
DISGUISING FORTH 
Presented by Bob Nash at the November 20th, 2004 Forth Day 

   
 
Abstract 
Although Forth is one of the first choices for new applications with challenging 
requirements, this early success is often forgotten and the application is later 
targeted for conversion to a more ”mainstream” or ”maintainable” programming 
language.  Based on a recent conversion effort, this paper discusses some ways 
that Forth applications can be disguised so that they can survive a conversion 
push (putsch?). 
 
 
Haiku Abstract 
 
Forth on the windy path 
Precious Words in a Windows frame; 
Embrace the stormy change 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Haiku Rules as I understand them: 
 

1. A classic Haiku poem must have a seasonal element (e.g., mention of cherry blossoms 
for Spring)  - this rule is sometimes violated in ”phony Haiku” 

2. The first line must be 5 syllables, the second 7 syllables, and the third 5 syllables.  Some 
variation from this form is permitted, usually as needed to accomodate languages other 
than Japanese. 

3. The last line must express a separate thought but must also be able to be interpreted 
such that it relates to the thought expressed in the first two lines. 

4. Ideally, the last line, when considered in the context of the first two, should introduce a 
meaning or perspective that is completely different than those given by either the first two 
lines or the last line of the program. 

5. If you think it is easy to compose an ”adequate” Haiku, you probably don’t understand it (I 
don’t, hence the ”phony Haiku”). 

   
DISGUISING FORTH.doc Page 1 of 9 01Nov04 rjn 



DISGUISING FORTH 
Presented by Bob Nash at the November 20th, 2004 Forth Day 

   
 
Introduction 
Forth is often the language of choice for initially implementing applications with 
short implementation times, demanding real-time requirements or interactive 
development with new hardware. 
 
As useful as Forth may be for leading edge projects, many Forth professionals 
find themselves in the unfortunate position of seeing their programs converted to 
“more mainstream” programming languages such as C, C++, Java or Visual 
Basic. 
 
One approach to combating an illogical response to imagined problems is to 
present a reasoned argument showing how Forth is not only the right initial 
choice, but is also the best long-term choice.  This approach may be intellectually 
satisfying but, as often as not, it is unsuccessful. 
 
This paper describes another approach to preserving Forth’s presence by 
minimizing its application profile.  This is accomplished by using Forth’s 
traditional modular programming techniques and by presenting straightforward 
ways for Forth components to interact with each other and users. 
 
This approach also uses tools such as HTML and browsers preserve the “look 
and feel” of mainstream programming while using Forth to do the real work. 
 
This author is presently using this approach to rework an existing application that 
consists of three standalone Windows programs, all written in Swift Forth.  This 
application has been in continuous unattended service since its initial deployment 
in June 2001 but is now being targeted for conversion to “a more maintainable 
mainstream programming language.” 

   
DISGUISING FORTH.doc Page 2 of 9 01Nov04 rjn 



DISGUISING FORTH 
Presented by Bob Nash at the November 20th, 2004 Forth Day 

   
 
Doomsday 
When first told that my application was to be converted to another language, my 
response was entirely predictable: at first I denied that it would really happen, 
which was followed by anger that my programs were being targeted.   
 
Predictably, I went through all of the rest of the emotional gamut, finally reaching 
the acceptance stage.  I had to face reality: the conversion was probably 
inevitable because the replacement project was already budgeted and there was 
a scope statement including the words “mainstream” and “maintainable.” 
 
After finally coming to terms with user and management concerns, I decided not 
to expend any more effort explaining why the applications should not be 
converted.  Instead, I tried to figure out how my moderately complex application 
could be converted without exceeding budget or compromising reliability and 
functionality. 
 
 
A Thin Veil 
My first attempt at retaining Forth while making the existing applications look 
more “mainstream” was to convert the user interface from a native Windows API 
to a browser. 
 
Initially, this was just an attempt to easily reduce the size of Forth executable 
programs while using HTML and an HTTP Server for the user interface.  I felt 
that by reducing the size of three standalone Forth-based Windows programs, it 
would be easier to write a functional specification for the conversion project. 
 
I also hoped that several smaller executable programs, each with limited 
functionality, would be less attractive conversion targets.  The expectation was 
that many of the smaller programs would be dismissed as “insignificant” in the 
conversion. 

   
DISGUISING FORTH.doc Page 3 of 9 01Nov04 rjn 



DISGUISING FORTH 
Presented by Bob Nash at the November 20th, 2004 Forth Day 

   
 
Unexpected Results 
I did not expect the user interface conversion to have much visibility.  In fact, to 
disguise the scope of the changes, I tried to minimize the significance of any new 
functionality.  New capabilities were casually noted in emails, but were not touted 
as major improvements. 
 
