Challenge: A Poor Man's Floating Point

> SVFIG Zoom Dec. 18, 2021 Bill Ragsdale

The Problem

- Compute (approximately) 100!
- Check with floating point math.
- ✤ Calculate the number of trailing zeros.
- Extra Credit: Compute 100! exactly.

Pseudocode

Setup variables Setup a loop from 2 to N+1. Initial value of 1 (one) as the product. Within the loop Form a new product by multiplying the product by the loop index. Adjust for overflow. Loop to completion Report

The Setup

variable Significand \ significand of result variable 👘 variable Input

- Exponent \ exponent of result
 - \ Number for factorial

The Setup

variable Significand \ significand of result
variable Exponent \ exponent of result
variable Input \ Number for factorial

- - 0 Exponent ! ;

The Setup

variable Significand \ significand of result
variable Exponent \ exponent of result
variable Input \ Number for factorial

- 0 Exponent ! ;
- : .output \ convert for printing
 - <# Exponent @ s>d #s 2drop
 ascii e hold
 Significand @ s>d #s #> type ;

The Wrapper

- : by-integer setup process .output ;
- : process \ process for a factorial
 - 1 Input @ 1+ 2 \ loop values
 - do i adjust loop
 - drop ;

The Action

: adjust (multiplicand i --- product)
begin

2dup um* \ a double cell product

The Action

: adjust (multiplicand i --- product) beqin

2dup um* while drop swap nip swap N repeat

\ a double cell product

- \ test for high cell overflow
- \ get the product
- 0 10 UM/MOD \ divide product by ten
- 1 Exponent +! \ increment Exponent by 1

The Action

: adjust (multiplicand i --- product) begin

2dup um* \ a double cell product while \ test for high cell overflow drop swap \ get the product 0 10 UM/MOD \ divide product by ten nip swap \ 1 Exponent +! \ increment Exponent by 1 repeat nip nip \ trim and save Significand dup Significand ! ;

The Check

By the Win32Forth floating point.

- : by-floats
 - 1e0
 - Input @ 1+ 2 do i s>f f* loop
 - FE. ;

A Test

setup process .output

933260130e149 ok (use better rounding)

by-floats 93.326215E156 ok

9.332622e+157

Rad	Deg	x!	()	%	AC
Inv	sin	In	7	8	9	÷
Π	cos	log	4	5	6	×
е	tan	\checkmark	1	2	3	-
Ans	EXP	ХУ	0		=	+

Exact Solution, by Wolfam

How Many Zeros?

Sum the number of fives as factors.

100 / 5 = 20 $20 / 5 = \frac{+ 4}{24}$ 24 zeros

9332621544394415268169923885626670 0490715968264381621468592963895217 5999932299156089414639761565182862 53697920827223758251185210916864 00000 00000 00000 00000 0000

Zeros In Forth

```
: zeros?
```

```
0 swap
  begin 5 / dup >r + r> \ result quotient
    dup 5 <
                          \ res quot limit
  until
    drop
cr cr ." Number of trailing zeros is " . ;
100 zeros?
Number of trailing zeros is 24 ok
```

Discoveries

My LOOP was 100 2 DO ... LOOP which ran 2 to 99. Off by a factor of 100. 1+ fixes.

My value is low due to always rounding down after division.

Better to round down if the least significant digit is odd and up if it is even.

Credits

- Google and Wolfram.com for revealing my DO LOOP error.
- Andrew McKewan and Tom Zimmer for Win32Forth.
- And the Europeans for their updates.