
PACE figFORTH
Implementation

Adapting the figFORTH Glossary

to a word-addressing computer

David Kilbridge

FORTH Day 2009

November 21, 2009

Review of implementation
project

• Nine reference implementations

• All written to a common API specification,

the figFORTH glossary

– which evolved during the project

• Published and released into the public

domain at 1979 WCCF

Design issues

• How are data to be represented in

memory?

• What is the connection between the

Forth virtual machine and the actual

hardware?

Data representation:
obvious choices

• One stack cell per 16-bit word

– Stack pointers are native addresses

– Change by 1 to push or pop

• One dictionary field per 16-bit word

– Compiler stores one address per word

– Inner interpreter deals with native addresses

How to store text data?

• Two choices:

– One character per word

– Two characters packed into 1 word

One character per word

• Probably the best choice today

– Storage is cheap

– Allows i18n via UTF-16 encoding

– Each character gets a native address

– Possible issues with data exchange

• May have to unpack characters on input,
pack on output

Two characters per word

• My choice at the time

– Most efficient use of expensive storage

– Unicode, ISO-8859 didn’t exist

– Allowed (FIND) to compare 2 bytes at a time

• WORD aligns strings consistently with count
in the MSB

– Used existing I/O subsystem transferring
packed characters

Implications of packed
characters

• Need a way to address each byte of a

word

• Forced to add abstract addresses for

bytes

• How does byte addressing work?

New conversion words

• BYTE addr --- baddr (= addr * 2)

– Returns address of most-significant byte
of word (big-endian)

– Used ~ 15x in figFORTH nucleus

• CELL baddr --- addr (= baddr / 2)

– Returns address of word containing byte

– Used ~ 7x in figFORTH nucleus

Words that use
byte addresses

• C@

• C!

• CMOVE

• COUNT

• ENCLOSE

• EXPECT

• HLD @

• (LINE)

• (NUMBER)

• TOGGLE

• TRAVERSE

• -TRAILING

• TYPE

• #>

Elaborations to Glossary,
part 1

C@ baddr --- b

C! b baddr ---

CMOVE baddr1 baddr2 count ---

COUNT addr1 --- baddr2 n

ENCLOSE baddr1 c --- baddr1 n1 n2 n3

EXPECT baddr count ---

HLD (contains a byte address)

Elaborations to Glossary,
part 2

(LINE) n1 n2 --- baddr count

(NUMBER) d1 baddr1 --- d2 baddr2

TOGGLE baddr b ---

TRAVERSE baddr1 n --- baddr2

-TRAILING baddr n1 --- baddr n2

TYPE baddr count ---

#> d --- baddr count

Word addresses used for:

• SP, RP, IP, W, UP, @, !

• DP and all dictionary fields

• TIB, PAD, disk buffers

• Most words in the figFORTH glossary

Objections to byte addressing

• Creates a 32K-word barrier in memory

– A problem we wished we had!

– No worse off than with a byte-addressed machine
with 64K bytes of memory

• Schizophrenic API

– Have two distinct pointer types without strong-typing
support from the language

– Forces programmer to remember which type of
address to use where

PACE architecture

• Unit of addressing = 16-bit word

• All machine instructions are 1 word long

- No inline addresses or extension words

- All EAs are short offsets from a base…

…or indirectly from there (LD, ST, JMP, JSR)

• Memory-mapped (and bit-banging) I/O

• 6-level priority interrupts

Programmer’s model

Program CounterAC0

AC1

AC2

AC3 LINK CRY OVF

Ten-Word

LIFO Stack

Typical memory reference
instruction:

• Four pages directly addressable

– xr = 0: 0000 to 00FF (or FF80 to 007F)

– xr = 1: (PC) - 80 to (PC) + 7F

– xr = 2: (AC2) - 80 to (AC2) + 7F

– xr = 3: (AC3) - 80 to (AC3) + 7F

OPCODE xr displacement

Capabilities of all registers

• flags, stack, other registers, memory

• Equality test with memory

• Add from memory

• Load immed., Complement, Add immed.

• Add w/wo carry, And, Xor other registers

• Shift and rotate

Special register capabilities

• AC0:

– Test =0, ≠0, ≥0, <0, and bits 0, 1, 2

– Additional operations with memory operands:

• And, Or, Subtract w/borrow, Decimal add,
Greater-than test, Mask test, Load byte

– Load and store Indirect

• AC2 and AC3:

– Serve as base or index registers

Forth register assignment

Program CounterAC0

AC1

AC2

AC3 LINK CRY OVF

Ten-Word

LIFO Stack

Working

accumulator

IP

W

SP

Scratch

RP, UP in memory page 0

Use internal stack as
parameter or return stack?

• Only 10 words deep

• Only top word is accessible

• Not easily extended into memory

– Would need to enable and service

stack full/empty interrupts

• Just use for register saving, JSRs and

interrupts (if required by the installation)

SP, IP, W usage

LIT: .WORD .+1

RCPY IP,X ; PICK UP

LD 0,(X) ; VALUE

AISZ IP,1 ; STEP IP OVER

PUSH: AISZ SP,-1 ; EXTEND STACK

PUT: ST 0,(SP) ; STORE VALUE

NEXT: RCPY IP,X

AISZ IP,1 ; INCREMENT IP

LD W,(X) ; ADDR OF NEXT WORD

JMP @(W) ; JUMP THRU CODE ADDR

RP usage

TOR: .WORD .+1

DSZ RP ; EXTEND RETURN STACK

LD 0,(SP) ; GET DATA ITEM

ST 0,@RP ; PUT ON RETURN STACK

JMP POP ; POP FROM DATA STACK

FROMR: .WORD .+1

LD 0,@RP ; GET FROM RETURN STK

ISZ RP ; POP RETURN STACK

JMP PUSH ; PUSH ON DATA STACK

R: .WORD .+1

LD 0,@RP ; GET NONDESTRUCTIVE

JMP PUSH ; PUSH ON DATA STACK

Summary

• The PACE implementation split the
figFORTH Glossary’s concept of a single
type of address into two:

– Most addresses in the Forth virtual machine
are native word addresses, allowing efficient
execution

– Byte addresses are used for packed text
handling and compatibility with 8-bit
algorithms

