which contains data for the peephole optimizer.

Confidential Page 31 of 83

Confidential vmgen

You have to calli ni t _peept abl e() ’after initializing ‘vm _pr i m, and before compiling any VM code to initialize data
structures for peephole optimization. After that, comrmgjlivith the VM code generation functions will automaticalymbine
VM instructions into superinstructions. Since you do hohtw® combine instructions across VM branch targets (otrssrw
there will not be a proper VM instruction to branch to), yowé#o callBB_BOUNDARY (sed VM code generatipn) at branch
targets.

1.8.5 VM disassembler

A VM code disassembler is optional for an interpretive systbut highly recommended during its development and mainte
nance, because it is very useful for detecting bugs in th& #od (and for distinguishing them from VM interpreter bugs

Vmgen supports VM code disassembling by generatinge- di sasm i . This code has to be wrapped into a function,
as is done ivngen- ex/ di sasm c. You can use this file almost verbatim. In addition o A2B(a, b) ’, ‘vm out ’,
‘printarg_type(val ue)’, which are explained above, the following macros and \@es are used in file-disasm.i (and
you have to define them):

ip This variable points to the opcode of the current VM instiartt

IPIPTOS ‘I PTCS is the first argument of the current VM instruction, and® points to it; this is just as in the engine, but
here i p’ points to the opcode of the VM instruction (in contrast te #ngine, wherei ‘p’ points to the next cell, or
even one further).

VM_IS_INST(Insti, int n) Tests if the opcodd * is the same as the ‘n’th entry in the VM instruction table.

1.8.6 VM profiler

The VM profiler is designed for getting execution and occaeecounts for VM instruction sequences, and these counts can
then be used for selecting sequences as superinstruciities\VM profiler is probably not useful as profiling tool for the
interpretive system. l.e., the VM profiler is useful for thevdlopers, but not the users of the interpretive system.

The output of the profiler is: for each basic block (executel@ast once), it produces the dynamic execution count df tha
basic block and all its subsequences; e.g.,

9227465 lit storel ocal
9227465 storel ocal branch
9227465 |it storel ocal branch

l.e., a basic block consisting dfi t st orel ocal branch’is executed 9227465 times.

This output can be combined in various ways. Bvggen- ex/ st at . awk adds up the occurences of a given sequence wrt
dynamic execution, static occurence, and per-progranrence. E.g.,

2 16 36910041 | oadlocal lit

indicates that the sequended'adl ocal 1it’ occursin 2 programs, in 16 places, and has been executeiDB82 times.
Now you can select superinstructions in any way you like grtbit compile time and space typically limit the number of
superinstructions to 100-1000). After you have done thagjen/ seq2r ul e. awk turns lines of the form above into
rules for inclusion in a Vmgen input file. So, an overall stiiipr turning profiles into superinstructions can look like
profile-fib-test in[Using profiling to create superinstructipns. Note thas gtript does not ensure that all prefixes
are defined, so you have to do that in other ways.

Confidential Page 32 of 83

Confidential vmgen

Here the dynamic count is used for selecting sequencesnimaly results indicate that the static count gives betsults,
though); the third line eliminates sequences containistructions that must not occur in a superinstruction, bsedhey
access a stack directly. The dynamic count selection eashbat all subsequences (including prefixes) of longer sezpse
occur (because subsequences have at least the same cdlicargyer sequences); the sort in the last line ensureotget
superinstructions occur after their prefixes.

But before using this, you have to have the profiler. Vmgermpeus its creation by generatirig | e- profil e. i ;youalso
need the wrapper filengen- ex/ pr of i | e. ¢ that you can use almost verbatim.

The profiler works by recording the targets of all VM contravil changes (througBUPER_END during execution, and
throughBB_BOUNDARY in the front end), and counting (throu@UPER_END) how often they were targeted. After the pro-
gram run, the numbers are corrected such that each VM baxsik bas the correct count (entering a block without exegudin
branch does not increase the count, and the correction figés then the subsequences of all basic blocks are prifiteglet

all this, you just have to definBUPER_END (and BB_BOUNDARY) appropriately, and callm pri nt _profil e(Fl LE

*f il e) whenyou want to output the profile on file.

Thefil e-profile.i issimilartothe disassembler file, and it uses variabledamctions defined inngen- ex/ profil e. c,
plus VM _IS_INST already defined for the VM disassembler [gBbdisassemblér).

1.9 Hints

« Floating point: and stacks

1.9.1 Floating point

How should you deal with floating point values? Should you thgesame stack as for integers/pointers, or a different one?
This section discusses this issue with a view on executieadp

The simpler approach is to use a separate floating-poirk.sfdus allows you to choose FP value size without considgrin
the size of the integers/pointers, and you avoid a numbeeidbpmance problems. The main downside is that this needs an
FP stack pointer (and that may not fit in the register file or3®@ arhitecture, costing some performance, but compahativ
little if you take the other option into account). If you usseparate FP stack (with stack pointgr), using anf pTCS is
helpful on most machines, but some spill th@T CS register into memory, anidp TOS should not be used there.

The other approach is to share one stack (pointed to by, gpigesween integer/pointer and floating-point values. Tk

if you do not usespTCS. If you do usesp TGOS, the compiler has to decide whether to put that variable amtdnteger or a
floating point register, and the other type of operation bee® quite expensive on most machines (because moving values
between integer and FP registers is quite expensive). liue\ed one type has to be synthesized out of two values of therot
type (double types), things are even more interesting.

One way around this problem would be to not usespaOS supported by Vmgen, but to use explicit top-of-stack vdeab
(one for integers, one for FP values), and having a kind ofiecdator+stack architecture (e.g., Ocaml bytecode ugss th
approach); however, this is a major change, and it’s rantifica are not completely clear.

1.10 The future

We have a number of ideas for future versions of Vmgen. Howdvere are so many possible things to do that we would like
some feedback from you. What are you doing with Vmgen, whetufes are you missing, and why?

One idea we are thinking about is to generate just one .c keaud of letting you copy and adapt all the wrapper files (you
would still have to define stuff like the type-specific magrasd stack pointers etc. somewhere). The advantage would be

Confidential Page 33 of 83

Confidential vmgen

that, if we change the wrapper files between versions, youdymot need to integrate your changes and our changes to them;
Vmgen would also be easier to use for beginners. The maimhsaage of that is that it would reduce the flexibility of
Vmgen a little (well, those who like flexibility could stillgich the resulting .c file, like they are now doing for the wrap
files). In any case, if you are doing things to the wrapper fileg would cause problems in a generated-.c-file approach,
please let us know.

1.11 Contact

To report a bug, uskt t ps: // savannah. gnu. or g/ bugs/ ?f unc=addbug&gr oup_i d=2672,

For discussion on Vmgen (e.g., how to use it), use the malisidpug-vmgen@mail.freesoftware.fsf.org (uset p: //
mai | . gnu. org/ mai | man/1i sti nf o/ hel p- vngen to subscribe).

You can find vmgen information &tt t p: / / wwww. conpl ang. t uwi en. ac. at/ ant on/ vingen/ |

2 Virtual machine implementation

2.1 ArrayForth application files

2.1.1 README

(READMBZZ)=
This directory contains a working exanple for using vngen. It’'s a
smal | Modul a-2-1i ke progranm ng | anguage.

You can build the exanple by first installing Gorth and then saying,
in this directory:

make

I gnore the warnings. You can check that it works with
make check

You can run mni prograns |ike this:

Jmni fib.mni

To | earn about the options, type

/mni -h

More information can be found in the vngen docunentati on

(copyrighteea)

Confidential Page 34 of 83

https://savannah.gnu.org/bugs/?func=addbug&group_id=2672
http://mail.gnu.org/mailman/listinfo/help-vmgen
http://mail.gnu.org/mailman/listinfo/help-vmgen
http://www.complang.tuwien.ac.at/anton/vmgen/

Confidential vmgen

2.1.2 simple.mini - example mini program

353 (simple.mini353d =
func main()
return 1;

end func;

2.1.3 fib.mini - example mini program

(fib.miniBEE) =
func fib(n)
var r;
if n<2 then
r:=1;
el se
r:=fib(n-1)+fib(n-2);
end if;
return r;
/'l the | anguage syntax (return only at end) leads to inefficient code here
end func;

func main()

return fib(34);
end func;

Confidential Page 35 of 83

Confidential vmgen

2.1.4 test.mini - example mini program (tests everything)

(test.minfEg)=

func operators()
print 3 = 3;
print (3+45)
print (5-3)
print (3%5)
print (3&5)
print (3]5)
print (3<5)
print (5<3)
print (3=5)
print (5=5)
print (!3)
print (!0)
print (-3)
return O;

end func;

o=

I n
= o

(6-3);

func paranms(a, b, c)

print a = 3;

print b = 5;

print ¢ = 7;

return 9;
end func;

func | ocal s(a)
var b;
var c;
b: =a+1;
c: =b+1;
a. =c+1;
return a;
end func;

func inc(x)
return x+1;
end func;

func sign(n)
var r;
if (n<0) then
r:=-1,
el se
if (0<n) then

Confidential Page 36 of 83

Confidential

vmgen

r:=1,;
el se
r:=0;
end if;
end if;
return r;
end func;

func recfac(n)
var r;
if (n<1) then
r:=1;
el se
r:=recfac(n-1)=*n;
end if;
return r;
end func;

func itfac(n)
var r;
r:=1;
whil e (0<n) do
r:=r*n;
n: =n-1;
end whil e;
return r;
end func;

func testfac()
var i;
i:=0;
while (i<10) do
print itfac(i) = recfac(i);
i:=i+1;
end whil e;
return O;
end func;

func main()
operators();
print parans(3,5,7) = 9;
print |ocals(3) = 6;
print (inc(l)+inc(inc(inc(3))))=8;
print sign(5) = 1;
print sign(0) = O;
print sign(-5) = (-1);

