SwiftCore: SC20

32-bit Soft CPU Core
for Systems-on-a-Chip (SoCs).

— |l
FORTH,Inc. 12

Agenda

* Rationale

* Size and performance

* |[SA (Instruction Set Architecture)
* SwiftX

 Use cases

— |l
FORTH,Inc. 2l 24

Rationale

* 40% of FPGA designs in 2010 have a built-in CPU
(Gartner), just getting started.

* A Forth-friendly 32-bit CPU (generic RTL) built for
modern FPGA and ASIC is future proof.

* On-chip Forth, in simulation and real silicon, is a great
tool for SoC verification and validation.

* SwiftX — soft CPU combo leverages a mature and well
documented tool flow and code base.

I ®

FORTH,Inc. 3124

Test setup (small MCU)

Code Space Data Space
< :
DP_RAM =P By
8K x 16 _
Pre-initialized 2K x 32
*
Osc |
50 MHz
SC20
Math
MAX Coprocessor
3232 UART }_‘
8 switches 8 LEDs

FORTH,Inc.

4] 24

Logic Size (small MCU)

FORTH,Inc.

Part

Cost |Logic
FPGA Elements | % | Speed [Special Features|[1] Cost
Spartan 6 xc6sIx25 1982 LUTs | 12 | 50 MHz 30.90 3.71
Virtex 6 xc6vIX75T 1977 LUTs | 4 | 150 MHz 764.00| 30.56
Virtex 6 xcovIX75T 3088 LUTs | 6 | 100 MHz [Math Coprocessor | 764.00] 45.84
Cyclone IV EP4CE22E| 3105LEs | 14 | 50 MHz |Shallow stacks 35.52| 4.97
Cyclone Il EP3C25E 5227 LEs | 21 | 50 MHz [Math Coprocessor 39.50[8.30
Stratix Il EP3SES0F [1939 ALUTs | 7 | 125 MHz |Shallow stacks 761.00| 53.27
Stratix Ill EP3SES0F [2178 ALUTs| 9 [125 MHz 761.00| 68.49
XP2 LFXP2-30 2361 LUTs | 12 | 65 MHz 59.08] 7.09
XP2 LFXP2-30 3096 LUTs | 16 | 65 MHz [Math Coprocessor 59.08] 9.45
LFE2-20E-5QN208C 2790 LUTs | 16 [65 MHz 32.49] 5.20
® [1]: Part cost is low volume distributor webstore price as of Q4 2010

5/ 24

Performance Summary

* 50 to 150 MIPs, depending on the FPGA.

* Easy to add custom coprocessor hardware to make up
for lower performance relative to a hard CPU.

* Stack-based architecture efficiently supports both Forth
and C without heavy optimization.

I ®

FORTH,Inc. o/ 24

Hardware Goals

* Use single-port, synchronous R/W RAM/ROM (block
RAM) for large memories.

* Use dual-port RAMs (LUT RAM) for stack caches and
register arrays.

* Don't use large dual-port RAM for stacks.

* Wide muxes are cheap in ASIC, expensive in FPGA.
* Adders are cheap in FPGA, expensive in ASIC.

* SC20 is balanced for FPGA and ASIC use.

I ®

FORTH,Inc. e

Software (ISA) Goals

* Mimic the PC environment: 32-bit, byte-addressed, little-
endian, Von Neuman model.

* Use automatic stack spill and refill to allow unlimited
(within RAM limits) stack depth.

* Optimized for 16-bit code memory but implementation
can scale up or down in bus width.

I ®

FORTH,Inc. 8/ 24

Block Diagram

| A A
T
| ALU
Coproc S Prefetch
Unit
|
|
Data Return :
Nested Stack Stack Register
Interrupt RAM
Controller RAM RAM 16 x 32
16 x 32 16 x 32
t y t Code
XTL Data ROM
Port Data RAM Address [€—

FORTH,Inc.

9/ 24

Registers

U & W are general purpose regs

A, B, X, Y are also address regs

A, B, X, Y support indirect addressing
X, Y also support base+offset

ISRs may select any BANK of U,W ,A,B

<[><|2|%|=|>|=]|c

1l

FORTH,Inc.

10/ 24

Opc

ode Ma

p

+

00 | SEQ scs SMI svs STREG

01 | SHI SGE SGT SAL LDREG

02 | SNE scc SPL svc LIT

03 | sLs SLT SLE SNV cop

04 BRELD RET PSHPC MXM LDIB

o5 B LSL SXTH LSR LDIH

06 | coMm LSL4 NEG ASR4 LDI

07 I LSLXT ZXTH ASR LINK

(BN LDXB LDXB+ LDAB LDAB+ LDXIB

(EBS LDXH LDXH+ LDAH LDAH+ LDXIH

0A | LDX LDX+ LDA LDA+ LDXI

(=38 GETX LDX- GETA LDA- NEXT

oc T LDYB+ LDBB LDBB+ LDYIB

(DB LDYH LDYH+ LDBH LDBH+ LDYIH

OE | LDY LDY+ LDB LDB+ LDYI

(A GETY LDY- GETB LDB- ZBRAN

10 | ADD ADDC SuB SUBB ADDI

1M ORL POPPSR THRD SETR ORI

12 | XRL GETRP GETU TDUP XRI

13 | ANL SETRP SETU PUSH ANI

14 | DEC INC TROT TSWAP STIB

(3 FLUSH PSHPSR NOP GETR STIH

(BN TOVER GETSP GETW POP STI

(/@N TDROP SETSP SETW TNIP SWI

18 G STXB+ STAB STAB+ STXIB

19 T STXH+ STAH STAH+ STXIH

1A STX STX+ STA STA+ STXI

(=00 SETX STX- SETA STA- BSR

I 1C STYB STYB+ STBB STBB+ STYIB
© (0 STYH STYH+ STBH STBH+ STYIH
= 1E | STY STY+ STB STB+ STYI
i') SETY STY- SETB STB- BRA

FORTH,Inc.

