
SP2 CPU
Programming Model
The SP2 CPU has a 16-bit datapath, with all address and data registers 16 bits wide. Its uniform address
space uses word addressing, so that individual memory bytes are not directly accessible. Its dual stack
architecture consists of just the seven programmer-visible entities shown here.

entity Description
DS This part of the data stack is a LIFO structure which is internally addressed modulo its

size, resulting in no overflow or underflow. That means pushing an extra item overwrites
the oldest item and popping an extra item rereads the oldest item (circular access). The
data stack is accessible only by pushing or popping D.

D This register is the second element of the data stack. It is used in most alu operations, is
the source for stores, and is the destination for loads.

A This register is the top element of the data stack. It is used in all alu operations, is an
address for loads and stores, and is the link between the data and return stacks.

R This register is the top element of the return stack. It is used to save the last subroutine
return address, is an address for loads and stores, holds the decrementing index for
counted loops, and may be pushed and popped for temporary storage.

RS This part of the return stack is a LIFO structure which is internally addressed modulo its
size, resulting in no overflow or underflow. As with the data stack, that means pushing an
extra item overwrites the oldest item and popping an extra item rereads the oldest item
(circular access). The return stack is accessible only by pushing or popping R.

P This register holds the program counter, holding the next sequential program address.
I This register holds the current instruction word or execution token.

External interface
Enough control lines are provided so that an external MMU can provide access to application-specific
memory, devices, and interrupts. Upon reset the cpu begins in Code State, fetching the instruction word at
address zero.
The design is described in Verilog, suitable for compilation into a variety of FPGAs. The depth of the two
stacks is not described in the cpu, but is 256 words in the current implementation because that is the
smallest memory block available.

Signal i/o width description

clock i 1 periodic input triggering all the registers and stacks on its rising edge
reset i 1 bring high to reset the cpu, fetching a Code State instruction from address 0.
hold i 1 bring high to prevent the address from advancing
data o 1 high specifies a data access, low an instruction/token fetch (read only)
read o 1 high specifies a read access, low a write (both read & data low is no access)
next o 1 high indicates List State for next cycle, low indicates Code State
cda o 16 data address from the cpu
cdo o 16 data output from the cpu
cdi i 16 data input to the cpu

done i 1 high signals the completion of a read/write/fetch access, low otherwise

rev 12 08/24/07 page 1 of 6

CPU Details
The limits to the SP2 instruction set are the result of the single-cycle datapath design shown below. All
registers, including the stacks, change on the rising edge of the clock. The remaining modules (decode,
increment, decrement, alu, and multiplexers) are combinatorial.
The diagram depicts one clock cycle running from left to right, with the register values available on the left
and latched on the right. The multiplexer and alu labels are the names of their local output buses.

rev 12 08/24/07 page 2 of 6

RS

SP2 CPU Datapath

D

A

R

P

I

D

A

R

P

I

cdo

decode

alu

decr or pass

cda

cdi

ra

ip

dn

ps
ri

ai

di

ma incr or pass

DS dd
zd
za

I. Code State
Instruction words and opcodes
SP2's dual stack architecture requires few operands to be explicitly named, it has only 42 opcodes, most
only 5 bits wide. This allows up to three opcodes and an optional subroutine return to be packed into each
instruction word and fetched as a unit.

The opcodes within an instruction word are executed sequentially, one per cpu or memory access cycle,
starting with the one in slot 0 (bits 14:10), followed by the ones in slot 1 (bits 9:5) and slot 2 (bits 4:0). If
there isn’t a control-group opcode in slots 0-2, an additional slot 3 opcode is used to fetch a new instruction
word.

bit 15 bits 14:10 bits 9:5 bits 4:0
slot 3 slot 0 slot 1 slot 2

Control group
The jump and jump-subroutine opcodes conditionally change the sequence of execution, using the low-order
address bits used to fetch the next instruction word.

bit 15 bits 14:10 bits 9:5 bits 4:0
jsr/jmp slot 0/1 control-group opcode 10-bit page address
jsr/jmp other opcode slot 0/1 control-group opcode 5-bit page address
ret/nxt other opcode other opcode slot 2 control-group opcode
ret/nxt other opcode other opcode other opcode

