
7 Years Later:
Declarative, Inquisitive, then
Imperative

Samuel A. Falvo II <kc5tja@arrl.net>
November, 2017

mailto:kc5tja@arrl.net

Homework! (Optional)
You are asked to watch this presentation by Rich Hickey, the author of Clojure, an
increasingly popular Lisp dialect in Enterprise computing environments.

https://www.infoq.com/presentations/Simple-Made-Easy (~ 1 hour.)

Specifically, pay attention to his distinction between simple and easy, and how he
uses them to gauge modern programming, languages, libraries, et. al.

Chuck Moore once said in a video captured by Jeff Fox at iTV that he cannot say
what Forth is, but he knows what it is when he sees it. This video may help shed
some light on why Forth works so well for us; but, it’s not the whole story.

https://www.infoq.com/presentations/Simple-Made-Easy

Summary of Hickey’s Distinction
Simple
One braid; involving only one concept.

versus

Complex
Many braids; involving many concepts.

Easy
Close at hand, requiring little effort.

versus

Hard
Solid, requiring substantial effort.

Is Forth Simple?
Yes!
Forth cuts out the more advanced concepts
you’ve probably come to expect in modern
languages, allowing you to focus almost
exclusively on your software’s operational
semantics. Concepts you won’t find in Forth
include:

1. Heavy syntax.
2. A long edit, compile, run, cry, debug loop.
3. Packages, versions, and their dependency

hell.

No!
A Forth environment is simpler than Smalltalk;
yet, get even one thing wrong, and the whole
house of cards comes tumbling down and you’ll
never know why. It complects many things that
all absolutely must work right to have a
functional Forth environment:

1. Buffer management (including stacks).
2. Dynamically-scoped variables.
3. Context.

Is Forth Easy?
Yes!
Forth is incredibly easy to use and to write
software in. Learn just a few simple rules in a
day or two, and a motivated programmer can
debug even legacy code. Greater code locality
means improved code comprehension, thanks to
the lack of these things:

1. Heavy syntax.
2. Declared types.
3. Flat global environment.

No!
Some of these harder points of Forth are actually
features, not bugs. Constantly needing @ and ! is
a good reminder you probably need to reduce how
much or how frequently you access state, for
example. Others, not so much, like + vs F+.

1. Typed operators.
2. Global state, not local state.
3. DIY aggregates.

Convention over Configuration
From https://en.wikipedia.org/wiki/Convention_over_configuration

Convention over configuration (also known as coding by convention) is a software design paradigm used by
software frameworks that attempt to decrease the number of decisions that a developer using the framework is
required to make without necessarily losing flexibility.

https://en.wikipedia.org/wiki/Convention_over_configuration
https://en.wikipedia.org/wiki/Design_paradigm
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_developer

Convention over Configuration
Configuration
MODULE Lists;
TYPE
 Node = POINTER TO NodeDesc;
 Node = RECORD
 next: Node;
 datum: INTEGER;
 END

PROCEDURE Insert*(list, node: Node);
VAR n1, n2, n3: Node;
BEGIN

Convention

: next! (an al - an) @ OVER ! ;
: Insert (al an -) OVER next! SWAP ! ;

Simple, but relatively hard. 10 LOC and
still no idea how Insert actually works.
However, the architecture and schema is
made explicit, so that’s good!

Convention over Configuration
Configuration
MODULE Lists;
TYPE
 Node = POINTER TO NodeDesc;
 Node = RECORD
 next: Node;
 datum: INTEGER;
 END

PROCEDURE Insert*(list, node: Node);
VAR n1, n2, n3: Node;
BEGIN

Convention

: next! (an al - an) @ OVER ! ;
: Insert (al an -) OVER next! SWAP ! ;

Just as simple, and far easier to write.

However, you must visualize layout of
nodes in memory to make sense of it.
Complects semantics with architecture,
which is now implicit. Is this any better?

Convention over Configuration
From https://en.wikipedia.org/wiki/Convention_over_configuration

Convention over configuration (also known as coding by convention) is a software design paradigm used by
software frameworks that attempt to decrease the number of decisions that a developer using the framework is
required to make without necessarily losing flexibility.

