
Whiskers

The Artificial Intelligence Robot
Technical Manual

Version 1.42
August 6,1997

 Copyright Angelus Research Corp. 1992-2000

This software and manual cannot be sold or incorporated
into another product without express written permission of

Angelus Research Corp,
11801 Cardinal Circle #J

Garden Grove, California (714) 590-7877
Last Revision: August 6, 1999

All rights reserved

2

Table of Contents

Preface 4

Whiskers the Robot 5

Overview 6

Chapter I - Technical Insights 7

Motor Drive 7

Pulse Width Modulation 7

Sensors 7

Optical Sensors(Light) 8

Optical sensor Pairs(Collision) 8

Whiskers Detectors 9

The Battery 9

Microphone 9

Speaker Output 10

Chapter II - Software Architecture 11

Flow chart 12

Instinct Level Modification 13

Instinct Response Mailboxes and Light Detector Values 14

Collision Flags and Flag Mailboxes 15

Miscellaneous Flags and Registers 16

Task and Behavior Level Modification 17

Sample Task Code 19

Sample Behavior Code 21

Chapter III - WCL Whiskers Control Language 26

System Level 26

3

Useful Words 27

Motor Control 28

Analog to Digital Converter 32

Light Sensors 33

Microphone 33

Instinct Level 34

Mail Boxes 35

Obstacle Control 35

Delaying Words 35

Speaker Control 35

Sound Effects 36

Music 36

Sample Songs 37

Chapter III - Experiments 39

Chapter IV - The Forth Language 46

Chapter V - Hardware and Software Details 63

Forth Memory Map 63

System Memory Map 64

Connector Pin Designations 66

Chapter VI - High Level Source Code 70

Chapter VII - History of Robots excerpts 96

Appendix-A After the crash 100
Appendix-B Error Codes 101
Appendix-C Assembler for Whiskers (optional) 102

Preface

I must say, I had a lot of fun designing Whiskers. I started this project in the fall of 1991. As the Technical Vice
President of the Robotics Society of California, I saw a need for an intelligent sophisticated robot that anyone could
use. From the Techie type (like myself) to persons with very little technical knowledge, Whiskers scratches the itch
of those who love robots. If you have no programming skills, or hardware experience; don't worry, Whiskers is
designed to teach. Use his interactive control to learn his High Level Language first. You can do amazing things
with it and also get an introduction to programming techniques. On this level you can easily teach him new songs to
sing, wander around the room avoiding things, search for sounds, and perform neat tricks to amuse yourself and your

4

friends. Kids really go crazy with him. Pull his whiskers, and see how he reacts. My two daughters, Amy and
Sarah, have a ball chasing him around the house.

I would like to thank first my family for putting up with the long hours and endless ramblings on designing
intelligence into a robot. I also would like to thank my friends George Ronnquist and Bill Chessell for being
sounding boards for my ideas. Finally, this project would have remained a dream if Dr. Kenneth Butterfield, who
bought one of my first robots, hadn’t caught the Whisker’s bug. He was crucial in implementing the many ideas that
I had as well as contributing ones of his own.

For the more technically inclined, Whiskers is a very advanced robot. You can use any combination of: the high level
language, Forth, or even assembler to program him. His software architecture is very state-of-the-art. He simulates living
creatures by having an instinct level process that runs in the background. Just set up the instinctive responses to sensor hits,
and control his behavior in a very biological way. Using the behavior level, add your own rules (behaviors) to add to his
intelligence. Experiment with sound recognition, speech recognition, navigation, and in the future even neural networks. His
capabilities are almost endless. Use your imagination to explore new ideas and share with other Whisker Owners what your
have discovered.

Don Golding
Whisker's Creator

5

Whiskers the Robot

Angelus Research has developed a new and innovative tool for educators to use...Whiskers the Robot. With educational
funds being scarce in this current economy, he is very affordable as well. With the current emphasis on giving students
marketable job skills, Whiskers is an important tool to have.

Robotics will be the most important emerging technology of the nineteen nineties and beyond. Industry has been rushing
to install automation at a feverish pace. While employment has been stagnant, capital expenditures by companies
worldwide has been brisk. Graduates who understand robotics and automation are in great demand.

Whiskers the robot was designed to introduce and teach students about this exciting technology. Much like a personal
computer, Whiskers is being used by middle schools through advanced mobile robotics research at Universities. If you
can speak English, you can program Whiskers. English commands can be typed in interactively to control the robot or
new commands can be created easily using a standard word processor and sent to Whiskers over his serial cable.
Whiskers is completely self contained. No additional software is required on the personal computer (IBM or Macintosh)
other than a terminal program.

Whiskers is very easy to program, anyone can add new commands in minutes. Even people who never have programmed
before, can program this personable robot. Collision avoidance is handled automatically by his animal emulation
software. Just like a real animal, Whiskers has instincts, behaviors, and goals. Instincts and behaviors are handled
automatically in the background. Users can very easily add their own behaviors using just the English like High level
language. More advanced users can also use a combination of the High Level Language, Forth, or even assembler.
Using other languages like C, Pascal, ands Basic are also possible using a wireless modem and any type of computer.

6

Overview

WHISKER'S is easy to use and fun to program. You can learn a great deal about important issues in robotics. WHISKERS is
a three-wheeled, battery-powered, free roaming, obstacle-avoiding robot. WHISKERS intelligence is derived from a single
68HC11micro controller. His propulsion is provided by two 12 volt geared DC motors both driven by dual H Bridge
integrated circuit driver chip.

Whiskers has a computer onboard which allows you to control and program him. Using simple commands like FORWARD,
STOP, FIND-SOUND, and many others, you can control him interactively (just typing them at the terminal) or program him
by extending his language. Add your own words to perform tasks that interest you. He can avoid obstacles using his four
light sensors, two on the side and two on the front, two whiskers; left and right, and the drag on each motor. The motor drag
allows you to detect when Whiskers has run into something that his other sensors don't detect. It is a sensor of last resort. If
he runs into a table leg between his forward sensors, the motor stall will detect and avoid it.

To program WHISKERS, you will need a personal computer running a terminal emulation program. An IBM compatible,
Apple, or any other computer that has a serial port and can run a terminal program. Using the supplied serial cable connected
to a serial port and communication software such as: Procomm, Crosstalk, Qmodem, etc. your can communicate with
Whiskers. Many of these programs are free (shareware) and easy to get. Set your parameters to 9600 baud, no parity, 1 stop
bit and you are ready to go. After connecting the cable supplied to whiskers and your serial port, turn Whiskers on and press
any key. This will put you into the interactive mode to give him commands. If you don't hit a key, he will run the auto-start
task. When you first get him, this task is a word called WANDER. It will demonstrate many of his features.

WHISKERS, in its basic configuration, can be controlled simply by typing the commands at the keyboard that Whiskers
understands. Add to his capabilities by creating new words interactively or by editing a text file on your computer and
downloading it to the robot. You have enough on board memory to add thousands of new commands.

An onboard battery backup circuit insures your code will not be lost when turned off. The battery circuit will keep your
words safe for about ten days with a full charge. A partial charge would be proportionally less.

Note: the battery charger should be plugged in when Whiskers is not in use.

7

Chapter I
Technical Insights

Motor Drive

The drive motors used in "WHISKERS" are of a 12 volt DC gear motor design. The wheels are directly mounted on the
motor shafts through an adapter. The robot is steered by either reversing the direction of one motor in regards to the other, or
setting the motor speeds so they are different from one another. This is called a differential direct drive system.

Pulse Width Modulation

DC motors are the mainstay of robotics design. Controlling the speed of a robot must be done in the most efficient design
possible. This is because of the finite amount of power stored in the battery. Saving energy means our robots can run for
longer periods of time.

The most intelligent way to control a robots speed is called Pulse Width Modulation(PWM). This technique operates the
drive integrated circuit in a full on or a full off mode. Semiconductor devices usually dissipate very minimal power when
operated in this mode.

To begin to understand PWM, lets imagine a pulse train from the CPU that consists of on and off periods of equal time
interval (50% duty cycle). This pulse train from the computer is then used to drive the motor. The pulses are applied to the
motor so rapidly, that the mechanical inertia of the robot completely smoothes out these pulses to give an average speed
proportionally to the duty cycle of the pulses. i.e.; on time verses off time. If the computer program wants additional speed, it
increases the duty cycle by increasing the on period and reducing the off portion accordingly. This raises the average
electrical power applied to the motor.

In WHISKERS the PWM pulse trains are generated by the instinct level through output lines: (PA3, PA4, PA5, and PA6) and
fed to X17(UDH2993B chip) to interface the motors to the CPU. The WHISKERS design has implemented a simple feed
back loop to the CPU. A motor current circuit is incorporated to monitor each motor. A series resistor (2 ohm) has been
placed in each motor lead. R41monitors motor #1and R40 monitors current of motor #2. The circuit then filters or averages
the voltage which represents current flow, before passing it to input ports PE5 and PE6. The A/D function allows the program
to read a representation of the motor current. The current can then be used as an approximate motor load. A very high current
will represent a motor stall condition.

Sensors

WHISKERS can not know where it is in space with out some type of sensors. Think about the problem that this little machine
faces as it strolls about the premises. Try blindfolding yourself, stuffing cotton in your ears, and putting boxing gloves on
your hands then try walking around the room. This is the task that WHISKERS tries every time the switch is turned on and he
is allowed to roam.

Currently, we have provided WHISKERS with four fixed LED light transmitters and four optical sensors and one
semi-directional (its located on the front) acoustical sensor and two discretely switched mechanical whisker detectors. It is
the intention of this section to discuss a different type of sensor and the pro's and con's of each.

8

Optical Sensors(Light)

Sight on WHISKERS is an important sense to provide. Robotic vision systems are very expensive and complex. Elementary
vision systems are used for nothing more than detecting obstacles. The more advanced vision systems determine patterns and
shapes with the most advanced using two cameras and processing 3D images.

Hardware for making a single element robot eye is rather simple, so Whisker uses four of these to see his environment.

A single light sensitive photo detector (photodarlington) is all that is needed to sense the presence of light. The photo detector
acts as a variable resistor. The resistance varies with increasing or decreasing light. With no light present, the resistance is at
maximum. Apply light and the resistance is reduced.

The photo detector is connected in series with a resistor to operate as a voltage divider. The output tap is between the photo
detector and the resistor. At no light the output swings to its highest value. This voltage value present at the center tap is
connected to an A/D input so it's voltage value can be determined by the program.

WHISKERS was provided with four independent optical input channels of Left/front, Left/side, Right/ front, and Right/side
each connected to PE0, PE1, PE2, and PE3 chip input pins respectively.

Optical Sensor Pairs (Collision)

The four optical sensor units supplied with the robot unit each consist of two elements, a high intensity LED and a photo
detector as discussed previously.

The LED selected is a high intensity model transmitting 2000mcd of light when rated current is applied to the LED. The
LED, when pulsed, projects a beam of light of high intensity. The LED transmits a non-coherent red light of 660nm
wavelength.

The LED's as provided with WHISKERS are pulsed simultaneously and are triggered by the PA7 output of the CPU chip.

The detectors provided has a rather broad band spectral response. It was selected because of its robust (rugged) electrical
characteristics.

The wide band response of the photo sensor makes it sensitive to room lighting, flash bulbs, flash lights and other stray light
etc. This was chosen because it's output can be utilized for more than just collusion detection.

A selective red filter is installed over the optical detector to reduce the light input to frequencies that was transmitted by the
LED.

The program provided with WHISKERS, first reads the digital value of the ambient room light. It then will pulse the LED on
and then read the returned sensor value. It then takes a difference reading between the two and compares it to a threshold
value (trigger level). If the level is above the threshold value, then the program considers the return a valid obstacle hit.

The program repeatedly pulses the LEDS on and off at the rate of about 30 times per second. The sensors are located as
follows: two in the front, and one on each side. Each detector is read by one channel of the eight channel analog to digital
converter. The light values are read and stored in memory by the instinct level. The values are compared to individual
trigger levels to determine if there is an obstacle detected. This threshold is a software selectable term which increases as the
room darkens. The trigger level can be used as a crude range selection device.

If there was a return detected by the optical sensors, then the instinct level overrides the desired direction, replacing it with the
specific direction chosen for this sensor. When the obstacle is passed, the desired direction is automatically resumed.
Without programming, you can change any of the sensor's responses with stop, left pivot, right pivot, forward, backup, and
pivot about either wheel.

Turn Whiskers on and watch the optical detector system illuminate a barrier in its way and effectively acknowledge the
obstacle. You can hold your hand in the light and notice that the detection range has changed. This is as expected as the
reflectivity of the target or obstacle influences the amount of light returned.

Whiskers Detectors

Your robot is furnished with a set of mechanical whisker detectors located on each forward front corner of the robot. As you
might have guessed this is where your robot got its name.

9

The whiskers are constructed of spring steel piano wire. They are securely connected to terminals on the electronics board.
When the robot runs into something close that wasn't detected by the optical detectors, the whiskers are deflected or
depressed. This in turn presses the steel wire against a metal post contacts on the board and indicates an obstacle to the CPU.
The contact posts on the board are designed so that the spring wire detectors can be activated by either of two motions, a
sideways pull or a push to the wire whisker.

The responsive actions are determined by the instinct level.

The Battery

A few words about the selection, care and feeding of the primary power source of WHISKERS.

Whiskers uses a gel cell battery. They are hermetically sealed so they don't leak. They also hold allot of energy for their
weight. Whiskers should be left on the battery charger whenever not in use. He has an integral battery charging circuit so the
battery won't be overcharged.

The charger supplied with WHISKERS is selected to provide the proper charge rate for the battery supplied. It will keep the
battery up to maximum performance. The battery is charged using the float charge method at a regulated 13.6 volts. The
charger may be left on continuously. Whiskers can operate for about 4 hours or more when fully charged.

The instinct level monitors the battery voltage. When it drops below a level set by the user, the robot will execute a battery
low behavior; i.e., stop and cry for food.

Microphone

One of the most important senses the human beings and other animals use is hearing. Sound detection is simpler to implement
on a robot than the sight process. A microphone lets WHISKERS listen to the world around him. The sound can be digitized
at rates beyond human hearing or lower. Words are included to average the sound, find peaks, and so forth. This capability
can be used to search out the specific sounds within a room.

The most sensitive type of microphone is the electret condenser element. This is the type used on Whiskers. It is mounted on
the front so the robot can find sounds and move toward them. The robot does generate noise itself by moving. For critical
sound analysis, stop the robot before sound sampling.

The output of the microphone is amplified and passed to analog to digital converter input PE7, where it is digitized and then
is available for reading by the program.

10

Programming determines how often the sound is sampled. The minimum frequency requirement for discrete sampling of an
analog signal is as follows:

Fs > 2fmax
Fs = sampling frequency
fmax= max frequency to be sampled

The sampling frequency must be greater than twice the frequency that is being sampled. Remember, determine the frequency
of the information your interested in and then sample the information at least twice this rate.

Speaker Output

WHISKERS can create sounds through this speaker. WHISKERS can beep, pop, play music and reproduce any other
monophonic sound that one can program.

The speaker is a piezo transducer speaker. It is connected to a digital output SS\ from the CPU through an amplifier device
Q2. It can be driven from the program by executing a CYCLES command. By choosing the correct parameters, the
frequency of the speaker output can be changed. The WHISKERS robot can even be made to sing your favorite song with
simple programming.

The speaker can be used for outputs of warnings, musical notes, program debugging information, alerts and any other aural or
acoustic data that your program requires.

11

Chapter II
Software Architecture

The robot control software included with this robot was created to best emulate animal behavior. This is the direction most
mobile robot researchers are currently taking today. Behaviors are created with various levels of complexity and abstraction.
Simpler but more critical behaviors such as collision avoidance, can take control from higher level functions, automatically. A
high level function may be looking for a sound, for example. An eminent collision with an obstacle would interrupt
(subsume) the high level function until the obstacle was avoided.

Programming a mobile robot is a completely different type of problem than programming a typical computer. Take, for
example, programming a database. The program asks the user for a name to search for, then take considerable time, searching
the data for a match. A screen is displayed saying the computer is busy, please wait. The computer will not respond to any
external events (keystrokes) until it has completed this task. Now consider a robot wandering around a room. There are many
obstacles in the room which the robot must avoid instantly. You commanded the robot to sing a song and wander about the
room. While the robot is singing, he must respond to outside events in real time! This means that to control the robot, you
must use some form of multitasking, or interrupt based sensors.

Whiskers uses a software architecture which conceptually consists of three layers:

LAYER PRIORITY INTELLIGENCE REQ'D OPERATES IN:

Instincts Highest Least Background

Tasks & Behaviors Medium Medium Background

Outer Layer Least Highest Foreground

Task processing is tied to one of the processor's counter/timers which initiates an interrupt several hundred times a second,
pre-emptively. Each instinct has an input value from one of the sensors, a trigger level to compare, a motor mask (direction
override) , and a fired flag. The basic instincts the robot has are each processed and if the sensor value is greater than the
trigger level, the instinct overrides the desired motor direction with it's motor mask, and sets the flag to true. The instincts
toward the end of the list are of greater priority as they can override a previous instincts motor direction. This occurs as long
as the sensor sees the obstacle. When the obstacle disappears, the original motor direction resumes. By changing each
instincts motor mask and trigger level, the operator can completely change the robots response to the outside world. The
instinct level also updates several system monitoring variables such as: battery voltage, compass, ambient light levels, etc.

Tasks and Behaviors execute only after all instincts have been processed. This processor goes down the task list, executing all
tasks and behaviors until it comes to the end. Control then returns to the outer layer. A special note is in order, while a
behavior is being performed, all instincts are still performed in the background. This simply means that the instincts for
collision avoidance still operate even though a behavior has taken control. The programmer can create special background
tasks such as timers, event counters, or any other special processes he/she may need. Behaviors are different from tasks in
that they must first check to see if conditions (sensor combinations?) are met before firing (executing). Tasks are always
executed. It is allowable for these tasks and behaviors to modify the task list in anyway they wish. They can delete tasks and
behaviors, add them, or change variables that other processes may use. This is a very powerful concept. Using this layered
approach, behaviors can be added to the robots' task list in a prioritized fashion.

The Outer Layer can perform tasks such as get commands interactively, mapping functions, or monitor and change the Instinct
and Task/Behavior levels to accomplish a specific goal. By using this layered abstraction technique, programming becomes
very simple. Even non programmers can create very intelligent behaviors for the robot. Very advanced behaviors can emerge
from numerous simpler ones.

12

13

Angelus Research Corp., 6344 Sugar Pine Circle #98, Angelus Oaks, California 92305

Applications Include:

• Industrial Automation
• Automated Guided Vehicles
• Autonomous Mobile Robots

• Intelligent Arms/End Effectors
• Closed Loop Servo Control
• Intelligent DC Motor Control

• Program in English
• Real-time Sensor/Motor Fusion
• Multitasking and Networkable

• Simultaneous Multi-Axis Control
• Narrow Beam Intelligent Sonar
• Low Power and Low Cost

Features and Benefits

Artificial Intelligence Breakthrough!
From Angelus Research Corp.

New Intelligent Controllers based on the Triune Brain

Goals and Learning

Behaviors and Tasks

InstinctsTriune
Brain

Copyright 1995 All Rights Reserved

Instinct Level Modification

The instinct level performs time critical functions such as collision avoidance and system monitoring. Each of his four optical
collision sensors and three summed sensors, has a trigger level, motor mask, and flag registers. By setting these to different
values, completely different responses can be had. Their are nine motor masks that can used with each sensor. Set the mask
register and trigger register for each sensors. Whiskers will automatically override the desired direction for as long as the
sensors is triggered. The corresponding flag will also be set. You could override the instincts by setting all sensor motor
masks to the desired direction. For example, FWD ALL-INSTINCTS and a FORWARD command would effectively disable
collision avoidance. You should use rCOLLISION ON/OFF for this however.

Trigger levels:

A trigger level is the value required to trigger an override action such as the left front optical sensor seeing
something. Higher values make the sensor less sensitive and also decreases the range proportionally.

rLF-TRIGGER Left front light obstacle detector trigger
rLSF-TRIGGER Left side front light obstacle detector trigger
rRF-TRIGGER Right front light obstacle detector trigger
rRSF-TRIGGER Right side front light obstacle detector trigger
rL-TRIGGER Left summed light obstacle detector trigger
rR-TRIGGER Right summed light obstacle detector trigger
rF-TRIGGER Front summed light obstacle detector trigger
rLM-TRIGGER Left motor stall trigger
rRM-TRIGGER Right motor stall trigger

Used as: 30 LF-TRIGGER SET Sets left front trigger to 30

Motor masks

A motor mask is a abbreviation of the robot's various movements (motor directions).
You must store this value is a motor mask register to have an effect on the robot.

Used as: REV rF-MASK SET

Robot will backup whenever the front sensors see and obstacle.

LF 01100000 Left motor forward
LR 01000000 Left motor reverse

RF 00011000 Right motor forward
RR 00010000 Right motor reverse

FWD 01111000 Both motors forward
REV 01010000 Both motors reverse
ST 00000000 Both motors stop

PVR 01110000 Right Pivot
PVL 01011000 Left Pivot

14

Instinctive motor response mailboxes:

These are used to hold the motor response as described previously. They determine the robots response to a
sensor seeing and obstacle.

rLF-MASK Left front light obstacle motor mask
rLSF-MASK Left side front light obstacle motor mask
rRF-MASK Right front light obstacle motor mask
rRSF-MASK Right side front light obstacle motor mask
rL-MASK Left summed light obstacle motor mask
rR-MASK Right front light obstacle motor mask
rF-MASK Front summed light obstacle motor mask

Used as:

PVR rLF-MASK SET Robot will pivot right on obstacle detection
PVR rLSF-MASK SET Robot will pivot right on obstacle detection
PVL rRF-MASK SET Robot will pivot left on obstacle detection
PVL rRSF-MASK SET Robot will pivot left on obstacle detection
REV rF-MASK SET Robot will backup right on obstacle detection
RR rL-MASK SET Robot will reverse right motor on obstacle detection
LR rR-MASK SET Robot will reverse left motor on obstacle detection

DEFAULT-INSTINCTS Set all instinct mask registers to factory defaults
ALL-INSTINCTS Set all instinct mask registers to the same value

SAVE-INSTINCTS Save all current instinct motor masks
RESTORE-INSTINCTS Restore all instinct motor masks to there previous values
Used as:

SAVE-INSTINCTS Save current instinct motor masks
ST ALL-INSTINCTS Set all instincts to stop
DEFAULT-INSTINCTS Set all instincts to factory defaults
RESTORE-INSTINCTS Restore instinct motor masks

Light Detectors Return Values (range 0-255)

These are registers that hold the actual amount of light reflected back to the sensors. In the case of the motor drag
registers (rLM-VALUE and rRM-VALUE), the amount of drag.

rLF-VALUE Actual return value of left front obstacle sensor
rLSF-VALUE Actual return value of left side front obstacle sensor
rRF-VALUE Actual return value of right front obstacle sensor
rRSF-VALUE Actual return value of right side front obstacle sensor
rL-VALUE Actual return value of left summed obstacle sensor
rR-VALUE Actual return value of right summed obstacle sensor
rF-VALUE Actual return value of front summed obstacle sensor
rLM-VALUE Actual return value of left motor drag sensor
rRM-VALUE Actual return value of right motor drag sensor

Used as:

 rLF-VALUE GET DISPLAY Shows value of left front obstacle detector

15

Collision

Each bit position in vCOLLIDED represents a certain collision sensor being triggered. Can use as a general
any sensor triggered flag.

vCOLLIDED Any collision = true

Used as:

vCOLLIDED VALUE

IF
STOP

ELSE
FORWARD

THEN

Flag mailboxes

Used to check each individual optical sensor for triggering. A sixteen bit number is returned with the
appropriate bit set for the sensor. Uses vCOLLIDED above. Should normally be used in conjunction with
SENSOR below.

LF-OBSTACLE Left front hit mask
LSF-OBSTACLE Left side front hit mask
RF-OBSTACLE Right front hit mask
RSF-OBSTACLE Right side front hit mask
L-OBSTACLE Left summed hit mask
R-OBSTACLE Right summed hit mask
F-OBSTACLE Front summed hit mask
LW-OBSTACLE Left whisker hit mask
RW-OBSTACLE Right whisker hit mask
LM-OBSTACLE Left motor stall hit mask
RM-OBSTACLE Right motor stall hit mask

SENSOR Used with flag mailboxes to convert mask to TRUE or FALSE so boolean
operators like: AND, OR, NOT can be used.

Used as:

 LF-OBSTACLE SENSOR

IF
RIGHT PIVOT

THEN

16

Miscellaneous

vPWM-CYC Frequency of instinct level, larger number equals greater period, default=16667
rMAX-SPEED Maximum motor speed. Set to 100 to use percentages.
rCORRECTION Modifies right motor speed to tune robot to go straight
rCOLLISION Enable or disable collisions avoidance
rNO-STALLS Disable stall detection
rSTALL-DELAY Set stall delay
rLIGHTS Disable/Enable light sensor avoidance
rWHISKERS Disable/Enable whisker avoidance
rSENSE Disable/Enable Analog to digital converter. Needed for lights and stalls
rSTALLS Disable/Enable stalls detection
rLIGHTS Disable/Enable light collision sensors
vCOMPASS A differential counter for the high level tasks to monitor relative direction
vMAX-COMPASS Maximum value for compass to be reset

Used as:

rWHISKERS ON
rLIGHTS ON
rSENSE OFF
16 rSTALL-DELAY SET
rSTALLS OFF
455 vMAX-COMPASS NOW set to 455
1000 vCOMPASS NOW set to 1000
vCOMPASS VALUE get current reading
ST ALL-INSTINCTS Set all instincts to the same mask

17

Task and Behavior Level Modification

The task processor works in the background. The execution of the task processor is based on the number of instinct levels
that have been processed, since the last time it was processed. You can change the frequency by changing the value of
rINSTINCTS. For example, 16 rINSTINCTS SET will cause the task processor to be serviced every 16 instincts. As this
value gets lower, the tasks are processed more frequently and processing time is taken away from the outer level. As this
value gets higher, (255 maximum) the tasks are processed less frequently and more time is available for the outer level. The
maximum number of tasks is 500 in this version. You can think of behaviors as rules which Whiskers must follow in a
prioritized fashion for him to survive.

ADD-TASK: Add new task to the task list. This must be done interactively or in a text file download in the
current version.

DEL-TASK: Delete a task from the task list. This must be done interactively or in a text file download in the
current version.

CLEAR-TASKS Delete all tasks from the list. Sets each task cell to zero.

PRIORITY Used with ADD-TASK: to set the priority of task when added to the list.

TASKS Location of task list in memory.

SHOW-TASKS Display all tasks in list.

Used as: TASKS SHOW-TASKS

MULTITASKING Enable task list processing

NORMAL Disable task list processing

rINSTINCTS Number of instinct levels processed between task processing

Samples

Command Task list

1 PRIORITY ADD-TASK: LOW-BAT LOW-BAT
1 PRIORITY ADD-TASK: F-HIT F-HIT
1 PRIORITY ADD-TASK: BW-HIT BW-HIT

DEL-TASK: F-HIT LOW-BAT
BW-HIT

1 PRIORITY ADD-TASK: F-HIT F-HIT
LOW-BAT
BW-HIT

16 rINSTINCTS SET
MULTITASKING

18

Notes:

1) Make sure you have MULTI-TASKING in your AUTO-START word. The default on start up is
NORMAL.

2) Do not print to the screen or use any other terminal IO words in this version.
Examples are: ." , EMIT, KEY etc.

3) Test you tasks carefully. Make sure they don't leave items on the stack. Do this by executing your new task then
typing .S. You should get an EMPTY message.

Such as: CLEAR-STACK F-HIT .S [Enter]

EMPTY is displayed

19

Sample Task Source Code

VARIABLE vFHIT Create a memory location called vFHIT
0 vFHIT NOW Initialize to zero

: F-ECOUNTER Front summed sensor event counter

F-OBSTACLE SENSOR Both front sensors hit?

IF If true...
vFHIT INCREMENT Increase by 1

THEN
;

VARIABLE vBWHIT Create a memory location called vFH
0 vBWHIT NOW Initialize to zero

: BW-ECOUNTER Both whiskers touched simultaneous event counter

RW-OBSTACLE SENSOR Right whisker hit?
LW-OBSTACLE SENSOR Left whisker hit?

AND
IF If true...

vBW-HIT INCREMENT Increase by 1
THEN

;

VARIABLE vMY-COUNTER
0 vMY-COUNTER NOW

: INC-MY-COUNTER
vMY-COUNTER INCREMENT ;

: DEC-MY-COUNTER
vMY-COUNTER DECREMENT ;

1 PRIORITY ADD-TASK: INC-MY-COUNTER
1 PRIORITY ADD-TASK: F-ECOUNTER
1 PRIORITY ADD-TASK: BW-ECOUNTER

20

Outer level word to see tasks updating variables

: SHOWME
CR Newline
BEGIN Begin looping

vMY-COUNTER VALUE Get value
DISPLAY Display it
SPACE Add space between numbers

vBWHIT VALUE Get value
DISPLAY Display it
SPACE Add space between numbers

vFHIT VALUE Get value
DISPLAY Display it
SPACE Add space between numbers

?TERMINAL UNTIL ; Break out of loop on any key

21

Sample Behavior Source Code

VARIABLE vFRUSTRATION Create a two byte memory cell, max value = 65535.
0 vFRUSTRATION NOW Make it a value of zero.

100 vWAIL NOW Adjust wail sound.

VARIABLE vFRUST-TRIGGER Create a two byte memory cell.
8 vFRUST-TRIGGER NOW Make it a value of 8.

: FRUSTRATED Define a word called FRUSTRATED
vFRUSTRATION VALUE Get vFRUSTRATION value
vFRUST-TRIGGER VALUE Get vFRUST-TRIGGER value

> Is vFRUSTRATED greater than vFRUST-TRIGGER?
IF If true...

SAVE-DIR Save current direction

5 0 DO Do this five times
40 LEFT SPEED Set left speed to 40
40 RIGHT SPEED Set right speed to 40
LEFT PIVOT Do a left pivot
30 1 WAIL Make a wailing sound
RIGHT PIVOT Do a right pivot
30 1 WAIL Make a wailing sound

LOOP Do again if less than five

RESTORE-DIR Restore direction
0 vFRUSTRATION NOW Make it a value of 0
EXIT Terminate this process

ELSE If false...

vFRUSTRATION VALUE Get vFRUSTRATION value

0< Less than zero?
IF If true...

1 vFRUSTRATION NOW Make it a value of 1
ELSE If false...

vFRUSTRATION DECREMENT Subtract 1
THEN End of IF statement

THEN End of IF statement
; End of definition

22

REG: rBAT-TRIGGER Create a two byte memory cell, max value = 65535.
80 rBAT-TRIGGER SET make it a value of 80

: LOW-BAT Define a word called LOW-BAT
rBAT-TRIGGER GET Get rBAT-TRIGGER value
rADR4-B GET Get rADR4-B value
DUP Duplicate value

< Is it less than?
IF If true...

DISABLE Turn off Instincts and Task Processor
DECIMAL Display value in decimal
rADR4-B GET DISPLAY Get rADR4-B value
SPACE
DISPLAY" Battery low!" CR Display Battery low!= on terminal, number, and newline
DISPLAY" Please get me to" Display Please get me to
DISPLAY" the charger...FAST!" CR Display the charger...FAST!
STOP Stop robot

BEGIN Begin endless loop
 500 50 WARBLE Make warble sound

AGAIN Go back to BEGIN and do again...

THEN End of IF statement
; End of definition

: RM-HIT Define a word called RM-HIT
RM-OBSTACLE SENSOR right motor stalled?

IF If true...
4 VFRUSTRATION INCREASE Increase by 4
SAVE-DIR Save current direction
SAVE-SPEEDS Save current speeds
BEST-PIVOT Look at side sensors for clear route
RAMP-UP Ramp speed up to 80 at factor of 5
1000 8 BIRD-CALL Make bird call sound
RESTORE-DIR Restore direction
RESTORE-SPEEDS Restore direction
CLEAR-SENSORS Clear all sensors flags

THEN End of IF statement
; End of definition

23

: LM-HIT Define a word called LM-HIT
LM-OBSTACLE SENSOR Left motor stalled?

IF If true...
4 vFRUSTRATION INCREASE Increase by 4
SAVE-DIRSave current direction
SAVE-SPEEDS Save current speeds
BEST-PIVOT Look at side sensors for clear route
5 80 RAMP-UP Ramp up to speed 80 by factor of 5

400 9 BIRD-CALL Make bird call sound
RESTORE-DIR Restore direction
RESTORE-SPEEDS Restore direction
CLEAR-SENSORS Clear all sensors flags

THEN End of IF statement
; End of definition

24

: F-HIT Define a word called F-HIT
F-OBSTACLE SENSOR Both front sensors hit?

IF If true...
4 vFRUSTRATION INCREASE Increase by 4

LM-OBSTACLE SENSOR Left motor flag
RM-OBSTACLE SENSOR OR Right motor flag

NOT IFIf not equal
SAVE-DIR Save current direction
SAVE-SPEEDS Save current speeds
BACKUP Robot backs up

 2 90 RAMP-UP Ramp speed up to 90 at factor of 2
300 LASER Make laser sound effect
BEST-PIVOT Look at side sensors for clear route
60 1 WAIL Make wail sound effect
RESTORE-DIR Restore direction
RESTORE-SPEEDS Restore direction
CLEAR-SENSORS Clear all sensors flags

THEN End of IF statement

THEN End of IF statement
; End of definition

: BS-HIT Define a word called BS-HIT
LSF-OBSTACLE SENSOR Left front hit flag
RSF-OBSTACLE SENSOR Right front hit flag

AND Both side sensors hit?

IF If true...

SAVE-DIR Save current direction
SAVE-SPEEDS Save current speeds
0 vFRUSTRATION NOW Make it a value of 0, turn off FRUSTRATION
50 LEFT SPEED 50 percent left speed
50 RIGHT SPEED 50 percent right speed

LSF-GREATER? Left side sensor greater than right flag
IF If true...

FWD ALL-INSTINCTS Set all instincts to forward direction
10 RIGHT %SPEED Drop right speed by 10 percent
300 1 WARBLE Make warble sound effect

ELSE If false...
10 LEFT %SPEED Drop left speed by 10 percent
300 1 WARBLE Make warble sound effect

THENEnd of IF statement

RESTORE-DIR Restore direction
DEFAULT-INSTINCTS

THEN End of IF statement
; End of definition

25

Add tasks to list

1 PRIORITY ADD-TASK: LOW-BAT
2 PRIORITY ADD-TASK: FRUSTRATED
3 PRIORITY ADD-TASK: F-HIT
4 PRIORITY ADD-TASK: RM-HIT
5 PRIORITY ADD-TASK: LM-HIT
6 PRIORITY ADD-TASK: BW-HIT
7 PRIORITY ADD-TASK: BS-HIT

Create auto start word

: DEMO
CALIBRATE
MULITASKING
FORWARD
RIDE_OF_THE_VALKERIES
BLOW_THE_MAN_DOWN!

BEGIN
FORWARD

?TERMINAL UNTIL ;

REMEMBER
AUTO-START: DEMO

26

Chapter III- WCL Whiskers Control Language

System Level

VARIABLE (--) Allocates two bytes of memory. Creates new word in the dictionary that
returns the address of the memory location. (65535 maximum value)

Used as:

VARIABLE COUNTER Define location called: EVENT-COUNTER
1000 COUNTER NOW set contents to a value of one thousand
COUNTER VALUE get contents of COUNTER

REG: Allocates one byte of RAM. Creates new word in the dictionary that returns the address
of 1 byte memory location.

Used as:

REG: EVENT-COUNTER Define location called: EVENT-COUNTER
1 EVENT-COUNTER SET set contents to a value of one
EVENT-COUNTER GET get contents of EVENT-COUNTER

SET (n addr --) Set value of memory to number specified

GET (addr --) Used with memory locations created by REG:
Get the current value of memory

NOW (n --) Used with memory locations created by VARIABLE
Set value of memory to number specified

VALUE (n --) Used with memory locations created by VARIABLE
Get the current value of memory

ARRAY: (n --) Allocates n bytes of RAM. Creates new word in the dictionary that returns
the address of memory location.

Used as:

100 ARRAY: SOUNDS create a 100 byte array named SOUNDS
0 SOUNDS SET Store byte at offset 0
1 SOUNDS 1 + SET Store byte at offset 1
2 SOUNDS 2 + SET Store byte at offset 2

AUTO-START:

Cause a word to be automatically executed on power up.

Used as: AUTO-START: DEMO

27

Useful Words

BINARY Change interactive number mode to binary. Useful in creating
binary mask words to manipulate port address lines for example.

&H Change base to HEX even in colon definitions. (Immediate word)

&D Change base to DECIMAL even in colon definitions. (Immediate word)

&B Change base to BINARY even in colon definitions. (Immediate word)

Used as:

BINARY 00010100 CONSTANT FWD DECIMAL
&B 00010100 CONSTANT FWD &D
&H AFFF CONSTANT END-MEMORY &D
&D 10 CONSTANT MAX-HITS

: MOTORS-FWD (--) (turn both motors on; forward
 &B 00101000 &D PORTA SET ;

ON (a --) set flag on (-1), use only with words created by REG:

OFF (a --) set flag off (0), use only with words created by REG:

Used as:

REG: COLLISION
COLLISON ON (turn collison flag on

: CHECK-COLLISION (--)

 COLLISION GET
IF

ENABLE
ELSE

DISABLE
THEN

;

COLLISION OFF (turn collison flag off

28

DECREMENT (addr --) use only with words created by VARIABLE

Used as: FHIT-COUNTER DECREMENT

INCREMENT (addr --) use only with words created by VARIABLE

Used as: FHIT-COUNTER INCREMENT

% (n percent -- number) get percentage of number

Used as: 100 5 %
DISPLAY <cr>

Motor masks

A moto mask is a abbreviation of the robot's various movements (motor directions).
You must store this value is a moto mask register to have an effect on the robot.

Used as: REV rMASK SET Robot will backup (instincts must be ENABLED).

