
Forth Recognizers in SwiftForth

And initial implementation of the
proposed Forth Recognizers

extension in SwiftForth

Background
§ There is no standard method for extending

the Forth interpreter’s handling of text tokens
§ Most systems have hooks to extend parts of

the interpreter
§ The hooks are non-standard and differ from

system to system
§ The classic Forth interpreter handles Forth

words (execute or compile) and numbers
(push on stack or compile as literals)

Overview
The recognizer implementation divides the
classic Forth interpreter into three blocks:
§ Interpreter. Maintains STATE and organizes the

work.
§ Token recognizer. Called from the interpreter

and analyzes each text token to see if it
matches the criteria for a certain data type.

§ Handler. Result of the parsing words is handed
over to the interpreter with a pointer to the
data-specific handling methods.

Handlers
There are three methods for each data type:
§ Interpret
§ Compile
§ Postpone

The Interpret and Compile methods are called
from within the interpreter loop based on
STATE.
The Postpone method is called directly from
POSTPONE.

Recognizers
The combination of a parsing word and the set
of data handling words is called a recognizer.

There is no strict one-to-one relation between
the parsing words and the data handling sets.

For example, the data handling set for single-cell
numbers can be used by different parsing
words.

Interpreter Loop
The simplified (and extensible) interpreter loop
looks like this:

BEGIN ?STACK PARSE-NAME DUP WHILE

RECSTACK RECOGNIZE
STATE @ 2+ CELLS + @EXECUTE

REPEAT 2DROP

§ For each token, we call RECOGNIZE with the
system recognizer sequence RECSTACK

§ The result of RECOGNIZE is an execution
vector indexed by STATE

Interpreter Loop
The simplified (and extensible) interpreter loop
looks like this:

BEGIN ?STACK PARSE-NAME DUP WHILE

RECSTACK RECOGNIZE
STATE @ 2+ CELLS + @EXECUTE

REPEAT 2DROP

§ For each token, we call RECOGNIZE with the
system recognizer sequence RECSTACK

§ The result of RECOGNIZE is an execution
vector indexed by STATE

Interpreter Loop
The simplified (and extensible) interpreter loop
looks like this:

BEGIN ?STACK PARSE-NAME DUP WHILE

RECSTACK RECOGNIZE
STATE @ 2+ CELLS + @EXECUTE

REPEAT 2DROP

§ For each token, we call RECOGNIZE with the
system recognizer sequence RECSTACK

§ The result of RECOGNIZE is an execution
vector indexed by STATE

Token Recognizers
Each token recognizer has this stack effect:

REC-SOMETYPE (c-addr len -- i*x addr1 | addr2)

It takes the text token address and length (c-addr len) as
inputs and if it recognizes the token, returns the
address of the handler vector (addr1) along with any
data required by the interpret, compile, or postpone
behaviors in the handler vector.
Otherwise, returns addr2, the address of REC-NONE (the
“unrecognized” handler).

Token Recognizers
Each token recognizer has this stack effect:

REC-SOMETYPE (c-addr len -- i*x addr1 | addr2)

It takes the text token address and length (c-addr len) as
inputs and if it recognizes the token, returns the
address of the handler vector (addr1) along with any
data required by the interpret, compile, or postpone
behaviors in the handler vector.
Otherwise, returns addr2, the address of REC-NONE (the
“unrecognized” handler).

Token Recognizers
Each token recognizer has this stack effect:

REC-SOMETYPE (c-addr len -- i*x addr1 | addr2)

It takes the text token address and length (c-addr len) as
inputs and if it recognizes the token, returns the
address of the handler vector (addr1) along with any
data required by the interpret, compile, or postpone
behaviors in the handler vector.
Otherwise, returns addr2, the address of REC-NONE (the
“unrecognized” handler).