Confidential

Page 37 of 83

Confidential vmgen

print itfac(5) = 120;
testfac();
return O;

end func;

test.out - test.mini output

ek} (test.ou3gd) =
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
r

esult =0

Confidential Page 38 of 83

Confidential vmgen

2.2 Mini specific files

You would typically change much in or replace the followinlgdi

2.2.1 Makefile

(Makefilez9)=
#Makefile for vngen exanpl e

(make-copyright7)

LEX=fl ex -1

YACC=hi son -y

#YACC=yacc

VMGEN=vngen

#GCC=gcc -g -\Wall

GCC=gcc -8 -fomt-frame-pointer -Vall
CC=$(GCO)

(M4

OBJECTS M Nl =nini.tab. o support.o peephole.o profile.o disasm o engi ne. o engi ne-debug. o

mni: $(OBJECTS M NI)
$(CC) $(OBIECTS MNI) -0 $@

lex.yy.c: mni.l
$(LEX) mini.l

mni.tab.c: mni.y lex.yy.c
$(YACC) nmini.y & nv y.tab.c $@

mni-vmi mni-disasmi mni-gen.i mni-labels.i mni-profile.i mni-peephole.i: mni.vng
$(VMEEN) mini.vny

mni.vng: mni-inst.vng mni-super.vny
$(M4) mini-inst.vng >$@

mni.tab.o: mini.tab.c mni-gen.i lex.yy.c mni.h
support.o: support.c mni.h

peephol e. 0: peephol e.c mini-peephole.i mni.h
profile.o: profile.c mini-profile.i mni.h

disasmo: disasmc mni-disasmi mni.h

Confidential Page 39 of 83

Confidential vmgen

(enginegl)

cl ean:
rm-f .o mni mni-*.i lex.yy.c mni.tab.c nmni.vng

check: mni
Jmni test.mni | tr -d '\015" | diff - test.out

checkal I :
for i in1 358 9 10; do nmake clean; echo $%i; make check VMEN=vngen CC="gcc -8 -

#make profiles

% prof: % mni mni
Jmni -p $< 2>3@

Confidential Page 40 of 83

Confidential vmgen

2.2.2 Support.c - main() and other support functions

@1 (support.@l)=
/* support functions and main() for vngen exanple

(copyright6ea)
* [

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
extern int optind;

#i ncl ude <assert. h>
#i nclude "mni . h"

voi d genarg i (lnst *+*vncodepp, Cell i)

{
*((Cell *) =vnctodepp) = i;
(*vncodepp) ++;

}

voi d genarg_target (I nst **xvncodepp, Inst *=target)

{

*((Inst x+) =vntodepp) = target;
(*vncodepp) ++;

}
void printarg i (Cell i)

fprintf(vmout, "%d ", i);
}

void printarg target(lnst *target)

fprintf(vmout, "% ", target);
}

void printarg a(char =*a)

fprintf(vmout, "% ", a);
}

void printarg Cell(Cell i)

fprintf(vmout, "Ox%x ", i);

Confidential Page 41 of 83

Confidential vmgen

}

/* This | anguage has separate nanme spaces for functions and vari abl es;
this works because there are no function variables, and the syntax
makes it possible to differentiate between function and vari abl e
reference =/

typedef struct functab {
struct functab *next;
char =*nane;
Inst xstart;
i nt parans;
i nt nonpar ans;

} functab;

functab *ftab=NULL;

/= note: does not check for double definitions */
void insert_func(char *nane, Inst xstart, int |ocals, int nonparans)

{

functab *node = mall oc(sizeof (functab));

node- >next =f t ab

node- >nane=nane,;

node- >start=start;

node- >par ans=l ocal s- nonpar ans;
node- >nonpar ans=nonpar ans;

f t ab=node;
}
functab =l ookup_func(char =*nane)
{
functab *p;
for (p=ftab; p!=NULL; p=p->next)
i f (strcnp(p->nane, nane)==0)
return p;
fprintf(stderr, "undefined function %", nane);
exit(1);
}
I nst =func_addr(char *nane)
{
return | ookup_func(name)->start;
}

Confidential Page 42 of 83

Confidential vmgen

Cel |l func_call adjust(char *nane)

{
}

return adj ust (| ookup_func(nane)->nonpar ans) ;

typedef struct vartab {
struct vartab *next;
char xnane;
int index;

} vartab;

vartabx vt ab;

/* no checking for double definitions */
void insert_I| ocal (char *nane)

{
vartab *node = nall oc(si zeof (vartab));
| ocal s++;
node- >next =vt ab;
node- >nanme=nane;
node- >i ndex=l ocal s;
vtab = node;
}
vartab *| ookup_var (char =*nane)
{
vartab *p
for (p=vtab; p!=NULL; p=p->next)
if (strcnp(p->nane, nane)==0)
return p;
fprintf(stderr, "undefined | ocal variable %", nane);
exit(1);
}
Cel | var_of fset(char *nane)
{
return (locals - | ookup_var(nane)->i ndex + 2)=*sizeof (Cell);
}

#def i ne CODE_SI ZE 65536
#def i ne STACK_SI ZE 65536
typedef Cell (x*engine_t)(lnst =ip0O, Cell* sp, charx fp);

char =program nane

Confidential Page 43 of 83

Confidential vmgen

int main(int argc, char xxargv)
{
int disassenbling = 0;
int profiling = 0;
int c;
I nst *vm code=(Inst =*)call oc(CODE_SI ZE, si zeof (I nst));
Inst *start;
Cell xstack=(Cell =«)calloc(STACK SIZE, sizeof(Cell));
engi ne_t runvmeengi ne;

while ((c = getopt(argc, argv, "hdpt")) !'=-1) {
switch (c) {
defaul t:
case 'h':
hel p:
fprintf(stderr, "Usage: % [options] file\nOptions:\n-h Print this nessage and exit'
argv[0]);
exit(l);
case 'd':
di sassenbl i ng=1;
br eak;
case 'p’:
profiling=1;

use_super=0; /* we don’t want superinstructions in the profile */
runvm = engi ne_debug;
br eak;
case 't’
vm debug=1;
runvm = engi ne_debug;
br eak;

}

if (optind+1l != argc)
got o hel p;

program nane = argv[optind];

i f ((yyin=fopen(programname,"r"))==NULL) {
perror(argv[optind]);
exit(1);

}

[+ initialize everything */

vntodep = vm code;

vm out = stderr;

(voi d)runvn(NULL, NULL, NULL); /+* initialize vmprim=*/
init_peeptable();

Confidential Page 44 of 83

Confidential vmgen

if (yyparse())
exit(1);

start =vnctodep;
gen_mai n_end();
vntode_ end=vntodep;

i f (disassenbling)
vm di sassenbl e(vm code, vntodep, vmprin;

printf("result = %d\n", runvi(start, stack+STACK SIZE-1, NULL));

if (profiling)
vm print_profile(vmout);

return O;

Confidential Page 45 of 83

(9

Confidential

vmgen

2.2.3 mini.h - common declarations

(mini.hEg) =

/* support functions for vngen exanpl e

(copyright6ea)
* [

#i ncl ude <stdio. h>
typedef long Cell;

#ifdef _ GNUC _
typedef void *Label

typedef Label Inst; /* we could "typedef Cell Inst", renoving the need
for casts in a few places, but requiring a few

casts etc. in other places =*/
#el se
typedef |ong Label
typedef long Inst;
#endi f

extern Inst *vmprim
extern int |ocals;

extern Cell peeptable;
extern int vm debug;
extern FILE xyyin;

extern int yylineno;
extern char =*program nane;
extern FILE *vm out

extern Inst xvntodep;
extern Inst x|l ast_conpil ed;
extern Inst *vntode_end,
extern int use_super

/* generic vngen support functions (e.g., wappers) =*/
void gen_inst(lnst »xvncodepp, Inst i);

void init_peeptabl e(void);

void vm di sassenbl e(l nst *ip, Inst *xendp, Inst prini]);
voi d vm count bl ock(Ilnst =*ip);

struct bl ock _count =*block insert(Inst *ip);

void vmprint_profile(FILE *file);

(vm-A2B(a,bp7a

(IMM-ARGEZE3

Confidential

Page 46 of 83

Confidential

vmgen

#define VM IS INST(inst, n) ((inst) == vmprinin])

/+* mni type-specific support functions =/

void genarg_i (I nst »xvntodepp, Cell i);

void printarg_i(Cell i);

voi d genarg_target (I nst *xvncodepp, Inst *xtarget);
void printarg target(lnst *target);

void printarg_a(char =*a);

void printarg _Cell (Cell i);

/* engine functions (type not fixed) =/
Cell engine(lnst *ip0, Cell =*sp, char *fp);
Cel | engi ne_debug(lnst *=ip0, Cell =*sp, char *fp);

/* other generic functions */
i nt yyparse(void);

/* mni-specific functions */

void insert_func(char *nane, Inst xstart, int |locals, int nonparans);

I nst =func_addr(char *nane);

Cell func_call adjust(char *nane);
void insert | ocal (char *nane);
Cel |l var_offset(char *nane);

voi d gen_nmai n_end(voi d);

/* stack pointer change for a function with n nonparans */
#define adjust(n) ((n) * -sizeof(Cell))

Confidential

Page 47 of 83

Confidential vmgen

2.2.4 mini-inst.vmg - simple VM instructions

@83 (mini-inst.vmg@sg =
\ mini.inst is generated automatically frommni-inst.vng and m ni-super.vng
\ exanple .vng file

(©EsD)

\ WARNING This file is processed by mi. Make sure your identifiers
\ don’t collide with m¥’s (e.g. by undefining them.

