X, GreenArrays™

/ . World Leader toward Efficiency

Choreographing Teams of
Fast, Low-Power Computers

GreenArrays® Staff
SVFIG Forth Day
17 November 2012

The Best Known Energy Efficiency in a
Commercially Available Chip.

—@— NXP Coolflux (65nm)

—&— T| MSP430 (65nm)

—4&— Atmel AT8SLP

Atmel AVA

PCH7970

HTC BOC51

Xemics XES8BLCO

EMBG07

Intel Core Duo Yonah (65nm)
Intel Atom (45nm)

Arm Cortex-A9 (65nm)

Arm Cortex MO (80nm)

MIPS 1074K (40nm)
Qualcom SnapDragon (65nm)
Xmos XS1-G4 (65nm)

SPI SP16HP (130nm)

Tilera Gx100 (40nm)
GreenArrays GA144 (180nm)
PicoChip PC203-10 (65nm)
UCB nems adder

ucCB saptl

Skansky adaer

UMich Subliminal

UMich Phoenix

UMich centip3de (150nm)
UMich 1t (65nm)

Stanford ELM (30nm)

Y
v
»
|
*
L
L
*
A
v
>
4

~AvdPpbenoe

Graph courtesy of Per Ljung, Nokia Research

Progress Since Nov 2011

Many evaluation boards and chips shipped
Numerous new documents published
arrayForth® Institute created

polyFORTH® system, running in Fall 2011,
documented and released in Sep 2012

Ethernet NIC implemented in Jan 2012, most of
TCP/IP stack converted in Feb 2012, life testing
underway

Chip design improvements continue

Promising Developments

" Engagement with technologists developing
new manufacturing methods for the “Internet

of Things”
= Excellent study by a major company confirms

the GA144 to be vastly superior to even the
latest TI MSP430 in energy efficiency

" Engagements with several potential customers
who need higher performance at lower power
than is otherwise possible ‘

Problems Encountered

= Slow acceptance of novel hardware
= Lack of funds limits marketing efforts

= |egal harassment by Daniel E. Leckrone has
wasted our time and money

Plans for 2013

= Development roadmap (see website)

" Moving development tools onto the chip —
two approaches, polyFORTH based and
Chuck’s etherForth

= Selective creation of product companies and
funding them (VC, Angel, KickStarter)

Acknowledgments

= App notes created by Peter Milford and Stefan
Mauerhofer

= Advanced programmer interface concepts by
Robert Patten

= Documentation reviews by David Stubbs who
nas also salvaged all of Jeff Fox’s disk drives

Plan for the Afernoon

= Quick review of GreenArrays Architecture

= Short (10 minute), sweet topics with Q&A
encouraged after each topic
— High-level design for several applications
— High-level development and debugging
techniques

= Chuck’s Fireside Chat

For More Information
on GreenArrays

Primary Website

— http://www.greenarraychips.com

arrayForth Institute
— http://school.arrayforth.com

Announcement Blogs

— Business http://www.greenarraychips.com/blogl

— Technical http://www.greenarraychips.com/blog2

Tech Support on e-mail, Skype, Phone

http://www.greenarraychips.com/
http://school.arrayforth.com/
http://www.greenarraychips.com/blog1
http://www.greenarraychips.com/blog2

X, GreenArrays™

/ . World Leader toward Efficiency

F18A Architecture Review

John Rible and Greg Bailey

The Production G144A12 Chip

= 144 F18A computersin
8 rows, 18 columns

= Each talks to its
adjacent neighbors

= 22 edge nodes have
/O pads

Max = 100 GOPS at <1
Watt

" |n production. Sample
kits and chips shipped
for 1 year, quantity.,
ok ' orders welcome -~
4000000000000 R0000NNY Vo i

N

e W & 3 " "
E
. 00008
%
SN \

........................