Token Recognizers
Each token recognizer has this stack effect:

REC-SOMETYPE (c-addr len -- i*x addr1 | addr2)

It takes the text token address and length (c-addr len) as
inputs and if it recognizes the token, returns the
address of the handler vector (addr1) along with any
data required by the interpret, compile, or postpone
behaviors in the handler vector.
Otherwise, returns addr2, the address of REC-NONE (the
“unrecognized” handler).

Postpone
Although the primary use of Recognizers in this
implementation is in the interpreter loop, any
string can be passed to a recognizer word.
This is also how POSTPONE is implemented.

: POSTPONE ("name" --)

PARSE-NAME RECSTACK RECOGNIZE

@EXECUTE ; IMMEDIATE

Handler Vectors
The defining word RECTYPE: compiles the three-element
vector table that handles a specific recognizer type
(“rectype”).

RECTYPE: (xt1 xt2 xt3 "name" --)

RECTYPE: defines a recognizer vector table and compiles
the cells xt1, xt2, and xt3 in this order:

CELL OFFSET VECTOR ACTION

0 xt3 Postpone

1 xt2 Compile

2 xt1 Interpret

Recognizer Sequences
§ A recognizer sequence is a “stack” of token

recognizers the specifies
§ The first cell of the sequence is the number of

recognizers in the sequence
§ Subsequent cells in the sequence are the

execution tokens of the token recognizers
§ The token recognizers in the sequence are

executed in order until one of them does not
return RECTYPE-NONE

Recognize
: RECOGNIZE (c-addr len addr1 -- i*x addr2)

DUP @ 0 DO CELL+ 3DUP >R 2>R @EXECUTE
DUP RECTYPE-NONE <> IF 2R> R> 3DROP
UNLOOP EXIT THEN DROP

2R> R> LOOP DROP RECTYPE-NONE ;

RECOGNIZE takes the token string c-addr len and the
recognizer list addr1, runs through the list until it gets a
hit (and exits the loop), or falls out the end of the list
and returns RECTYPE-NONE.

Recognize
: RECOGNIZE (c-addr len addr1 -- i*x addr2)

DUP @ 0 DO CELL+ 3DUP >R 2>R @EXECUTE
DUP RECTYPE-NONE <> IF 2R> R> 3DROP
UNLOOP EXIT THEN DROP

2R> R> LOOP DROP RECTYPE-NONE ;

RECOGNIZE takes the token string c-addr len and the
recognizer list addr1, runs through the list until it gets a
hit (and exits the loop), or falls out the end of the list
and returns RECTYPE-NONE.

Recognize
: RECOGNIZE (c-addr len addr1 -- i*x addr2)

DUP @ 0 DO CELL+ 3DUP >R 2>R @EXECUTE
DUP RECTYPE-NONE <> IF 2R> R> 3DROP
UNLOOP EXIT THEN DROP

2R> R> LOOP DROP RECTYPE-NONE ;

RECOGNIZE takes the token string c-addr len and the
recognizer list addr1, runs through the list until it gets a
hit (and exits the loop), or falls out the end of the list
and returns RECTYPE-NONE.

Recognize
: RECOGNIZE (c-addr len addr1 -- i*x addr2)

DUP @ 0 DO CELL+ 3DUP >R 2>R @EXECUTE
DUP RECTYPE-NONE <> IF 2R> R> 3DROP
UNLOOP EXIT THEN DROP

2R> R> LOOP DROP RECTYPE-NONE ;

RECOGNIZE takes the token string c-addr len and the
recognizer list addr1, runs through the list until it gets a
hit (and exits the loop), or falls out the end of the list
and returns RECTYPE-NONE.

