
Simulate a
Forth Virtual Machine

SVFIG

Chen-Hanson Ting
December 18, 2021

Summary

◼ Java Virtual Machine

◼ JVM Bytecode

◼ Forth Virtual Machine

◼ FVM Bytecode

◼ Synthesize FVM

◼ Simulate FVM

◼ Conclusion

Java Virtual Machine

◼ JVM was specified by its bytecode.

◼ 202 bytecode was specified
precisely.

◼ JVM architecture can be inferred
from its bytecode.

◼ JVM bytecode map is as follows:

Java Bytecode

Forth Virtual Machine

◼ From JVM bytecode map, you can
see a Forth Virtual Machine.

◼ If we restricted FVM to 32-bit
integers, we would need only
about 40 bytecodes.

◼ We need 4 more bytecodes to deal
with an explicit return stack.

FVM Bytecode

Map FVM to JVM

◼ ALU and logic

◼ Data stack

◼ Memory

◼ Branching

◼ Return stack

ALU

+ iadd

- isub

* imul

/ idiv

mod irem

negate ineg

Logic

and iand

or ior

xor ixor

lshift ishl

rshift ishr

Data Stack

dup dup

drop pop

swap swap

over dup2,pop

2dup dup2

2drop pop2

Memory

@ iaload

! iastore

c@ baload

c! bastore

w@ saload

c! sastore

Branching

branch Goto

0branch ifeq

call invokevirtual

ret return

exit return

Return Stack

donxt

>r (pushr)

r> (popr)

r@ iload_0

Synthesize FVM

◼ I have a free Quartus Lite license
from Altera (acquired by Intel).

◼ It is not compatible with the NIOS
II Kit I have from an earlier NASA
project.

◼ I used its synthesizer and
simulator to build and prove my
FVM.

Synthesize FVM

◼ I have the advantage of doing an
eP32 FVM in VHDL.

◼ eP32 had 5-bit instructions to be
converted to bytecode.

◼ eP32 also had a Forth outer
interpreter based on eForth, which
cried out to be modernized.

Features of FVM

◼ A dictionary, an input buffer, and
an output buffer are instantiated.

◼ Input buffer stores Forth test code
interpreted by FVM.

◼ Output buffer stores characters
generated by FVM for verification.

Synthesize FVM

◼ With insights gained from my OOP
Forth, I rewrote the eForth outer
interpreter for a bytecode FVM.

◼ The outer interpreter was fully
debugged with a F# metacompiler.

◼ It serves well as a testbench in
simulating FVM.

Synthesize FVM

◼ Synthesized on Quartus II IDE
from Altera/Intel.

◼ FVM Core runs at 100 MHz

◼ With Multiply/Divide/Shifter
library modules, it runs at 20 MHz.

Synthesize FVM

◼ Forth outer interpreter was
assembled, compiled, and
simulated on F#.

◼ The dictionary is 3,424 bytes in
size.

◼ Code fields have executable
bytecode.

Synthesize FVM

Functions ALUT

Core 3,936

Multiply/divide 5,478

Barrel shifter 5,786

Simulate FVM

◼ A dictionary, an input buffer, and
an output buffer are instantiated in
main memory.

◼ Input buffer stores Forth test code
interpreted by FVM.

◼ Output buffer stores characters
generated by FVM for verification.

Simulate FVM

◼ The outer interpreter runs at
master clock rate and greatly eases
simulation and verification.

◼ You cannot design a better
testbench, which is the most
difficult task in implementing a
CPU in FPGA.

Conclusion

◼ JVM is a very good hardware
specification of a bytecode CPU.

◼ FVM maps well to an integer JVM.

◼ FVM was synthesized in Quartus II
IDE for a Stratix II FPGA device.

◼ Simulation continues.

Questions?

Thank you.