SO…
How do we use convention to minimize the intellectual cost a Forth programmer has to pay during program design,
while still retaining the benefits of Forth’s simplicity and facility?

https://en.wikipedia.org/wiki/Convention_over_configuration
https://en.wikipedia.org/wiki/Design_paradigm
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_developer

Declarative, Inquisitive, then Imperative!
Convention: use Forth words that fall within the following three categories:

● Strongly prefer writing software declaratively. Tell the computer what you
want, not how.

● If you need to decide what to do based on an external factor, inquire. Ask the
computer a question.

● At some point, you’ll have to impart to the computer how to do something.
Ideally, you want to minimize imperative words as much as you can.

Declarative, Inquisitive, then Imperative
Declarative words establish a truth. These can be broadly broken up into two
categories:

● Preconditions. A word can declare something that must already be true before
continuing execution. If not, the anomaly is handled for you (somehow).

readable undefined -empty
● State transitions. A word can define what end state is to be achieved. Its

implementation is responsible for minimizing the amount of work necessary to
realize this state.

parsed defined reduced

Declarative, Inquisitive, then Imperative
Inquisitive words sense the current state, and answers a question about it. Absence
of intervening declaratives or imperatives implies consistent, repeatable answers.

readable? undefined? -empty? XY@

Imperative words unconditionally takes some action. These are the normal Forth
words you’ve been writing for years.

read insert pop AT-XY

Declarative, Inquisitive, then Imperative

Declarative

Imperative

Inquisitive

Declarative and Inquisitive words build
on top of imperative words. Both kinds
of words are idempotent by design.

Declarative words may also use
inquisitive words, but not vice versa.

Imperative words can do whatever they
want.

Hello World with DItI
Problem statement. We need a virtual character matrix to represent the text
currently shown on the bitmapped screen, and to store characters the user types into
fields on the screen. When the a new input form is shown, the whole display
changes at once; we never scroll. The screen is 80 characters wide, 25 characters
tall.

Write a lexicon to abstract this interface, allowing legacy “block-mode” applications
to use contemporary bitmapped graphics displays.

Hello World with DItI: Screen
80 CONSTANT #cols
25 CONSTANT #rows

#cols #rows * CONSTANT /matrix
CREATE matrix
/matrix ALLOT

VARIABLE X
VARIABLE Y

Hello World with DItI: Cursor
: up -1 Y +! ;

Hmm… This works, until we reach the top of the screen matrix. Then we risk
overwriting memory which belongs to something else.

Hello World with DItI: Cursor
: constrained Y @ 0< IF Y OFF THEN ;
: up -1 Y +! constrained ;

Note how constrained establishes the truth that the cursor position remains valid at all
times. It enforces an invariant.

Declaration Property
Declarations all have this one characteristic in common:

. . . . DECLARATION

Uncertain truth. Certain truth.

Declaration Property
Declarations all have this one characteristic in common:

. . . . DECLARATION DECLARATION

Declarations may have side-effects, but are always idempotent. Establishing the same
truth twice or more is as good as doing so once.

Uncertain truth. Certain truth. Still
Certain truth.

Hello World with DItI: Cursor
: constrained Y @ 0< IF Y OFF THEN Y @ #ROWS >= IF #ROWS 1- Y ! THEN
 X @ 0< IF X OFF THEN X @ #COLS >= IF #COLS 1- X ! THEN ;

: up -1 Y +! constrained ;
: dn 1 Y +! constrained ;
: rt 1 X +! constrained ;
: lf -1 X +! constrained ;
: at-xy Y ! X ! constrained ;

Notice how we handle “errors” (any anomaly to a desired
invariant) locally. No exceptions are thrown, no error flags
are set, nor special sentinel values returned.

It’s not always possible to write code like this; but, do
strongly prefer this approach. The more local the control
flow, the easier it is to understand the code.

Hello World with DItI: Cursor
constrained is an example of a state-transitioning declarative word, which in this case
enforces a post-condition. Can we do the same with pre-conditions as well? Yes; but, in
this particular case, post-conditions were both easier and simpler. Consider:

: -top Y @ 0= IF RDROP THEN ;
: -bottom Y @ #ROWS-1 = IF RDROP THEN ;
: up -top -1 Y +! ;
: dn -bottom 1 Y +! ;

Beware of conditionals of any kind; they’re necessary, but always increase complexity.

