
A TALE OF TWO FORTHS
Joseph M. O’Connor

SVFIG Forth Day Presentation

November 16, 2019

Forth background

 First encounter with Forth was with Tom Zimmer’s F-PC.

 I found it useful in my assembly language class to first write code in F-PC

and then translate it.

 Later on, I found Norman Smith’s UNTIL (written in C++) and tinkered around

with it.

 Smith’s UNTIL was a form of Forth that was intended to serve as a DSL

(Domain Specific Language) that sat on top of an existing application

rather than as a standalone Forth.

 This inspired me to write my own version(s) of Forth, which I call Creole Forth.

Some Creole Forth history

 As with UNTIL, the focus has been on a domain-specific language that

could sit on top of a host application, not on a standalone system.

 As of 2019, there are four different versions which have been developed in

four different host environments or languages:

1. Delphi (1999-2003). It also works for the Lazarus environment.

2. Excel. (2016).

3. JavaScript (2018).

4. Python (2019).

 This presentation will be focusing on the JavaScript and Python versions.

Primary moving parts:

 Stacks. Arrays in JavaScript, lists in Python.

 Dictionary. An associative array with key-value properties. In JavaScript
this is naturally built-in – all properties are attached as part of the object
and can be accessed with square brackets [].In Python a dictionary
object is used.

 Reverse dictionary – this is an indexable array or list which contains the
same values as the dictionary but indexed by integer

 GlobalSimpleProps – it’s passed as a parameter to all Creole Forth
primitives, which are just methods attached to empty objects. The objects
are labeled as CorePrims, Interpreter, Compiler, LogicOps, and AppSpec
to organize similar primitives together.

 CreoleForthWords – have name fields, code fields, parameter fields, link
fields, etc.

 CreoleForthBundle – an assemblage of the previous entitites.

The stacks

 Data Stack.

 Return Stack

 Vocabulary stack

 Others *

The dictionary

 Two parts

 Each entry is accessible as a named property in a Creole Forth bundle,

which has a CreoleForthWord as its value.

 The identical CreoleForthWord is stored as an array or list member

accessible by an integer index.

 This setup allows the colon compiler to store integer tokens in the

parameter field which are looked up by the doColon method.

Control structures

 IF-ELSE-THEN

 BEGIN-UNTIL

 DO-LOOP/+LOOP

 For DO-LOOP, I, J, and K are available as built-in indexes.

Other features

 Single-line comments (\ for JavaScript version and // for Python).

 Multi-line comments (--).

 Help. This is used by VLIST.

What they don’t have

 FORGET

 Many return stack primitives, like RDROP.

 COMPILE, [COMPILE], or POSTPONE.

 Recursion

 As many words as most Forths (< 100 right now).

Creole Forth Execution

 Values in the input area are split based on the space delimiter and placed

into the ParsedInput.

 Each value is looked up in the dictionary by the outer interpreter. The outer

interpreter appends each word with a value on the vocabulary stack and

looks it up in the dictionary. The vocabulary stack is searched from top to

bottom.

 If a search succeeds the search process is halted and the word is

executed.

 If it fails, the next vocabulary is searched.

 If no match is found, the value is pushed onto the data stack.

Types of words

 Primitives – These are written in the host language, then introduced with the

BuildPrimitive method. All primitives take a GlobalSimpleProps as a

parameter.

 High-level definitions. Defined by the colon compiler.

 Compiling words. Have separate words for compile-time and run-time

execution and are used for branching and looping.

 Defining words – use CREATE and/or CREATE/DOES>.

Colon compiler

 No state variable

 Compilation starts when the IMMEDIATE vocabulary is pushed onto the

vocabulary stack.

 It ends when a semicolon is encountered. The IMMEDIATE vocabulary is

popped off the vocabulary stack.

 All IMMEDIATE words are in the IMMEDIATE vocabulary, which is always

searched first during compilation.

Colon compiler, Part 2

 From the point of view of the colon compiler, words are in three classes:

1. COMPINPF. Words that are looked up and whose tokens or addresses are

compiled into the parameter field.

