Andreas Bernhard Wagner
. @lowfatcomputing:
h hitp://www.0xFF.in

Forth for general purpose computing?

Forth for M

Forth vs. Unix

« Unix commands are filters
- Function composition. Separate data from code.
- Plays well with others. Ecosystem oriented.
- One-off disposable interactions, but complex code.
- Intended to be general purpose.

« Forth words are abbreviations
- Function juxtaposition. Data is more often inlined.
- One-off disposable code. Interactions take more effort.
- Self-sufficient systems, that is.
- For single-purpose embedded systems.

Forth for unplanned computing:

- random access over problem/solution
- make Forth better at filtering

When someone asks how to parse a
csv file in Forth...

...| say: use the CREATE csv

comma compiler 4, 41 ,
5, 44 ,
o , 47 ,
/7 , 49 ,
8 , 50 ,
9 , 51,

"in Lisp code is data; in Forth data is code." - Sam Falvo

all input/output as runnable forth code

- Welcome string resets ge| FO rth (VO. 1)
* No OK prompt
(use nl character) 23+ .5

 If unrecognized: comma compile it.

* |If partially unrecognized: define
something with it.

If data iIs code, we’d be filtering code.

When someone asks how to parse a
csv file in Forth...

...| say: use the age, height
comma compiler ,41

...they say: my csv , 44
file looks like this: , 47

4

5

§)

...| say: yeah...data 7,49

only comes in words. 8,50
9,51

Sometimes what I need to parse is
heyond my control...

« non-Forthers designed a format.
— (this happens a lot)

« The external natural world (beyond the uC
sensors).

Your insurance calls It:
““The Act of God Policy”

ey ICwsalaumPFIMIT wn
i Act of God Insurnnoes Polioy B

Parsing:
it’s not their fault, but it is my problem

« Comprehension of seismograph output as
part of your forth’s lexicon.

- Earthquake readings are not literals.
 Non-texual sensor readings are data.
Shouldn’t they also be code?

A

P Wave S Wave Surface Wave

e

Ground Movement
e

[-] thamesynne [+4] 6 points 3 months ago® (last edited 3 months ago)
Consider
: =>DIGIT 48 - DUP 9 = IF 7 - THEN ;

Don't worry about the magic numbers; the important thing is the IF .. THEN . Without immediate words, IF and THEN would just
be compiled as normal words... and IF would have to scan ahead for THEN and resume interpretation from that point. Sounds
doable... but then consider:

. IF ... IF ... ELSE ... THEN ... IF ... THEN ... THEN ...

Now IF has to search ahead not only for any old THEN , but for the THEN that matches it - or for an ELSE that matches it - which
means keeping some form of bookkeeping as to which one it's doing. And that bookkeeping has to be re-entrant. That's a lot to do at
runtime, especially in bits of code where performance is likely to be a critical consideration!

However, with immediate words, you can define IF as a word that lays down a conditional branch with a placeholder destination, and
THEN as a word that fills in that destination with its own address. It's a lot easier.

Of course, it's not the only possible approach. If Forth had block structures - so for example, you could write
{10 © DO I . LOOP } EXECUTE

and have the digits appear on your terminal - you could define IF, and other control structures, as combinators, so the above word
would become

: DIGIT 48 - DUP 9 > { 7 - } IF? ;

But that brings up a chicken and egg problem: How do you define { and } withoutimmediate words? With immediate words, it's
easy: { stores the address of the code being compiled, } reirieves that address and shuttles that section of code off to the top of
memory, leaving its address on the stack or compiling it inline. Without immediate words, you're back to scanning the code stream at
runtime for { and } and counting nesting levels.

And then there's the word that's in every definition, but whose function is always forgotten: ; . If you don't have immediate words, this
needs to be specifically searched for by the compiler, in order to stop compilation and return to execution mode. And the compiler needs
to worry about what happens if it runs out of input before seeing a ; - although at least nesting isn't a thing in standard Forth.
However, there's also [, which puts the compiler on hold for a while - so now the compiler is searching for two special characters -
and that set can't be extended without rewriting the compiler. (This is how Lisp REPLs were written before reader macros, incidentally.
Forth's immediate words replace reader macros, rather than fexprs or DEFMACROs... and neatly demonstrate that reader macros,
rather than Lisp macros, are necessary and sufficient for an extensible language.)

