
A SLIGHTLY
DIFFERENT FORTH

COMPILER DESIGN
Joseph M. O’Connor

SVFIG Forth Day

Nov 2020

What I primarily use Forth for

◦ As a DSL embedded in a larger application

◦ I have written the following DSLs:

◦ (1) Creole Forth for Delphi/Lazarus

◦ (2) Creole Forth for Excel

◦ (3) Creole Forth for JavaScript

◦ (4) Creole Forth for Python

◦ (5) Creole Forth for Perl

◦ (6) Creole Forth for C# (still under development)

◦ My various Forth and other projects are available at https://github.com/tiluser

https://github.com/tiluser

Development methodology

◦ (1) Import Creole Forth into the application

◦ (2) Set up a set of ‘primitives’ to handle the tasks necessary. This is a two-step process:

◦ A. Define a subroutine that follows a specified interfacing convention. It’s usually a method that takes a

global properties structure as an argument and returns nothing.

◦ B. Add a reference to the dictionary with the BuildPrimitive method.

◦ (3) When enough primitives are available, start gathering into high-level definitions

◦ (4) It is possible to use multiple copies of Creole Forth for the same application, each with a different

vocabulary set, which can be useful.

In some Forths, instructions can be defined in terms of assembly mnemonics. The primitives defined by

Creole Forth play a similar role.

Compiler design

◦ No state variable.

◦ Compilation starts by pushing the IMMEDIATE vocabulary onto the vocabulary stack and ends with the

popping of this vocabulary.

◦ Immediate words are simply words defined in the IMMEDIATE vocabulary, which the colon compiler will

always search first.

◦ The interpreter is used by the compiler to handle the compilation.

Compilation steps

◦ (1) compileColon sets up a new CreoleWord definition. It populates the name field and fully qualified

name field (name field + context vocabulary).

◦ (2) Using a loop, it does the following steps:

◦ 1. Looks up each word in the dictionary.

◦ 2. Builds a triplet with the following information : Name with context vocabulary, address, and

compilation action.

◦ 3. Places the triplet in the PAD area. This is a simple list structure.

◦ 4, The PAD area contents are gone through one at a time and passed onto the interpreter.

◦ 5. Words with a COMPINPF action are compiled into the parameter field, while immediate words are

executed. EXEC0 words (comments) are handled by moving the input stream pointer. Literals are

handled by putting the literal-handling code before the literal.

◦ 6. doSemi pops the vocabulary stack and empties PAD.

Possible compilation actions

Name Action

COMPINPF Synonym for , (COMMA). Compiles an address into the parameter field

EXECUTE Takes an address as a stack argument and executes it. Used to handle

compiling words.

EXEC0 Moves the input stream pointer. Currently used for comments only.

LITERAL Anything else that could not be found in the dictionary.

What PAD looks like during compilation
: TEST1 IF HELLO ELSE TULIP THEN ;

Word Token Action What compileColon does

IF 52 EXECUTE Pushes 52 onto the stack, passes EXECUTE to the interpreter.

HELLO 5 COMPINPF Pushes 5 onto the stack, passes COMPINPF to the interpreter.

ELSE 53 EXECUTE Pushes 53 onto the stack, passes EXECUTE to the interpreter.

TULIP 6 COMPINPF Pushes 6 onto the stack, passes COMPINPF to the interpreter.

THEN 54 EXECUTE Pushes 54 onto the stack, passes EXECUTE to the interpreter.

Let’s compile this to see what happens
: TEST1 IF HELLO ELSE TULIP THEN ;

Number Word/Meaning Vocabulary Code Field Help

55 0BRANCH IMMEDIATE Compiler.do0Branch (flag --) Run-time code for IF

5 Index 0BRANCH jumps to if arg=0

5 HELLO FORTH CorePrims.doHello (--) Pops up an alert saying Hello World

56 JUMP IMMEDIATE Compiler.doJump (--) Jumps unconditionally to the

parameter field location next to it and is

compiled by ELSE

7 Index JUMP jumps to

57 doElse IMMEDIATE CorePrims.doNop (--) Run-time code for ELSE

6 TULIP FORTH CorePrims.doTulip (--) Pops up an alert saying Tulip

58 doThen IMMEDIATE CorePrims.doNop (--) Run-time code for THEN

http://jmoshowcase.com/cfpage.html

How compiling words work

◦ They’re in the IMMEDIATE vocabulary.

◦ The IMMEDIATE vocabulary becomes available when the colon compiler pushes it onto the vocabulary stack
and its visibility disappears when it’s popped off.

◦ Therefore this vocabulary is always searched first – it won’t be prevented from action by a word in another
vocabulary with the same name.

◦ They’re usually defined in terms of two primitives. The first has a compile-time action, and the second has a run-
time action.

◦ Example:

◦ (1) IF is a primitive defined by compileIf.

◦ (2) It has code to look up the token of 0BRANCH in the dictionary and compile it into the parameter field during
compilation.

◦ (3) 0BRANCH is a primitive defined by do0Branch and branches to the address in the following parameter field
entry if false. If true it just increments the parameter field pointer to the next entry to execute.

Advantages to this approach

◦ Simplicity. The colon compiler can be defined in about 100 lines of code, depending on the base

language,

◦ Eliminates the distinction between state-smart and state-dumb words.

◦ Code reuse. The compiler uses the interpreter to do its business

References

◦ Brodie, Leo. Thinking Forth. Copyright 1984, 1994.

◦ Smith, Norman E. Write Your Own Programming Language Using C++, 2nd Edition. Copyright 1996.

◦ Tracy, Martin, Anderson, Anita, and Advanced Micromotion, Inc. Mastering Forth. Copyright 1989.

◦ Ertl, M. Anton. State-smartness | Why it is Evil and How to Exorcise it

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=AEEBF216C44B392301BCB272B968EB43?doi=10.1.1.36.8771&rep=rep1&type=pdf

Questions?

