TR i e F""ﬂ.' s "" -.11'1_1- wierenie o

-
&

Samuel A. Falvo II
2009 December 16

Introducing Layer 1: Physical Layer

. i | e

o S e

.- iy :-‘i-:i :Ii{{:‘l‘h- |..
i bhai ‘l'"i'..'_; W] 3
PIern ames

Introducing Layer 1: Physical Layer

The simplest possible means of communications between two
pieces of electronics gear 1s to run a simple cable between end-
points.

Introducing Layer 1: Physical Layer

By default, neither node expresses any desire to send anything,
so they just sit and listen for activity on "the line." Since neither
node drives any signal on the line, it tends to float naturally
towards some well-known voltage.

Introducing Layer 1: Physical Layer

Let's pretend our line's quiescent voltage 1s ground. Suppose A
wants to signal to B that some kind of event happened. It may
do so by asserting a positive signal on the line. B can readily
detect this, because i1t knows that a grounded wire implies
nothing's happening.

Or, 1s 1t?

Introducing Layer 1: Physical Layer

Suppose that node A monitors for one of two events. How can
node A inform node B which event occured? We can bring the
line high for the first event, but we can't just "assert" 0V on the
line to indicate the second event. How can we work around

this?

It turns out there are several different ways.

Introducing Layer 1: Physical Layer

If node B maintains relative timing information, it can note
when node A asserted its signal, and when 1t stops. By
measuring the span of time between these two events, node B
can infer whether node A 1s attempting to indicate event 1 (1
second) or event 2 (2 seconds).

This 1s called Pulse Width Modulation.

Introducing Layer 1: Physical Layer

If node B maintains absolute timing information, it can note
when node A asserted its signal, and when 1t stops. By common
agreement , we know the pulse width 1s finite, so we instead only
care about where the pulse starts in time.

This 1s called Pulse Position Modulation.

Introducing Layer 1: Physical Layer

While PWM 1s used with R/C aircraft and cars, 1t's usually not
used 1n digital communications because it takes different lengths
of time to send different numbers. Breaking big numbers into
smaller chunks, help, but 1t doesn't solve the problem
completely.

Introducing Layer 1: Physical Layer

R E e o
B U

Do we use PPM? In a crude form, we used to use multi-bit PPM
for floppy disk recording (FM and MFM encoding). Manchester
encoding 1s a more contemporary application of the

idea. Manchester encoding 1s used in 10-base-2 and 10-base-T
Ethernet!

Still, we prefer not to use 1t, because it basically takes two bits to
communicate one.

Introducing Layer 1: Physical Layer

01011010

No, I choose to use PCM -- Pulse Code Modulation. Fancy
words for simply choosing to do the simplest possible thing you
can: a binary zero and binary one are represented simply by
specific voltages (OV and 5V in the case of DOT's hardware).

Which interpretation is correct?!

We need edges to keep the receiver in sync with the transmitter, so
that the recerver doesn't go too fast or too slow. The trick is inserting

these edges in

such a manner that we keep our data steam as compact

as possible. T

hree techniques remain in common use todav.

= o - ‘ ¥

—|,|

One approach is to scraml ata using a random ‘number

generator. The transmltter énflrcei’ver set thelr RNG to the same
initial seed value so they can understand each other.

The disadvantage of scrambling is that malicious users can engineer
traffic specifically to counter the effects of scrambling, resulting in
loss of synchronization.

TX and RX Synchronizati

- ‘h'.l'] e L -._: -':Ir:-..

Bit-stuffing works through probabilities; since we know when the
previous edge occured, we can predict where future edges would
exist, 1f they were to occur at all. However, after so many bits, the
error introduced from prediction can get so great that you start to mis-
interpret the signal.

So, we stuff bits deliberately, with the intention of enforcing
synchronization. Note that stuffing only happens when it's needed!

The final approach 1s to convert 8-bit bytes into 10-bit codewords,
each designed to have a roughly equal number of 1s and Os, so as to
maintain sufficient numbers of edges that the receiver never has more
than. say. three Os or 1s in a row. However. vou take a 20%

Arduino Test B s

Result_s of

1--'

.-7E0224060000000000507E
(000402642 00OV00000
7E3923060000000000E37E
P00402233 0V0000RRD
7ED324060000000000437E
000402643 000000000

| 7EC924060000000000CA7
000402633 000000000
 7ED124060000000000657E
000402641 90000000 % OF 0 BITS

7E5A23060W

000402266 WESE00000

TEAF24060000000000127E RAW DATA FRM{E
000402607 00PA0VA0D

OF 1 BITS

7ED0240600000000007676® (USES HDLC FRAMING

000402640 000000000 WITH 8-BIT CRC)
7E3F23060000000000897E

000402239 000000000
JECD24060000000000867E
000402637 000000000

7E4123060000000000FETE Ihjsis'udvzfile(?