The low-order 5 or 10 bits of I are used to replace the corresponding bits of P. While this isn’t as versatile
as being added or subtracted, it’s considerably faster. In the small embedded systems for which this
processor is targeted, the code is expected to consist of many small subroutines and loops, so fast
execution of jumps and subroutine calls is required. To reach locations beyond the 10 bit range of a slot 0
jump, a longjump opcode may be constructed by pushing a value into R and executing the return opcode (and
see List State below).
The behavior of the jumps in slot 0 and slot 1 depends on bit 15:

opcode value I[15] Slot 0 & Slot 1 Behavior description
jmp 0x00 0 Fetch the next instruction word from the address {P[15:10], I[9:0]} or

{P[15:5], I[4:0]}, depending on slot. Replace P with the incremented
address.

jmpd 0x01 0 If R is non-zero, decrement it and fetch the next instruction word from
the address {P[15:10], I[9:0]} or {P[15:5], I[4:0]}, depending on slot.
Otherwise fetch the next instruction word from the address in P and pop
RS to R.
In both cases replace P with the incremented address.

jmpp 0x02 0 If A[15] is zero (positive), fetch the next instruction word from the
address {P[15:10], I[9:0]} or {P[15:5], I[4:0]}, depending on slot.
Otherwise fetch the next instruction word from the address in P.
In both cases replace P with the incremented address.

jmpz 0x03 0 If A is zero, fetch the next instruction word from the address {P[15:10],
I[9:0]} or {P[15:5], I[4:0]}, depending on slot.
Otherwise fetch the next instruction word from the address in P.
In both cases replace P with the incremented address.

rev 12 08/24/07 page 3 of 6

opcode value I[15] Slot 0 & Slot 1 Behavior description
jsr 0x00 1 Fetch the next instruction word from the address {P[15:10], I[9:0]} or

{P[15:5], I[4:0]}, depending on slot, push R to RS, and move P to R.
Otherwise fetch the next instruction word from the address in P.
In both cases replace P with the incremented address.

jsrn 0x01 1 If R is non-zero, fetch the next instruction word from the address
{P[15:10], I[9:0]} or {P[15:5], I[4:0]}, depending on slot, push R to RS, and
move P to R.
Otherwise fetch the next instruction word from the address in P.
In both cases replace P with the incremented address.

jsrp 0x02 1 If A[15] is zero (positive), fetch the next instruction word from the
address {P[15:10], I[9:0]} or {P[15:5], I[4:0]}, depending on slot, push R to
RS, and move P to R.
Otherwise fetch the next instruction word from the address in P.
In both cases replace P with the incremented address.

jsrz 0x03 1 If A is zero, fetch the next instruction word from the address {P[15:10],
I[9:0]} or {P[15:5], I[4:0]}, depending on slot, push R to RS, and move P to
R.
Otherwise fetch the next instruction word from the address in P.
In both cases replace P with the incremented address.

In slot 2 there are no address bits available, so the control opcodes conditionally repeat execution of the
current instruction word beginning at slot 0. When any condition is not met, slot 3 controls where to fetch
the next instruction word. The opcode value decoded as an unconditional jump or call in slots 0 and 1 is used
in slot 2 to enter List State (see below).

opcode value I[15] Slot 2 Behavior description
into 0x00 0 Enter List State to fetch the next execution token from the address in

P. Replace P with the incremented address.
exit 0x00 1 Return to List State to fetch the next execution token from the address

in R. Replace P with the incremented address and pop RS to R.
repd 0x01 - If R is non-zero, decrement it and repeat the current instruction word

from slot 0. Otherwise pop RS to R and continue with slot 3.
repp 0x02 - If A[15] is zero (positive), repeat the current instruction word from slot

0. Otherwise continue with slot 3.
repz 0x03 - If A is zero, repeat the current instruction word from slot 0. Otherwise

continue with slot 3.

When slot 0 and slot 1 contain no control group opcodes, bit 15 determines where the next instruction word
is found.

opcode value I[15] Slot 3 Behavior description
(nxt) - 0 Fetch the next instruction word from the address in P. Replace P with the

incremented address.
ret - 1 Fetch the next instruction word from the address in R and pop RS to R.

Replace P with the incremented address.

Move group
The opcodes in this group mostly move data between R and A.

rev 12 08/24/07 page 4 of 6

opcode value behavior description
get 0x04 Push D to DS, move A into D, and copy R into A.
pop 0x05 Push D to DS, move A into D, move R into A, and pop RS to R.
drop 0x06 Delete A: move D into A, and pop DS to D.
push 0x07 Push R to RS, move A into R, move D into A, and pop DS to D.