LF 01100000 Left motor forward
LR 01000000 Left motor reverse

RF 00011000 Right motor forward
RR 00010000 Right motor reverse

FWD 01111000 Both motors forward
REV 01010000 Both motors reverse
ST 00000000 Both motors stop

PVR 01110000 Right Pivot
PVL 01011000 Left Pivot

LW 8 bit register for Left Whiskers hit
RW 8 bit register for Left Whiskers hit

Motor mask constants

01000000 LWMASK Left Whiskers mask
00000010 RWMASK Right Whisker mask
00000001 WMASK Both Whiskers mask
00000011 L-OFF Left motor off mask
10111111 L-ON Left motor on mask
11101111 R-OFF Right motor off mask
00010000 R-ON Right motor on mask

29

Registers (used as REG GET | puts register value on stack)

rSPEED Speed register
rLSPEED Left speed register
rDIR Direction
rF/B Forward/backward register
rCHOICE Choice register (used with LEFT, RIGHT words)
rMOT-MASK Motor mask
SAV-rLSPEED Save left speed
SAV-rRSPEED Save right speed

Used as:
SAV-rLSPEED GET
20 LEFT SPEED

Motor variables (used as: vDEGREES VALUE)

vDEGREES Degrees to turn
vLTON Left motor on time
vLTOFF Left motor off time
vRTON Right motor on time
vRTOFF Right motor off time

Motor control constants

cRIGHT Returns 1
cLEFT Returns 2
cFWD Returns 3
cREV Returns 4
cHIGH Returns 5
cLOW Retuurns 6

SENSORS Show motor control registers, sensors, instinct level parameters

30

RIGHT Sets choice register to cRIGHT

LEFT Sets choice register to cLEFT

FORWARD Sets rF/B register to cFWD and MASK register to FWD mask

BACKUP Sets rF/B register to cREV and MASK register to REV mask

MAX-SPEED Constant, returns maximum speed (100)

SPEED (speed --) Sets motor speed

Used as:

 40 LEFT SPEED
60 RIGHT SPEED

ADJUST-DEGREES (n --) Adjusts delay in DEGREES command for tuning

DEGREES (degrees --) Delaying word to convert degrees to time delay for turning commands

Used as:

LEFT PIVOT
34 DEGREES
STOP

STOP (--) Robot stops moving

FORWARD (--) Robot moves forward

STRAIGHT (--) Uses rCORRECTION value to make sure robot goes straight forward

BACKUP (--) Robot backs up

PIVOT (--) Pivot robot about its center, use LEFT or RIGHT first

TURN (--) Robot turns about left or right wheel, use LEFT or RIGHT first

REVERSE-DIR Reverse the direction of the motors FORWARD = REVERSE LEFT PIVOT
= RIGHT PIVOT, etc

Used as:

FORWARD
LEFT TURN
50 DEGREES
BACKUP
REVERSE-DIR
RIGHT PIVOT
98 DEGREES
STOP
3 rCORRECTION SET
STRAIGHT FORWARD

31

SAVE-SPEEDS (--) Save current speeds

RESTORE-SPEEDS (--) Restore old speeds

Used as:

 SAVE-SPEEDS
40 LEFT SPEED
40 RIGHT SPEED
BACKUP
2 SECS
LEFT PIVOT
90 DEGREES
RESTORE-SPEEDS

RAMP-UP (rate speed --)Ramp both motors up to specified speed by rate

RAMP-DOWN (rate --) Ramp both motors down by rate

Used as:

FORWARD
2 80 RAMP-UP
3 RAMP-DOWN

BEST-PIVOT (--) Pivot away from closest side obstacles

CIRCLE (size --) Make circle about a relative size

SQUARE (size --) Make a square

Used as:

FORWARD
8 CIRCLE
2 MINUTES
6 SQUARE

SPIN (speed --) Spin on center at specified speed

Used as:

 30 %HIGHER-SPEED
DEFAULT-INSTINCTS
1 LEFT SPIN
30 SECS
STOP-INSTINCTS
FORWARD

BEARING (-- bearing) Current direction using the software compass. This is a basic and relative
number based on the difference between the pulse width modulation on times of
the motors.

32

Analog to Digital Converter

ACQUIRE-A (--) Acquire PE0 thru PE3 and place values in ADR1 thru ADR3.

ACQUIRE-B (--) Acquire PE4 thru PE7 and place values in ADR1 thru ADR3.

BEYES-ON Turn all LED's off, DISABLE first

BEYES-OFF Turn all LED's on, DISABLE first

ADC MASKS

BPC-ON All LED's on mask

BPC-OFF All LED's off mask

Used as:

PORTA GET Turn all on
BPC-ON OR
PORTA SET

PORTA GET Turn all off
BPC-OFF AND
PORTA SET

DISABLE
BEYES-ON
BEYES-OFF
ENABLE

33

Light Sensors

BEYES-ON (--) Turn all LED's on (note: must use DISABLE first)

BEYES-OFF (--) Turn all LED's off (note: must use DISABLE first)

AMBIENT-LIGHT (-- off-light-level) Returns ambient light level by averaging all light sensors
 (Range 0-255)
Microphone

1K Returns 1024

Commands

1K-BUFFER A 1024 byte general purpose array.

DATA (addr # --) Get value from memory array, takes address of array and offset
 (Range 0-255 for data value...8 bit)

Used as:

1K-BUFFER 3 DATA GET Gets third value
2 1K-BUFFER 3 DATA SET Sets third value to 2

vSAMPLES Variable which holds number of samples to obtain

SAMPLES (samples --) Number of samples to process

Used as:

 10 SAMPLES
DIGITIZE

vRATE Variable which holds the digitizing rate

RATE (rate --) Sets the digitizing rate.

Used as:

10 RATE Set rate to one tenth maximum
DIGITIZE Aquire data

DIGITIZE (--) Start digitizing process. Set RATE and samples first

Used as:

1 RATE Set rate to maximum
256 SAMPLES Number of samples
DIGITIZE Acquire data
1K-BUFFER 256 DUMP Display data

34

AVERAGE (-- average) Return the average of samples stored in 1K-BUFFER

Used as:

 500 SAMPLES
DIGITIZE
AVERAGE DISPLAY <cr>

SOUND-LEVEL (-- level) Returns the current ambient sound level

Used as:
SOUND-LEVEL DISPLAY <cr>

STEP (step --) Degrees to step for FIND-SOUND

FIND-SOUND (--) Pivot by degrees set by step,

MAX-LEVEL (adr positions -- index) Return index of maximum level in the array, address and number

of positions are required

PIVOT-SOUND (--) Pivot robot to maximum sound level

Instinct Level

DISABLE Turn instincts (background task) off

ENABLE Turn instincts (background task) off

vCOUNTER Background counter, incremented each time instinct level is

serviced. 16 bit.

PERIODS (delay --) Delay processing for spefied periods. One period is the time between

DEFAULT-INSTINCTS Set instincts to default masks

Default Masks:

rRF-MASK = PVL
rRSF-MASK = PVL
rRW-MASK = PVL
rLF-MASK = PVR
rLSF-MASK = PVR
rLW-MASK = PVR

STOP-INSTINCTS (--) Stop on collision with any sensor

rRF-MASK = ST
rRSF-MASK = ST
rRW-MASK = ST
rLF-MASK = ST
rLSF-MASK = ST
rLW-MASK = ST

ALL-INSTINCTS (mask --) Set all intincts to the same value

Used as:
ST ALL-INSTINCTS
FORWARD
BEGIN

COLLIDED VALUE
IF

BEST-PIVOT
CLEAR-SENSORS

35

FORWARD
THEN

AGAIN

Mail Boxes Note: use with SENSOR to get flag

LF-OBSTACLE Left front obstacle flag
LSF-OBSTACLE Left side front obstacle flag
RF-OBSTACLE Right front obstacle flag
RSF-OBSTACLE Right side front obstacle flag
F-OBSTACLE Front summed obstacle flag
R-OBSTACLE Right side/front summed obstacle flag
L-OBSTACLE Left side front obstacle flag

rRF-MASK Right Front Light Collision sensor motor mask
rRSF-MASK Right Side Front Light Collision motor mask
rLF-MASK Left Front Light Collision motor mask
rLSF-MASK Left Side Front Light Collision motor mask
rLW-MASK Left Whisker motor mask
rRW-MASK Right Whisker motor mask

Obstacle Control

CALIBRATE (-) Calibrate light sensors

TRIGGER-FACTOR (factor --) Scales the calibrated values of the light sensors up and down, use
before CALIBRATE.

Delaying Words

DELAY (time --) A time delaying word using a null loop.

SECS (secs --) Delay processing for given seconds

MINUTES (min --) Delay processing for given minutes

PERIODS (time --) A time delaying word that uses the instinct interupt for delaying

execution of next word.

Used as:
2000 DELAY
1 MINUTES
35 SECS
500 PERIODS

Speaker Control

NOTE (Period duration --) Output to speaker with frequency and duration as parameters

Used as:
18182 28 NOTE A tone

36

Sound Effects

WAIL (range n --)

WARBLE (freg times --)

LASER (freg --)

TONES (freq times --)

UP-DOWN (freq steps --)

Used as:
40 10 WARBLE
40 LASER
60 2 TONES
40 20 UP-DOWN

Music

Give each note the period of the note as follows:

1/8 note
1/4 note
3/8 note
1/2 note
5/8 note
3/4 note
7/8 note
Whole note

Five octives of the musical scale have notes defined.

1st Scale: A A# B C C# D D# E F F# G G#

2nd Scale: 1A 1A# 1B 1C 1C# 1D 1D# 1E 1F 1F# 1G 1G#

3rd Scale: 2A 2A# 2B 2C 2C# 2D 2D# 2E 2F 2F# 2G 2G#

4th Scale: 3A 3A# 3B 3C 3C# 3D 3D# 3E 3F 3F# 3G 3G#

5th Scale: 4A 4A# 4B 4C 4C# 4D 4D# 4E 4F 4F# 4G 4G#

Note: Use the ~ (tilde) character for silent pauses

37

Sample Songs

: NOEL

1 2E 1 2D 2 2C 1 2D 1 2E 1 2F 4 2G 1 3A 1 3B 2
3C 2 3B 2 3A 4 2G 1 3A 1 3B 2 3C 2 3B 2 3A 2 2G 2 3A
2 3B 2 3C 2 2G 2 2F 4 2E 1 2E 1 2D 2 2C 1 2D 1 2E
1 2F 4 2G 1 3C 1 3B 4 3A 2 3A 6 2G 2 3C 2 3B 2 3A 2 2G
2 3A 2 3B 2 3C 2 2G 3 2F 4 2E ;

: MUSIC-OF-THE-NIGHT

2 3A 2 2C 2 2G 2 2C 1 2F 1 2G 1 3A 1 3A# 2 2G 2 3C 2 3A 2 2C 2
2G 2 2C 1 2F 1 2G 1 3A 1 3A# 2 2G 2 3C 1 3D 1 3F 1 3F 1 3F 2 3G
1 3F 1 3E 1 3D 1 3F 1 3F 1 3F 2 3G 2 3F 1 3D 1 3F 1 3F 1 3F 1
3G 1 3F 1 3D 1 3A 4 3C 2 2G 2 3A

2 0 DO (do this twice)

3A 2 2C 2 2G 2 2C 1 2F 1 2G 1 3A 1 3A# 2 2G 2 3C 2 3A 2 2C 2
2G 2 2C 1 2F 1 2G 1 3A 1 3A# 2 2G 2 3C 1 3D 1 3F 1 3F 1 3F 2 3G
1 3F 1 3E 1 3D 1 3F 1 3F 1 3F 2 3G 1 3F 1 3E 1 3D 1 3F 1 3F 1
3F 1 3G 1 3F 1 3D 1 3A 6 3C 2 3A 1 3A 1 2G 1 2G 1 3A 1 3A# 1 3C
1 3A 1 2G 6 2F 1 3A 1 3C 2 3G 1 3F 1 3D# 1 3D 1 3C 1 3A#
1 3C 2 3C 2 3A# 2 2G# 1 3C 1 3D# 2 3G# 1 3G 1 3F
1 3F 1 3D# 1 3D# 1 3D 4 3D ~ ~ 1 3G 1 3G 1 3G 1
3F 1 3E 1 3D 1 3C 1 3D 1 3C 6 4C 1 3E 1 3E 2 3E 1 3E 1 3E 1 3E
1 3D 1 3E 1 3F 6 3E ~ ~

LOOP

2 3A 2 2C 2 2G 2 2C 1 2F 1 2G 1 3A 1 3A# 2 2G 2 3C
2 3A 2 2C 2 2G 2 2C 1 2F 1 2G 1 3A 1 3A# 2 2G 2 3C 1 3D 1 3F
13F 1 3F 1 3G 1 3F 1 3E 1 3D 1 3F 1 3F 1 3F 2 3G 1 3F 1 3E 1 3D
1 3F 1 3F 1 3F 1 3G 1 3F 1 3D 1 3A 6 3C 2 3A 1 3A 1 2G 1 2G
1 3A 1 3A# 1 3C 1 3A 1 2G 4 2F 2 2G 2 2C 1 2F 1 2G 1 3A 1 3A#
2 2G 2 3C 2 3A 2 2C 2 2G 2 2C 1 2F 1 2G 1 3A 1 3A# 2 2G 2 3C 1 3D 1 3F
13F 1 3F 1 3G 1 3F 1 3E 1 3D 1 3F 1 3F 1 3F 2 3G 1 3F 1 3E 1 3D
1 3F 1 3F 1 3F 1 3G 1 3F 1 3D 1 3A 6 3C 2 3A 1 3A 1 2G 1 2G
1 3A 1 3A# 1 3C 1 3A 1 2G 10 3F ;

: SAN-FRANCISCO

2 3A 2 3A# 2 3D 6 3C 2 3D 2 3E 2 3F 2 3D 4 2G 2 2G 2 2F# 2 2G
4 3D 2 3F 2 3E 1 3C 4 3A 2 3A 2 3A# 2 3B 1 3C 1 3A# 1 3A 1 3A#
6 3C ~ ~ 2 3D 1 3E 1 3D 1 3C 1 3D 4 3E 2 3E 3 3D 1 3E 4 3F 2 3G
3 3E 1 2G 5 3C 1 3D 1 3C 1 3A# 1 3A 1 3A# 2 3D 4 3C 2 3D 2 3E
2 3F 2 3D 4 2G 2 2G 2 2F# 2 2G 4 3E 2 3E 2 3F 2 3G 4 4A 2 4A
2 3G 2 4A 3 4B 2 4A 4 3F 2 3G 2 4A 2 3G 4 3D 2 3D 2 3C# 2 3D
3 4B 2 3D 3 4A 3 4A 4 3F ;

38

: CLEMENTINE

1 2G 2 2G 2 2D 1 3B 1 3B 2 3B 2 2G 1 2G 1 3B 2 3D 2 3D 1 3C
1 3B 3 3A 1 3A 1 3B 2 3C 2 3C 1 3B 1 3A 2 3B 2 2G 1 2G 1 3B
2 3A 2 2D 1 2F# 1 3A 3 2G 1 2G 1 2G 2 2G 2 2D 1 3B 1 3B 2 3B
2 2G 1 2G 1 3B 2 3D 2 3D 1 3C 1 3B 3 3A 1 3A 1 3B 2 3C 2 3C
1 3B 1 3A 2 3B 2 2G 1 2G 1 3B 2 3A 2 2D 1 2F# 1 3A 3 2G 1 2G
1 2G 2 2G 2 2D 1 3B 1 3B 2 3B 2 2G 1 2G 1 3B 2 3D 2 3D 1 3C
1 3B 3 3A 1 3A 1 3B 2 3C 2 3C 1 3B 1 3A 2 3B 2 2G 1 2G 1 3B
2 3A 2 2D 1 2F# 1 3A 3 2G 1 2G 1 2G 2 2G 2 2D 1 3B 1 3B 2 3B
2 2G 1 2G 1 3B 2 3D 2 3D 1 3C 1 3B 3 3A 1 3A 1 3B 2 3C 2 3C
1 3B 1 3A 2 3B 2 2G 1 2G 1 3B 2 3A 2 2D 1 2F# 1 3A 3 2G ;

39

Chapter III

Experiments

40

Note: Before starting any of the following experiments, turn your robot on, and immediately hit the [Enter] key several
times. This will interupt the auto start sequence. Whiskers will respond with an OK.
Remember, Whiskers is case sensitive. You must type in the words exactly as shown in the manual. For example,
rLF-OBSTACLE is correct, rlf-obstacle is not.

Lets start with Whiskers proped up by a book or something so his wheels don't touch the ground.

Instinct level:

Type the following commands and note Whiskers behavior.

FORWARD Whiskers wheels turn going forward.

DISABLE Whiskers instinct level is disabled. His lights stop Flashing,
and words that depend on this level don't work, such as:
FORWARD.

FORWARD Nothing happens.
STOP Nothing happens.

ENABLE Whiskers instinct level is enabled. His lights start flashing, and words
that depend on this level now work, such as: FORWARD.

FORWARD Whiskers moves forward.

STOP Whiskers stops.

LEFT PIVOT Whiskers pivots about his center to the left.

RIGHT PIVOT Whiskers pivots about his center to the right.

LEFT TURN Whiskers turns about his left wheel.

RIGHT TURN Whiskers turns about his right wheel.

BACKUP Whiskers backs up.

STOP Whiskers stops.

2 100 RAMP-UP Whiskers ramps both motor speeds using rate 2 to speed 100

4 RAMP-DOWN Whiskers ramps down from the current speed using rate 4.

50 LEFT SPEED Whiskers changes his left motor speed to 50 percent

50 RIGHT SPEED Whiskers changes his right motor speed to 50 percent

41

LEFT PIVOT 10 DEGREES STOP Whiskers pivots 10 degrees and stops.

10 ADJUST-DEGREES For tuning degrees command.
LEFT PIVOT 10 DEGREES STOP Whiskers pivots 10 degrees and stops but goes

further than before.

FORWARD Go forward
17 LEFT SPEED Change left speed
17 RIGHT SPEED Change right speed
SAVE-SPEEDS Save current speeds
100 LEFT SPEED Faster speeds
100 RIGHT SPEED Faster speeds
RESTORE-SPEEDS Restore current speeds

WORDS

3CAC PROM-ENDS 3C72 END-PROM 3C5B REG: 3C47 VARIABLE

3BD3 BOOT-UP 3B69 NEW-SYSTEM 3A8D WANDER 3993 EXPLORE

397D FORGET 38EB CHECK-KEYBOARD 388C RECALL 3860 REMEMBER

F57C CLEAR-STACK 37F9 CHECK-SUM 37DF AUTO-START: 37B7 BOOT:

377B INIT-ROBOT 3753 RECALL-SYS 3740 LAST-PROM 371C SAVE-SYS

36DA R-SYS 364E SYS 363C CANCEL 362B S-VARS
361A U-VARS 3609 vBOOT-WORD 35F7 CLD/WRM 35A0
RIDE_OF_THE_VALKERIES

3550 WHY_AM_I_BLUE 347D BLOW_THE_MAN_DOWN! 3450 ROCK_IT_AWAY! 30AE CLEMENTINE

2F26 SAN-FRANCISCO 2F04 ~ 2ED4 UP-DOWN 2EA6 TONES

2E7A LASER 2E48 WARBLE 2DE9 CYCLES 2DD8 sTIME

2DC8 dTIME 29CA MUSIC 29A1 INIT-RCL 296C SPIN
2958 STOP-INSTINCTS 28FF DEFAULT-INSTINCTS 28E1 WAIT-TIME 28AE %HIGHER-TRIGGER

2894 vWAIT-TIME 2859 SQUARE 27FC CIRCLE 27CD TURN

2782 PIVOT-SOUND 273E MAX-LEVEL 26C5 FIND-SOUND 26AE STEP

269F vSTEP 268F LEVELS 2677 ALL-INSTINCTS 264B BEST-PIVOT

2618 PIVOT 25DE STRAIGHT 1AAA SHOW-SENSORS 258D RAMP-DOWN

2551 RAMP-UP 252F RESTORE-SPEEDS 2508 SAVE-SPEEDS 24D2 START-ROBOT

23FE CALIBRATE 23D3 TRIGGER-TABLE 23AA BACK 23AA BACKUP

2391 FORWARD 2377 STOP 2338 DEGREES 231C BEARING

2308 CLEAR-COMPASS 22EE ADJUST-DEGREES 22D7 360 22C6 MINUTES

22A1 SECS 2292 SAV-rRSPEED 227C SAV-rLSPEED 225C ACTION

2245 %SPEED 2231 % 21DB SPEED 21CD RCL

2178 VEC-INIT 2167 VEC-TABLE-END 2117 VEC-TABLE 20A7 INSTINCT

2073 COMPASS, 2024 PW-MOD 1FEB WHISKERS 1F7B STALLS

This is a sample of the many words that Whiskers knows. The numbers by the names are actual memory locations at
which these words are defined. Notice a few words such as:

1 A First octive musical note A, 1/8 note.
7 1B Second octive musical note B, 7/8 note.
2 2C Third octive musical note C, 1/4 note.
6 3D Fourth octive musical note D, 3/4 note.
5 4E# Fifth octive musical note E sharp, 5/8 note.

40 LASER Make a laser sound. Used as: 70 LASER, 40 LASER,etc.

Put your hand in front of each light sensor. You will see Whiskers try to avoid you hand.
Try changing the value of the trigger level:

10 TRIGGER-FACTOR
CALIBRATE
SENSORS

Note that Whiskers becomes very nervious. You have set this level so low that the ambient light
noise is detected. Try the hand experiment again.

50 TRIGGER-FACTOR
CALIBRATE
SENSORS

42

Note that Whiskers stops being nervous. You can keep increasing the trigger level and see how his range is reduced. Try
the hand experiment each time.

Try each command below and conduct the hand experiment with the optical collision sensors.

FORWARD

BACKUP

LEFT PIVOT

RIGHT PIVOT

LEFT TURN

RIGHT TURN

STOP

SQUARE

FORWARD
100 LEFT SPEED
100 RIGHT SPEED

Try the hand experiment notice that Whiskers does not slow down to think about avioding you hand. The direction that
you want to go is overidden until your hand is no longer a threat. This
is his instinct level working.

14 RIGHT SPEED Whiskers would go in a circle. This shows his pulse width modulation
motor control. You can try different speeds between 1 and 100 with this
software.

DISABLE Disables his instinct level

FORWARD Nothing happens, you have shut off his instinct level and pulse width
modulator.

ENABLE The robot goes forward. You have turned on his instinct level and pulse width
modulator.

STOP-INSTINCTS Stop on any obstacle
FORWARD try the hand experiment, Whiskers now stops when he sees something

43

REV rRSF-MASK SET Change Whiskers behavior on the right side sensors to backup.
Put your hand in front of the right side sensor. His wheels backup as long as
you hold your hand there.

ST rRSF-MASK SET Change Whiskers behavior on the right side sensors to backup.
Put your hand in front of the right side sensor. His wheels stop as long as
you hold your hand there.

DEFAULT-INSTINCTS Set behaviors back to default tug on each whisker, see him pivot away?

CLEAR-SENSORS Clear all sensor flags
rLW-OBSTACLE GET DISPLAY Get left side light sensor flag=0

push on left whisker
rLW-OBSTACLE GET DISPLAY Get left side light sensor flag=1

RIDE_OF_THE_VALKERIES Sings the song with a raspy voice.
you can hear the instinct level working

DISABLE disable instincts
RIDE_OF_THE_VALKERIES sings the song with a smoother voice.

1 2A 4 2B 4 2C Sing a,b,c notes on the second octive
1 3C 8 3C try using from 1 to 8 as parameters.
70 LASER make a laser firing sound, try different
100 LASER parameters

50 50 WARBLE

44

DISABLE Lets' try out his hearing
10 RATE Sampling rate, 1 is the highest
256 SAMPLES 256 samples of sound

before excuting the DIGITIZE command, whistle or make a
continous tone into the microphone at the front of the robot.

DIGITIZE Stops instinct level and digitizes sound

1K-BUFFER 256 DUMP display 256 bytes of memory from 1K buffer

0 2 219 0 0 144 0 0 140 0 0 255 0 0 255 255 86 255 255 9
255 255 0 252 255 0 5 236 0 1 111 0 0 130 0 0 255 189 0 25
255 108 255 255 70 255 255 0 255 255 0 2 233 0 0 92 0 0 248
 0 255 146 0 255 221 42 255 255 105 255 255 1 255 255 0 160
 0 15 194 0 0 89 0 0 138 0 0 255 0 0 255 199 0 255 226 5
255 255 100 255 255 6 255 255 0 255 255 0 142 255 1 21 192 2
 172 0 0 113 0 0 255 0 0 255 92 0 255 203 10 255 223 65 25
255 81 255 234 40 255 255 0 204 255 1 110 230 4 0 242 0 0 5
0 0 93 0 0 255 0 0 255 38 0 255 196 0 255 179 101 255 255
? 255 255 28 255 245 2 255 255 0 255 255 1 244 250 1 2 255 1
0 212 1 0 159 0 0 187 0 0 255 0 0 255 0 0 255 196 90 255
135 255 230 1 255 255 0 255 255 1 106 231 14 0 174 0 0 159
 0 255 0 0 255 218 0 255 229 87 255 220 4 255 244 0 200 255
 0 160 0 OK

ENABLE

To see how to add your own words (commands) try the following:

: FEET
 DO

1000 PERIODS (adjust as neccessary, speed dependent
LOOP
STOP

;

: ON-LEFT-WHISKER
CLEAR-SENSORS
BEGIN

rLW-OBSTACLE SENSOR

IF
50 LASER
CLEAR-SENSORS

THEN
AGAIN

;

: TEST
FORWARD 2 FEET
ON-LEFT-WHISKER

;

45

REMEMBER
AUTO-START: TEST

Put the robot on the floor. Turn the robot off then on again. He will automatically run the TEST word you just defined. After
he goes one foot, try touching his left whisker. He should make a laser sound. There are many more words that Whiskers
knows, look in the manual and the source code provided for more.

46

Chapter IV

The Forth Language

47

Table of Contents

Arithmetic 47

Comparison 48

Compiler 49

Control 50

Definition 51

Dictionary 52

Format 53

Input/Ourtput 54

Interpreter 55

Logic 56

System 56

Memory 58

Numeric 59

Operation system 59

Primitive 59

Stack 59

Vocabulary 60

Max-Forth Memory Map 61

48

Arithmetic

* (w1 w2 --- w3)
Multiplies w2 by w1 and leaves the product w3 onto stack.

*/ (n1 n2 n3 --- n4)
Multiplies n1 by n2 and divides the product by n3.
The quotient, n4 is placed on the stack.

*/MOD (n1 n2 n3 --- n4 n5)
n1 is multiplied by n2 producing a product which divided by n3. The remainder,

n4 and the quotient, n5, are then placed on the stack.

+ (w1 w2 --- w3)
Adds w2 and w1 then leaves the sum, w3 on the stack.

- (w1 w2 --- w3)
Subtracts w2 from w1 and leaves the result, w3 on the stack.

/ (n1 n2 --- n3)
Divides n1 by n2 and leaves the quotient n3 on the stack.

/MOD (n1 n2 --- n3 n4)
Divides n1 by n2 then leaves on the stack the remainder n3 and the quotient n4.

1+ (w1 --- w2)
Adds 1 to w1 then leaves the sum, w2 on the stack.

1- (w1 --- w2)
Subtract 1 from w1 then leaves the difference, w2 on the stack.

2* (w1 --- w2)
Multiplies w1 by 2 to give w2.

2+ (w1 --- w2)
Adds two to w1 and leaves the sum, w2 on the stack.

2- (w1 --- w2)
Subtracts two from w1 and leaves the result, w2 on the stack.

2/ (n1 --- n2)
Divides n1 by 2, giving n2 as the result.

ABS (n --- u)
Leaves on the stack the absolute value, u of n.

D+ (wd1 wd2 --- wd3)

Adds wd1 and wd2 and leaves the result, wd3 on stack.

D- (wd1 wd2 --- wd3)
Subtracts wd2 from wd1 and returns the difference wd3.

D2/ (d1 --- d2)
Divides d1 by 2 and gives quotient d2.

DABS (d --- ud)
Returns the absolute value of d as ud.

DMAX (d1 d2 --- d3)
Returns d3 as the greater of d1 or d2.

DMIN (d1 d2 --- d3)
49

Returns d3 as the lesser of d1 or d2.

DNEGATE (d1 --- d2)
Leaves the two's complement d2 of d1.

MAX (n1 n2 --- n3)
Leaves the greater of n1 and n2 as n3.

MIN (n1 n2 --- n3)
Leaves the lesser of n1 and n2 as n3.

MOD (n1 n2 --- n3)
Divides n1 by n2 and leaves the remainder n3.

NEGATE (n1 --- n2)
Leaves the two's complement n2 of n1.

S->D (n --- d)
Sign extend single number to double number.

UM* (u1 u2 --- ud)
Multiplies u1 and u2 returning the double length product ud.

UM/MOD (ud u1 --- u2 u3)
Divides the double length unsigned number ud by u1
and returns the single length remainder u2 and the
single length quotient u3.

Comparison

0< (n --- flag)
Leaves a true flag if n is less than zero.

0= (w --- flag)
Leaves a true flag if w is equal to zero.

0> (n --- flag)
Leaves a true flag if n is greater than zero.

< (n1 n2 --- flag)
Leaves a true flag on stack if n1 is less than n2.

= (w1 w2 --- flag)
Returns a true flag if w1 is equal to w2.

> (n1 n2 --- flag)
Returns a true flag if n1 is greater than n2.

D0=(wd --- flag)
Returns a true flag if wd is equal to zero.

D< (d1 d2 --- flag)
Leaves a true flag if d1 is less than d2; other-wise leaves a false flag.

D= (wd1 wd2 --- flag)
Returns a true flag if wd1 is equal to wd2.

DU< (ud1 ud2 --- flag)
Returns a true flag if ud1 is less than ud2.

U< (u1 u2 --- flag)
Returns a true flag if u1 is less then u2.

Compiler
50

((---)
Starts a comment input. Comment is ended by a).

>BODY addr1 --- addr2)
Leaves on the stack the parameter field address, addr2 of a given field address,

addr1.

COMPILE (---)
Copies the compilation address of the next non-immediate word

following COMPILE.

EXECUTE (addr ---)
Executes the definition found at addr.

IMMEDIATE (---)
Marks the most recently created dictionary entry as a word that will be executed
immediately even if FORTH is in compile mode.

LITERAL (16b ---)
Compile a system dependent operation so that when later executed, 16b will

be left on the stack.

RECURSE (---)
Compile the compilation address of definition currently being defined.

STATE (--- addr)
Returns the address of the user variable that contains a value defining the

compilation state.

[(---)
Places the system into interpret state to execute non-immediate word/s during

compilation.

['] (--- addr), (---)
Returns and compiles the code field address of a in a colon-definition.

51

[COMPILE] (---)
Causes an immediate word to be compiled.

] (---)
Places the system into compilation state.] places a non-zero value into the
user variable STATE.

Control

+LOOP (n ---), (sys ---) (compiling)
Increments the DO LOOP index by n.

<MARK --- addr)
Leaves current dictionary location to be resolved by <RESOLVE .

<RESOLVE (addr ---)
Compiles branch offset to location previously left by <MARK .

>MARK --- addr)
Compiles zero in place of forward branch offset marks it for future resolve.

>RESOLVE (addr ---)
Corrects branch offset previously compiled by mark to current dictionary

location.

AGAIN (---), (sys ---) (compiling)

Ends BEGIN loop.

BEGIN (---), (--- sys) (compiling)
Marks the start of a loop.

DO (w1 w2 ---), (--- sys) (compiling)
Repeats execution of words between DO LOOPs and DO +LOOPs, the number of

times is specified by the limit from w2 to w1.

ELSE (---), (sys1 --- sys2) (compiling)
Allows execution of words between IF and ELSE if the flag is true, otherwise, it
forces execution of words after ELSE.

END (sys ---) Performs the same function as UNTIL. See UNTIL .

I (--- w)
Places the loop index onto the stack.

IF (flag ---), (--- sys) (compiling)
Allows a program to branch on condition.

J (--- w)
Returns the index of the next outer loop.

K (--- w)
Returns the index of the second outer loop in nested do loops.

LEAVE (---)
Forces termination of a DO LOOP.

LOOP (----),(sys ---) (compiling)
Defines the end point of a do-loop.

REPEAT (---), (sys ---) (compiling)
Terminates a BEGIN...WHILE...REPEAT loop.

THEN (---), (sys ---) (compiling)
52

Marks the end of a conditional branch or marks where execution will continue
relative to a corresponding IF or ELSE .

UNTIL (flag ---), (sys ---) (compiling)
Marks the end of an indefinite loop.

WHILE (flag ---), (sys1 --- sys2) (compiling)
Decides the continuation or termination of a ...WHILE...REPEAT loop.

Definition

2CONSTANT (32b ---)
Creates a double length constant for a <name>. When <name> is executed, 32b
is left on the stack.

2VARIABLE (---)
Creates double-length variable for <name>. When <name> is executed, its

parameter field address is placed on the stack.

: (--- sys)
Starts the definition of a word. Definition is terminated by a ; .

:CASE (n ---), (--- sys) (compiling)
Creates a dictionary entry for <name> in current and sets the compile mode.

; (sys ---)
Terminates a colon-definition.

;CODE (---), (sys1 --- sys2) (compiling)
Terminates a defining-word. May only be used in mode.

<BUILDS (---)
Creates a new dictionary entry for <name>

CODE (--- sys)
Creates an assembler definition.

CODE-SUB (--- sys)
Creates an assembler definition subroutine.

CONSTANT (16b ---)
Creates a dictionary entry for <name>.

CREATE (---)
Creates a dictionary entry for <name>.

53

DOES> (--- addr), (---) (compiling)
Marks the termination of the defining part of the defining word <name> and

begins the definition of run-time action for words that will later be by
<name>.

END-CODE (sys ---)
Terminates an assembler definition.

USER (n ---)
Create a user variable.

VARIABLE (---)
Creates a single length variable.

Dictionary

' (--- addr)
Returns <name>'s compilation address, addr

, (16b ---)
Reserves 16b of space in the dictionary.

ALLOT (w ---)
Reserves w bytes of dictionary space.

AUTOSTART (addr ---)
Prepare autostart vector at addr which will cause name> to be executed upon

reset. Note: addr must be on a 1K byte boundary.

C, (16b ---)
Stores the least significant byte of 16b into a byte at the next available dictionary

location.

CFA (pfa --- cfa)
Alter parameter field pointer address to code field address.

DP (--- addr)
Put Dictionary Pointer address on stack.

FORGET (---)
Deletes <name> from the dictionary.

H/C (addr ---)
Separate heads and codes portions of definition to different place in memory.

HERE (--- addr)
Leaves the address of the next variable dictionary location

HWORD (---)
Moves codes portion of last defined word from the codes memory to the heads

memory.

LATEST (--- nfa)
Leaves name field address (nfa) of top word in CURRENT.

54

LFA (pfaptr --- lfa)
Alter parameter field pointer address to link field address.

NFA (pfaptr - nfa)
Alter parameter field pointer address to name field address.

PAD (--- addr)
Puts onto stack the starting address in memory of scratchpad.

PFAPTR (nfa --- pfaptr)
Alter name field address to parameter field pointer address.

TASK (---)
A dictionary marker null word.

TRAVERSE (addr n --- addr)
Adjust addr positively or negatively until contents of addr is greater then $7F.

UNDO (---)
Forget the latest definition regardless of smudge condition.

Format

(+d1 --- +d2)
+d1 is divided by BASE and the quotient +d2 is placed onto the stack. The

remainder is converted to an ASCII character and appended to the output
string toward lower memory addresses.

#> (32b --- addr +n)
Terminates formatted (or pictured) output string (ready for TYPE).

#S (+d --- 0 0)
Converts all digits of an entire number into string.

-TRAILING (addr +n1 --- addr +n2)
Counts +n1 characters starting at addr and subtracts 1 from the count when a

blank is encountered. Leaves on the stack the final string count, n2 and addr.

<# (---)
Starts a formatted (pictured) numeric output. Terminated by #> .

COUNT (addr1 --- addr2 +n)
Leaves the address, addr2 and the character count +n of text beginning at addr1.

DPL (--- addr)
Returns the address of the user variable containing the number of places after

the fractional point for input conversion.

FLD (--- addr)
Returns the address of the user variable which contains the value of the field

length reserved for a number during output conversion.

HOLD (char ---)
Inserts character into a pictured numeric output string.

NUMBER (addr --- d)
Converts the counted string at addr to d according to the value of BASE .

SIGN (n ---)
Appends an ASCII " - " (minus sign) to the start of a pictured numeric output
string if n is negative.

55

Input/Output

#TIB (--- addr)
Returns the address of the user variable that holds the number of characters input.

." (---)
Displays the characters following it up to the delimiter " .

.((---)
Displays string following .(delimited by) .

.R (n +n ----)
Displays the value n right justified in a field +n characters wide according to the
value of BASE.

.S (---)
Display stack contents without modifying the stack.

. (n ---)
Removes n from the top of stack and displays it.

? (addr ---)
Displays the contents of addr.

?TERMINAL (--- flag)
True if any key is depressed.

ABORT" (----)
If flag is true, message that follows " is displayed and the ABORT function is

performed. If flag is false, the flag is dropped and execution continues.

BL (--- n)
Puts the ASCII code for a space (decimal 32) on the stack.

C/L (--- n)
Maximum number of characters per line

CR (---)
Generates a carriage return and line feed.

D. (d ---)
Displays the value of d.

D.R (d +n ---)
Displays the value of d right justified in a field +n characters wide.

56

DUMP (addr u ---)
Displays u bytes of memory starting at addr.

EMIT (16b ---)
Displays the ASCII equivalent of 16b onto the screen.

EXPECT (addr +n ---)
Stores up to +n characters into memory beginning at addr.

ID. (nfa ---)
Print <name> given name field address (NFA).

KEY (--- 16b)

Pauses to wait for a key to be pressed and then places the ASCII value of the key
(n) on the stack.

QUERY (---)
Stores input characters into text input buffer.

SPACE (---)
Sends a space (blank) to the current output device.

SPACES(+n ---)
 Sends +n spaces (blanks) to the current output device.

SPAN (--- addr)
Returns the address of the user variable that contains the count of characters

received and stored by the most recent execution of EXPECT .

TIB (--- addr)
Returns the address of the start of the text-input buffer.

TYPE (addr +n ---)
Displays a string of +n characters starting with the character at addr.

U. (u ---)
Displays the unsigned value of u followed by a space.

U.R (u +n ---)
Displays the value of u right justified in a field +n characters wide according to
the value of BASE.

Interpreter

;S (---)
Stop interpretation.

>IN (--- addr)

Leaves the address of the user variable >IN which contains the number of bytes
from the beginning of the input stream at any particular moment during

interpretation.

