Day Determination

SVFIG
Oct. 28, 2023
Bill Ragsdale

In my mother's records I found a sheet on determining the day for any date.

WHAT DAY OF THE WEER?

If you vish to find the day event occurred, the following procedure will work for all dates after 15 Sept. 1752

Steps in the Procedure

1. Write the full date

2. Divide the last two digits by 4 and ignore any remainder.
3. Consult Table " A " below and write the code of the month.
4. Write the \ddagger of the day of the month.
5. Write the last 2 digits of the year.
6. Add these numbers
7. For dates in 1700 add 4 For dates in 1800 add 5 For dates in 1900 add 0
8. Divide the total by. 7:
9. Compare the remainder with Table " B " to find the day of the week.

- ,

Table "A" CODE FOR MONTHS
$\begin{array}{lll}\mathrm{Jan} & 1 & \mathrm{Jul} \\ \mathrm{Feb} & 4 & \mathrm{Aus}\end{array}$
$\begin{array}{llll}\mathrm{Mar} & 3 & \text { Sep } & 6 \\ \mathrm{Apr} & 0 & \text { Oct } & 1\end{array}$
$\begin{array}{lllll}\text { May } & 2 & \text { Nov } & 4 & 3\end{array}$
NOW TRY ITI
What day of the week was July 4, $1776 . \quad 76 \div 4=19$
Codefor month $=5$ \#of dey of " $=4$ Last 2 digits of year $=76$
Date in rito's add 104

- Date in rimós add 4

Cole for Remainders $3=$ Tuesin y

History

In programming it I found it did not allow for the ' 400 year rule.' [More in a bit.]

So I researched and found the Zeller Rule.

It loves integer math, a natural for Forth.

The Basics

To determine the day for a date, you must allow for the extra day in leap years.

If the year is evenly divisible by 400 is it a leap year. If the year is evenly divisible by 4 and not 100 it is a leap year.
2000 YES, 1900 NO, 1984 YES

Introduction

The Zeller rule uses a calculation year beginning on the first day AFTER a leap day, Feb. 29.

It continues for four years ending on the next Feb. 29 , in a leap year.

This can cause a bit of confusion calculating the month and year offsets.

At least it did for me.

The Zeller Year

The Zeller year begins on the first day AFTER a leap-day, Feb. 29 and runs for 1461 days, ending on a leap-day.

$$
\begin{array}{lll}
3 / 1 / 2000 & --- & 2 / 28 / 2001 \\
3 / 1 / 2001 & -- & 2 / 28 / 2002 \\
3 / 1 / 2002 & --- & 2 / 28 / 2003 \\
3 / 1 / 2003 & --- & 2 / 29 / 2004
\end{array}
$$

Adjustments

The adjusted month number runs from March as month 1 to December as 10 and then the following January as 11 and February as 12.

The year adjustment means for January and February you use the prior year, as these months conclude the prior Zeller year.

Adjustments

Jan. Feb. Mar. Apr. Hay Jun.

Month Number	1	2	3	4	5	6
Adjusted Honth	11	12	1	2	3	4
Adjusted Year	2003	2003	2004	2004	2004	2004

Jul. Aug. Sep. Oct. Nou. Dec.

Honth Number	7	8	9	10	11	12
Adjusted Honth	5	6	7	8	9	10
Adjusted Year	2004	2004	2094	2094	2094	2094

Adjustments

: adjustedYear (-- aY)
\& allowing for month 1 and 2
year month 1 = month 2 = or if 1 - then ;
: adjustedilonth (-- aH)
4 months run 111212 . . . 10
month $16+$ dup 12 > if 12 - then ;

The Zeller Rule

Sum the following ignoring decimal fractions:

```
    day +
(26 * adjustedmonth - 2)/10 +
    mod(adjustedyear,1016) +
    mod(adjustedyear",1619)/4 +
        adjustedyear/4019 +
- 2*adjustedyear/105
And take modulo(7) of the total
```


Individual Factors

```
: Factorf ( -- A ) day ; y d in formula
: Factor'B ( -- B ) & calculate from m
    adjustedmonth 26* 2-10/;
: Factor'C ( -- C ) l last two digits of the year
    adjustedYear 196mod ;
    : factorD ( -- D ) & four year cycle y/4
        factor'S 4 / ;
    : factorE ( -- E ) & the century / 4
    adjustedYear 105 / 4 / ;
    : factor* ( -- F )
    4 century c * 2
        adjustedYear 105 / 2 * ;
```


The Final Summation

: Summation (-- day) factors A.-.F factor'
factor ${ }^{+}$
factor- +
factorD +
factorE +
factorF -
7 mod ;

5 = Sunday through 6 = Saturday

My Diagnostic Printout

```
    k 26
    m 8
    A 26
    B 20
    C 23
    D 5
    E 5
    F 40
5um 39
day 4
Day 26 Month 15 Year 2923
Thursday ok
```


Input

: Accept (---) load day, month, year
.' Input the day number '" get-day to day
cr .' Input the month number ' ' get-month to month
cr . ${ }^{-}$Input the year in four digits "' get-year to year ;

Output

: Report show cr summation \$Day type;
: Liue Accept Report ;

Interactive Input

Accept
Input the day number 26
Input the month number 15
Input the year in four digits 2023 ok

Report
Day 26 Honth 16 Year 2923
Thur"sday ok

Tests

Day 26 Honth 10 Year 2023
Thursday ok

Day 4 Month 7 Year 1776
Thursday ok

Day 7 Honth 12 Year 1941
Sunday ok

Conclusions

- In took several passes to get the month and year adjustments.
- The interactive input took significant poking around in Win32Forth.
- After looking at several other methods, I suspect Zeller's rule (or derivations) is used by most operating systems today.

References

- https://beginnersbook.com/2013/04/calculating-day-given-date/
- https://en.wikipedia.org/wiki/Determination_of_th e_day_of_the_week

Challenge

- The ISO 8601 Standard week is used for planning business finance and operations.
- The ISO weeks, beginning on Monday, are numbered 1 to 52 or 53 with Week One containing the first Thursday of the year.
- Challenge: Program the ISO week for any date. Consider using Zeller's rule. Check with the Excel ISOWEEKNUM.

Win32Forth Cosmology

The Complete Forth Textbook

By
Bill Ragsdale

