
GreenArrays™
World Leader toward Efficiency

Choreographing Teams of
Fast, Low-Power Computers

GreenArrays® Staff
SVFIG Forth Day

17 November 2012

The Best Known Energy Efficiency in a
Commercially Available Chip.

GA144

Graph courtesy of Per Ljung, Nokia Research

Progress Since Nov 2011

 Many evaluation boards and chips shipped

 Numerous new documents published

 arrayForth® Institute created

 polyFORTH® system, running in Fall 2011,
documented and released in Sep 2012

 Ethernet NIC implemented in Jan 2012, most of
TCP/IP stack converted in Feb 2012, life testing
underway

 Chip design improvements continue

Promising Developments

 Engagement with technologists developing
new manufacturing methods for the “Internet
of Things”

 Excellent study by a major company confirms
the GA144 to be vastly superior to even the
latest TI MSP430 in energy efficiency

 Engagements with several potential customers
who need higher performance at lower power
than is otherwise possible

Problems Encountered

 Slow acceptance of novel hardware

 Lack of funds limits marketing efforts

 Legal harassment by Daniel E. Leckrone has
wasted our time and money

Plans for 2013

 Development roadmap (see website)

 Moving development tools onto the chip –
two approaches, polyFORTH based and
Chuck’s etherForth

 Selective creation of product companies and
funding them (VC, Angel, KickStarter)

Acknowledgments

 App notes created by Peter Milford and Stefan
Mauerhofer

 Advanced programmer interface concepts by
Robert Patten

 Documentation reviews by David Stubbs who
has also salvaged all of Jeff Fox’s disk drives

Plan for the Afernoon

 Quick review of GreenArrays Architecture

 Short (10 minute), sweet topics with Q&A
encouraged after each topic

– High-level design for several applications

– High-level development and debugging
techniques

 Chuck’s Fireside Chat

For More Information
on GreenArrays

 Primary Website

– http://www.greenarraychips.com

 arrayForth Institute

– http://school.arrayforth.com

 Announcement Blogs

– Business http://www.greenarraychips.com/blog1

– Technical http://www.greenarraychips.com/blog2

 Tech Support on e-mail, Skype, Phone

http://www.greenarraychips.com/
http://school.arrayforth.com/
http://www.greenarraychips.com/blog1
http://www.greenarraychips.com/blog2

GreenArrays™
World Leader toward Efficiency

F18A Architecture Review

John Rible and Greg Bailey

The Production G144A12 Chip

 144 F18A computers in
8 rows, 18 columns

 Each talks to its
adjacent neighbors

 22 edge nodes have
I/O pads

 Max ≈ 100 GOPS at <1
Watt

 In production. Sample
kits and chips shipped
for 1 year, quantity
orders welcome

F18A Technology

 Easily configured arrays of computers and I/O
 Each 18-bit asynchronous computer is self

contained
– RAM, ROM and registers in a single address space

 Instant suspension/resumption per computer
 High performance (≈666 MIPS/node)
 Low energy per unit work (≈7 pJ/instruction)

– No power or energy cost per MIP, only per unit work;
typically low duty cycle

 Multilevel programming

F18A Computer

 241 μm x 523 μm in
180nm CMOS process

 Dual stack architecture

 8-element circular stacks

 Archtypical Forth ALU

 5 specialized registers

 Memory balanced for
speed and power

 Up to 5 comm ports

 Optional I/O

Coordinating Computers

 Fast, simple, synchronized comm ports

– Passing instructions and/or data bidirectionally

– Transparent handshaking

• Automatic suspension with no races

– Port execution

• Simple protocols – use instructions, not codes

– Multiport operations

• Up to five other computers when rules are followed

• Multiplexing / demultiplexing data streams

Managing I/O

 Software-defined pin behavior

– GPIO Pins: Fine control, reads actual pin state

• Nodes may have up to four pins

– Bidirectional parallel buses

– Analog I/O

 High speed SERDES (~600 Mbit)

For More Information
on Architecture and Chips

 Documentation on website

– DB001: F18A Technology Reference

– DB002: G144A12 Chip Reference

 arrayForth Institute

– PROG0100: F18A Architecture and Instruction Set

– PROG0200: F18A Programming Techniques

(course not released yet)

GreenArrays™
World Leader toward Efficiency

Multilevel Programming

Greg Bailey

Three Basic Methods

 Microcode: Application modules consisting of
native F18 code residing in one (or more)
computers.

