
One-Step DNA
Pattern Search

Chen-Hanson Ting

SVFIG

October 27, 2018

Summary

 String compare and search

 Bacterial genomes

 Optimized Search

 Pearls

 Necklaces

 Examples

What is Information?

Repeated patterns

Information in Genomes

 Coding DNA

 Genes with protein code

 Noncoding DNA

 ???

Gene Expressions

 Coding DNA

 Messenger RNA

 Transfer RNA

 MicroRNA

 Noncoding DNA

 Noncoding RNA

Noncoding DNA/RNA

 Collections of microRNAs

 Collections of microRNA-like
information

 Pearls: 20-base patterns

 Necklaces: clusters of pearls

Exhaustive Search
of Pearls

 Identify all pearls, unique and
repeated 20-base patterns in
genomes.

 Identify all necklaces, which are
clusters of adjacent pearls.

 Pearls are related to microRNAs.

 Necklaces are related to noncoding
RNAs

Simple Python Search

 Sequencing through all 20-base
patterns in genomes.

 For each 20-base pattern, search
its repeats.

Simple Python Search
def encode(file):

fin=open(file+'.txt','r')

fout=open(file+'_out.dat','w')

gen=fin.read()

genome=gen[0:len(gen)-1]+gen[0:20]

end=len(genome)

fin.close()

for i in range(len(gen)):

g=genome[i:i+20]

print(i,g)

for j in range(i+1,len(gen)):

if genome[j:j+20]==g:

fout.write(str(i)+'\t'+g+'\n')

break

for j in range(i+1,len(gen)):

if genome[j:j+20]==g:

fout.write(str(j)+'\t'+g+'\n')

fout.close()

encode('hsa_mito')

Advanced Python Search

 Break genome file into a list of 20-
base patterns.

 Remove duplicated patterns with
SET function.

 Save only duplicated patterns as
pearls.

 Mark all pearls in genome to
identify necklaces.

def encode(file):

fin=open(file+'.dat','r')

fout=open(file+'_out.dat','w')

genome=fin.read()

end=len(genome)

fin.close()

genom=[genome[i:i+20] for i in range(end)]

gen=list(genom)

trim=list(set(gen))

for i in range(len(trim)):

gen.remove(trim[i])

trim=list(set(gen))

last=total=0

gen=list(genom)

for i in range(len(gen)):

if (i-20)>last:

if gen[i] in trim:

fout.write(str(i)+'\t'+gen[i]+'\n')

last=i

total+=1

fout.close()

encode('nasuia')

encode('ruddii')

encode('nasuia')

encode('ruddii')

Advanced Python Search

 Python code is very simple because
of the rich tool sets.

 It worked very well with small
bacterial genomes.

 It took forever to search E. coli
genome of 4.6 Mbp.

Advanced Forth Search

 Two critical text search routines
were coded in assembly:

 Compare two strings:

Compare(s1 s2 n -- -1|0|1)

 Look up a pattern in a long string:

look (p n1 s n2 -- addr|0)

Optimized Compare
code Compare (string pattern n -- -1 | 0 | 1)

(044730 8B CB) mov ecx , ebx

(044732 8B 7D 00) mov edi , 0 [ebp]

(044735 8B 75 04) mov esi , 4 [ebp]

(044738 8D 6D 08) lea ebp , 8 [ebp]

(04473B 33 DB) xor ebx , ebx

(04473D 81 E1 FF 00 00 00) and ecx , # dword $FF

(044743 F3) repz

(044744 A6) cmpsb

(044745 77 03) ja short @@1

(044747 72 04) jb short @@2

(044749 C3) ret near

(04474A) @@1:

(04474A FF C3) inc ebx

(04474C C3) ret near

(04474D) @@2:

(04474D FF CB) dec ebx

(04474F C3) ret near

end-code

Optimized Look
code look (pattern n1 string n2 -- match|0)

(65651E4) @@1:

(65651E4 FF CB) dec ebx

(65651E6 7E 19) jle short @@3

(65651E8 8B 7D 00) mov edi , 0 [ebp]

(65651EB 8B 4D 04) mov ecx , 4 [ebp]

(65651EE 8B 75 08) mov esi , 8 [ebp]

(65651F1 F3) repz

(65651F2 A7) cmpsd

(65651F3 75 07) jnz short @@2

(65651F5 8B 5D 00) mov ebx , 0 [ebp]

(65651F8 8D 6D 0C) lea ebp , $C [ebp]

(65651FB C3) ret near

(65651FC) @@2:

(65651FC FF 45 00) inc 0 [ebp] dword

(65651FF EB E3) jmp short @@1

(6565201) @@3:

(6565201 8D 6D 0C) lea ebp , $C [ebp]

(6565204 C3) ret near

end-code

Advanced Forth Search

 Break genome into 4096 threads,
each associated with an unique 6-
base pattern.

 Search repeated 20-base patterns
in each thread.

 Threads were coded in run-length-
code.

Advanced Forth Search

 Each thread can be processed after
it is produced.

