Challenge:

 A Poor Man's
Floating Point

SVFIG Zoom
Dec. 18, 2021 Bill Ragsdale

The Problem

* Compute (approximately) 100!
* Check with floating point math.
* Calculate the number of trailing zeros.
* Extra Credit: Compute 100! exactly.

Pseudocode

Setup variables
Setup a loop from 2 to $\mathrm{N}+1$.
Initial value of 1 (one) as the product.
Within the loop
Form a new product by multiplying the product by the loop index.
Adjust for overflow.
Loop to completion
Report

The Setup

variable Significand significand of result variable Exponent a exponent of result variable Input \ Number for factorial

The Setup

The Setup

```
variable Significand significand of reesult
uariable Exponent y exponent of result
uariable Input Number for factorial
```

: setup 196 Input 5) Significand 5) Exponent
: .output s conuert for printing
く\# Exponent ■ 5>d \#s 2drop
ascii e hold
Significand \mathbb{C} s>d \#s \#> type ;

The Wrapper

: by-integer setup process .output ;
: process
1 Input [1+ 2
do i adjust loop
drop ;
\ process for a factorial
, loop values

The Action

: adjust (multiplicand i --- product) begin

2dup um* \quad a double cell product

The Action

: adjust (multiplicand i --- product)
begin

2dup um*
while
drop swap
g $15 \mathrm{UH} / \mathrm{HOD}$
nip swap
1 Exponent +:

A a double cell product
4 test for high cell overflow
\& get the product
\ divide product by ten
\&
\& increment Exponent by 1

The Action

: adjust (multiplicand i --- product)
begin
2dup um* \quad a double cell product
while I test for high cell ouerflow
drop swap a get the product
f $15 \mathrm{UH} / \mathrm{HOD}$ \& diuide product by ten
nip swap
1 Exponent +: \& increment Exponent by 1
repeat
nip nip \quad trim and save Significand
dup Significand : ;

The Check

By the Win32Forth floating point.
: by-floats
1e9
Input 【 1+ 2 do i s>f f* loop
FE. ;

A Test

setup process =output

93326013 Gie149 ok (use better rounding)
by-floats
93.326215 E 156 ok

$$
9.332622 \mathrm{e}+157
$$

Rad	Deg	x !	()	\%	AC
Inv	\sin	In	7	8	9	\div
π	\cos	\log	4	5	6	\times
e	\tan	$\sqrt{ }$	1	2	3	-
Ans	EXP	xy	0	-	$=$	+

Exact Solution, by Wolfam

9332621544394415268169923885626670 0490715968264381621468592963895217 5999932299156189414639761565182862 536979261827223758251185216916864

How Many Zeros?

Sum the number of fives as factors.
$101 / 5=20$
$20 / 5=\frac{+4}{24}$ zeros

9332621544394415268169923885626679 0496715968264381621468592963895217
5999932299156089414639761565182862
53697920827223758251185216916864

Zeros In Forth

: zeros?
5 swap
begin $5 /$ dup $>r^{*}+r>$ result quotient dup 5 < res quot limit
until

drop

cr cr . "' Number of trailing zeros is '" \quad;

196 zeros?
Number of trailing zeros is 24 ok

Discoveries

My LOOP was 1002 DO . . . LOOP which ran 2 to 99 . Off by a factor of 100. $1+$ fixes.

My value is low due to always rounding down after division.

Better to round down if the least significant digit is odd and up if it is even.

Credits

- Google and Wolfram.com for revealing my DO LOOP error.
- Andrew McKewan and Tom Zimmer for Win32Forth.
- And the Europeans for their updates.