Example: REC-FIND
§ Recognizes Forth words in the current dictionary

search order
§ Note the cases for immediate and non-immediate

words
' EXECUTE ' COMPILE, ' POSTPONE, RECTYPE: RECTYPE-WORD
' EXECUTE ' EXECUTE ' COMPILE, RECTYPE: RECTYPE-IMM

: REC-FIND (c-addr len -- xt addr1 | addr2)
(FIND) CASE

-1 OF RECTYPE-WORD ENDOF
1 OF RECTYPE-IMM ENDOF
0 OF RECTYPE-NONE ENDOF

ENDCASE ;

Example: REC-FIND
§ Recognizes Forth words in the current dictionary

search order
§ Note the cases for immediate and non-immediate

words
' EXECUTE ' COMPILE, ' POSTPONE, RECTYPE: RECTYPE-WORD
' EXECUTE ' EXECUTE ' COMPILE, RECTYPE: RECTYPE-IMM

: REC-FIND (c-addr len -- xt addr1 | addr2)
(FIND) CASE

-1 OF RECTYPE-WORD ENDOF
1 OF RECTYPE-IMM ENDOF
0 OF RECTYPE-NONE ENDOF

ENDCASE ;

Example: REC-FIND
§ Recognizes Forth words in the current dictionary

search order
§ Note the cases for immediate and non-immediate

words
' EXECUTE ' COMPILE, ' POSTPONE, RECTYPE: RECTYPE-WORD
' EXECUTE ' EXECUTE ' COMPILE, RECTYPE: RECTYPE-IMM

: REC-FIND (c-addr len -- xt addr1 | addr2)
(FIND) CASE

-1 OF RECTYPE-WORD ENDOF
1 OF RECTYPE-IMM ENDOF
0 OF RECTYPE-NONE ENDOF

ENDCASE ;

Example: REC-FIND
§ Recognizes Forth words in the current dictionary

search order
§ Note the cases for immediate and non-immediate

words
' EXECUTE ' COMPILE, ' POSTPONE, RECTYPE: RECTYPE-WORD
' EXECUTE ' EXECUTE ' COMPILE, RECTYPE: RECTYPE-IMM

: REC-FIND (c-addr len -- xt addr1 | addr2)
(FIND) CASE

-1 OF RECTYPE-WORD ENDOF
1 OF RECTYPE-IMM ENDOF
0 OF RECTYPE-NONE ENDOF

ENDCASE ;

Example: REC-NUM
§ Recognizes single- and double-cell numbers

' DROP ' EXECUTE ' NOPOST RECTYPE: RECTYPE-NUM

: REC-NUM (c-addr len -- i*x xt addr1 | addr2)
ANY-NUMBER? CASE

0 OF RECTYPE-NONE ENDOF
1 OF ['] LITERAL RECTYPE-NUM ENDOF
2 OF ['] 2LITERAL RECTYPE-NUM ENDOF

ENDCASE ;

Example: REC-NUM
§ Recognizes single- and double-cell numbers

' DROP ' EXECUTE ' NOPOST RECTYPE: RECTYPE-NUM

: REC-NUM (c-addr len -- i*x xt addr1 | addr2)
ANY-NUMBER? CASE

0 OF RECTYPE-NONE ENDOF
1 OF ['] LITERAL RECTYPE-NUM ENDOF
2 OF ['] 2LITERAL RECTYPE-NUM ENDOF

ENDCASE ;

Example: REC-NUM
§ Recognizes single- and double-cell numbers

' DROP ' EXECUTE ' NOPOST RECTYPE: RECTYPE-NUM

: REC-NUM (c-addr len -- i*x xt addr1 | addr2)
ANY-NUMBER? CASE

0 OF RECTYPE-NONE ENDOF
1 OF ['] LITERAL RECTYPE-NUM ENDOF
2 OF ['] 2LITERAL RECTYPE-NUM ENDOF

ENDCASE ;

Sequence Operations
§ Set and get the current recognizer sequence

SET-RECOGNIZERS (xtn ... xt1 n --)
GET-RECOGNIZERS (-- xtn ... xt1 n)

§ Append and delete a single recognizer
+RECOGNIZER (xt --)
-RECOGNIZER (--)

www.forth.com/recognizers

http://www.forth.com/recognizers