Memory group
The opcodes in this group move data between the address space and D, pushing or popping DS, using an address
from A, R, or P. The address register used may be incremented after the memory access.

opcode value behavior description

lit 0x08 Literal: push D to DS and read data into D using the address in P. Increment P.
ldri 0x09 Push D to DS and read data into D using the address in R. Increment R.
lda 0x0a Push D to DS and read data into D using the address in A.
ldai 0x0b Push D to DS and read data into D using the address in A. Increment A.
str 0x0c Write data from D using the address in R and pop DS to D.
stri 0x0d Write data from D using the address in R and pop DS to D. Increment R.
sta 0x0e Write data from D using the address in A and pop DS to D.
stai 0x0f Write data from D using the address in A and pop DS to D. Increment A.

ALU group
These instructions do various arithmetic, logical, and movement operations between A and D, pushing or popping
DS as specified.

opcode value behavior description

swap 0x10 Exchange A and D.
nop 0x11 Do nothing.
eqz 0x12 Replace A with 0xffff if it is zero, with zero otherwise.
inv 0x13 Bitwise invert A.
add 0x14 Replace the pair D.A with the sum of A and D (unsigned addition).
lsl 0x15 Shift the pair D.A one bit to the left, inserting zero into bit 0 of A.
asr 0x16 Shift the pair D.A one bit to the right, replicating bit 15 of D.
lsr 0x17 Shift the pair D.A one bit to the right, inserting zero into bit 15 of D.

over 0x18 Push D to DS and exchange A and D.
dup 0x19 Push D to DS and copy A to D.
zero 0x1a Push D to DS, move A to D, and set A to zero.
one 0x1b Push D to DS, move A to D, and set A to one.
nip 0x1c Delete D: Pop DS to D.
or 0x1d Replace A with the bitwise inclusive-or of A and D and pop DS to D.
xor 0x1e Replace A with the bitwise exclusive-or of A and D and pop DS to D.
and 0x1f Replace A with the bitwise and of A and D and pop DS to D.

rev 12 08/24/07 page 5 of 6

II. List State
Description
In addition to the usual Code State in which all microprocessors execute their native machine instructions,
the SP2 has an additional List State in which nested lists of subroutine calls, often referred to as
threaded code, may be executed with minimal overhead. This is particularly useful on the SP2 because of
the limited range of the jmp and jsr opcodes and the relatively high cost of jumping or calling outside that
range.
The inclusion of List State on the SP2 allows an efficient implementation of interrupts. It also permits an
especially compact implementation of a threaded-code interpreter for the Forth language.

Implementation
There are just three List State instructions, called execution tokens to distinguish them from Code
State's instruction words. Non-zero execution tokens are simply 16-bit addresses of code and list routines.
The low bit of the address is used to differentiate the two: code routines start at even addresses, list
routines start at odd addresses. The address zero, the hardware reset address, is also used as the exit
token, which returns to the previous list routine. Very little additional decode and no additional data paths
are needed to implement List State.

type token in I behavior
exit exit token

(zero)
List return: Remain in List State to fetch the next execution token from the
address in R and pop RS to R.
Replace P with the incremented address.

call code token
(even address)

Code call: Enter Code State to fetch an instruction word from the address in
I. Push R to RS and move P to R.
Replace P with the incremented address.

nest list token
(odd address)

List call: Remain in List State to fetch an execution token from the address
in I. Push R to RS and move P to R.
Replace P with the incremented address.

The Code State into and exit opcodes, described in the control group above, are how machine code routines
enter List State.
Note: Only the initial address of code and list routines (found as execution tokens in I) must be at even and
odd addresses, respectively--subsequent list or code routine addresses (as found in P and R) have no such
restrictions.

Interrupts
The SP2 CPU will normally have an associated MMU which handles the allocation and timing of the data
accesses outside the CPU. If that MMU can provide an execution token (code or list routine address) to the
CPU in response to an external signal, a very simple interrupt mechanism results.

One of the SP2 CPU's inputs is hold, which controls whether the cda address is incremented before being
saved in P. If the MMU brings this line high while the SP2 is in List State and provides an execution token
on the cdi bus, the CPU will execute that routine rather than the one normally fetched from the address.
By not incrementing the address the specified routine will be executed when the interrupt routine returns.

The result is that execution in Code State is uninterruptible. If an appropriate interrupt acknowledge signal
is provided, execution of at least one List State token between interrupts can be guaranteed, which will
prevent a stuck interrupt line from locking the cpu.

rev 12 08/24/07 page 6 of 6

	SP2 CPU
	Programming Model
	CPU Details
	
	I. Code State
	Instruction words and opcodes
	Memory group
	ALU group
	II. List State
	Description
	Implementation
	Interrupts

