PACE figFORTH
Implementation

Adapting the figFORTH Glossary
to a word-addressing computer

David Kilbridge
FORTH Day 2009
November 21, 2009

Review of Implementation
project

* Nine reference implementations

 All written to a common API specification,
the figFORTH glossary

— which evolved during the project

* Published and released into the public
domain at 1979 WCCF

Design Issues

 How are data to be represented In
memory?

 What is the connection between the
Forth virtual machine and the actual
hardware?

Data representation:
obvious choices

* One stack cell per 16-bit word
— Stack pointers are native addresses

— Change by 1 to push or pop
* One dictionary field per 16-bit word

— Compiler stores one address per word
— Inner interpreter deals with native addresses

How to store text data?

* Two choices:
— One character per word

— Two characters packed into 1 word

One character per word

* Probably the best choice today
— Storage Is cheap
— Allows 118n via UTF-16 encoding
— Each character gets a native address

— Possible issues with data exchange

 May have to unpack characters on input,
pack on output

Two characters per word

* My choice at the time
— Most efficient use of expensive storage
— Unicode, ISO-8859 didn’t exist

— Allowed (FIND) to compare 2 bytes at a time

« WORD aligns strings consistently with count
In the MSB

— Used existing I/O subsystem transferring
packed characters

Implications of packed
characters

 Need a way to address each byte of a
word

 Forced to add abstract addresses for
bytes

* How does byte addressing work?

New conversion words

« BYTE addr --- baddr (= addr * 2)

— Returns address of most-significant byte
of word (big-endian)

— Used ~ 15x in figFORTH nucleus
« CELL baddr --- addr (= baddr /2)

— Returns address of word containing byte
— Used ~ 7x In figFORTH nucleus

Words that use
byte addresses

- C@

« CI

« CMOVE

« COUNT

« ENCLOSE
« EXPECT
- HLD @

. (LINE)

. (NUMBER)
- TOGGLE

- TRAVERSE
. -TRAILING
.- TYPE

o H>

Elaborations to Glossary,

part 1

C@

C!

CMOVE
COUNT
ENCLOSE
EXPECT
HLD

nac
ado
baco

bac

paddr --- b
0 baddr ---

drl baddr2 count ---

rl --- baddr2 n

drl c --- baddrl nl1 n2 n3
dr count ---

(contains a byte address)

Elaborations to Glossary,
part 2

(LINE) nl n2 --- baddr count
(NUMBER) d1 baddrl --- d2 baddr2
TOGGLE paddr b ---

TRAVERSE baddrl n --- baddr2
-TRAILING baddr nl --- baddr n2
TYPE paddr count ---

#> d --- baddr count

Word addresses used for:

« SP,RP, IP, W, UP, @, !
« DP and all dictionary fields
* TIB, PAD, disk buffers

* Most words in the figFORTH glossary

Objections to byte addressing

* Creates a 32K-word barrier in memory
— A problem we wished we had!

— No worse off than with a byte-addressed machine
with 64K bytes of memory

« Schizophrenic API

— Have two distinct pointer types without strong-typing
support from the language

— Forces programmer to remember which type of
address to use where

PACE architecture

* Unit of addressing = 16-bit word

 All machine instructions are 1 word long
- No Iinline addresses or extension words

- All EAs are short offsets from a base...
...or indirectly from there (LD, ST, JMP, JSR)

Memory-mapped (and bit-banging) 1/O

* 6-level priority interrupts

Programmer’'s model

- s | \m

Typical memory reference
Instruction:

* Four pages directly addressable
— xr = 0: 0000 to OOFF (or FF80 to 00/F)
—xr=1:(PC) -80 to (PC) +7F
—xr=2: (AC2)-80 to (AC2) + 7F
— xr=3: (AC3) - 80 to (AC3) + 7F

Capabillities of all registers

<— flags, stack, other registers, memory

Equality test with memory
* Add from memory

* Load immed., Complement, Add immed.

Add w/wo carry, And, Xor other registers

Shift and rotate

Special register capabilities

« ACO:
— Test =0, #0, =20, <0, and bits 0, 1, 2

— Additional operations with memory operands:

* And, Or, Subtract w/borrow, Decimal add,
Greater-than test, Mask test, Load byte

— Load and store Indirect

e AC2 and AC3;:

— Serve as base or index registers

Forth register assignment

Workin
J Program Counter
accumulator

en-Word

IP cratch

LIFO Sack S mm

LINK CRY OVF

RP, UP in memory page O

Use Internal stack as
parameter or return stack?

* Only 10 words deep

* Only top word Is accessible

* Not easily extended into memory

— Would need to enable and service
stack full/empty interrupts

 Just use for register saving, JSSRs and
Interrupts (if required by the installation)

SP, IP, W usage

LIT: .WORD .+1
RCPY IP,X ; PICK UP
LD 0, (X) ; VALUE
AISZ IP,1 ; STEP IP OVER
PUSH: AISZ SP, -1 ; EXTEND STACK
PUT : ST 0, (SP) ; STORE VALUE
NEXT: RCPY IP,X
AISZ IP,1 ; INCREMENT IP
LD W, (X) ; ADDR OF NEXT WORD

JMP Q@ (W) ; JUMP THRU CODE ADDR

RP usage

TOR:

FROMR :

. WORD
DSZ
LD
ST
JMP

.WORD
LD
ISZ

.WORD
LD

RP

0, (SP)

0,@QRP
POP

0,@QRP
RP
PUSH

0,@QRP
PUSH

N

EXTEND RETURN STACK
GET DATA ITEM

PUT ON RETURN STACK
POP FROM DATA STACK

GET FROM RETURN STK
POP RETURN STACK
PUSH ON DATA STACK

GET NONDESTRUCTIVE
PUSH ON DATA STACK

Summary

» The PACE implementation split the
figF ORTH Glossary’s concept of a single
type of address into two:

— Most addresses in the Forth virtual machine
are native word addresses, allowing efficient
execution

— Byte addresses are used for packed text
handling and compatibility with 8-bit
algorithms

