
FluidNC DIY CNC
Mitch Bradley

What Does This Have to Do with Forth ???

● In a word, Nothing (FluidNC is written in C++). Sorry

● Blame Kevin - he asked me to present, despite my insistence that I haven’t

been working on Forth lately

● Oh, yeah, the base class for the FluidNC settings engine is named “Word”

● But …

Laurels, Resting Upon

There is a checkin of armv64 support in the

Openfirmware Forth repo, from an engineer at Apple

Mike Perry works for the Apple CPU silicon verification team.

You might be using a processor that was tested with Forth …

Computer Numerical Control Machines

● Milling Machines
● Routers
● Lathes
● Laser engravers
● Cutters - laser, plasma, water jet, knife, glass, hot wire foam, …
● Art bots - sand tables, string art, embroidery, …
● 3D printers
● Bending brakes
● Industrial robots of all sorts

The cost of CNC machines has dropped precipitously. You can buy a laser
engraver for < $200.

How I Use CNC

● My business HonuGolf makes golf putters from bamboo laminate

Many CNC Machines Involved

Personal Project

Penrose Tiling Table

Laser-cut - maple and cherry veneer

GCode Language

● Most computer controlled machines use the GCode language

● GCode is an old, dumb language that originally ran from paper tape

● Commands like
○ G0 X10 Y200 - move to that XY coordinate as fast as possible

○ G1 X100 Y50 Z10 F50 - move to that XYZ coordinate at a given “feedrate”

○ S5000 - set spindle speed

○ M7 - turn on coolant

● The language is goofy by modern standards

● There are many dialects with incompatible extensions

● There is sort of a standard - NIST RS-274

Motion Control is Hard

● GCode programs consist of a series of motions (vectors) that must occur at

specific speeds

● Machines have friction, inertia, power, acceleration and precision limits that

differ across axes

● Low-end machines often use stepper motors with their fixed step sizes

● The motion control software must consider all those factors and compute a

multi-dimensional step timing pattern to approximate the requested motion

● Spindle speed / cutter power must be coordinated with the motion

● Cornering adds additional difficulties

● This is a “hard realtime” problem

● Safety …..

Evolution of CNC Software/Firmware/Hardware

● Used to be expensive/specialized/bundled with turnkey industrial machines

● 1190s - NIST released EMC (now LinuxCNC) software

● 2001 - Art Fenerty created Mach as an offshoot of EMC. Mach ran on

Windows, using a parallel port to send step and direction signals to external

stepper drivers. It brought CNC to the masses

● 2009 - Simen Svale Skogsrud created GRBL - GCode parser and motion

control firmware that ran on 8-bit AVR processors (Arduinos).

● Unlike previous CNC software where the UI and the motion control were on

the same processor, the GRBL UI (aka the “sender”) runs elsewhere, like on

a PC, talking over a serial line. There are many different UIs

GRBL Offshoots

● Classic 8-bit AVR GRBL is still in use, but there have been many offshoots -

● Various specialized forks for more powerful AVRs, ARM, etc (e.g. g2core,

Smoothieware)

● Derivatives for 3D printing - e.g. Marlin

● GrblHAL, for many different MCUs

● Grbl_Esp32 (Bart Dring), for ESP32 with browser-based UI over WiFi

Why ESP32?

● 2 core, 240 MHz, 300K RAM, built-in WiFi and Bluetooth for a few bucks

● Very low system cost for a powerful, fast-booting CNC controller

● (Yes, my cforth implementation runs on ESP32 …)

My Involvement with CNC Controller Development

● Mach3 became hard to use with newer PCs that lack parallel ports

● I switched to g2core on an ARM, with a browser-based UI (CNCjs) running on

a Raspberry Pi, and did some g2core and CNCjs development

● G2core wasn’t going in the direction I was interested in, and CNCjs

development was stalled, so I became interested in Grbl_ESP32

● Grbl_ESP32 let me make a super-low-cost controller that I could control from

an Android tablet; the whole setup including the tablet cost about $100.

● After many improvements, I became one of two lead developers.

● Eventually, after deep architectural changes, we rebranded it as FluidNC

FluidNC

● Grbl_ESP32 had to be recompiled to configure for different boards and
machines - so users have to wrangle compilers, and support is hard

● FluidNC is “one binary fits all” - configuration via a text file loaded at startup
● FluidNC supports many different situations

○ Spindles controlled by relays, PWM, VFDs (modbus), lasers, BESC
○ Multi-motor per axis for gantries, with auto-squaring
○ Different stepper drivers including “smart” Trinamic drivers, RCServos, Dynamixels
○ Different kinematics - traditional Cartesian, CoreXY, polar, wall plotter, Delta
○ IO Expanders and Display Pendants

● Web-based UI and installation tools
● Many different controller boards, from us and third parties ($15 from China),

many Open Source hardware
● Support via GitHub, Wiki, and Discord

Ecosystem

Challenges

● The software is very complex and flexible

● Fitting everything into the ESP32 RAM is getting harder. The WiFi stack and

other system libraries use a lot of it

● Pin limitations

● Users are wildly different - controller boards, machines, usage, knowledge,

language skills

● People can’t or won’t read the docs

● Continual requests for one-off new features

● $3 donations

● People buy 3rd party hardware and expect us to support it for free