 Streamed port execution of larger programs
fed by a memory resource

 Virtual machines running from external
memory, implemented by a team of
computers

Code Generation

 Applicable to any of the three basic
programming methods

– Hand-crafted software

– Semiautomatic programming

• Interactive synthesis: Analog block diagrams

• Automatic programming: Ras Bodik and colleagues

Today’s Emphasis

 Organizing teams of computers

 Using high level tools like polyFORTH for
debugging and managing of such teams

 Previously we have concentrated on the
 fine details of F18 programming...

 Today we take a macroscopic view of
 creating applications

For More Information
on Programming Methods

 Documentation on website

– DB004: arrayForth User’s Manual

– DB005: polyFORTH Reference Manual

– DB006: polyFORTH Supplement for G144A12

– Paper on Boot Protocols

– Paper on Getting Started with eForth

GreenArrays™
World Leader toward Efficiency

A Team to Control an SRAM

John Rible and Greg Bailey

Goals for This Particular Model

 Enabling external memory access

 Support for multiple masters

 Not specialized ... random access sequences

 Not fully optimized

Four Nodes, Three Clients

 Three worker nodes
dictated by chip geography

 Interface extended to node
107 to facilitate large teams

 Tradeoffs – more clients
increase latency

Functions

 Arbitrates between up to three clients and
provides five atomic functions:

 Words Received Reply
Sent

Function Performed
1st 2nd 3rd 4th

+p4 +a16 --- --- w16 e@ Read a word from SRAM at p:a

-p4 -a16 w16 --- --- e! Write a word into SRAM at p:a

-n16 +p4 a16 w16 f16
Compare-and-exchange. Write w to
SRAM iff current value = n
Return x0FFFF if stored or 0 if not.

+x -0 m16 --- --- mk! Set master enable mask

+x -1 m16 --- --- mk! Post stimuli for master(s)

For More Information
on External RAM Control

 Documentation on website

– AN003: SRAM Control Cluster Mark 1

 Source code

– arrayForth 2a blocks [270..280] SRAM

– arrayForth 2a blocks [1320..1328] Partial ROM
support for SDRAM

GreenArrays™
World Leader toward Efficiency

A Team to Implement
a Virtual Computer

John Rible and Greg Bailey

eForth/polyFORTH VM

Choreography

 Stack node responsible for data stack,
memory access and operations predominantly
using the data stack.

 Bitsy node responsible for return stack,
instruction stream fetch and decode, and ops
predominantly related to these things.

 Neighbor “buds” available for expansion or
application specific instructions.

Instruction Set

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

0 High Level Execution token (external RAM address) Call pFVM code in low external RAM

1 1 0 0

00 ea F18 RAM/ROM/Port address

Call F18 definition in Bitsy node 105

1 1 1 0
Call F18 definition in node 205 through
up port of bitsy node

1 1 1 1 Call F18 defn in node 005 down bitsy

1 0 0 0 Call F18 definition in Stack node 106

1 0 1 0 Call F18 defn in node 206 up stack

1 0 1 1 Call F18 defn in node 006 down stack

For More Information
on These Virtual Machines

 Documentation on website

– DB006: polyFORTH Supplement for G144A12

 Source code

– arrayFORTH 2a blocks [360..478] for pF VM

– arrayFORTH 2a blocks [1080..1198] for eF VM

GreenArrays™
World Leader toward Efficiency

The Snorkel:
A Programmable DMA Channel

Greg Bailey

Goals for the Snorkel

 Move arbitrary 16- or 18-bit data
beween external SRAM and one
of Snorkel’s ports

 Independently execute a simple
program from SRAM

 Started by stimulus from another
master

 Gets program start address from
an agreed SRAM cell

 Implements streamed port
execution programming method

Snorkel Program Structure

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

0 hi Address of port to use (occurs once)
followed by one or more 5-cell
instructions as follow: low

0 Opcode: Addr of F18 routine

Opcode: Address of F18 routine
o16: Send 16-bit data
i16: Receive 16-bit data
o18: Send 18-bit data
i18: Receive 18-bit data
fin: Stimulate a selected master, stop
and await new program

0 hi
18-bit transfer size (words thru port)

low

0 hi
20-bit SRAM address for transfer

low

For More Information
on the Snorkel Mark 1

 Documentation on website

– AN010: Not yet published.

