

Chen-Hanson Ting
SVFIG
October 26, 2019

Summary

- Python is Forth in C
- Problems in IncRNA searches

Python is Forth in C

- Python interpreter IDLE feels like Forth, and syntax is like C.
- Python lists handle multidimensional data, mixing numbers and strings, with ease.
- File system is flexible.

- Forth code is easy to convert to Python code.
- It is easy to write Python interpreter code in files and compile files.
- Python string and list methods are easy to invoke.
- No new functions are necessary.

- Python can handle huge genome data in lists and strings.
- Python opens more than 4000 files simultaneously.
- 32-bit Python shows memory errors. 64-bir python does not.
- Excel is used to display data.

Python Code I

- FORMAT: names/nucleotides
- TRIM: redundancy removal
- SPLIT: data/index files
- REPEATS: find all Repeats
- SORT: sort Repeats
- PACK: pack Repeats to Pearls

Python Code II

- SELECT: remove redundant Pearls
- REDUCE: from selected Pearls reduce index file
- CLEANUP: from reduced index file cleanup format file

Python Code III

- SPLIT: split reduced format file into data / index files
- REPEATS: find all Repeats
- SORT: sort Repeats
- PACK: pack Repeats to Pearls

Python Code III

- SELECT: remove redundant Pearls
- REDUCE: from selected Pearls reduce index file
- CLEANUP: from reduced index file cleanup format file

Biggest Problem

- Duplicated IncRNA produce huge amount of bogus Repeats which invalidate matching patterns.
- It is difficult to identify and remove these nucleotide sequences.

RNA Pattern Search

Steps in IncRNA analysis:

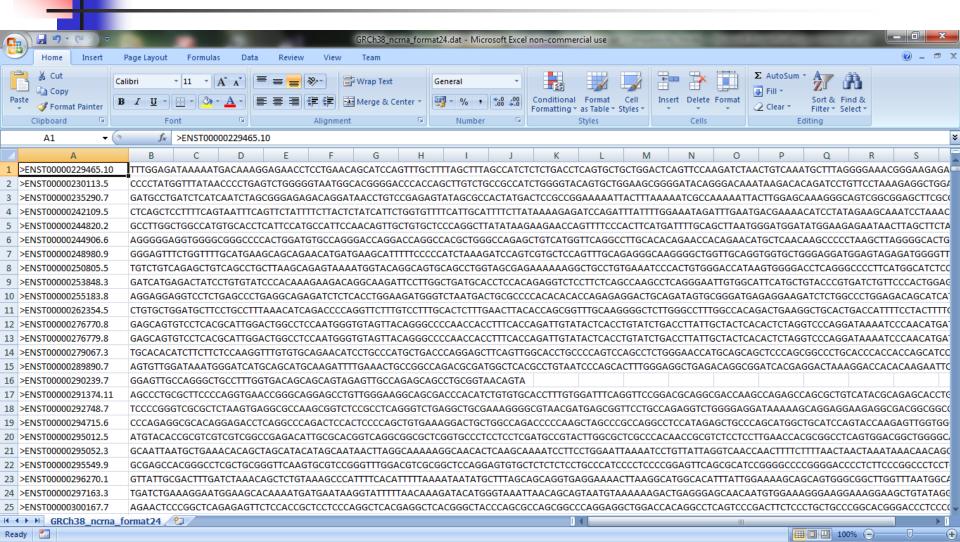
- Find all 20 nt repeated patterns as Repeats.
- Consolidate adjacent Repeats for form Pearls.
- Find clusters of Pearls as Necklaces.

IncRNA Databases

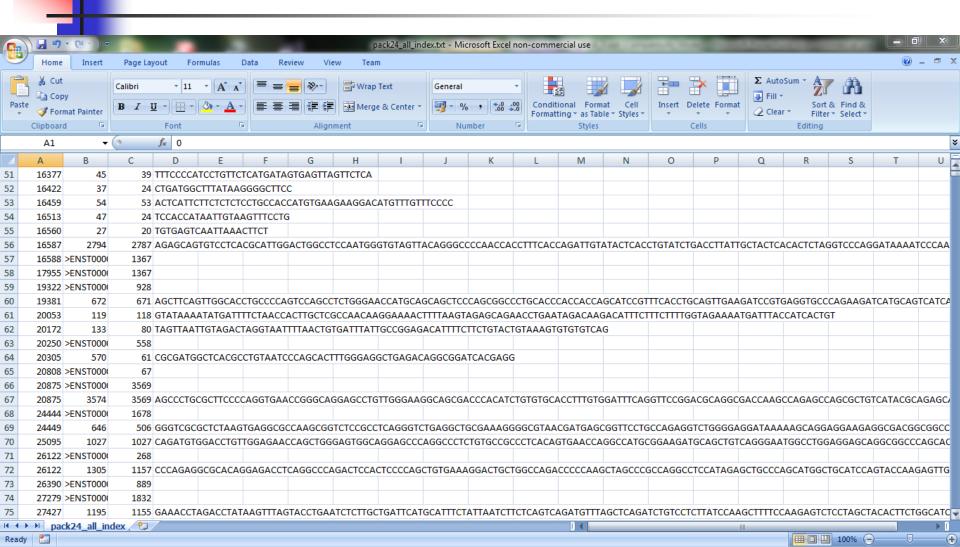
Name	Size(KB)	RNA
GRCh38_ncrna.fa	64,249	67,419
LNCipedia_5_2.fasta	196,560	102,369
NONCODEv5.fa	284,922	165,911
GRCh38_cdna.fa	361,405	139,155
lncRNA_lncbook.fa	400,768	208,848