\ comments start with "\
(stack-definitiongzH)
(stack-prefixrza)

(type-prefiXiza)
(simple-instructiongd)
(branchI36)

(zbrancHzz)

(stack-organizatiosh)
(stack-caching@3)
(endIZzd

i ncl ude(m ni - super. vng)

2.2.5 mini-super.vmg - superinstructions (empty at first)

[4sh (mini-super.vm@sh) =
(I'm)

Confidential Page 48 of 83

Confidential vmgen

2.2.6 mini.l - scanner

g (mini.l@g)=
%
/+ front-end scanner for vngen exanpl e

(copyrighteea)
*/

/+* % option yylineno (flex option, inplied by flex -1) =*/

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

char =*nystrdup(const char *s)

{
char *=t=malloc(strlen(s)+1);
return strcpy(t,s);

}

%

L2
[-();, & <=I] return yytext[O];
D= return BECOVES;
func return FUNC
return return RETURN,
end return END,
var return VAR
if return IF;
t hen return THEN;
el se return ELSE;
while return WH LE;
do return DO
print return PRINT;
[0-9]+ { yylval.nunestrtol (yytext, NULL, 10); return NUM }
[a-zA-2Z\ J[a-zA-Z0-9\]+ { yylval.string=nystrdup(yytext); return | DENT; }
[\t\n] ;
/10T %
yyerror("illegal character"); exit(1);
9

Confidential Page 49 of 83

20

Confidential

vmgen

2.2.7 mini.y - front end (parser, VM code generator)

(mini.yB0) =

[+ front-end compiler for vngen exanpl e

(copyright6ea)
* [

/* 1 use yacc/ bison here not because | think it’s the best tool for
the job, but because it’'s wi dely available and popular; it’s also
(barely) adequate for this job. x/

A

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i nclude "mni.h"

/+ BB_BOUNDARY i s needed on basic blocks without a preceding VM branch =/
#def i ne BB_BOUNDARY (| ast_conpiled = NULL, /* suppress peephole opt */ \
bl ock_i nsert(vnctodep)) /+ for accurate profiling */

Inst *vmprim
I nst *vntodep;
FILE »vm out;
i nt vm debug;

voi d yyerror(char xs)
{
#if 1
[+ for pure flex call =*/
fprintf(stderr, "%: %\n", programnanme, s);
#el se
[+ lex or flex -1 supports yylineno */
fprintf (stderr, "%: %: %\n", program nane, yylineno, s);
#endi f
}

#include "mni-gen.i"

voi d gen_nai n_end(voi d)

{
gen_cal | (& ntodep, func_addr("main"), func_calladjust("min"));
gen_end(& nctodep) ;
BB _BOUNDARY; /+* for profiling; see comment in mni.vng:end */

}

Confidential

Page 50 of 83

Confidential vmgen

int |ocal s=0;
i nt nonpar ans=0;

int yylex();
%

% oken FUNC RETURN END VAR | F THEN ELSE WHI LE DO BECOVES PRI NT NUM | DENT

%uni on {
| ong num
char =*string;
I nst *instp;
}

% ype <string> | DENT;
% ype <nunr NUM
% ype <instp> el separt;

W
program program function

function: FUNC I DENT { | ocal s=0; nonparanms=0; } '(’ parans ')’

vars { insert_func(%$2, vntodep, | ocal s, nonparans); }
stats RETURN expr ' ;’
END FUNC ' ;’ { gen_return(&ntodep, -adjust(locals)); }
parans: IDENT ',’ { insert_local ($1); } parans
| | DENT { insert_local ($1); }
|
vars: vars VAR IDENT ';’ { insert_local ($3); nonparans++; }

stats: stats stat ;

stat: |IF expr THEN { gen_zbranch(&ntodep, 0); $<instp>$ = vnrtodep; }
stats { $<instp>$ = $<i nstp>4; }
el separt END | F { BB_BOUNDARY; $<instp>7[-1] = (lnst)vntodep; }
| WH LE { BB_BOUNDARY; $<instp>$ = vnctodep; }
expr DO { gen_zbranch(&ntodep, 0); $<instp>$ = vncodep; }
stats END WHI LE { gen_branch(&ntodep, $<instp>2); $<instp>5[-1] = (Inst)vncodep; }
| 1 DENT BECOVES expr { gen_storel ocal (& ntodep, var_offset($1)); }

Confidential Page 51 of 83

Confidential vmgen

| PRINT expr { gen_print(&nctodep); }
| expr { gen_drop(&ntodep); }

el separt: ELSE { gen_branch(&ntodep, 0); $<instp>$ = vnrodep; $<instp>0[-1] = (Inst)vnrtode
stats { $$ = $<instp>2; }
| { $$ = $<instp>0; }

expr: term’+ term { gen_add(& ntodep); }
| term’-" term { gen_sub(&ntodep); }
| term’+’ term { gen_nul (& ntodep); }
| term’ & term { gen_and(&ntodep); }
| term’ |’ term { gen_or (&vntodep); }
| term’< term { gen_l esst han(&vntodep); }
| term’=" term { gen_equal s(&ntodep); }
| "1 term { gen_not (& ntodep); }
| "-" term { gen_negat e(& ntodep); }
| term

term ' (' expr ')’
| IDENT " (’ args ')’ { gen_call (&vntodep, func_addr($1), func_calladjust($1)); }
| 1 DENT { gen_Il oadl ocal (& ntodep, var_offset($1)); }
| NuM { gen_lit(&nctodep, $1); }

/* mssing: argunment counting and checki ng agai nst called function =/
args:. expr ', args

| expr

I .
9
int yyw ap(voi d)

return 1;

}

#i ncl ude "l ex.yy.c"

2.2.8 peephole-blacklist - list of instructions not allowd in superinstructions

(peephole-blackligd) =
cal |
return
unknown

Confidential Page 52 of 83

Confidential vmgen

Confidential Page 53 of 83

Confidential vmgen

2.3 Generic support files

For your own interpreter, you would typically copy the fallimg files and change little, if anything:

2.3.1 peephole.c - wrapper file

(peephole.B2)=
/* Peephol e optim zation routines and tables

(copyright6ea)
* [

#i nclude <stdlib. h>
#include "mni.h"

/* the nunbers in this struct are prinmtive indices */
typedef struct Conbination {

int prefix;

int lastprim

i nt combination_prim
} Conbi nati on;

Conbi nati on peephol e table[] = {
#i ncl ude "m ni - peephole.i™
#i fndef _ GNUC
{-1,-1,-1} /* unnecessary; just to shut up Icc if the file is enmpty =/
#endi f
1

int use_super = 1; /* turned off by option -p */

typedef struct Peeptable_entry {
struct Peeptable _entry *next;
I nst prefix;
Inst lastprim
I nst conbi nation_prim
} Peeptabl e _entry;

#define HASH_SI ZE 1024
#define hash(i1, i2) (((((Cell)(_i1)) ((Cell)(_i2)))»4)& HASH SI ZE-1))

Cel | peeptabl e;
Cel | prepare_peephol e table(lnst insts[])

{
Cell i;

Confidential Page 54 of 83

Confidential vmgen

Peeptabl e_entry *+xpt = (Peeptable_entry *x)call oc(HASH Sl ZE, si zeof (Peeptabl e_entry *));

for (i=0; i<sizeof(peephol e_table)/sizeof (peephole_table[0]); i++) {
Conbi nati on *c = &peephol e _table[i];
Peeptabl e_entry *p = (Peeptable_entry *)mall oc(sizeof (Peeptable_entry));

Cell h;

p->prefix = i nsts[c->prefix];
p->lastprim= insts[c->lastprim;

p- >conbi nation_prim= insts[c->conbination_prini;

h = hash(p->prefix, p->lastprim;
p->next = pt[h];

pt(h] = p;

}

return (Cell)pt;
}
void init_peeptabl e(void)
{

peept abl e = prepare_peephol e_tabl e(vm prin;
}
I nst peephole opt(Inst instl, Inst inst2, Cell peeptable)
{

Peeptabl e_entry *»+xpt = (Peeptable_entry =x)peeptabl e;
Peept abl e_entry =*p;

if (use_super == 0)
return O;
for (p = pt[hash(instl,inst2)]; p !'= NULL; p = p->next)
if (instl == p->prefix & inst2 == p->lastprim
return p->conbi nation_prim
return NULL;

}
Inst x| ast_conpiled = NULL;
void gen_inst(lnst *»xvncodepp, Inst i)

if (last_conpiled !'= NULL) {
I nst conmbo = peephol e_opt (x| ast _conpiled, i, peeptable);
if (combo !'= NULL) {
x| ast _conpi |l ed = conbo;
return;
}
}

| ast _conpil ed = *vntodepp;

Confidential Page 55 of 83

Confidential vmgen

*xyncodepp = i;
(*vintodepp) ++;

}

Confidential Page 56 of 83

57

Confidential

vmgen

2.3.2 profile.c - wrapper file
(profile.d57) =

/+* VM profiling support stuff

(copyright6ea)
* [

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <assert. h>
#i nclude "mni.h"

/* data structure: sinple hash table with external chaining */

#def i ne HASH_ SI ZE (1«20)
#defi ne hash(p) ((((Cell)(p))/sizeof (Inst))& HASH SI ZE-1))

#ifdef __ GNUC__

typedef long long | ong_| ong;
#el se

typedef |ong |ong_Il ong;
#endi f

typedef struct bl ock _count {
struct block count *next; /* next in hash table */
struct bl ock_count =*fallthrough; /* the block that this one falls
t hrough to without SUPER END */
I nst *ip;
| ong_| ong count;
char =*=xinsts;
size_t ninsts;
} block count;

bl ock_count =*bl ocks[HASH_SI ZE] ;
I nst *vntode_end,;

bl ock_count =bl ock_| ookup(lnst =*ip)

{
bl ock_count *b = bl ocks[hash(ip)];

while (b!=NULL && b->ip! =ip)
b = b->next;
return b;