 Source code

– arrayFORTH 2a block [408]

– polyFORTH 2a blocks [96, 28]

GreenArrays™
World Leader toward Efficiency

A Surface of Ganglia:
Dynamic Message Routing

Greg Bailey

Problem Statement

 Route messages between arbitrary nodes

 Each message is a simple exchange between
SRAM and a given port of a given node

– Deliver x-word payload, receive y-word reply

 Employ unoccupied nodes for routing

 Path exists only during exchange

 Support long (262k-word) messages

– Any combination of code and/or data

Chosen Solution

 Define a frame whose header holds source
routing, updated as the frame moves
incrementally between nodes

 Program each node by default with the ganglion
program that interprets header and
– Updates header and moves frame to next node

– or delivers payload and receives reply back down
same path

 Resulting surface of ganglia can connect any two
ports if a path is possible

Ganglion Frame Structure

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Focusing call (updated for each port crossing) Included in payload delivery

call to pump routine in ganglia Header
- Focusing call and encoded path

updated at each step
- Header stripped when delivering

payload at destination

Encoded path remaining (list of direction/distance)

reply count, Y-1

payload count, X-1

Payload (X words)
Sent with outbound frame and
delivered after focusing call at
destination

Reply (Y words)
Transferred from destination back to
originator

 Path encoding will be upgraded for versatility

Procedure for Use

 Build snorkel program that transmits frame
and receives reply

 Build frame and execute program

 Snorkel program may assemble (gather) frame
from components and may disassemble
(scatter) reply as desired

For More Information
on Mark 1 Ganglia

 Documentation on website

– Mark 1 will be obsoleted, probably by 2b.

– AN011: Mark 2 Ganglia, not yet published.

 Source code

– arrayFORTH 2a blocks [404..406]

– polyFORTH 2a blocks [97, 28]

GreenArrays™
World Leader toward Efficiency

Implementing polyFORTH
on a Virtual Computer

Greg Bailey

Motivation

 Automated Test Equipment (ATE) testing of a
chip with 144 computers

 Develop and test software on chip without
dependency on a host computer

 Cross-develop into target chips with very high
speed and the ability to generate test stimuli
and probe responses at low cost

Chosen Solution

 Port polyFORTH to a VM running on chip

– Thanks to FORTH, Inc. for its kind permissions

– Well-documented, robust development system

– Suitable for any application

– Target compiler and full source provided

 Best tradeoffs for versatile 16-bit model

– Very similar to our system for original Novix chip

– Will be able to compile and debug F18 code

polyFORTH Memory Model

Resulting System

 Solid development platform

 Performance governed by memory access time
and choice of “instruction set”
– True of any VM, note benefits of dual stack arch

– Result on the order of DEC 11/73 or VAX 780 at cost of
about 5 mA when polling nodes eliminated

 VM may be extended with application specific
instructions

 Plenty of room for enhancement with VM
instructions and improved memory subsystem

For More Information
on G144A12 polyFORTH

 Documentation on website

– DB005: polyFORTH Reference Manual

– DB006: polyFORTH Supplement for G144A12

 Source code

– arrayFORTH 2a blocks [360..478] Virtual Machine

– polyFORTH 2a full system and utilities

• blocks [51..59] Target Compiler

• blocks [60..119] Nucleus Source

GreenArrays™
World Leader toward Efficiency

Memory Mastering I/O
for polyFORTH

Greg Bailey

Trivial I/O to Manipulate Pins

 Use Simple Ganglion frames to set io register
using port execution, no RAM code required in
the nodes owning the pins

 Examples are:

– Setting pin 600.17 to select SPI devices

– Resetting target chip using pin 500.17

Ad Hoc Fetch/Store

 R@ (d a) R! (a – d) R!@ (d a – d) in any
listening node

 Memory, ports, io register

 Used for simple I/O exploration, see app notes

 Operational use when speed unimportant

SPI Flash and MMC

 Bus support code in node 705 specific to
device protocol type (protocols very different)

 Macro operations defined by streaming port
execution using ganglion frames

 When switching devices drop new code into
node 705 using a ganglion frame

Other Bus Masters

 Ideal I/O for this sort of implementation uses
shared memory structures and stimuli

 Present chips require a polling node whenever
sources are combined

 Lesson Learned

– Future chips will poll at very low power

– “Warp” ports, for more flexibility in floor planning,
are probably worth their cost

For More Information
on I/O Using Snorkel & Ganglia

 Documentation on website

– DB006: polyFORTH Supplement for G144A12

 Source code

– arrayFORTH 2a blocks [410..412, 774..776]

– polyFORTH 2a blocks [98..101] SPI mass storage

• blocks [31..32, 121..122] external frequency refs

• block [142] ad hoc memory/register fetch/store

GreenArrays™
World Leader toward Efficiency

Using polyFORTH to Explore
a 3-Axis Accelerometer

Peter Milford

For More Information
on This Exercise

 Documentation on website

– AN008: Exploring a 3-Axis Accelerometer

 arrayForth Institute

– APP0100: Application Notes

 Source code

– polyFORTH 2a block [142]