2. EXECUTE . Words that are looked up and executed such as compiling words.

3. EXEC0. Words that directly manipulate the pointer of the outer interpreter

such as comments.

Colon compiler, Part 3 – tokens and actions

set up in the PADarea for

: TEST1 IF HELLO ELSE TULIP THEN ;
Word5 Token Acion

IF 52 EXECUTE

HELLO 5 COMPINPF

ELSE 53 EXECUTE

TULIP 6 COMPINPF

THEN 54 EXECUTE

Colon compiler, Part 4

 For words with a COMPINPF or EXECUTE action, the compiler puts its address

in the PADarea next to its associated action.

 Words with an EXEC0 action simply move the outer interpreter pointer past

their closing delimiter.

 Once all the words are looked up and in the PAD area, their tokens are

simply placed on the stack and executed by their associated action by the

outer interpreter.

JavaScript vs Python

 JavaScript OOP is prototyped-based, and classless.

 Python is more conventionally class-based.

 Despite this, the structure of the JavaScript and Python implementations of

Creole Forth are very similar.

 JavaScript’s flexibility allows adding “syntactic sugar” that can resemble

more conventional OOP in other languages.

JavaScript challenges

 Detecting stack underflow. A pop on an “empty” array will blithely return

an undefined item.

 Default array behavior can be overridden by working with Array. Prototype,

but is not recommended.

 Strategy adopted: Have primitives that affect the data stack do their own

stack checking.

Python challenges

 Python is much stricter about type conversions than JavaScript is.

 In the Python implementation only integers and floats can be compiled as

literals, while in the JavaScript version strings can be treated as literals too.

 The above is subject to change.

How to use Creole Forth for JavaScript

 Just reference it in a web page

 <script src="CreoleForth.js"></script> or

 <script src=" https://github.com/tiluser/cfjs/blob/master/CreoleForth.js”></script>

 It does not require a web server

 You can use it with other libraries such as Angular, but it’s not necessary.

https://github.com/tiluser/cfjs/blob/master/CreoleForth.js
https://github.com/tiluser/cfjs/blob/master/CreoleForth.js
https://github.com/tiluser/cfjs/blob/master/CreoleForth.js
https://github.com/tiluser/cfjs/blob/master/CreoleForth.js
https://github.com/tiluser/cfjs/blob/master/CreoleForth.js

How to use Creole Forth for Python

 1. Embedded in Python code:

from CreoleForth import *

gsp.InputArea = “1 2 + .”

cfb1.Modules.Interpreter.doParseInput(gsp)

cfb1.Modules.Interpreter.doOuter(gsp)

 2. Run from a script

Put the Forth commands in a file such as script.f and run the following:

python runcfpyscr.py script.f

Where to get them

 Creole Forth for JavaScript: https://github.com/tiluser/cfjs/

 Creole Forth for Python: https://github.com/tiluser/cfpy/

 If you want to try out Creole Forth for JavaScript online, it’s available at

http://jmoshowcase.com/cfpage.html .

https://github.com/tiluser/cfjs/
https://github.com/tiluser/cfpy/
http://jmoshowcase.com/cfpage.html

Demo for JavaScript

 VLIST

 HELLO

 Arithmetic

 TEST – high level definition

 EVAL

Demo for Python

 python runcfpyscr.py script1.f – executes HELLO primitive

 python runcfpyscr.py scrip21.f – executes VLIST

 python runcfpyscr.py script3.f – conditional execution example

Model-View-Controller Example

 Blocitoff – a student project built with AngularJS.

 It’s a simple to-do organizer,

 Creole Forth is used in two places: the Task service and the Pasttasks

controller.

 Task service uses DTASKSTAT to set incomplete tasks to inactive if a grace

period is exceeded.

 Pasttasks controller has the following definitions

 MRT (-- lctask) Pushes last completed task onto the stack

 SHOW (-- task() Pops up alert box showing task description and time

 MRTS – high level definition combining MRT and show.

Questions?