 Run-length coding is not necessary
because thread data and links are
not written into external files.

 Searching is greatly accelerated.

Advanced Forth Search

 SCAN-LOOK links the same 6-base
patterns into a thread, a simple
address list.

 The address list is left in PAD.

SCAN-LOOK
variable LinkPointer

: SCAN-look (--)

pad LinkPointer !

Genome @ (a)

begin (a)

dup source pattern rot (a p lim a)

Genome-end @ over - cell+ (a p lim a len)

LOOK (a a1|0)

dup while \ dup Genome @ - EXTputN

pattern + dup LinkPointer @ !

4 LinkPointer +!

swap drop

repeat

LinkPointer @ ! drop
;

Advanced Forth Search

 PASS1 scans a thread, write out
the first matching pattern.

 PASS2 scans a thread, write out
the rest of matching patterns.

 SCAN-PASS2 calls PASS1 and
PASS2 to write all repeated
patterns to an output file.

PASS1
: pass1 (ptr -- , write 1st match)

dup @ target ! (ptr)

begin cell+ (ptr1)

dup @ dup (ptr1 addr addr)

while (ptr1 addr)

dup target @ compare-len compare (ptr1 addr f)

if drop else

target @ pattern - dup Genome @ - EXTputN

Genome-limit EXTputLine CRLF

2drop exit (report 1st match)

then

repeat

2drop ;

PASS2
: pass2 (ptr -- , write 1st match)

dup @ target ! (ptr)

begin cell+ (ptr1)

dup @ dup (ptr1 addr addr)

while

dup target @ compare-len compare (ptr1 addr f)

if drop else

pattern - dup Genome @ - EXTputN

Genome-limit EXTputLine CRLF

then

repeat

2drop ;

SCAN-PASS2
(Scan a thread. Report all matches.)

: SCAN-pass2 (--)

pad (ptr)

begin dup @ (ptr addr)

while (ptr)

dup pass1 (ptr)

dup pass2 (ptr)

cell+

repeat

drop ;

Advanced Forth Search

 DECODE generates 4096 threads.
Write all repeated patterns to
output file.

 MATCHES opens a genome file, and
writes all repeated patterns to
output file.

DECODE
(Decode 4096 threads. Report all matches.)

: decode (--)

0 (code)

$1000 for aft

dup ACGT (code)

scan-look

SCAN-pass2 (code)

1+ (code+1)

then next drop

;

MATCHES

(Encode a genome file, and decode all repeated matching patterns.

)

: matches (matches genome --)

Genomeopen

Genome-len @ Genome @ + Genome-end !

uppercase

EXTopen decode EXTclose

Genomeclose Deltaclose

;

: bacteria

z" ruddii_matches_1.txt" z" ruddii_data.txt" matches

z" nasuia_matches_1.txt" z" nasuia_data.txt" matches

z" genitalium_matches_1.txt" z" genitalium_data.txt" matches

z" equitans_matches_1.txt" z" equitans_data.txt" matches

z" acido_matches_1.txt" z" acido_data.txt" matches

z" ecoli_matches_1.txt" z" ecoli_data.txt" matches

;

Bacteria Studied

 Nasuia (Nasuia deltocephalinicola)

 Ruddii (Candidatus Carsonella ruddii)

 Equitans (Nanoarchaeum equitans)

 Genitalium (Mycoplasma genitalium)

 Acido (Lactobacillus acidophilus)

 Ecoli (Escherichia coli)

Bacterial Genomes

 Nasuia 112,091

 Ruddii 173,806

 Equitans 490,885

 Genitalium 580,076

 Acido 1,993,560

 Ecoli 4,641,652

Genome Search Time
Seaarch Time (min)

Bacteria Bp Forth Python

Nasuia 112,091 1 5

Ruddii 173,806 1 11

Equitans 490,885 2 1:07

Genitalium 580,076 2 1:18

Acido 1,993,560 9 13:23

Ecoli 4,641,652 25 ????

Pearls and Necklaces

 Pearls are assigned unique IDs.

 Pearls are listed with gene
annotations.

 Necklaces are listed separately in
spread sheets.

Pearls

 Huge numbers of repeated
patterns in consecutive locations,
caused by duplicated genes. These
patterns must be deleted.

 20 base patterns outside of genes
are called Pearls.

Pearls

 Pearls are extracted, and each
assigned a unique ID.

 All pearls are identified in a
bacterial genome.

 Clusters of pearls can then be
identified as necklaces.

Necklaces

 Lots of pearls appear in clusters.

 Clusters of consecutive pearls are
called Necklaces.

 Necklaces are often found in non-
coding DNA, but may be found in
coding regions.

 Necklaces probably represent high
level functions in a cell computer.

Necklace Examples (E. coli)

Pearls and Necklaces

 In my cell computer model,

 Pearls and microRNAs are
instructions.

 Protein-coding genes are primitive
instructions which produces
messengerRNAs.

 Necklaces are high level instructions
with lists of pearls.

Questions?

Thank You!