So avoiding immediate words leads to an awful lot of special-casing all the way through the entire interpreter structure; it also means that
that interpreter structure ends up unchangeable, and almost certainly can't be defined from within Forth itself. And it takes a lof more
code. Even adding one immediate word eases the load considerably... and once you've added one, why not make a mechanism that
lets you add as many as you like? And suddenly, everything gets much easier.

And just to screw with your mind a bit more: consider that IMMEDIATE is generally not an immediate word - and how that could be put to
use...

permalink source embed save save-RES spam remove report give gold reply hide child comments

Could the idea behind IMMEDIATE words
also dissolve parser complexity?

The Forth code is the user interface.

My keyboard is a user interface...
...But so Is my mouse

Could the mouse write code?

A
P Wave 5 Wave Surface Wave

N ATV

Ground Movement
?

- -
Time

That executes only when we have an earthquake?

pattern matching as the inverse of

functions
1- 1+
swap swap
2/ 2%

(applications in reversible computing)

http://micsymposium.org/mics 2009 proceedin
gs/mics2009 submission 72.pdf

http://micsymposium.org/mics_2009_proceedings/mics2009_submission_72.pdf
http://micsymposium.org/mics_2009_proceedings/mics2009_submission_72.pdf

Put code in place of the ascii string header

one ! and one @
G

@ (match “!”
I (match “@")
$FF <= (match number)
@ (match “@”)
I (match “!”)
$FFFFFFFFF <= (match number)

examples:

“ still finds xt. $FF ‘ (xt for bytes)
$FFFF ‘ (xt for hcells)

headers are typically 2 4" (xtfordouble)
written to be:

non-destructive.

...maybe also the
body?

pattern matching with the dictionary:
mind the (hyperstatic) scoping

e @ awordand ! it BIND + parsing-state
into another to get execution?

its scope. $FF * @ $FFFFFFFF !
* /u/dlyund’s (Mark
Smith’s) idea. (replace 32-bit

semantics with 8-bit
semantics by
manipulating scoping)

Thank you!

Andreas Bernhard Wagner
@lowfatcomputing

fu/dlyund’s BIND word

-] CIENE) < [B8E] [F] 3 peints 1 year ago* (last edited 1 year aga)
I'm not sure how to implement bind in gForth and | want to avoid implementing a new Forth for Linux in order to write another one for
the PSoC. So I'd be interested in any thoughts on how to do this or other questions, comments, and world views.

[recently implemented bind for a more traditional Forth by adding a field that points to body of a definition to the header.

bind can then simply fetch the body from one definition and store in another.
bind word body @ word body ! ;
It's used as follows
bind text.utf8.same same

This approach had second, minor, benefit. Since the body field is placed directly after the link field the address of the body doesn't have
to be computed; when creating the header the body is set to the value of here before exit, and the body of the definition get's compiled
after.

Did you try to implement this yourself? If so I'd be interested in other solutions.

How is gelForth progressing?

permalink source embed unsave spam remove give gold hide child comments

references

http://amforth.sourceforge.net/pr/Recogni
zer-en.pdf

http://micsymposium.org/mics 2009 proc
eedings/mics2009 submission 72.pdf

http://forth.wodni.at/wrongforth
https://hub.darcs.net/pointfree/forth-bind

http://amforth.sourceforge.net/pr/Recognizer-en.pdf
http://amforth.sourceforge.net/pr/Recognizer-en.pdf
http://micsymposium.org/mics_2009_proceedings/mics2009_submission_72.pdf
http://micsymposium.org/mics_2009_proceedings/mics2009_submission_72.pdf
http://forth.wodni.at/wrongforth
https://hub.darcs.net/pointfree/forth-bind

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