}

Confidential

Page 57 of 83

Confidential

vmgen

/* | ooks up present elenents,

inserts absent elenents */

bl ock_count =*bl ock_insert(lnst =*ip)

{

bl ock_count *b = bl ock_| ookup(i p);

bl ock_count =*new,

if (b !'= NULL)
return b;

new = (bl ock_count =*)mall oc(sizeof (bl ock _count));
new >next = bl ocks[hash(ip)];

new >fal | t hrough = NULL

new >ip = ip;

new >count = (I ong_I| ong)0;

new >i nsts = nalloc(1);

assert (new >insts !'= NULL);

new >ni nsts = O;
bl ocks[hash(ip)] = new
return new,

}

voi d add_i nst (bl ock_count =b,

{

b->i nsts = reall oc(b->insts,

b- >i nst s[b- >ni nst s++] =

}

i nst;

voi d vm count bl ock(1l nst =*ip)

bl ock_insert(ip)->count++;

}

char =*inst)

(b->ninsts+1) * sizeof (char *));

voi d post process_bl ock(bl ock_count =*b)

{
Inst *xip = b->ip;

bl ock_count =*next bl ock=

NULL;

whil e (next_block == NULL && i p<vntode_end) {

#include "mni-profile.i"

)

[+ else */
{
add_i nst (b, "unknown"
i pt+;
}
_endi f _:
next bl ock = bl ock_| ookup(ip);
}
Confidentia

Page 58 of 83

Confidential vmgen

[+ we fell through, so set fallthrough and update the count =/
b->fal |l through = next bl ock
/+ al so update the counts of all follow ng fallthrough bl ocks that
have al ready been processed =/
whil e (next_block !'= NULL) {
next bl ock->count += b->count;
next bl ock = next bl ock->fallthrough

}
}
/+* Deal with block entry by falling through from non- SUPER_END
instructions. And fill the insts and ninsts fields. =/
voi d post process(void)
{ . .
size t i;

for (i=0; i<HASH SIZE; i++) {
bl ock_count *b = bl ocks[i];
for (; b!'=0; b = b->next)
post process_bl ock(b);

}

#if 0
void print_block(FILE *file, block count =xb)
{

size t i;

fprintf(file,"%4l1d\t", b->count);
for (i=0; i<b->ninsts; i++)

fprintf(file, "% ", b->insts[i]);
putc(’\n, file);

}
#endi f
void print_block(FILE *file, block _count =*b)
{
size t i,j,Kk;

for (i=2; i<12; i++)
for (j=0; i+j<=b->ninsts; j++) {
fprintf(file,"%4l1d\t", b->count);
for (k=j; k<i+j; k++)
fprintf(file, "% ", b->insts[k]);
putc('\n, file);
}

Confidential Page 59 of 83

Confidential vmgen

}
void vmprint_profile(FILE *file)
{

size t i;

post process();
for (i=0; i<HASH SIZE; i++) {
bl ock_count *b = bl ocks[i];
for (; b!'=0; b = b->next)
print_block(file, b);

2.3.3 disasm.c - wrapper file

60 (disasm.@0) =
/+* vm di sassenbl er w apper

(copyrighteea)
* [

#i nclude "mni . h"

#define IP (ip+l)
#define | PTOS | P[0]

void vm di sassenbl e(l nst *ip, Inst *endp, Inst vmprini])

whil e (i p<endp) {

fprintf(vmout,"%: ",ip);
#i ncl ude "mni-disasmi"
{
fprintf(vmout,"unknown i nstruction %",ip[0]);
I pt+;
}
_endi f _:

fputc(’\n",vmout);
}
}

Confidential Page 60 of 83

Confidential vmgen

2.3.4 engine.c - wrapper file

61 (enginegl) = @9)
engine.o: engine.c mini-vmi mni-labels.i nmni.h

engi ne-debug. 0: engine.c mni-vmi nini-labels.i nmni.h
$(CC) - DVM DEBUG - DVM PROFI LI NG - Dengi ne=engi ne_debug -c -0 $@engine.c

Confidential Page 61 of 83

Confidential vmgen

62 (engine.@2)=
/* vminterpreter wapper

(copyright6ea)
* [

#include "mni.h"
(IF-spTO 80
(NAMEZd)
(dispatchz)
(LABEL212H)

(SUPER-ENIZE)

#i fndef _ GNUC

enum {

#include "mni-labels.i"
}s
#endi f

(MAYBE-UNUSETZ®

/* the return type can be anything you want it to */
Cell engine(lnst *=ip0, Cell *sp, char *fp)
{
[+ VMregisters (you may want to use gcc’s "Explicit Reg Vars" here) =*/
Inst = ip;
Inst * cfa;
(spTO%8H)
static Label labels[] = {
#include "mni-labels.i"
s
#i f def MORE_VARS
MORE_VARS
#endi f

i f (vm.debug)
fprintf(vmout,"entering engi ne(%, %, %)\ n",ipo0, sp, fp);
if (ip0 == NULL) {
vm prim = | abel s;
return O;
}

Confidential Page 62 of 83

Confidential vmgen

[+ 1 don’t have a clue where these things cone from
but I've put themin macros.h for the nonment =/
| F_spTOS(spTOS = sp[0]);

SET_| P(i p0);
SUPER END; /* count the BB starting at ip0 =/

#ifdef _ GNUC__
NEXT;
#include "mni-vmi"
#el se
next inst:
switch(*i p++) {
#include "mni-vmi"
def aul t:
fprintf(stderr,"unknown i nstruction % at %\n", ip[-1], ip-1);
exit(1);
}
#endi f

}

2.3.5 stat.awk - script for aggregating profile information

63 (stat.awksd) =

BEG N {
FS="\t";

}

{
dyn[$2] += $1;
stat [$2] ++;
files[$2] += (FILENAVE! =fil enane[$2]);
fil enane[$2] = FI LENAME;

}

END {
for (i in dyn)

printf("%d\to%d\tods5d\t%s\n",files[i],stat[i],dyn[i],i);

Confidential Page 63 of 83

Confidential vmgen

2.3.6 seq2rule.awk - script for creating superinstructiors

642 (seq2rule.awgdd =

BEG N {
FS="\t";
}
{
nane = $4;
gsub(/ /,"_",nane);
print nane" = "$4;
}

3 Printing and Extracting the code

A script for converting this document to PDF form follows:
641 (finalean) =
lyx -e pdf $1
lyx -e latex $1

Each of these scripts can be pulled out manually given theuttef script defined below.

643 (* B4d =
echo "Extract file $1 fromvngen.|lyx..."
rm-f vngen. nw
lyx -e literate vigen.|yx
notangle -t4 -R$2 vngen. nw > $1
dos2uni x $1
chnod a+x $1
rm-f vngen. nw

Confidential Page 64 of 83

Confidential vmgen

Once that script is pulled out and named extract, the foligvgicript can pull out all of the other scripts:

65 (extract-alls) =
echo "Extract all files..."
.l extract README
./lextract sinple.mni
.lextract fib.mni
./lextract test.mni
./ extract test.out
./l extract Makefile
.l extract support.c
./lextract mni.h
./extract mni-inst.vny
./ extract mni-super.vng
./lextract mni.l
./lextract mni.y
.l extract peephol e-bl ackl i st
.l extract peephole.c
.lextract profile.c
./extract disasmc
.l extract engine.c
.lextract stat.awk
.l extract seqg2rul e. ank
.lextract profile-fib-test

Confidential Page 65 of 83

Confidential

vmgen

4

Copyrights

Although | would have preferred to use an MIT license, GFoghs a GNU license, so | must comply with that.

(copyrighteed) =

Copyright (C 2001, 2002, 2003, 2007 Free Software Foundation, Inc.
This file is part of Gorth.

Gorth is free software; you can redistribute it and/or

modify it under the terns of the GNU General Public License
as published by the Free Software Foundation, either version 3
of the License, or (at your option) any |ater version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License

along with this program if not, see http://ww.gnu.org/licenses/.

(©[BBH =

\

— — - -

— — - —

—

Copyright (C 2001, 2002, 2003, 2007 Free Software Foundation, Inc.
This file is part of Gorth.

Gorth is free software; you can redistribute it and/or

nodify it under the ternms of the GNU General Public License

as published by the Free Software Foundation, either version 3
of the License, or (at your option) any |ater version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
G\U General Public License for nore details.

You shoul d have received a copy of the GNU General Public License

along with this program If not, see http://ww. gnu.org/licenses/.

Confidential

GAZIZ4 2950 5

o7 g0 62)

Page 66 of 83

6/

Confidential

vmgen

(make-copyrighes) =
#Copyright (C) 2001, 2003, 2007, 2008 Free Sof tware Foundation, Inc.

#This file is part of GGorth.

#Gorth is free software; you can redistribute it and/or
#nmodify it under the terns of the GNU General Public License
#as published by the Free Software Foundation, either version 3
#of the License, or (at your option) any |later version.

#This programis distributed in the hope that it will be useful,
#but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
#MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. #See t he
#GNU CGeneral Public License for nore details.

#You shoul d have received a copy of the GNU General Public License

#along with this program if not, see http://ww.gnu.org/licenses/.

Confidential

(29)

Page 67 of 83

Confidential vmgen

4.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inbt<p: //fsf.org/ >
Everyone is permitted to copy and distribute verbatim cepfethis license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft licensesfdtware and other kinds of works.

The licenses for most software and other practical worksdasigned to take away your freedom to share and change the
works. By contrast, the GNU General Public License is ineshth guarantee your freedom to share and change all versions
of a program--to make sure it remains free software for alligers. We, the Free Software Foundation, use the GNU Genera
Public License for most of our software; it applies also tg ather work released this way by its authors. You can apgly it
your programs, too.

When we speak of free software, we are referring to freedamprice. Our General Public Licenses are designed to make
sure that you have the freedom to distribute copies of fréevace (and charge for them if you wish), that you receiverseu
code or can get it if you want it, that you can change the softwause pieces of it in new free programs, and that you know
you can do these things.

