
1

C based eForth on Top of RTOS

SVFIG Meeting on December 19, 2020

Presented by

Masa Kasahara

2

Past Projects :

1) Audible Computing: To create an efficient Computer
Language based on our natural languages

2) Forth CPU Design: To create a simple, yet usable
CPU in FPGA

3) Forth Implementation in C: To utilize the Forth
productivity in a simple manner

3

Audible Computing:

1) I originally thought of using Morse Code as User
Interface since I wanted to create a Morse Code
Trainer. If I should create a Morse Code Trainer, why
not make something a bit more useful? In Morse
code transmission, short and condense expression is
used, which seemed to fit Forth vocabulary.

2) I will talk about it in a separate presentation.

4

FORTH CPU Design:

1) I studied Dr. Ting’s eForth CPU design in FPGA he
presented in the past. I would like to implement his
new circular stack design, add some real-time related
features and digital signal processing capabilities.

2) I will talk about it in a separate presentation.

5

FORTH Implementation in C:

1) I studied Dr. Ting’s eForth Implementations in C he
presented in the past. I would like to use his
implementations on top of RTOS (Real Time
Operating System).

2) I will talk about the current status in this meeting.

6

What is the benefit of FORTH
Implementations in C:

1) Brad did a wonderful presentation about it on the
Forth Day this year.

2) I think there is another potential application. When
you want to add Forth capabilities on an existing
system written in C, this makes it easier. In fact, I
might need to do it in the near future.

7

Logomatic v2 Serial SD Datalogger:

1) I found an abandoned single board computer:
https://www.sparkfun.com/products/retired/10216

https://www.sparkfun.com/products/retired/10216

8

Logomatic v2 Serial SD Datalogger:

2) It has a very attractive NXP LPC2148 CPU.

3) It can run FreeRTOS.

4) It has a GNU based C tool chain.

5) It has an interesting USB thumb drive/firmware
upload feature.

6) The above feature somewhat derailed the project.

9

FreeRTOS Simlulator on Windows:

1) I found a simulator and training manual with
extensive examples.

2) It can be used as a test bed.

10

ceForth_33.cpp:

1) Dr. Ting’s C Implementation uses C extensions under
C++.

2) However, his code is 99.9% C. So, I made an ANSI
C version out of it and named it eForth_33-ansi.c.

3) When I tried to integrate it into FreeRTOS, Visual
Studio complained.

4) A long story short, I used his ceForth_23.cpp.

11

ceForth_23.cpp:

1) Dr. Ting’s C Implementation uses C extensions under
C++.

2) However, his code is 99.9% C. So, I made an ANSI
C version out of it and named it eForth_23-ansi.c.

3) It worked beautifully.

4) However, Forth Meta compiler is written in eForth.

12

ceForth_33.cpp:

1) I learned that the program could be separated into
two, namely eForth VM and eFORTH Meta Compiler to
create eForth dictionary.

2) So, I stripped eForth VM and created just eForth
Meta Compiler and named it cefMETA_23.c.

3) The reason I called it cefMETA_23.c is that the
dictionary size is the same as ceForth_23.c.

13

Demonstration:

1) Dr. Ting’s ceForth_23 running on top of FreeRTOS
Simulator.

14

Q & A:

