
Creole Forth In-Depth

Joseph M. O'Connor

• A scripting language

• Originally developed in Delphi

• Is now ported to Lazarus

• Exists as a drop-in component inside the Delphi or Lazarus

environment.

What is Creole Forth?

• A RAD IDE

• RAD = Rapid Application Development

• IDE = Integrated Development Environment

• Build apps primarily by dropping components on a form.

• Lives (mostly) on Windows

• Is not open-source

What is Delphi?

• A RAD IDE like Delphi

• Was inspired by Delphi

• Build apps primarily by dropping components onto a form.

• Available on a number of environments besides Windows.

• Write once, compile anywhere.

• Open source

What is Lazarus?

• Delphi is a more mature environment

• Networking more stable / better-documented in Delphi

• Lazarus is free as in free beer

• Lazarus is less Windows-centric than Delphi

• Lazarus as of 2012 is “good enough”

Delphi vs Lazarus

• Simple demo app. Perl interface, DLL, web server.

• Two-way client-server reporting app.

• Multitier spreadsheet handler.

• Safecrosser. For data hiding by travelers.

Example apps using Creole

• Drop the TCreole component onto an application

• Define any primitives needed.

• Call the corresponding BuildPrimitive method

• Define high-level defs and load as needed.

• Call RebuildDefs method in FormCreate method. (Important!)

How to use Creole

• Defining new primitives

• Colon compiler

• Defining words

• Compiling words

• Creating a new compiler – i.e. help compiler

• Prefilter stack

Creole extension mechanisms

• Before code in the input stream is submitted to Creole,

it is 'filtered' through Creole by any words on the prefilter stack.

• All prefilter words are in the prefilter vocabulary

• Currently is used for stripping out comments.

• An entire language could be embedded within.

• Is thus a valid extension mechanism of Creole

Prefilter stack?

• Can be used to enforce integers-only or floating-point only.

• Can therefore enforce a more conventional Forth rule-set.

• Current default value on post-filter stack – NONE.

• NONE lets anything on the stack that isn't in the dictionary.

• Defined in the post-filter vocabulary

Postfilter stack

• Due to its working within a Delphi / Lazarus environment, apps

built will be more “massive” than conventional Forths.

• Possible to get down to about 1 meg on Linux, 600k on Windows.

• No STATE variable. Thanks to Chuck Moore and Jeff Fox

for inspiring this feature.

• Colon compiler starts its process by pushing the IMMEDIATE

vocabulary onto the vocabulary stack.

• Compiling words such as Compile_Do are always searched for first.

• Semicolon terminator halts compilation by popping IMMEDIATE off

the vocab stack.

Creole oddities, Part 1

• Namespacing is enforced via encryption.

• Each word when compiled is encrypted based on which vocabulary

it exists in.

• Outer interpreter lookup mechanism encrypts each word before

lookup based on the vocabularies on the vocabulary stack.

• Each vocabulary on the stack is searched.

Creole oddities, Part 2

• Searching for the word “Hello”

• Creole first searches the ONLY vocab.

• Since it fails, it searches the FORTH vocab.

• The second search is successful and “Hello” in the FORTH

vocabulary is executed.

• Once execution is complete, the search does not proceed further.

ONLY

FORTH

Example of vocabulary search

• Outer interpreter searches by hashing

• Inner interpreter searches by indexing

• “Addresses” are really indexes. Definition 1 is index 0 in the Dictionary.

• Parameter field is an array of indexes

Creole oddities, Part 3

• Dictionary is a TStringList.

•

• TStringlist is an Object Pascal / Free Pascal data type.

• It's a container that can hold anything.

• In this case it holds an (encrypted) name, and a value of

type TCreoleWord.

More Creole Internals

• Creole words have procedures that can be inserted dynamically.

• A primitive would have its own code defined in Pascal in its Code Field.

• A colon def would have DoColon in its Code Field.

More Creole Internals, Part 2

• Define and test primitive procedures.

• These are procedures with two interfaces :

• TExtInterface and TDictInterface.

• Add them to the BuildPrimitive list.

• Create any high-level defs needed.

• High-level defs can be loaded from a text file or

embedded in a Tmemo component.

• Resulting app is composed of a “lexicon” of perhaps

40-50 words on top of the Creole built-in word set.

How I've used Creole (usually)

• Have the primitives defined in their own file.

• Building of primitives must be done separately and should be

handled in application's FormCreate method.

• Networking primitives should be built into the core of

the language (unfortunately, they aren't yet).

Guidelines / Lessons learned

• 5-minute app (Linux)

• Sample app (Linux) – has one user-defined primitive

• Safecrosser (developed for Windows, recompiled in Linux)

Example apps