GreenArrays™
World Leader toward Efficiency

Using polyFORTH to Develop a
Software-Defined Interface

Stefan Mauerhofer

presented by Greg Bailey

Talking with an AT Keyboard

PS/2 (female)

12

34

56

+5

clock

data

+1.8

100 nF

1

2

3

4

5

6

7

8

J21

617.ao

617.ai

517.17

417.17

317.17

217.17

117.ao

117.ai

100 nF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

T
X

S
0

1
0

8
E

A1

VCCA

A2

A3

A4

A5

A6

A7

A8

OE

B1

VCCB

B2

B3

B4

B5

B6

B7

B8

GND

 5V open-collector bi-
directional interface

 Select a suitable level
shifter chip

 Take 5V supply from
convenient USB
interface on EVB001
Evaluation Board

 Hardware Prototype



Used arrayForth IDE to Explore

 With a scope attached to IO pins 317.17 and
217.17 the keyboard can be exercised and its
behavior observed

 ArrayForth code is written and tested to allow
reading and writing of the keyboard using
nodes 316 and 216 as buffers

 Simple testing is performed “by hand”

Higher Level Testing with polyFORTH

 Snorkel/Ganglia path to buffer nodes

 Read and write buffers using ganglia words R!
and R!@ with paths to nodes 315 and 215

 Build up and test a higher level interface using
keycode tables and meta keys

 Use a polyFORTH background task to control
the keyboard

 Replace serial terminal ‘KEY vector with the
attached PS/2 keyboard

For More Information
on the AT Keyboard Project

 Documentation on website

– AN009: Attaching a PS/2 Keyboard

 Source code

– polyFORTH 2a block [142]

GreenArrays™
World Leader toward Efficiency

Using polyFORTH to Test
and Validate an MD5 Team

Charley Shattuck

Node Diagram of MD5 Module

: MD5 (a n) <MD5 >MD5 MD5>
REPORT ;

 polyFORTH code is factored into three
snorkel/ganglia transactions plus REPORT.

 <MD5 gets the module started

 >MD5 feeds a string of bytes to the module

 MD5> stops the module and reads back the
message digest

 REPORT displays the message digest in a
standard format

Timing Test Results

Timing Test

 Hashes 1 million bytes in : 900 ms

 With virtual CPU turned off : 810 ms

 386DX25 : 1303 ms

 386DX40 : 776.5 ms

 386 code was generated inline by assembler
macros, no loops, no conditionals, VERY FAST!

 See 386 source in arrayForth terminal
emulator blocks 156 through 161

For More Information
on Testing the MD5 Hash

 Documentation on website

– AN001: An Implementation of the MD5 Hash

(Updated version not published yet)

GreenArrays™
World Leader toward Efficiency

Choreographing a Memory
Mastering Ethernet NIC

Greg Bailey

Problem Statement

 Support Ethernet for all good reasons

– Direct communication with rest of world

– IP transport without writing host drivers

 Existing NICs expensive to use

– Price of silicon and support chips (flash)

– Cost of interface (typically a PCI bus)

 Prove practicality of high speed bit-banged
communications complying with standards

Shared Memory Structure
Name Content

t.cm Command to TX pipeline, zero when taken.

t.pf ^ next descr to process, = t.rx if none

RX Descriptor Pool t.rx ^ next descr to be filled by RX, = t.ep if none

t.ep ^ next empty descriptor for freed buffer

t.lk Latest Link Status Word

t.dp 32-bit count of packets dropped for no buffers

t.sk ^ USER AREA TO AWAKEN for TX/RX completions

t.wk Value of WAKE to store into user areas

t.xa 20-bit TX buffer address

t.xn Length of TX buffer in octets; negative to force link down; 0 when done

t.pp Poll period for commands

t.tt ^ USER AREA TO AWAKEN for timer prodding

t.rxd
RX Descriptor table: +0 20-bit store address;

+2 ^ Buffer Structure; +3 Unused.

Building TCP/IP Stack

 Port well tested ATHENA stack for polyFORTH
on 32-bit machines to 16-bit environment

– Extended memory functions optimized for simple
code

– Locating code and structures in upper memory,
and buffers in extended memory, to minimize
footprint on low memory

For More Information
on Ethernet NIC

 Documentation on website

– AN007: A Bit-banged 10baset NIC

– DB008: polyFORTH TCP/IP Package

(neither is yet published)

 Source code

– arrayFORTH 2a blocks [720..778] Working NIC

– polyFORTH 2a blocks [540..840[TCP/IP package

(partially converted, working)

GreenArrays™
World Leader toward Efficiency

Thank You!

For more information, please visit

http://www.greenarraychips.com

http://www.greenarraychips.com/

