
One-Step DNA
Pattern Search

Chen-Hanson Ting

SVFIG

October 27, 2018

Summary

 String compare and search

 Bacterial genomes

 Optimized Search

 Pearls

 Necklaces

 Examples

What is Information?

Repeated patterns

Information in Genomes

 Coding DNA

 Genes with protein code

 Noncoding DNA

 ???

Gene Expressions

 Coding DNA

 Messenger RNA

 Transfer RNA

 MicroRNA

 Noncoding DNA

 Noncoding RNA

Noncoding DNA/RNA

 Collections of microRNAs

 Collections of microRNA-like
information

 Pearls: 20-base patterns

 Necklaces: clusters of pearls

Exhaustive Search
of Pearls

 Identify all pearls, unique and
repeated 20-base patterns in
genomes.

 Identify all necklaces, which are
clusters of adjacent pearls.

 Pearls are related to microRNAs.

 Necklaces are related to noncoding
RNAs

Simple Python Search

 Sequencing through all 20-base
patterns in genomes.

 For each 20-base pattern, search
its repeats.

Simple Python Search
def encode(file):

fin=open(file+'.txt','r')

fout=open(file+'_out.dat','w')

gen=fin.read()

genome=gen[0:len(gen)-1]+gen[0:20]

end=len(genome)

fin.close()

for i in range(len(gen)):

g=genome[i:i+20]

print(i,g)

for j in range(i+1,len(gen)):

if genome[j:j+20]==g:

fout.write(str(i)+'\t'+g+'\n')

break

for j in range(i+1,len(gen)):

if genome[j:j+20]==g:

fout.write(str(j)+'\t'+g+'\n')

fout.close()

encode('hsa_mito')

Advanced Python Search

 Break genome file into a list of 20-
base patterns.

 Remove duplicated patterns with
SET function.

 Save only duplicated patterns as
pearls.

 Mark all pearls in genome to
identify necklaces.

def encode(file):

fin=open(file+'.dat','r')

fout=open(file+'_out.dat','w')

genome=fin.read()

end=len(genome)

fin.close()

genom=[genome[i:i+20] for i in range(end)]

gen=list(genom)

trim=list(set(gen))

for i in range(len(trim)):

gen.remove(trim[i])

trim=list(set(gen))

last=total=0

gen=list(genom)

for i in range(len(gen)):

if (i-20)>last:

if gen[i] in trim:

fout.write(str(i)+'\t'+gen[i]+'\n')

last=i

total+=1

fout.close()

encode('nasuia')

encode('ruddii')

encode('nasuia')

encode('ruddii')

Advanced Python Search

 Python code is very simple because
of the rich tool sets.

 It worked very well with small
bacterial genomes.

 It took forever to search E. coli
genome of 4.6 Mbp.

Advanced Forth Search

 Two critical text search routines
were coded in assembly:

 Compare two strings:

Compare(s1 s2 n -- -1|0|1)

 Look up a pattern in a long string:

look (p n1 s n2 -- addr|0)

Optimized Compare
code Compare (string pattern n -- -1 | 0 | 1)

(044730 8B CB) mov ecx , ebx

(044732 8B 7D 00) mov edi , 0 [ebp]

(044735 8B 75 04) mov esi , 4 [ebp]

(044738 8D 6D 08) lea ebp , 8 [ebp]

(04473B 33 DB) xor ebx , ebx

(04473D 81 E1 FF 00 00 00) and ecx , # dword $FF

(044743 F3) repz

(044744 A6) cmpsb

(044745 77 03) ja short @@1

(044747 72 04) jb short @@2

(044749 C3) ret near

(04474A) @@1:

(04474A FF C3) inc ebx

(04474C C3) ret near

(04474D) @@2:

(04474D FF CB) dec ebx

(04474F C3) ret near

end-code

Optimized Look
code look (pattern n1 string n2 -- match|0)

(65651E4) @@1:

(65651E4 FF CB) dec ebx

(65651E6 7E 19) jle short @@3

(65651E8 8B 7D 00) mov edi , 0 [ebp]

(65651EB 8B 4D 04) mov ecx , 4 [ebp]

(65651EE 8B 75 08) mov esi , 8 [ebp]

(65651F1 F3) repz

(65651F2 A7) cmpsd

(65651F3 75 07) jnz short @@2

(65651F5 8B 5D 00) mov ebx , 0 [ebp]

(65651F8 8D 6D 0C) lea ebp , $C [ebp]

(65651FB C3) ret near

(65651FC) @@2:

(65651FC FF 45 00) inc 0 [ebp] dword

(65651FF EB E3) jmp short @@1

(6565201) @@3:

(6565201 8D 6D 0C) lea ebp , $C [ebp]

(6565204 C3) ret near

end-code

Advanced Forth Search

 Break genome into 4096 threads,
each associated with an unique 6-
base pattern.

 Search repeated 20-base patterns
in each thread.

 Threads were coded in run-length-
code.

Advanced Forth Search

 Each thread can be processed after
it is produced.