: 5 3 r 3 — | o 1 . » R <
_ S8B0000000P
|

F18A Technology

Easily configured arrays of computers and 1/0

Each 18-bit asynchronous computer is self
contained

— RAM, ROM and registers in a single address space
nstant suspension/resumption per computer
High performance (=666 MIPS/node)

Low energy per unit work (=7 pl/instruction)

— No power or energy cost per MIP, only per unit work;
typically low duty cycle

Multilevel programming

F18A Computer

Cartmode hac it . " 241 pm x 523 um in
A NOe Nas 15 0w, ,:"f 180nm CMOS process

RAN and RO ¢ = Dual stack architecture
N 0= = 8-element circular stacks

Iﬂﬂﬂll!lﬂ"“::“““rl = Archtypical Forth ALU
ke . || = 5specialized registers

!' 3" .1l = Memory balanced for

IAELEEECEE speed and power

‘ = Up to5comm ports

~ = Qptional I/O

Coordinating Computers

= Fast, simple, synchronized comm ports
— Passing instructions and/or data bidirectionally
— Transparent handshaking

e Automatic suspension with no races

— Port execution

e Simple protocols — use instructions, not codes

— Multiport operations

* Up to five other computers when rules are followed, -

* Multiplexing / demultiplexing data streams

Managing /0

= Software-defined pin behavior

— GPIO Pins: Fine control, reads actual pin state
* Nodes may have up to four pins

— Bidirectional parallel buses
— Analog I/0O

" High speed SERDES (~600 Mbit)

For More Information
on Architecture and Chips

= Documentation on website
— DBO0OO1: F18A Technology Reference
— DB002: G144A12 Chip Reference

= arrayForth Institute
— PROGO0100: F18A Architecture and Instruction Set
— PROGO0200: F18A Programming Techniques

(course not released yet)

X, GreenArrays™

/ . World Leader toward Efficiency

Multilevel Programming

Greg Bailey

Three Basic Methods

Microcode: Application modules consisting of
native F18 code residing in one (or more)
computers.

Streamed port execution of larger programs
fed by a memory resource

Virtual machines running from external
memory, implemented by a team of
computers

Code Generation

= Applicable to any of the three basic
programming methods
— Hand-crafted software

— Semiautomatic programming
* Interactive synthesis: Analog block diagrams
e Automatic programming: Ras Bodik and colleagues

Today’s Emphasis

" Organizing teams of computers

= Using high level tools like polyFORTH for
debugging and managing of such teams

Previously we have concentrated on the
fine details of F18 programming...

Today we take a macroscopic view of
creating applications

For More Information
on Programming Methods

= Documentation on website
— DBO0O04: arrayForth User’s Manual
— DBOO05: polyFORTH Reference Manual
— DBOO06: polyFORTH Supplement for G144A12
— Paper on Boot Protocols
— Paper on Getting Started with eForth

X, GreenArrays™

/ . World Leader toward Efficiency

A Team to Control an SRAM

John Rible and Greg Bailey

Goals for This Particular Model

Enabling external memory access

Support for multiple masters

Not specialized ... random access sequences
Not fully optimized

Four Nodes, Three Clients

SRAM master service
T

—_—

Flows within cluster - T h re e WO r ke r n O d e S

—_—

ol P dictated by chip geography
" |nterface extended to node
107 to facilitate large teams

®» Tradeoffs — more clients
increase latency

4 lines &
2 addr

y
/ s
~, 'l yi
= == VA //
N & W V4
o . R yod \\“-\/
= WE- < G S Y
NN S
\‘ N~ y 4 N
y I~ \\ 7 N Vi
V' 4 S /// S
VA ¢
s y. PN y
External SRAM chi A /
AN £/ N /
™
N

Functions

" Arbitrates between up to three clients and
provides five atomic functions:

Words Received

R;epl:; Function Performed

Compare-and-exchange. Write w to
SRAM iff current value = n
Return xOFFFF if stored or 0 if not.

mk! Set master enable mask

mk! Post stimuli for master(s)

For More Information
on External RAM Control

= Documentation on website
— ANOO3: SRAM Control Cluster Mark 1

= Source code
— arrayForth 2a blocks [270..280] SRAM

— arrayForth 2a blocks [1320..1328] Partial ROM
support for SDRAM

X, GreenArrays™

/ . World Leader toward Efficiency

A Team to Implement
a Virtual Computer

John Rible and Greg Bailey

eForth/polyFORTH VM

200
exd

term
Rx

104

ed Stack
term b = (SRAM
cil client)

By

Basic || pFVM

Flows within VM CFLU o SRAM dlientsenvice

Flows for lagacy — s Flows within SRAM
tarminal interface - control cluster

polyFORTH Virtual Machine for GA144-1.2

Choreography

= Stack node responsible for data stack,

memory access and operations predominantly
using the data stack.

