Simulate a

3 Forth Virtual Machine

SVFIG

Chen-Hanson Ting
December 18, 2021

i Summary

= Java Virtual Machine
= JVM Bytecode

= Forth Virtual Machine
= FVM Bytecode

= Synthesize FVM

= Simulate FVM

= Conclusion

i Java Virtual Machine

= JVM was specified by its bytecode.

= 202 bytecode was specified
precisely.

= JVM architecture can be inferred
from its bytecode.

= JVM bytecode map is as follows:

Java Bytecode

nop | ==e=test |iconst_mi | iconst_0 iconst_lliconst_;’ iconst_Jiconst 4iconst Jlconst_0 | lconst_1 | feonst_0 | feonst_1 | feonst_2 | deonst_0 | deonst_1
bipush | sipush | I1dc | ldc_w |ldc2_w| iload | lload | fload | dload | aload |iload 0 |iload 1 |iload_2 |iload 3 |lload_0 |lload 1
lload 2 |lload_3 | fload 0|fload 1 |fload_2|fload_3|dload_O|dload_I|dload 2|dload 3|aload O|aload 1|aload 2|aload_3| iaload | laload
faload | daload | aaload | baload | caload | saload | istore | Istore | fstore | dstore | astore |istore_O|istore_1|istore_2|istore_3|lstore_0
Istore_1|Istore_2|lIstore 3|fstore O|fstore 1|fstore_2|fstore 3| dstore O | dstors_1 | dstors_2 | dstora_3 | astor=_0 | astor=_1 | astors_2 | astor=_3 | 1astore
lastore | fastore | dastore | aastore | bastore | castore| sastore| pop | pop2 | dup |dup x1|dup_x2| dup2 |dup2 xIHup2 x1| swap
tadd ladd | fadd | dadd | isub Isub fsub | dsub | imul | Imul | fmul | dmul | idiv ldiv fdiv ddiv
rem | lrem | frem | drem | ineg Ineg | fneg | dneg ishl Ishl ishr Ishr | tushr | lushr | iand land
ior lor xor Ixor finc 121 12f 12d 12i R2f 12d 21 21 f2d d21 d21
d2f 12b i2c 2s | lemp | fempl | fempg | dempl | dempg | ifeq ifne iflt ifge ifgt ifle | ificmpsq
if_icmpne | if_icmplt | if icmpge | if icmpet |if_iemple| if scmpq | if scmpne | OO jsr ret table | lookup | ireturn | lreturn | freturn | dreturn
areturn | refurn | zststatic | putstatic | getfield | putfield | invokevir |involespe| invokesta | invokeint |invokedyn| new |newarray | smewamsy | arraylen| athrow
chackeast | instanceof | moorseser | mosmoren | wide |moltianew | ifnull |ifnonnull| ooto w| jsr_ | oreatpoint
impdep] | impdep2

i Forth Virtual Machine

= From JVM bytecode map, you can
see a Forth Virtual Machine.

= If we restricted FVM to 32-bit
integers, we would need only
about 40 bytecodes.

= We need 4 more bytecodes to deal
with an explicit return stack.

FVM Bytecode

nop acoost =l | jeonst_ml | tconst_0 | iconst_1 | iconst_2 | iconst_3 | tconst_4 | iconst_5

bipush | sipush

1aload
baload saload
1astore
bastore sastore| pop | pop2 | dup |dup x1|dup x2| dup2 |dup2_xlHup2 xI1| swap
1add isub imul div
irem ineg ishl ishr | tushr iand
ior xor tinc
ifeq if icmpaq
if_icmplt if icmpst goto
return invoke

donxt 1di popr | pushr | dupr ext

get put

i Map FVM to JVM

= ALU and logic
= Data stack

= Memory

= Branching

= Return stack

mod

negate

isub

imul
idiv
irem

ineg

*_ Logic
and fland

or ior
XOr IXOor
Ishift ishli

rshift ishr

* Data Stack

drop pop
swap swap
over dup2,pop
2dup dup2

2drop pop2

‘_-| Memory
! lastore
c@ baload
cl bastore
w@ saload

cl! sastore

* Branching

Obranch ifeq
call invokevirtual
ret return

exit return

* Return Stack

>r (pushr)

r> (popr)
r@ iload O

i Synthesize FVM

= I have a free Quartus Lite license
from Altera (acquired by Intel).

= It is not compatible with the NIOS
II Kit I have from an earlier NASA
project.

= I used its synthesizer and
simulator to build and prove my
FVM.

i Synthesize FVM

= I have the advantage of doing an
eP32 FVM in VHDL.

= eP32 had 5-bit instructions to be
converted to bytecode.

= eéP32 also had a Forth outer
interpreter based on eForth, which
cried out to be modernized.

i Features of FVM

= A dictionary, an input buffer, and
an output buffer are instantiated.

= Input buffer stores Forth test code
interpreted by FVM.

= Output buffer stores characters
generated by FVM for verification.

i Synthesize FVM

= With insights gained from my OOP
Forth, I rewrote the eForth outer
interpreter for a bytecode FVM.

= The outer interpreter was fully
debugged with a F# metacompiler.

= It serves well as a testbench in
simulating FVM.

Synthesize FVM

+

= Synthesized on Quartus II IDE
from Altera/Intel.

= FVM Core runs at 100 MHz

= With Multiply/Divide/Shifter
library modules, it runs at 20 MHz.

i Synthesize FVM

= Forth outer interpreter was
assembled, compiled, and
simulated on F#.

= The dictionary is 3,424 bytes in
size.

» Code fields have executable
bytecode.

* Synthesize FVM

Core 3,936
Multiply/divide 5,478
Barrel shifter 5,786

i Simulate FVM

= A dictionary, an input buffer, and
an output buffer are instantiated In
main memory.

= Input buffer stores Forth test code
interpreted by FVM.

= Output buffer stores characters
generated by FVM for verification.

Simulate FVM

+

= The outer interpreter runs at
master clock rate and greatly eases
simulation and verification.

= You cannot design a better
testbench, which is the most
difficult task in implementing a
CPU in FPGA.

i Conclusion

= JVM iIs a very good hardware
specification of a bytecode CPU.

= FVM maps well to an integer JVM.

= FVM was synthesized in Quartus II
IDE for a Stratix II FPGA device.

= Simulation continues.

Questions?

Thank you.