Unexpectedly, the converted user interface was not only very successful from a 
user and management standpoint, but it also helped me see how to more 
effectively retain Forth for the more essential parts of my application. 
 
The users appreciated the conversion because they could now access many 
functions remotely with a browser.  Previously, many functions could be 
performed only at the host computer using program menus and the Windows 
API. 
 
One of the less-used functions of the application was to display a daily summary 
report.  The report could be displayed at the host, but it couldn’t be easily printed 
because there was no local printer.  With the new browser interface, users can 
use a browser to both view and print the report from any PC within our corporate 
computing domain. 
 
Management’s response was also gratifying.  Because of the positive user 
comments, the initial stages of the conversion were perceived as being very 
effective. 
 
More importantly, I was perceived to be a “team player” when I exhibited the 
converted user interface code and it was seen to be mostly HTML statements.  
When queried about the “WEB server”, I replied that it was just a public domain 
program that I had downloaded.  Of course, I didn’t mention that the server was 
programmed in Forth (actually, Swift Forth). 

   
DISGUISING FORTH.doc Page 4 of 9 01Nov04 rjn 



DISGUISING FORTH 
Presented by Bob Nash at the November 20th, 2004 Forth Day 

   
 
Enthusiasm for Apathy 
The lack of interest in the source and nature of my HTTP server was the 
beginning of my first big discovery: nobody was interested in how a standalone 
Windows program was written, provided that it performed all of its functions 
reliably. 
 
Why then was there concern about the programs in my application being written 
in Forth?  They had been continuously and reliably performing their functions for 
more than four years and yet they were perceived as being a risk.  If only the 
functionality of the programs was important, why was the fact that they were 
written in Forth of any significance? 
 
At first, I thought that there was a perception that Forth itself was an unreliable or 
risky language, but this did not seem to be confirmed in my conversations with 
management.  The source of concern was the difficulty of performing changes. 
 
Now I understood that the problem was not with Forth itself, but with the 
perceived availability of the expertise needed to change the way that the 
application worked. 
 
There was also some concern that there might be undetected latent defects that 
were not discovered in testing and that they would be difficult to correct by a 
programmer not familiar with Forth. 

   
DISGUISING FORTH.doc Page 5 of 9 01Nov04 rjn 



DISGUISING FORTH 
Presented by Bob Nash at the November 20th, 2004 Forth Day 

   
 
Revalidating Forth 
I now understood that, in addition to converting my applications’ GUIs, I also 
needed to break them down into programs that interacted with each other in 
simple, reliable and testable ways.  On examining my programs, I found that 
many of them did multiple tasks and did not have a clearly defined purpose. 
 
For example, I had one program that monitored encoded ASCII text over a serial 
port from a radio receiver.  Because of this monitoring function, I named the 
program “MONA” (MONitor off Air transmissions).  However, this same program 
also sent ASCII text and control mnemonics to a signboard through a second 
serial port.  The signboard application was included in MONA to avoid duplication 
of some common Windows API code. 
 
I decided that, in addition to stripping out the user interface, the MONA program 
should have been split into two different programs, each with their own purpose.   
 
This decision was validated when the user representative informed me that the 
signboard display function would be eliminated because my browser interface 
now allowed signboard information to be displayed in a browser window on user 
desktops.  Thus, users could now see the signboard information regardless of 
where their desks were located in relation to the signboard display. 
 
After re-factoring MONA to be smaller with a single purpose in life, I felt a little 
smug: my browser interface now provided an on-demand display and printout of 
recent radio transmissions.  Also, MONA was now a smaller single-purpose 
program that was well validated and reliable.  It is likely that MONA will not be 
touched in conversion effort. 
 
My pride was soon wounded, however, when I discovered that I had just re-
learned one of the most basic principles of good Forth programming: every Word 
had to have a well-defined purpose (e.g., it could be named) and the inputs and 
outputs should be simple, well defined and testable.  I had failed to learn this 
important lesson, at least as it applied to programs as well as Forth Words. 

   
DISGUISING FORTH.doc Page 6 of 9 01Nov04 rjn 



DISGUISING FORTH 
Presented by Bob Nash at the November 20th, 2004 Forth Day 

   
 
Other Benefits 
I also discovered that there were other benefits to modular programs in addition 
to the well-understood advantages of modularly designing Words and 
applications. 
 
One benefit was that that the mechanism I most often used to exchange 
information between my re-factored programs was a text file (static string 
stack?).  This was the same as one aspect of Unix programming that I 
appreciated: many Unix programs and utilities took text files as input and 
produced text files as output. 
 