Clearly this is the more complex of the two code
fragments: 2* LOC and conditionals and non-local
control flow are required.

Hello World with DItI: Text Output
Drawing text to the screen requires that we both update the character matrix and adjust the
pixels on the screen to match what the matrix says should be there. (Remember, we’re
working with a bitmapped display!)

: point (- a) Y @ #COLS * X @ + matrix + ;
: placed (c -) DUP point C! EMIT ;

This works fine as long as X @ and Y @ reflect the actual console’s cursor position. How
can we enforce this at all times? Post-conditions won’t work nearly as well here.

Hello World with DItI: Text Output
We will now use a declaration to enforce a pre-condition.

: point (- a) Y @ #COLS * X @ + matrix + ;
: positioned X @ Y @ AT-XY ;
: placed (c -) DUP point c! positioned EMIT ;

Hello World with DItI: Keyboard Handling
You’ve already seen declarations and imperatives at work. Let’s take a look at inquisitions
now. But, first, I need to set the stage with more applications of declarations.

: handled (k-) (one of…) cursor enter graphic DROP ;
: run initialized BEGIN KEY handled AGAIN ;

We use declarations to form a multi-way selection. The word handled says that a key can
be one of either a cursor key, the ENTER key, a graphic character, or is ignored.

Hello World with DItI: Keyboard Handling
Note how the very nature of declarations allows us to create hierarchically organized sets
of rules, trivially.

: cursor (k-k) (one of…) up down left right ;
: handled (k-) (one of…) cursor enter graphic DROP ;
: run initialized BEGIN KEY handled AGAIN ;

Here, cursor says that the choices available are up, down, left, right; anything else is
handled by enter, graphic, etc. With this, we can compose fragments of decision trees.

Hello World with DItI: Keyboard Handling
Now we can show how to decide if one of our characters is a cursor movement key.

: up (k-k) DUP CTRL J = IF up THEN ;
: cursor (k-k) (one of…) up down left right ;
: handled (k-) (one of…) cursor enter graphic DROP ;
: run initialized BEGIN KEY handled AGAIN ;

Note that I freely redefine up to mean something relevant in the context of this decision
tree and how I make use of Forth’s hyperstatic global environment to invoke the previous
declaration. Those familiar with OOP will recognize this immediately as inheritance.

Hello World with DItI: Keyboard Handling
However, it would be better if we could eliminate the Forth plumbing and just focus on the
intent of the code. We do that by factoring the question out into an inquisitive word:

: up? (k-kf) DUP CTRL J = ;
: up (k-k) up? IF up THEN ;
: cursor (k-k) (one of…) up down left right ;
: handled (k-) (one of…) cursor enter graphic DROP ;
: run initialized BEGIN KEY handled AGAIN ;

This simple example doesn’t do it justice; however, my time is limited.

Inquisitive Properties
TruthX X?

At this point, we know
that X must be true, so…

X? must answer true.

Inquisitive Properties
TruthX X?X?

At this point, we know
that X must be true, so…

X? must answer true. X? must still answer
true.

Did You Notice?
● Definition size. I used two lines of code to define a word exactly once in this talk.

The overwhelming majority of definitions are exactly one line long.
● Comprehension. Given you are aware of the larger context and project conventions,

you can isolate any individual definition and understand what it does.
● Code Locality. Relevant fragments of code tend to be co-located (or at least

explicitly referenced via INCLUDE or LOAD) within a few LOC or screens of use. This
avoids the massive problem of tracking down important code in larger programs.

● Design By Contract. Routine use of preconditions and postconditions to enforce
invariants and locally handle anomalies naturally leads to more robust software since
you deal with more errors sooner, rather than later.

Kung Fu
Forth is not just a programming language. It is kung fu in the truest
sense of the phrase: skill acquired through hard work and practice.

The rules for Declarative, Inquisitive, then Imperative are not to be taken
too literally. Use them to guide your development and exploration.
Break them when it’s appropriate.

Thank you!

Samuel A. Falvo II <kc5tja@arrl.net>

mailto:kc5tja@arrl.net

