
SwiftCore: SC20

32-bit Soft CPU Core
for Systems-on-a-Chip (SoCs).

241 /

Agenda

24/2

• Rationale
• Size and performance
• ISA (Instruction Set Architecture)
• SwiftX
• Use cases

Rationale

24/3

• 40% of FPGA designs in 2010 have a built-in CPU
(Gartner), just getting started.

• A Forth-friendly 32-bit CPU (generic RTL) built for
modern FPGA and ASIC is future proof.

• On-chip Forth, in simulation and real silicon, is a great
tool for SoC verification and validation.

• SwiftX – soft CPU combo leverages a mature and well
documented tool flow and code base.

Test setup (small MCU)

244 /

DP_RAM
8K x 16

Pre-initialized

SP_RAM
2K x 32

UART
Math

Coprocessor

Osc
50 MHz

MAX
3232

SC20

8 LEDs8 switches

Code Space Data Space

Host PC

Logic Size (small MCU)

245 /

FPGA Elements % Speed Special Features

Spartan 6 xc6slx25 1982 LUTs 12 50 MHz 30.90 3.71
Virtex 6 xc6vlx75T 1977 LUTs 4 150 MHz 764.00 30.56
Virtex 6 xc6vlx75T 3088 LUTs 6 100 MHz Math Coprocessor 764.00 45.84

Cyclone IV EP4CE22E 3105 LEs 14 50 MHz Shallow stacks 35.52 4.97
Cyclone III EP3C25E 5227 LEs 21 50 MHz Math Coprocessor 39.50 8.30
Stratix III EP3SE50F 1939 ALUTs 7 125 MHz Shallow stacks 761.00 53.27
Stratix III EP3SE50F 2178 ALUTs 9 125 MHz 761.00 68.49

XP2 LFXP2-30 2361 LUTs 12 65 MHz 59.08 7.09
XP2 LFXP2-30 3096 LUTs 16 65 MHz Math Coprocessor 59.08 9.45
LFE2-20E-5QN208C 2790 LUTs 16 65 MHz 32.49 5.20

[1]: Part cost is low volume distributor webstore price as of Q4 2010

Part
Cost
[1]

Logic
Cost

45 nm

90 nm

Performance Summary

246 /

• 50 to 150 MIPs, depending on the FPGA.
• Easy to add custom coprocessor hardware to make up

for lower performance relative to a hard CPU.
• Stack-based architecture efficiently supports both Forth

and C without heavy optimization.

Hardware Goals

247 /

• Use single-port, synchronous R/W RAM/ROM (block
RAM) for large memories.

• Use dual-port RAMs (LUT RAM) for stack caches and
register arrays.

• Don't use large dual-port RAM for stacks.
• Wide muxes are cheap in ASIC, expensive in FPGA.
• Adders are cheap in FPGA, expensive in ASIC.
• SC20 is balanced for FPGA and ASIC use.

Software (ISA) Goals

248 /

• Mimic the PC environment: 32-bit, byte-addressed, little-
endian, Von Neuman model.

• Use automatic stack spill and refill to allow unlimited
(within RAM limits) stack depth.

• Optimized for 16-bit code memory but implementation
can scale up or down in bus width.

Block Diagram

249 /

Data
Stack
RAM

16 x 32

Return
Stack
RAM

16 x 32

Register
RAM

16 x 32

Coproc S

T

Code
ROM

S
ALU

Prefetch
Unit

Data
Data RAM Address

Nested
Interrupt

Controller

XTL
Port

Registers

2410 /

U U U U U & W are general purpose regs
W W W W A, B, X, Y are also address regs
A A A A
B B B B A, B, X, Y support indirect addressing

SP U U U X, Y also support base+offset
RP W W W
X A A A ISRs may select any BANK of U,W,A,B
Y B B B

Opcode Map

2411 /

+ 0 20 40 60 80 A0 C0 E0
00 SEQ SCS SMI SVS STREG
01 SHI SGE SGT SAL LDREG
02 SNE SCC SPL SVC LIT
03 SLS SLT SLE SNV COP
04 TJMP RET PSHPC MXM LDIB
05 SXTB LSL SXTH LSR LDIH
06 COM LSL4 NEG ASR4 LDI
07 ZXTB LSLXT ZXTH ASR LINK
08 LDXB LDXB+ LDAB LDAB+ LDXIB
09 LDXH LDXH+ LDAH LDAH+ LDXIH
0A LDX LDX+ LDA LDA+ LDXI
0B GETX LDX- GETA LDA- NEXT
0C LDYB LDYB+ LDBB LDBB+ LDYIB
0D LDYH LDYH+ LDBH LDBH+ LDYIH
0E LDY LDY+ LDB LDB+ LDYI
0F GETY LDY- GETB LDB- ZBRAN
10 ADD ADDC SUB SUBB ADDI
11 ORL POPPSR THRD SETR ORI
12 XRL GETRP GETU TDUP XRI
13 ANL SETRP SETU PUSH ANI
14 DEC INC TROT TSWAP STIB
15 FLUSH PSHPSR NOP GETR STIH
16 TOVER GETSP GETW POP STI
17 TDROP SETSP SETW TNIP SWI
18 STXB STXB+ STAB STAB+ STXIB
19 STXH STXH+ STAH STAH+ STXIH
1A STX STX+ STA STA+ STXI
1B SETX STX- SETA STA- BSR
1C STYB STYB+ STBB STBB+ STYIB
1D STYH STYH+ STBH STBH+ STYIH
1E STY STY+ STB STB+ STYI
1F SETY STY- SETB STB- BRA

LD/ST
ALU
BRA

Instruction Format

2412 /

Instruction length is encoded in the
opcode:

• An opcode with immediate data must
reside at an even byte address.

