m sc8051.fs
\ misc8051.fs

0 [if]
Copyright (C) 2004-2006 by Charles Shattuck.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For LGPL information: http://www.gnu.org/copyleft/lesser.txt
[then]
nowarn

: hello ." Talk to the target " ;
" hello is bootmessage

variable talks O talks !
: talking true talks !;

\ —— Virtual Machine ————- /
\ Subroutine threaded.
0 constant S \ RO = Stack pointer.
1 constant A\ R1 = Internal address pointer.
$e0 constant T: .T T +; \ Acc = Top of stack.
\ DPTR = Code memory address pointer, aka P.
\ B is used by um*, u/mod, and over, not preserved.

\ — 8051 Registers ———-— /

$82 constant DPL $83 constant DPH
$98 constant SCON : .SCON SCON + ;
$99 constant SBUF

$80 constant PO : .PO PO +;

$90 constant P1 : .P1 P1 +;

$a0 constant P2 : .P2 P2 +;

$b0 constant P3: .P3 P3 +;

$81 constant SP

$d0 constant PSW : .PSW PSW + ;
$88 constant TCON : .TCON TCON + ;
$89 constant TMOD

$8a constant TLO $8b constant TL1
$8c constant THO $8d constant TH1
$8f constant PCON

$a8 constant IE : .IE IE +;

$b8 constant IP : .IP IP + ;

$fO constantB :.B B +;

\ $fd constant SPO $80 constant RPO
$100 constant SP0O $80 constant RPO

\ ——— Subroutines ———-- /
\': clean begin key?-s while key-s drop repeat ;
. listen begin key-s dup 7 — while emit repeat drop ;
. (talk) (a-) (clean) 0 emit-s key-s
drop dup $ff and emit-s 8 rshift $ff and emit-s ;
\ Enabling the ‘[char] | emit' tags results coming from target.
\ Words executed only for the host won't do that. A debugging aid.
talk (a—)>red ([char] | emit) (talk) listen >black ;

Page 1

m sc8051.fs

mecall (a-)
hint
[dup $f800 and] here [2 + $f800 and = if
dup 8 rshift 32 * $11 + 1], , [exit
then $12 1, [dup 8 rshift], , m;

m-= (-) .
[>in @ label >in!
create | here [, hide
does> @ talks @ if talk exit then] call m;

'm: (—)-:header m;

‘msa (-)
edge c@-t $1f and $11 =
] here [2 — dup c@-t $ef and swap c!-t exit
then] $22 , m;

m;l(-)
edge c@-t $12 =
$02] here [3 — c!-t exit
then] $22 , m;

m; ()
edge here [2 - = if ;a exit then]
edge here [3 - = if ;| exit then]
$22 , m;

\ —— Assembler ————- /
[\ These are 'assembler’, not 'target forth'.
:interrupt (a -)] here swap org dup call ;org[;
:push$c0],,[; :pop$dO],
cset$d2],,[; clr$c2] , ,[\ bit
setc$d3],[; :clrc$c3],[; \carry
:toggle$b2] o[oreti $321], ['
:nopO0],
sinc dup 8 < if $08 +],[exitthen$05],,[; \Rnordirect
:dec dup8<if $18 +], [exitthen $15],,[;
radd dup 8 <if$28+], [exitthen $251], ,[;
raddc dup 8 < if $38 +], [exitthen $35], , [;
:xch dup 8<if$c8+], [exitthen$c5],,[;
- ##p! $90], [dup 8 rshift], , [;
:mov dup8<if$a8 +],, [exitthen
over 8 <if swap $88 +], , [exit then
$85], [swap],,[;
:movbc $a2],,[; \ Move bit to carry.
:movcb $92], ,[; \ Move carry to bit.
:[swap] $c4], [; \ Swap nibbles.

