
C Macros for Ardurino eForth

Forth Day - November 19, 2011

I will present ANSI C macros that can be used to

create a Forth dictionary running eForth on the

Arduino. The Arduino development system is

based on GCC.

Introduction

● Ting's eForth for the Arduino is written in C

● Creating the Forth dictionary in a cogent

manner can be difficult

● The C language has a programming facility

called macros

● This facility can be used to create the various

fields (link, name, code, and parameter) of a

Forth word

eForth Word Fields

● Link Field - Used for searching the dictionary for a

specific Forth word.

● Name Field - The name of the Forth word. It is a

counted string. The first byte is the length of the

string and the following bytes are the name.

● Code Field - The “code” that will execute the

following parameter fields.

● Parameter Fields - The Forth words or primitives to

be executed by the previous code field.

Link Field

The link field is an address of the previously

defined Forth word. The exception is the first

word in the dictionary. It is set to NULL,

indicating the start of the dictionary.

Name Field

The name field identifies the Forth word. It is a

counted string, the first byte is the length and

the rest of the bytes are the name. For the

Audrino architecture, a 16-bit word has to be

aligned on an even address. If the name field

has an even length, the total name field length

will be odd. To correct this an ASCII NULL is

appended to the name field.

Code Field

● This field contains the address of the code to

execute the following parameter fields.

● Note: Because the Arduino architecture

requires 16-bit accesses to be aligned to an

even address and the primitives are byte in

length, the primitives have to be padded with

an ASCII NULL.

Parameter Field

This field contains the address of previously

defined Forth words or primitive token.

Link Field C Macros

● The link field macros writes the pointer to the

previous defined word's initial code field, CFA.

● LINK_FIELD - Write the pointer to the previous

defined Forth word.

● END_WORD - Update the link pointer.

Name Field C Macros

● The name field macros write the name of the

following word.

● NAME_FIELD(name) - Write the name as a

counted string and, if necessary, pad it to align

on a 16-bit boundary.

● FORTH_WORD(name) - Writes the link field

and the name field.

● COLON_WORD(name) - Writes the Forth

word and the dolist primitive.

Code Field C Macro

● There are a group of code field macros that

write 16-bit values to where the current

dictionary points to and increments the pointer

by two.

● CODE_FIELD(name) - Writes the address of

the named code field.

Parameter Field C Macros

● These macros write 16-bit values to the next

parameter field.

● PARM_FIELD(name)

● PRIM_FIELD(prim)

● WORD_FIELD(value)

BEGIN - UNTIL C Macro Pair

The BEGIN - UNTIL macro pair make a finite

loop. The loop continues if the top of the stack

is zero.

BEGIN - AGAIN C Macro Pair

The BEGIN - AGAIN macro pair make a infinite

loop.

IF - THEN C Macro Pair

The IF - THEN macro pair make code that is

conditionally executed.

IF - ELSE - THEN C Macros

The IF - ELSE - THEN macros make code that

is not only conditionally executed but has an

alternative part that get executed if the condition

is false.

BEGIN - WHILE - REPEAT Macros

The BEGIN - WHILE - REPEAT macros make a

finite loop based on the condition just before the

WHILE.

FOR - NEXT C Macros

The FOR - NEXT macro make a counted loop

based on the top of stack value just before the

FOR.

AFT - THEN C Macro Pair

The AFT - THEN macro pair are used inside of a

FOR - NEXT pair.

dictionary.c

● #include "dictionary.h"

● CODEword flashDict[] = {

● /* lfa = 0x0000 */ { .s = 0x0000 },

● /* nfa: tmp (0x0002) */

● { .c = 3 }, { .c = 't' }, { .c = 'm' }, { .c = 'p' },

● /* cfa: 0x0006 */

● { /* prim 0x0006: */ .c = 0x04 },

● { /* pad 0x0007 */ .c = '\x00' },

dictionary.c (cont'd)

● { /* prim 0x0008: */ .c = 0x16 },

● { /* pad 0x0009 */ .c = '\x00' },

● { /* 0x000a: */ .s = 0x0100 },

dictionary.c (cont'd)

● /* lfa = 0x0230 */ { .s = 0x021e },

● /* nfa: ROT (0x0232) */

● { .c = 3 }, { .c = 'R' }, { .c = 'O' }, { .c = 'T' },

● /* cfa: 0x0236 */

● { /* prim 0x0236: */ .c = 0x06 },

● { /* pad 0x0237 */ .c = '\x00' },

● { /* code 0x0238: */ .s = _more_R_CFA },

● { /* code 0x023a: */ .s = SWAP_CFA },

dictionary.c (cont'd)

● { /* code 0x023c: */ .s = R_more__CFA },

● { /* code 0x023e: */ .s = SWAP_CFA },

● { /* code 0x0240: */ .s = EXIT_CFA },

dictionary.h

● typedef

● union {

● unsigned char c[2048];

● unsigned short s[1024];

● } CODEword;

● #define tmp_CFA 0x0006

● #define ROT_CFA 0x0236