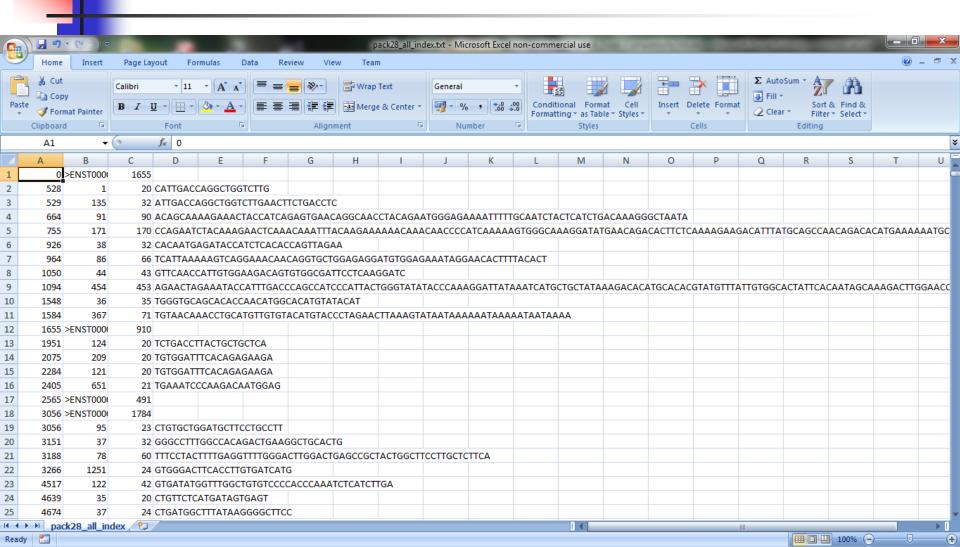
Redundancy in RNA

- There are many very long Pearls caused by redundancy in IncRNA
- Two long stretches of n nucleotides would give 2n bogus Repeats.
- Bogus Repeats cause bogus Pearls.


- Eliminate identical IncRNA in database.
- Eliminate redundant long Pearls.
- Backtrack redundant long Pearls to respect IncRNA and remove them from database.
- Repeat pattern analysis.

			Select	Select	Final
Fasta File	IncRNA	Pearls	Pearls	IncRNA	Pearls
GRCh38_ncrna	47489	83626	76926	10563	35614
LNCipedia	126876	327561	294429	28927	110326
NONCODE	170767	574827	527627	51516	67019
GRCh38_cdna	177455	370062	267700	22945	109402
Incbook	268639	847583	776065	81465	320500




- Formatted IncRNA database.
- Very long Pearls
- Pearls file after redundancy removal.

Formatted IncRNA Data

Very long Pearls

IncRNA Database Intersections

	G_ncrna	LNCipedia	G_cdna	NONCODE	ncbook
G_ncrna	54941	22640	58	3093	12938
LNCipedia		126876	21765	17236	51787
G_cdna			177455	6089	15866
NONCODE				170767	14101
Incbook					268639

MicroRNA

- miRBase Database
 - 48,885 miRNA's
 - 27,383 unique miRNA's
 - 5312 human miRNA's

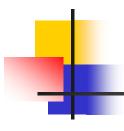
miRNA in IncRNA

Fasta File	IncRNA	Match Records	Match miRNA	Match IncRNA
GRCh38_ncrna	54941	4564	2803	2937
LNCipedia	126876	6404	453	4291
GRCh38_cdna	177455	3502	405	2900
NONCODE	170767	1302	380	453
Incbook	268639	10658	532	8754

Questions?

Thank You!

- GRCh38_ncrna.fa
 - 65,790,873 bp
 - 67,419 IncRNA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom.


- LNCipedia_5_2.fasta
 - 192,690,141 bp
 - 127,802 transcripts
 - 56,946 genes
- Ghent University VIB, Life Sciences
 Research Institute in Flanders, Belgium.

- NONCODEv5_human.fa,
 - 278,614,288 bp
 - 165,911 IncRNA
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

- GRCh38_cdna.fa
 - 316,791,371 bp
 - 139,155 IncRNA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom.

- IncRNA_Incbook.fa
 - **405,815,189** bp
 - 268,848 IncRNA
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China