Components, Not Classes!

Or
OO0 Extensions Considered Harmful
(Part Il)



Forth Distributions

Gforth
SwiftForth
Eforth

F#
Win32Forth
PFE

FICL
RetroForth



OO Extensions

FML

MOPS

Neon

SWOOP

OOF

Mini-OOF

“Word Classes”

And a list of homebrew solutions.



Example Problem

* You wrote a Socket class using Swoop that |
want to reuse. My software so far uses a port

of OOF for RetroForth. How to solve this
problem?



Example Problem

* You wrote a Socket class using Swoop that |
want to reuse. My software so far uses a port
of OOF for RetroForth. How to solve this
problem?

— Port Swoop to RetroForth and use Socket class as-
is. Then | write an OOF “proxy” class, whose

objects proxy method calls from OOF to Swoop
and vice versa.



Example Problem

* You wrote a Socket class using Swoop that |
want to reuse. My software so far uses a port

of OOF for RetroForth. How to solve this
problem?

— Rewrite Socket class in OOF for seamless
integration with existing code. Requires | have a
license to make such changes.



Example Problem

* You wrote a Socket class using Swoop that |
want to reuse. My software so far uses a port
of OOF for RetroForth. How to solve this
problem?

— | could ditch RetroForth and adopt SwiftForth.

This involves rewriting the entire code base, for
RetroForth is not an ANSI Forth.



Problems Compound!

* You wrote a Socket class using Swoop that |
want to reuse

* Another wrote a GUI toolkit using FML.

My software targets RetroForth using a
specially ported version of OOF.

— Solutions for when you only have two object

systems no longer work when you have three or
more. What do you do then?



Forget the object-oriented extensions.

YOU DON’T NEED THEM.

Just write Forth!



Eating My Own Dog Food

* Enterprise applications are boring.

* Object oriented programming invented to
solve (then) complex problems in computer

simulations.
 Games are simulations, by definition.

A video game seems an ideal candidate for
object-oriented implementation.



HOGWASH.



Equilibrium

Video game written in SwiftForth for Linux.
Over 550 word definitions.

2343 lines of code across 16 modules.

10 modules easily reusable for other games.
Al not yet written, but will be soon.

Al being developed independently of core
game logic.



Equilibrium

* Conceived through Object-Oriented Analysis
and Test- and Domain-Driven Development.

* Procedural implementation built on Relational
Algebra.

NOTHIN’ BUT FORTH.



Equilibrium

Simpler than | ever expected to write.
Most code changes kept very localized.

Debugging usually trivial, thanks to test-enforced
modularity.

In 2343 lines of code, only 2 multi-day debugging
sessions, neither due to stack imbalances.

Ate my own dog food, and loved it.



DISCLAIMER

* Equilibrium is not intended to illustrate
theoretically perfect, clean, or “the right way’

to code in Forth.

4

* Itis, however, intended to illustrate the
concepts of component-oriented
programming over object-oriented
programming.



Viewable: Class Hierarchy

Viewable

Scoreboard Border




Viewable: Component

Code in viewable.f

Applies to all viewable entities we know of.
Locally managed storage.

Fields relevant to all kinds of viewables.
Global over the set of all viewables.



Achieving Polymorphism

* Only each viewable “knows” how to draw
itself.

* Polymorphism through callbacks.

 Modules support common behaviors though!



Achieving Inheritance

Two methods to obtain inheritance:
— Composition of functionality.
— Dependencies on other modules.

Inheritance essentially the same as a join.

Unique object identifiers used as foreign keys
to other tables.

See mobility.f, positionable.f, and elasticity.f
for concrete examples of inheritance at work.



On Messages and Methods

* Per Smalltalk, message names intended to
have global meaning, scoped by type.

— at:put: understood by all to be an array setter.
— at: understood to be an array getter.

* Thus, Smalltalk exhibits duck-typing, used to
synthesize a natural-language-inspired
semantics.



On Messages and Methods

* Per Forth, word names intended to have
global meaning, scoped by context.

— @ universally understood to mean “fetch” for all
Forth.

— +room understood to mean the precondition that
enough room exists (for something) in the context
of a single problem solution (see DItl).

* Thus, Forth exhibits natural-language
semantics, used to synthesize data types.



On Messages and Methods

* Names and their XTs correspond to object
messages.

* Definitions correspond to class methods.