EXIT (---)
Causes execution to leave the current word and go back to where the word was
called from.

FIND (addr1 --- addr2 n)
Obtains an address of counted strings, addr1 from the stack. Searches the

dictionary for the string.

57

INTERPRET (---)
Begins text interpretation at the character indexed by the contents of >IN relative

to the block number contained in BLK, continuing until the input stream is
exhausted.

QUIT (---)
Clears the return stack, stops compilation and returns control to current input

device.

WORD (char --- addr)
Generates a counted string until an ASCII code, char is encountered or the

input stream is exhausted. Returns addr which is the beginning address
of where the counted string are stored.

Logic

AND (16b1 16b2 --- 16b3)
Leaves the bitwise logical AND of 16b1 and 16b2 as 16b3.

NOT (16b1 --- 16b2)
Leaves the one's complement 16b2 of 16b1.

OR (16b1 16b2 --- 16b3)
Leaves the exclusive-or 16b3 of 16b1 an 16b2.

XOR (16b1 16b2 --- 16b3)
Performs a bit-by-bit exclusive or of 16b1with 16b2 to give 16b3.

System

(LINE) (n1 n2 --- addr count)
Virtual storage line primitive.

--> (---)
Immediately transfers interpretation to the start of the next sequential block.

.LINE (n1 n2 ---)
Display line of text from mass storage.

>L (n ---)
Place the <text> on line n of the current screen as designated by SCR.

B/BUF (--- 1024)
Returns a constant 1024 which is the number of bytes per block buffer.

BLK (--- addr)
Leaves the address of the user variable containing the number of the block that

is currently being interpreted.

BLOCK (u --- addr)

Leaves the address of the block buffer containing block u.

BUFFER (u --- addr)
Assigns the block buffer and its address to block u. Leaves the address of the

block buffer on the stack.

EMPTY-BUFFERS (---)
Removes the update status and removes assignments of all blocks to buffers.

FIRST (--- n)

Leaves address of first block buffer.

FLUSH (---)
58

Performs the functions of the SAVE-BUFFERS then unassign all block buffers.

INDEX (u1 u2 ---)
Displays the top line from each block in a range of blocks starting at block u1 to
u2.

LIMIT (--- n)
Top of memory

LIST (u ---)
Lists the block whose number is u. SCR is set to u.

LOAD (u ---)
Begins interpretation of block u.

OFFSET (--- addr)
Returns the address of the user variable that contains a block offset to

mass storage.

SAVE-BUFFERS (---)
Copies the contents of all block buffers marked as UPDATEd to their

corresponding mass-storage blocks.

SCR (--- addr)
Returns the address of the user variable containing the number of block most

recently listed.

THRU 1 (u1 u2 ---)
Load blocks from u1 through u2.

TRIAD (u16 ---)
Lists three screens to the output device. One of screens listed is specified by

the user.

UPDATE (---)
Marks the block buffer as having been modified and as ready to be saved to

mass storage.

59

Memory

! (16b addr ---)
Stores 16 at addr.

+! (w1 addr ---)
 Adds w1 to the value at addr then stores the sum addr replacing its previous value.

1+! (addr ---)
Adds one to the value at addr and stores the at addr.

1-! (addr ---)
Subtracts one from the value at addr and stores result at addr.

2! (32b addr ---)
Stores 32b at addr.

2@ (addr --- 32b)
Returns 32b from addr.

@ (addr --- 16b)
Replaces addr with its 16b contents on top of the stack.

BLANKS (addr u ---)
Sets u bytes of memory beginning at addr to the ASCII code for space (decimal

32).

C! (16b addr ---)
Stores the least significant byte of 16b into addr.

C@ (addr --- 8b)
Fetches the 8b contents from addr.

CMOVE (addr1 addr2 u ---)
Moves towards high memory the u bytes at addresses addr1 and addr2.

CMOVE> (addr1 addr2 u ---)
Moves u bytes beginning at addr1 to addr2.

EEC! (16b addr ---)
Stores the least significant byte of 16b into addr in EEPROM.

EEMOVE (addr1 addr2 u ---)
Moves the u bytes at addresses addr1 and addr2.

EEWORD (---)
Moves code of last defined word from the codes memory of the EEPROM memory.

ERASE (addr u ---)
Sets u bytes of memory to zero, beginning at addr.

FILL (addr u 8b ---)
Fills u bytes, beginning at addr, with byte pattern 8b.

60

Numeric

BASE (--- addr)
Leaves the address of the user variable containing the numeric conversion radix.

CONVERT (+d1 addr1 --- +d2 addr2)
Converts an input string into a number.

DECIMAL (---)
Sets the input-output numeric conversion base to ten.

HEX (---)
Sets the numeric input-output conversion to base 16.

Operating System

ABORT (flag ---)
Clears the data stack and performs the function of QUIT .

COLD (---)
Cold starts FORTH.

ATO4 (--- N)

Returns address of subroutine call to high level word as indicated in D register.

Primitive

?BRANCH (flag ---)
Compiles a conditional branch operation.

BRANCH (---)

Compiles an unconditional branch operation.

Stack

-ROLL (n ---)
Removes the value on the top of stack and inserts it to the nth place from the top of

stack.

2DROP (32b ---)
Removes 32b from the stack.

2DUP (32b --- 32b 32b)
Duplicates 32b.

2OVER (32b1 32b2 --- 32b1 32b2 32b3)
32b3 is a copy of 32b1

2ROT (32b1 32b2 32b3 --- 32b2 32b3 32b1)
Rotates 32b1 to the top of the stack.

2SWAP (32b1 32b2 --- 32b2 32b1)
Swaps 32b1 and 32b2 on the stack.

>< (8b1/8b2 --- 8b2/8b1)
Swaps the upper and lower bytes of the value on the stack.

>R (16b ---)
Removes 16b from user stack and place it onto return stack.

?DUP (16b --- 16b 16b), (0 --- 0)
61

Duplicates 16b if it is a non-zero.

DEPTH (--- +n)
Returns count +n of numbers on the data stack.

DROP (16b ---)
Removes 16b from the data stack.

DUP (16b --- 16b 16b)
Duplicates 16b.

OVER (16b1 16b2 --- 16b1 16b2 16b3)
16b3 is a copy of 16b1.

PICK (+n --- 16b)
Copies the data stack's +nth item onto the top.

R> (--- 16b)

16b is removed from the return stack and placed onto the data stack.

R@ (--- 16b)
16b is a copy of the top of the return stack.

ROLL (+n ---)
Removes the stack's nth item and places it onto the top of stack.

ROT (16b1 16b2 16b3 --- 16b2 16b3 16b1)
Rotates 16b1 to the top of the stack.

S0 (--- addr)
Returns the address of the variable containing the initial value of the bottom of

the stack.

SP@ (--- addr)
addr is the address of the top of the parameter stack just before SP@ was executed.

SWAP (16b1 16b2 --- 16b2 16b1)
Exchanges positions of the top two items of the stack.

Vocabulary

ASSEMBLER (---)
Replaces the first vocabulary in the search order with the assembler vocabulary.

CONTEXT (--- addr)
Returns the address of a user variable that deter mines the vocabulary to be

searched first in the dictionary.

CURRENT (--- addr)
Returns the address of the user variable specifying the vocabulary into which new

word definitions will be entered.

DEFINITIONS (---)
Specify the vocabulary into which new definitions are to be added.

FORTH (---)
Replaces the first vocabulary in the search order with FORTH.

FORTH-83 (---)
Initializes FORTH-83 into the system.

VOCABULARY (---)
Creates a vocabulary word.

62

WORDS (---)
Lists all the words in the CURRENT vocabulary.

63

Chapter V

 Hardware and Software Details

64

FORTH 68HC11 MEMORY MAP

DEC HEX NAME VALUE

 $0000 W 0
 $0001 "
 $0002 IP 0 WORD PTR AFTER BOOT PAT.
 $0003 "
 $0004 UP $0006 UAREA
 $0005 "
 $0006 DNLINK 0
 $0007 "
 $0008 UPLINK 0
 $0009 "
 $000A PRIORITY 0
 $000B "
 $000C RPSAVE 0
 $000D "
 $000E R0 STACKINIT
 $000F "
 $0010 S0 BOS
 $0011 "
 $0012 KEY-BC-PTR DEFKEY
 $0013 "
 $0014 EMIT-BC-PTR DEFOUT
 $0015 "
 $0016 UKEY KEYSUB+2
 $0017 "
 $0018 UEMIT EMITSUB+2
 $0019 "
 $001A U?TERMINAL QTSUB+2
 $001B "
 $001C TIB TIBX
 $001D "
 $001E UC/L

65

System Memory Map

B000 PORTA

PA0 - Left Whisker
PA1 - Right Whisker
PA2 not used
PA3 - Left motor direction
PA4 - Left motor enable
PA5 Right motor direction
PA6 - Right motor enable
PA7 - Led control

B002 PIOC
B003 PORTC (not available; used to address memory)
B004 PORTB (not available; used to address memory)
B005 PORLCL(not used)
B007 DDRC (not used)
B008 PORTD (serial port)

PD0 - Rxd; recieve data RS232
PD1 - TxD; transmit data RS232
PD2 - MISO; network output
PD3 - MOSI; network input
PD4 - SCK; network clock
PD5 - /SS; network select device, speaker output
PD6 AS
PD7 - R/W; read/write

B009 DDRD (data direction register for port D)
B00A PORTE (ADC inputs)

PE0 - Left front photo detector
PE1 - Left side photo detector
PE2 - Right front photo detector
PE3 - Right side photo detector
PE4 - Battery
PE5 - Left motor monitor
PE6 - Right motor monitor
PE7 - Audio microphone

B00B CFORC (oc1 oc2 oc3 oc4 oc5 - - - force output compare 8 bit)
B00C OC1M (oc1 oc2 oc3 oc4 oc5 - - - enable port A pins 8 bit)
B00D OC1D (oc1 oc2 oc3 oc4 oc5 - - - pin level high = 1 8 bit)
B00E TCNT (main timer read only 16 bit)
B010 TIC1 (input compare 1 timer 16 bit)
B012 TIC2 (input compare 2 timer 16 bit)
B014 TIC3 (input compare 3 timer 16 bit)
B016 OC1 (output compare 1 timer 16 bit)
B018 OC2 (output compare 2 timer 16 bit)
B01A OC3 (output compare 3 timer 16 bit)
B01C OC4 (output compare 4 timer 16 bit)
B01E OC5 (output compare 5 timer 16 bit)

B020 TCTL1 (om2 ol2 om3 ol3 om4 ol4 om5 ol5 timer contro 8 bit)
B021 TCTL2 (- - edg1b edg1a edg2b edg2a edg3b edg3a 8 bit)
B022 TMSK1 (oc1I oc2I oc3I oc4I oc5I ic1I ic2I ic3I IRQ enable 8 bit)
B023 TFLG1 (oc1f oc2f oc3f oc4f oc5f ic1f ic2f ic3f IRQ f

1=clr 8 bit)
B024 TMSK2 (toI rtiI paovI raiI - - pr1 pr0 overflow IRQ enable 8 bit)
B025 TFLG2 (tof rtif paovf paif - - - - timer ovrflow=1 tof=1 set 8 bit)

66

B026 PACTL (ddrA7 paen pamod pedge - - rtr1 rtr0 pulse acc ctrl
bit)

B027 PACNT
B028 SPCR
B029 SPSR
B02A SPDR
B02B BAUD
B02C SCCR1
B02D SCCR2
B02E SCSR
B02F SCDR
B030 ADCTL
B031 ADR1
B032 ADR2
B033 ADR3
B034 ADR4

67

Robot Control Board

The WHISKERS control board is the very heart of this little robot. It has been specially designed to provide the required I/O
to allow almost unlimited programing capability. You use the WHISKERS to carry out your own programing ideas and it
becomes the very extension of your intellect, and his.

Lets review where all major plugs and components are located.

J1 36 pin expansion connector

Pin Signal

J1-1 VBATSW
J1-2 VBATSW
J1-3 GND
J1-4 GND
J1-5 VCC
J1-6 VCC
J1-7 /RESET
J1-8 ECLOCK
J1-9 NC
J1-10 /XIRQ
J1-11 AS
J1-12 /R/W
J1-13 A14
J1-14 A15
J1-15 A12
J1-16 A13
J1-17 A10
J1-18 A11
J1-19 A8
J1-20 A9
J1-21 SCK
J1-22 /SS
J1-23 MISO
J1-24 MOSI
J1-25 D1
J1-26 D0
J1-27 D3
J1-28 D2
J1-29 D5
J1-30 D4
J1-31 D7
J1-32 D6
J1-33 NC
J1-34 /MEMDIS
J1-35 NC
J1-36 /IRQ

RS232 Serial connector

J2-1 GND
J2-2 RDY\
J2-3 RXD\
J2-4 TXD\

J4 two pins to the microphone

J5 a 10 pin plug - network bus to connect multiple processors.

BUZ1 two lead connection to speaker

68

P1 MODB - Vbb or Gnd
P2 MODA - Vcc or Gnd
P3 IRQ\ - Vcc or Gnd
P4 XIRQ\- Vcc or Gnd

X 9 - LED connection
X10 - sensor connection
X11 - sensor connection
X12 - LED connection
X13 - sensor connection
X14 - LED connection
X15 - LED connection
X16 - sensor connection

Power connector

X18 - p1 - VCHARGE Connect to center (+) lead on charger plug
X18 - p2 - VBATSW1 Connect to plus lead on battery through power switch
X18 - p3 - VBAT Connect directly to the plus lead on battery
X18 - p4 - MOT2+ Right motor plus lead
X18 - p5 - MOT2- Right motor negative lead
X18 - p6 - MOT1+ Right motor plus lead
X18 - p7 - MOT1- Right motor negative lead
X18 - p8 - no connect
X18 - p9 - GND Negative on charger connector
X18 - p10 - GND Negative on battery
X18 - p11 - GND Reset pushbutton switch
X18 - p12 - RESET Reset pushbutton switc

69

Components

XTAL - 8.00 Megahertz

U1 74HC00 - quad NAN Gate

U2 74HC00 - quad NAN Gate

U3 74HC138 - Octal Latch

U4 MS62256L - 32K RAM

U5 ROM - 27C128

U6 74HC138 - 3 to 8 MUX

U7 TL084CN

X1 MAX232 - RS232 Line Driver

X2 F68HC11FH microcontroller

X17 UDN2993B motor control

VR1 7805 5v regulator

VR2 7805 5v regulator

VR3 7805 8v regulator

70

Chapter VI

High Level Source Code

71

FORTH DEFINITIONS
HEX

: START-PROM ;

2FE CONSTANT LAST-PROM (DON 6-19-93)
2FB CONSTANT AUTO-VEC

: VERSION
 CR
 ." Whiskers KB.2.3" CR
 ." Multitasker 1.0" CR ;

: WARN (Redefine warning to work with FORTH.ASP PROCOM protocal)
 CR HERE COUNT TYPE ." ? MS" 47 EMIT 20 EMIT DUP .
 1000 0 DO LOOP
 HERE COUNT TYPE ." forth error message " . CR ABORT ;

 (' WARN CFA 04C ! -1 054 ! DON

: NAME (CFA --) (usage CFA NAME NEWNAME
 CREATE -2 ALLOT 2+ HERE 2- ! ;

(Hidden -headerless- MaxFORTH words)
(F415 NAME INNUMBER
F65A NAME 0
FDD6 NAME 0!
EBB7 NAME -FIND
E6E5 NAME DOCOL
F57C NAME SP!
F573 NAME RP!
F38C NAME ?STATE
EA69 NAME ?ERROR
EA81 NAME ?STACK
F656 NAME 1
F50C NAME HEADERLESS
FE07 NAME @@
FE13 NAME @!
(FE80 NAME DOCON
(EE50 NAME DO2CON
(FEB7 NAME DOUSE
EA51 NAME ?EXEC
F2EA NAME ?NOTEND
F52D NAME WARNING
F521 NAME UABORT
FC87 NAME (DO)
FC9E NAME (LOOP)
EA9F NAME DLIT
FE2C NAME CLIT
FE39 NAME LIT
FCFC NAME NZBRANCH

(WORD TIMER CODE Feb 13,1991)

HEX

: TM (use: TM WORD to time WORD in microseconds)
' CFA
B00E @ >R EXECUTE
B00E @ R> - AA - 0 2 UM/MOD . DROP ." microseconds"
;

HEX
72

: >NAME (CFA -- NFA | 0)
 LATEST
 BEGIN

DUP >R 1 TRAVERSE 1+
2DUP 2+ @ 2- = IF 2DROP R> EXIT ELSE R> DROP THEN
@ DUP 0=

 UNTIL SWAP DROP
 ;

(System Words)

(FORGET SYSTEM)

: SYSTEM ;

: COPYRIGHT
 CR VERSION
 CR ." (c) 1992 ANGELUS RESEARCH"
 CR ." This software cannot be sold or incorporated into"
 CR ." another product without express permission from"
 CR ." Angelus Research, 6344 Sugar Pine Circle, #98"
 CR ." Angelus Oaks, California 92305 (909) 794-8325"
 CR ." Purchasing this product, gains the purchaser the"
 CR ." right to modify and use the source code provided for"
 CR ." their personal use only, with exception to the source"
 CR ." in the public.fth file which may be freely distributed."
 CR ." All rights reserved"
 CR
 CR ." to bypass autostarting, press space bar..."
 CR ." to restore system to factory configuration, press Q."
 CR
 CR ." May the Forth be with you..."
;

HEX

: ARRAY: (bytes --)
 VARIABLE
 VP +! ;

: REG: (n --)
 (fix me for users!)
 VARIABLE -1 VP +! ;

: BINARY
 2 BASE ! ;

: &H HEX ; IMMEDIATE
: &D DECIMAL ; IMMEDIATE
: &B BINARY ; IMMEDIATE

DECIMAL

: ON (a --)
 -1 SWAP C! ;

: OFF (a --)
 0 SWAP C! ;

REG: rBUSY (DON flag for behavior level
73

REG: rINSTINCTS

: WAIT-BUSY (--)
 BEGIN (wait until task completed
 rBUSY C@
 NOT UNTIL ;

: WORDS

 WAIT-BUSY

 rBUSY ON
 WORDS
 rBUSY OFF ;

(Register Locations)
HEX
B000 CONSTANT PORTA
B002 CONSTANT PIOC
B003 CONSTANT PORTC
B004 CONSTANT PORTB
B005 CONSTANT PORLCL
B007 CONSTANT DDRC
B008 CONSTANT PORTD
B009 CONSTANT DDRD
B00A CONSTANT PORTE
B00B CONSTANT CFORC (oc1 oc2 oc3 oc4 oc5 - - - force output compare 8)
B00C CONSTANT OC1M (oc1 oc2 oc3 oc4 oc5 - - - enable port A pins 8)
B00D CONSTANT OC1D (oc1 oc2 oc3 oc4 oc5 - - - pin level high = 1 8)
B00E CONSTANT TCNT (main timer read only 16)
B010 CONSTANT TIC1 (input compare 1 timer 16)
B012 CONSTANT TIC2 (input compare 2 timer 16)
B014 CONSTANT TIC3 (input compare 3 timer 16)
B016 CONSTANT OC1 (output compare 1 timer 16)
B018 CONSTANT OC2 (output compare 2 timer 16)
B01A CONSTANT OC3 (output compare 3 timer 16)
B01C CONSTANT OC4 (output compare 4 timer 16)
B01E CONSTANT OC5 (output compare 5 timer 16)
B020 CONSTANT TCTL1 (om2 ol2 om3 ol3 om4 ol4 om5 ol5 timer contro 8)
B021 CONSTANT TCTL2 (- - edg1b edg1a edg2b edg2a edg3b edg3a 8)
B022 CONSTANT TMSK1 (oc1I oc2I oc3I oc4I oc5I ic1I ic2I ic3I IRQ enable 8)
B023 CONSTANT TFLG1 (oc1f oc2f oc3f oc4f oc5f ic1f ic2f ic3f IRQ f 1=clr 8)
B024 CONSTANT TMSK2 (toI rtiI paovI raiI - - pr1 pr0 overflow IRQ enable 8)
B025 CONSTANT TFLG2 (tof rtif paovf paif - - - - timer ovrflow=1 tof=1 set8)
B026 CONSTANT PACTL (ddrA7 paen pamod pedge - - rtr1 rtr0 pulse acc ctrl 8)
B027 CONSTANT PACNT
B028 CONSTANT SPCR
B029 CONSTANT SPSR
B02A CONSTANT SPDR
B02B CONSTANT BAUD
B02C CONSTANT SCCR1
B02D CONSTANT SCCR2
B02E CONSTANT SCSR
B02F CONSTANT SCDR
B030 CONSTANT ADCTL
B031 CONSTANT ADR1
B032 CONSTANT ADR2
B033 CONSTANT ADR3
B034 CONSTANT ADR4

&B
: INIT (--)

74

 10000000 PACTL C!
 00000000 PORTA C!
 00100000 DDRD C! ;
&D

: DISABLE (--)
 0 PORTA C!
 0 TMSK1 C!
 ;

: ENABLE (--)
 &B 00010000 &D TMSK1 C!
 ;

&B
01100000 CONSTANT LF
01000000 CONSTANT LR
00011000 CONSTANT RF
00010000 CONSTANT RR
01111000 CONSTANT FWD
01010000 CONSTANT REV
00000000 CONSTANT ST
01110000 CONSTANT PVR
01011000 CONSTANT PVL

&H

REG: rMASK

&D

: M (n --)
 DEPTH
 IF

DUP PORTA C!
rMASK C!

 ELSE
CR ." Nothing on stack "

 THEN
 CR ." Use one of these: LF LR RF RR FWD REV ST PVL PVR"
;

: S (--)
 ST M ;

DECIMAL

(Task Words)

ALIAS +! INCREASE (n ADDR --) (DON 6-24-93
ALIAS -! DECREASE (n ADDR --)
ALIAS 1+! INCREMENT (ADDR --) (DON 6-24-93
ALIAS 1-! DECREMENT (ADDR --)
ALIAS ! NOW (ADDR --)
ALIAS @ VALUE (ADDR --)
ALIAS C! SET (ADDR --) (DON 7-7-93
ALIAS C@ GET (ADDR --)
ALIAS SP! CLEAR-STACK (--)
ALIAS DISPLAY" ." (DON 7-14-93

: INDEX (addr offset -- n)
 DEPTH
 1 >

75

 IF
 1- +
 ELSE
 CLEAR-STACK
 CR ." need array name and index!"
 THEN
;

: THEN
 DONE ; IMMEDIATE (DON 7-14-93)

: SYSTEM-INIT
 INIT
 &H FF6C 26 ! &D (KHZ FOR writing to EE rom)
 0 rMASK C! ;

.(load TIMER.FTH next...)

(Timer Routines DRG 3-7-92)

HEX
(SENSOR 203-374-1411 EXT 127)
(FORTH DEFINITIONS)
(ASSEMBLER)

CODE-SUB CLI
 0E C, (CLI)
 39 C, (RTS)
END-CODE

CODE-SUB SEI
 0F C, (SEI)
 39 C, (RTS)
END-CODE

(FORGET ADC1)
: ADC1 ;

&B
 01111111 CONSTANT BPC-OFF
 10000000 CONSTANT BPC-ON
&H

: BEYES-ON (--)
 PORTA C@ BPC-ON OR PORTA C! ;

: BEYES-OFF (--)
 PORTA C@ BPC-OFF AND PORTA C! ;

: DELAY (time --)
 0 DO LOOP ;

DECIMAL

(REG: addresses are consecutive and can be treated as a table)

(storage table for the first bank of the adc registers)
REG: rADR1-OFF
REG: rADR2-OFF
REG: rADR3-OFF
REG: rADR4-OFF
REG: rADR1-ON
REG: rADR2-ON

76

REG: rADR3-ON
REG: rADR4-ON
(storage table for the second bank of the adc registers)
REG: rADR1-B
REG: rADR2-B
REG: rADR3-B
REG: rADR4-B

1024 CONSTANT 1K

1K ARRAY: 1K-BUFFER

VARIABLE vSAMPLES
: SAMPLES (samples --)

DUP 1K >
 IF
 ." too many...1024 max!"
 DROP
 ELSE
 vSAMPLES !
 THEN ;

VARIABLE vRATE
: RATE (rate --)
 vRATE ! ;

: DIGITIZE (--)

DISABLE (interupts)
&B 00110100 &D ADCTL C!

vSAMPLES @
1K-BUFFER + 1K-BUFFER
DO

vRATE @ 0 DO LOOP
ADR4 C@
I C!

LOOP

 &B 00010000 &D ADCTL C!

;

: AVERAGE (-- average)
(Loop contents optimized for speed)
0.0 (SUM)
1K-BUFFER vSAMPLES @ + (HI)
1K-BUFFER (LO)
DO I C@ 0 D+ LOOP
vSAMPLES @ UM/MOD
SWAP 2* vSAMPLES @ > - (round result)
;

: SOUND-LEVEL (-- level)
 DISABLE
 2000 DELAY
 10 RATE
 1K SAMPLES
 DIGITIZE
 AVERAGE ;

77

: INIT-ADC1 (--)
 1K-BUFFER 1K ERASE
 rADR1-OFF 12 ERASE

 256 vSAMPLES !
 100 RATE
;

DECIMAL

1 CONSTANT cRIGHT (RCL Direction controls)
2 CONSTANT cLEFT
3 CONSTANT cFWD
4 CONSTANT cREV

REG: rCHOICE (RCL direction choice)

REG: rLSPEED
REG: rRSPEED

(left motor pulse width modulation registers)
REG: rLEFT-CTR
REG: rLTON
REG: rLTOFF

(right motor pulse width modulation registers)
REG: rRIGHT-CTR
REG: rRTON
REG: rRTOFF

VARIABLE vCOUNTER (Counts instinct interrupts)

VP @ CONSTANT cVAR-START (start of the system variables)

(************* start of system variables *****************)

REG: rMAX-SPEED

REG: rCORRECTION (Modifies right speed to match left, can be + or -)

REG: rLF-TRIGGER (discriminator values)
REG: rLSF-TRIGGER
REG: rRF-TRIGGER
REG: rRSF-TRIGGER
REG: rL-TRIGGER
REG: rR-TRIGGER
REG: rF-TRIGGER
REG: rLM-TRIGGER
REG: rRM-TRIGGER

REG: rFACTOR (trigger calibration factor)

REG: rLF-MASK (collision response masks)
REG: rLSF-MASK
REG: rRF-MASK
REG: rRSF-MASK
REG: rLW-MASK
REG: rRW-MASK
REG: rL-MASK
REG: rR-MASK
REG: rF-MASK
REG: rLM-MASK

78

REG: rRM-MASK

REG: rCOLLISION (disable collision detection flag)

VARIABLE vSENSOR-CTR (sensor timing values--could be REG:)
VARIABLE vEYES-ON-PER
VARIABLE vEYES-OFF-PER
VARIABLE vSCAN-OFF-DELAY
VARIABLE vSCAN-ON-DELAY

VARIABLE vPWM-CYC

REG: rSTALL-DELAY (disable stall detection VALUE)
REG: rLIGHTS (disable light collisions)
REG: rSTALLS (disable stall collisions)
REG: rWHISKERS (disable whiskers collisions)
REG: rSENSE (disable ADC readout -required for LIGHTS,STALLS)
REG: rSUM-FACTOR (DON used to adjust sum trigger for calibration

VARIABLE vMAX-COMPASS

REG: rMAX-INSTINCTS

2VARIABLE vPACE (sets pace of song in units of 1/4 notes/min)
(example 60 vPACE ! will slow a song to 60 1/4 notes/min)
(120 vPACE ! is 'normal')

VARIABLE vINT-CFA (cfa of hi level hook in interrupt routine)

(************* end of system variables *****************)

VP @ cVAR-START -
CONSTANT cVAR-LENGTH (length of the system variable table)

VARIABLE vCOMPASS
REG: rNO-STALLS (disable stall detection flag)

VARIABLE vWAIL

(initialize the system variables)

: TRIGGER-FACTOR (n --)
 DUP 255 <
 IF
 rFACTOR C!
 ELSE
 CR ." too high...must be less than 255!"
 THEN
;

: SUM-FACTOR (n --)
 DUP 255 <
 IF
 rSUM-FACTOR C!
 ELSE
 CR ." too high...must be less than 255!"
 THEN
 ;

: INIT-VARS

 vSENSOR-CTR 0!
 3 vEYES-ON-PER !
 3 vEYES-OFF-PER !

79

 1 vSCAN-OFF-DELAY !
 1 vSCAN-ON-DELAY !
 16700 vPWM-CYC !
;
: INIT-OPTIONS
 50 rLSPEED C!
 50 rRSPEED C!
 DECIMAL
 80 rSUM-FACTOR C!
 50 rFACTOR C!
 100 rMAX-SPEED C!
 rCORRECTION OFF
 455 vMAX-COMPASS !
 0 vCOMPASS !
 vINT-CFA 0!

 50 rNO-STALLS C!
 255 rSTALL-DELAY C!
 23 rLM-TRIGGER C!
 23 rRM-TRIGGER C!
 160 vWAIL !
 &H
 10 rMAX-INSTINCTS C!
 -1 rCOLLISIONC! (Enable collision detection)
 -1 rSENSE C! (Enable flashing lights and ADC reads)
 -1 rWHISKERS C! (Enable whisker collisions)
 -1 rLIGHTS C! (Enable light collisions)
 -1 rSTALLS C! (Enable stall collisions)
 (rLF-TRIGGER 7 FF FILL (DON set trigger levels)

 &D
 120 120 vPACE 2! (set full rational fraction)
;

INIT-OPTIONS
INIT-VARS

REG: rLF-VALUE (on - off values)
REG: rLSF-VALUE
REG: rRF-VALUE
REG: rRSF-VALUE
REG: rL-VALUE
REG: rR-VALUE
REG: rF-VALUE
REG: rLM-VALUE
REG: rRM-VALUE

&B
1 CONSTANT LF-OBSTACLE (specific collision flags)
10 CONSTANT LSF-OBSTACLE
100 CONSTANT RF-OBSTACLE
1000 CONSTANT RSF-OBSTACLE
10000 CONSTANT L-OBSTACLE
100000 CONSTANT R-OBSTACLE
1000000 CONSTANT F-OBSTACLE

(Start new byte for whiskers and stalls)
100000000 CONSTANT LW-OBSTACLE
1000000000 CONSTANT RW-OBSTACLE
10000000000 CONSTANT LM-OBSTACLE
100000000000 CONSTANT RM-OBSTACLE

VARIABLE vCOLLIDED (any collision flag - or of obstacles)
VARIABLE vCOL-FLAG (any collision signal)

80

VARIABLE vSENSOR-CYC (sensor cycle toggle)

&B 00010000 &H CONSTANT TFLG1-MASK (OC4 int flag)
&B 00010000 &H CONSTANT SCAN-A (1st ADC bank)
&B 00010100 &H CONSTANT SCAN-B (2nd ADC bank)
&B 10000000 &H CONSTANT SENSOR-MASK

(DON
(&B 00000001 &H CONSTANT RW-MASK (whisker masks)
(&B 00000010 &H CONSTANT LW-MASK
 &B 00000010 &H CONSTANT RW-MASK (whisker masks)
 &B 00000001 &H CONSTANT LW-MASK

REG: rCOL-MASK (motor mask from collision)

: RIGHT (--)
 cRIGHT rCHOICE C! ;

: LEFT (--)
 cLEFT rCHOICE C! ;

 &B
 10111111 CONSTANT L-OFF
 01000000 CONSTANT L-ON
 &D

 &B 11101111 CONSTANT R-OFF
 00010000 CONSTANT R-ON
 &D

: PERIODS (ms -- | ~ 2 ms typical)
 vCOUNTER 0!
 BEGIN
 vCOUNTER @ OVER >
 UNTIL
 DROP ;

HEX

: OBSTACLE (MASK ... T/F)
 vCOLLIDED @ AND ;

: CLEAR-SENSORS (--) (erase memory of hit)
 vCOLLIDED 0!
 vCOL-FLAG 0!
 ;

DECIMAL

: PRINT (print the name of the following word inside : definition)
 R@ 2+ @ 2- NFA ID. SPACE
;

: 10.R 9 .R SPACE ;
: 7.R 6 .R SPACE ;
: 5.R 4 .R SPACE ;
: 10_ 10 SPACES ;
: 17.R 10_ 7.R ;

: SCANS
81

CR PRINT vPWM-CYC @ 7.R
CR PRINT vSENSOR-CTR @ 7.R
 PRINT vSENSOR-CYC @ 7.R
CR PRINT vEYES-ON-PER @ 7.R
 PRINT vEYES-OFF-PER @ 7.R
CR PRINT vSCAN-OFF-DELAY @ 7.R
 PRINT vSCAN-ON-DELAY @ 7.R
CR ;

: MOTORS
 CR PRINT rMAX-SPEED C@ 7.R
 PRINT rCORRECTION C@ 7.R
 PRINT vPWM-CYC @ 7.R
 CR PRINT rLSPEED C@ 5.R
 PRINT rRSPEED C@ 5.R
 CR PRINT rLTON C@ 5.R
 PRINT rLTOFF C@ 5.R
 PRINT rLEFT-CTR C@ 5.R
 CR PRINT rRTON C@ 5.R
 PRINT rRTOFF C@ 5.R
 PRINT rRIGHT-CTR C@ 5.R
 BASE @ BINARY
 CR PRINT rMASK C@ .
 PRINT PORTB C@ 10.R
 PRINT PORTA C@ 10.R
 BASE !
 ;

DECIMAL
: SENSORS (--)
 CR 21 SPACES
 ." ON OFF VALUE OBSTACLE TRIGGER MASK"
 CR
 ." Left Front Sensor "
 rADR1-ON C@ 5.R
 rADR1-OFF C@ 5.R
 rLF-VALUE C@ 7.R
 LF-OBSTACLE OBSTACLE 10.R
 rLF-TRIGGER C@ 10.R
 rLF-MASK C@ 7.R
 CR
 ." Left Side Sensor "
 rADR2-ON C@ 5.R
 rADR2-OFF C@ 5.R
 rLSF-VALUE C@ 7.R
 LSF-OBSTACLE OBSTACLE 10.R
 rLSF-TRIGGER C@ 10.R
 rLSF-MASK C@ 7.R
 CR
 ." Right Front Sensor "
 rADR3-ON C@ 5.R
 rADR3-OFF C@ 5.R
 rRF-VALUE C@ 7.R
 RF-OBSTACLE OBSTACLE 10.R
 rRF-TRIGGER C@ 10.R
 rRF-MASK C@ 7.R
 CR
 ." Right Side Sensor "
 rADR4-ON C@ 5.R
 rADR4-OFF C@ 5.R
 rRSF-VALUE C@ 7.R
 RSF-OBSTACLE OBSTACLE 10.R
 rRSF-TRIGGER C@ 10.R
 rRSF-MASK C@ 7.R

82

 CR
 ." Left summed sensor "
 rL-VALUE C@ 17.R
 L-OBSTACLE OBSTACLE 10.R
 rL-TRIGGER C@ 10.R
 rL-MASK C@ 7.R
 CR
 ." Right summed sensor"
 rR-VALUE C@ 17.R
 R-OBSTACLE OBSTACLE 10.R
 rR-TRIGGER C@ 10.R
 rR-MASK C@ 7.R
 CR
 ." Front summed sensor"
 rF-VALUE C@ 17.R
 F-OBSTACLE OBSTACLE 10.R
 rF-TRIGGER C@ 10.R
 rF-MASK C@ 7.R
 CR
 ." Left whisker "
 LW-OBSTACLE OBSTACLE 10_ 17.R
 rLW-MASK C@ 10_ 7.R
 CR
 ." Right whisker "
 RW-OBSTACLE OBSTACLE 10_ 17.R
 rRW-MASK C@ 10_ 7.R
 CR
 ." Left motor current "
 rLM-VALUE C@ 17.R
 LM-OBSTACLE OBSTACLE 10.R
 rLM-TRIGGER C@ 10.R
 rLM-MASK C@ 7.R
 CR
 ." Right motor current"
 rRM-VALUE C@ 17.R
 RM-OBSTACLE OBSTACLE 10.R
 rRM-TRIGGER C@ 10.R
 rRM-MASK C@ 7.R
 CR
 PRINT rCOLLISION C@ 7.R
 PRINT vCOLLIDED @ 7.R
 PRINT vCOL-FLAG @ 7.R
 PRINT rFACTOR C@ 5.R
 CR
 PRINT rWHISKERS C@ 5.R
 PRINT rSENSE C@ 5.R
 PRINT rLIGHTS C@ 5.R
 PRINT rSTALLS C@ 5.R
 CR
 PRINT vCOMPASS @ 7.R
 PRINT vMAX-COMPASS @ 7.R
 CR ." BATTERY =" rADR1-B C@ 5.R
 ." SOUND =" rADR4-B C@ 5.R
 CR
 PRINT rNO-STALLS C@ 5.R
 PRINT rSTALL-DELAY C@ 5.R
 PRINT rMASK C@ 5.R
 PRINT rCOL-MASK C@ 5.R
 CR
 PRINT rBUSY C@ 5.R
 PRINT rMAX-INSTINCTS C@ 5.R
 PRINT vINT-CFA @ DUP IF 2- NFA SPACE ID. ELSE . THEN
 CR
 ;

83

&D
REG: rSAV-DIR

: REVERSE-DIR (--)
 rMASK C@
 &B 00101000 XOR &D
 rMASK C!
;

: SAVE-DIR (--)
 rMASK C@
 rSAV-DIR C! ;

: RESTORE-DIR (--)
 rSAV-DIR C@
 rMASK C! ;

HEX

CREATE VEC-TABLE

 7E C, FFFE @ , (B7BF SCI SER SYS)
 7E C, FFFE @ , (B7C2 SPI SER)
 7E C, FFFE @ , (B7C5 PLS ACC EDGE)
 7E C, FFFE @ , (B7C8 PLS ACC OVFL)
 7E C, FFFE @ , (B7CB TMR OVERFLOW)
 7E C, FFFE @ , (B7CE TMR OUT CMP 5)
 7E C, ' INSTINCT @ , (B7D1 TMR OUT CMP 4)
 7E C, FFFE @ , (B7D4 TMR OUT CMP 3)
 7E C, FFFE @ , (B7D7 TMR OUT CMP 2)
 7E C, FFFE @ , (B7DA TMR OUT CMP 1)
 7E C, FFFE @ , (B7DD TMR IN CAP 3)
 7E C, FFFE @ , (B7E0 TMR IN CAP 2)
 7E C, FFFE @ , (B7E3 TMR IN CAP 1)
 7E C, FFFE @ , (B7E6 REAL TIME)
 7E C, FFFE @ , (B7E9 IRQ)
 7E C, FFFE @ , (B7EC XIRQ)
 7E C, FFFE @ , (B7EF SWI)
 7E C, FFFE @ , (B7F2 OP-CODE TRAP)
 7E C, FFFE @ , (B7F5 COP FAILURE)
 7E C, FFFE @ , (B7F8 CLK MON)
 HERE CONSTANT VEC-TABLE-END

 DISABLE

(Robot Control Language Version 1.0 12-3-92)

(Copyright Angelus Research 1992-1997)
(This software cannot be sold or incorporated into)
(another product without express permission from)
(Angelus Research, 6344 Sugar Pine Circle,)
(Angelus Oaks, California 92305 (909-794-8325)
(All rights reserved)

(FORGET RCL)
: RCL ;
DECIMAL

: SPEED (speed --) (motor = LEFT or RIGHT)
 rMAX-SPEED C@ MIN
 0 MAX
 rCHOICE C@
 cLEFT = IF

84

 DUP rLSPEED C!
 DUP rLTON C!
 rMAX-SPEED C@ SWAP - rLTOFF C!
 ELSE
 DUP rRSPEED C!
 DUP rRTON C!
 rMAX-SPEED C@ SWAP - rRTOFF C!
 THEN

 NO-STALLS
 ;

: % (n percent --)
 100 */ ;

: %SPEED (n --) (n is percent of full speed)
rMAX-SPEED C@ %
SPEED ;

: ACTION (-- t/f) (sense both whiskers hit)
RW-OBSTACLE LW-OBSTACLE +
DUP OBSTACLE =
;

REG: SAV-rLSPEED
REG: SAV-rRSPEED

: SECS (secs --)
 2000.000 vPWM-CYC @ UM/MOD SWAP DROP *
 PERIODS ;

: MINUTES (min --)
 60 SECS ;

360 CONSTANT 360

: ADJUST-DEGREES (n --)
 vMAX-COMPASS +! ;

: CLEAR-COMPASS
vCOMPASS 0!
;

: BEARING (-- bearing)
vCOMPASS @
360 vMAX-COMPASS @ */
;

: DEGREES (degrees --)
ABS
rCHOICE C@
cRIGHT =
IF

BEARING +
BEGIN

DUP BEARING
< UNTIL

ELSE
NEGATE BEARING +
BEGIN

DUP BEARING
> UNTIL

THEN
DROP ;

85

: STOP (--)
 (CLEAR-SENSORS
 NO-STALLS
 ST rMASK C! ;

: FORWARD (--)
 (CLEAR-SENSORS
 NO-STALLS
 FWD rMASK C! ;

: BACKUP (--)
 (CLEAR-SENSORS
 NO-STALLS
 REV rMASK C! ;

ALIAS BACKUP BACK

CREATE TRIGGER-TABLE

 12 C, 13 C, 14 C, 15 C, 16 C, 17 C, 19 C, 21 C, 23 C, 26 C, 29 C,
 33 C, 37 C, 41 C, 46 C, 51 C, 56 C, 62 C, 69 C, 77 C, 86 C, 96 C,
 107 C, 119 C, 132 C, 156 C, 190 C,

DECIMAL
(DON

: CALIBRATE
 CR ." trigger set to L LS R RS L+ R+ F+ "

CR 15 SPACES
4 0 DO (Treat individual triggers as a table)

TRIGGER-TABLE
rADR1-OFF I + C@ (get ambient light)
rFACTOR C@ / + (calculate table offset)
C@ DUP 5.R
rLF-TRIGGER I + C!