 Run-length coding is not necessary
because thread data and links are
not written into external files.

 Searching is greatly accelerated.

Advanced Forth Search

 SCAN-LOOK links the same 6-base
patterns into a thread, a simple
address list.

 The address list is left in PAD.

SCAN-LOOK
variable LinkPointer

: SCAN-look (--)

pad LinkPointer !

Genome @ (a)

begin (a)

dup source pattern rot (a p lim a)

Genome-end @ over - cell+ (a p lim a len)

LOOK (a a1|0)

dup while \ dup Genome @ - EXTputN

pattern + dup LinkPointer @ !

4 LinkPointer +!

swap drop

repeat

LinkPointer @ ! drop
;

Advanced Forth Search

 PASS1 scans a thread, write out
the first matching pattern.

 PASS2 scans a thread, write out
the rest of matching patterns.

 SCAN-PASS2 calls PASS1 and
PASS2 to write all repeated
patterns to an output file.

PASS1
: pass1 (ptr -- , write 1st match)

dup @ target ! (ptr)

begin cell+ (ptr1)

dup @ dup (ptr1 addr addr)

while (ptr1 addr)

dup target @ compare-len compare (ptr1 addr f)

if drop else

target @ pattern - dup Genome @ - EXTputN

Genome-limit EXTputLine CRLF

2drop exit (report 1st match)

then

repeat

2drop ;

PASS2
: pass2 (ptr -- , write 1st match)

dup @ target ! (ptr)

begin cell+ (ptr1)

dup @ dup (ptr1 addr addr)

while

dup target @ compare-len compare (ptr1 addr f)

if drop else

pattern - dup Genome @ - EXTputN

Genome-limit EXTputLine CRLF

then

repeat

2drop ;

SCAN-PASS2
(Scan a thread. Report all matches.)

: SCAN-pass2 (--)

pad (ptr)

begin dup @ (ptr addr)

while (ptr)

dup pass1 (ptr)

dup pass2 (ptr)

cell+

repeat

drop ;

Advanced Forth Search

 DECODE generates 4096 threads.
Write all repeated patterns to
output file.

 MATCHES opens a genome file, and
writes all repeated patterns to
output file.

DECODE
(Decode 4096 threads. Report all matches.)

: decode (--)

0 (code)

$1000 for aft

dup ACGT (code)

scan-look

SCAN-pass2 (code)

1+ (code+1)

then next drop

;

MATCHES

(Encode a genome file, and decode all repeated matching patterns.

)

: matches (matches genome --)

Genomeopen

Genome-len @ Genome @ + Genome-end !

uppercase

EXTopen decode EXTclose

Genomeclose Deltaclose

;

: bacteria

z" ruddii_matches_1.txt" z" ruddii_data.txt" matches

z" nasuia_matches_1.txt" z" nasuia_data.txt" matches

z" genitalium_matches_1.txt" z" genitalium_data.txt" matches

z" equitans_matches_1.txt" z" equitans_data.txt" matches

z" acido_matches_1.txt" z" acido_data.txt" matches

z" ecoli_matches_1.txt" z" ecoli_data.txt" matches

;

Bacteria Studied

 Nasuia (Nasuia deltocephalinicola)

 Ruddii (Candidatus Carsonella ruddii)

 Equitans (Nanoarchaeum equitans)

 Genitalium (Mycoplasma genitalium)

 Acido (Lactobacillus acidophilus)

 Ecoli (Escherichia coli)

Bacterial Genomes

 Nasuia 112,091

 Ruddii 173,806

 Equitans 490,885

 Genitalium 580,076

 Acido 1,993,560

 Ecoli 4,641,652

Genome Search Time
Seaarch Time (min)

Bacteria Bp Forth Python

Nasuia 112,091 1 5

Ruddii 173,806 1 11

Equitans 490,885 2 1:07

Genitalium 580,076 2 1:18

Acido 1,993,560 9 13:23

Ecoli 4,641,652 25 ????

Pearls and Necklaces

 Pearls are assigned unique IDs.

 Pearls are listed with gene
annotations.

 Necklaces are listed separately in
spread sheets.

Pearls

 Huge numbers of repeated
patterns in consecutive locations,
caused by duplicated genes. These
patterns must be deleted.

 20 base patterns outside of genes
are called Pearls.

Pearls

 Pearls are extracted, and each
assigned a unique ID.

 All pearls are identified in a
bacterial genome.

 Clusters of pearls can then be
identified as necklaces.

Necklaces

 Lots of pearls appear in clusters.

 Clusters of consecutive pearls are
called Necklaces.

 Necklaces are often found in non-
coding DNA, but may be found in
coding regions.

 Necklaces probably represent high
level functions in a cell computer.

Necklace Examples (E. coli)

Pearls and Necklaces

 In my cell computer model,

 Pearls and microRNAs are
instructions.

 Protein-coding genes are primitive
instructions which produces
messengerRNAs.

 Necklaces are high level instructions
with lists of pearls.

Questions?

Thank You!