This decoupling with text files made it much easier to produce functional 
specifications and run validation suites.  Unfortunately, these benefits also 
applied to re-writing existing programs in a different language.  But, it also made 
it easier to determine if a conversion is successful (often it is not). 
 
 
The Challenge of Change 
Although the approach described above makes the application more robust, 
reliable and easier to develop, two problems remain: program changes and latent 
defects (bugs, to the unsophisticated).  Remember, the fear that a program 
would have to be changed was at the heart of the threat to my current 
application. 
 
The best way I have found to address these challenges is to accommodate 
changes with text-based parameter files or with scripting languages, a traditional 
strength of Forth. 
 
This effort is the most difficult aspect of producing standalone turnkey programs.  
Users must be convinced that the scope of changes that they will make will fall 
within the available configuration parameters or within the capabilities of the 
scripting language.  This is a hard sell.  But, it is generally easier to sell the 
flexibility of a program than to argue that it will never need to be changed or that, 
if it does need change, the Forth expertise will be available to change it. 
 
It is surprising that users and managers will readily accept a variety of scripting 
languages but will balk at programs written in Forth.  Perhaps it is felt that 
scripting languages are inherently more understandable or easier to program. 

   
DISGUISING FORTH.doc Page 7 of 9 01Nov04 rjn 



DISGUISING FORTH 
Presented by Bob Nash at the November 20th, 2004 Forth Day 

   
 
Bugaboos 
What about bugs?  The best answer I have is: testing.  If it can be demonstrated 
that the program behaves reliably with a comprehensive test suite, then users 
can be assured that the defects are at least outside the scope of normal, or at 
least critical, operation. 
 
This is both good and bad news. 
 
The bad news is that the application designer must develop and validate 
comprehensive test suites. 
 
The good news is that, if test suites are developed incrementally and modularly, 
this is not such an onerous task. 
 
Also, the testing imperative forces applications to be broken down into easily 
tested modules.  This too is good news. 
 
The best news is that, once developed, these test suites can be used for many 
purposes, including functional specifications, program validation and regression 
testing. 
 
 
Lessons Learned 
The most important lesson learned in the conversion effort was that Forth 
programming principles apply at many levels and can simplify many tasks, even 
the task of converting to a different language. 
 
I now recognize the true wisdom of the trite maxim: every challenge is also an 
opportunity.  I started out contemplating the destruction of my precious programs 
and ended up discovering a better way to build and to extend the life of Forth 
applications. 
 
Although the project to convert my Forth application has not yet started, I feel 
confident that some of my programs will survive in their re-factored form.  They 
will survive mostly because their functionality is relatively static and they have 
been proven reliable with extensive testing. 
 
Although it is inevitable that new programs written in a different language will 
supplant some existing functionality, a modular design at least makes it easier to 
provide functional specifications and ensure that they are met. 

   
DISGUISING FORTH.doc Page 8 of 9 01Nov04 rjn 



DISGUISING FORTH 
Presented by Bob Nash at the November 20th, 2004 Forth Day 

   
 
A Parthing Shot 
In discussing the re-writing of existing applications, I have found it useful t to 
make users and management aware of the relative roles of languages and 
applications. 
 
I observe that being an expert programmer is of limited use without being familiar 
with the requirements of the application.  I emphasize that an expert C 
programmer cannot easily change any C application without being familiar with 
the application’s functional requirements and with the programming algorithms 
used to implement them.  This is something that most programmers assume is 
well understood but, often, it is not. 
 
Considering the above, I also find it useful to ask where the programming and 
application expertise will reside.  This expertise can be maintained in-house or 
provided by a contractor. 
 
Forcing a conscious choice of one of several development and maintenance 
alternatives, such as in-house/contractor or contractor/contractor, can often help 
users and management make choices that best fit the available contract and 
organizational resources. 

   
DISGUISING FORTH.doc Page 9 of 9 01Nov04 rjn 


	Abstract
	Although Forth is one of the first choices for ne
	Haiku Abstract
	Forth on the windy path
	Precious Words in a Windows frame;
	Embrace the stormy change
	Haiku Rules as I understand them:
	A classic Haiku poem must have a seasonal element
	The first line must be 5 syllables, the second 7 syllables, and the third 5 syllables.  Some variation from this form is permitted, usually as needed to accomodate languages other than Japanese.
	Introduction
	Doomsday
	A Thin Veil
	Unexpected Results
	Enthusiasm for Apathy
	Revalidating Forth
	Other Benefits
	The Challenge of Change
	A Parthing Shot