" Bitsy node responsible for return stack,
instruction stream fetch and decode, and ops
predominantly related to these things.

= Neighbor “buds” available for expansion or
application specific instructions.

Instruction Set

3 Y 3
n High Level Execution token (external RAM address) Call pFVM code in low external RAM
Call F18 definition in Bitsy node 105

Call F18 definition in node 205 through
up port of bitsy node

F18 RAM/ROM/Port address Call F18 defn in node 005 down bitsy

Call F18 definition in Stack node 106
Call F18 defn in node 206 up stack

Call F18 defn in node 006 down stack :

For More Information
on These Virtual Machines

= Documentation on website
— DB006: polyFORTH Supplement for G144A12

= Source code

— arrayFORTH 2a blocks [360..478] for pF VM
— arrayFORTH 2a blocks [1080..1198] for eF VM

X GreenArrays™

/ . World Leader toward Efficiency

The Snorkel:
A Programmable DMA Channel

Greg Bailey

Goals for the Snorkel

SRAM master service
T

Flows within cluster
g

Extamal Flows

External SRAM chip

Move arbitrary 16- or 18-bit data
beween external SRAM and one
of Snorkel’s ports

Independently execute a simple
program from SRAM

Started by stimulus from another
master

Gets program start address from
an agreed SRAM cell

Implements streamed port
execution programming method

Snorkel Program Structure

e D 0 A Y L =

Opcode: Addr of F18 routine

Address of port to use (occurs once)
followed by one or more 5-cell
instructions as follow:

Opcode: Address of F18 routine

016: Send 16-bit data

i16: Receive 16-bit data

018: Send 18-bit data

i18: Receive 18-bit data

fin: Stimulate a selected master, stop
and await new program

18-bit transfer size (words thru port)

20-bit SRAM address for transfer

For More Information
on the Snorkel Mark 1

= Documentation on website
— ANO10: Not yet published.

= Source code
— arrayFORTH 2a block [408]
— polyFORTH 2a blocks [96, 28]

X, GreenArrays™

/ . World Leader toward Efficiency

A Surface of Ganglia:
Dynamic Message Routing

Greg Bailey

Problem Statement

Route messages between arbitrary nodes

Each message is a simple exchange between
SRAM and a given port of a given node

— Deliver x-word payload, receive y-word reply
Employ unoccupied nodes for routing
Path exists only during exchange

Support long (262k-word) messages
— Any combination of code and/or data

Chosen Solution

= Define a frame whose header holds source
routing, updated as the frame moves
incrementally between nodes

" Program each node by default with the ganglion
program that interprets header and
— Updates header and moves frame to next node

— or delivers payload and receives reply back down
same path

= Resulting surface of ganglia can connect any two
ports if a path is possible

Ganglion Frame Structure

3 2 5 X Y Y
Focusing call (updated for each port crossing) Included in payload delivery

call to pump routine in ganglia Header

- Focusing call and encoded path
updated at each step

reply count, Y-1 - Header stripped when delivering

payload at destination

Encoded path remaining (list of direction/distance)

payload count, X-1

Sent with outbound frame and
Payload (X words) delivered after focusing call at
destination

Transferred from destination back to
Reply (¥ words) originator

" Path encoding will be upgraded for versatility -

N
N4
AN
LS NN
4 N

Procedure for Use

" Build snorkel program that transmits frame
and receives reply

= Build frame and execute program

= Snorkel program may assemble (gather) frame
from components and may disassemble
(scatter) reply as desired

For More Information
on Mark 1 Ganglia

= Documentation on website
— Mark 1 will be obsoleted, probably by 2b.
— ANO11: Mark 2 Ganglia, not yet published.