To protect your rights, we need to prevent others from deqyau these rights or asking you to surrender the rights. &fbeg,
you have certain responsibilities if you distribute copaéshe software, or if you modify it: responsibilities to pet the
freedom of others.

For example, if you distribute copies of such a program, Waegratis or for a fee, you must pass on to the recipients the
same freedoms that you received. You must make sure thattitgyeceive or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with tteps: (1) assert copyright on the software, and (2) offer you
this License giving you legal permission to copy, distréoahd/or modify it.

For the developers’ and authors’ protection, the GPL cjeaxplains that there is no warranty for this free software. foth
users’ and authors’ sake, the GPL requires that modifiedoresdbe marked as changed, so that their problems will not be
attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to instafl oradified versions of the software inside them, although th
manufacturer can do so. This is fundamentally incompatilitle the aim of protecting users’ freedom to change the safitw
The systematic pattern of such abuse occurs in the area déigiofor individuals to use, which is precisely where it is
most unacceptable. Therefore, we have designed this wes$ithe GPL to prohibit the practice for those products. itsu
problems arise substantially in other domains, we standiyremextend this provision to those domains in future versiof
the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by sofénzatents. States should not allow patents to restrict dprent

and use of software on general-purpose computers, but setti@mt do, we wish to avoid the special danger that patents
applied to a free program could make it effectively progigt To prevent this, the GPL assures that patents cannatduke u
to render the program non-free.

The precise terms and conditions for copying, distributiod modification follow.

Confidential Page 68 of 83

http://fsf.org/

Confidential vmgen

TERMS AND CONDITIONS
Definitions.

“This License” refers to version 3 of the GNU General Publicdnse.
“Copyright” also means copyright-like laws that apply thet kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensedenttlis License. Each licensee is addressed as “you”. “Isiees’
and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of tlverk in a fashion requiring copyright permission, other
than the making of an exact copy. The resulting work is calléhodified version” of the earlier work or a work “based on”
the earlier work.

A “covered work” means either the unmodified Program or a vizaged on the Program.

To “propagate” a work means to do anything with it that, withpermission, would make you directly or secondarily leabl
for infringement under applicable copyright law, excepg@xting it on a computer or modifying a private copy. Propaga
includes copying, distribution (with or without modificati), making available to the public, and in some countrié®iot
activities as well.

To “convey” a work means any kind of propagation that enabther parties to make or receive copies. Mere interactiom wi
a user through a computer network, with no transfer of a cispypt conveying.

An interactive user interface displays “Appropriate Lelyatices” to the extent that it includes a convenient and pnemtly
visible feature that (1) displays an appropriate copyrigitice, and (2) tells the user that there is no warranty fentiork
(except to the extent that warranties are provided), thahBees may convey the work under this License, and howwoavie
copy of this License. If the interface presents a list of c'gnmands or options, such as a menu, a prominent item insthe li
meets this criterion.

4.1.1 Source Code.

The “source code” for a work means the preferred form of thekvimr making modifications to it. “Object code” means any
non-source form of a work.

A “Standard Interface” means an interface that either isflcial standard defined by a recognized standards body tingi
case of interfaces specified for a particular programminguage, one that is widely used among developers workirftgin t
language.

The “System Libraries” of an executable work include anythiother than the work as a whole, that (a) is included in the
normal form of packaging a Major Component, but which is reot pf that Major Component, and (b) serves only to enable
use of the work with that Major Component, or to implementan8trd Interface for which an implementation is available t
the public in source code form. A “Major Component”, in thimtext, means a major essential component (kernel, window
system, and so on) of the specific operating system (if anyjtaoh the executable work runs, or a compiler used to produce
the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form nseall the source code needed to generate, install, and (for
an executable work) run the object code and to modify the wiaidiuding scripts to control those activities. Howevér, i
does not include the work’s System Libraries, or generappse tools or generally available free programs which aeslu
unmodified in performing those activities but which are nattf the work. For example, Corresponding Source includes
interface definition files associated with source files far work, and the source code for shared libraries and dyndnica
linked subprograms that the work is specifically designestpire, such as by intimate data communication or contval fl
between those subprograms and other parts of the work.

Confidential Page 69 of 83

Confidential vmgen

The Corresponding Source need not include anything thas use regenerate automatically from other parts of theecorr
sponding Source.

The Corresponding Source for a work in source code form issduae work.

4.1.2 Basic Permissions.

All rights granted under this License are granted for thentef copyright on the Program, and are irrevocable provithed t
stated conditions are met. This License explicitly affirnasiyunlimited permission to run the unmodified Program. The
output from running a covered work is covered by this Licemsly if the output, given its content, constitutes a covevedk.
This License acknowledges your rights of fair use or otheinedent, as provided by copyright law.

You may make, run and propagate covered works that you daometg, without conditions so long as your license otherwise
remains in force. You may convey covered works to othersfesble purpose of having them make modifications exclusivel
for you, or provide you with facilities for running those vkst provided that you comply with the terms of this License in
conveying all material for which you do not control copyrighhose thus making or running the covered works for you must
do so exclusively on your behalf, under your direction andticm, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship withu.

Conveying under any other circumstances is permittedysaledler the conditions stated below. Sublicensing is notat;
[Conveying Non-Source Forms. makes it unnecessary.

4.1.3 Protecting Users’ Legal Rights From Anti-Circumventon Law.

No covered work shall be deemed part of an effective teclyicdd measure under any applicable law fulfilling obligago
under article 11 of the WIPO copyright treaty adopted on 20dbeber 1996, or similar laws prohibiting or restrictingccim-
vention of such measures.

When you convey a covered work, you waive any legal powertoidccircumvention of technological measures to the extent
such circumvention is effected by exercising rights unterticense with respect to the covered work, and you disciny
intention to limit operation or modification of the work as @ams of enforcing, against the work’s users, your or thirtigst
legal rights to forbid circumvention of technological meges.

4.1.4 Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source ced®a receive it, in any medium, provided that you conspicu-
ously and appropriately publish on each copy an appropr@tgright notice; keep intact all notices stating that theense
and any non-permissive terms added in accord with Convéyimdjfied Source Versions. apply to the code; keep intact all
notices of the absence of any warranty; and give all recipiarcopy of this License along with the Program.

You may charge any price or no price for each copy that youegrand you may offer support or warranty protection for a
fee.

4.1.5 Conveying Modified Source Versions.

You may convey a work based on the Program, or the modificatioproduce it from the Program, in the form of source
code under the terms jof Conveying Verbatim Copies., pravitlat you also meet all of these conditions:

< a) The work must carry prominent notices stating that youdlifiexd it, and giving a relevant date.

Confidential Page 70 of 83

Confidential vmgen

b) The work must carry prominent notices stating that ieleased under this License and any conditions added under
[Acceptance Not Required for Having Copjes.. This requirgmmedifies the requirementfin Conveying Verbatim Copies.
to “keep intact all notices”.

¢) You must license the entire work, as a whole, under thishs$e to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable Aptance Not Required for Having Coples. additional terms,

to the whole of the work, and all its parts, regardless of hogytare packaged. This License gives no permission to

license the work in any other way, but it does not invalidatehspermission if you have separately received it.

d) If the work has interactive user interfaces, each mustldy Appropriate Legal Notices; however, if the Program
has interactive interfaces that do not display Appropriagal Notices, your work need not make them do so. A
compilation of a covered work with other separate and inddpat works, which are not by their nature extensions of
the covered work, and which are not combined with it such dsrtm a larger program, in or on a volume of a storage
or distribution medium, is called an “aggregate” if the cdlaon and its resulting copyright are not used to limit the
access or legal rights of the compilation’s users beyond ¥igaindividual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to tiee pdints of the aggregate.

4.1.6 Conveying Non-Source Forms.

You may convey a covered work in object code form under thagefConveying Verbatim Copiés. gnd Conveying Modified Selfersio
provided that you also convey the machine-readable Cavrelpg Source under the terms of this License, in one of these
ways:

a) Convey the object code in, or embodied in, a physical peb@including a physical distribution medium), accompa-
nied by the Corresponding Source fixed on a durable physiedlum customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical pco@including a physical distribution medium), accompa-
nied by a written offer, valid for at least three years anddvedr as long as you offer spare parts or customer support
for that product model, to give anyone who possesses thetatijele either (1) a copy of the Corresponding Source
for all the software in the product that is covered by thiselnse, on a durable physical medium customarily used for
software interchange, for a price no more than your reademaist of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a netsasrler at no charge.

c) Convey individual copies of the object code with a copyha written offer to provide the Corresponding Source.
This alternative is allowed only occasionally and noncomuiadly, and only if you received the object code with such
an offer, in accord with Conveying Non-Source Foims. sutise®.

d) Convey the object code by offering access from a destghplace (gratis or for a charge), and offer equivalent

access to the Corresponding Source in the same way throegaithe place at no further charge. You need not require
recipients to copy the Corresponding Source along with tjead code. If the place to copy the object code is a network
server, the Corresponding Source may be on a differentis@perated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directsamext to the object code saying where to find the Correspgndin

Source. Regardless of what server hosts the Correspondinges you remain obligated to ensure that it is available

for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmisgionided you inform other peers where the object code and
Corresponding Source of the work are being offered to theiggpublic at no charge under Conveying Non-Source Fbrms.
subsection d. A separable portion of the object code, whaisees code is excluded from the Corresponding Source as

a System Library, need not be included in conveying the dlojede work.

Confidential Page 71 of 83

Confidential vmgen

A “User Product” is either (1) a “consumer product”, whichane any tangible personal property which is normally used fo
personal, family, or household purposes, or (2) anythirgigeed or sold for incorporation into a dwelling. In detenimp
whether a product is a consumer product, doubtful cases Isbaksolved in favor of coverage. For a particular product
received by a particular user, “normally used” refers to@idgl or common use of that class of product, regardlessef th
status of the particular user or of the way in which the paléicuser actually uses, or expects or is expected to usprdieict.