On Messages and Methods

 Modules define sets to which objects may
belong.

ne set of a
ne set of a
ne set of a

ne set of a

Viewable objects
Elastic objects
Punctual objects
Reversible objects



On Messages and Methods

Abstract data types are defined by the set of
objects in its alphabet and the operations you
can perform on them.

Thus, modules define interfaces.
Not all methods need be polymorphic.

Closer to Squeak Smalltalk’s “Traits” than
either classes or pure interfaces.

Use vocabularies to prevent namespace
collisions.



On Messages and Methods

* Module words aware of the set of objects.

* Thus, words can operate on more than one
object.

— Implemented well, obviates the need for multiple
dispatch.

— See collided? and pPreserved.



Coding Patterns Behind COP

Declarative, Imperative, then Inquisitive
Aggressive Handling

Partial Continuation

Ascetic Programming — disown your objects!
Factor Indices

Demultiplex by Request



Coding Patterns Behind COP

* Modules employ relational algebra.
* Forth lacks garbage collection.
* Thus, use CRUD-y interfaces.

— Create
— Read

— Update
— Destroy



Game Class Hierarchy (Abridged)

Object

Playfield

Dimensionable

Positionable

Mobile

Elastic

JA\

AN
Robot

HumanPlayer

Behavior I Viewable

Punctual

Spark

ClockModel

Border ClockView

Scoreboard




Game Component Hierarchy

Objects

Punctual Viewable Dimensionable Behaviors

N
Elasticity / —
r/ \

Positionable

(N

A

Mobility

£>
N7

Players Scoreboard Clock




Review: Features of COP

Modules manage their own storage requirements.

Polymorphism through callbacks.

Use relational algebra to express object and/or type relationships.
Modules define sets of objects

Words define messages you can send to an object of that set.
CRUD-y interfaces.

Single- and multiple-dispatch are the same in most cases.

Very wide module/type hierarchies are the norm.

Objects constructed piece by piece, not cast through a mold.

Types not equal to classes.

Objects can change types as necessary.

Components tend to be highly orthogonal, domain-specific concepts.
Works on microprocessors not optimized for OO, like 6809, 65816, Z-80.



The Disadvantage of COP

* Naive module implementations have
noticeable runtime performance issues.
— Game uses O(n) table scans for nearly everything.

— Modules sometimes use other modules, making
some operation complexities effectively O(n?).

— On 2.8GHz machine, difference between 8 and
100 on-screen objects is 1.5 milli-seconds.

* Plenty of opportunity for optimization if
needed.



Wait a minute.. ..

e Objects are systematized forms of premature
optimizations.
— Object references and pertinent state exist in
same physical record.

— Oracle calls arrays of such records an Index-
Optimized Table.
* Experience with relational DBs suggests other

optimizations exist which preserves benefits of
COP. 10Ts not always needed!



Optimization Strategies

* Rolling database columns

— Move frequently accessed rows to the front.

— Probabilistic O(1) performance in lots of cases.

— Thrashing results in O(n?) worst-case performance.
* Hashing

— Example: Bits 6-11 of foreign key field used to select
bucket (identity hash).

— Improves look-up time by factor of N, where N is
number of buckets supported.

* Trees / Tries / SkipLists / etc...



Conclusion

* Equilibrium demonstrates validity of COP
concept
— TDD and DDD without the use of objects.

— OOA without the use of object-oriented syntax
extensions.

 COP may finally enable a marketplace of
reusable Forth modules, a la CPAN for Perl.



Conclusion

* BitBucket.org repository for the game:
— http://www.bitbucket.org/kc5tja/equilibrium

* Falvotech Blog
— http://www.falvotech.com/blog2/blog.fs



THANK YOU!

Q&A



EXTRA SLIDES



On Messages and Methods

* |n Smalltalk, what does reverse mean?

— For arrays, it means to swap end-for-end each
element.

— For a sprite, it means to reverse direction of
movement.

* This can sometimes be confusing! You end up
having to remember context after all!



On Messages and Methods

* Interfaces solve this problem.

— Global semantics understood at level of interfaces,
not individual messages.



On Messages and Methods

* In Component-Oriented Forth, what does
reverse mean?

— For arrays, it means to swap end-for-end each
element.

— For a sprite, it means to reverse direction of
movement.
* This is every-day experience for us. We're

baffled at why other languages don’t support
more of this “hyper-static global” behavior.



