
Syllabification

SVFIG
Oct. 22, 2022
Bill Ragsdale

The Challenge

Create a list of about 20 words.

Create a set of rules to parse them into syllables.

Consider if your words should be diverse or similar
(cat & dog vs. baby & babies).

I have no idea if this is easy or difficult.

Introduction

My earliest examination shows syllable detection relies on sound
more than letter patterns. Thus, we need access to a dictionary
with word sounds and an expanded symbol set (i.e. hard and soft
vowels, silent letters and much more)

It appears this challenge would be more suitable for a semester
project in computer science: data base, parsing, patterns, etc.

This today’s project will barely touch the process of syllable
detection.

The most I can hope for is to develop the supporting (parsing)
code and a rule or two.

Full Rule Set

Rule #1 A syllable is formed by at least one vowel (a, e, i, o, u).
For example: a, the, plant, ba-na-na, chil-dren, cam-er-a.

Exceptions:
a) Silent e is not counted as a vowel in a syllable.

For example: tape, like, love, ex-treme, take, blue.
b) When two vowels carry one sound (diphthong), they cannot be divided.

For example: coin, loud, bread, moon, sound, beau-ti-ful, a-void.
c) The letter “y” is not strictly a vowel but behaves like one.

For example: man-y, bi-cy-cle, i-vy.

Rule #2 Divide the syllable between two same consonants.
For example: rab-bit, let-ter, buf-fet, des-sert, ber-ry.

Full Rule Set II
Rule #3 Vowel with long/short vowel sound . . .

a) The consonant goes with the second vowel if the first vowel has a long
vowel sound.

For example: ba-sic, ro-bot, wa-ter.
b) The consonant goes with the first vowel if it has a short vowel sound.

For example: riv-er, mod-el, pan-el.

Exception:
Never split two consonants that make only one sound (ch, sh, ph, th, wh & gh)
when pronounced together and aren't the same letter (diagraphs).
For example: teach-er, lash-es, graph-ic, pan-ther, bath-tub.

Rule #4 Divide between two vowels that make two sounds.
Fo example: di-et, di-aer-e-sis.

Exception:
Don’t split two vowels that make one sound.
For example: coat, boat, meet.

Full Rule Set III

Rule #5 Use prefixes and suffixes to separate syllables.
For example: re-turn, un-u-su-al, pre-paid, end-less, pay-ing, hap-pi-ness, un-
kind-ly.

Rule #6 Compound nouns are always divided between the two words.
For example: some-thing, cup-cake, with-out, how-ev-er, ba-by-sit-ter, class-
room, break-fast, sun-flow-er.

Rule #7a
Divide before the consonant before an "-le" syllable and sounds like “-el”.
For example: a-ble, can-dle, fum-ble, ap-ple, ta-ble, cas-tle.

Rule #7b Exception: Words which end with “ckle”.
For example: tick-le, tack-le.

Questions

Question: How to track rule usage?
Discovery : Use a rule number as a syllable separator? Unruly becomes:
un3ru5ly

Question: To analyze letter by letter or by letter groups?
Discovery: Use letter by letter. Gives a simpler, linear logic.

Question: Should we catalog letter clusters (diphthongs, coin & loud; there,
thought) and give them unique symbols?
Discovery: No answer yet.

Question: scan left to right or right to left?
Discovery: Develop support words for both.

Question: What decision structure to use: If/else rules, table driven, a parse
tree, or ??”
Discovery: An easy start is if/else rules. I suspect a parse tree will be more
general.

Word List

the, plant, banana, children, camera, tape, like, love, extreme,
take, blue, coin, loud, bread, moon, sound, beautiful, avoid, many,
bicycle, ivy, basic, robot, water, river, model, panel,
teacher, lashes, graphic, panther, bathtub, diet, diaeresis, coat,
boat, meet, return, unusual, prepaid, end-less, paying, happiness,
unkindly, something, cupcake, without, however, babysitter,
classroom, breakfast, sunflower, able, candle, fumble, apple,
table, castle, tickle, tackle, sabre, saber, savor, savior.