\ —— Conditionals ————— /

:m then hide here [over - 1 — swap] c!-t m;
:m cond hide , here 0, m;

:mif $60 cond m; :m O=if $70 cond m;
:m if* $50 cond m; :m O=if' $40 cond m;
:m if. $30, cond m; :m 0=if. $20 , cond m;
m-=if 7.Tif. m; :m+if7.T 0=if. m;

‘m begin here hide m;

:mend [dup >r 1 + —r>cl-t] hide m;

:m until if end m;

:m O=until O=if end m;

:m until. if. end m;

:m O=until. O=if. end m;

:m —until —if end m;

:m again call ; m

\ ——— Stack operations ———--— /
:mnip[Sinc]m;

:m drop hint $e6 , nip m;

:m dup S dec $f6 , m;

Page 2

m sc8051.fs Page 3

:m swap $c6 , m;
:m (over) $86 , B, dup $e5, B, m;
:m 2drop nip drop m;

\ — Optimizing ————- /
\ The hint helps #, doesn't hurt anything else?
m?2dup (- 7)

edge here [2 — —if] hint dup [exit then
edge @-t $e608 = if

-2] allot here [there 2 erase exit
then] hint dup m;

m?lit (—7)
edge here [4 — - if O exit then
edge @-t $18f6 =] edge [2 + c@-t $74 = and if
]here[1 - c@-t—-4] allot here
[there 4 erase -1 exit
then 0] m;

:m =if ?lit [0= if abort then] $b4 , cond m; \ Does literal = T?.
:m <if =if then if m; \ Is T <= literal?.

:m =until =if end m;

:m <until <if end m;

\ — More stack operations ———-—-— /

m#?2dup $74,, m; m## [dup]#[8rshift]# m;
‘m ~# [invert] # m;

:m push [T push] drop m; :m pop ?2dup [T pop | m;

\ $75 = mov direct,#data

mSP!'$75,S,, m; mRP!'$75,SP,, m;

:m stacks SPO SP! RPO RP! m;

\ ——— Arithmetic and logic ———-—- /
m1+$04, m; :mil-$14,m;

‘mul+ $06 , m; :mul-$16, m;

:m invert $f4 , m; :m negate invert 1+ m;

:m logic (opcode) [>r] ?lit[ifr>],, exit[thenr>]2 +, nip m;
:m+ $24 logic m;

:m +' $34 logic m;

:m ior $44 logic m;

:m and $54 logic m;

:m xor $64 logic m;

\ Don't use # after the SFR, a special case.

:m logic! (opcode) [>r] 2lit [if]
[r>],[swap],,[exitthenr>1-1,, drop m;

:m ior! $43 logic! m;

:m and! $53 logic! m;

:m xor! $63 logic! m;

:m |u/mod swap $86 , B, $84 , $a6 , B, m;

‘m |um* $86 , B, $a4 , swap $e5, B, m;

'm [*2lit [if] $75, B, , $a4 , [exit then |
$86, B, nip $a4 , m;

'm 2*¥ $33, m; :m 2* clrc 2*' m;

:m2/'$13, m; :m2/[7.T movbc] 2/ m;

\ — Memory access ————-— /
m #) [dup 8 <if $f8 +], [exit then] $f5, , m; \ No drop.
m # 2lit [if

over 8 <if swap $78 +], , [exit then]
$75,[swap],, [exit
then] (#!) drop m;

‘m (#@) [dup 8 <if $e8 +], [exit then] $e5, , m; \ No dup.
‘m#@ ?dup (#@) m;

:m a ?dup $e9 , m;

m sc8051.fs

\ Use of A is not reentrant, push and pop where needed.
:mal ?lit[if] $79, , exit [then] $f9 , drop m;

‘m @ ?dup $e7, m;

‘m @+ @ $09, m;

:m ! $f7 , drop m;

'm !+ 1$09, m;

:m #for (direct —) #! begin m;
:m #next (direct —)[dup 8 <if] $d8 or cond end exit [then]
$d5 , cond end m;

:m |p ?dup $e5, DPL , dup $e5, DPH , m;
:m |@p dup $e4 , $93 , m;

:m p! $f5, DPH , drop $f5, DPL , drop m;
:mp+$a3, m;

‘m |@p+ |@p p+ m;

:m (Ix) $f0 , m;

'm Ix ('x) drop m;

‘m Ix+ Ix p+ m;

:m @x ?dup $e0, m;

‘m @x+ @x p+ m;

0 org : reset

:m see ' >body [@] decode m;

Page 4