LOOP
rLF-TRIGGER C@ (left summed trigger)
rLSF-TRIGGER C@
+ rSUM-FACTOR C@ % (DON 2/ DUP 2/ +
255 MIN
DUP 5.R rL-TRIGGER C!

rRF-TRIGGER C@ (right summed trigger)
rRSF-TRIGGER C@
+ rSUM-FACTOR C@ % (DON 2/ DUP 2/ +
255 MIN
DUP 5.R rR-TRIGGER C!

rLF-TRIGGER C@ (front summed trigger)
rRF-TRIGGER C@
+ rSUM-FACTOR C@ % (DON 2/ DUP 2/ +
255 MIN
DUP 5.R rF-TRIGGER C!
;

: START-ROBOT
 INIT

 0 vPRIORITY ! (init BEHAVIORS 6-19-93

 &B 00010000 &H ADCTL C!
 SEI
 VEC-INIT

86

 VEC-INIT

 &B 00010000 &D TMSK1 C!
 900 OC4 !
 CLI
 CALIBRATE (DON 5-17-93)
 ;

: SAVE-SPEEDS (--)
 rLSPEED C@ SAV-rLSPEED C!
 rRSPEED C@ SAV-rRSPEED C! ;

: RESTORE-SPEEDS (--)
 (CLEAR-SENSORS
 SAV-rLSPEED C@ LEFT SPEED
 SAV-rRSPEED C@ RIGHT SPEED ;

: RAMP-UP (rate speed --)
 (CLEAR-SENSORS
 SWAP 10 * SWAP (DON delay interval)
 100 MIN
 0 DO
 I LEFT SPEED (DON changed to SPEED
 I RIGHT SPEED ("
 DUP DELAY
 LOOP
 DROP ;

: RAMP-DOWN (rate --)
 (CLEAR-SENSORS
 100 *
 0 rLSPEED C@rRSPEED C@ MIN
 DO
 I LEFT SPEED
 I RIGHT SPEED
 DUP DELAY
 -1 +LOOP
 STOP
 ;

ALIAS SENSORS SHOW-SENSORS (--)

: STRAIGHT (Set speeds to same average value -with correction)
 rCHOICE C@
 rCORRECTION C@
 rRSPEED C@ rLSPEED C@ + OVER + 2/
 (Split speed difference between sides)
 RIGHT SPEED
 rRSPEED C@ SWAP -
 LEFT SPEED
 rCHOICE C!
 ;

: PIVOT (--) (use current average speed)
 (CLEAR-SENSORS
 NO-STALLS
 rCHOICE C@ (Get chosen direction)
 cLEFT = IF

 PVL rMASK C!
 ELSE
 PVR rMASK C!
 THEN

 ;

87

: BEST-PIVOT (--)
(CLEAR-SENSORS
 NO-STALLS
 RSF-OBSTACLE OBSTACLE
 IF
 LEFT PIVOT (DON
 ELSE
 RIGHT PIVOT (DON
 THEN ;

: ALL-INSTINCTS (mask --)
 rLF-MASK 11 ROT FILL ; (masks are stored consequtively in RAM)

100 ARRAY: LEVELS

VARIABLE vSTEP

: STEP (step --) (degrees to step)
vSTEP ! ;

: FIND-SOUND (--) (DON
STOP
CLEAR-COMPASS
75 LEFT SPEED
75 RIGHT SPEED
PVL ALL-INSTINCTS

360 vSTEP @ /
0 DO

NO-STALLS
ENABLE
RIGHT PIVOT
vSTEP @ I * BEARING -
DEGREES
STOP

DISABLE
10000 DELAY
SOUND-LEVEL DUP
LEVELS I + C!

CR ." level=" . SPACE
PRINT BEARING .

LOOP ;

: MAX-LEVEL (-- index)
0 0 (maximum index,level reading)
360 vSTEP @ / 0
DO

DUP I LEVELS + C@
< IF (new maximum)

2DROP (old index,level)
I DUP LEVELS + C@ (new index, level)

THEN

LOOP
;

: PIVOT-SOUND (--)
BEARING

88

MAX-LEVEL DROP
vSTEP @ * -
CR ." going to " BEARING OVER - . SPACE ." degrees" CR
NO-STALLS
ENABLE
LEFT
PIVOT
DEGREES
STOP ;

: TURN (--)
 NO-STALLS
 rCHOICE C@

 DUP cLEFT =
 IF

 RF rMASK C!
 ELSE

 LF rMASK C!
 THEN
;

: CIRCLE (dia --) (Set difference in speed of 'dia')
 rMAX-SPEED C@ % (All speeds are treated as % of full speed)
 rCORRECTION C@ + (Split speed difference between sides)
 rRSPEED C@ rLSPEED C@ + OVER + 2/
 rCHOICE C@
 cRIGHT =
 IF

LEFT SPEED (use range check in speed to set bounds)
rLSPEED C@ SWAP - (ensure proper difference)
RIGHT SPEED

 ELSE
RIGHT SPEED
rRSPEED C@ SWAP -
LEFT SPEED

 THEN
 FORWARD ;

: SQUARE (size --)
 1000 *
 STRAIGHT FORWARD
 4 0 DO

DUP DELAY
RIGHT PIVOT 90 DEGREES
FORWARD

 LOOP
 DROP
 STOP ;

VARIABLE vWAIT-TIME

: %HIGHER-TRIGGER (percent --)
7 0 DO

rLF-TRIGGER I + C@
OVER %
rLF-TRIGGER I + C!

LOOP DROP ;

: WAIT-TIME (time --)
 vWAIT-TIME ! ;

: DEFAULT-INSTINCTS (--)
 PVL rRF-MASK C! (intialize instincts)

89

 PVL rRSF-MASK C!
 PVR rLF-MASK C!
 PVR rLSF-MASK C!
 PVR rLW-MASK C!
 PVL rRW-MASK C!
 PVR rL-MASK C!
 PVL rR-MASK C!
 REV rF-MASK C!
 RR rLM-MASK C! (DON 5-13-93)
 LR rRM-MASK C! (DON 5-13-93)
;
DEFAULT-INSTINCTS

: STOP-INSTINCTS (--)
rLF-MASK 11 ERASE (intialize instincts)
;

: SPIN (%speed --)
 rCHOICE C@ SWAP (get current direction choice)
 DUP LEFT %SPEED RIGHT %SPEED
 cLEFT =
 IF

LEFT PIVOT
 ELSE

RIGHT PIVOT
 THEN
;

: INIT-RCL
 0 SAV-rLSPEED C!
 0 SAV-rRSPEED C!

 20 vSTEP !
 1000 vWAIT-TIME !
;

(Sound routines)

HEX

VOCABULARY MUSIC IMMEDIATE
MUSIC DEFINITIONS

HEX

DECIMAL

(period dur)

 18182 28 NOTE: A
 17161 29 NOTE: A#
 16198 31 NOTE: B
 15289 33 NOTE: C
 14431 35 NOTE: C#
 13621 37 NOTE: D
 12856 39 NOTE: D#
 12135 41 NOTE: E
 11454 44 NOTE: F
 10811 46 NOTE: F#
 10204 49 NOTE: G
 9631 52 NOTE: G#
 9091 55 NOTE: 1A
 8581 58 NOTE: 1A#
 8099 62 NOTE: 1B

90

 7645 65 NOTE: 1C
 7215 69 NOTE: 1C#
 6810 73 NOTE: 1D
 6428 78 NOTE: 1D#
 6067 82 NOTE: 1E
 5727 87 NOTE: 1F
 5405 92 NOTE: 1F#
 5102 98 NOTE: 1G
 4816 104 NOTE: 1G#
 4545 110 NOTE: 2A
 4290 117 NOTE: 2A#
 4050 123 NOTE: 2B
 3822 131 NOTE: 2C
 3608 139 NOTE: 2C#
 3405 147 NOTE: 2D
 3214 156 NOTE: 2D#
 3034 165 NOTE: 2E
 2863 175 NOTE: 2F
 2703 185 NOTE: 2F#
 2551 196 NOTE: 2G
 2408 208 NOTE: 2G#
 2273 220 NOTE: 3A
 2145 233 NOTE: 3A#
 2025 247 NOTE: 3B
 1911 262 NOTE: 3C
 1804 277 NOTE: 3C#
 1703 294 NOTE: 3D
 1607 311 NOTE: 3D#
 1517 330 NOTE: 3E
 1432 349 NOTE: 3F
 1351 370 NOTE: 3F#
 1276 392 NOTE: 3G
 1204 415 NOTE: 3G#
 1136 440 NOTE: 4A
 1073 466 NOTE: 4A#
 1012 494 NOTE: 4B
 956 523 NOTE: 4C
 902 554 NOTE: 4C#
 851 587 NOTE: 4D
 804 622 NOTE: 4D#
 758 659 NOTE: 4E
 716 698 NOTE: 4F
 676 740 NOTE: 4F#
 638 784 NOTE: 4G
 602 831 NOTE: 4G#

DECIMAL

(START DON
(: CYCLES (Period Duration ---)
(MUSIC
(SWAP 57 * SWAP 1 MAX NOTE ; (This is equivelent to old CYCLES)

FORTH DEFINITIONS
VARIABLE dTIME
VARIABLE sTIME
HEX

ASSEMBLER
HEX

FORTH

VARIABLE MIN-FREQ
91

VARIABLE LENGTH

: WAIL (rate times --)
 MUSIC
 0 DO

vWAIL @ DUP
2* SWAP DO

 I I 2 PICK / NOTE
LOOP

LOOP
 DROP
;

: LSF-GREATER? (--) (left side sensor greater than
 rLSF-VALUE C@ (right side sensor? T/F
 rRSF-VALUE C@
 > ;

: RSF-GREATER? (--) (right side sensor greater than
 rRSF-VALUE C@ (left side sensor? T/F
 rLSF-VALUE C@
 > ;

: WARBLE (freg times --) (400 10 WARBLE)

 MUSIC

 SWAP MIN-FREQ !
 0 DO

MIN-FREQ @ 60 DO
I MIN-FREQ @ 1 / I - NOTE

 10 +LOOP
 LOOP ;

: LASER (freg --) (800 LASER)

 MUSIC

 MIN-FREQ !
 10 0 DO

MIN-FREQ @ 60 DO
I 10 NOTE

 10 +LOOP
 LOOP ;

: BIRD-CALL (freq times --) (600 2 TONES)

 MUSIC

 SWAP MIN-FREQ !
 0 DO

MIN-FREQ @ 0 DO
I MIN-FREQ @ I - NOTE

 100 +LOOP
 LOOP ;

: UP-DOWN (freq steps --) (1000 20 BUP-DOWN)

 MUSIC

 DUP
 1 DO

I OVER NOTE
92

 10 +LOOP

 DUP
 1 DO

DUP I - OVER NOTE
 10 +LOOP
 2DROP
 ;

: TONES (period times --) (60 2 TONES)
 MUSIC

0 DO
 DUP 0 DO

 I OVER I - NOTE
 LOOP

 LOOP DROP ;

: ~ 2000 0 DO LOOP ;

FORTH DEFINITIONS

: BLOW_THE_MAN_DOWN!
MUSIC
2 2G
2 2G 1 3A 3 2G
2 2E 2 2C 2 2E
3 2G 1 3A 2 2G
4 2E 1 2C 1 2E
6 2G 6 3A
3 2F 1 2E 2 2F
4 2D 4 2D
2 2D 2 2D 2 2D
2 2F 2 2E 2 2D
2 2F 2 2E 2 2D
6 3A
2 2G 2 2G 2 2G
4 2G 2 2F
3 2E 1 2D 2 2E
6 2C ;

: RIDE_OF_THE_VALKERIES
MUSIC
2 2C 1 2C 3 2D# 3 2C
2 2D# 1 2D# 3 2G 3 2D#
2 2G 1 2G 3 3A# 3 2A#
2 2D# 1 2D# 6 2G ;

: INIT-ROBOT (--)
 SYSTEM-INIT
INIT
 vCOUNTER 0!
 1 vSENSOR-CYC !
 vCOLLIDED 0!
 rINSTINCTS OFF
 vCOMPASS 0!
 50 LEFT SPEED
 50 RIGHT SPEED
 INIT-ADC1
 INIT-RCL
 DEFAULT-INSTINCTS ;

HEX

: CHECK-KEYBOARD (--)
93

 CR ." Press a key to stop autostart process " CR
 &D
 CR
 #TIB @ >IN !
 10000 0 DO

 ?TERMINAL
 IF

 KEY
 81 = (press Q key to reset system
 IF
 NEW-SYSTEM
 THEN
 ABORT" key pressed, interactive mode now" (DON

 THEN
 LOOP

;

HEX
: END-PROM (end of eprom stub)
 45 C, 04E C, 44 C, (end of prom!)
 FF , FF , FF , FF , FF , ;
DECIMAL

CANCEL

: PROM-ENDS ;

HEX
(DON)
' PROM-ENDS 4A ! (set fence to top of prom)
 END-PROM

94

Chapter VI

The History of Robotics

As told by Brian Morris in the book:

The World of Robots

Published by Gallery books and W.H. Smith Publishers
Madison Ave.

New York City, NY 10016

The follow text is an excerpt out of the fine text about robots. The Author did some excellent
research into this field and really seemed to have a good grasp of the issues facing robotics today.

95

"Ladies and gentlemen - Meet the future! - the portentous but telling words of the traveling salesman in Butch Cassidy and
the Sundance Kid as he introduces the crowd to the safety bicycle. They are as appropriate now in a book on robots as they
were then in a film about outlaws.

We in the western world live in an industrialized, stratified society facing the promise and the problems of a post-industrial
future in which the robot seems to offer either an inexhaustible source of cheap uncomplaining labor or else one more
insidious threat to industrial employment and working-class prosperity; the salesman's audience lived in the Old West just as
the Frontier was closing, as pioneering gave way to production, and the factories of the East and Mid-West began to turn out
cheap, mass-produced consumer goods that would irrevocably transform the isolated bucolic existence of the typical North
Arnerican. The bicycle was the first mechanized personal transport, affordable by anyone in employment irrespective of status
or class; it was the forerunner of the automobile, the washing machine, the television, the telephone, the computer - all the
household technology which the affluent sections of the twentieth-century world take for granted but upon which our leisurely,
peaceful ways of life depend utterly.

Naturally, that bicycle salesman was no altruistic missionary, despite his spiel; he was there, hundreds of miles from paved
streets and tramcars, in some cow-town in the middle of nowhere, at the behest of exactly the force that has the robot
knocking at our doors today - the profit motive. Bicycles could be made more cheaply than the horses that they could more or
less replace, so entrepreneurs built factories to make bicycles, and sent their salespeople across the face of the world to sell
them-never mind the future or the social implications - the business of business is business! Come forward in time a century,
for bicycle read robot, for horse read worker, and both the title and the cautionary rubric of this chapter are explained. The
fruits of mechanization are certainly plentiful, but they are also strongly flavored, with more than a hint of sourness.

Just as the first stages of industrialization which produced the bicycle brought personal freedom and prosperity to much of the
world, so that same process brought mechanized warfare, assembly lines and totalitarian societies. William Blake's "dark
satanic mills" were mighty engines of progress but the miserable lives of the men, women and children who slaved there in
heat, fumes, danger and din, were the coin in which the future was bought. Cheap coal and rubber made the bicycle
economically possible then; cheap electricity, silicon and plastic make the robot possible today.

There may seem to be nothing dark or satanic about the sterile fluorescent-lit quiet of an integrated-circuit production line, but
most of its human workers are Third-World women. Still subject to unheathly working conditions, economic exploitation and
repressive political regimes often the more or less overt puppets of the multi-national companies that own or fund the
industries whose raw material those integrated circuits are. The unemployed manual and semi-skilled workers all over the
world whose jobs have been taken over by automated, computerized and (increasingly) robotic machines may not starve in
their state-supported idleness, but neither are they likely to see themselves as the citizens of a new Periclean Athens, leisured
and cultivated members of an elite society, freed from daily toil by the uncomplaining drudgery of armies of robot slaves.

Two hundred years of industrial development may have made us wary, if not actually cynical, about the possible social costs
of robots, but the myths and folk-tales of history should be enough to close the subject once and for all. The image of the
created being turning up on its creator with dire results is thousands of years old, and common to most cultures.

The most significant machines are not always the most complicated, nor the most powerful. The
mass-produced bicycle of the nineteenth century brought personal transport within the reach of
most wage earners, the "slavery" of the factories stem brought forth the freedom of the roads.
Humans have always been ready to make that kind of deal, and the robot seems to be the bargain
of the century; do we really know the terms, and can we afford the payments?

 The archetypal rogue robot is perhaps the golem of Judaic myth. The word is used in the Talmud (the collection of rabbinical
writings on scriptural, civic and moral matters dating back to the Babylonian and Egyptian captivities during the first and
second millenia BC) to describe Adam as the shapeless clay into which the Creator breathed life. Rabbi Low of Prague in
1580 is supposed to have raised such a golem and employed him as a servant in the synagogue until his developing sense of
identity and rebellion forced the Rabbi to return him to the clay at the age of thirteen.

Sanskrit myth of similar antiquity tells of the creation of a female humanoid called Tilottama whose beauty is such that two of
the gods are killed fighting over her. Later stories tell of a mysterious smith creating lamas and monks of gold, kings and
courtiers of bronze, melodious choirs of silver, and soldiers of bronze. By the Middle Ages such robots are common figures
in Indian myth as the products of human artifice - mechanical marvels of wood and metal.

Greek legend tells of Pygmalion, king of Cyprus, who falls in love with Galatea, a beautiful ivory statue. Aphrodite, goddess
of beauty, brings Galatea to life so that the king may marry her a happy outcome in this original version but one cursed with
jealousy and resentment in subsequent re-tellings by W.S. Gilbert (Pygmalion and Galatea), G.B. Shaw (Pygrnalion) and
Lerner and Loewe (My Fair Lady).

96

 Later Greek myths feature the first robot engineers, Hephaestus and Daedalus. The former created many mechanical
humanoids, foremost among them being Talos, the giant bronze guadian of the beaches od Crete who hugged his enemies to
death in his red-hot bosom, but died when his vital fluids drained away through his heel. Daedalus was the legendary
Athenian inventor who built the Cretan Labyrinth, invented the saw, the axe and the gimlet, and created a wooden sculpture
that he brought to life by pouring mercury into its veins. His genius had tragic reward when his son, Icarus, took flight on
Daedalus's marvelous wings, and, flying too close to the sun in his unthinkng trust, fell to his death. If we are to admire the
Greeks in their slave-supported ease, we should at least assume some of their suspicion of technology.

The classic robot tragedy of modern western myth is, of course, Frankenstein's monster in Mary Shelley's story. The
eponynnous scientist creates his golem from human flesh and animates it by lightning, only to see it become a child-killing
monster which ultimately turns upon Frankenstein himself. Virtually every robot story written since has followed this pattern
of creation, rebellion, and disaster.

These powerful stories obviously bespeak a deeply felt human urge which engineers have long since labored to fulfil Despite
the Greek myths described above, the engineers of antiquity had neither the materials nor the methods necessary for robot
engineering, though Hero of Alexander, inventor of the steam turbine, built ingenious mechanical tableaux powered by air or
water featuring moving human and animal figures. The first true automaton seems to have been the mechanical duck of
Jacques de Vaucanson, presented to the Academie Royale des Sciences in Paris in 1738. The duck flagged its wings, quacked,
ate and shat; Academiciens' reactions are not recorded.

Working at the same time as de Vaucanson was the Swiss inventor Pierre Jacquet-Droz, creator of puppets and mechanical
marvels. His most celebrated automaton, The Writer, survives in a Neuchatel museum, and is a beautiiully constructed model
of a young man seated at a writing desk. He dips his pen into the inkwell and in good clerk's hand writes "Cogito Ergo Sum"
("I thing therefore I am"). This choice of apothegm is a fitting homage to its author, Rene Descartes, the seventeenth-century
philosopher, since he himself is supposed to have created a mechanical servant-woman called Francine, who was thrown into
the sea by a superstitious sailor.

As the engineering skills of the nineteenth century expanded the mechanical possibilities, so the range of simulacra and
automata became more diverse: from The Turk, the mechanical chess-player that actually contained a small man, to the
steam-driven man invented by George Moore in Britain in 1892, capable of a claimed 8 mph walk over level ground,
wind-assisted. None of them, however, had any practical use; real working robots had to wait on the essentially
twentieth-century developments af electricity, alloy and plastic technology, and, most important computers.

The story of modern robots, the semi-or pseudo-intelligent autonomous automata that the word really means to most of us, is
actually the story of computers in mobil form. Without the decision-making logical power of computers, a mechanical man is
just a moving curiosity; contrariwise, the computer is fine as a simple information processing device, but starts to be
significantly useful when housed in some mechanical muscle. Just as robots had a long pre-history in myth and
model-making, so the development of computers, which seems to begin only in the 1940s, actually stretches back hundreds of
years - to the invention of the abacus, or counting frame, in about 2000 BC at a pinch, but certainly to the seventeenth century
when Blaise Pascal and Gottfried Leibniz both invented mechanical calculating machines.

Just as robots had a long pre-history in myth and model-making, so the development of computers, which seems to begin only
in the 1940s, actually stretches back hundreds of years - to the invention of the abacus, or counting frame, in about 2000 BC
at a pinch, but certainly to the seventeenth century when Blaise Pascal and Gottfried Leibniz both invented mechanical
calculating machines.

In the early years of the nineteenth century, Charles Babbage began work on his Analytical Engine, a hand--cranked calculator
which embodied in its mechanical designs the essential principles of computer architecture and operation as we understand
them today. He was frustrated largely by being born before technology had developed to allow him to contruct his designs.
His companion, Ada Countess Lovelace, was an equally gifted mathematician and the first computer programmer - with
nothing to program. Apart from her place in the history of computing, her name lives on in the computing language Ada,
developed in the 1980s by the US Department of Defense. Another contemporary similarly cursed and blessed was George
Boole who developed in 1847 the algebra that underlies the logic of all computers.

At the same time as Babbage and Lovelace were struggling with the unrealizable future, Joseph Marie Jacquard was making it
possible while making a profit - doing well while doing good - from his automatic weaving loom. This was controlled by a
deck of punched cards containing a program of movements and operations. The same idea was used by Hermann Hollerith in
1890 for the machine which he built to analyze the US census returns, and infinitely greater commercial success followed.
For that census of 56 million people he charged the government 65 cents per 1000 returns. In 1924 his Tabulating Recording
Company became International Business Machines - IBM - the most important single body in the history of computing.

97

It took a world war to impel the next step in computing: the administrative needs of centralized states running huge armies and
production forces spurred the development of data-processing techniques and information technology; the technical needs of
the gunners and bombardiers demanded computing machinery and the vast research efforts that produced radar and the atomic
bomb also created significant new industries making advanced electronic components. In 1943 a British code-breaking team
led by the brilliant mathematician, Alan Turing, built Colossus, the first recognizable computer. One hundred miles from their
laboratories, the Germans were bombarding London with V 1 s - pilotless aircraft powered by rocket engines, steering
themselves to the target by following radio beams and cutting their engines after they had measured a programed flight path
from launch. This was both the golem returning to its clay and a fearsome robotic dawn.

With peace in 1945 came the first true electronic computers, from teams in Pennsylvania and Manchester, England.
Dependent on the bulky, fragile thermionic valves, they were made obsolete almost immediately by the invention of the
silicon transistor in 1948. This marvelous machine, this motionless lump of sand and tin, whose moving parts are electrons
and "holes" in space-time, is the key to the computing door. Once it came into mass-production, the whole world of
computers and robots and space exploration became not just possible but certain.

The significant steps from then to this day are easily described IBM's first computer and FORTRAN, the first popular
computer programing language, were launched in 1957, and computers became affordable to business and the universities. In
the 1960s the space research effort led to the miracles of miniaturization which are integrated circuiits. Matchboxes could now
hold computing power that the warehouse-size computers of the 1940s could not match. In the 1970s these siliicon chips
enabled computing's Henry Ford to produce the electronic Model T: Apple Corporation, owned by a young Californian
named Steve Wozniak, produced and sold millions of cheap, robust, admirable personal computers. As the computer took
over the living-rooms and studies of the West, so robots marched into factories of the East, having become commercial reality
almost by stealth: George C. Devol took out American patents on the robot hand in 1961, Joseph Engelberger's Unimatiion
Inc. installed its first robot in 1961, and the Japanese Industrial Robot Association was founded in 1971.

A robot killed a Japanese engineer 1981. This tragic event,despite its human cost and wealth of fearsome symbolisms, was
actually a prosaic industrial accident involving not some latter-day Talos but a commercial robot arm - nothing like the
hulking steel androgyne of modern robot myth, but instead a small flexible electric crane powered by electricity and
controlled by its own built-in computer. The arm, not the android, is the commonest form of today's and tomorrow's robots -
25,000 in Japan, l5,000 in the USA, 8,000 in West Germany in 1985. It is to be found paint-spraying, welding and
assembling in factories across the world. The mechanical humans of popular imagination exist today but really only as
curiosities and entertainments-as yet. So powerful seems to be the cultural need for the walking, talking
golem-Galatea,however, that we can almost expect Milton's two-handed engine at our doors any day now. (Not that he would
recognize it, since he was actually talking metaphorically about theChurch of England).

The letters "RUR" on Capt. Richards robot allude to Karel Capeks1917 play, Rossum's
Universal Robots in which the word "robot" was coined. The work involved in building
such a curiosity, and its success as an entertainment, both testify to the hold on the public
imagination of Capek's and other robot myths.

98

Appendix A

After the Crash

Whiskers has a very powerful software system that allows you to create not only programs and new
commands, but even your own compiling words. This power doesn’t come without a cost, however.
You also have the capability to crash the system. You might change a critical pointer in memory the
causes the PROM(software) to be delinked from the system. By running a utility called WIPE on your
disk, and downloading the initialization file, you can bring him back.

1) Remove the top cover
2) With the front of the robot facing you, look at the large square chip that has 68HC11on it
3) On the right side are two jumpers and two positions, they are in the NORMAL position
4) Put the jumpers in the bootstrap position, turn the robot off then on.
5) Type in WIPE at the command line.
6) Type 1 to erase EEPROM and change config registers.
7) Type enter at the CURRENT WIPE SETTINGS screen.
8) Move the two jumpers that are next to the processor from NORMAL to BOOT STRAP.
9) Press reset on Whiskers, this will take a few seconds.
10) Press Y to run wipe again.
11) Type 2 to DEFEAT F68HC11 AUTOSTART
12) Type enter at the CURRENT WIPE SETTINGS screen.
13) Press reset on Whiskers, this will take a few seconds.
14) Move the two jumpers that are next to the processor from BOOT STRAP to NORMAL.
15) Turn Whiskers off then on again.
16) When you see the copyright screen, immediately press the Q key.

99

Appendix B
Error Codes

Code Message Description

0 ? The word is not in the dictionary
1 STACK EMPTY You need a number on the stack to perform this operation
2 DICTIONARY FULL You donot have any more room to define new words
4 NOT UNIQUE The name you are defining is already in the dictionary

Note: this message is ok as you can redefine previously
Defined words.

7 FULL STACK The stack is full
17 COMPILATION ONLY You can only use this word/command during compiling a new

word, not while you are in the interpretive mode
18 EXECUTION ONLY The word must be used in the interpretive mode.
19 CONDITIONALS Omitted words or incorrect nesting of conditionals

NOT PAIRED
20 DEFINITION NOT You forgot the ; at the end of your definition

FINISHED
21 IN PROTECTED The word in question is in the PROM or cannot be forgotten

DICTIONARY
22 USE ONLY WHEN Incorrect use of word

LOADING
23 NO NAME Attempt to create a definition without appropriate name

100

Appendix C

ASSEMBLER LANGUAGE

for Whiskers

Copyright Angelus Research Corp. 1994-1997

This software or manual cannot be sold or incorporated into another product
without express written permission from:

Angelus Research Corp.
6344 Sugar Pine Circle, #98
Angelus Oaks, California 92305
(909) 794-8325

Last Revision: January 19, 2015

Note: References to downloading the assembler in this manual are to be disregarded. The assembler is
already on the PROM.

101

ASSEMBLER LANGUAGE for Whiskers

TABLE OF CONTENTS

Introduction

Description 102

History 102

Installation 103

User Reference

Execution 104

Command Syntax 104

Addressing Modes 104

Language Extensions 105

Macro Facility 108

Appendix A

Code Fragment Examples 110

Appendix B

Distributed Source Code 117

Appendix C

Numeric Operation Code List 123

Alphabetic Operation Code List 130

Categorized Alphabetic List 136

Appendix D
Compiler Narrative/Explanation 140

102

YOUR NOTES

103

USER REFERENCE

Execution

1. (Your Macro definitions)
2. (Your program)

Command Syntax

Although HC11 Assembler mnemonics and annotation are used, the actual syntax is Reverse Polish
Notation. This is required because the FORTH input interpreter is being used to read the source.
Figure 1 demonstrates the differences between the two. All of the op-code mnemonics for this
compiler are defined to end with a comma. This is done to differentiate between mnemonics and
hex addresses. The list of recognized mnemonics is included in Appendix C.

CONVENTIONAL

LDAB # 25

ASM6811

25 # LDAB,
FIGURE 1

ADDRESSING MODES

Figure 2 displays the explicit addressing modes this compiler will recognize. Chapter 6 of the
Motorola Document cited in the introduction to this manual contains an excellent detailed
discussion of this idiosyncrasy of the Motorola HC11 CPU.

The operand in an immediate mode instruction is the same width as the referenced accumulator,
resulting in either a single, or two byte operand. This gives a variable instruction length of two to
four bytes.

Direct address mode uses a single byte offset, the high order address byte is assumed to be binary
zeroes, thus limiting this mode to addresses contained in page 0 of memory. Only four commands
using this mode are three bytes long, all of the rest are two.

Extended address mode uses an explicit address, thus requiring two bytes for the operand. Only
four commands using this mode are four bytes long, all of the rest are three.

For indexed mode, the effective address is computed as the sum of the 8 bit operand and the
contents of the indicated index register. Instructions using this addressing mode will be either two
or three bytes in length.

 # Immediate Mode
 DIR Direct Address Mode, (Page 0 only)
 EXT Extended Address Mode
 ,X Indexed by Register X
 ,Y Indexed by Register Y

FIGURE 2

104

Language Extensions

Figure 3 lists the additional mnemonics recognized by the compiler. These are implemented
primarily to aid program structure and are utilized in the same general manner as their FORTH
counterparts. The continued use of the trailing comma as part of the Operation Code allows the
compiler to keep these special clauses separate from the actual FORTH words, which are still
available.

'THEN,' is equivalent to the ENDIF clause used in some dialects of FORTH. 'IF,' consumes and
tests the top cell on the data stack at run time, requiring the test condition to precede the 'IF,'
statement. In FORTH, unlike many other high level languages, this clause actually means "IF
SO, ...". If there are ANY bits set in this cell, control transfers to the statement(s) immediately
following 'IF,'. Otherwise the first group of statements is skipped, and control is transferred to the
statement following the 'NEXT,' clause. (Hence, the ENDIF used by some older versions of
FORTH.)

Inclusion of an 'ELSE,' clause makes the execution of this construct a little less obvious. Basically,
the group of statements immediately after the 'IF,' and the group following the 'ELSE,' can be
conceptualized as two mutually exclusive subroutines, where completion of either will result in a
transfer of control to the point marked by the 'NEXT,'. The value of the top cell on the data stack
controls which group of statements gets executed. Figure 5 contains an example of 'IF,', 'ELSE,',
'THEN,'.

'BEGIN', is the marker that indicates the beginning of a loop. It is followed by either 'UNTIL,' or
'AGAIN,', who do the actual transfer of control back to the location specified by 'BEGIN,'. 'UNTIL,'
also consumes and tests the top cell on the data stack at run time like 'IF,'. Only if there are NO bits
set in this cell, is control transferred to the location indicated by 'BEGIN,'. 'AGAIN,' is functionally
equivalent to "0 UNTIL," and requires an explicit escape from within the loop.

Although described as a "single set" for discussion simplicity, both of the above code construct pairs
can be nested (and intermixed) as deep as is required, as long as they are kept properly paired. It is
considered good form to indent statements based on the level of nesting, making it easier to discern
which "pairs" of clauses match each other when reading the source code.

'.CLR.IF,' and '.SET.IF,' are conditional clear and set respectively and are the single command
implementation of 'IF,' and 'CLR,' or 'IF,' and 'SET,'.

BEGIN, IF,
UNTIL, ELSE,
AGAIN, THEN,
.CLR.IF, .SET.IF

FIGURE 3

Figure 4 lists the mnemonics pre-defined for use with these structured decision points. For the most
part, these are the same codes as the assembler mnemonics. In practice, these precede the decision
point to indicate the type of assembler test to be selected.

105

.GT. signed Greater Than

.GE. signed Greater Than/Equal To

.LE. signed Less Than/Equal To

.LT. signed Less Than

.HI. unsigned Higher

.HS. unsigned Higher/Same

.LS. unsigned Lower/Same

.LO. unsigned Lower

.CS. simple Carry Set

.CC. simple Carry Clear

.--. simple Negative

.++. simple Positive/Zero

.VS. simple Overflow Set

.VC. simple Overflow Clear

.EQ. simple Equal

.NE. simple Not Equal

.FL. simple False

.TR. simple True

.NOT. Invert Logic
FIGURE 4

Figure 5 demonstrates the correct syntax for a compare followed by a conditional branch. Notice
that the actual generated code is the opposite of that specified, in order to accommodate the logic of
the If, ELSE, THEN source statement, and the single branch vector of the machine command. In
this particular example, <stmt-2> is selected when the condition is satisfied, and <stmt-1> when it is
not.

ASM6811
<var-1> CMPB,
.GT. IF,

 <stmt-1> ELSE,
 <stmt-2> THEN,

ASSEMBLER EQUIVALENT
CMPB <var-1>
BLE <stmt-1>
<stmt-2>

FIGURE 5

Figure 6 lists the pre-defined macros included within this compiler. These are all references to
specific internal FORTH system variables, and their use allows named constants rather than absolute
addresses or values.

106

TOP Address of first item on User Data Stack
SEC Address of second item on User Data Stack
PUSHD Address of routine to replace "TOP" (dbl)item and execute next (FORTH) word
NEXTSD Address of routine to add "TOP" (dbl)item and execute next (FORTH) word
PUT Addr of routine to replace "TOP" (sing)item and execute next (FORTH) word
NEXT Addr of routine to execute next (FORTH) word
NEXT3 Address within routine to execute next (FORTH) word (using current pointer +2)
NEXT1 Address within routine to execute next (FORTH) word (using current pointer)
NEXT2 Address within routine to jump direct to next (FORTH) word
POP Address of routine to remove "TOP" item
POPTWO Address of routine to remove "TOP" 2 items
W Address of word pointer
IP Address of instruction pointer
UP Address of user area pointer

FIGURE 6

Macro Facility

The compiler simulates this ability by allowing the definition of new assembler commands, and
linking them to the system using the internal facilities of FORTH. This accomplishes much the
same intent as for a macro, but with less memory overhead, and a greater flexibility in choice of
language. Since we are using the Forth compilers native capability, this "macro" can be written in
"assembler", FORTH, or Whiskers own Robot Control Language.