Target Result
the, plant, ba-na-na, chil-dren, cam-er-a.
tape, like, love, ex-treme, take, blue.
coin, loud, bread, moon, sound, beau-ti-ful, a-void.
man-y, bi-cy-cle, i-vy.
ba-sic, ro-bot, wa-ter.
ri-v-er, mod-el, pan-el.
teach-er, lash-es, graph-ic, pan-ther, bath-tub.
di-et, di-aer-e-sis.
coat, boat, meet.
re-turn, un-u-su-al, pre-paid, end-less, pay-ing, hap-pi-ness, un-kind-ly.
some-thing, cup-cake, with-out, how-ev-er, ba-by-sit-ter, class-room, break-
fast, sun-flow-er.

a-ble, can-dle, fum-ble, ap-ple, ta-ble, cas-tle. [Rule 7a]
tick-le, tack-le. [Rule 7b]

Sab-re, sab-er, sa-vor, sav-ior

Conversion Algorithm
Key elements

1. Develop a list of target words.

2. From the list, extract the next word to scratch workspace.

3. Develop the rule structure, incrementally for 7 rules.

4. Form a rule for the simplest case.

5. Apply the rule.

6. Repeat forming the next rule until exhausted.

7. Add the parsed word to an output report.

8. Repeat for the next word at 2.

Applying Rule #7
Rule #7a Divide before the consonant before an "-le"
syllable and sounds like “-el”.
For example: a-ble, can-dle, fum-ble, ap-ple, ta-ble, cas-
tle.

Rule #7b exception: Words which end with “ckle”.
For example: tick-le, tack-le

If letter~0 is not ‘e’ exit

If letter~1 is not ‘l’ exit

If letter~ 2 is ‘k’ and letter ~3 is ‘c’ place 7 as divider
‘ck7le’, exit

If letter~2 is a consonant place 7 as a divider ‘7xle’.

Rule #7
‘e’

‘l’

‘k’ & ‘c’

place
’ck7le’

consonant
yes

place
’x7le’no action

Rule 7

: Rule7 (---)

fetch~0 ascii e <> if exit then

fetch~1 ascii l <> if exit then

fetch~2 ascii k = fetch~3 ascii c = and

if 2 Insert-Rule-7 exit then

fetch~2 consonant?

if 3 Insert-rule-7 then ;

Looks for tickle to tick7le

and apple to ap7ple

Fetching Ending Letters

: fetch~ (n ---)

create ,

does> @ target-size swap –

1- target-buffer + c@ ;

\ Words to fetch characters from the end of the
target buffer

0 fetch~ fetch~0 1 fetch~ fetch~1

2 fetch~ fetch~2 3 fetch~ fetch~3

Reporting Rule 7

: Insert-rule-7 (n ---)

target-buffer target-size +

over - dup dup 1+

3 roll cmove>

ascii 7 swap c! \ punch in '7'

1 +to target-size ;

Spread contents of the target buffer and insert
the marker ‘7’.

Applying the Rules

: Run-Tests (---)

restart-words cr cr

my-file-words 0

do get-word

Rule7 type-target-buffer cr loop ;

More rules would be added after ‘Rule7’

Getting A Word

: get-word (---)

demark-word copy-demarked eat-demarked ;

Copy the next word from a file buffer.

Workspace

(Workspace for files)

0 value My-File-Name \ holds path and name

0 value My-File-ID \ file handle

0 value My-File-Size \ byte count

0 value My-File-Location \ pointer to ram buffer

0 value My-file-Offset \ current processing point

0 value My-file-Words \ count of file words

(Workspace for target word)

create target-buffer 20 allot

0 value target-size \ byte count in target word

Output Example
babysitter
classroom
breakfast
sunflower

a7ble
can7dle
fum7ble
ap7ple
ta7ble
cas7tle

tick7le
tack7le
sabre saber savor savior ok

I am used to parsing computer text.

This full project was much more than I

expected.

Developing the file access and support

took about four hours.

Rule 7 development took about 5

minutes.

A full project would require

dictionary access and an expanded

notation or symbol set.

Summary

Questions?

