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Introducing Layer 1: Physical Layer



Introducing Layer 1: Physical Layer

The simplest possible means of communications between two 
pieces of electronics gear is to run a simple cable between end-
points.



Introducing Layer 1: Physical Layer

By default, neither node  expresses any desire to send anything, 
so they just sit and listen for activity on "the line."  Since neither 
node drives any signal on the line, it tends to float naturally 
towards some well-known voltage. 



Introducing Layer 1: Physical Layer

Let's pretend our line's quiescent voltage is ground.  Suppose A 
wants to signal to B that some kind of event happened.  It may 
do so by asserting a positive signal on the line.  B can readily 
detect this, because it knows that a grounded wire implies 
nothing's happening.

Or, is it?



Introducing Layer 1: Physical Layer

Suppose that node A monitors for one of two events.  How can 
node A inform node B which event occured?  We can bring the 
line high for the first event, but we can't just "assert" 0V on the 
line to indicate the second event.  How can we work around 
this?
 
It turns out there are several different ways. 



Introducing Layer 1: Physical Layer

If node B maintains relative  timing information, it can note 
when  node A asserted its signal, and when it stops.  By 
measuring the span of time between these two events, node B 
can infer whether node A is attempting to indicate event 1 (1 
second) or event 2 (2 seconds).

This is called Pulse Width Modulation.



Introducing Layer 1: Physical Layer

If node B maintains absolute timing information, it can note 
when  node A asserted its signal, and when it stops.  By common 
agreement , we know the pulse width is finite, so we instead only 
care about where the pulse starts in time.

This is called Pulse Position Modulation.



Introducing Layer 1: Physical Layer

While PWM is used with R/C aircraft and cars, it's usually not 
used in digital communications because it takes different lengths 
of time to send different numbers.  Breaking big numbers into 
smaller chunks, help, but it doesn't solve the problem 
completely.



Introducing Layer 1: Physical Layer

Do we use PPM?  In a crude form, we used to use multi-bit PPM 
for floppy disk recording (FM and MFM encoding).  Manchester 
encoding is a more contemporary application of the 
idea.  Manchester encoding is used in 10-base-2 and 10-base-T 
Ethernet!

Still, we prefer not to use it, because it basically takes two bits to 
communicate one.



Introducing Layer 1: Physical Layer

No, I choose to use PCM -- Pulse Code Modulation.  Fancy 
words for simply choosing to do the simplest possible thing you 
can: a binary zero and binary one are represented simply by 
specific voltages (0V and 5V in the case of DOT's hardware).



TX and RX Synchronization

Which interpretation is correct?!

We need edges  to keep the receiver in sync with the transmitter, so 
that the receiver doesn't go too fast or too slow.  The trick is inserting 
these edges in such a manner that we keep our data steam as compact 
as possible.  Three techniques remain in common use today.



TX and RX Synchronization

One approach is to scramble  the data using a random number 
generator.  The transmitter and receiver set their RNG to the same 
initial seed value so they can understand each other.
 
The disadvantage of scrambling is that malicious users can engineer 
traffic specifically to counter the effects of scrambling, resulting in 
loss of synchronization.  



TX and RX Synchronization

Bit-stuffing works through probabilities; since we know when the 
previous edge occured, we can predict  where future edges would 
exist, if they were to occur at all.  However, after so many bits, the 
error introduced from prediction can get so great that you start to mis-
interpret the signal.
 
So, we stuff  bits deliberately, with the intention of enforcing 
synchronization.  Note that stuffing only happens when it's needed! 



TX and RX Synchronization

 

The final approach is to convert  8-bit bytes into 10-bit codewords, 
each designed  to have a roughly equal number of 1s and 0s, so as to 
maintain sufficient numbers of edges that the receiver never  has more 
than, say, three 0s or 1s in a row.  However, you take a 20% 
performance hit!



Arduino Test Bench



How NRZI Works

When we transmit a 1, we do nothing.  Otherwise, toggle the output 
signal.



Results of Streaming 0 Test
In case it's hard to read, 
here's a color-coded 
transcription of a single data 
packet from the receiver:

RED is HDLC framing.
GREEN is number of 0s.
YELLOW is number of 1s.
BLUE is 8-bit ATM CRC.

7ED124060000000000577E
000402641 000000000              
 
<-- Notice the CRC error 
caused by the unreliability of 
the Arduino's RS-232 
interface! 



One Little Oopsie with Bit-Stuffing

See how the resulting NRZI-encoded waveform is either almost 
entirely low voltage or high voltage?  This poses a bit of a problem 
not  because it's somehow "wrong" to do from a philosophical 
stand-point.   Instead, it pushes the receiver's amplifier to its 
physical limits, and may actually cause loss of data!



Receiver Schematic (Preliminary)



Receiver Schematic (Preliminary)



Amplifier Saturation Waveform



Thank you for attending!
(If Time Permits, Forth Code Follows!)



CRC-8-ATM (sans scrambling)

Polynomial is dreadfully simple: x 8+x 2+x +1

: b  dup $80 and if 2* 7 xor else 2* then ;
: c  over c@ xor b b b b b b b b swap 1+ swap ;
: crc vars 0 c c c c c c c c nip 255 and ;

Proper ATM-spec CRC also XOR's final value with $AA for 
scrambling purposes.  I'm communicating over RS-232 and USB, so 
no scrambling necessary.



Primordial HDLC Framing and Byte-
Stuffing
: flag        begin recvRx $7E = until ;
: -escape     dup $7D = if
              drop recvRx $20 xor then ;
: o           recvRx -escape over c! 1+ ;
: n           o o o o ;
: telemetry   vars n n crc recvRx xor
              if ." (CRC ERROR)" then drop ;
: rxFrame     flag telemetry flag cr ;

Notice that CRC byte covers message data after  HDLC escaping has 
occurred.  Real HDLC wouldn't do this, but it took less code to make 
it work this way, and it works fine.



Complete Telemetry Source Code
: deviceName    S" /dev/ttyUSB1" ;

variable hRx
: openRx        deviceName r/w bin open-file throw hRx ! ;
: closeRx       hRx @ close-file throw ;
: sendRx        hRx @ write-file throw ;
variable buf
: recvRx        buf 1 hRx @ read-file throw drop buf @ 255 and dup hex
                s>d <# # # #> type decimal ;

create msg 0 ,
: askRx         msg 1 sendRx ;

create vars     2 cells allot
vars            constant n0bits
vars cell+      constant n1bits

: flag          begin recvRx $7E = until ;
: -escape       dup $7D = if drop recvRx $20 xor then ;
: o             recvRx -escape over c! 1+ ;
: n             o o o o ;
: b             dup $80 and if 2* 7 xor else 2* then ;
: c             over c@ xor b b b b b b b b swap 1+ swap ;
: crc           vars 0 c c c c c c c c nip 255 and ;
: telemetry     vars n n crc recvRx xor if ." (CRC ERROR)" then drop ;
: rxFrame       flag telemetry flag cr ;

: .cols         ." N0Bits    N1Bits" cr
                ." --------- ---------" cr ;
: .cell         s>d <# # # # # # # # # # #> type space ;
: .row          n0bits @ .cell n1bits @ .cell cr ;
: run           cr .cols begin askRx rxFrame .row 1000 ms again ;