To add a new "macro" to the language, it is necessary to invoke the assembler vocabulary with the
following compiler directive:

ASSEMBLER DEFINITIONS

Then add the necessary code fragments, and switch back to the FORTH vocabulary with the
following compiler directive:

FORTH DEFINITIONS

The code fragment contained in Figure 7 shows the correct method of adding two "macros". They
are both useful in reducing the number of instructions required to be written by the programmer in
the main line of the program. The first macro loads a value from the FORTH Data Stack into the
HC11's D Register. The second macro moves a value to the FORTH Data Stack from the HC11's D
Register. In both cases, the Y Register, which is used as the FORTH Stack Pointer, must be
manipulated either before or after the transfer. Use of these macros relieves the programmer from
having to remember the order in which the instructions must be executed to preclude having an
unprotected stack during high level interrupts.

ASSEMBLER DEFINITIONS

: POPD, TOP LDD, INY, INY, ;
: PUTD, DEY, DEY, TOP STD, ;

FORTH DEFINITIONS
FIGURE 7

107

Carefully note that the "macros" are defined with a name that contains a trailing comma, this
convention is strongly suggested for those "macros" that are physical commands as opposed to
"macros" used to define dynamic memory locations, etc. Each of these "macros" contains reference
to another "macro", 'TOP', which is simply a mnemonic reference to a dynamic memory location.
After reading this code fragment into the compiler, 'POPD,' and 'PUTD,' may now be used as part of
the assembly language, even to the extent of being referenced within other "macros".

108

APPENDIX A

This Appendix contains example code fragments demonstrating the use of ASM6811 in producing useful
programs. Named examples ending with a single quote produce code representitive of that in the kernel
with similar names. These should be useful for point of reference and comparison.

(ASM6811 VERSION 1.11 05/14/93)

CODE SWAP'
 0 ,Y LDD, (GET TOP WORD INTO D)
 2 ,Y LDX, (GET SEC WORD INTO X)
 2 ,Y STD, (PUT D INTO SEC WORD)
 0 ,Y STX, (PUT X INTO TOP WORD)
 NEXT JMP, (RETURN CONTROL TO FORTH, GO TO NEXT WORD)
END-CODE

CODE SWAP'' (SAME AS SWAP AND SWAP' BUT USING MACROS TOP & SEC)
 TOP LDD, (GET TOP WORD INTO D)
 SEC LDX, (GET SEC WORD INTO X)
 SEC STD, (PUT D INTO SEC WORD)
 TOP STX, (PUT X INTO TOP WORD)
 NEXT JMP, (RETURN CONTROL TO FORTH, GO TO NEXT WORD)
END-CODE

CODE NOT'
 TOP COM, (COMPLIMENT BYTE AT TOP OF STACK MSB)
 TOP 1+ COM, (COMPLEMENT BYTE AT TOP OF STACK+1 LSB)
 NEXT JMP, (RETURN CONTROL TO FORTH, GO TO NEXT WORD)
END-CODE

CODE-SUB 2*'
 TOP 1+ ASL, (ARITHMETIC SHIFT LEFT LSB)
 TOP ROL, (ARITHMETIC SHIFT LEFT MBD WITH CARRY)
 RTS, (RETURN FROM CODE-SUB TO ITS INTERPRETER BACK TO FORTH)
END-CODE

CODE @'
 TOP LDX, (GET ADDRESS OF VALUE)
 0 ,X LDD, (GET VALUE FROM ADDRESS)
 PUT JMP, (REPLACE ADDRESS ON STACK WITH VALUE, GO TO NEXT WORD)
END-CODE

CODE !'
 TOP LDX, (GET ADDRESS TO STORE VALUE AT)
 SEC LDD, (GET VALUE TO STORE)
 0 ,X STD, (PUT VALUE IN ADDRESS)
 POPTWO JMP, (TAKE ADDRESS & VALUE OFF STACK, GO TO NEXT WORD)
END-CODE

109

CODE C@'
 TOP LDX, (GET ADDRESS OF BYTE VALUE)
 0 ,X LDAB, (GET BYTE VALUE FROM ADDRESS)
 CLRA, (CLEAR MSB)
 PUT JMP, (REPLACE ADDRESS ON STACK WITH VALUE, GO TO NEXT WORD)
END-CODE

CODE C!'
 TOP LDX, (GET ADDRESS TO STORE BYTE VALUE AT)
 SEC 1+ LDAB, (GET BYTE VALUE TO STORE)
 0 ,X STAB, (PUT BYTE VALUE IN ADDRESS)
 POPTWO JMP, (TAKE ADDRESS & VALUE OFF STACK, GO TO NEXT WORD)
END-CODE

CODE +'
 TOP LDD, (GET FIRST VALUE TO ADD)
 SEC ADDD, (ADD SECOND VALUE TO IT)
 SEC STD, (PUT VALUE IN SECOND)
 POP JMP, (TAKE FIRST VALUE OFF STACK, GO TO NEXT WORD)
END-CODE

CODE DUP'
 TOP LDD, (GET FIRST VALUE TO ADD)
 PUSHD JMP, (PUSH NEW VALUE ONTO STACK, GO TO NEXT WORD)
END-CODE

CODE MIN'
 TOP LDD, (GET FIRST VALUE)
 SEC CPD, (COMPARE TO SECOND VALUE
 .LE. (BRANCH IF GREATER THAN)
 IF,
 SEC STD, (IF NOT GREATER THAN REPLACE)
 THEN,
 POP JMP, (REMOVE FIRST VALUE FROM STACK, GO TO NEXT WORD)
END-CODE

CODE 0='
 TOP LDD, (GET VALUE FROM STACK
 .NE. (SEE IF IT WAS NOT EQUAL TO ZERO)
 IF,
 CLRA, (IF NOT EQUAL, LEAVE FALSE INDICATION, 0)
 CLRB,
 ELSE,
 -1 # LDD, (IF EQUAL, LEAVE TRUE INDICATION, FFFF)
 THEN,
 PUT JMP, (REPLACE FIRST VALUE WITH BOOLEAN, GO TO NEXT WORD)
END-CODE

CODE I'
 TSX, (GET RETURN STACK POINTER INTO X)
 0 ,X LDD, (GET COPY OF TOP OF RETURN STACK INTO D)
 PUSHD JMP, (SAVE VALUE ON DATA STACK, GO TO NEXT WORD)
END-CODE

CODE J'
 TSX, (GET RETURN STACK POINTER INTO X)
 4 ,X LDD, (GET COPY OF TOP OF RETURN STACK INTO D)

110

 PUSHD JMP, (SAVE VALUE ON DATA STACK, GO TO NEXT WORD)
END-CODE

CODE K'
 TSX, (GET RETURN STACK POINTER INTO X)
 8 ,X LDD, (GET COPY OF TOP OF RETURN STACK INTO D)
 PUSHD JMP, (SAVE VALUE ON DATA STACK, GO TO NEXT WORD)
END-CODE

CODE EXECUTE'
 TOP LDX, (GET VALUE OF CFA OF WORD TO EXECUTE OFF STACK)
 INY,
 INY, (TAKE VALUE OFF STACK)
 NEXT2 JMP, (EXECUTE NEXT WORD
END-CODE

CODE KEY'
 UP LDX, (GET USER POINTER)
 10 ,X LDX, (GET UKEY FROM USER AREA)
 0 ,X JSR, (JUMP SUBROUTINE "INDIRECT" THROUGH UKEY)
 NEXT JMP, (GO TO NEXT WORD)
END-CODE

CODE EMIT'
 UP LDX, (GET USER POINTER)
 12 ,X LDX, (GET UEMIT FROM USER AREA)
 0 ,X JSR, (JUMP SUBROUTINE "INDIRECT" THROUGH UEMIT)
 NEXT JMP, (GO TO NEXT WORD)
END-CODE

CODE ?TERMINAL'
 UP LDX, (GET USER POINTER)
 14 ,X LDX, (GET U?TERMINAL FROM USER AREA)
 0 ,X JSR, (JUMP SUBROUTINE "INDIRECT" THROUGH U?TERMINAL)
 NEXT JMP, (GO TO NEXT WORD)
END-CODE

111

CODE-SUB KEYSUB'
 UP LDX, (GET USER POINTER)
 0C ,X LDX, (GET KBOFF FROM USER AREA)
 BEGIN,
 PSHX, (SAVE X FOR AWHILE)
 0 ,X LDX, (USE KBOFF TO GET "INDIRECT" ADDRESS OF STATUS REG.)
 0 ,X LDAB, (GET STATUS REGISTER)
 PULX, (RESTORE X)
 2 ,X ANDB, (GET PATTERN TO AND WITH STATUS VALUE)
 3 ,X EORB, (GET PATTERN TO XOR WITH STATUS VALUE)
 .NE.
 UNTIL, (CONTINUE LOOPING TIL NON ZERO RESULT)
 4 ,X LDX, (USE KBOFF TO GET "INDIRECT" ADDRESS OF DATA REG.)
 0 ,X LDAB, (GET DATA REGISTER)
 CLRA, (CLEAR MSB)
 DEY, (OPEN HOLE ON STACK)
 DEY,
 TOP STD, (PUT DATA "KEY" ON STACK)
 RTS, (RETURN TO FORTH OR CALLING ROUTINE)
END-CODE

CODE-SUB EMITSUB'
 UP LDX, (GET USER POINTER)
 0E ,X LDX, (GET OUTOFF FROM USER AREA)
 BEGIN,
 PSHX, (SAVE X FOR AWHILE)
 0 ,X LDX, (USE KBOFF TO GET "INDIRECT" ADDRESS OF STATUS REG.)
 0 ,X LDAB, (GET STATUS REGISTER)
 PULX, (RESTORE X)
 2 ,X ANDB, (GET PATTERN TO AND WITH STATUS VALUE)
 3 ,X EORB, (GET PATTERN TO XOR WITH STATUS VALUE)
 .NE.
 UNTIL, (CONTINUE LOOPING TIL NON ZERO RESULT)
 TOP 1+ LDAB, (GET CHAR FROM STACK)
 4 ,X LDX, (USE OUTOFF TO GET "INDIRECT" ADDRESS OF DATA REG.)
 0 ,X STAB, (WRITE CHAR TO DATA REGISTER)
 INY, (CLOSE HOLE ON STACK)
 INY,
 RTS, (RETURN TO FORTH OR CALLING ROUTINE)
END-CODE

112

CODE-SUB QTSUB'
 UP LDX, (GET USER POINTER)
 0C ,X LDX, (GET KBOFF FROM USER AREA)
 PSHX, (SAVE X FOR AWHILE)
 0 ,X LDX, (USE KBOFF TO GET "INDIRECT" ADDRESS OF STATUS REG.)
 0 ,X LDAB, (GET STATUS REGISTER)
 PULX, (RESTORE X)
 2 ,X ANDB, (GET PATTERN TO AND WITH STATUS VALUE)
 3 ,X EORB, (GET PATTERN TO XOR WITH STATUS VALUE)
 .NE.
 IF, (BRANCH IF EQUAL ZERO RESULT)
 FF # LDAB, (LOAD TRUE RESULT)
 THEN, (CLEAR MSB)
 TBA, (PUT BOOLEAN IN BOTH HALVES OF D)
 DEY, (OPEN HOLE ON STACK)
 DEY,
 TOP STD, (PUT DATA "KEY" ON STACK)
 RTS, (RETURN TO FORTH OR CALLING ROUTINE)
END-CODE

(TO INSTALL NEW KEY ROUTINES)
(' KEYSUB' @ 16 ! (PUTS KEYSUB PFA INTO VECTOR)
(' EMITSUB' @ 18 ! (PUTS EMITSUB PFA INTO VECTOR)
(' QTSUB' @ 1A ! (PUTS QTSUB PFA INTO VECTOR)

113

Following is an example taken from the Max-FORTH Users Manual under the section titled "CODE
DEFINITIONS". First the machine coded example from the manual is repeated, followed by the
translation in ASM6811 format and finally its equivalent in high level FORTH. The function is to read
all four channels of the A/D and leave them on the Data Stack.

(EXAMPLE FROM MANUAL)

CODE-SUB READ-A/D-CH0-3
 CE C, B030 , (LDX $B030)
 (SET ADCTL FOR MULT READINGS, STRT CONV)
 86 C, 10 C, (LDAA # 10)
 A7 C, 00 C, (STAA 0,X , $B030)
 (WAIT UNTIL CCF SET)

(SPIN)
 1F C, 00 C, 80 C, FC C, (BRCLR 0,80,SPIN)
 4F C, (CLRA)
 (TAKE DATA, OPEN STACK, STORE DATA)
 E6 C, 01 C, (LDAB 1,X)
 18 C, 09 C, (DEY)
 18 C, 09 C, (DEY)
 18 C, ED C, 00 C, (STD 0,Y)
 E6 C, 02 C, (LDAB 2,X)
 18 C, 09 C, (DEY)
 18 C, 09 C, (DEY)
 18 C, ED C, 00 C, (STD 0,Y)
 E6 C, 03 C, (LDAB 3,X)
 18 C, 09 C, (DEY)
 18 C, 09 C, (DEY)
 18 C, ED C, 00 C, (STD 0,Y)
 E6 C, 04 C, (LDAB 4,X)
 18 C, 09 C, (DEY)
 18 C, 09 C, (DEY)
 18 C, ED C, 00 C, (STD 0,Y)
 39 C, (RTS)
END-CODE

114

(EXAMPLE FOR ASM6811 WITH MACRO)
ASSEMBLER DEFINITIONS

: PUTD, DEY, DEY, TOP STD, ;

FORTH DEFINITIONS

CODE-SUB READ-A/D-CH0-3-LL
 B030 LDX,
 (SET ADCTL FOR MULT READINGS, STRT CONV)
 10 # LDAA,
 0 ,X STAA,
 (WAIT UNTIL CCF SET)
 (-4 80 0 ,X BITCLR,)
 (This ^ is one way of doing it)
 (The BEGIN, UNTIL, loop is shown below to be closer to high level way)
 BEGIN,
 B030 LDAA,
 80 # ANDA,
 .NE.
 UNTIL,
 CLRA,
 (TAKE DATA, OPEN STACK, STORE DATA)
 1 ,X LDAB,
 PUTD,
 2 ,X LDAB,
 PUTD,
 3 ,X LDAB,
 PUTD,
 4 ,X LDAB,
 PUTD,
 RTS,
END-CODE

(EXAMPLE IN HIGH LEVEL)
: READ-A/D-CH0-3-HL
 10 B030 C!
 (SET ADCTL FOR MULT READINGS, STRT CONV)
 (WAIT UNTIL CCF SET)
 BEGIN
 B030 C@ 80 AND
 UNTIL
 (TAKE DATA)
 B031 C@
 B032 C@
 B033 C@
 B034 C@
;

115

APPENDIX B

This Appendix contains a listing of the distributed source code

COMPILER

(ASM6811)

(COLD

(FORGET TASK
(HEX

(C400 DP !
(C100 1C !
(50 1E !

(VERSION 1.11 05/14/93)
: CODE-SUB [COMPILE] CODE-SUB [COMPILE] ASSEMBLER ; IMMEDIATE

ASSEMBLER DEFINITIONS

(NOTE: VARIABLE MODE NEEDS TO BE ASSIGNED TO RAM IF THIS TO BE
EPROM/ROM'ed)
(IE: 8 CONSTANT MODE)
VARIABLE MODE
: # 00 MODE ! ;
: DIR 10 MODE ! ;
: ,X 20 MODE ! ;
: ,Y 120 MODE ! ;
: EXT 30 MODE ! ;
EXT (INITIALIZE MODE VARIABLE)

: ?# MODE @ 0= ;
: ?DIR MODE @ 10 = ;
: ?,X MODE @ 20 = ;
: ?,Y MODE @ 120 = ;
: ?EXT MODE @ 30 = ;
: MODE-LSB MODE @ FF AND ;
: ERROR EXT ' ID. CFA 4A + EXECUTE ;
: RANGE-C, DUP FF00 AND IF HERE 1+ - DUP ABS FF00 AND
 IF 3 ERROR THEN THEN C, ;

: CPU <BUILDS C, DOES> C@ C, EXT ; (SINGLE BYTE OP-CODE)
: PG-2-CPU <BUILDS C, DOES> 18 C, C@ C, EXT ; (18 AND SINGLE BYTE OP-CODE)

: HHLL/LL, ?EXT IF , ELSE C, THEN EXT ;
: 2HHLL/LL, ?EXT ?# OR IF , ELSE C, THEN EXT ;
: MODE-ADJ, (a n --- a)
 ?EXT IF OVER FF00 AND 0= IF DIR THEN THEN MODE-LSB OR C, ;
: 18,Y ?,Y IF 18 C, THEN ;
: SOK? ?# IF 3 ERROR THEN ;

: xx12-CPU <BUILDS C, DOES> 18,Y ?# ?DIR OR IF 3 ERROR THEN
116

 C@ MODE-LSB OR C, HHLL/LL, ;
: 1112-CPU <BUILDS C, DOES> 18,Y C@ MODE-ADJ, HHLL/LL, ;
: x112-CPU <BUILDS C, DOES> 18,Y SOK? C@ MODE-ADJ, HHLL/LL, ;
: 2112-CPU <BUILDS C, DOES> 18,Y C@ MODE-ADJ, 2HHLL/LL, ;

: (OP-DD-MM) 18,Y SOK? MODE-LSB 20 = IF C OR THEN C, C, C, ;
: OP-RR <BUILDS C, DOES> C@ C, RANGE-C, EXT ;
: OP-DD-MM <BUILDS C, DOES> C@ (OP-DD-MM) EXT ;
: OP-DD-MM-RR <BUILDS C, DOES> C@ (OP-DD-MM) RANGE-C, EXT ;

: CPX, ?,Y IF CD C, THEN 8C MODE-ADJ, 2HHLL/LL, ;
: LDX, ?,Y IF CD C, THEN CE MODE-ADJ, 2HHLL/LL, ;
: STX, ?,Y IF CD C, THEN SOK? CF MODE-ADJ, HHLL/LL, ;
: CPY, ?,X IF 1A ELSE 18 THEN C, 8C MODE-ADJ, 2HHLL/LL, ;
: LDY, ?,X IF 1A ELSE 18 THEN C, CE MODE-ADJ, 2HHLL/LL, ;
: STY, ?,X IF 1A ELSE 18 THEN C, SOK? CF MODE-ADJ, HHLL/LL, ;
: CPD, ?,Y IF CD C, ELSE 1A C, THEN 83 MODE-ADJ, 2HHLL/LL, ;

00 CPU TEST,
01 CPU NOP,
02 CPU IDIV,
03 CPU FDIV,
04 CPU LSRD,
05 CPU ASLD, 05 CPU LSLD,
06 CPU TAP,
07 CPU TPA,
08 CPU INX,
09 CPU DEX,
0A CPU CLV,
0B CPU SEV,
0C CPU CLC,
0D CPU SEC,
0E CPU CLI,
0F CPU SEI,
10 CPU SBA,
11 CPU CBA,
12 OP-DD-MM-RR BRSET,
13 OP-DD-MM-RR BRCLR,
14 OP-DD-MM BSET,
15 OP-DD-MM BCLR,
16 CPU TAB,
17 CPU TBA,
(18 PAGE 2)
19 CPU DAA,
(1A PAGE 3)
1B CPU ABA,
(1C BSET,
(1D BCLR,
(1E BRSET,
(1F BRCLR,
20 OP-RR BRA,
21 OP-RR BRN,
22 OP-RR BHI,
23 OP-RR BLS,
24 OP-RR BCC,
24 OP-RR BHS,
25 OP-RR BCS,
25 OP-RR BLO,

117

26 OP-RR BNE,
27 OP-RR BEQ,
28 OP-RR BVC,
29 OP-RR BVS,
2A OP-RR BPL,
2B OP-RR BMI,
2C OP-RR BGE,
2D OP-RR BLT,
2E OP-RR BGT,
2F OP-RR BLE,
30 CPU TSX,
31 CPU INS,
32 CPU PULA,
33 CPU PULB,
34 CPU DES,
35 CPU TXS,
36 CPU PSHA,
37 CPU PSHB,
38 CPU PULX,
39 CPU RTS,
3A CPU ABX,
3B CPU RTI,
3C CPU PSHX,
3D CPU MUL,
3E CPU WAI,
3F CPU SWI,
40 CPU NEGA,
(41 NC)
(42 NC)
43 CPU COMA,
44 CPU LSRA,
(45 NC)
46 CPU RORA,
47 CPU ASRA,
48 CPU ASLA,
49 CPU ROLA,
4A CPU DECA,
(4B NC)
4C CPU INCA,
4D CPU TSTA,
(4E NC)
4F CPU CLRA,
50 CPU NEGB,
(51 NC)
(52 NC)
53 CPU COMB,
54 CPU LSRB,
(55 NC)
56 CPU RORB,
57 CPU ASRB,
58 CPU ASLB,
59 CPU ROLB,
5A CPU DECB,
(5B NC)
5C CPU INCB,
5D CPU TSTB,
(5E NC)
5F CPU CLRB,
(60-7F)

118

40 xx12-CPU NEG,
43 xx12-CPU COM,
44 xx12-CPU LSR,
46 xx12-CPU ROR,
47 xx12-CPU ASR,
48 xx12-CPU ASL,
49 xx12-CPU ROL,
4A xx12-CPU DEC,
4C xx12-CPU INC,
4D xx12-CPU TST,
4E xx12-CPU JMP,
4F xx12-CPU CLR,
(80-BF)
80 1112-CPU SUBA,
81 1112-CPU CMPA,
82 1112-CPU SBCA,
83 2112-CPU SUBD,
84 1112-CPU ANDA,
85 1112-CPU BITA,
86 1112-CPU LDAA,
87 x112-CPU STAA,
88 1112-CPU EORA,
89 1112-CPU ADCA,
8A 1112-CPU ORAA,
8B 1112-CPU ADDA,
(8C CPX,
8D x112-CPU JSR,
8E 2112-CPU LDS,
8F x112-CPU STS,
8F CPU XGDX,
(C0-FF)
C0 1112-CPU SUBB,
C1 1112-CPU CMPB,
C2 1112-CPU SBCB,
C3 2112-CPU ADDD,
C4 1112-CPU ANDB,
C5 1112-CPU BITB,
C6 1112-CPU LDAB,
C7 x112-CPU STAB,
C8 1112-CPU EORB,
C9 1112-CPU ADCB,
CA 1112-CPU ORAB,
CB 1112-CPU ADDB,
CC 2112-CPU LDD,
CD x112-CPU STD,
(CE LDX,)
(CF STX,)
CF CPU STOP,

08 PG-2-CPU INY,
09 PG-2-CPU DEY,
30 PG-2-CPU TSY,
35 PG-2-CPU TYS,
38 PG-2-CPU PULY,
3A PG-2-CPU ABY,
3C PG-2-CPU PSHY,

8F PG-2-CPU XGDY,

119

8D OP-RR BSR,

: TOP ,Y 0 ; (ADDRESS THE BOTTOM OF THE STACK *)
: SEC ,Y 2 ; (ADDRESS SECOND ITEM ON STACK *)

: ?EXEC STATE @ IF 12 ERROR THEN ;
: ?PAIRS - IF 13 ERROR THEN ;

: BEGIN, HERE 1 ;
: UNTIL, ?EXEC >R 1 ?PAIRS R> C, HERE 1+ - C, ;
: AGAIN, 20 UNTIL, ;
: IF, C, HERE 0 C, 2 ;
: THEN, ?EXEC 2 ?PAIRS HERE OVER 1+ - SWAP C! ;
: ELSE, 2 ?PAIRS HERE 1+ 0 BRA,
 SWAP HERE OVER 1+ - SWAP C! 2 ;
: .NOT. 1 XOR ; (REVERSE ASSEMBLY TEST)

20 CONSTANT .FL.
21 CONSTANT .TR.
22 CONSTANT .LS.
23 CONSTANT .HI.
24 CONSTANT .CS.
24 CONSTANT .LO.
25 CONSTANT .CC.
25 CONSTANT .HS.
26 CONSTANT .EQ.
27 CONSTANT .NE.
28 CONSTANT .VS.
29 CONSTANT .VC.
2A CONSTANT .--.
2B CONSTANT .++.
2C CONSTANT .LT.
2D CONSTANT .GE.
2E CONSTANT .LE.
2F CONSTANT .GT.

: BOK? ?# ?EXT OR IF 3 ERROR THEN ;
: BIT-BR <BUILDS C, DOES>
 C@ 18,Y BOK? MODE-LSB 10 - IF C OR THEN C, C,
 C, 2 C, 20 C, HERE 0 C, 2 ; IMMEDIATE

13 BIT-BR .CLR.IF,
12 BIT-BR .SET.IF,

' @ CFA FE43 FE22 - + CONSTANT PUSHD
' @ CFA FE47 FE22 - + CONSTANT NEXTSD
' @ CFA FE47 FE22 - + CONSTANT PUT
' @ CFA FE4A FE22 - + CONSTANT NEXT
' @ CFA FE4C FE22 - + CONSTANT NEXT3
' @ CFA FE50 FE22 - + CONSTANT NEXT1
' @ CFA FE52 FE22 - + CONSTANT NEXT2
' 1+ CFA FC97 FC7C - + CONSTANT POP
' 1+ CFA FC93 FC7C - + CONSTANT POPTWO

0 CONSTANT W
2 CONSTANT IP

120

4 CONSTANT UP

FORTH DEFINITIONS

121

APPENDIX C

This Appendix contains lists of the compiler recognized operation code mnemonics in various sort
orders.

Ascending Order by Generated Op Code
Single Byte Codes

00 TEST, Test Operation
01 NOP, No Operation
02 IDIV, Integer Divide
03 FDIV, Fractional Divide
04 LSRD, Logical Shift Right Double Accumulator
05 ASLD, Arithmetic Shift Left Double Accumulator
05 LSLD, Logical Shift Left Double
06 TAP, Transfer from Accum A to Condition Code Reg.
07 TPA, Transfer from Condition Code Reg. to Accum A
08 INX, Increment Index Register X
09 DEX, Decrement Index Register X
0A CLV, Clear Twos-Complement Overflow Bit
0B SEV, Set Twos-Complement Overflow Bit
0C CLC, Clear Carry
0D SEC, Set Carry
0E CLI, Clear Interrupt Mask
0F SEI, Set Interrupt Mask
10 SBA, Subtract Accumulators
11 CBA, Compare Accumulators
12 BRSET, Branch if Bit(s) Set
13 BRCLR, Branch if Bit(s) Clear
14 BSET, Set Bit(s) in Memory
15 BCLR, Clear Bit(s) in Memory
16 TAB, Transfer from Accumulator A to Accumulator B
17 TBA, Transfer from Accumulator B to Accumulator A
18 (PAGE 2)
19 DAA, Decimal Adjust Accumulator A
1A (PAGE 3)
1B ABA, Add Accumulator B to Accumulator A
1C BSET, Set Bit(s) in Memory (Indexed, X)
1D BCLR, Clear Bit(s) in Memory (Indexed, X)
1E BRSET, Branch if Bit(s) Set (Indexed, X)
1F BRCLR, Branch if Bit(s) Clear (Indexed, X)
20 BRA, Branch Always
21 BRN, Branch Never
22 BHI, Branch if Higher
23 BLS, Branch if Lower or Same
24 BCC, Branch if Carry Clear
24 BHS, Branch if Higher or Same
25 BCS, Branch if Carry Set
25 BLO, Branch if Lower
26 BNE, Branch if Not Equal to Zero
27 BEQ, Branch if Equal
28 BVC, Branch if Overflow Clear
29 BVS, Branch if Overflow Set
2A BPL, Branch if Plus

122

(Numeric, continued)

2B BMI, Branch if Minus
2C BGE, Branch if Greater than or Equal to Zero
2D BLT, Branch if Less than Zero
2E BGT, Branch if Greater than Zero
2F BLE, Branch if Less than or Equal to Zero
30 TSX, Transfer from Stack Pointer to Index Reg X
31 INS, Increment Stack Pointer
32 PULA, Pull Data from Stack (into Accumulator A)
33 PULB, Pull Data from Stack (into Accumulator B)
34 DES, Decrement Stack Pointer
35 TXS, Transfer from Index Reg X to Stack Pointer
36 PSHA, Push Data onto Stack (from Accumulator A)
37 PSHB, Push Data onto Stack (from Accumulator B)
38 PULX, Pull Index Register X from Stack
39 RTS, Return from Subroutine
3A ABX, Add Accumulator B to Index Register X
3B RTI, Return from Interrupt
3C PSHX, Push Index Register X onto Stack
3D MUL, Multiply Unsigned
3E WAI, Wait for Interrupt
3F SWI, Software Interrupt
40 NEGA, Negate (Accumulator A)
41 (No Code)
42 (No Code)
43 COMA, Complement (Accumulator A)
44 LSRA, Logical Shift Right (Accumulator A)

(45 No Code)
46 RORA, Rotate Right (Accumulator A)
47 ASRA, Arithmetic Shift Right (Accumulator A)
48 ASLA, Arithmetic Shift Left (Accumulator A)
49 ROLA,Rotate Left (Accumulator A)
4A DECA,Decrement (Accumulator A)
4B (No Code)
4C INCA, Increment (Accumulator A)
4D TSTA, Test (Accumulator A)
4E (No Code)
4F CLRA, Clear (Accumulator A)
50 NEGB,Negate (Accumulator B)
51 (No Code)
52 (No Code)
53 COMB, Complement (Accumulator B)
54 LSRB, Logical Shift Right (Accumulator B)
55 (No Code)
56 RORB, Rotate Right (Accumulator B)
57 ASRB, Arithmetic Shift Right (Accumulator B)
58 ASLB, Arithmetic Shift Left (Accumulator B)
59 ROLB, Rotate Left (Accumulator B)
5A DECB, Decrement (Accumulator B)
5B (No Code)
5C INCB, Increment (Accumulator B)
5D TSTB, Test (Accumulator B)
5E (No Code)

123

(Numeric, continued)

5F CLRB, Clear (Accumulator B)
60 NEG, Negate (Indexed, X)
61 (No Code)
62 (No Code)
63 COM, Complement (Indexed, X)
64 LSR, Logical Shift Right (Indexed, X)
65 (No Code)
66 ROR, Rotate Right (Indexed, X)
67 ASR, Arithmetic Shift Right (Indexed, X)
68 ASL, Arithmetic Shift Left (Indexed, X)
69 ROL, Rotate Left (Indexed, X)
6A DEC, Decrement (Indexed, X)
6B (No Code)
6C INC, Increment (Indexed, X)
6D TST, Test (Indexed, X)
6E JMP, Jump (Indexed, X)
6F CLR, Clear (Indexed, X)
70 NEG, Negate (Extended Mode, X)
71 (No Code)
72 (No Code)
73 COM, Complement (Extended Mode)
74 LSR, Logical Shift Right (Extended Mode)
76 ROR, Rotate Right (Extended Mode)
77 ASR, Arithmetic Shift Right (Extended Mode)
78 ASL, Arithmetic Shift Left (Extended Mode)
79 ROL, Rotate Left (Extended Mode)
7A DEC, Decrement (Extended Mode)
7B (No Code)
7C INC, Increment (Extended Mode)
7D TST, Test (Extended Mode)
7E JMP, Jump (Extended Mode)
7F CLR, Clear (Extended Mode)
80 SUBA, Subtract from Accumulator A
81 CMPA,Compare to Accumulator A
82 SBCA, Subtract from Accum A with Carry
83 SUBD, Subtract from Accumulator D
84 ANDA, Logical AND to Accumulator A
85 BITA, Bit Test Accumulator using Accum A
86 LDAA, Load Accumulator A
87 (No Code)
88 EORA,Exclusive OR to Accumulator A
89 ADCA, Add to Accum A with Carry
8A ORAA, Logical Inclusive OR to Accumulator A
8B ADDA, Add to Accum A without Carry
8C CPX, Compare Index Register X
8D BSR, Branch to Subroutine
8E LDS, Load Stack Pointer
8F XGDX, Exchange Double Accumulator and Index Reg X
90 SUBA, Subtract from Accumulator A (Direct)
91 CMPA,Compare to Accumulator A (Direct)

124

(Numeric, continued)

92 SBCA, Subtract from Accum A with Carry (Direct)
93 SUBD, Subtract from Accumulator D (Direct)
94 ANDA, Logical AND to Accumulator A (Direct)
95 BITA, Bit Test Accumulator using Accum A (Direct)
96 LDAA, Load Accumulator A (Direct)
97 STAA, Store Accumulator A (Direct)
98 EORA,Exclusive OR to Accumulator A (Direct)
99 ADCA, Add to Accum A with Carry (Direct)
9A ORAA, Logical Inclusive OR to Accum A (Direct)
9B ADDA, Add to Accum A without Carry (Direct)
9C CPX, Compare Index Register X (Direct)
9D JSR, Jump to Subroutine (Direct)
9E LDS, Load Stack Pointer (Direct)
9F STS, Store Stack Pointer (Direct)
A0 SUBA, Subtract from Accumulator A (Indexed, X)
A1 CMPA,Compare to Accumulator A (Indexed, X)
A2 SBCA, Subtract from Accum A w/Carry (Indexed, X)
A3 SUBD, Subtract from Accumulator D (Indexed, X)
A4 ANDA, Logical AND to Accumulator A (Indexed, X)
A5 BITA, Bit Test Accumulator A (Indexed, X)
A6 LDAA, Load Accumulator A (Indexed, X)
A7 STAA, Store Accumulator A (Indexed, X)
A8 EORA,Exclusive OR to Accumulator A (Indexed, X)
A9 ADCA, Add to Accum A with Carry (Indexed, X)
AA ORAA, Logical Inclusive OR to Accum A (Indexed, X)
AB ADDA, Add to Accum A without Carry (Indexed, X)
AC CPX, Compare Index Register X (Indexed, X)
AD JSR, Jump to Subroutine (Indexed, X)
AE LDS, Load Stack Pointer (Indexed, X)
AF STS, Store Stack Pointer (Indexed, X)
B0 SUBA, Subtract from Accumulator A (Extended)
B1 CMPA,Compare to Accumulator A (Extended)
B2 SBCA, Subtract from Accum A with Carry (Extended)
B3 SUBD, Subtract from Accumulator D (Extended)
B4 ANDA, Logical AND to Accumulator A (Extended)
B5 BITA, Bit Test Accum using Accum A (Extended)
B6 LDAA, Load Accumulator A (Extended)
B7 STAA, Store Accumulator A (Extended)
B8 EORA,Exclusive OR to Accumulator A (Extended)
B9 ADCA, Add to Accum A with Carry (Extended)
BA ORAA, Logical Inclusive OR to Accum A (Extended)
BB ADDA, Add to Accum A without Carry (Extended)
BC CPX, Compare Index Register X (Extended)
BD JSR, Jump to Subroutine (Extended)
BE LDS, Load Stack Pointer (Extended)
BF STS, Store Stack Pointer (Extended)
C0 SUBB, Subtract from Accumulator B
C1 CMPB, Compare to Accumulator B
C2 SBCB, Subtract from Accum B with Carry
C3 ADDD, Add to Accum D without Carry
C4 ANDB, Logical AND to Accumulator B

125

(Numeric, continued)

C5 BITB, Bit Test Accumulator using Accum B
C6 LDAB,Load Accumulator B
C7 (No Code)
C8 EORB, Exclusive OR to Accumulator B
C9 ADCB, Add to Accum B with Carry
CA ORAB, Logical Inclusive OR to Accum B
CB ADDB, Add to Accum B without Carry
CC LDD, Load Accumulator D
CD (PAGE 4)
CE LDX, Load Index Register X
CF STOP, Stop Processing
D0 SUBB, Subtract from Accumulator B (Direct)
D1 CMPB, Compare to Accumulator B (Direct)
D2 SBCB, Subtract from Accum B with Carry (Direct)
D3 ADDD, Add to Accum D without Carry (Direct)
D4 ANDB, Logical AND to Accumulator B (Direct)
D5 BITB, Bit Test Accumulator using Accum B (Direct)
D6 LDAB,Load Accumulator B (Direct)
D7 STAB, Store Accumulator B (Direct)
D8 EORB, Exclusive OR to Accumulator B (Direct)
D9 ADCB, Add to Accum B with Carry (Direct)
DA ORAB, Logical Inclusive OR to Accum B (Direct)
DB ADDB, Add to Accum B without Carry (Direct)
DC LDD, Load Accumulator D (Direct)
DD STD, Store Accumulator D (Direct)
DE LDX, Load Index Register X (Direct)
DF STX, Store Index Register X (Direct)
E0 SUBB, Subtract from Accumulator B (Indexed, X)
E1 CMPB, Compare to Accumulator B (Indexed, X)
E2 SBCB, Subtract from Accum B w/Carry (Indexed, X)
E3 ADDD, Add to Accum D without Carry (Indexed, X)
E4 ANDB, Logical AND to Accumulator B (Indexed, X)
E5 BITB, Bit Test Accumulator B (Indexed, X)
E6 LDAB,Load Accumulator B (Indexed, X)
E7 STAB, Store Accumulator B (Indexed, X)
E8 EORB, Exclusive OR to Accumulator B (Indexed, X)
E9 ADCB, Add to Accum B with Carry (Indexed, X)
EA ORAB, Logical Inclusive OR to Accum B (Indexed, X)
EB ADDB, Add to Accum B without Carry (Indexed, X)
EC LDD, Load Accumulator D (Indexed, X)
ED STD, Store Accumulator D (Indexed, X)
EE LDX, Load Index Register X (Indexed, X)
EF STX, Store Index Register X (Indexed, X)
F0 SUBB, Subtract from Accumulator B (Extended)
F1 CMPB, Compare to Accumulator B (Extended)
F2 SBCB, Subtract from Accum B with Carry (Extended)
F3 ADDD, Add to Accum D without Carry (Extended)
F4 ANDB, Logical AND to Accumulator B (Extended)
F5 BITB, Bit Test Accum using Accum B (Extended)
F6 LDAB,Load Accumulator B (Extended)
F7 STAB, Store Accumulator B (Extended)
F8 EORB, Exclusive OR to Accumulator B (Extended)

126

(Numeric, continued)