11/ 24

Instruction Format

Instruction length is encoded in the Instruction memory is 16-bit,
opcode: containing one of the following

« An opcode with immediate data must instruction groups:

reside at an even byte address. * Two 8-bit instructions

* If a group has a second opcode, it is One 16-bit instruction

executed regardless of whether a
branch was taken.

=== One 40-bit instruction and an 8-bit
instruction
1 00 8

[IIf- 1 10 24
—i -
FORTH,Inc. 12/ 24

* One 24-bit instruction and an 8-bit
instruction

One 32-bit instruction

Interrupts

* Interrupts have a 2-bit priority * Pulse-triggered or Hi-triggered,
level, allowing higher priority expect synced inputs.
interrupts to nest into lower ones. . User logic is responsible for

* Hardware saves status such as converting falling-edge or rising-
BANK, IMR, carry and overflow edge to trigger pulse.

flags as it services the IRQ. It also * Each interrupt source has its own
selects the BANK (of U/W/A/B) bank select, priority and enable

used by the ISR. bits.

* The ISR ends with a “POPPSR
RET” instruction group. “RETI”
macro.

1l

FORTH,Inc. 15/ 24

User I/O bits

Up to 64 output bits.
* Up to 32 input bits.
Read with LDREG.

I ®

Example:

CODE SPI (c -- c¢')
7 LIT PUSH BEGIN

FORTH,Inc.

TDUP @ BOUT STREG \ data out
_ _ © LIT 1 BOUT STREG \ raise clk
Write with STREG. 1 LIT 1 BOUT STREG \ lower clk
LSL © BIN LDREG \ data in
SUB
NEXT RET
END- CODE
15 clocks per iteration
3.3 MHz @ 50M
14/ 24

SwiftX

PC

RS232

UART

SC20
XTL
PORT

PC

USB

FT2232

SC20
XTL
PORT

FPGA
JTAG

P s

SwiftX uses a XTL (cross-target
link) to connect a thin-client
debugger to a rich Windows or
Linux based development
environment.

The SC20's XTL port connects to
a UART, which SwiftX accesses
via a COM port.

XTL port is designed to connect to
a FIFO, so bridging to a FTDI
USB chip would be easy. FT245R
supports transfer rate of 1M
byte/sec. FT2232H has transfer
rate of >10M byte/sec.

FORTH,Inc.

15/ 24

ModelSim XTL

* SwiftX host may interface to a

SC20 virtual UART running in an RTL
SwiftX UART m= XTL simulation, implemented with the
PORT textio VHDL library.

| ___ |+ AnRTL simulation of a SoC

I RTL simulation executes on the order of 1K

| [File Mailboxes instructions per second. Fast
enough for interactive testing of a
SoC model.

* The interface uses file mailboxes
because of limitations in textio.
The OS caches the files.

I ®

FORTH,Inc. 16/ 24

Ports

* Code memory « XTL
* Data memory * IRQs
* Input Bits

* Output Bits
* Wake & Sleep
* Clock & Reset

— |l
FORTH,Inc. R

Off-core Memories

Code ROM
typ 8K x 16

Code RAM
typ 1K x 16

SPI flash
controller

SC20

Data RAM
typ 2K x 32

i

Peripheral A

Peripheral B

FORTH,Inc.

18/ 24

Code ROM

* Address range starts at 80000000h.

* Most synthesis tools will infer sync-read ROM
from plain VHDL generated by SwiftX.

* The lower 256 words of ROM contain SWiI
vectors. User applications call kernel words
using SWis, insulating them from ROM changes.

* In an ASIC, ROM is cheap.
L.

FORTH,Inc. 19/ 24

Code RAM

* Address range starts at 80010000h.
* Used to patch the kernel and/or ISRs.

* Lower 256 words is old or new SWI vectors,
followed by ISR vectors.

* Application code may patch any SWI or ISR, and
it may define time-critical app words in RAM.

I ®

FORTH,Inc. 20/ 24

Off-chip SPI flash

* Address range starts at 80100000h.

* Low-end FPGAs boot from SPI flash. The same (usually
8-pin) part can hold application code.

* Modern SPI flash parts offer several Mbytes of storage
for $1 — $2.

* The kernel and time-critical code is on-chip, so slow SPI
speed is okay. But SPI isn't slow. Most parts allow >50
MHz clock and some have “quad rate” (4 bits/clk).

I ®

FORTH,Inc. 21124

Peripherals

* Address range: FO0O00000 to FFFFFFFF allows
the use of small negative numbers for
addressing.

* RTL for a memory bus such as Wishbone or
AMBA AXI should be machine-generated from a
SoC specification.

I ®

FORTH,Inc. 221 24

SoC Description Language

7 SOC
SO-C- SOChL Verilog / VHDL
Description I
\\\’/////’— ANS
ot Register Map
: (.Hfor C,
Module A EQUs for 4th)
D ipti - \/_
escription Veriiog
— or VHDL
' Templates :
woaes || T e
Description , elc.
_/— _/—

FORTH,Inc.

23/ 24

Questions

* Technical questions: ask Brad Eckert:
brad@forth.com

— |l
FORTH,Inc. 24 1 24

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