A product is a consumer product regardless of whether théystchas substantial commercial, industrial or non-coresum
uses, unless such uses represent the only significant made of the product.

“Installation Information” for a User Product means any huoets, procedures, authorization keys, or other informati
quired to install and execute modified versions of a coverexkun that User Product from a modified version of its Corre-
sponding Source. The information must suffice to ensuretkigatontinued functioning of the modified object code is in no
case prevented or interfered with solely because modificdtas been made.

If you convey an object code work under this section in, ohwitr specifically for use in, a User Product, and the coneyin
occurs as part of a transaction in which the right of poseassind use of the User Product is transferred to the recipient
perpetuity or for a fixed term (regardless of how the trarisads characterized), the Corresponding Source convegddru
this section must be accompanied by the Installation In&tion. But this requirement does not apply if neither you awoy
third party retains the ability to install modified objectdeoon the User Product (for example, the work has been iedtal
ROM).

The requirement to provide Installation Information does include a requirement to continue to provide supportiserv
warranty, or updates for a work that has been modified orlladtay the recipient, or for the User Product in which it has
been modified or installed. Access to a network may be denfehvhe modification itself materially and adversely afect
the operation of the network or violates the rules and pafor communication across the network.

Corresponding Source conveyed, and Installation Infaongtrovided, in accord with this section must be in a forrhat is
publicly documented (and with an implementation availabléhe public in source code form), and must require no specia
password or key for unpacking, reading or copying.

4.1.7 Additional Terms.

“Additional permissions” are terms that supplement thenteof this License by making exceptions from one or more of its
conditions. Additional permissions that are applicabléh®entire Program shall be treated as though they werededIin
this License, to the extent that they are valid under appléeckaw. If additional permissions apply only to part of thegram,
that part may be used separately under those permissianitiebantire Program remains governed by this License withou
regard to the additional permissions.

When you convey a copy of a covered work, you may at your optomove any additional permissions from that copy, or
from any part of it. (Additional permissions may be writt@réquire their own removal in certain cases when you motiy t
work.) You may place additional permissions on materiatiealby you to a covered work, for which you have or can give
appropriate copyright permission.

Notwithstanding any other provision of this License, forteral you add to a covered work, you may (if authorized by the
copyright holders of that material) supplement the termisfLicense with terms:

« a) Disclaiming warranty or limiting liability differenyifrom the terms of sectiois 4.1]15 dnd 4.1.16 of this Licease

* b) Requiring preservation of specified reasonable leg&@®or author attributions in that material or in the Apmiate
Legal Notices displayed by works containing it; or

* ¢) Prohibiting misrepresentation of the origin of that evétl, or requiring that modified versions of such mater&l b
marked in reasonable ways as different from the originaiear, or

Confidential Page 72 of 83

Confidential vmgen

« d) Limiting the use for publicity purposes of names of lisers or authors of the material; or
« e) Declining to grant rights under trademark law for useasfie trade names, trademarks, or service marks; or

« f) Requiring indemnification of licensors and authors adttmaterial by anyone who conveys the material (or mod-
ified versions of it) with contractual assumptions of lidlilto the recipient, for any liability that these contraatu
assumptions directly impose on those licensors and authors

All other non-permissive additional terms are considefadher restrictions” within the meaning[of Automatic Lic@ng of Downsiream |
If the Program as you received it, or any part of it, contaimo#ce stating that it is governed by this License along with

term that is a further restriction, you may remove that telia license document contains a further restriction butrpesr

relicensing or conveying under this License, you may adddowered work material governed by the terms of that license
document, provided that the further restriction does notige such relicensing or conveying.

If you add terms to a covered work in accord with this secti@mu must place, in the relevant source files, a statementof th
additional terms that apply to those files, or a notice intiticewhere to find the applicable terms.

Additional terms, permissive or non-permissive, may beestén the form of a separately written license, or statedkas@
tions; the above requirements apply either way.

4.1.8 Termination.

You may not propagate or modify a covered work except as espyr@rovided under this License. Any attempt otherwise to
propagate or modify it is void, and will automatically temate your rights under this License (including any patemsrises
granted under the third paragraptiof No Surrender of Offigéesdon.).

However, if you cease all violation of this License, then yboense from a particular copyright holder is reinstatayl (
provisionally, unless and until the copyright holder egjly and finally terminates your license, and (b) permalygiitthe
copyright holder fails to notify you of the violation by someasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holderdinstated permanently if the copyright holder notifies gbthe
violation by some reasonable means, this is the first timehawe received notice of violation of this License (for anyrkjo
from that copyright holder, and you cure the violation ptmB0 days after your receipt of the notice.

Termination of your rights under this section does not teate the licenses of parties who have received copies dstigim

you under this License. If your rights have been terminatetret permanently reinstated, you do not qualify to recess
licenses for the same material unger Automatic Licensingainsiream Recipienis..

4.1.9 Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receivrun a copy of the Program. Ancillary propagation of a
covered work occurring solely as a consequence of usingtpeaeer transmission to receive a copy likewise does rwptire
acceptance. However, nothing other than this License ggamt permission to propagate or modify any covered works&he
actions infringe copyright if you do not accept this Licen3éerefore, by modifying or propagating a covered work, you
indicate your acceptance of this License to do so.

4.1.10 Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient autoralifticeceives a license from the original licensors, to modify
and propagate that work, subject to this License. You areesponsible for enforcing compliance by third parties wiitis
License.

Confidential Page 73 of 83

Confidential vmgen

An “entity transaction” is a transaction transferring gohof an organization, or substantially all assets of omsubdividing

an organization, or merging organizations. If propagatiba covered work results from an entity transaction, eactypa

that transaction who receives a copy of the work also reseitmtever licenses to the work the party’s predecessotendst

had or could give under the previous paragraph, plus a righb$ssession of the Corresponding Source of the work from the
predecessor in interest, if the predecessor has it or cahwigh reasonable efforts.

You may not impose any further restrictions on the exercisherights granted or affirmed under this License. For eXamp
you may not impose a license fee, royalty, or other chargexercise of rights granted under this License, and you may no
initiate litigation (including a cross-claim or counteatch in a lawsuit) alleging that any patent claim is infrindgdmaking,
using, selling, offering for sale, or importing the Progranany portion of it.

4.1.11 Patents.

A “contributor” is a copyright holder who authorizes use anthis License of the Program or a work on which the Program
is based. The work thus licensed is called the contributodatributor version”.

A contributor’s “essential patent claims” are all patemiicls owned or controlled by the contributor, whether alyesatjuired
or hereafter acquired, that would be infringed by some marpemitted by this License, of making, using, or selling it
contributor version, but do not include claims that wouldiffginged only as a consequence of further modification ef th
contributor version. For purposes of this definition, “cofitincludes the right to grant patent sublicenses in a neann
consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwidgalty-free patent license under the contributor’'s essépttent
claims, to make, use, sell, offer for sale, import and otligewun, modify and propagate the contents of its contribgcsion.

In the following three paragraphs, a “patent license” is eaxgress agreement or commitment, however denominateth not
enforce a patent (such as an express permission to pragtatert or covenant not to sue for patent infringement). Tarig
such a patent license to a party means to make such an agtegmeemmitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patewcefise, and the Corresponding Source of the work is not
available for anyone to copy, free of charge and under thmg@f this License, through a publicly available networkvser

or other readily accessible means, then you must eithea{igecthe Corresponding Source to be so available, or (2)gera
to deprive yourself of the benefit of the patent license f@ prarticular work, or (3) arrange, in a manner consistett tie
requirements of this License, to extend the patent liceastvnstream recipients. “Knowingly relying” means you éav
actual knowledge that, but for the patent license, your egimg the covered work in a country, or your recipient’s ukthe
covered work in a country, would infringe one or more idealife patents in that country that you have reason to believe a
valid.

If, pursuant to or in connection with a single transactiomwangement, you convey, or propagate by procuring comagya
of, a covered work, and grant a patent license to some of theepaeceiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the coveredwtben the patent license you grant is automatically ex¢dnd
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not includethin the scope of its coverage, prohibits the exercise oiso
conditioned on the non-exercise of one or more of the righds &re specifically granted under this License. You may not
convey a covered work if you are a party to an arrangementavittird party that is in the business of distributing softeyar
under which you make payment to the third party based on ttemeaf your activity of conveying the work, and under which
the third party grants, to any of the parties who would rezéie covered work from you, a discriminatory patent licef@e

in connection with copies of the covered work conveyed by (arcopies made from those copies), or (b) primarily for and
in connection with specific products or compilations thaitei the covered work, unless you entered into that arraegg

or that patent license was granted, prior to 28 March 2007.

Confidential Page 74 of 83

Confidential vmgen

Nothing in this License shall be construed as excludingroitiing any implied license or other defenses to infringetiieat
may otherwise be available to you under applicable patent la

4.1.12 No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court ordergagrent or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of theehse. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License andathgr pertinent obligations, then as a consequence you wotay n
convey it at all. For example, if you agree to terms that aligyou to collect a royalty for further conveying from thadse
whom you convey the Program, the only way you could satisth itose terms and this License would be to refrain entirely
from conveying the Program.

4.1.13 Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, youénpermission to link or combine any covered work with a work
licensed under version 3 of the GNU Affero General Publichise into a single combined work, and to convey the resulting
work. The terms of this License will continue to apply to tretpwhich is the covered work, but the special requiremehts o
the GNU Affero General Public Licende, No Surrender of O§hEreedoni., concerning interaction through a network will
apply to the combination as such.

4.1.14 Revised Versions of this License.

The Free Software Foundation may publish revised and/omeesions of the GNU General Public License from time to time.
Such new versions will be similar in spirit to the presensi@n, but may differ in detail to address new problems or eoms.