F9 ADCB, Add to Accum B with Carry (Extended)
FA ORAB, Logical Inclusive OR to Accum B (Extended)
FB ADDB, Add to Accum B without Carry (Extended)
FC LDD, Load Accumulator D (Extended)
FD STD, Store Accumulator D (Extended)
FE LDX, Load Index Register X (Extended)
FF STX, Store Index Register X (Extended)

Ascending Order by Generated Op Code
Two Byte Codes

1808 INY, Increment Index Register Y
1809 DEY, Decrement Index Register Y
181C BSET, Set Bit(s) in Memory (Indexed, Y)
181D BCLR, Clear Bit(s) in Memory (Indexed, Y)
181E BRSET, Branch if Bit(s) Set (Indexed, Y)
181F BRCLR, Branch if Bit(s) Clear (Indexed, Y)
1830 TSY, Transfer from Stack Pointer to Index Reg Y
1835 TYS, Transfer from Index Reg Y to Stack Pointer
1838 PULY, Pull Index Register Y from Stack
183A ABY, Add Accumulator B to Index Register Y
183C PSHY, Push Index Register Y onto Stack
1860 NEG, Negate (Indexed, Y)
1863 COM, Complement (Indexed, Y)
1864 LSR, Logical Shift Right (Indexed, Y)
1866 ROR, Rotate Right (Indexed, Y)
1867 ASR, Arithmetic Shift Right (Indexed, Y)
1868 ASL, Arithmetic Shift Left (Indexed, Y)
1869 ROL, Rotate Left (Indexed, Y)
186A DEC, Decrement (Indexed, Y)
186C INC, Increment (Indexed, Y)
186D TST, Test (Indexed, Y)
186E JMP, Jump (Indexed, Y)
186F CLR, Clear (Indexed, Y)
188C CPY, Compare Index Register Y
188F XGDY, Exchange Accumulator D and Index Reg Y
189C CPY, Compare Index Register Y (Direct)
18A0 SUBA, Subtract from Accumulator A (Indexed, Y)
18A1 CMPA,Compare to Accumulator A (Indexed, Y)
18A2 SBCA, Subtract from Accum A w/ Carry (Indexed, Y)
18A3 SUBD, Subtract from Accumulator D (Indexed, Y)
18A4 ANDA, Logical AND to Accumulator A (Indexed, Y)
18A5 BITA, Bit Test Accumulator A (Indexed, Y)
18A6 LDAA, Load Accumulator A (Indexed, Y)
18A7 STAA, Store Accumulator A (Indexed, Y)
18A8 EORA,Exclusive OR to Accumulator A (Indexed, Y)
18A9 ADCA, Add to Accum A with Carry (Indexed, Y)
18AA ORAA, Logical Inclusive OR to Accum A (Indexed, Y)
18AB ADDA, Add to Accum A without Carry (Indexed, Y)
18AC CPY, Compare Index Register Y (Indexed, Y)

127

(Numeric, continued)

18AD JSR, Jump to Subroutine (Indexed, Y)
18AE LDS, Load Stack Pointer (Indexed, Y)
18AF STS, Store Stack Pointer (Indexed, Y)
18BC CPY, Compare Index Register Y (Extended)
18CE LDY, Load Index Register Y
18DE LDY, Load Index Register Y (Direct)
18DF STY, Store Index Register Y (Direct)
18E0 SUBB, Subtract from Accumulator B (Indexed, Y)
18E1 CMPB, Compare to Accumulator B (Indexed, Y)
18E2 SBCB, Subtract from Accum B w/Carry (Indexed, Y)
18E3 ADDD, Add to Accum D without Carry (Indexed, Y)
18E4 ANDB, Logical AND to Accumulator B (Indexed, Y)
18E5 BITB, Bit Test Accumulator B (Indexed, Y)
18E6 LDAB,Load Accumulator B (Indexed, Y)
18E7 STAB, Store Accumulator B (Indexed, Y)
18E8 EORB, Exclusive OR to Accumulator B (Indexed, Y)
18E9 ADCB, Add to Accum B with Carry (Indexed, Y)
18EA ORAB, Logical Inclusive OR to Accum B (Indexed, Y)
18EB ADDB, Add to Accum B without Carry (Indexed, Y)
18EC LDD, Load Accumulator D (Indexed, Y)
18ED STD, Store Accumulator D (Indexed, Y)
18EE LDY, Load Index Register Y (Indexed, Y)
18EF STY, Store Index Register Y (Indexed, Y)
18FE LDY, Load Index Register Y (Extended)
18FF STY, Store Index Register Y (Extended)
1A83 CPD, Compare Accumulator D
1A93 CPD, Compare Accumulator D (Direct)
1AA3 CPD, Compare Accumulator D (Indexed, X)
1AAC CPY, Compare Index Register Y (Indexed, X)
1AB3 CPD, Compare Accumulator D (Extended)
1AEE LDY, Load Index Register Y (Indexed, X)
1AEF STY, Store Index Register Y (Indexed, X)
CDA3 CPD, Compare Accumulator D (Indexed, Y)
CDAC CPX, Compare Index Register X (Indexed, Y)
CDEE LDX, Load Index Register X (Indexed, Y)
CDEF STX, Store Index Register X (Indexed, Y)

128

Ascending Order by Mnemonic

ABA, 1B Add Accumulator B to Accumulator A
ABX, 3A Add Accumulator B to Index Register X
ABY, 183A Add Accumulator B to Index Register Y
ADCA, 89 Add to Accum A with Carry

99 Add to Accum A with Carry (Direct)
A9 Add to Accum A with Carry (Indexed, X)
B9 Add to Accum A with Carry (Extended)
18A9 Add to Accum A with Carry (Indexed, Y)

ADCB, C9 Add to Accum B with Carry
D9 Add to Accum B with Carry (Direct)
E9 Add to Accum B with Carry (Indexed, X)
F9 Add to Accum B with Carry (Extended)
18E9 Add to Accum B with Carry (Indexed, Y)

ADDA, 8B Add to Accum A without Carry
9B Add to Accum A without Carry (Direct)
AB Add to Accum A without Carry (Indexed, X)
BB Add to Accum A without Carry (Extended)
18AB Add to Accum A without Carry (Indexed, Y)

ADDB, CB Add to Accum B without Carry
DB Add to Accum B without Carry (Direct)
EB Add to Accum B without Carry (Indexed, X)
FB Add to Accum B without Carry (Extended)
18EB Add to Accum B without Carry (Indexed, Y)

ADDD, C3 Add to Accum D without Carry
D3 Add to Accum D without Carry (Direct)
E3 Add to Accum D without Carry (Indexed, X)
F3 Add to Accum D without Carry (Extended)
18E3 Add to Accum D without Carry (Indexed, Y)

ANDA, 84 Logical AND to Accumulator A
94 Logical AND to Accumulator A (Direct)
A4 Logical AND to Accumulator A (Indexed, X)
B4 Logical AND to Accumulator A (Extended)
18A4 Logical AND to Accumulator A (Indexed, Y)

ANDB, C4 Logical AND to Accumulator B
D4 Logical AND to Accumulator B (Direct)
E4 Logical AND to Accumulator B (Indexed, X)
F4 Logical AND to Accumulator B (Extended)
18E4 Logical AND to Accumulator B (Indexed, Y)

ASL, 68 Arithmetic Shift Left (Indexed, X)
78 Arithmetic Shift Left (Extended Mode)
1868 Arithmetic Shift Left (Indexed, Y)

ASLA, 48 Arithmetic Shift Left (Accumulator A)
ASLB, 58 Arithmetic Shift Left (Accumulator B)
ASLD, 05 Arithmetic Shift Left Double Accumulator
ASR, 67 Arithmetic Shift Right (Indexed, X)

77 Arithmetic Shift Right (Extended Mode)
1867 Arithmetic Shift Right (Indexed, Y)

ASRA, 47 Arithmetic Shift Right (Accumulator A)
ASRB, 57 Arithmetic Shift Right (Accumulator B)
BCC, 24 Branch if Carry Clear
BCLR, 15 Clear Bit(s) in Memory

129

(Alphabetic, continued)

BCLR, 1D Clear Bit(s) in Memory (Indexed, X)
181D Clear Bit(s) in Memory (Indexed, Y)

BCS, 25 Branch if Carry Set
BEQ, 27 Branch if Equal
BGE, 2C Branch if Greater than or Equal to Zero
BGT, 2E Branch if Greater than Zero
BHI, 22 Branch if Higher
BHS, 24 Branch if Higher or Same
BITA, 85 Bit Test Accumulator using Accum A

95 Bit Test Accumulator using Accum A (Direct)
A5 Bit Test Accumulator A (Indexed, X)
B5 Bit Test Accum using Accum A (Extended)
18A5 Bit Test Accumulator A (Indexed, Y)

BITB, C5 Bit Test Accumulator using Accum B
D5 Bit Test Accumulator using Accum B (Direct)
E5 Bit Test Accumulator B (Indexed, X)
F5 Bit Test Accum using Accum B (Extended)
18E5 Bit Test Accumulator B (Indexed, Y)

BLE, 2F Branch if Less than or Equal to Zero
BLO, 25 Branch if Lower
BLS, 23 Branch if Lower or Same
BLT, 2D Branch if Less than Zero
BMI, 2B Branch if Minus
BNE, 26 Branch if Not Equal to Zero
BPL, 2A Branch if Plus
BRA, 20 Branch Always
BRCLR, 13 Branch if Bit(s) Clear

1F Branch if Bit(s) Clear (Indexed, X)
181F Branch if Bit(s) Clear (Indexed, Y)

BRN, 21 Branch Never
BRSET, 12 Branch if Bit(s) Set

1E Branch if Bit(s) Set (Indexed, X)
181E Branch if Bit(s) Set (Indexed, Y)

BSET, 14 Set Bit(s) in Memory
1C Set Bit(s) in Memory (Indexed, X)
181C Set Bit(s) in Memory (Indexed, Y)

BSR, 8D Branch to Subroutine
BVC, 28 Branch if Overflow Clear
BVS, 29 Branch if Overflow Set
CBA, 11 Compare Accumulators
CLC, 0C Clear Carry
CLI, 0E Clear Interrupt Mask
CLR, 6F Clear (Indexed, X)

7F Clear (Extended Mode)
186F Clear (Indexed, Y)

CLRA, 4F Clear (Accumulator A)
CLRB, 5F Clear (Accumulator B)
CLV, 0A Clear Twos-Complement Overflow Bit
CMPA,81 Compare to Accumulator A

91 Compare to Accumulator A (Direct)
A1 Compare to Accumulator A (Indexed, X)
B1 Compare to Accumulator A (Extended)

130

(Alphabetic, continued)

CMPA,18A1 Compare to Accumulator A (Indexed, Y)
CMPB, C1 Compare to Accumulator B

D1 Compare to Accumulator B (Direct)
E1 Compare to Accumulator B (Indexed, X)
F1 Compare to Accumulator B (Extended)
18E1 Compare to Accumulator B (Indexed, Y)

COM, 63 Complement (Indexed, X)
73 Complement (Extended Mode)
1863 Complement (Indexed, Y)

COMA, 43 Complement (Accumulator A)
COMB, 53 Complement (Accumulator B)
CPD, 1A83 Compare Accumulator D

1A93 Compare Accumulator D (Direct)
1AA3 Compare Accumulator D (Indexed, X)
1AB3 Compare Accumulator D (Extended)
CDA3 Compare Accumulator D (Indexed, Y)

CPX, 8C Compare Index Register X
9C Compare Index Register X (Direct)
AC Compare Index Register X (Indexed, X)
BC Compare Index Register X (Extended)
CDAC Compare Index Register X (Indexed, Y)

CPY, 188C Compare Index Register Y
189C Compare Index Register Y (Direct)
18AC Compare Index Register Y (Indexed, Y)
18BC Compare Index Register Y (Extended)
1AAC Compare Index Register Y (Indexed, X)

DAA, 19 Decimal Adjust Accumulator A
DEC, 6A Decrement (Indexed, X)

7A Decrement (Extended Mode)
186A Decrement (Indexed, Y)

DECA,4A Decrement (Accumulator A)
DECB, 5A Decrement (Accumulator B)
DES, 34 Decrement Stack Pointer
DEX, 09 Decrement Index Register X
DEY, 1809 Decrement Index Register Y
EORA,88 Exclusive OR to Accumulator A

98 Exclusive OR to Accumulator A (Direct)
A8 Exclusive OR to Accumulator A (Indexed, X)
B8 Exclusive OR to Accumulator A (Extended)
18A8 Exclusive OR to Accumulator A (Indexed, Y)

EORB, C8 Exclusive OR to Accumulator B
D8 Exclusive OR to Accumulator B (Direct)
E8 Exclusive OR to Accumulator B (Indexed, X)
F8 Exclusive OR to Accumulator B (Extended)
18E8 Exclusive OR to Accumulator B (Indexed, Y)

FDIV, 03 Fractional Divide
IDIV, 02 Integer Divide
INC, 6C Increment (Indexed, X)

7C Increment (Extended Mode)
186C Increment (Indexed, Y)

INCA, 4C Increment (Accumulator A)
INCB, 5C Increment (Accumulator B)

131

(Alphabetic, continued)

INS, 31 Increment Stack Pointer
INX, 08 Increment Index Register X
INY, 1808 Increment Index Register Y
JMP, 6E Jump (Indexed, X)

7E Jump (Extended Mode)
186E Jump (Indexed, Y)

JSR, 9D Jump to Subroutine (Direct)
AD Jump to Subroutine (Indexed, X)
BD Jump to Subroutine (Extended)
18AD Jump to Subroutine (Indexed, Y)

LDAA, 86 Load Accumulator A
96 Load Accumulator A (Direct)
A6 Load Accumulator A (Indexed, X)
B6 Load Accumulator A (Extended)
18A6 Load Accumulator A (Indexed, Y)

LDAB,C6 Load Accumulator B
D6 Load Accumulator B (Direct)
E6 Load Accumulator B (Indexed, X)
F6 Load Accumulator B (Extended)
18E6 Load Accumulator B (Indexed, Y)

LDD, CC Load Accumulator D
DC Load Accumulator D (Direct)
EC Load Accumulator D (Indexed, X)
FC Load Accumulator D (Extended)
18EC Load Accumulator D (Indexed, Y)

LDS, 8E Load Stack Pointer
9E Load Stack Pointer (Direct)
AE Load Stack Pointer (Indexed, X)
BE Load Stack Pointer (Extended)
18AE Load Stack Pointer (Indexed, Y)

LDX, CE Load Index Register X
DE Load Index Register X (Direct)
EE Load Index Register X (Indexed, X)
FE Load Index Register X (Extended)
CDEE Load Index Register X (Indexed, Y)

LDY, 18CE Load Index Register Y
18DE Load Index Register Y (Direct)
18EE Load Index Register Y (Indexed, Y)
18FE Load Index Register Y (Extended)
1AEE Load Index Register Y (Indexed, X)

LSLD, 05 Logical Shift Left Double
LSR, 64 Logical Shift Right (Indexed, X)

74 Logical Shift Right (Extended Mode)
1864 Logical Shift Right (Indexed, Y)

LSRA, 44 Logical Shift Right (Accumulator A)
LSRB, 54 Logical Shift Right (Accumulator B)
LSRD, 04 Logical Shift Right Double Accumulator
MUL, 3D Multiply Unsigned
NEG, 60 Negate (Indexed, X)

70 Negate (Extended Mode, X)
1860 Negate (Indexed, Y)

NEGA, 40 Negate (Accumulator A)

132

(Alphabetic, continued)

NEGB,50 Negate (Accumulator B)
NOP, 01 No Operation
ORAA, 8A Logical Inclusive OR to Accumulator A

9A Logical Inclusive OR to Accum A (Direct)
AA Logical Inclusive OR to Accum A (Indexed, X)
BA Logical Inclusive OR to Accum A (Extended)
18AA Logical Inclusive OR to Accum A (Indexed, Y)

ORAB, CA Logical Inclusive OR to Accum B
DA Logical Inclusive OR to Accum B (Direct)
EA Logical Inclusive OR to Accum B (Indexed, X)
FA Logical Inclusive OR to Accum B (Extended)
18EA Logical Inclusive OR to Accum B (Indexed, Y)

PSHA, 36 Push Data onto Stack (from Accumulator A)
PSHB, 37 Push Data onto Stack (from Accumulator B)
PSHX, 3C Push Index Register X onto Stack
PSHY, 183C Push Index Register Y onto Stack
PULA, 32 Pull Data from Stack (into Accumulator A)
PULB, 33 Pull Data from Stack (into Accumulator B)
PULX, 38 Pull Index Register X from Stack
PULY, 1838 Pull Index Register Y from Stack
ROL, 69 Rotate Left (Indexed, X)

79 Rotate Left (Extended Mode)
1869 Rotate Left (Indexed, Y)

ROLA,49 Rotate Left (Accumulator A)
ROLB, 59 Rotate Left (Accumulator B)
ROR, 66 Rotate Right (Indexed, X)

76 Rotate Right (Extended Mode)
1866 Rotate Right (Indexed, Y)

RORA, 46 Rotate Right (Accumulator A)
RORB, 56 Rotate Right (Accumulator B)
RTI, 3B Return from Interrupt
RTS, 39 Return from Subroutine
SBA, 10 Subtract Accumulators
SBCA, 82 Subtract from Accum A with Carry

92 Subtract from Accum A with Carry (Direct)
A2 Subtract from Accum A w/Carry (Indexed, X)
B2 Subtract from Accum A with Carry (Extended)
18A2 Subtract from Accum A w/ Carry (Indexed, Y)

SBCB, C2 Subtract from Accum B with Carry
D2 Subtract from Accum B with Carry (Direct)
E2 Subtract from Accum B w/Carry (Indexed, X)
F2 Subtract from Accum B with Carry (Extended)
18E2 Subtract from Accum B w/Carry (Indexed, Y)

SEC, 0D Set Carry
SEI, 0F Set Interrupt Mask
SEV, 0B Set Twos-Complement Overflow Bit
STAA, 97 Store Accumulator A (Direct)

A7 Store Accumulator A (Indexed, X)
B7 Store Accumulator A (Extended)
18A7 Store Accumulator A (Indexed, Y)

STAB, D7 Store Accumulator B (Direct)
E7 Store Accumulator B (Indexed, X)

133

(Alphabetic, continued)

STAB, F7 Store Accumulator B (Extended)
18E7 Store Accumulator B (Indexed, Y)

STD, DD Store Accumulator D (Direct)
ED Store Accumulator D (Indexed, X)
FD Store Accumulator D (Extended)
18ED Store Accumulator D (Indexed, Y)

STOP, CF Stop Processing
STS, 9F Store Stack Pointer (Direct)

AF Store Stack Pointer (Indexed, X)
BF Store Stack Pointer (Extended)
18AF Store Stack Pointer (Indexed, Y)

STX, DF Store Index Register X (Direct)
EF Store Index Register X (Indexed, X)
FF Store Index Register X (Extended)
CDEF Store Index Register X (Indexed, Y)

STY, 18DF Store Index Register Y (Direct)
18EF Store Index Register Y (Indexed, Y)
18FF Store Index Register Y (Extended)
1AEF Store Index Register Y (Indexed, X)

SUBA, 80 Subtract from Accumulator A
90 Subtract from Accumulator A (Direct)
A0 Subtract from Accumulator A (Indexed, X)
B0 Subtract from Accumulator A (Extended)
18A0 Subtract from Accumulator A (Indexed, Y)

SUBB, C0 Subtract from Accumulator B
D0 Subtract from Accumulator B (Direct)
E0 Subtract from Accumulator B (Indexed, X)
F0 Subtract from Accumulator B (Extended)
18E0 Subtract from Accumulator B (Indexed, Y)

SUBD, 83 Subtract from Accumulator D
93 Subtract from Accumulator D (Direct)
A3 Subtract from Accumulator D (Indexed, X)
B3 Subtract from Accumulator D (Extended)
18A3 Subtract from Accumulator D (Indexed, Y)

SWI, 3F Software Interrupt
TAB, 16 Transfer from Accumulator A to Accumulator B
TAP, 06 Transfer from Accum A to Condition Code Reg.
TBA, 17 Transfer from Accumulator B to Accumulator A
TEST, 00 Test Operation
TPA, 07 Transfer from Condition Code Reg. to Accum A
TST, 6D Test (Indexed, X)

7D Test (Extended Mode)
186D Test (Indexed, Y)

TSTA, 4D Test (Accumulator A)
TSTB, 5D Test (Accumulator B)
TSX, 30 Transfer from Stack Pointer to Index Reg X
TSY, 1830 Transfer from Stack Pointer to Index Reg Y
TXS, 35 Transfer from Index Reg X to Stack Pointer
TYS, 1835 Transfer from Index Reg Y to Stack Pointer
WAI, 3E Wait for Interrupt
XGDX, 8F Exchange Double Accumulator and Index Reg X
XGDY,188F Exchange Accumulator D and Index Reg Y

134

Ascending Order by System Resource

ACCUMULATOR A

ABA, 1B Add Accumulator B to Accumulator A
ADCA, 89 Add to Accum A with Carry
ADDA, 8B Add to Accum A without Carry
ANDA, 84 Logical AND to Accumulator A
ASLA, 48 Arithmetic Shift Left (Accumulator A)
ASRA, 47 Arithmetic Shift Right (Accumulator A)
BITA, 85 Bit Test Accumulator using Accum A
CBA, 11 Compare Accumulators
CLRA, 4F Clear (Accumulator A)
CMPA,81 Compare to Accumulator A
COMA, 43 Complement (Accumulator A)
DAA, 19 Decimal Adjust Accumulator A
DECA,4A Decrement (Accumulator A)
EORA,88 Exclusive OR to Accumulator A
INCA, 4C Increment (Accumulator A)
LDAA, 86 Load Accumulator A
LSRA, 44 Logical Shift Right (Accumulator A)
MUL, 3D Multiply Unsigned
NEGA, 40 Negate (Accumulator A)
ORAA, 8A Logical Inclusive OR to Accumulator A
PSHA, 36 Push Data onto Stack (from Accumulator A)
PULA, 32 Pull Data from Stack (into Accumulator A)
ROLA,49 Rotate Left (Accumulator A)
RORA, 46 Rotate Right (Accumulator A)
SBA, 10 Subtract Accumulators
SBCA, 82 Subtract from Accum A with Carry
STAA, 97 Store Accumulator A (Direct)
SUBA, 80 Subtract from Accumulator A
TAB, 16 Transfer from Accumulator A to Accumulator B
TAP, 06 Transfer from Accum A to Condition Code Reg.
TBA, 17 Transfer from Accumulator B to Accumulator A
TPA, 07 Transfer from Condition Code Reg. to Accum A
TSTA, 4D Test (Accumulator A)

ACCUMULATOR B

ABA, 1B Add Accumulator B to Accumulator A
ABX, 3A Add Accumulator B to Index Register X
ABY, 183A Add Accumulator B to Index Register Y
ADCB, C9 Add to Accum B with Carry
ADDB, CB Add to Accum B without Carry
ANDB, C4 Logical AND to Accumulator B
ASLB, 58 Arithmetic Shift Left (Accumulator B)
ASRB, 57 Arithmetic Shift Right (Accumulator B)
BITB, C5 Bit Test Accumulator using Accum B
CBA, 11 Compare Accumulators
CLRB, 5F Clear (Accumulator B)
CMPB, C1 Compare to Accumulator B
COMB, 53 Complement (Accumulator B)

135

(Resource-ACCB, continued)

DECB, 5A Decrement (Accumulator B)
EORB, C8 Exclusive OR to Accumulator B
INCB, 5C Increment (Accumulator B)
LDAB,C6 Load Accumulator B
LSRB, 54 Logical Shift Right (Accumulator B)
MUL, 3D Multiply Unsigned
NEGB,50 Negate (Accumulator B)
ORAB, CA Logical Inclusive OR to Accum B
PSHB, 37 Push Data onto Stack (from Accumulator B)
PULB, 33 Pull Data from Stack (into Accumulator B)
ROLB, 59 Rotate Left (Accumulator B)
RORB, 56 Rotate Right (Accumulator B)
SBA, 10 Subtract Accumulators
SBCB, C2 Subtract from Accum B with Carry
STAB, D7 Store Accumulator B (Direct)
SUBB, C0 Subtract from Accumulator B
TAB, 16 Transfer from Accumulator A to Accumulator B
TBA, 17 Transfer from Accumulator B to Accumulator A
TSTB, 5D Test (Accumulator B)

DOUBLE ACCUMULATOR (D)

ADDD, C3 Add to Accum D without Carry
ASLD, 05 Arithmetic Shift Left Double Accumulator
CPD, 1A83 Compare Accumulator D
FDIV, 03 Fractional Divide
IDIV, 02 Integer Divide
LDD, CC Load Accumulator D
LSLD, 05 Logical Shift Left Double
LSRD, 04 Logical Shift Right Double Accumulator
MUL, 3D Multiply Unsigned
STD, DD Store Accumulator D (Direct)
SUBD, 83 Subtract from Accumulator D
XGDX, 8F Exchange Double Accumulator and Index Reg X
XGDY,188F Exchange Accumulator D and Index Reg Y

INDEX REGISTER X

ABX, 3A Add Accumulator B to Index Register X
CPX, 8C Compare Index Register X
DEX, 09 Decrement Index Register X
FDIV, 03 Fractional Divide
INX, 08 Increment Index Register X
LDX, CE Load Index Register X
PSHX, 3C Push Index Register X onto Stack
PULX, 38 Pull Index Register X from Stack
STX, DF Store Index Register X (Direct)
TSX, 30 Transfer from Stack Pointer to Index Reg X
TXS, 35 Transfer from Index Reg X to Stack Pointer
XGDX, 8F Exchange Double Accumulator and Index Reg X

136

(Resource, continued)

INDEX REGISTER Y

ABY, 183A Add Accumulator B to Index Register Y
CPY, 188C Compare Index Register Y
DEY, 1809 Decrement Index Register Y
INY, 1808 Increment Index Register Y
LDY, 18CE Load Index Register Y
PSHY, 183C Push Index Register Y onto Stack
PULY, 1838 Pull Index Register Y from Stack
STY, 18DF Store Index Register Y (Direct)
TSY, 1830 Transfer from Stack Pointer to Index Reg Y
TYS, 1835 Transfer from Index Reg Y to Stack Pointer
XGDY,188F Exchange Accumulator D and Index Reg Y

CONDITION CODE REGISTER

CLC, 0C Clear Carry
CLI, 0E Clear Interrupt Mask
CLV, 0A Clear Twos-Complement Overflow Bit
SEC, 0D Set Carry
SEI, 0F Set Interrupt Mask
SEV, 0B Set Twos-Complement Overflow Bit
TAP, 06 Transfer from Accum A to Condition Code Reg.
TPA, 07 Transfer from Condition Code Reg. to Accum A

STACK POINTER

BSR, 8D Branch to Subroutine
DES, 34 Decrement Stack Pointer
INS, 31 Increment Stack Pointer
JSR, 9D Jump to Subroutine (Direct)
LDS, 8E Load Stack Pointer
PSHA, 36 Push Data onto Stack (from Accumulator A)
PSHB, 37 Push Data onto Stack (from Accumulator B)
PSHX, 3C Push Index Register X onto Stack
PSHY, 183C Push Index Register Y onto Stack
PULA, 32 Pull Data from Stack (into Accumulator A)
PULB, 33 Pull Data from Stack (into Accumulator B)
PULX, 38 Pull Index Register X from Stack
PULY, 1838 Pull Index Register Y from Stack
RTI, 3B Return from Interrupt
RTS, 39 Return from Subroutine
STS, 9F Store Stack Pointer (Direct)
SWI, 3F Software Interrupt
TSX, 30 Transfer from Stack Pointer to Index Reg X
TSY, 1830 Transfer from Stack Pointer to Index Reg Y
TXS, 35 Transfer from Index Reg X to Stack Pointer
TYS, 1835 Transfer from Index Reg Y to Stack Pointer
WAI, 3E Wait for Interrupt

137

(Resource, continued)

MACHINE STORAGE

ADCA, 89 Add to Accum A with Carry
ADCB, C9 Add to Accum B with Carry
ADDA, 8B Add to Accum A without Carry
ADDB, CB Add to Accum B without Carry
ADDD, C3 Add to Accum D without Carry
ANDA, 84 Logical AND to Accumulator A
ANDB, C4 Logical AND to Accumulator B
ASLB, 58 Arithmetic Shift Left (Accumulator B)
ASL, 68 Arithmetic Shift Left (Indexed, X)
ASR, 67 Arithmetic Shift Right (Indexed, X)
BITA, 85 Bit Test Accumulator using Accum A
BITB, C5 Bit Test Accumulator using Accum B
CLR, 6F Clear (Indexed, X)
CMPA,81 Compare to Accumulator A
CMPB, C1 Compare to Accumulator B
COM, 63 Complement (Indexed, X)
CPD, 1A83 Compare Accumulator D
CPX, 8C Compare Index Register X
CPY, 188C Compare Index Register Y
EORA,88 Exclusive OR to Accumulator A
EORB, C8 Exclusive OR to Accumulator B
DEC, 6A Decrement (Indexed, X)
INC, 6C Increment (Indexed, X)
LDAA, 86 Load Accumulator A
LDAB,C6 Load Accumulator B
LDD, CC Load Accumulator D
LDS, 8E Load Stack Pointer
LDX, CE Load Index Register X
LSR, 64 Logical Shift Right (Indexed, X)
NEG, 60 Negate (Indexed, X)
NOP, 01 No Operation
ORAA, 8A Logical Inclusive OR to Accumulator A
ORAB, CA Logical Inclusive OR to Accum B
ROL, 69 Rotate Left (Indexed, X)
ROR, 66 Rotate Right (Indexed, X)
SBCA, 82 Subtract from Accum A with Carry
SBCB, C2 Subtract from Accum B with Carry
STAA, 97 Store Accumulator A (Direct)
STAB, D7 Store Accumulator B (Direct)
STD, DD Store Accumulator D (Direct)
STS, 9F Store Stack Pointer (Direct)
STX, DF Store Index Register X (Direct)
STY, 18DF Store Index Register Y (Direct)
SUBA, 80 Subtract from Accumulator A
SUBB, C0 Subtract from Accumulator B
SUBD, 83 Subtract from Accumulator D
TST, 6D Test (Indexed, X)

138

(Resource, continued)

EXECUTION SEQUENCE

BCC, 24 Branch if Carry Clear
BCLR, 15 Clear Bit(s) in Memory
BCS, 25 Branch if Carry Set
BEQ, 27 Branch if Equal
BGE, 2C Branch if Greater than or Equal to Zero
BGT, 2E Branch if Greater than Zero
BHI, 22 Branch if Higher
BHS, 24 Branch if Higher or Same
BLE, 2F Branch if Less than or Equal to Zero
BLO, 25 Branch if Lower
BLS, 23 Branch if Lower or Same
BLT, 2D Branch if Less than Zero
BMI, 2B Branch if Minus
BNE, 26 Branch if Not Equal to Zero
BPL, 2A Branch if Plus
BRA, 20 Branch Always
BRCLR, 13 Branch if Bit(s) Clear
BRN, 21 Branch Never
BRSET, 12 Branch if Bit(s) Set
BSET, 14 Set Bit(s) in Memory
BSR, 8D Branch to Subroutine
BVC, 28 Branch if Overflow Clear
BVS, 29 Branch if Overflow Set
JMP, 6E Jump (Indexed, X)
JSR, 9D Jump to Subroutine (Direct)
NOP, 01 No Operation
RTS, 39 Return from Subroutine
STOP, CF Stop Processing
TEST, 00 Test Operation

INTERRUPT HANDLING

RTI, 3B Return from Interrupt
SWI, 3F Software Interrupt
WAI, 3E Wait for Interrupt

139

APPENDIX D

This Appendix contains the programming narrative for the ASM6811 compiler, explaining the internal
logic, processing patterns, and design trade-offs.

(ASM6811 VERSION 1.11 05/14/93)

The assembler will almost always be loaded first, prior to any portion of the user's application, to create
the environment for development. This is not a hard and fast rule, but it is doubtful the programmer will
want to inject a 4K chunk of somebody else's code into his own source code before writing any assembly
language. Besides which, the Assembler creates finished machine code definitions; it is only needed
during program creation. The memory space need not be included in the final user application. It can
only be "thrown away" if it is kept separated from the user's mainline code. The first few lines of
ASM6811 describe an environment for loading ASM6811 on a clean system. These lines have been
"commented out" in Version 1.8 and two additional environment files have been provided to the user.
These files, LOAD0100.PRE and LOADC000.PRE, can be downloaded prior to the ASM6811 file to
create either a low memory or high memory installation respectively.

(ASM6811)

(COLD

(FORGET TASK
(HEX

(C400 DP !
(C100 1C !
(50 1E !

(VERSION 1.10 02/02/93)

An oversight in the original definition of CODE-SUB, a new kind of machine code defining words, was
that it did not invoke the assembler vocabulary.

: CODE-SUB [COMPILE] CODE-SUB [COMPILE] ASSEMBLER ;

CODE-SUB is therefore redefined to do all its original functions, with the addition of invocation of the
assembler vocabulary. The word [COMPILE] is necessary in this definition because both the words
CODE-SUB and ASSEMBLER are immediate and would have run rather than compile otherwise. This
also explains why,

IMMEDIATE

follows the ending of the new CODE-SUB definition.

Repairs made, it is now time to invoke the assembler vocabulary and identify that any new definitions
will be assigned to that vocabulary.

140

ASSEMBLER DEFINITIONS

Next a new variable is required to hold the addressing mode either by default or selection in the input
line. The variable MODE is therefore created.

VARIABLE MODE

Five definitions that allow the programmer to explicitly select the addressing mode to be used by a
mnemonic are defined: # DIR ,X ,Y and EXT. Each definition puts a coded number into MODE to be
used later by the particular defining word.

: # 00 MODE ! ;
: DIR 10 MODE ! ;
: ,X 20 MODE ! ;
: ,Y 120 MODE ! ;
: EXT 30 MODE ! ;

Similarly, five words follow that check the state of the MODE variable and return a Boolean, which
indicates whether the mode variable is set to its namesake setting.

: ?# MODE @ 0= ;
: ?DIR MODE @ 10 = ;
: ?,X MODE @ 20 = ;
: ?,Y MODE @ 120 = ;
: ?EXT MODE @ 30 = ;

The constant assigned to MODE in each addressing mode was not an arbitrary choice. The least
significant byte of that number is used by the later definitions to construct the actual op-code that is
inserted into the in-line machine code. As might be expected then, there is a definition which strips out
that LSB.

: MODE-LSB MODE @ FF AND ;

The ERROR function exists in the kernel but is orphaned, meaning it has no name available to call it
from the outer interpreter. (Again, a tradeoff of the "heads" of some words used by FORTH but not
mentioned in the '83 Standard, thus saving room for more words that were actually defined in the
standard.) In order to not have to recreate ERROR and all its subcomponent parts, the definition that
follows creates an external method of calling the headerless internal ERROR words. It uses a known
offset from a named word to find the entry point to the ERROR routine. Before control is returned to the
FORTH outer interpreter, the mode variable is reinitialized for business by EXT.

: ERROR EXT ' ID. CFA 4A + EXECUTE ;

141

The next definition is a segment that will be used in later relative branching instructions to check if the
range of a branch is within a one byte offset. If the upper byte of the branch offset is zero, it is taken to
be the actual byte offset to be compiled. (E.G., 3 BRA, causes a branch ahead three bytes, FD BRA, is a
branch back three bytes.) If the upper byte is nonzero, it is taken to be the absolute address to be
branched to. The offset value for that address is computed and its range again checked. If it is still not a
one byte range, an Error Message 3 is issued. If there was not a size problem, the offset is instead
compiled without error.

: RANGE-C, DUP FF00 AND IF HERE 1+ SWAP - DUP ABS FF00 AND
IF 3 ERROR THEN THEN C, ;

The majority of the assembler's named op-codes are implemented using defining words based on
<BUILDS DOES> constructs. This scheme greatly reduces the total memory size of the resulting code.
The first of these defining words, also the simplest, is CPU, which creates single byte op-codes. This
word takes the number from the stack when the new op-code is defined and compiles it into the
dictionary with a C, (per the <BUILDS portion). Upon use of the op-code word in application the value
compiled is fetched from the dictionary and compiled in-line in the machine code program under
construction as a single byte instruction (per the DOES> portion).

Also note, as will be the case in all words of this type, after compiling functions are finished, the
extended addressing mode is selected. This is to ensure at the beginning of each new program line the
default mode of extended addressing is selected. The programmer therefore does not have to specify
addressing modes explicitly on every line of the program. It is only necessary when a special mode is
desired, such as when using immediate, the # words is necessary.

: CPU <BUILDS C, DOES> C@ C, EXT ; (SINGLE BYTE OP-CODE)

Similarly, PG-2-CPU performs an identical function with second page, two-byte instructions. These are
in the form of a fixed "18", indicating an instruction page switch to processor, followed by the single
byte instructions (as in the CPU example before).

: PG-2-CPU <BUILDS C, DOES> 18 C, C@ C, EXT ;
(18 AND SINGLE BYTE OP-CODE)

Prior to the definition of some higher complexity defining words, a few utilities are added. HHLL/LL
compiles either the high/low byte combination if the mode is extended, or the low byte only if it is not.
2HHLL/LL is similar, however, it checks for the immediate mode and will compile the longer high/low
combination in that case. This word takes care of occurrences of such functions as 1234 # LDD as
distinguished from 00 ,X LDD. In the former, only two bytes are compiled with the LDD op-code; in the
later, only one. MODE-ADJ will automatically change extended addressing to direct addressing, if
possible, to chose the smaller and faster of two possible instructions to accomplish the same thing. 18,Y
checks to see if the addressing action is a second page derivative of an "X" instruction that needs only a
precursor 18 to change it into a "Y" instruction and compiles the 18 appropriately. SOK? checks to see
if the attempt to use direct addressing is being used in a store instruction, which is not allowed. An Error
Message 3 will be issued if the illegal action is detected.