= Source code
— arrayFORTH 2a blocks [404..406]
— polyFORTH 2a blocks [97, 28]

X, GreenArrays™

/ . World Leader toward Efficiency

Implementing polyFORTH
on a Virtual Computer

Greg Bailey

Motivation

= Automated Test Equipment (ATE) testing of a
chip with 144 computers

= Develop and test software on chip without
dependency on a host computer

" Cross-develop into target chips with very high
speed and the ability to generate test stimuli
and probe responses at low cost

Chosen Solution

= Port polyFORTH to a VM running on chip
— Thanks to FORTH, Inc. for its kind permissions
— Well-documented, robust development system
— Suitable for any application
— Target compiler and full source provided

= Best tradeoffs for versatile 16-bit model
— Very similar to our system for original Novix chip
— Will be able to compile and debug F18 code .

polyFORTH Memory Model

Extended
- --__I_‘_-—_-_-_'_‘—l—u_._‘__
+— Callable VM code, TERMINAL task dictionaries

+— Executable VM code, BACKGROUND dictionaries

X@ X! XDUMP
32 kwords | 32 kwords 960 kwords

Resulting System

= Solid development platform

" Performance governed by memory access time
and choice of “instruction set”
— True of any VM, note benefits of dual stack arch

— Result on the order of DEC 11/73 or VAX 780 at cost of
about 5 mA when polling nodes eliminated

= VM may be extended with application specific
instructions

= Plenty of room for enhancement with VM
instructions and improved memory subsystem

For More Information
on G144A12 polyFORTH

= Documentation on website
— DBOO05: polyFORTH Reference Manual
— DBOO06: polyFORTH Supplement for G144A12

= Source code
— arrayFORTH 2a blocks [360..478] Virtual Machine

— polyFORTH 2a full system and utilities
* blocks [51..59] Target Compiler
* blocks [60..119] Nucleus Source

X GreenArrays™

/ . World Leader toward Efficiency

Memory Mastering /0
for polyFORTH

Greg Bailey

Trivial 1/O to Manipulate Pins

= Use Simple Ganglion frames to set io register
using port execution, no RAM code required in
the nodes owning the pins

= Examples are:
— Setting pin 600.17 to select SPI devices
— Resetting target chip using pin 500.17

Ad Hoc Fetch/Store

R@(da) Rl (a—d) Rl@ (da—d) inany
listening node

Memory, ports, 10 register
Used for simple I/O exploration, see app notes
Operational use when speed unimportant

SPI Flash and MMC

" Bus support code in node 705 specific to
device protocol type (protocols very different)

®= Macro operations defined by streaming port
execution using ganglion frames

= When switching devices drop new code into
node 705 using a ganglion frame

Other Bus Masters

= |deal I/O for this sort of implementation uses
shared memory structures and stimuli

" Present chips require a polling node whenever
sources are combined

= |esson Learned
— Future chips will poll at very low power

— “Warp” ports, for more flexibility in floor plannlng,
are probably worth their cost N

For More Information
on I/O Using Snorkel & Ganglia

= Documentation on website
— DBOO06: polyFORTH Supplement for G144A12

= Source code
— arrayFORTH 2a blocks [410..412, 774..776]

— polyFORTH 2a blocks [98..101] SPI mass storage
* blocks [31..32, 121..122] external frequency refs
* block [142] ad hoc memory/register fetch/store

X, GreenArrays™

/ . World Leader toward Efficiency

Using polyFORTH to Explore
a 3-Axis Accelerometer

Peter Milford

For More Information
on This Exercise

= Documentation on website
— ANOOS8: Exploring a 3-Axis Accelerometer

= arrayForth Institute
— APP0100: Application Notes

= Source code
— polyFORTH 2a block [142]

X GreenArrays™

/ . World Leader toward Efficiency

Using polyFORTH to Develop a
Software-Defined Interface

Stefan Mauerhofer

presented by Greg Bailey

Talking with an AT Keyboard

P = 5V open-collector bi-
< directional interface

= Select a suitable level
shifter chip

= Take 5V supply from
convenient USB
interface on EVB0O01
Evaluation Board .~

Hardware Prototype

Used arrayForth IDE to Explore

= With a scope attached to 10 pins 317.17 and
217.17 the keyboard can be exercised and its
behavior observed

= ArrayForth code is written and tested to allow
reading and writing of the keyboard using
nodes 316 and 216 as buffers

= Simple testing is performed “by hand”

ﬂﬂﬂﬂﬂﬂ
,,,,,,
/////////

Higher Level Testing with polyFORTH

Snorkel/Ganglia path to buffer nodes

Read and write buffers using ganglia words R!
and R!@ with paths to nodes 315 and 215

Build up and test a higher level interface using
keycode tables and meta keys

Use a polyFORTH background task to control
the keyboard

Replace serial terminal ‘KEY vector with the ‘‘‘‘‘‘‘‘
attached PS/2 keyboard

For More Information
on the AT Keyboard Project

= Documentation on website
— ANOO09: Attaching a PS/2 Keyboard

= Source code
— polyFORTH 2a block [142]

X GreenArrays™

/ . World Leader toward Efficiency

Using polyFORTH to Test
and Validate an MD5 Team

Charley Shattuck

Node Diagram of MD5 Module

208
MO5 MO 5
Interface

. MD5 (an) <MD5 >MD5 MD5>
REPORT ;

polyFORTH code is factored into three
snorkel/ganglia transactions plus REPORT.