• If a group has a second opcode, it is
executed regardless of whether a
branch was taken.

Instruction memory is 16-bit,
containing one of the following
instruction groups:

• Two 8-bit instructions
• One 16-bit instruction
• One 24-bit instruction and an 8-bit

instruction
• One 32-bit instruction
• One 40-bit instruction and an 8-bit

instruction

b7 b6:b5 Imm Bits
0 xx 0
1 00 8
1 01 16
1 10 24
1 11 32

Interrupts

2413 /

• Interrupts have a 2-bit priority
level, allowing higher priority
interrupts to nest into lower ones.

• Hardware saves status such as
BANK, IMR, carry and overflow
flags as it services the IRQ. It also
selects the BANK (of U/W/A/B)
used by the ISR.

• The ISR ends with a “POPPSR
RET” instruction group. “RETI”
macro.

• Pulse-triggered or Hi-triggered,
expect synced inputs.

• User logic is responsible for
converting falling-edge or rising-
edge to trigger pulse.

• Each interrupt source has its own
bank select, priority and enable
bits.

User I/O bits

2414/

• Up to 64 output bits.
• Up to 32 input bits.
• Read with LDREG.
• Write with STREG.

Example:

CODE SPI (c -- c')
 7 LIT PUSH BEGIN
 TDUP 0 BOUT STREG \ data out
 0 LIT 1 BOUT STREG \ raise clk
 1 LIT 1 BOUT STREG \ lower clk
 LSL 0 BIN LDREG \ data in
 SUB
 NEXT RET
END-CODE

15 clocks per iteration
3.3 MHz @ 50M

SwiftX

2415 /

UART
SC20
XTL

PORT
PC

PC FT2232

SC20
XTL

PORT

FPGA
JTAG

USB

RS232
• SwiftX uses a XTL (cross-target

link) to connect a thin-client
debugger to a rich Windows or
Linux based development
environment.

• The SC20's XTL port connects to
a UART, which SwiftX accesses
via a COM port.

• XTL port is designed to connect to
a FIFO, so bridging to a FTDI
USB chip would be easy. FT245R
supports transfer rate of 1M
byte/sec. FT2232H has transfer
rate of >10M byte/sec.

ModelSim XTL

2416 /

UART
SC20
XTL

PORT
SwiftX

File Mailboxes

RTL simulation

• SwiftX host may interface to a
virtual UART running in an RTL
simulation, implemented with the
textio VHDL library.

• An RTL simulation of a SoC
executes on the order of 1K
instructions per second. Fast
enough for interactive testing of a
SoC model.

• The interface uses file mailboxes
because of limitations in textio.
The OS caches the files.

Ports

2417 /

• Code memory
• Data memory

• XTL
• IRQs
• Input Bits
• Output Bits
• Wake & Sleep
• Clock & Reset

Off-core Memories

2418 /

Data RAM
typ 2K x 32

Code RAM
typ 1K x 16

SPI flash
controller

Code ROM
typ 8K x 16

SC20

Peripheral B

Peripheral A

Code ROM

2419 /

• Address range starts at 80000000h.
• Most synthesis tools will infer sync-read ROM

from plain VHDL generated by SwiftX.
• The lower 256 words of ROM contain SWI

vectors. User applications call kernel words
using SWIs, insulating them from ROM changes.

• In an ASIC, ROM is cheap.

Code RAM

2420 /

• Address range starts at 80010000h.
• Used to patch the kernel and/or ISRs.
• Lower 256 words is old or new SWI vectors,

followed by ISR vectors.
• Application code may patch any SWI or ISR, and

it may define time-critical app words in RAM.

Off-chip SPI flash

2421 /

• Address range starts at 80100000h.
• Low-end FPGAs boot from SPI flash. The same (usually

8-pin) part can hold application code.
• Modern SPI flash parts offer several Mbytes of storage

for $1 – $2.
• The kernel and time-critical code is on-chip, so slow SPI

speed is okay. But SPI isn't slow. Most parts allow >50
MHz clock and some have “quad rate” (4 bits/clk).

Peripherals

2422 /

• Address range: F0000000 to FFFFFFFF allows
the use of small negative numbers for
addressing.

• RTL for a memory bus such as Wishbone or
AMBA AXI should be machine-generated from a
SoC specification.

SoC Description Language

2423 /

SOC
Description

Module A
Description

Module B
Description

ANS
Forth

SOCDL SOC
Verilog / VHDL

Verilog
or VHDL

Templates

Register Map
(.H for C,

EQUs for 4th)

Documentation
HTML, etc.

Questions

2424 /

• Technical questions: ask Brad Eckert:
brad@forth.com

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