: HHLL/LL, ?EXT IF , ELSE C, THEN EXT ;
: 2HHLL/LL, ?EXT ?# OR IF , ELSE C, THEN EXT ;
: MODE-ADJ, (a n --- a)
 ?EXT IF OVER FF00 AND 0= IF DIR THEN THEN MODE-LSB OR C, ;

142

: 18,Y ?,Y IF 18 C, THEN ;
: SOK? ?# IF 3 ERROR THEN ;

Utilities established, the remaining defining words follow. The names selected for these defining words
indicate their purpose. Examination of the Op-code Map for the 68HC11 will help in understanding this
relationship. Over half of the Op-code Map Page 1 is arranged with either ACCA or ACCB headings
over four columns representing the addressing modes: Immediate, Direct, Indexed and Extended. Each
of the following defining words refers to the number of bytes (following the op-code) required for a
particular column under those four rows. Consequently, the 1112-CPU defining word installs an
op-code, modified by the MODE variable, followed by one byte if Immediate Addressing, one byte if
Direct Addressing, one byte if Indexed, or two bytes if Extended (hence the 1112 portion of the name).
The x112-CPU function is very similar; however, it does not allow immediate addressing. It is used for
the STAA and STAB instructions that exclude that possibility. The xx12 definition is used on the words
that are only valid in the Indexed mode for one byte and Extended mode for two. The other two modes
are disallowed (accounting for the xx12 name). The 2112-CPU word is also similar; however, it
compiles two bytes for the immediate mode, such as is required by the LDD instructions, etc.

: xx12-CPU <BUILDS C, DOES> 18,Y ?# ?DIR OR IF 3 ERROR THEN
 C@ MODE-LSB OR C, HHLL/LL, ;
: 1112-CPU <BUILDS C, DOES> 18,Y C@ MODE-ADJ, HHLL/LL, ;
: x112-CPU <BUILDS C, DOES> 18,Y SOK? C@ MODE-ADJ, HHLL/LL,;
: 2112-CPU <BUILDS C, DOES> 18,Y C@ MODE-ADJ, 2HHLL/LL, ;

A partial definition (OP-DD-MM) follows. It is a factored segment of the last two defining words
shown below, separated only for the purpose of code-size savings. The OP-RR defining word is used to
create the branching instructions that occur in the form of op-code followed by relative branching offset.
The OP-DD-MM defining word handles the relatively unique BSET and BCLR instructions. These are
in the format of op-code followed by addressing byte, either direct or indexed offset, then the bit mask to
be used for the operation. OP-DD-MM-RR is a similar construct used for the BRSET and BRCLR
instructions. They have all the features of the OP-DD-MM instructions plus a relative branch offset byte
at the end.

: (OP-DD-MM) 18,Y SOK? MODE-LSB 20 = IF C OR THEN C, C, C, ;
: OP-RR <BUILDS C, DOES> C@ C, RANGE-C, EXT ;
: OP-DD-MM <BUILDS C, DOES> C@ (OP-DD-MM) EXT ;
: OP-DD-MM-RR <BUILDS C, DOES> C@ (OP-DD-MM) RANGE-C, EXT ;

With these preliminaries complete, the individual op-code words can be defined.

A few words were so complex that making special defining words to handle their cases would not have
resulted in any reduction of code space. These special case op-codes were defined explicitly, without the
use of defining words. Notice each refers to Op-code Map Pages 3 or 4 (i.e., may use 1A or CD
prebytes).

: CPX, ?,Y IF CD C, THEN 8C MODE-ADJ, 2HHLL/LL, ;
: LDX, ?,Y IF CD C, THEN CE MODE-ADJ, 2HHLL/LL, ;
: STX, ?,Y IF CD C, THEN SOK? CF MODE-ADJ, HHLL/LL, ;
: CPY, ?,X IF 1A ELSE 18 THEN C, CC MODE-ADJ, 2HHLL/LL, ;
: LDY, ?,X IF 1A ELSE 18 THEN C, CE MODE-ADJ, 2HHLL/LL, ;
: STY, ?,X IF 1A ELSE 18 THEN C, SOK? CF MODE-ADJ, HHLL/LL,;
: CPD, ?,Y IF CD C, ELSE 1A C, THEN 83 MODE-ADJ, 2HHLL/LL, ;

143

The following definitions are easily handled by the carefully laid out defining words. They follow
closely the Op-code Map Page One in order of definition, starting with 00 and progressing toward FF.
Each possible binary number is accounted for in sequence. Notations are made where there are "holes"
in the Op-code Map, meaning the unused bytes could be left blank or used in future revisions as
op-codes with new meanings or functions, or as page switches to indicate the use of an alternate Op-code
Map Page yet undefined. Notice the 05 op-code has two names for the same function. At the very end a
few Op-code Map Page Two instructions that have no equivalent Page One structures are filled in, and a
few stragglers that don't match the main pattern of Op-code Map Page One are included.

00 CPU TEST,
01 CPU NOP,
02 CPU IDIV,
03 CPU FDIV,
04 CPU LSRD,
05 CPU ASLD,
05 CPU LSLD,
06 CPU TAP,
07 CPU TPA,
08 CPU INX,
09 CPU DEX,
0A CPU CLV,
0B CPU SEV,
0C CPU CLC,
0D CPU SEC,
0E CPU CLI,
0F CPU SEI,
10 CPU SBA,
11 CPU CBA,
12 OP-DD-MM-RR BRSET,
13 OP-DD-MM-RR BRCLR,
14 OP-DD-MM BSET,
15 OP-DD-MM BCLR,
16 CPU TAB,
17 CPU TBA,
(18 PAGE 2)
19 CPU DAA,
(1A PAGE 3)
1B CPU ABA,
(1C BSET,
(1D BCLR,
(1E BRSET,
(1F BRCLR,
20 OP-RR BRA,
21 OP-RR BRN,
22 OP-RR BHI,
23 OP-RR BLS,
24 OP-RR BCC,
24 OP-RR BHS,
25 OP-RR BCS,
25 OP-RR BLO,
26 OP-RR BNE,
27 OP-RR BEQ,
28 OP-RR BVC,
29 OP-RR BVS,
2A OP-RR BPL,

144

2B OP-RR BMI,
2C OP-RR BGE,
2D OP-RR BLT,
2E OP-RR BGT,
2F OP-RR BLE,
30 CPU TSX,
31 CPU INS,
32 CPU PULA,
33 CPU PULB,
34 CPU DES,
35 CPU TXS,
36 CPU PSHA,
37 CPU PSHB,
38 CPU PULX,
39 CPU RTS,
3A CPU ABX,
3B CPU RTI,
3C CPU PSHX,
3D CPU MUL,
3E CPU WAI,
3F CPU SWI,
40 CPU NEGA,
(41 NC)
(42 NC)
43 CPU COMA,
44 CPU LSRA,
(45 NC)
46 CPU RORA,
47 CPU ASRA,
48 CPU ASLA,
49 CPU ROLA,
4A CPU DECA,
(4B NC)
4C CPU INCA,
4D CPU TSTA,
(4E NC)
4F CPU CLRA,
50 CPU NEGB,
(51 NC)
(52 NC)
53 CPU COMB,
54 CPU LSRB,
(55 NC)
56 CPU RORB,
57 CPU ASRB,
58 CPU ASLB,
59 CPU ROLB,
5A CPU DECB,
(5B NC)
5C CPU INCB,
5D CPU TSTB,
(5E NC)
5F CPU CLRB,
(60-7F)
40 xx12-CPU NEG,
43 xx12-CPU COM,
44 xx12-CPU LSR,
46 xx12-CPU ROR,
47 xx12-CPU ASR,

145

48 xx12-CPU ASL,
49 xx12-CPU ROL,
4A xx12-CPU DEC,
4C xx12-CPU INC,
4D xx12-CPU TST,
4E xx12-CPU JMP,
4F xx12-CPU CLR,
(80-BF)
80 1112-CPU SUBA,
81 1112-CPU CMPA,
82 1112-CPU SBCA,
83 2112-CPU SUBD,
84 1112-CPU ANDA,
85 1112-CPU BITA,
86 1112-CPU LDAA,
87 x112-CPU STAA,
88 1112-CPU EORA,
89 1112-CPU ADCA,
8A 1112-CPU ORAA,
8B 1112-CPU ADDA,
(8C CPX,)
8D x112-CPU JSR,
8E 2112-CPU LDS,
8F x112-CPU STS,
8F CPU XGDX,
(C0-FF)
C0 1112-CPU SUBB,
C1 1112-CPU CMPB,
C2 1112-CPU SBCB,
C3 2112-CPU ADDD,
C4 1112-CPU ANDB,
C5 1112-CPU BITB,
C6 1112-CPU LDAB,
C7 x112-CPU STAB,
C8 1112-CPU EORB,
C9 1112-CPU ADCB,
CA 1112-CPU ORAB,
CB 1112-CPU ADDB,
CC 2112-CPU LDD,
CD x112-CPU STD,
(CE LDX,)
(CF STX,)
CF CPU STOP,

08 PG-2-CPU INY,
09 PG-2-CPU DEY,
30 PG-2-CPU TSY,
35 PG-2-CPU TYS,
38 PG-2-CPU PULY,

3A PG-2-CPU ABY,
3C PG-2-CPU PSHY,

8F PG-2-CPU XGDY,

8D OP-RR BSR,

146

The bulk of a useful assembler is now in place. A few niceties follow. The macro definitions TOP and
SEC are installed to make reference to the FORTH data stack more convenient.

: TOP ,Y 0 ; (ADDRESS THE BOTTOM OF THE STACK *)
: SEC ,Y 2 ; (ADDRESS SECOND ITEM ON STACK *)

Two security utilities are constructed to check the correctness of using the soon to follow structured
programming branching words.

: ?EXEC STATE @ IF 12 ERROR THEN ;
: ?PAIRS - IF 13 ERROR THEN ;

Basic FORTH style branching words are added to allow structured programming techniques to be
extended to assembly language routines. Each word works with security, leaving on the data stack a
number code that will be compared by ?PAIRS to ensure matching structured types are used together and
in the correct sequence.

Notice that each structured word's name follows the convention of the other op-codes and end in a ",".
This helps distinguish them from their high level FORTH counterparts.

: BEGIN, HERE 1 ;
: UNTIL, ?EXEC >R 1 ?PAIRS R> C, HERE 1+ - C, ;
: AGAIN, 20 UNTIL, ;
: IF, C, HERE 0 C, 2 ;
: THEN, ?EXEC 2 ?PAIRS HERE OVER 1+ - SWAP C! ;
: ELSE, 2 ?PAIRS HERE 1+ 0 BRA, SWAP HERE OVER 1+ - SWAP C! 2 ;

To use these structures, it is necessary to precede each decision point with an indication of the type of
assembly language test to be selected. In ASM6811 this is accomplished using one of sixteen Boolean
relationship selection words in the form of .XX., or one of the words in conjunction with the negating
word .NOT. .

: .NOT. 1 XOR ; (REVERSE ASSEMBLY TEST)
20 CONSTANT .FL.
21 CONSTANT .TR.
22 CONSTANT .LS.
23 CONSTANT .HI.
24 CONSTANT .CS.
24 CONSTANT .LO.
25 CONSTANT .CC.
25 CONSTANT .HS.
26 CONSTANT .EQ.
27 CONSTANT .NE.
28 CONSTANT .VS.
29 CONSTANT .VC.
2A CONSTANT .--.
2B CONSTANT .++.
2C CONSTANT .LT.
2D CONSTANT .GE.

147

2E CONSTANT .LE.
2F CONSTANT .GT.

Each leaves the op-code of a particular branch instruction that will be used for the constructed decision
point that follows. It should be noted that the interpreted op-code of the branch instruction compiled is
the opposite instance of the condition named in the source. For example, the statement

.GT. IF, <stmt-1> ELSE, <stmt-2> THEN,

is interpreted as

BLE <stmt-1> <stmt-2>

where <stmt-2> is selected when the condition is satisfied, otherwise <stmt-1> is selected. Therefore,
the interpreted op-code of a branch instruction is that of the opposite conditional branch instruction.

A few words are added at this point. They are the suggestions of Ken Butterfield of Los Alamos
National Labs. They allow use of the bit set and bit clear testing words which are combined with IF,.
The defining word BIT-BR compiles the op-codes for the .CLR.IF, and .SET.IF, operations.

: BOK? ?# ?EXT OR IF 3 ERROR THEN ;
: BIT-BR <BUILDS C, DOES> C@ 18,Y BOK? MODE-LSB 10 -
 IF C OR THEN C, C, C, 2 C, 20 C, HERE 0 C, 2 ; IMMEDIATE

13 BIT-BR .CLR.IF,
12 BIT-BR .SET.IF,

Finally, a number of constants are provided that represent fixed addresses in the kernel. Much like the
method used to establish the location of ERROR as described above, these constants are established by
reference to fixed offsets from named words that are not likely to change in any potential future revisions
of the kernel.

' @ CFA FE43 FE22 - + CONSTANT PUSHD
' @ CFA FE47 FE22 - + CONSTANT NEXTSD
' @ CFA FE47 FE22 - + CONSTANT PUT
' @ CFA FE4A FE22 - + CONSTANT NEXT
' @ CFA FE4C FE22 - + CONSTANT NEXT3
' @ CFA FE50 FE22 - + CONSTANT NEXT1
' @ CFA FE52 FE22 - + CONSTANT NEXT2
' 1+ CFA FC97 FC7C - + CONSTANT POP
' 1+ CFA FC93 FC7C - + CONSTANT POPTWO

0 CONSTANT W
2 CONSTANT IP
4 CONSTANT UP

FORTH DEFINITIONS

The listing is closed by a return to the FORTH vocabulary and the indication that future definitions will
be added to the FORTH vocabulary, rather than the assembler's.

148

Appendix C

A Masters thesis based on ARC Technology

by George Sergio Vega

ALL RIGHTS RESERVED

1993

149

Page
Acknowledgments vi
Tables vii
Figures viii

Chapter
1. Introduction and the Problem 155

Introduction 155
The Problem 156
Statement of the Problem 157
Importance of the Study 157
Definitions of Terms Used 157

2. Review of Literature 160

Background 161
Various Robots 162
Welding Applications 162
Machine Applications 163
Assembly Applications 165
Space Exploration Applications 168
Spray Painting Applications 170
Loading/Unloading Applications 173
Law Enforcement/Dangerous Task Applications 177
The CURV III Underwater Recovery Vehicle and the
Free Swimmer Submersible Robot 178
The Haz-Trak Excavator Handler 180
Similar Studies 182
Robotic Mechanisms of the Future 184

3. Designing an Autonomous Mobile Robot 186

Optical Collision Avoidance 186
Tactile Collision Avoidance 187
Dual Motor Control 187
Motor Speed Control 188
Sound and Aural Effects 189
Independent Power Source 189
Software Architecture 189
Instinctive Level Software Architecture 191
Behavior Level Softward Architecture 191

4. Construction of an Autonomous Mobile Robot 192

The Base 192
The Optical Vision System 193
The Tactile System 193
CPU and Battery Installation 194
Support Casters 194
The Body and Neck Assembly 195
The Head Assembly 196

5. Summary, Conclusions, and Recommendations 210

Summary 210
Conclusions 211
Recommendations 212
Appendices 213

A. Testing and Demonstration Program 59
B. Hardware, Materials, and Parts List 61
C. Tools and Equipment Utilized 63

Bibliography 65
150

151

Chapter 1

Introduction and the Problem

Introduction

In today's world of technology, robotics is a fairly new and upcoming facet of industry. Robotics has emerged
dramatically in the past 10 years and has shown more and more potential for future multi-industry use. As defined by the
Robot Institute of America (as cited in Minsky 1985), a robot is a programmable multifunctional manipulator designed to
move material, parts, tools, or specialized devices through variable programmed motions or the performance of a variety
of tasks. Robots are machine tools that may be found in the most unkempt of industrial worksites, to the highest level of
clean and sterile environments. Most intelligent robots utilized in industry, in one way or another, incorporate
drive/power systems, a base, and some type of programmable system. Arms, grippers, and manipulators are also utilized
for performance of a variety of tasks. Both single-function and multifunction robots are sometimes used in conjunction
to utilize all robotic features to their utmost potential. In today's industry, robots are utilized in numerous ways. These
include arc and spot welding, paint spraying, glass handling, and precision assembly, to name a few. In the military,
robots are being utilized to handle dangerous jobs such as guarding and defending nuclear storage facilities. They are
also used to defuse bombs and patrol battle fields in the face of toxic chemical weapon attack. Robots work tirelessly in
any environment, and do not require great technological sophistication of the user.

The Problem

In order to facilitate this investigation, a statement of the problem, including the purpose of the study and definition of
terms used in the research effort, has been established.

Statement of the Problem

The purpose of this study was to design, construct, and test an autonomous mobile robot utilizing pre-designed
components. The robot includes a basic vision and tactile system capable of optical and tactile collision avoidance.

Importance of the Study

Present-day society must be informed, educated, and exposed to the robotics industry and its potential. Knowledge of
this industry will increase the possibilities for new opportunities and technological advancement. Educators, students,
and technical training personnel will especially benefit from this study due to the fact that knowledge of robotics will
soon become crucial in education and the technical training curriculum. Educators can use this study to introduce and
expose students to the basics of the upcoming technology of robotics. The robotics project can be used as a hands-on
manipulative exercise. Technical training personnel can use this study to expose and train robot users in industry on
basic evaluation and implementation of robotics concepts. They, too, can use the robot as a manipulative device to
demonstrate robotic functions. The study includes a brief overview of the history of robotic technology.

Definitions of Terms Used

In order to simplify interpretation and data presented in this study, the following terms and phrases have been defined.

Adaptable A robot's adaptability is determined by its vision system, force, and tactile sensors. These features enable
the robot to make self-directed corrections with little human intervention (Cardoza and Vlk 1985).

Adaptive control. A method by which input from sensors changes in an attempt to achieve better performance. Control
parameters are automatically adjusted (Cardoza and Vlk 1985).

Anthropomorphic robots Conventional robots designed with motion capabilities similar to those of the human body
(Minsky 1985).

Arm The joints, links, slides, and mechanical design of a robot which support a moving tool, attachment, or hand
(Cardoza and Vlk 1985).

Base The fixed platform to which a robot's shoulder is attached (Cardoza and Vlk 1985) Drive power system. The
electronic, mechanical, or electromechanical components that allow the robot to propel itself from place to place and to
do useful things with its end-effectors (e.g., arms) (Kelly 1985).

152

Gripper A mechanical device for holding, releasing, and perhaps also manipulating an object (Kelly 1985).
Intelligent robot. A programmable machine tool that can make performance choices based on sensory inputs (Cardoza
and Vlk 1985).

Multifunction robot A robot built to do many things. It must be programmable and must be capable of movement and
maneuverability. It needs manipulation tools (arm, wrist, hand, etc.), sensors, and intelligence (Kelly 1985).

Programmable robot A robot that can be programmed and reprogrammed to perform a variety of tasks (Kelly 1985).

Single function robot A robot built to do one single function. These robots are often bolted to the floor and do one
thing well, such as painting, welding, and other activities that are dangerous, hard, repetitious, or that require constant
precision (Kelly 1985).

153

Chapter 2

Review of Literature

Robotic technology has many benefits for today's industries. In the manufacturing industry, the technology of robotics
has been used in the building of a sophisticated pocket pager. By controlling, reducing, and automating numerous
fabrication and assembly procedures, the pagers can be completed in only 2 hours. In the firefighting industry, an
automated fire extinguisher robot can fight oil well fires from close range without endangering human personnel
(Hampton 1988).

The medical industry has benefited much in the past few years by the use of robotics. Robots have been used to position
limbs during knee surgery and to guide instruments in brain biopsies, and in various surgeries involving animals.
Robodoc, an android variation of an IBM assembly line robot, is specifically programmed to drill and prepare the human
femur for the installation of critical parts of hip replacement surgery (Weiss 1991).

Robodoc is the first robot to take an active role on the operating table in hip replacement surgery. Prior to the surgery,
the surgeon loads CT scans of the patient's femur into the robot's computer and continues all the planning and
programming on a computer screen. Technical and drilling information is supplied by the implant's manufacturer (Weiss
1991).

During hip replacement surgery, Robodoc drills the cavity in the femur where the implant is to be inserted. This cavity is
fitted with the implant, to which the hip socket is mated. Robodoc has pressure sensors which monitor the drilling
pressure. This safety feature stops the robot from drilling if it starts to cut soft tissue. Robodoc's higher precision and
accuracy in drilling the cavity for the implant provides 96% contact between the bone and implant, which is 10 times
more accurate than a surgeon using a hand-drill and who drills only a 20% total contact area. Even though Robodoc is
capable of doing other parts of the operation, the surgeon is still very much needed to start and complete this surgical
procedure (Weiss 1991).

As the bone heals, it fuses into the porous implant. With this type of surgical implant, cement is not used to fill cracks or
crevices. Robodoc's high degree of accuracy provides a better fit for the human patient, resulting in less pain, fewer
failed operations, and usually a shorter hospital stay (Weiss 1991).

Robodoc is foreseen to be very popular and helpful to orthopedic surgeons whose bone-hollowing techniques include
using a mallet and huge spike. Robodoc is predicted to be an asset for the future in general surgery. With program
modifications, it may also be used for procedures required in surgeries such as repairing tiny bones in the middle ear,
precision cutting in optical surgery, and excision of brain tumors (Weiss 1991).

As Robodoc's potential is becoming more evident, lists of human volunteers have formed to partake in clinical trials
(Weiss 1991).

 Much work and study has been undertaken to have robots do tasks that are considered to be too dangerous, unsanitary, or
repetitious for human beings.

Background

History emerges when one explicitly recognizes and names a phenomenon or event; then, it follows, traces, and monitors
the event. Prior to the 1920s, when robotic devices emerged as an idea, there was no conscious history of robotics.
Ironically, we can track the technology of robotics back to at least 1500 B.C. Around 1500 B.C., Egyptian water clocks
supposedly used human figurines to strike the hour bells. In 1557 Giovanni Torrianni made for an emperor a wooden
robot that could fetch the emperor's daily bread from the store. In 1738 Vaucanson created a mechanical duck that could
eat, excrete passable iso-olfactoric excrement, walk, quack, and do various other duck-like things except to fly. In 1890
Edison developed a version of a talking doll. Robotics continues to make history in this day and age with new and
innovative ways to incorporate this technology in present-day industries. The term robotics was coined in 1921; from
that point, we can trace the development of the concept in the general culture (Kelly 1985; Minsky 1985).

154

Various Robots

Robots come in many different shapes, sizes, and prices. Robots can be used for many applications, such as welding,
machine tending, assembly work, space exploration, spray painting, loading and unloading, and in law enforcement.
Underwater robotics is another facet which seems to be revolutionizing our world under the sea. In this section, robotic
applications are covered in concurrence with the specific existing robots in these industries. The manufacturer, a brief
summary, primary uses, significant selling points, and an illustration of each robot are included (Minsky 1985).

Welding Applications

The Cyro robot was the result of research and design in technology developed over a period of more than 10 years. The
technological base concept evolved from the welding and testing techniques developed in the Apollo space program.
The Cyro robot is constructed as part of a work platform, with a vertical base and one attached horizontal arm. The Cyro
design is for a production environment, specifically for arc welding and the control of arc welding variables. A system
called adaptive control is utilized to correct the weld path and to process parameters in real time (Cardoza and Vlk 1985).

The Cyro 750 robot is a five-axis rectilinear robot, which is all electric. It possesses a 3/4 square meter work envelope,
and is capable of performing weld processes with exceptional repeatability while maintaining program accuracy. This
robot possesses user friendly software, and can be taught utilizing a teaching pendant, through off-line programming, or
numerical control through a terminal. This robot and control apparatus weighs approximately 6,540 pounds and requires
approximately 35.5 square feet of floor space. Noted features of the Cyro robot include 64K random access memory,
along with permanent program storage on tape cassette. This design is specifically geared for high speed welding, with a
high degree of torch accuracy (Cardoza and Vlk 1985).

An illustration of the Cyro 750 robot may be seen in Figure 1.

Machine Applications

The ASEA robot has been manufactured since 1973. These robots have an average of approximately 98% up-time
working through three 8-hour shifts in a 24-hour period. ASEA robots have been manufactured in the United States and
in Sweden and other European nations. The ASEA Robotics Company is seeking to broaden the sensing abilities of its
robots through tactile recognition and simulated vision systems. They have exhibited vision-equipped robots which can
reduce programming time by at least 25% (Cardoza and Vlk 1985).

The robot model IRb 6/2 is capable of operating in difficult environments. Its quiet electric-drive design incorporates a
control cabinet with a portable programming unit, a measuring system, and a servo system. The servo powered arm can
lift up to a 13-pound load. It is lightweight and can accelerate and decelerate

Figure 1. The Cyro 750 Robot (manufactured by Advanced Robotics Corporation, Newark Ohio Industrial Park,
Building 8, Route 79, Hebron, OH 43025)

rapidly with a repetition accuracy better than +0.008 inch. This robot is capable of radial and vertical arm movement,
rotary and bending wrist movements, rotary movements, and horizontal travel. These movements are key features of its
six degrees of freedom. A series of touch-sensitive buttons, a proportional-speed joystick control lever, and a plain
English alphanumeric display, are used in teaching the IRb 6/2 robot. Complicated programs used with multi-axis robots
can be compiled with diverse items. Along with the integration of the whole operating sequence, editing, deleting, and
adding steps can be accommodated easily. This teaching system also accommodates additional variations and
modifications of sequences. Curve and point adaptability, within the robot's adaptive control, makes it possible for the
robot to automatically make program adjustments. This reduces programming time and allows the use of the same
program for items having similar but not identical shapes. The Rib 6/2 robot, with its vertical and horizontal arms on a
pedestal base with its exclusive grip functions, is used primarily for machine tending, injection molding, cleaning of
castings, parts assembly grinding, burring, polishing, trimming, piercing, and hot embossing (Cards and Elk 1985).

An illustration of the ASEA Rib 6/2 robot may be seen in Figure 2.

Assembly Applications

The Intelledex 605 is the pioneer in a class of robots called light assembly robots. The robot's design is not for lifting
heavy loads, but for tasks that require dexterity and high precision. This robot is one of the most popular robots in
industry and constitutes a high percentage of the total robotics market. The Intelledex 605, classified as a light assembly

155

robot, made its debut in April 1984. This robot emphasizes the flexibility requirements that are called for in the robots
used in the electronics manufacturing industry. It was designed with an integrated, maximally

Figure 2. The ASEA IRb 6/2 Robot (manufactured by ASEA Robotics, Inc., 16250 West Glendale Drive, New Berlin,
WI 53151)

adaptable hardware-software system. This design feature supports the many applications which require adapters, special
tools, and computer interfaces (Cardoza and Vlk 1985).

The Intelledex 605 embodies a vertical base assembly to which is attached a series of pivoted/counterweighted or axially
rotating arms. This robot also incorporates a pneumatic pincer mechanism and stepper motor, as well as an optical
vision system. Equipped with an optional vision system, the robot is capable of recognizing as many as 100 different
electronic parts. Another feature of the Intelledex 605 is its ability to emulate human arm and wrist movements.
Incorporating a 3-feet square work table, the robot arm can describe close to a 4-foot circle. The robot's sophisticated
controller is capable of accepting input from its optical sensors. These sensors can detect part misfeed from force sensors
that detect the presence of an object positioned in the end-effector and sense excessive pressure.

The controller also accepts input from a bar code reader that reads identification information on most assembly
components. The controller also supports an important safety feature by monitoring input from pressure-sensitive floor
mats, and a light curtain consisting of photocells surrounding the work area. This safety feature ensures a clear area
before work can begin. Robot BASIC is considered a specialized, high-level language which can also be run easily on
most personal computers. This robot is also supplied with a teaching pendant, including a joystick and 18 switches. This
feature allows manual control of the robot for path point-entry, positioning, tool operation, and functions of speed
(Cardoza and Vlk 1985).

The Model 605 robot is primarily used in electronics assembly work and in assembly of computer components. This
model is used to unload circuit boards from racks, align them on specific tooling jigs and fixtures, and then begin the
process of work to be performed.

An illustration of the Intelledex 605 robot may be seen in Figure 3.

Space Exploration Applications

The Jet Propulsion Laboratory (JPL) Rover robot is designed with the combination of visual and manipulative systems.
Its uses are geared for research and study, and has been utilized on planetary exploration vehicles such as the space
shuttle. The JPL Rover's capabilities include a diversely impressive display of extraterrestrial robotic applications.
The JPL Rover weighs approximately 700 pounds. It is 59 inches long and 51 inches wide. Its appearance is somewhat
automotive in form, and it is roughly the size of an office desk. This robot has an instrumental payload of 220 pounds.
The JPL Rover's current design incorporates twin camera pylons, an antenna mast, and a single manipulator arm. Future
models of the JPL Rover are projected to include supplementary manipulators and drills necessary for the retrieval of soil
and rock samples. These future models will also embody a 200-watt integrated radioactive thermal generator (RTG) to
provide the power supply to on-board systems (Cardoza and Vlk 1985).

The JPL Rover's mobility is credited to loopwheel assembly systems. The loopwheel assembly systems consist of the
wheel and track assembly systems, similar to those found in military tank treads. These are positioned on the lower end
of each of the four jointed legs. The suspension system is comprised of interconnected thigh- and knee-like joints,
making it possible for each foot to adjust independently to variegated terrain. The Rover moves at a speed of
approximately 3 feet per minute. It can overcome depressions and obstacles within a zero to 24-inch

Figure 3. The Intelledex Model 605 Robot (manufactured by Intelledex Corporation, 33840 Eastgate Circle, Corvallis,
OR 97333)

range. The Rover can also descend and ascend on slopes to 30 degrees (Cardoza and Vlk 1985).
The JPL Rover's vision/guidance system is comprised of two television cameras set upon pylons attached to the chassis.
These guidance cameras are wired to an on-board computer system. A laser range finder is also utilized to measure the
distance between the robot and any possible obstacle. The video and range finder data are processed by a computer that
then creates the best possible course to a specific destination. The robot is then guided along the charted path. The
robot's vision system is also utilized to ascertain the distance between the manipulator arm and any other matter which it
is subject to handle (Cardoza and Vlk 1985).

The JPL Rover's primary use is in scientific investigations in planetary and outer space research. It has been utilized to
gather and relay scientific data from extraterrestrial regions back to earth for research, study, and interpretation. The

156

Rover is issued broad commands that initiate autonomous proceedings throughout the day. This feature allows the robot
to perform a variety of tasks and scientific investigations with minimal instruction (Cardoza and Vlk 1985).
An illustration of the JPL Rover robot may be seen in Figure 4.

Spray Painting Applications

The Armstar Tokico Painting Robot is used worldwide in the automotive, appliance, plastics manufacturing, and
electronics industries. It has been available since 1978 for a cost of approximately $150,000. The Armstar robot is used
to accomplish industrial tasks such as assembly line undercoating, top coating, interior/ exterior priming, and adhesive
application. It is primarily used for the toughest, most difficult of spraying and finishing tasks. Key features such as
microprocessor-controlled pathminder finishing and high speed optical scanning capabilities allow

Figure 4. The JPL Rover Robot (manufactured by Jet Propulsion Laboratory, California Institute of Technology, 4800
Oak Grove Drive, Pasadena, CA 91103)

this robot to be one of the fastest continuous-path robots in the industry (Cardoza and Vlk 1985).
The Armstar robot's design includes the use of a hydraulic power supply, a modifier console, a microprocessor console,
and a manipulator. Two carriers and a rotation control panel are incorporated for automatic operation. This robot is
capable of repeating painting operations automatically and continuously in accordance with previously memorized
programs. It also has its own self-diagnostic system and innovates simple program editing. The robot is taught programs
by one of two methods: continuous path or point-to-point. Continuous path is the method in which the painting
operation is programmed by movement of the robot arm in accordance with how a human handles the spray gun. In the
point-to-point method, the worker separates the movements of the robotic arm into linear motions; only the starting and
stopping points are programmed. The robot's vertical and horizontal movements of its wrist allow it to perform
complicated work tasks (Cardoza and Vlk 1985).

A pattern rotation of 210 degrees is possible with the Armstar six-axis robot. The arm movement is capable of moving
100 degrees horizontally, 75 degrees back and forth, and 70 degrees vertically. The robot's flexible wrist, similar to that
of a human wrist, is capable of moving 210 degrees, with 260 degrees of wrist rotation. The Armstar robot's six elements
are: speed of the robot, selection of spray patterns, continuous sweeps or back and forth sweeps, increasing/decreasing
teaching points, spray on or off, and position and angle at each type of movement (Cardoza and Vlk 1985).

The Tokico painting robot is used primarily in the application of various coatings to objects of all shapes and sizes.
Armstar's greatest technical advance has been with the primer/surfacer function. This robot can also be used in the
application of adhesives to automobile windshields, including windshields with compound curvature, prior to direct
glazing.

An illustration of the Armstar Tokico Painting Robot may be seen in Figure 5.
Loading/Unloading Applications

The Mobot Robot, manufactured by Mobot Corporation, is one of the world's largest parts handling robots. Mobots are
utilized in various industries. Unlike conventional robots, also known as anthropomorphic robots, which are designed to
duplicate human body motions, the Mobot is purposely designed with limited motion capabilities. This factor allows the
Mobot to be priced from $15,000 to $40,000. Conventional industrial robots are priced from $45,000 up to
approximately $900,000.

Mobots are considered to be second-generation robots, which generate straight-line motions directly by way of vector
motion modules. First-generation conventional robots require servo-synchronized and complicated computer-generated
motions to achieve straight-line movement. Mobots require fewer axes to achieve the same tasks with the bonuses of
additional travelling distances, minimal electronic hardware, simplified programming, and easier maintenance. In
addition, the Mobot can be acquired at a moderate system cost. Mobots also have the reputation of being highly reliable.
It is possible for a Mobot to pay for itself, working a single shift, in a one-year period (Cardoza and Vlk 1985).

The Mobot Robot is a point-to-point robot used for material/parts handling. The robot's design is geared for the loading
and unloading of molding machines, printed circuit manufacturing machines, conveyors, skids, pallets, and a diversity of
machine tools. The Mobot is designed for use in limited floor space conditions. The

Figure 5. The Armstar Tokico Painting Robot (manufactured by Tokico, 15001 Commerce Drive North, Dearborn, MI
48120)

Mobot's design consists of a series of modules with multi-power and position control options. This modular feature
makes it possible to construct a Mobot for a specific work task with minimal effort. This robot can be constructed and

157

modified for an array of motions and tasks directly at the worksite. Its design also incorporates a carousel for the transfer
of objects from rotary to linear conveyors (Cardoza and Vlk 1985).

The Mobot is based on a heavy-duty square box mast. It can be obtained with a single-column configuration which is
capable of lifting up to 250 pounds; it is also available in a double-column carousel configuration which is capable of
lifting up to 1,000 pounds. A roller-bearing carriage running on precise steel rails is utilized for vertical movement. Dual
safety chains, rated at 8,000 pounds each, are utilized in tandem. A sensor system is incorporated to search for slack or
broken chain conditions. Self-locking gearboxes are also utilized with normally-on brakes. This feature helps to prevent
a moving load from falling down due to a loss of power. Mobots are designed with all mechanisms located overhead to
minimize floor clutter and space requirements.

Mobot robots have been designed to operate efficiently in industrial and scientific industries. These robots operate well
in heat, dust, and abrasive conditions, and solvent vapor and corrosive areas, as well as in ultra-clean and sterile
conditions. The Mobot's highly modular structure and interchangeable parts make it adaptable for numerous industrial
applications (Cardoza and Vlk 1985).

An illustration of the Mobot Robot may be seen in Figure 6.

Figure 6. The Mobot Robot (manufactured by Mobot Corporation, 980 Buenos Avenue, San Diego, CA 92110)

Law Enforcement/Dangerous Task Applications

The Pedsco Robot is used primarily for bomb defusing and removal, security surveillance, nuclear waste disposal, and
riot control. This robot, manufactured in Scarborough, Ontario, is moderately priced at approximately $20,000 to
$50,000 per unit. The Pedsco robot is utilized by numerous SWAT teams and bomb squads in both United States and
Canadian police departments. This Canadian robot is also highly utilized at numerous nuclear reactor sites (Cardoza and
Vlk 1985).

The robot's design somewhat resembles a tank-type configuration. Its horizontal cylindrical body is mounted on a
six-wheel base which allows multi-directional mobility. Two arms with mechanical hands, which can be controlled
remotely, are incorporated in the robot's design. One of the two arms is capable of lifting up to 70 pounds. Both
end-effectors can be programmed for powerful grip and soft-touch modes. The grip mode selection is usually dependent
on the weight of the object to be manipulated or moved (Cardoza and Vlk 1985).

The Pedsco robot incorporates a vision system comprised of a remote-controlled television camera capable of 360-degree
rotational coverage. An X-ray vision system is an available option. The television camera is also removable, to allow the
incorporation of a riot shotgun, one of the robot's primary options.

The Pedsco robot can perform many duties, including removal of toxic substances and waste, security and sentry duty of
designated areas under hostile conditions, and deactivating and disposing of explosive devices. However, the robot's
main function is to perform hazardous tasks in areas dangerous to human personnel (Minsky 1986).

The potential operator of the Pedsco robot can be easily trained and need not be an expert programmer. The operator
controls the robot at a safe remote distance via a television monitor and an array of electronic control devices. The
robot's highly sensitive control system requires the operator to possess manual dexterity skills necessary for the task to be
accomplished.

The CURV III Underwater Recovery Vehicle and the Free Swimmer Submersible Robot
The U.S. Geological Survey Group at the Naval Ocean Systems Center (NOSC) funded and supported the development
of the cable-controlled underwater recovery vehicle (CURV III). The robot's design includes an extendable manipulator
arm, underwater light fixtures, and numerous tools necessary for submerged aquatic tasks. The CURV III robot is cable
controlled and can operate at depths of up to 10,000 feet (Cardoza and Vlk 1985).

The CURV III robot was designed and developed for a variety of aquatic tasks. Some of these tasks include ocean
engineering, search, salvage and recovery, and underwater inspection. Additional applications of the CURV III robot
include pollution prevention and safety maintenance supporting offshore pipeline and drilling operations (Cardoza and
Vlk 1985).

An illustration of the CURV III robot can be seen in Figure 7.

The Free Swimmer robot, similar to the CURV III robot, was also developed by NOSC. However, this model is
untethered and used for similar applications in shallower depths. The Free Swimmer is limited to an operational depth of
2,000 feet and can operate for approximately one hour with energy supplied from its own independent power source. The

158

Free Swimmer's design includes motion picture or television cameras, including the necessary lighting required for video
and filming. A fiber-optic communications link is utilized to allow the transmission of real time video signals to the
operator's base. A magnetic pipe sensor is also included in the

Figure 7. The CURV III Underwater Recovery Vehicle Robot (funded and supported by Naval Ocean Systems Center,
United States Navy)

design to allow the Free Swimmer robot to locate and follow metallic pipes autonomously, for investigative and
inspection purposes (Cardoza and Vlk 1985).