900402241 900VDOVDO ists in the first
JECA24060000000000FF 7E €Xists in the jirs

000402634 000000000 place!

JED324060000000000437E
000402643 000000000
JECEZ24060000000000B37E
000402638 000000000

TE37230600000000007E(CRC ERROR).

m s
LOW l‘"'i- tnber of 1s.
is 8-bit ATM CRC.

A\ 4§

L -

i s
ol 8

712D 124060000000000577 K
000402641 000000000

<-- Notice the CRC error

caused by the unreliability of
the Arduino's RS-232

r-'-' i
(] iy Pl
Rl

One Little Oopsie with Bit: Stuffing

g

See how the resulting NRZI-encoded wave form is either almost
entirely low voltage or high voltage? This poses a bit of a problem

not because 1t's somehow "wrong" to do from a philosophical
stand-point. Instead, it pushes the receiver's amplifier to its

physical limits, and may actually cause loss of data!

Receiver Schematic (Preliminary)

ﬂﬂ

Recerver Schematic (Preliminary)

HET

CRC-8-ATM (sans sc
" . Iﬁf“-‘ :I "-J'-- .,:‘-

[, 1 | ...-f .r. :T b L --.J T Ii‘: I i

s -.T:L 3 ..":i. -.l..' l' 1. =

5 L r_‘-' '|-':-_ — 1{.?-

Polynomia

4o

‘r

b NeEE éé%?ﬁ*] pERe then ;
. C oOver CETEeens y b b b b b swap ISERewap

& 5k
: CIrC VvVar S SUsEEeNT EAREEsEm N 20D and

- P |
b e
g

b1
&

Proper ATM-spec CRC also XOR's final value with $AA for
scrambling purposes. I'm communicating over RS-232 and USB, so
no scrambling necessary.

Prlmordlal
Stufﬁn o

flag
—esca_

4
- N
- WA

o ;

& x'i =

telemett&wﬁﬁ39%hz_g crc _-; *ér
if“Tﬁﬁﬁ“?“i---OR)" then e ;

rxFrame flag telemetry flag cr ;

Notice that CRC byte covers message data after HDLC escaping has
occurred. Real HDLC wouldn't do this, but it took less code to make
it work this way, and it works fine.

il o i WL
s .rr'i_a::?:J_:.'Lr';-'._gl‘:#'IH; 0w
. - i

S

" M T WL) T S s
L e i e R TP
[ra m i]
it o] A o bl % > * Pl 5 |
Y 11)1C W icAnEs ~ © rmial
'. = - | .- -__“i:'.." f I A i - L S \ -~ N
- R =

S" /dev/ttyUSB1" ;

: deviceName
- ...I'.l.. ¥

variable hRx
openRx deviceName r/w bin open-file throw hRx
closeRx hRx @ close-file throw ;

| .
. ’

sendRx hRx @ write-file throw ;
variable buf
recvRx buf 1 hRx @ read-file throw drop buf @ 255 and dup he

s>d <# # # #> type decimal ;

create msg 0 ,
: askRx
e T

create wvars 2 cells allot
- vars constant nObits

msg 1 sendRx ;

vars cell+ constant nlbits
""1¥~.'_
flag begin recvRx $7E = until ; oi %
—escape dup $7D = if drop recvRx $20 xor then ; "
o recvRx —-escape over c! 1+ ; Ef'.*ir'; any:
n o o0 o0 o ; >, 4
b dup $80 and if 2* 7 xor else 2* then ;
C over c@ xor b b b b b bbb swap 1+ swap ;
crc vars 0O c c c c cc c c nip 255 and ;
telemetry vars n n crc recvRx xor if ." (CRC ERROR)" then drop ;
rxFrame flag telemetry flag cr ;
.cols ." NOBits N1Bits" cr
e - " cr ;
.cell s> <# # # # # # # # # # #> type space ;
.TOW nObits @ .cell nlbits @ .cell cr ;

run cr .cols begin askRx rxFrame .row 1000 ms again ;