Each version is given a distinguishing version number. éffnogram specifies that a certain numbered version of the GNU
General Public License “or any later version” applies tydy have the option of following the terms and conditionbeit

of that numbered version or of any later version publishethyFree Software Foundation. If the Program does not specif
a version number of the GNU General Public License, you mapsé any version ever published by the Free Software
Foundation.

If the Program specifies that a proxy can decide which futersions of the GNU General Public License can be used, that
proxy’s public statement of acceptance of a version permnauthorizes you to choose that version for the Program.

Later license versions may give you additional or diffeneetmissions. However, no additional obligations are ingglosn
any author or copyright holder as a result of your choosirfoltow a later version.

4.1.15 Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTEBY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AN@R OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRES&D OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE ORHE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF BINECESSARY SERVICING, RE-
PAIR OR CORRECTION.

Confidential Page 75 of 83

Confidential vmgen

4.1.16 Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO INWRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE RRGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR DSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY THER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILYTOF SUCH DAMAGES.

4.1.17 Interpretation of[Disclaimer of Warranty.]Jand [Limit ation of Liability. |

If the disclaimer of warranty and limitation of liability pvided above cannot be given local legal effect accordiniipédr
terms, reviewing courts shall apply local law that most elpsapproximates an absolute waiver of all civil liability con-
nection with the Program, unless a warranty or assumptidiability accompanies a copy of the Program in return for a
fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the gstagessible use to the public, the best way to achieve this is
to make it free software which everyone can redistributecrathge under these terms.

To do so, attach the following notices to the program. It ifes@ato attach them to the start of each source file to most
effectively state the exclusion of warranty; and each fileusth have at least the “copyright” line and a pointer to whibee
full notice is found.

<one line to give the program s name and a brief idea of what it does.>
Copyright (C) <year> <nane of author>

This programis free software: you can redistribute it and/or nodify
it under the terns of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
GNU Ceneral Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program [|f not, see <http://ww. gnu.org/licenses/>.

Also add information on how to contact you by electronic anggr mail.
If the program does terminal interaction, make it output@rshotice like this when it starts in an interactive mode:

<progrant Copyright (C) <year> <nanme of author>

This programcones with ABSOLUTELY NO WARRANTY; for details type ‘show w .
This is free software, and you are welcone to redistribute it

under certain conditions; type ‘show c’ for details.

Confidential Page 76 of 83

Confidential vmgen

The hypothetical commands ‘show w’ and ‘show ¢’ should shbe @&ppropriate parts of the General Public License. Of
course, your program’s commands might be different; for d i@térface, you would use an “about box”.

You should also get your employer (if you work as a programmeschool, if any, to sign a “copyright disclaimer” for the
program, if necessary. For more information on this, and twapply and follow the GNU GPL, seé&t p: / / waww. gnu.
org/licenses/>.

The GNU General Public License does not permit incorpogatour program into proprietary programs. If your program is
a subroutine library, you may consider it more useful to pelinking proprietary applications with the library. Ifighis what
you want to do, use the GNU Lesser General Public Licenseansdf this License. But first, please redat € p: / / www.
gnu. or g/ phi | osophy/why- not - | gpl . ht m >.

4.2 GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Fatiowl, Inc. 0t tp: //fsf.org/ >
Everyone is permitted to copy and distribute verbatim cepiethis license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbookthmrdunctional and useful document "free" in the sense of
freedom: to assure everyone the effective freedom to coghyettistribute it, with or without modifying it, either conercially

or noncommercially. Secondarily, this License preseraesite author and publisher a way to get credit for their warkile

not being considered responsible for modifications madettgrs.

This License is a kind of "copyleft”, which means that detiv@works of the document must themselves be free in the same
sense. It complements the GNU General Public License, whialtopyleft license designed for free software.

We have designed this License in order to use it for manuafsde software, because free software needs free docutiventa
a free program should come with manuals providing the saeszlfyrms that the software does. But this License is not limite
to software manuals; it can be used for any textual work,nigss of subject matter or whether it is published as agudint
book. We recommend this License principally for works whpsgpose is instruction or reference.

4.2.1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any madthat contains a notice placed by the copyright holdemgayi

it can be distributed under the terms of this License. Sucbht&egrants a world-wide, royalty-free license, unlindiie
duration, to use that work under the conditions stated her€he "Document"”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as."ywu accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work contagnihe Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another larggua

A "Secondary Section" is a named appendix or a front-maéetian of the Document that deals exclusively with the rela-
tionship of the publishers or authors of the Document to theunent’s overall subject (or to related matters) and ¢osta
nothing that could fall directly within that overall subfeqThus, if the Document is in part a textbook of mathematics
Secondary Section may not explain any mathematics.) Thd&orthip could be a matter of historical connection wité th
subject or with related matters, or of legal, commerciallgsophical, ethical or political position regarding them

Confidential Page 77 of 83

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html
http://fsf.org/

Confidential vmgen

The "Invariant Sections" are certain Secondary Sectionssweilitles are designated, as being those of Invariant@estin
the notice that says that the Document is released unddritieisse. If a section does not fit the above definition of Sdeon
then it is not allowed to be designated as Invariant. The Dt may contain zero Invariant Sections. If the Documeresdo
not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text thdishee, as Front-Cover Texts or Back-Cover Texts, in theceot
that says that the Document is released under this Licengeomt-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-réadaby, represented in a format whose specification is-avail
able to the general public, that is suitable for revisingdbeument straightforwardly with generic text editors ar({mages
composed of pixels) generic paint programs or (for drawjiisgsne widely available drawing editor, and that is suitdbte
input to text formatters or for automatic translation to aiety of formats suitable for input to text formatters. A gapade

in an otherwise Transparent file format whose markup, orradegsef markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. Ageénformat is not Transparent if used for any substantialeano

of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies irepldin ASCII without markup, Texinfo input forma#TEX input
format, SGML or XML using a publicly available DTD, and stamd-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image fesrimeclude PNG, XCF and JPG. Opaque formats include pro-
prietary formats that can be read and edited only by pragmsietiord processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the maefp¢nerated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title pagafitplus such following pages as are needed to hold, legibéy
material this License requires to appear in the title pagewerks in formats which do not have any title page as sucitig'T
Page" means the text near the most prominent appearancewbtk’s title, preceding the beginning of the body of thettex

The "publisher" means any person or entity that distribatgses of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Docunvemose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in anothegliage. (Here XYZ stands for a specific section name meattion
below, such as "Acknowledgements", "Dedications”, "Eséarents"”, or "History".) To "Preserve the Title" of such etiem
when you modify the Document means that it remains a seckatitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to thiccaavhich states that this License applies to the Document.
These Warranty Disclaimers are considered to be includeckfrence in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Risters may have is void and has no effect on the meaning ®f thi

License.

4.2.2 VERBATIM COPYING

You may copy and distribute the Document in any medium, eitteenmercially or noncommercially, provided that this
License, the copyright notices, and the license noticengathis License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoeverogetbf this License. You may not use technical measures to
obstruct or control the reading or further copying of theiespyou make or distribute. However, you may accept compen-
sation in exchange for copies. If you distribute a large gonumber of copies you must also follow the conditions in

[COPYING IN QUANTITY]

You may also lend copies, under the same conditions statacabnd you may publicly display copies.

Confidential Page 78 of 83

Confidential vmgen

4.2.3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that comipbiave printed covers) of the Document, numbering more than
100, and the Document’s license notice requires Cover JTgrts must enclose the copies in covers that carry, cleady an
legibly, all these Cover Texts: Front-Cover Texts on theafroover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publishigthese copies. The front cover must present the full titlénail
words of the title equally prominent and visible. You may adder material on the covers in addition. Copying with ctemg
limited to the covers, as long as they preserve the title@fitbcument and satisfy these conditions, can be treatedlaatira
copying in other respects.

If the required texts for either cover are too voluminous tdefgibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest aljgoent pages.

If you publish or distribute Opaque copies of the Documemhbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copyateristor with each Opaque copy a computer-network location
from which the general network-using public has access tontttad using public-standard network protocols a complete
Transparent copy of the Document, free of added materigbufuse the latter option, you must take reasonably prudeps s
when you begin distribution of Opaque copies in quantitgrnsure that this Transparent copy will remain thus acclesatb
the stated location until at least one year after the last iou distribute an Opaque copy (directly or through younégjer
retailers) of that edition to the public.

It is requested, but not required, that you contact the astbibthe Document well before redistributing any large nenddf
copies, to give them a chance to provide you with an updatesioreof the Document.

4.2.4 MODIFICATIONS

You may copy and distribute a Modified Version of the Documamder the conditions df VERBATIM COPYING and

[COPYING IN QUANTITY] above, provided that you release the Miedl Version under precisely this License, with the
Modified Version filling the role of the Document, thus licerts distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do tiasgs in the Modified Version:

* A.Use in the Title Page (and on the covers, if any) a titl¢idés from that of the Document, and from those of previous
versions (which should, if there were any, be listed in thetétly section of the Document). You may use the same title
as a previous version if the original publisher of that vengjives permission.

 B. List on the Title Page, as authors, one or more personstities responsible for authorship of the modifications in
the Modified Version, together with at least five of the prpatiauthors of the Document (all of its principal authors, if
it has fewer than five), unless they release you from thisiremqent.

« C. State on the Title page the name of the publisher of theifiéoidVersion, as the publisher.
« D. Preserve all the copyright notices of the Document.
< E. Add an appropriate copyright notice for your modifica@djacent to the other copyright notices.

« F. Include, immediately after the copyright notices, @tise notice giving the public permission to use the Modified
Version under the terms of this License, in the form showméAddendum below.

e G. Preserve in that license notice the full lists of InvatiGections and required Cover Texts given in the Document’s
license notice.