<MD?5 gets the module started
>MD5 feeds a string of bytes to the module

MD5> stops the module and reads back the
message digest

REPORT displays the message digest in a
standard format

ﬂﬂﬂﬂﬂﬂ
,,,,,,
/////////

Timing Test Results

@& zZ\home\charley\Desktop\arrayForths\md5\pF\sF01b-1.exe

ok
0 0 MD5
d41d8cd98T00b204e9800998ec f8427e ok
a TEST
a
301.0
0ccl75b9c0flb6a831c399e269772661 ok
abc TEST
abc
301.1
900150983cd24fb0d6963f7d28e17f72 ok
md TEST
message digest
302.6
f96b697d7cb7938d525a2131aafl61d0 ok
abc.. TEST
abcdefghijklmnopgrstuvwxyz
304.0
c3fcd3d76192e4007dfb496ccab7el3b ok
MILLION 899862.0
fd482807dd4e495722d54a39150b5alf ok
FASTER MILLION 809948.0
e491c46c962e2c24f0e71cbb0987a616

Timing Test

Hashes 1 million bytes in : 900 ms
With virtual CPU turned off : 810 ms
386DX25 : 1303 ms

386DX40 :776.5 ms

386 code was generated inline by assembler
macros, no loops, no conditionals, VERY FAST!

See 386 source in arrayForth terminal
emulator blocks 156 through 161

ﬂﬂﬂﬂﬂﬂ
,,,,,,
/////////

For More Information
on Testing the MD5 Hash

= Documentation on website

— ANOO1: An Implementation of the MD5 Hash
(Updated version not published yet)

X, GreenArrays™

/ . World Leader toward Efficiency

Choreographing a Memory
Mastering Ethernet NIC

Greg Bailey

Problem Statement

= Support Ethernet for all good reasons
— Direct communication with rest of world
— |IP transport without writing host drivers
= Existing NICs expensive to use
— Price of silicon and support chips (flash)

— Cost of interface (typically a PCl bus)

= Prove practicality of high speed bit-banged
communications complying with standards

/ N p/
e /7
A) N
y

Shared Memory Structure

Content

Command to TX pipeline, zero when taken.

A next descr to process, = t.rx if none

A next descr to be filled by RX, = t.ep if none RX Descriptor Pool

A next empty descriptor for freed buffer

Latest Link Status Word

32-bit count of packets dropped for no buffers

A USER AREA TO AWAKEN for TX/RX completions

Value of WAKE to store into user areas

20-bit TX buffer address

Length of TX buffer in octets; negative to force link down; 0 when done

Poll period for commands

AN USER AREA TO AWAKEN for timer prodding

RX Descriptor table: +0 20-bit store address;
+2 N Buffer Structure; +3 Unused.

10
MHz
0SC

i

317
fram- Tx pi

: = o
code

il

217
active

pull
down

B

110 112 114

Nexus pack

il

010 011 012 013 014
RX - byte = pack = CRC _buund

con- swap frame
trol

10 Mbit Full Duplex Ethernet NIC

Building TCP/IP Stack

= Port well tested ATHENA stack for polyFORTH
on 32-bit machines to 16-bit environment

— Extended memory functions optimized for simple
code

— Locating code and structures in upper memory,
and buffers in extended memory, to minimize
footprint on low memory

For More Information
on Ethernet NIC

= Documentation on website
— ANOO7: A Bit-banged 10baset NIC
— DB008: polyFORTH TCP/IP Package
(neither is yet published)
= Source code
— arrayFORTH 2a blocks [720..778] Working NIC

— polyFORTH 2a blocks [540..840[TCP/IP package
(partially converted, working)

X, GreenArrays™

/ . World Leader toward Efficiency

Thank Youl!

For more information, please visit

http://www.greenarraychips.com

http://www.greenarraychips.com/

