
Challenge:
A Poor Man’s
Floating Point

SVFIG Zoom
Dec. 18, 2021
Bill Ragsdale

The Problem

❖ Compute (approximately) 100!

❖ Check with floating point math.

❖ Calculate the number of trailing zeros.

❖ Extra Credit: Compute 100! exactly.

Pseudocode

Setup variables

Setup a loop from 2 to N+1.

Initial value of 1 (one) as the product.

Within the loop

Form a new product by multiplying the

product by the loop index.

Adjust for overflow.

Loop to completion

Report

The Setup

variable Significand \ significand of result
variable Exponent \ exponent of result
variable Input \ Number for factorial

The Setup

variable Significand \ significand of result
variable Exponent \ exponent of result
variable Input \ Number for factorial

: setup 100 Input ! \ For the calculation
0 Significand !
0 Exponent ! ;

The Setup

variable Significand \ significand of result
variable Exponent \ exponent of result
variable Input \ Number for factorial

: setup 100 Input ! \ For the calculation
0 Significand !
0 Exponent ! ;

: .output \ convert for printing
<# Exponent @ s>d #s 2drop

ascii e hold
Significand @ s>d #s #> type ;

The Wrapper

: by-integer setup process .output ;

: process \ process for a factorial
1 Input @ 1+ 2 \ loop values
do i adjust loop
drop ;

The Action

: adjust (multiplicand i --- product)
begin

2dup um* \ a double cell product

The Action

: adjust (multiplicand i --- product)
begin

2dup um* \ a double cell product
while \ test for high cell overflow

drop swap \ get the product
0 10 UM/MOD \ divide product by ten
nip swap \
1 Exponent +! \ increment Exponent by 1

repeat

The Action

: adjust (multiplicand i --- product)
begin

2dup um* \ a double cell product
while \ test for high cell overflow

drop swap \ get the product
0 10 UM/MOD \ divide product by ten
nip swap \
1 Exponent +! \ increment Exponent by 1

repeat
nip nip \ trim and save Significand
dup Significand ! ;

The Check

By the Win32Forth floating point.

: by-floats
1e0
Input @ 1+ 2 do i s>f f* loop
FE. ;

A Test
setup process .output

933260130e149 ok (use better rounding)

by-floats
93.326215E156 ok

Exact Solution, by Wolfam

9332621544394415268169923885626670
0490715968264381621468592963895217
5999932299156089414639761565182862
53697920827223758251185210916864
000000000000000000000000

How Many Zeros?

Sum the number of fives as factors.

100 / 5 = 20
20 / 5 = + 4

24 zeros

9332621544394415268169923885626670
0490715968264381621468592963895217
5999932299156089414639761565182862
53697920827223758251185210916864
00000 00000 00000 00000 0000

Zeros In Forth

: zeros?
0 swap

begin 5 / dup >r + r> \ result quotient
dup 5 < \ res quot limit

until
drop

cr cr ." Number of trailing zeros is " . ;

100 zeros?
Number of trailing zeros is 24 ok

Discoveries

My LOOP was 100 2 DO . . . LOOP which

ran 2 to 99. Off by a factor of 100. 1+ fixes.

My value is low due to always rounding down

after division.

Better to round down if the least significant

digit is odd and up if it is even.

Credits

• Google and Wolfram.com for

revealing my DO LOOP error.

• Andrew McKewan and Tom Zimmer

for Win32Forth.

• And the Europeans for their updates.