The Haz-Trak Excavator Handler

Far off, at a distance in the middle of a radioactive waste site, a Haz-Trak Smart Shovel safely lifts and moves barrels
filled with radioactive sludge. The smart shovel prototype appears to be an ordinary hydraulic excavator, except that this
robot does not have a place for an operator. Instead, there are three cameras mounted above the engine area. Hundreds
of yards away from the worksite, inside a building, an operator controls the excavator by the use of a hand grip and
joystick while viewing the shovel's actions on several video screens (Langrath 1992).

The Haz-Trak Smart Shovel is unique. It is considered a pioneer in intelligent machinery in the low-tech world of heavy
construction equipment. The Haz-Trak Excavator and Material Handler is designed by KRAFT TeleRobotics. The
Haz-Trak is designed to function as an extension of the operator's hand. It is supposed to feel obstacles that the shovel
may encounter (Langrath 1992).

The remotely controlled Haz-Trak robotic shovel is capable of conveying resistance from the worksite back to the
operator's hand miles away. This feature makes the dangerous task of hazardous waste removal much safer and simpler.

Haz-Trak is known to be easier to master than most video games. An operator is capable of learning how to use Haz-Trak
in a matter of minutes, versus the hours usually required to learn the use of standard construction equipment (Langrath
1992).

The Haz-Trak robot is ideal in performing delicate applications such as working and digging around pipes. Unlike
conventional excavators and handlers which require multiple levers for control, the Haz-Trak uses a joystick and
handgrip. This allows the robot to prove its usefulness in applications such as cleaning up hazardous chemical and
radioactive wastes at weapons laboratories, removal of unexploded munitions buried at military sites, and searching and
probing for buried wastes. It is also capable of doing these feats without the risk of puncturing buried containers and
causing a toxic waste spill (Langrath 1992).

The Haz-Trak is a somewhat larger scale version of an existing robot called a grips manipulator. The grips manipulator
consists of a 4-1/2 foot-long remote control robotic arm on a fixed mobile base.

There are two crucial and beneficial features of the Haz-Trak robot: the use and combination of force feedback and
master-slave control. Master-slave control allows the robotic arm to perform exactly the same motions and movements as
the operator performs on a joystick/handle controller. Force feedback is the feature that allows the robot to convey the
resistance which the machine encounters back to the operator's hand with controlled sensitivity. For example, if the arm
hits an encountered object, the hydraulic activators picks up this resistance and changes it to a radio signal which is then
directed back to the controller. The controller receives this information by electronic activators and converts the
resistance at a lower, more manageable level. Neither master-slave control or force feedback work wells without the
other. Master-slave control helps to keep the controller's hand movements synchronized with the robotic arm and force
feedback enables the precise control of gripper pressure from approximately one pound up to 250 pounds of force
(Langrath 1992).

Although these two technologies have been available and used in nuclear power plants and other industries, Haz-Trak is
the first excavator vehicle to combine the use of these technologies.

The Haz-Trak robot is designed to incorporate a store-bought excavator, thus keeping costs to a minimum. The first
production model was designed to fit a variety of industrial tool attachments, including a shovel and a barrel handler. The
Haz-Trak robot's capability to memorize movements and repeat them on command is beneficial in performing tasks that
require precision and repetition. This robot is destined to make the entry of heavy industrial equipment into today's
advanced technologies.

Similar Studies

159

In May 1983, Robert Hardy Demmon conducted a project study on a vertical milling machine. His statement of the
problem was to design, construct, and test a milling machine capable of being produced and used in high school
metalworking laboratories. In the conclusion to his study, it was determined that a vertical wheel stationary pan mulling
machine was the most popular and readily available machine. With this in mind, an experimental prototype model of a
vertical mulling machine was designed and fabricated. The overall design incorporated these desired features: (a)
portability of machine, (b) power source of 110-volt standard current, (c) user friendly and fully operational in a high
school shop environment, and (d) utilization of standard hardware and materials usually available from a local hardware
store.

The overall project was successful; however, during the operational testing, some mechanical and operational problems
were discovered. Demmon's recommendations for improvement were as follows: (a) addition of small vertical blades,
(b) redirecting the angle of the discharge chute from the machine, (c) addition of a protective shield skirt, and (d) addition
of a self-closing catch mechanism for the discharge door.

Considering these modifications, the future design, construction, and use of this type of sand mulling machine shows
much promise for the educational shop environment.

In August 1988, Michael A. DeMiranda conducted a project study to design, construct, and test a performance vehicle.
This vehicle would be used in a middle school Explorations in Technology instructional module. Personal interviews and
data obtained and compiled from industrial technology educators established the design criteria to be used. Once the
design was established, construction of the vehicle was under way. Design changes and modifications were made during
the course of fabrication. Features such as suspension, steering, brakes, and alignment were designed to directly relate to
land transportation vehicles and to fulfill educational standards set by the California State Department of Education for
Industrial Technology Explorations.

Upon conclusion of design and construction of the performance vehicle, each system was tested for operation and safety.
It was found that the vehicle met the established criteria. As for future recommendations for improvement, the following
were determined: (a) the small engines module be coordinated with the performance vehicle modules for continuum
purposes, (b) a hydraulic line lock be installed for operational safety, (c) explore positive lock fasteners to prevent
fastener loss and component failure, (d) check systematic systems prior to use, and (e) develop performance vehicle
module curriculum guide. It was also recommended that further study be conducted to improve the educational benefits
of incorporating the performance vehicle into the middle school curriculum.

Robotic Mechanisms of the Future

United States industry is still in early stages of robotic technology. There is no accurate prediction of what robots may be
like and capable of in the next few years. It would be safe to assume that future breakthroughs in robotics are dependent
on the entrepreneurial instincts of robotic engineers. They are also dependent on how the general public responds to the
availability of industrial and personal robots (Kelly 1985).

Japan's productivity gains and advanced technological accomplishments are clearly evident in their use of robots. This
industrial fact has affected and motivated industry in the United States. It has also caused the market for industrial and
personal robots to increase immensely in the past 5 years. Some American manufacturing companies have been using
tooling facilities which are approximately 25 to 30 years old and seriously out of date. Influenced by the capabilities of
advanced technologies utilized by foreign industry-wise nations, an apparent major drive seems to be under way to
re-tool these U.S. manufacturing establishments with robotic tooling technology and systems. This nationwide re-tooling
phase is evident in small as well as large corporate environments (Kelly 1985).

Currently, in today's market for industrial robots, robotic engineers are developing special purpose and limited task
robots. As the market grows and becomes stronger, it is foreseen that the future of robotic technology will stimulate and
create the demand for general purpose and versatile industrial robots which are economical, adaptable, and easily
modified to operate in diverse environments (Kelly 1985).

The development of agricultural and personal robots is well under way. Prison guard robots, Australian sheep-shearing
robots, and fruit picking robots are just a few examples of the versatility and potential of robotic technology. The future
of robotics looks promising. Features such as accuracy, dependability, and high productivity strengthen the potential and
positive capabilities of robotics (Kelly 1985).

160

Chapter 3

Designing an Autonomous Mobile Robot

The purpose of this study was to design, construct, and test an autonomous mobile robot.

A robot's design is usually based on the requirements necessary for the function and application for which the finished
product is intended. The robot designed for this project and study was intended to demonstrate selected robotic functions
of an autonomous mobile robot. The key factors and design parameters of this particular robot included total mobility,
optical and tactile collision avoidance, and an independent untethered power source and programming system.
Additional supportive features included sound effects, dual motor drive control, and interactive and instinctive level
programming.

The design and fabrication techniques selected and utilized were based on the main criteria of economy, safety, and
utilization of existing pre-designed sub-assemblies and parts. In addition to the design criteria, prototype parts and
sub-assemblies were designed, fabricated, and utilized in the final assembly process.

Optical Collision Avoidance

The design of this robot incorporates four optical collision detector sensors. These detectors emit a high intensity light
source, produced by the use of LEDs, which is monitored for any reflective activity. This reflection is monitored to
determine if there is an existing obstacle. Monitoring is achieved by incorporating a light-sensitive photodetector called a
phototransistor photodarlington. This system also utilizes a trigger level adjustment factor which ensures that any
reflectance is valid and not environmental ambient light noise. The trigger level also controls the sensor sensitivity and
achieves a reading differential between ambient light and valid obstacles. This is possible due to the fact that the light
detectors also act as variable resistors. Resistance variances are caused by increasing or decreasing light sources. When
there is no light present, the resistance is at its maximum. Exposure to light causes the resistance to be reduced.

Tactile Collision Avoidance

This robot's design also incorporates two tactile collision sensors. These sensors are constructed of spring steel piano
wire. The wires are mounted on the front left and right corners of the robot's base. The sensors are securely connected to
terminal posts on the CPU board. These wire detectors can be activated by either a sideways pull or push motion. When
an obstacle is encountered, the tactile feelers are either deflected or depressed, which activates one of two position
contacts on the CPU terminal posts. Depending upon which contact was activated, the responsive action of the robot is
determined by the instinctive level of programming loaded in the CPU memory for a predetermined action of obstacle
avoidance, such as pivot left, pivot right, reverse, or forward.

Dual Motor Control

This robot's design utilizes two 12-volt DC gear reduction motors and two 6-inch diameter wheels for full mobility. Each
wheel is directly mounted on the motor shaft via a specially machined adapter. These wheels are mounted slightly above
the lower baseline within the robot base.

The steering system is achieved by the use of a systematic technique termed differential direct drive. This concept allows
the robot to execute multiple steering positions by simply reversing the direction of one motor in respect to the other
motor's direction. With this concept in mind, adjusting the motor speeds to rates different from each other during
operation regulates and changes steering capabilities.

Motor Speed Control

Pulse width modulation (PWM) is utilized for the robot's motor speed control system. This technique allows the control
of the drive integrated circuit located on the central processing unit (CPU) to operate on a 100% full-on or 100% full-off
mode. Therefore, a pulse train of electrical power consisting of on and off periods of equal time intervals (50% duty
cycle) is utilized to drive the motors. Minimal power is dissipated by the semiconductor devices when operated in this
manner. Each motor is capable of being powered and controlled in this fashion.

Additional motor speed is achieved by increasing the duty cycle, which, in essence, increases the on-period and reduces
the off-period accordingly. This process increases the current power supply to the motors. Hypothetically, if a 75%
motor speed requirement was prompted, the duty cycle would be increased to a 75% on and 25% off pulsation mode.
This process of duty cycle adjustment is governed and controlled by the software architecture via the instinct level and by

161

current programmed requirements. The electric power source pulsation is supplied to the motors in such an accelerated
manner that the mechanical inertia of the robot smooths them out entirely. This action allows the robot to execute an
average speed proportional to the pertinent duty cycle.

Pulse width modulation was selected based on the main criterion of a system capable of efficiently performing speed
control tasks while also economizing electrical power consumption. These were crucial factors because of the limited
amount of electrical power allowably stored in the robot's 12-volt 4-amp-hours (4-AH) rechargeable battery. Regulating
the robot's electrical power consumption in an economically feasible fashion, while maximizing the efficiency of
electricity used, allows the robot to function for prolonged durations of optimal operation.

Sound and Aural Effects

This robot is supplied with an electret condenser element which is a highly rated sensitive microphone for audio
detection. Current aural effects include the monitoring of sounds produced within a local vicinity and memorizing the
location of origin of this specific sound wave. Seeking the loudest sound in the vicinity, memorizing its point of origin,
and proceeding to the designated location and executing a prompted command is just one of the main commands within
the robot's hearing capabilities.

The design of this robot also includes a 3-inch transducer speaker connected to the digital output (SS1) from the CPU
through an amplifier device (Q2). Selecting the correct parameters causes the speaker frequency output to be changed.
This process is initiated by executing the cycles command within the software program. The software architecture
includes four octaves of musical notes along with other various synthesized sound effects. This sound system allows the
robot the capability of producing audio feedback as well as audio special effects. Audio feedback and sound effects are
used in identifying certain system warnings, program debugging information, and satisfying any other aural or acoustic
program requirements.

Independent Power Source

This robot is completely autonomous and untethered. The robot does not require any type of external cables or any
remote source of electrical power.

A rechargeable 12-volt 4 AH hermetically sealed gel cell battery is utilized for the robot's electrical power source system.
The battery is strategically mounted within the robot's base, with weight distribution factors considered. A float charge
method regulated at 13.6 volts is utilized in recharging the battery. This method allows the charger to be activated and
connected on a continuous recharge mode. The CPU is also supplied with an integral battery charging circuit, which
prevents the battery from being overcharged. The instinct level software monitors the battery voltage set by the user and
is capable of executing an alert signal when the battery voltage falls below the pre-set level.

Software Architecture

High-level programming on the CPU board is possible by utilizing FORTH computer language. The programming
process for this robot was made possible by the use of a personal computer, using an interactive terminal program. The
actual programming process may be manually switched to operate in an interactive or programmable generation mode.
Basically, the interactive mode instantaneously executes a command as it is typed in and requested. This mode was
utilized during testing operations. The programmable generation mode operates in the manner in which a series of
commands is typed in and saved in program form. This unique program may be edited, deleted, or downloaded into the
robot's CPU, which is capable of storing the data in a memory chip. This newly stored program is available to be
automatically retrieved and executed at any requested time when the robot is activated.

Instinctive Level Software Architecture

The instinctive level of programming was considered the critical level of programming. These background tasks initiate
instantaneous predetermined responses to outside stimuli of the current active sensors. This level does not elaborately
process or determine the cause and description of a responsive action. A predetermined reactive command is simply
executed. Hypothetically, if an obstacle is detected, the initial reactive command is to stop, avoid obstacle, and redirect
course to seek a clear path. There is no processing of available alternate courses or determination of the type and size of
the obstacle sensed. The initial command is based on reactive information, as distinguished from processed information.

Behavior Level Software Architecture

The behavior level was considered as the intelligent level where actions are based on system status. Processed tasks and
decisions on obstacle avoidance are easily processed and attained. This process of programming monitors multiple

162

sensors and hardware to distinctively identify and process a prompted behavior or sensed obstacle. An intelligent course
of action is then determined. This programming level is also capable of making perceptive decisions and conclusions. A
time element is involved in which a series of commands is processed before the most practical and profound command is
selected and executed. Therefore, if the robot were to sense an obstacle, the behavior level would then automatically
direct the robot to stop, reverse direction, and perform a series of maneuvers to avoid the obstacle. The maneuvers are
based and derived from the information and facts processed by the instinctive and behavior levels of intelligence.

163

Chapter 4

Construction of an Autonomous
Mobile Robot

The robot's body, base, and head were designed and fabricated utilizing principles and methods required to achieve a
unibody design. A unibody design is simply the strategic fabrication, formation, and fastening of a multi-part
configuration. This particular type of design does not require the use of any type of frame or foundation. The unibody
design must serve as the nucleus of the configuration desired and provide the crucial factors required for strength,
stability, and overall unit support. These critical factors are attained when all components of the project are assembled
and secured.

The Base

The initial fabrication process for the base began by constructing the motor mounting channels. Two mounts were
required for this particular design in order to accommodate two gear reduction motors and two wheels. An estimated
sheared piece of aluminum sheet metal was measured, dimensioned, laid out, cut to size, and all necessary holes drilled or
punched out. PEM nut threaded inserts were then pressed into holes requiring a threaded interior. These fabricated
motor mounts were then formed and bent to final detail specifications.

The base casing was fabricated in the same manner. The motors were attached to the already fabricated motor mounts
along with the installation of two required wheels. The base case required additional fabrication for an elongated
rectangular opening for the serial personal computer (PC) cable jack. This rectangular opening was cut out on the back
side of the base casing box. Three additional holes were drilled to accommodate the on/off toggle switch, a reset button,
and the battery recharge receptacle jack. A small angle-like piece of aluminum was measured, cut to size, and mounted
above and around the toggle and reset switch to serve as a guard from possible collision damage. PEM nuts were
installed into all drilled holes with threaded requirements necessary for the assembly process. The motor mount
assemblies were then dimensionally located, attached to the robot base, and secured with custom-fabricated L-shaped
support brackets.

The Optical Vision System

Three pieces of aluminum material were laid out, cut, and drilled to the required specifications for the optical vision
system. The three aluminum shapes were then bent to a channel-like shape to accommodate the receivers and LEDs
required. This particular configuration was necessary to fulfill component protection requirements.
A small section of blank perforated circuit board was cut and hand-shaped to accommodate the series of LEDs and
receivers (vision array) mounting requirements. The vision array and circuit system were assembled and mounted to the
channel guards. The longest of the three completed vision array components was centered and mounted to the front
surface of the base. The two remaining vision array components were dimensionally located and mounted onto the front
left and right side corners of the robot base. The three-part vision system was mounted, using extender fasteners to allow
for wiring and assembly distance requirements.

The Tactile System

Two pre-measured square holes were cut out on the upper front surface of the robot base to accommodate the installation
of the tactile system. These holes were strategically placed directly in front of the pre-determined central processing unit
(CPU) board location inside the robot base. Two pre-measured lengths of piano wire were then cut accordingly and the
ends were formed to meet assembly and safety requirements. One end of the tactile feeler, formed in a U shape, was
attached to the robot through the square-cut holes on the robot base. This end was directly attached to the CPU board
with a fitted bolt and nut. The tactile feeler ends which protruded from the robot were formed with a closed square
shape. This square shape was meant to prevent damage to any surfaces or obstacles encountered by the feelers.

164

CPU and Battery Installation

The CPU board was placed on the inside upper surface of the robot base to transfer hole locations for the assembly
process. The holes which were laid out for this component were then drilled to diameter. Appropriate-size nuts and bolts
were then used to attach the CPU board to the inside upper surface of the robot base.
The battery was strategically placed with weight and balance considerations as the criteria. The final location of the
battery was determined to be at the rear of the inside upper ceiling of the robot base. A pre-measured piece of aluminum
material was laid out, cut, drilled, and bent into a U-shaped type bracket. This shape served as the battery mount bracket,
which was then placed on the predetermined battery location. Required holes were dimensionally transferred and drilled.
PEM nuts were installed in selected holes required for final battery mounting and installation.

Support Casters

Initially, a crucial dimension was determined for the construction of the caster assembly. Distance measurements were
taken from the lower edge of the robot base to the floor surface. This measurement was part of the criterion considered
for the selection of the two casters, due to variations in caster heights and shapes. The type of mount was also based on
this criterion. A channel bracket mount configuration was selected and fabricated. A pre-measured piece of aluminum
stock was cut, dimensioned, drilled, and bent to the desired form. The two casters which were selected were supplied
with an attached mounting plate. This plate was placed on the caster mount bracket and the pre-drilled holes were
dimensionally transferred and drilled onto the bracket. The casters were attached to the completed bracket, which was
mounted to the robot base by the use of machine screws and PEM nuts. The desired floor-to-base height dimension was
then confirmed. The bracket with casters was then tightly secured to the robot base.

The Body and Neck Assembly

Five selected pieces of aluminum material were laid out, dimensioned, and cut to satisfy the body size requirements. All
necessary holes were drilled and burred. The holes requiring threaded interiors were equipped with threaded PEM nut
inserts. The panel that required assembly bracket-type angles was formed on the Box and Pan Brake. These five
fabricated parts served as the front, left, right, top, and rear body panels.

The side panels were cut at slight angles to provide a wider and deeper lower base area necessary to provide a stronger
base support. This was a required design factor which contributed to the overall strength and support of the total
assembly.
The top side of the robot base was then dimensioned for a round cut-out which was drilled and cut. This allowed for the
electrical and communication wiring from the base to extend through the body, neck, and head.

The front panel required two additional holes. The first hole was dimensioned, located, and drilled to size. This hole
accommodated the power monitor flashing LED which was installed and wired to the appropriate wire leads that
originated from the base. The second hole was dimensioned, located, and drilled to size. This hole accommodated the
required condenser microphone which was installed and connected to the appropriate wire lead, which also originated
from the robot base. The rear panel required no additional procedures and was then installed and assembled with the top
and side panels. This body sub-assembly was attached and fastened to the robot base.

The neck was fabricated using a length of clear Plexiglass tubing. This tubing was cut to the desired length dimension.
Small aluminum L-shaped brackets were fabricated. These brackets were required to install and attach the neck onto the
centered location of the top panel of the robot body. The completed brackets and neck were drilled to size and fastened
with machine screws and PEM nut threaded inserts.

The Head Assembly

The fabrication of the head assembly was initiated by cutting two estimated sheets of aluminum material. These two
pieces of material were laid out, dimensioned, cut, and drilled to size. All drilled holes requiring a threaded interior were
supplied with threaded PEM nut inserts. The two elongated ends of each fabricated part were bent to bracket-like forms
on the Box and Pan Brake. These formed ends would later attach to each other when the desired box-like configuration
was formed and assembled.

The bottom face of the head was drilled to allow access to the wire leads of the robot's wiring system. The front face of
the robot's head required three holes. These holes were located, dimensioned, and drilled to size. The upper two holes
were required to accommodate two red LEDs which served as power monitors as well as aesthetic personality features.
The third hole was required to accommodate a yellow LED which served in the same manner as the two red LEDs. The
three LEDs were installed and connected to the appropriate wire leads which were available through the robot's neck.

165

The top of the robot's head required additional fabrication procedures. One hole was required to accommodate a green
power monitor light, which also enhanced the robot's appearance. The green light was installed and connected to the
appropriate wire leads, made available through the robot's neck. A 3-inch circle was dimensioned and centered on the top
of the robot's head. A series of small holes were drilled within this circle's circumference for a grill-like effect. This
grill-like effect was necessary for sound emission from a 3-inch speaker. This speaker was installed and wired directly
behind the grill, inside the robot's head. The two completed robot head sub-assemblies were joined and fastened together
to form the head's box-like configuration. This box-like head was attached and fastened to the neck through the use of
two pre-fabricated brackets, screws, and PEM nut threaded inserts.

An illustration of the CPU board silk screen drawing may be seen in Figure 8. A three-dimensional robot detail list view
is shown in Figure 9, accompanied by the robot detail list in Table 1. A front and side blueprint view is shown in

Figure 8. Silk Screen Blueprint View of Kosmo the Robot (horizontal)

Figure 9. Three-dimensional Blueprint View of Kosmo the Robot (horizontal)

166

Table 1. Robot Detail List for Figure 9

 Detail Letter QuantityDescription

A 3 Power Monitoring LED Array
B 1 Neck
C 1 Electret Condenser Microphone
D 2 Tactile Collision Avoidance Assembly
E 2 Spherical Metal Support Casters
F 2 Motor, Gearbox, and Wheel Assembly
G 1/1 3-inch Speaker/Power Monitor Light
H 1 Robot Head
J 1 Robot Body
K 1 Flashing Battery Monitor LED
L 1 Robot Base
M 3 Optical Collision Avoidance Assembly

Figure 10, and a schematic drawing of the robot's wiring system is shown in Figure 11, accompanied by the wiring system
schematic list in Table 2.

Various views of the completed robot are shown in photographs in Figures 12 through 16. The Testing and Demonstration
Program; the Hardware, Materials, and Parts List; and the list of Tools and Equipment Utilized may be found in Appendices
A, B, and C, respectively.

Figure 10. Front and Side Blueprint View of Kosmo the Robot (horizontal)

Figure 11. Schematic Drawing of the Robot's Wiring System

Table 2. Wiring System Schematic List for Figure 11

 Detail Letter Description

A Center Optical Vision Array
B Left Optical Vision Array
C Right Optical Vision Array
D Left Motor
E Right Motor
F Computer Serial Connector
G Electret Condenser Microphone
H System Reset Button
I Battery Charger Receptacle
J Power Monitor LED Array/Flashing Battery LED
K On/Off Toggle Switch
L DC Battery
M Left Tactile Feeler
N Right Tactile Feeler
P Central Processing Unit
R Magneto Speaker

167

Figure 12. A Front View of Kosmo the Robot

Figure 13. A Rear View of Kosmo the Robot

Figure 14. A Three-dimensional View of Kosmo the Robot

Figure 15. A Bottom View of Kosmo the Robot

Figure 16. A Top View of Kosmo the Robot

168

Chapter 5

Summary, Conclusions, and Recommendations

The purpose of this study was to design, construct, and test an autonomous mobile robot fabricated and assembled with
the use of pre-designed components. This robot included a basic vision system capable of optical collision avoidance and
a tactile collision avoidance system. This prototype robot successfully met these goals.

Summary

 Various types of robots are used in industry. Each type is unique in its capabilities and intended uses. By reviewing
different sources of literature, attending robot club meetings, and interviewing persons associated with robot construction,
the gathered information enabled the design and construction of an autonomous mobile robot.

The robot which was constructed was based on a unibody design using aluminum sheet metal, pre-designed components
and sub-assemblies, and prototype-fabricated parts and assemblies. An independent power source and on-board CPU
were used for programming and multi-electrical functions. A personal computer, utilizing a terminal mode software, was
used to program the robot to perform interactive as well as various programmed functions.

The prototype robot was capable of executing optical and tactile collision avoidance. Additional features and functions
included sound and aural effects, full untethered mobility, interactive and instinctive level programming, and dual motor
drive control.

Operation of the robot required entering a specific program into the robot's CPU memory, then activating the on/off
toggle switch. Initially, the robot would execute the calibrating commands, then follow through with the entered
programmed prompted commands. A sample of programmed commands would include forward, left pivot, right pivot,
reverse, and play the song "Clementine." The robot would complete its programmed commands and automatically go into
a "wander" programming mode. The "wander" programming mode allowed the robot to operate with mobility, avoiding
all obstacles, while executing various background commands.

Conclusions

The robot performed well for a prototype version of a fully mobile autonomous mobile robot. However, the following
minor mechanical and electrical operational problems were observed. Therefore, from a mechanical and electrical
standpoint, specific improvements were made to the autonomous mobile robot.

1. The robot's stability was imbalanced at certain points, which caused it to tip over. Therefore, larger spherical ball
bearing casters were substituted for the original plastic wheel-like casters, allowing for stability and minimal caster
swing.

2. When the robot was programmed to move, it lacked sufficient torque and power to fully maneuver itself. Therefore,
larger and heavier duty motors, gear boxes, and wheels were substituted to provide higher torque and mechanical driving
power.

3. The robot's electrical power supply prevented the motors from running to full capacity. Therefore, a 12-volt 4-amp
battery replaced the original 12-volt 2.2-amp battery, allowing an increase in the electrical power supply.

4. The robot's battery did not hold a full charge, causing programs to malfunction. Therefore, the battery charging unit
on the robot's CPU was modified to accommodate twice the charge current, which required that a heat-sync be installed
to prevent overheating within the CPU.

Recommendations

From the information gained in this study, the following recommendations are warranted:

1. Further study must be done in all areas of robotics in order to continue to allow for technological and industrial
advancements.

2. The incorporation of an independent robotic arm would be beneficial and can be easily adapted to this particular
design to allow for point-to-point manipulation capabilities.

169

3. Software recommendations include the further study and implementation of goal completion behaviors, animal
behavior simulations, goal selection monitoring, and goal/environment mapping for broader programming capabilities.

170

Thesis Appendices

171

Appendix A

Testing and Demonstration Program

This software program was programmed and implemented based on the exclusive testing procedures and requirements.

KOSMO1.FTH

DECIMAL
DISABLE
FORGET INIT-KOSMO1

: INIT-KOSMO1
 STOP
 100 LEFT SPEED
 100 RIGHT SPEED
 20 TRIGGER-FACTOR
 53 SUM-FACTOR
 CALIBRATE
 26 rLM-TRIGGER C!
 26 rRM-TRIGGER C!
 PVL rLW-MASK C!
 PVR rRW-MASK C!

;
: D DISABLE ;

: KOSMO1
 INIT-KOSMO1

 STOP
 DISABLE
 BLOW_THE_MAN_DOWN!
 ENABLE

 rSENSE OFF
 LEFT PIVOT
 2 90 RAMP-UP
 5 SECS
 2 RAMP-DOWN
 rSENSE ON

 rSENSE OFF
 RIGHT PIVOT
 8 90 RAMP-UP
 5 SECS
 5 RAMP-DOWN
 rSENSE ON

100 RIGHT SPEED
 100 LEFT SPEED
 60 CIRCLE
 20 SECS

 rSENSE OFF
 30 STEP
 FIND-SOUND
 PIVOT-SOUND
 FORWARD
 rSENSE ON
 5 SECS

172

 DISABLE
 CLEMENTINE
 ENABLE

 100 RIGHT SPEED
 100 LEFT SPEED
 70 CIRCLE
 20 SECS

 100 RIGHT SPEED
 100 LEFT SPEED
 FORWARD

 SAN-FRANCISCO

 INIT-KOSMO1
 EXPLORE ;

 REMEMBER
 AUTO-START: KOSMO1

173

Appendix B

Hardware, Materials, and Parts List

Hardware, Materials, and Parts List
Motors

12-volt DC Gear Reduction Motors_Multiproducts Specialties #EX935

Central Processing Unit Board

Motorola 68HC11 chip
Constant float charging battery circuit (13.8 volts)
Light sensors
Motor current
Motor driver
Prom
RAM/Battery back-up
RS-232 remote computer interface
Sound acquisition
Sound synthesis

Materials

4-inch diameter acrylic tubing for neck
6/32-inch screws_jet fasteners
#6 PEM nuts_jet fasteners
18-gauge wire for power distribution
22-gauge wire for miscellaneous wiring
Aluminum sheet metal .063 #5052 for unibody construction
Miscellaneous in-line signal and power connectors
Perforated circuit board
Piano wire feelers
SN 53 solder

Components

2000 MCD Superbright LEDs_Digikey
3-inch audio speaker
6-inch diameter wheels, 1 1/4-inches wide
12-volt 4 AH sealed lead acid battery
12-volt 500MA DC wall converter for charger
25-foot RS-232 cable (for PC connection required for programming robot)
DB-25 RS 232 connector
Electret condenser microphone
Photodarlington phototransistors_Digikey
On/Off toggle switch
Reset switch
Spherical casters
Various multicolored LEDs

174

Appendix C

Tools and Equipment Utilized

36-inch Squaring Shear machine
30-inch Box and Pan Brake machine
Vertical drill press
Hand-held drill motor
Combination square
24-inch and 6-inch scales
Whitney hand-held punch with assorted size punch and dies
Various hand tools (screw drivers, hammer, pliers,
hack saw, and socket and open-end wrenches)
Soldering iron
Digital volt meter
Power driver
12-foot tape measure

175

Bibliography

Bibliography
Brodie, L. 1984. Thinking FORTH. Englewood Cliffs, NJ: Prentice-Hall.
Brodie, L. 1987. Starting FORTH (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.
Cardoza, A., and Vlk, S. J. 1985. Robotics. Blue Ridge Summit, PA: Tab Books, Inc.
DeMiranda, M. A. 1988. "Design and construction of a performance vehicle." Unpublished master's thesis. Long Beach,
CA: California State University, Long Beach.
Demmon, R. H. 1983. "Construction of a vertical wheel mulling machine." Unpublished master's thesis. Long Beach,
CA: California State University, Long Beach.
Golding, D. 1992. Whiskers, the intelligent mobile robot. Angelus Oaks, CA: Angelus Research.
Hampton, W. J. December 15, 1988. What is Motorola making at this factory? Business Week, p. 1000.
Heath, L. 1985. Fundamentals of robotics: Theory and applications. Reston, VA: Reston Publishing Company.
Iyengar, S., and Elfes, A. 1991a. Autonomous mobile robots. Volume 2: Perception, mapping, navigation. Los Alamitos,
CA: IEEE Computer Society Press.
Iyengar, S., and Elfes, A. 1991b. Control, planning and architecture. Los Alamitos, CA: IEEE Computer Society Press.
Kandel, A., and Langholz, G. 1992. Hybrid architectures for intelligent systems. Boca Raton, FL: CRC Press.
Kelly, D. 1985. A layman's introduction to robotics. Princeton, NJ: Petrocelli Books, Inc.
Langrath, R. June, 1992. Smart shovel. Popular Science, pp. 82-109.
McComb, G. 1987. Robot builders bonanza: 99 inexpensive robotics projects. Blue Ridge Summit, PA: Tab Books.
Minsky, M. 1985. Robotics. Garden City, NY: Omni Publications International, Ltd.
Nof, S. Y. 1985. Handbook of industrial robotics. Toronto, Canada: Wiley and Sons.
Robillard, M. J. 1983. Microprocessor based robotics: Intelligent machine series (Vol. 1). Indianapolis, IN: Howard W.
Sams and Company.
Robillard, M. J. 1989. Advanced robot systems. Indianapolis, IN: Howard W. Sams and Company.
Stonecipher, K. 1989. Industrial robotics: Machine vision and artificial intelligence. Carmel, IN: Howard W. Sams &
Company.
Weiss, J., Jr. July, 1991. Robodoc. Discover, p. 16.

176

THE DESIGN, CONSTRUCTION, AND TESTING
OF AN AUTONOMOUS ROBOT

A THESIS
Presented to California State University, Long Beach

In Partial Fulfillment
of the Requirements for a Masters Degree

By
George Sergio Vega
Bachelors, 1984, Hawaii Pacific University
August 1993

177

ACKNOWLEDGMENTS

I dedicate this study in memory of my loving father, George H. Vega, for whom without his direct and indirect teachings, my
drive and ambition might not be as great, nor as determined, in moving forward and striving for greater knowledge and
excellence.

I express my gratitude and appreciation to Don Golding, President of Angelus Research, for his technical support, advice, and
numerous 18-hour+ vigils necessary in the development and creation of my right-hand man: Kosmo, the Robot.

I express my sincere appreciation and gratitude to Dr. Robert Kunst for his guidance and knowledge during the entire process
in orchestrating this project.

I express my appreciation to the aforementioned individuals for their support, help, and contribution in the completion of this
study and project: Sherry DeAna Skipper, for her grammar and typing abilities; Steve Roach and Mike Palomo, for their
technical and artistic talents; and my brother, Rupert Vega, for his expertise in industrial photography. I also extend my
gratitude to Mr. Skip, President of Sharecomm Enterprises, for his software support.

I thank my mother, Helen Vega, and two sisters, Josie and Elizabeth, and Takako-san, for their continued support and prayers.

TABLES

Table Page
1. Robot Detail List for Figure 9 46
2. Wiring System Schematic List for Figure 11 49

FIGURES
Figure Page
1. The Cyro 750 Robot 9
2. The ASEA IRb 6/2 Robot 11
3. The Intelledex Model 605 Robot 14
4. The JPL Rover Robot 16
5. The Armstar Tokico Painting Robot 19
6. The Mobot Robot 21
7. The CURV III Underwater Recovery Vehicle Robot 24
8. Silk Screen Drawing of the CPU Board 44
9. Three-dimensional Blueprint and Robot Detail View of
Kosmo the Robot 45
10. Front and Side Blueprint View of Kosmo the Robot 47
11. Schematic Drawing of the Robot's Wiring System 48
12. A Front View of Kosmo the Robot 50
13. A Rear View of Kosmo the Robot 51
14. A Three-dimensional View of Kosmo the Robot 52
15. A Bottom View of Kosmo the Robot 53
16. A Top View of Kosmo the Robot 54

ABSTRACT
THE DESIGN, CONSTRUCTION, AND TESTING
OF AN AUTONOMOUS ROBOT
By
George Sergio Vega
August 1993

The purpose of this study was to design, construct, and test an autonomous robot assembled from pre-designed components.

The design parameters and key factors of this robot included optical and tactile collision avoidance, total mobility, an
independent untethered power source, and programmable system. The design included additional features: sound effects,
interactive and instinctive level programming, and a dual motor drive control system. A basic series infra-red collision
avoidance system, in conjunction with a tactile collision avoidance system, was developed and constructed. These systems
were mounted to an aluminum unibody construction base, body, and head structure. The prototype base and body were

178

designed and constructed to house and support a dual gear reduction motor drive system attached to two 6-inch diameter
wheels. This robot was mobile and maneuverable.

The robot performed well. A few minor mechanical and electrical problems were observed. Appropriate changes and
modifications were made, which resolved these problems.

SHORT TITLE:

DESIGN AND CONSTRUCTION OF AN AUTONOMOUS ROBOT

179

Appendix C

Bibliography

Bibliography
Brodie, L. 1984. Thinking FORTH. Englewood Cliffs, NJ: Prentice-Hall.
Brodie, L. 1987. Starting FORTH (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.
Cardoza, A., and Vlk, S. J. 1985. Robotics. Blue Ridge Summit, PA: Tab Books, Inc.
DeMiranda, M. A. 1988. "Design and construction of a performance vehicle." Unpublished master's thesis. Long Beach,
CA: California State University, Long Beach.
Demmon, R. H. 1983. "Construction of a vertical wheel mulling machine." Unpublished master's thesis. Long Beach,
CA: California State University, Long Beach.
Golding, D. 1992. Whiskers, the intelligent mobile robot. Angelus Oaks, CA: Angelus Research.
Hampton, W. J. December 15, 1988. What is Motorola making at this factory? Business Week, p. 1000.
Heath, L. 1985. Fundamentals of robotics: Theory and applications. Reston, VA: Reston Publishing Company.
Iyengar, S., and Elfes, A. 1991a. Autonomous mobile robots. Volume 2: Perception, mapping, navigation. Los Alamitos,
CA: IEEE Computer Society Press.
Iyengar, S., and Elfes, A. 1991b. Control, planning and architecture. Los Alamitos, CA: IEEE Computer Society Press.
Kandel, A., and Langholz, G. 1992. Hybrid architectures for intelligent systems. Boca Raton, FL: CRC Press.
Kelly, D. 1985. A layman's introduction to robotics. Princeton, NJ: Petrocelli Books, Inc.
Langrath, R. June, 1992. Smart shovel. Popular Science, pp. 82-109.
McComb, G. 1987. Robot builders bonanza: 99 inexpensive robotics projects. Blue Ridge Summit, PA: Tab Books.
Minsky, M. 1985. Robotics. Garden City, NY: Omni Publications International, Ltd.
Nof, S. Y. 1985. Handbook of industrial robotics. Toronto, Canada: Wiley and Sons.
Robillard, M. J. 1983. Microprocessor based robotics: Intelligent machine series (Vol. 1). Indianapolis, IN: Howard W.
Sams and Company.
Robillard, M. J. 1989. Advanced robot systems. Indianapolis, IN: Howard W. Sams and Company.
Stonecipher, K. 1989. Industrial robotics: Machine vision and artificial intelligence. Carmel, IN: Howard W. Sams &
Company.
Weiss, J., Jr. July, 1991. Robodoc. Discover, p. 16.

180

	Definition