Confidential Page 79 of 83

Confidential vmgen

e H. Include an unaltered copy of this License.

« |. Preserve the section Entitled "History", Preserve itteTand add to it an item stating at least the title, yeaw ne
authors, and publisher of the Modified Version as given orTitie Page. If there is no section Entitled "History" in the
Document, create one stating the title, year, authors, ahtigher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the preysentence.

 J. Preserve the network location, if any, given in the Doentfior public access to a Transparent copy of the Document,
and likewise the network locations given in the Documenfi@vious versions it was based on. These may be placed
in the "History" section. You may omit a network location fowork that was published at least four years before the
Document itself, or if the original publisher of the versibrefers to gives permission.

< K. For any section Entitled "Acknowledgements" or "Dediicas", Preserve the Title of the section, and preservedn th
section all the substance and tone of each of the contrilgtarowledgements and/or dedications given therein.

e L. Preserve all the Invariant Sections of the Documentitared in their text and in their titles. Section numbersha t
equivalent are not considered part of the section titles.

* M. Delete any section Entitled "Endorsements". Such d@eotay not be included in the Modified Version.
< N. Do not retitle any existing section to be Entitled "Enskmnents” or to conflict in title with any Invariant Section.

e O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sectiomappendices that qualify as Secondary Sections and cambain
material copied from the Document, you may at your optionigiege some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Mieti Version’s license notice. These titles must be disfirach any
other section titles.

You may add a section Entitled "Endorsements”, provideaitt&ins nothing but endorsements of your Modified Version
by various parties—for example, statements of peer reviethat the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Tekia @assage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Oahe passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any org dhthe Document already includes a cover text for the
same cover, previously added by you or by arrangement mattelsame entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit pelionisisom the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not bylticisnse give permission to use their names for publicityoior
to assert or imply endorsement of any Modified Version.

4.2.5 COMBINING DOCUMENTS

You may combine the Document with other documents releaseéerihis License, under the terms defindd in MODIFICATIONS
above for modified versions, provided that you include indbmbination all of the Invariant Sections of all of the onigi
documents, unmodified, and list them all as Invariant Sestiof your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this Licease, multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sectiovith the same name but different contents, make the titleaohe
such section unique by adding at the end of it, in parenthéisesiame of the original author or publisher of that secifion

Confidential Page 80 of 83

Confidential vmgen

known, or else a unique number. Make the same adjustment &etttion titles in the list of Invariant Sections in the tise
notice of the combined work.

In the combination, you must combine any sections Entittéidtory” in the various original documents, forming onetsat
Entitled "History"; likewise combine any sections EntitleAcknowledgements”, and any sections Entitled "Dedaf.
You must delete all sections Entitled "Endorsements".

4.2.6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document andradleeuments released under this License, and replace the
individual copies of this License in the various documernith & single copy that is included in the collection, provddbat
you follow the rules of this License for verbatim copying a@icé of the documents in all other respects.

You may extract a single document from such a collection, disttibute it individually under this License, providedyo
insert a copy of this License into the extracted documerd,fallow this License in all other respects regarding verbat
copying of that document.

4.2.7 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with otheparate and independent documents or works, in or on a volume
of a storage or distribution medium, is called an "aggregatke copyright resulting from the compilation is not ugedimit

the legal rights of the compilation’s users beyond what titividual works permit. When the Document is included in an
aggregate, this License does not apply to the other workseraggregate which are not themselves derivative workseof th
Document.

If the Cover Text requirement 6 COPYING IN QUANTITY is appdible to these copies of the Document, then if the Doc-
ument is less than one half of the entire aggregate, the DeotsnCover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equitaénovers if the Document is in electronic form. Otherwisey
must appear on printed covers that bracket the whole aggrega

4.2.8 TRANSLATION

Translation is considered a kind of modification, so you masgrithute translations of the Document under the terms of
[MODIFICATIONS. Replacing Invariant Sections with trartsias requires special permission from their copyrighteos,

but you may include translations of some or all Invariantti®es in addition to the original versions of these Invatian
Sections. You may include a translation of this License, aihdhe license notices in the Document, and any Warranty
Disclaimers, provided that you also include the originagksh version of this License and the original versions afsin
notices and disclaimers. In case of a disagreement betledranslation and the original version of this License ootice

or disclaimer, the original version will prevail.

If a section in the Documentis Entitled "Acknowledgemerit®edications”, or "History", the requiremehi (MODIFICKINS)
to Preserve its Titld (APPLICABILITY AND DEFINITIONE) wiltypically require changing the actual title.

4.2.9 TERMINATION

You may not copy, modify, sublicense, or distribute the Duent except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, or distehitiis void, and will automatically terminate your rightader this
License.

Confidential Page 81 of 83

Confidential vmgen

However, if you cease all violation of this License, then ybocense from a particular copyright holder is reinstatajl (
provisionally, unless and until the copyright holder egiply and finally terminates your license, and (b) permalyeiitthe
copyright holder fails to notify you of the violation by someasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holderainstated permanently if the copyright holder notifies gbthe
violation by some reasonable means, this is the first timehgwe received notice of violation of this License (for anyrkjo
from that copyright holder, and you cure the violation ptmB0 days after your receipt of the notice.

Termination of your rights under this section does not teate the licenses of parties who have received copies dstiigim
you under this License. If your rights have been terminatetireot permanently reinstated, receipt of a copy of somel of al
the same material does not give you any rights to use it.

4.2.10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revisedwessf the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the presensi@n, but may differ in detail to address new problems or eons.
Seehtt p: // www. gnu. or g/ copyl eft /.

Each version of the License is given a distinguishing versiomber. If the Document specifies that a particular nuntbere
version of this License "or any later version" applies tydyu have the option of following the terms and conditionkeitof

that specified version or of any later version that has beéfighed (not as a draft) by the Free Software Foundatiorhdf t
Document does not specify a version number of this License,igay choose any version ever published (not as a draft) by
the Free Software Foundation. If the Document specifiesahpabxy can decide which future versions of this License can
be used, that proxy’s public statement of acceptance of siorepermanently authorizes you to choose that versiorhfor t
Document.

4.2.11 RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site")eans any World Wide Web server that publishes copyrightable
works and also provides prominent facilities for anybodgdd those works. A public wiki that anybody can edit is anrapée

of such a server. A "Massive Multiauthor Collaboration" {(MMC") contained in the site means any set of copyrightable
works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Shali&é\3.0 license published by Creative Commons Corporation
a not-for-profit corporation with a principal place of busés in San Francisco, California, as well as future copykfions
of that license published by that same organization.

"Incorporate” means to publish or republish a Document,hiole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed undehis License, and if all works that were first published undiées t
License somewhere other than this MMC, and subsequentbypocated in whole or in part into the MMC, (1) had no cover
texts or invariant sections, and (2) were thus incorporptexd to November 1, 2008.

The operator of an MMC Site may republish an MMC containechi gite under CC-BY-SA on the same site at any time
before August 1, 2009, provided the MMC is eligible for relising.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, includepy of the License in the document and put the following
copyright and license notices just after the title page:

Confidential Page 82 of 83

http://www.gnu.org/copyleft/

Confidential vmgen

Copyright (C) YEAR YOUR NAME.

Perm ssion is granted to copy, distribute and/or nodify this docunent

under the terns of the GNU Free Docunentation License, Version 1.3

or any |ater version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU Free Docunentation

Li cense".

If you have Invariant Sections, Front-Cover Texts and B&oker Texts, replace the "with ... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front - Cover Texts being LIST, and with the Back-Cover Texts being LI ST.

If you have Invariant Sections without Cover Texts, or sortfeebcombination of the three, merge those two alternatives

suit the situation.
If your document contains nontrivial examples of progrardesove recommend releasing these examples in parallel under
your choice of free software license, such as the GNU GeRealic License, to permit their use in free software.

Page 83 of 83

Confidential

	Vmgen documentation
	Introduction
	Why interpreters?
	Concepts
	Front end and VM interpreter
	Data handling
	Dispatch

	Invoking Vmgen
	Example
	Example overview
	Using profiling to create superinstructions

	Input File Format
	Input File Grammar
	Simple instructions
	Superinstructions
	Store Optimization
	Register Machines

	Error messages
	Using the generated code
	VM engine
	VM instruction table
	VM code generation
	Peephole optimization
	VM disassembler
	VM profiler

	Hints
	Floating point

	The future
	Contact

	Virtual machine implementation
	ArrayForth application files
	README
	simple.mini - example mini program
	fib.mini - example mini program
	test.mini - example mini program (tests everything)

	Mini specific files
	Makefile
	Support.c - main() and other support functions
	mini.h - common declarations
	mini-inst.vmg - simple VM instructions
	mini-super.vmg - superinstructions (empty at first)
	mini.l - scanner
	mini.y - front end (parser, VM code generator)
	peephole-blacklist - list of instructions not allowed in superinstructions

	Generic support files
	peephole.c - wrapper file
	profile.c - wrapper file
	disasm.c - wrapper file
	engine.c - wrapper file
	stat.awk - script for aggregating profile information
	seq2rule.awk - script for creating superinstructions

	Printing and Extracting the code
	Copyrights
	GNU GENERAL PUBLIC LICENSE
	Source Code.
	Basic Permissions.
	Protecting Users' Legal Rights From Anti-Circumvention Law.
	Conveying Verbatim Copies.
	Conveying Modified Source Versions.
	Conveying Non-Source Forms.
	Additional Terms.
	Termination.
	Acceptance Not Required for Having Copies.
	Automatic Licensing of Downstream Recipients.
	Patents.
	No Surrender of Others' Freedom.
	Use with the GNU Affero General Public License.
	Revised Versions of this License.
	Disclaimer of Warranty.
	Limitation of Liability.
	Interpretation of Disclaimer of Warranty. and Limitation of Liability..

	GNU Free Documentation License
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	RELICENSING

